WO2014133190A1 - Method for forming microstructure, and fin structure - Google Patents

Method for forming microstructure, and fin structure Download PDF

Info

Publication number
WO2014133190A1
WO2014133190A1 PCT/JP2014/055702 JP2014055702W WO2014133190A1 WO 2014133190 A1 WO2014133190 A1 WO 2014133190A1 JP 2014055702 W JP2014055702 W JP 2014055702W WO 2014133190 A1 WO2014133190 A1 WO 2014133190A1
Authority
WO
WIPO (PCT)
Prior art keywords
indium
semiconductor
trench
group iii
microstructure
Prior art date
Application number
PCT/JP2014/055702
Other languages
French (fr)
Japanese (ja)
Inventor
軍司 勲男
勇作 柏木
正和 杉山
Original Assignee
東京エレクトロン株式会社
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社, 国立大学法人 東京大学 filed Critical 東京エレクトロン株式会社
Publication of WO2014133190A1 publication Critical patent/WO2014133190A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition

Definitions

  • the present invention relates to a fine structure forming method and a fin structure, and more particularly to a fine structure forming method for forming a III-V semiconductor fine structure on a substrate.
  • III-V group semiconductors composed of compounds of group III elements (aluminum (Al), gallium (Ga), indium (In)) and group V elements (phosphorus (P), arsenic (As), antimony (Sb))
  • group III elements aluminum (Al), gallium (Ga), indium (In)
  • group V elements phosphorus (P), arsenic (As), antimony (Sb)
  • Some semiconductors have higher carrier mobility and smaller band gap than silicon (Si), which is a common semiconductor, so that a semiconductor element exceeding the physical properties of silicon can be produced by using a III-V semiconductor. Can do.
  • GaAs gallium arsenide
  • GaSb gallium antimony
  • InP indium phosphide
  • InAs indium arsenide
  • No indium antimony
  • a microstructure of a III-V group semiconductor such as InSb) or indium gallium arsenide (InGaAs) can be formed, a large number of semiconductor manufacturing techniques accumulated so far and a large number of manufacturing process apparatus groups already introduced This makes it possible to manufacture a III-V semiconductor ULSI that surpasses the physical properties of silicon, thereby improving the performance of the ULSI while avoiding a rapid increase in mass production costs.
  • LPE Liquid Phase Epitaxy
  • liquid indium slightly containing phosphorus filled in a crucible around which a heater is wound is brought into contact with a crystal substrate of indium phosphorus provided on a slider in a crystal growth furnace.
  • crystal substrate of indium phosphide is formed from the crystal plane of the crystal substrate.
  • Epitaxial growth is performed (see, for example, Patent Document 1).
  • attempts to grow indium phosphide crystals on a silicon substrate using the LPE method see, for example, Non-Patent Documents 1 to 3).
  • the width of the fin structure needs to be suppressed to about 10 nm in order to exhibit the expected performance of the channel of the fin structure transistor made of indium phosphide.
  • the indium solution has low wettability with the insulating film, it is difficult to reach the silicon surface exposed at the bottom of the trench.
  • the aspect ratio which is the ratio of the height and width of the fin structure, becomes considerably large, and it becomes more difficult to flow the indium solution to the bottom of the trench.
  • An object of the present invention is to provide a high-quality method for forming a III-V semiconductor microstructure and a fin structure in order to overcome the above-described difficulties and satisfy the requirements of the most advanced transistors.
  • a microstructure forming method including a precipitation step of depositing the III-V group semiconductor crystal using the silicon crystal plane as a seed, and a removal step of removing the coating layer.
  • a high-quality III-V semiconductor microstructure can be obtained.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of an indium gallium arsenide / indium aluminum arsenide quantum well type channel to which the fine structure of indium phosphide formed by the fine structure forming method according to the present embodiment is applied; The case of using the fin structure is shown.
  • 1 is a cross-sectional view schematically showing a configuration of an indium gallium arsenide / indium aluminum arsenide quantum well type channel to which an indium phosphide microstructure formed by the microstructure forming method according to the present embodiment is applied; The case where the planar structure of phosphorus is used is shown. It is sectional drawing which shows schematically the structure of the modification of the heat processing apparatus of FIG.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a CVD film forming apparatus used in the fine structure forming method according to the present embodiment
  • FIG. 2 is used in the fine structure forming method according to the present embodiment. It is sectional drawing which shows the structure of a heat processing apparatus roughly.
  • a CVD film forming apparatus 10 includes a chamber 11 that accommodates a semiconductor wafer, for example, a silicon substrate (hereinafter simply referred to as “wafer”) W, and a wafer W placed on the bottom of the chamber 11.
  • a semiconductor wafer for example, a silicon substrate (hereinafter simply referred to as “wafer”) W
  • wafer W placed on the bottom of the chamber 11.
  • a processing gas for example, a mixed gas of trimethylindium and tertiary butylphosphine vaporized using a vaporizer (not shown) is introduced into the processing space S in the chamber 11 using the shower head 13.
  • the processing gas may contain an inert gas such as hydrogen gas or nitrogen gas as a carrier gas.
  • the processing gas supplied to the processing space S reacts on the surface of the wafer W heated by the heater 14 and is deposited as indium phosphide.
  • the CVD film forming apparatus 10 may perform plasma CVD.
  • the heat treatment apparatus 16 includes a chamber 17 made of quartz (quartz), a table-like susceptor 18 placed on the bottom of the chamber 17 for placing the wafer W thereon, A plurality of lamp heaters 19 arranged to face the wafer W placed on the susceptor 18 outside 17 and hydrogen (H 2 ) gas as a carrier gas were vaporized into the processing space S ′ in the chamber 17.
  • an exhaust pipe 20a for discharging phosphorus or the like.
  • the heat rays irradiated by the lamp heater 19 pass through the wall portion of the chamber 17, the wafer W placed on the susceptor 18 is heated by the heat rays, and the cooling gas supply path 21 is placed on the susceptor 18.
  • the cooling gas is supplied toward the bottom surface of the wafer W to cool the wafer W from the bottom surface side.
  • FIG. 3 and 4 are process diagrams showing the fine structure forming method according to the present embodiment.
  • a fin structure 33 of crystallized indium phosphide 32 is formed on the surface of the wafer W.
  • silicon nitride Si 3 N 4
  • a coating layer 23 made of silicon oxide is formed (FIG. 3A).
  • the width of the coating layer 23 and the wet etch stop layer 22 is 10 nm ⁇ in an etching apparatus (not shown).
  • the etching apparatus is not limited to a wet etching apparatus, and may be a dry etching apparatus.
  • a natural oxide film (not shown) may be formed on the surface of the wafer W exposed at the bottom of the trench 24. Therefore, the natural oxide film is removed.
  • the crystal face 25 of the silicon Miller index (001) of the wafer W is exposed at the bottom of the trench 24 (FIG. 3C) (groove forming step).
  • indium phosphide is generated using a mixed gas of trimethylindium and tertiary butylphosphine vaporized using a vaporizer as a processing gas. Since the mixed gas is a gas phase and diffuses in the processing space S and has no relation to the wettability, the mixed gas enters the trench 24 without a gap. The indium and phosphorus that have entered the trench 24 without gaps react with each other to produce solid phase indium phosphorus, and the trench 24 is filled with the indium phosphorus 26 (III-V semiconductor) without gap (MOCVD (Metal)). (Organic Chemical Vapor Deposition))).
  • indium phosphide is generated preferentially from the crystal face 25 rather than the surface of the cover layer 23 due to the difference in chemical state between the surface of the cover layer 23 and the silicon crystal face 25 at the bottom of the trench 24.
  • the CVD film forming apparatus 10 can selectively fill the trench 24 with indium phosphide 26 ((D) in FIG. 3) (filling step).
  • the filling method of indium phosphide 26 into the trench 24 is not limited to CVD, and any method may be used as long as it fills the trench 24 with indium phosphide other than the liquid phase.
  • PVD Physical Vapor Deposition
  • a fine powder of indium phosphide may be directly embedded in the trench 24.
  • indium (group III metal) is deposited on the surface of the coating layer 23 and the surface of the indium phosphide 26 filled in the trench 24 by PVD targeting the bulk material 29 of indium.
  • an indium layer 27 is formed (FIG. 3E).
  • the target may be cooled in consideration of film forming conditions such as a melting point of the target and a film forming rate.
  • the thickness of the indium layer 27 may be 100 nm or more, and more preferably 200 nm to 300 nm.
  • the method of forming the indium layer 27 is not limited to PVD, and it is not always necessary to deposit indium on both the surface of the coating layer 23 and the surface of indium phosphide 26 filled in the trench 24. At least indium filled Indium may be deposited on the surface of the phosphorus 26.
  • silicon oxide is deposited on the indium layer 27 to form a cap layer 30 (another coating layer) ((F) in FIG. 3).
  • the wafer W is heated by the lamp heater 19 in the heat treatment apparatus 16.
  • the melting point of indium phosphide is 1062 ° C.
  • the melting point of indium is 156.6 ° C. Therefore, in the wafer W, the indium layer 27 is first melted.
  • the melting point of silicon oxide is 1650 ° C.
  • the cap layer 30 does not melt even when the temperature of the indium phosphide 26 is melted (1062 ° C.) as well as the indium layer 27. Therefore, even if the indium layer 27 is melted, indium can be prevented from flowing out from the wafer W, and indium can be retained on the trench 24.
  • the molten indium contacts the indium phosphide 26 in the trench 24 as a solvent.
  • solvent indium indium
  • the phosphorus contained in the indium phosphorus 26 gradually moves to the solvent indium 27a, and at the interface between the solvent indium 27a and the indium phosphorus 26.
  • the indium phosphorus 26 in contact with the solvent indium 27a gradually melts without heating the wafer W to 1062 ° C., which is the melting point of indium phosphorus, by decreasing the phosphorus content and the melting point to about 700 ° C. (A in FIG. 4).
  • the indium phosphide 26 immediately below the melted indium phosphide 26 is brought into contact with the solvent indium 27a, and the indium phosphide 26 immediately below is melted in the same manner.
  • the indium phosphide 26 in the trench 24 gradually melts from the top to the bottom of the trench 24 (see the arrow in FIG. 4A). If the temperature of the wafer W is maintained at 700 ° C. for about 1 hour, all of the indium phosphorus 26 in the trench 24 is melted, and the trench 24 is filled with the solvent indium 27a in which the indium phosphorus 26 is dissolved as a solute.
  • phosphorus that has moved to the solvent indium 27a may be released.
  • the solvent indium 27a is covered with the cap layer 30, the phosphorus remains in the solvent indium 27a, and the crystalline indium phosphorus that is deposited later forms phosphorus. It can prevent that content falls.
  • crystallized indium phosphide 32 is deposited using the silicon crystal surface 25 at the bottom of the trench 24 as a seed (see FIG. 4 (B)) (precipitation step).
  • the precipitation of crystallized indium phosphide 32 continues upward from the bottom of the trench 24 (see the arrow in FIG. 4B).
  • the wafer W is maintained at about 610 ° C.
  • the temperature difference between the solvent indium 27a and the wafer W is maintained at about 10 ° C., high-quality single-crystallized indium phosphide 32 is deposited.
  • Crystallized indium phosphide 32 precipitates using the crystal plane 25 of silicon as a seed, and thus inherits the crystallinity of the Miller index (001). Threading dislocation defects 31 are generated.
  • the threading dislocation defect 31 is not perpendicular to the crystal plane 25 but grows obliquely, for example, along a direction of 45 °. Therefore, if the aspect ratio of the trench 24 is 1 or more, the threading dislocation defect 31 does not reach the top of the trench 24, and if the aspect ratio is 2 or more, the threading dislocation defect 31 in the crystallized indium phosphorus 32. It is possible to secure a sufficient portion where no exists. Further, if the aspect ratio is 3 to 10, a portion where the threading dislocation defect 31 does not exist in the crystallized indium phosphide 32 can be more sufficiently secured.
  • the cooling is further continued to solidify all of the solvent indium 27a to form the indium layer 27, and then the cap layer 30 and the trench 24 above.
  • the indium layer 27 present in the substrate is removed by wet etching or CMP (Chemical Mechanical Polishing) ((C) in FIG. 4).
  • the covering layer 23 is removed by wet etching to obtain a fin structure 33 of crystallized indium phosphide 32 (removal step).
  • the shape of the trench 24 is reflected in the fin structure 33, and the width of the fin structure 33 is the same as the width of the trench 24.
  • the height is the same as the depth of the trench 24.
  • the aspect ratio of the obtained fin structure 33 is the trench ratio. Similarly to the aspect ratio of 24, it may be 1 or more, preferably 3 to 10.
  • the present process is terminated.
  • FIG. 6A and 6B show the configuration of an indium gallium arsenide / indium aluminum arsenide quantum well (Quantum Well) channel to which the fine structure of indium phosphide formed by the fine structure forming method according to the present embodiment is applied.
  • FIG. 6A shows a case where a fin structure of indium phosphide is used
  • FIG. 6B shows a case where a fine planar structure of indium phosphide is used.
  • an indium aluminum arsenide (InAlAs) layer 34, an indium gallium arsenide (InGaAs) layer 35, and a layer are sequentially formed so as to cover the surface of the fin structure 33 formed by the microstructure forming method according to the present embodiment.
  • An indium phosphide layer 36 is formed, and in FIG. 6B, the crystallized indium phosphide 32 is embedded in the coating layer 23 by removing the step (D) of FIG. 4 from the microstructure forming method according to the present embodiment.
  • an indium aluminum arsenide layer 34, an indium gallium arsenide layer 35, and an indium phosphide layer 36 are sequentially formed so as to cover the exposed surface of the crystallized indium phosphide 32.
  • the indium aluminum arsenide layer 34 is a lower barrier layer
  • the indium gallium arsenide layer 35 is a channel layer
  • the indium phosphide layer 36 is an upper barrier layer.
  • indium phosphide is more than gallium arsenide.
  • the lattice constant is close to that of indium aluminum arsenide, and threading dislocation defects due to lattice mismatch are unlikely to occur.
  • the indium aluminum arsenide layer 34 can be made thinner than the conventional buffer layer.
  • the fin structure 33 when used as a base, for example, a portion other than the protruding fin structure 33 is covered with a mask film, and an indium aluminum arsenide layer 34, an indium gallium arsenide layer 35, and an indium phosphide layer 36 are formed on the fin structure 33. Therefore, it is not necessary to remove unnecessary portions by dry etching using plasma after the whole is covered with the indium aluminum arsenide layer 34, the indium gallium arsenide layer 35, and the indium phosphide layer 36. As a result, the channel can be prevented from being damaged by the plasma.
  • indium phosphide 26 is filled in the vapor phase in the trench 24, so that the indium phosphide 26 is filled in the trench 24 without any gap and the silicon crystal face 25 at the bottom of the trench 24 is filled.
  • the indium phosphide 26 filled in the trench 24 having an aspect ratio of 1 or more, preferably 3 to 10, is heated and melted, and then the melted indium phosphide 26 is gradually cooled to obtain silicon crystals.
  • the crystallized indium phosphide 32 is deposited by using the surface 25 as a seed, the fin structure 33 of the crystallized indium phosphide 32 in which the shape of the trench 24 is reflected and the portion where the threading dislocation defect 31 does not exist can be obtained. As a result, a high-quality indium phosphide fin structure 33 with high electron mobility can be obtained.
  • the trench 24 filled with indium phosphide 26 is covered with the indium layer 27, so that the solvent indium 27 a is deposited in the indium 24 in the crystallized indium phosphide 32.
  • the phosphorus in the indium phosphorus 26 moves to the solvent indium 27a, and the phosphorus content in the indium phosphorus 26 decreases.
  • the melting point of the indium phosphide 26 is lowered, the temperature at which all of the indium phosphide 26 filled in the trench 24 is melted can be lowered, so that the heat is applied to the other layers formed on the wafer W. Damage can be prevented, thermal energy can be reduced, and heating time can be shortened to improve throughput.
  • the fine structure forming method according to the present embodiment described above can be performed using a conventional semiconductor manufacturing apparatus such as the CVD film forming apparatus 10, the heat treatment apparatus 16, the PVD film forming apparatus 28, and the etching apparatus.
  • a conventional semiconductor manufacturing apparatus such as the CVD film forming apparatus 10, the heat treatment apparatus 16, the PVD film forming apparatus 28, and the etching apparatus.
  • conventional semiconductor manufacturing equipment processes large-diameter silicon wafers (for example, silicon wafers with a diameter of 300 mm), it can process with higher productivity than a crystal growth furnace dedicated to LPE that processes relatively small-diameter substrates. It can be performed. Therefore, the manufacturing cost of the fin structure 33 can be significantly reduced.
  • the cap layer 30 may not be formed by removing the step (F) of FIG. 3 from the fine structure forming method according to the present embodiment described above. However, in this case, since the solvent indium 27a may flow out of the wafer W, the wafer W is heated by the heat treatment apparatus 37 shown in FIG.
  • the heat treatment apparatus 16 of FIG. 2 is different from the heat treatment apparatus 16 of FIG. 2 in that it has an outflow prevention wall 38 so as to surround the wafer W on which the susceptor 18 is placed.
  • the outflow prevention wall 38 can prevent the solvent indium 27 a from flowing out from the wafer W. Further, in this case, since the solvent indium 27a is directly exposed to the processing space S ′ in the chamber 17, when further phosphorus is added to the indium phosphorus 26, the vaporized phosphorus is introduced into the processing space S ′ by the gas introduction pipe 20.
  • phosphorus By increasing the partial pressure of phosphorus in the processing space S ′, phosphorus can be easily added to the indium phosphorus 26 via the solvent indium 27a. Further, an additive (for example, zinc (Zn), When sulfur (S) or iron (Fe)) is added, the additive can be easily added to the indium phosphide 26 through the solvent indium 27a (FIG. 8A). Further, when the cap layer 30 is not formed, the indium layer 27 does not need to be formed so as to cover both the surface of the covering layer 23 and the trench 24, and is formed so as to cover only the trench 24 as shown in FIG. 8B. May be. Thereby, the usage-amount of indium can be reduced.
  • an additive for example, zinc (Zn)
  • S sulfur
  • Fe iron
  • the wafer W is heated after the trench 24 is filled with the indium phosphide 26. Then, the indium phosphide 26 may be melted, and the wafer W may be gradually cooled to precipitate the crystallized indium phosphide 32 from the silicon crystal face 25.
  • the fin structure 33 is formed of indium phosphorus.
  • the fine structure forming method according to the present embodiment is not limited to other III-V semiconductors such as aluminum phosphorus (AlP). ), Aluminum arsenic (AlAs), aluminum antimony (AlSb), gallium phosphide (GaP), gallium arsenide, gallium antimony (GaSb), indium arsenic (InAs), indium antimony (InSb), or a compound containing these to form a fin structure
  • AlP aluminum phosphorus
  • AlAs Aluminum arsenic
  • AlSb aluminum antimony
  • GaP gallium phosphide
  • GaP gallium arsenide
  • GaSb gallium antimony
  • InAs indium arsenic
  • InSb indium antimony
  • the trench 24 is covered with an aluminum layer, and an indium-based III-V group semiconductor is used. After the trench 24 is filled with an indium III-V group semiconductor, the trench 24 is covered with an indium layer. When a gallium III-V semiconductor is used, the trench 24 is gallium III-V group. After filling with a semiconductor, the trench 24 is covered with a gallium layer. Since gallium has a low melting point and may be in a liquid phase at room temperature, when the trench 24 is covered with a gallium layer, an outflow prevention wall surrounding the wafer W is provided to prevent outflow of liquid gallium. Is preferred.
  • the trench 24 is filled with indium instead of indium phosphorus.
  • FIG. 9 is a process diagram showing the fine structure forming method according to the present embodiment.
  • 3A to 3C are performed to form a trench 24 in the wet etch stop layer 22 and the coating layer 23 on the wafer W, and a silicon mirror index is formed at the bottom of the trench 24.
  • the crystal plane 25 of (001) is exposed ((A) of FIG. 9) (groove forming step).
  • the surface of the trench 24 and the covering layer 23 is covered with solid-state indium 39 by PVD targeting the bulk material 29 of indium. Further, since the solid phase indium 39 has no relation to the wettability, the indium 39 enters the trench 24 without any gap, and the trench 24 is filled with the indium 39 without any gap ((B) in FIG. 9) (filling step).
  • the method of filling the trench 24 with indium is not limited to PVD, and any method may be used as long as it is a method of filling the trench 24 with indium other than the liquid phase.
  • CVD that fills the trench 24 with vapor-phase indium may be used. Since CVD has a high step coverage, even if the aspect ratio of the trench 24 is high, the inner surface of the trench 24 can be covered with indium 39 without gaps, and as a result, the indium 39 can be reliably filled in the trenches 24 without gaps. Can do.
  • indium 39 may be filled into the trench 24 by using reflow after PVD.
  • a small amount of indium phosphorus may be filled in the trench 24 in advance, and then indium may be filled in the trench 24.
  • conventional methods such as thermal CVD, photo CVD, and plasma CVD can be used for CVD.
  • CVD other than plasma CVD is used. desirable.
  • the wafer W is heated by the lamp heater 19 to melt the indium 39, and then gaseous phosphorus is supplied from the gas introduction tube 20 to the processing space S ′ (FIG. 9C )).
  • the indium 39 is not covered with other layers, the supplied phosphorus contacts and melts into the molten indium 39, and indium phosphorus is formed in the molten indium 39.
  • the wafer W is surrounded by the outflow prevention wall 38, the molten indium 39 does not flow out from the wafer W.
  • indium phosphide is also formed in the melted indium 39 in the trench 24, when cooling gas is supplied from the cooling gas supply path 21 of the susceptor 18 and the wafer W is gradually cooled from the bottom surface side, silicon at the bottom of the trench 24 is formed.
  • Single-crystallized indium phosphide 32 is deposited using the crystal plane 25 as a seed (FIG. 9D) (precipitation step). The precipitation of crystallized indium phosphide 32 continues upward from the bottom of the trench 24 (see the arrow in FIG. 9D).
  • the threading dislocation defect 31 is generated from the crystal plane 25 due to lattice mismatch. If the aspect ratio of the trench 24 is 1 or more, the threading dislocation defect 31 is a trench. If the aspect ratio is 2 or more, a portion where the threading dislocation defect 31 does not exist in the crystallized indium phosphorus 32 can be sufficiently secured. Further, if the aspect ratio is 3 to 10, a portion where the threading dislocation defect 31 does not exist in the crystallized indium phosphide 32 can be more sufficiently secured.
  • the inside of the trench 24 is filled with crystallized indium phosphide 32
  • cooling is further continued to solidify all the melted indium 39, and then the indium 39 existing above the trench 24 is removed by CMP or the like.
  • the covering layer 23 is removed by dry etching or wet etching to obtain a fin structure 33 of crystallized indium phosphide 32 ((F) in FIG. 9) (removal step). The process ends.
  • indium 39 is filled in the trench 24 in a solid phase, so that the indium 39 is filled in the trench 24 without any gap and is in contact with the silicon crystal plane 25 at the bottom of the trench 24.
  • Indium 39 filled in the trench 24 is heated and melted, phosphorus is added to generate indium phosphorus in the melted indium 39, and the melted indium 39 is gradually cooled to form silicon.
  • the fin structure 33 of the crystallized indium phosphide 32 in which the shape of the trench 24 is reflected and the part where the threading dislocation defect 31 does not exist is secured. Can do.
  • the indium 39 also covers the surface of the coating layer 23. Therefore, when the indium 39 is heated and melted, the coating layer 23 is also covered with the molten indium 39. This increases the contact area between the vapor phase phosphorus supplied to the processing space S ′ and the molten indium 39, so that phosphorus can be easily added to the molten indium 39.
  • the melted indium 39 is directly exposed to the processing space S ′ in the chamber 17.
  • an additive can be easily added to indium phosphide.
  • the microstructure forming method according to this embodiment described above is a group III-V semiconductor other than indium phosphorus, such as aluminum phosphorus, aluminum arsenic, aluminum antimony, gallium phosphorus, gallium arsenide, gallium antimony, indium arsenic, indium antimony, or
  • the present invention can also be applied to the case where a fin structure is formed using a compound containing these.
  • the trench 24 is filled with aluminum
  • the trench 24 is filled with indium.
  • the trench 24 is filled with gallium.
  • the crystal face 25 of the silicon Miller index (001) is exposed at the bottom of the trench 24, but the Miller index of the exposed crystal face 25 is not limited to this, for example, (010), It may be (011), (100), (101), (110) or (111).
  • the indium phosphide microstructure is formed using the trench 24.
  • the indium phosphide microstructure is formed using the holes provided in the wet etch stop layer 22 and the covering layer 23. May be.
  • the fin structure 33 obtained by each of the above embodiments can be suitably used for a three-dimensional MOSFET, so-called FinFET.
  • photonic devices other than FET such as LED, a semiconductor laser, a photodetector, and a solar cell.
  • the aspect ratio of the trench 24 is set to 1 or more from the viewpoint of securing a portion where the threading dislocation defect 31 does not exist in the fin structure 33. Since the effect of facilitating filling of indium phosphide / indium can be achieved, the present invention is also applied to filling of indium phosphide / indium into trenches having a width of 100 nm or less, which makes filling of indium phosphide / indium difficult. be able to. In this case, even if the width of the trench is 100 nm or less, the trench can be surely filled with indium phosphide / indium.
  • the fine fin structure 33 having a width of 100 nm or less is not necessary. However, even if the width is larger than 100 nm, the laser circuit or the high-frequency circuit has III-V. Since the fin structure of a group semiconductor is useful, the present invention may be applied to filling indium phosphide / indium into trenches having a width greater than 100 nm.
  • Another object of the present invention is to supply a storage medium storing software program codes for realizing the functions of the above-described embodiments to a computer (not shown) included in the CVD film forming apparatus 10 and the like, and to execute the CPU of the computer. Is also achieved by reading and executing the program code stored in the storage medium.
  • the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the program code and the storage medium storing the program code constitute the present invention.
  • Examples of the storage medium for supplying the program code include RAM, NV-RAM, floppy (registered trademark) disk, hard disk, magneto-optical disk, CD-ROM, CD-R, CD-RW, DVD (DVD). -ROM, DVD-RAM, DVD-RW, DVD + RW) and other optical disks, magnetic tapes, non-volatile memory cards, other ROMs, etc., as long as they can store the program code.
  • the program code may be supplied to the computer by downloading from another computer or database (not shown) connected to the Internet, a commercial network, a local area network, or the like.
  • the function expansion is performed based on the instruction of the program code.
  • the form of the program code may be in the form of object code, program code executed by an interpreter, script data supplied to the OS, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Provided is a method for forming a microstructure capable of yielding a high-quality III-V semiconductor microstructure. A trench (24) is formed in a wet-etch stop layer (22) and a covering layer (23) for covering a wafer (W), the crystal surface (25) of the silicon of the wafer (W) is exposed in the bottom section of the trench (24), the trench (24) is filled with gas-phase indium phosphide, the indium-phosphide-filled trench (24) and the covering layer (23) are covered with an indium layer (27), and the indium phosphide filling the trench (24) is heated to melting, after which the melted indium phosphide is gradually cooled, and crystallized indium phosphide (32) is precipitated using the crystal surface (25) of the silicon as a kernel, and the covering layer (23) is removed.

Description

微細構造形成方法及びフィン構造Fine structure forming method and fin structure
 本発明は、微細構造形成方法及びフィン構造に関し、特にIII−V族半導体の微細構造を基板に形成する微細構造形成方法に関する。 The present invention relates to a fine structure forming method and a fin structure, and more particularly to a fine structure forming method for forming a III-V semiconductor fine structure on a substrate.
 III族元素(アルミニウム(Al)、ガリウム(Ga)、インジウム(In))及びV族元素(リン(P)、ヒ素(As)、アンチモン(Sb))の化合物から構成されるIII−V族半導体には、半導体として一般的なシリコン(Si)よりもキャリアの移動度が高く、バンドギャップが小さいものがあるため、III−V族半導体を用いることによってシリコンの物性を超える半導体素子を作成することができる。 III-V group semiconductors composed of compounds of group III elements (aluminum (Al), gallium (Ga), indium (In)) and group V elements (phosphorus (P), arsenic (As), antimony (Sb)) Some semiconductors have higher carrier mobility and smaller band gap than silicon (Si), which is a common semiconductor, so that a semiconductor element exceeding the physical properties of silicon can be produced by using a III-V semiconductor. Can do.
 一方、長年に亘ってシリコン(001)からなるウエハがULSI製造基板として用いられ、直径が300mmの大口径ウエハを扱う製造プロセス装置群は世界中の量産工場に数多く導入されている。 On the other hand, for many years, wafers made of silicon (001) have been used as ULSI manufacturing substrates, and many manufacturing process equipment groups handling large-diameter wafers with a diameter of 300 mm have been introduced into mass production plants around the world.
 したがって、ミラー指数が(001)の結晶面を有するウエハ上へ結晶欠陥が無い高品質なガリウムヒ素(GaAs)、ガリウムアンチモン(GaSb)、インジウムリン(InP)、インジウムヒ素(InAs)、インジウムアンチモン(InSb)、ヒ化インジウムガリウム(InGaAs)等のIII−V族半導体の微細構造を形成することができれば、今まで蓄積された半導体製造技術の大半を用い、既に数多く導入されている製造プロセス装置群を流用してシリコンの物性を凌駕するIII−V族半導体のULSIを製造することが可能となり、もって、量産コストの激増を回避しながらULSIの性能を向上させることができる。 Therefore, high-quality gallium arsenide (GaAs), gallium antimony (GaSb), indium phosphide (InP), indium arsenide (InAs), indium antimony (No) on a wafer having a crystal plane with a Miller index of (001). If a microstructure of a III-V group semiconductor such as InSb) or indium gallium arsenide (InGaAs) can be formed, a large number of semiconductor manufacturing techniques accumulated so far and a large number of manufacturing process apparatus groups already introduced This makes it possible to manufacture a III-V semiconductor ULSI that surpasses the physical properties of silicon, thereby improving the performance of the ULSI while avoiding a rapid increase in mass production costs.
 ところが、単にシリコン上に上述したIII−V族半導体を堆積させて形成すると、シリコンとIII−V族半導体の格子定数の違いからIII−V族半導体の微細構造中に多くの結晶欠陥が生じるため、III−V族半導体からなる半導体素子に期待した性能を発揮させることが困難である。 However, if the above-described group III-V semiconductor is simply deposited on silicon, many crystal defects are generated in the microstructure of the group III-V semiconductor due to the difference in lattice constant between silicon and group III-V semiconductor. It is difficult to exhibit the expected performance of a semiconductor element made of a III-V group semiconductor.
 ところで、結晶欠陥の少ないインジウムリンを成長させる方法の一つとして、LPE(Liquid Phase Epitaxy)法がある。LPE法では、結晶成長炉内において、ヒータが巻回されたルツボに満たされたわずかにリンを含んだ液相のインジウムを、スライダに設けられたインジウムリンの結晶基板に接触させ、その後、ヒータによって液相のインジウムとインジウムリンの結晶基板との間に温度差を発生させ且つ該温度差を維持し、結晶基板を種として、該結晶基板の結晶面から結晶欠陥の少ないインジウムリンの結晶をエピタキシャル成長させる(例えば、特許文献1参照)。また、LPE法を用いて、シリコン基板上にインジウムリンの結晶を成長させる試みも報告されている(例えば、非特許文献1乃至3参照)。 Incidentally, as one method for growing indium phosphide with few crystal defects, there is an LPE (Liquid Phase Epitaxy) method. In the LPE method, liquid indium slightly containing phosphorus filled in a crucible around which a heater is wound is brought into contact with a crystal substrate of indium phosphorus provided on a slider in a crystal growth furnace. To generate a temperature difference between the liquid phase indium and the crystal substrate of indium phosphide and maintain the temperature difference, and using the crystal substrate as a seed, crystals of indium phosphide with few crystal defects are formed from the crystal plane of the crystal substrate. Epitaxial growth is performed (see, for example, Patent Document 1). There have also been reports of attempts to grow indium phosphide crystals on a silicon substrate using the LPE method (see, for example, Non-Patent Documents 1 to 3).
特開昭63−144200号公報JP 63-144200 A
 しかしながら、ULSIのトランジスタを三次元形状に加工する場合、インジウムリンからなるフィン構造のトランジスタのチャネルに期待した性能を発揮させるためにはフィン構造の幅を10nm程度に抑える必要がある。 However, when a ULSI transistor is processed into a three-dimensional shape, the width of the fin structure needs to be suppressed to about 10 nm in order to exhibit the expected performance of the channel of the fin structure transistor made of indium phosphide.
 幅が狭いフィン構造を形成するには、シリコン基板上の絶縁膜に幅狭のトレンチを形成し、該トレンチ内へインジウム溶液を流し込み、トレンチ内にてインジウムリンの結晶を成長させるのが好ましいが、インジウム溶液は絶縁膜と濡れ性が低いため、トレンチの底部に露出するシリコン表面まで到達するのが困難である。特に、フィンの高さは数10nmとなるため、フィン構造の高さと幅の比であるアスペクト比はかなり大きくなり、トレンチの底部までインジウム溶液を流し込むのはさらに困難になる。 In order to form a fin structure with a narrow width, it is preferable to form a narrow trench in an insulating film on a silicon substrate, flow an indium solution into the trench, and grow an indium phosphorus crystal in the trench. Since the indium solution has low wettability with the insulating film, it is difficult to reach the silicon surface exposed at the bottom of the trench. In particular, since the height of the fin is several tens of nm, the aspect ratio, which is the ratio of the height and width of the fin structure, becomes considerably large, and it becomes more difficult to flow the indium solution to the bottom of the trench.
 本発明の目的は、上述した困難を克服して、最先端のトランジスタの要求を満たすために高品質なIII−V族半導体の微細構造形成方法及びフィン構造を提供することにある。 An object of the present invention is to provide a high-quality method for forming a III-V semiconductor microstructure and a fin structure in order to overcome the above-described difficulties and satisfy the requirements of the most advanced transistors.
 上記課題を解決するために、本発明によれば、シリコン基板を被覆する被覆層に幅狭の溝を形成し、該溝の底部において前記シリコン基板のシリコンの結晶面を露出させる溝形成ステップと、前記溝に気相又は固相でIII−V族半導体を充填する充填ステップと、前記充填されたIII−V族半導体を加熱して溶融した後、前記溶融したIII−V族半導体を徐冷して前記シリコンの結晶面を種として前記III−V族半導体の結晶を析出させる析出ステップと、前記被覆層を除去する除去ステップとを有する微細構造形成方法が提供される。 In order to solve the above-mentioned problems, according to the present invention, a groove forming step of forming a narrow groove in a coating layer covering a silicon substrate and exposing a silicon crystal plane of the silicon substrate at the bottom of the groove; A filling step of filling the groove with a group III-V semiconductor in a gas phase or a solid phase, and heating and melting the filled group III-V semiconductor, and then slowly cooling the molten group III-V semiconductor Then, there is provided a microstructure forming method including a precipitation step of depositing the III-V group semiconductor crystal using the silicon crystal plane as a seed, and a removal step of removing the coating layer.
 本発明によれば、高品質なIII−V族半導体の微細構造を得ることができる。 According to the present invention, a high-quality III-V semiconductor microstructure can be obtained.
本発明の第1の実施の形態に係る微細構造形成方法に用いられるCVD成膜装置の構成を概略的に示す断面図である。It is sectional drawing which shows roughly the structure of the CVD film-forming apparatus used for the fine structure formation method which concerns on the 1st Embodiment of this invention. 本実施の形態に係る微細構造形成方法に用いられる熱処理装置の構成を概略的に示す断面図である。It is sectional drawing which shows roughly the structure of the heat processing apparatus used for the microstructure formation method which concerns on this Embodiment. 本実施の形態に係る微細構造形成方法を示す工程図である。It is process drawing which shows the fine structure formation method which concerns on this Embodiment. 本実施の形態に係る微細構造形成方法を示す工程図である。It is process drawing which shows the fine structure formation method which concerns on this Embodiment. 本実施の形態に係る微細構造形成方法に用いられるPVD成膜装置の構成を概略的に示す断面図である。It is sectional drawing which shows roughly the structure of the PVD film-forming apparatus used for the microstructure formation method which concerns on this Embodiment. 本実施の形態に係る微細構造形成方法によって形成されるインジウムリンの微細構造が適用されるヒ化インジウムガリウム/ヒ化インジウムアルミニウム量子井戸型のチャネルの構成を概略的に示す断面図でありインジウムリンのフィン構造を用いた場合を示す。FIG. 3 is a cross-sectional view schematically showing the configuration of an indium gallium arsenide / indium aluminum arsenide quantum well type channel to which the fine structure of indium phosphide formed by the fine structure forming method according to the present embodiment is applied; The case of using the fin structure is shown. 本実施の形態に係る微細構造形成方法によって形成されるインジウムリンの微細構造が適用されるヒ化インジウムガリウム/ヒ化インジウムアルミニウム量子井戸型のチャネルの構成を概略的に示す断面図であり、インジウムリンのプレーナ構造を用いた場合を示す。1 is a cross-sectional view schematically showing a configuration of an indium gallium arsenide / indium aluminum arsenide quantum well type channel to which an indium phosphide microstructure formed by the microstructure forming method according to the present embodiment is applied; The case where the planar structure of phosphorus is used is shown. 図2の熱処理装置の変形例の構成を概略的に示す断面図である。It is sectional drawing which shows schematically the structure of the modification of the heat processing apparatus of FIG. 本実施の形態に係る微細構造形成方法の変形例における微細構造の周辺の構成を概略的に示す拡大断面図であり、キャップ層を形成しない場合を示す。It is an expanded sectional view which shows roughly the structure of the periphery of the fine structure in the modification of the fine structure formation method which concerns on this Embodiment, and shows the case where a cap layer is not formed. 本実施の形態に係る微細構造形成方法の変形例における微細構造の周辺の構成を概略的に示す拡大断面図であり、インジウム層によってトレンチのみを覆う場合を示す。It is an expanded sectional view showing roughly composition of the circumference of a fine structure in a modification of a fine structure formation method concerning this embodiment, and shows a case where only a trench is covered with an indium layer. 本発明の第2の実施の形態に係る微細構造形成方法を示す工程図である。It is process drawing which shows the microstructure formation method which concerns on the 2nd Embodiment of this invention. 本実施の形態に係る微細構造形成方法の変形例における微細構造の周辺の構成を概略的に示す拡大断面図である。It is an expanded sectional view which shows roughly the structure of the periphery of the fine structure in the modification of the fine structure formation method concerning this Embodiment.
 以下、本発明の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 まず、本発明の第1の実施の形態に係る微細構造形成方法について説明する。 First, the microstructure formation method according to the first embodiment of the present invention will be described.
 図1は、本実施の形態に係る微細構造形成方法に用いられるCVD成膜装置の構成を概略的に示す断面図であり、図2は、本実施の形態に係る微細構造形成方法に用いられる熱処理装置の構成を概略的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing a configuration of a CVD film forming apparatus used in the fine structure forming method according to the present embodiment, and FIG. 2 is used in the fine structure forming method according to the present embodiment. It is sectional drawing which shows the structure of a heat processing apparatus roughly.
 図1において、CVD成膜装置10は、半導体ウエハ、例えば、シリコン基板(以下、単に「ウエハ」という。)Wを収容するチャンバ11と、該チャンバ11内の底部に配置されてウエハWを載置するステージ12と、チャンバ11の天井部に配置されてステージ12と対向するシャワーヘッド13と、ステージ12に接続されるヒータ14と、チャンバ11内を排気する排気管15とを備える。 Referring to FIG. 1, a CVD film forming apparatus 10 includes a chamber 11 that accommodates a semiconductor wafer, for example, a silicon substrate (hereinafter simply referred to as “wafer”) W, and a wafer W placed on the bottom of the chamber 11. A stage 12 to be placed, a shower head 13 disposed on the ceiling of the chamber 11 and facing the stage 12, a heater 14 connected to the stage 12, and an exhaust pipe 15 for exhausting the interior of the chamber 11.
 シャワーヘッド13を用いてチャンバ11内の処理空間Sに処理ガス、例えば、気化器(図示しない)を用いて気化されたトリメチルインジウム及びターシャリーブチルホスフィンの混合ガスを導入する。処理ガスには、水素ガスや窒素ガス等の不活性ガスがキャリアガスとして含まれていてもよい。処理空間Sに供給された処理ガスは、ヒータ14によって加熱されたウエハWの表面において反応してインジウムリンとして堆積する。なお、CVD成膜装置10では、プラズマCVDを行なってもよい。 A processing gas, for example, a mixed gas of trimethylindium and tertiary butylphosphine vaporized using a vaporizer (not shown) is introduced into the processing space S in the chamber 11 using the shower head 13. The processing gas may contain an inert gas such as hydrogen gas or nitrogen gas as a carrier gas. The processing gas supplied to the processing space S reacts on the surface of the wafer W heated by the heater 14 and is deposited as indium phosphide. The CVD film forming apparatus 10 may perform plasma CVD.
 図2において、熱処理装置16は、ウエハWを収容し、且つクォーツ(石英)からなるチャンバ17と、該チャンバ17内の底部に配置されてウエハWを載置するテーブル状のサセプタ18と、チャンバ17の外においてサセプタ18に載置されたウエハWを指向するように配置された複数のランプヒータ19と、チャンバ17内の処理空間S’へキャリアガスとしての水素(H)ガスともに気化たリン、若しくはホスフィン等の気相のリンを導入するガス導入管20と、サセプタ18内に配置されて該サセプタ18の上面に開口する冷却ガス供給路21と、処理空間S’における余剰の気相のリン等を排出する排気管20aとを備える。 In FIG. 2, the heat treatment apparatus 16 includes a chamber 17 made of quartz (quartz), a table-like susceptor 18 placed on the bottom of the chamber 17 for placing the wafer W thereon, A plurality of lamp heaters 19 arranged to face the wafer W placed on the susceptor 18 outside 17 and hydrogen (H 2 ) gas as a carrier gas were vaporized into the processing space S ′ in the chamber 17. A gas introduction pipe 20 for introducing phosphorus in the gas phase such as phosphorus or phosphine, a cooling gas supply passage 21 disposed in the susceptor 18 and opened to the upper surface of the susceptor 18, and an excess gas phase in the processing space S ′ And an exhaust pipe 20a for discharging phosphorus or the like.
 熱処理装置16では、ランプヒータ19が照射した熱線がチャンバ17の壁部を透過し、該熱線によってサセプタ18に載置されたウエハWが加熱され、冷却ガス供給路21がサセプタ18に載置されたウエハWの底面へ向けて冷却ガスを供給してウエハWを底面側から冷却する。 In the heat treatment apparatus 16, the heat rays irradiated by the lamp heater 19 pass through the wall portion of the chamber 17, the wafer W placed on the susceptor 18 is heated by the heat rays, and the cooling gas supply path 21 is placed on the susceptor 18. The cooling gas is supplied toward the bottom surface of the wafer W to cool the wafer W from the bottom surface side.
 図3及び図4は、本実施の形態に係る微細構造形成方法を示す工程図である。本微細構造形成方法ではウエハWの表面に結晶化インジウムリン32のフィン構造33を形成する。 3 and 4 are process diagrams showing the fine structure forming method according to the present embodiment. In this fine structure forming method, a fin structure 33 of crystallized indium phosphide 32 is formed on the surface of the wafer W.
 まず、CVD成膜装置10等の成膜装置において、ウエハWの表面に窒化珪素(Si)を堆積させてウエットエッチストップ層22を形成し、さらに、該ウエットエッチストップ層22上に酸化珪素からなる被覆層23を形成する(図3の(A))。 First, in a film forming apparatus such as the CVD film forming apparatus 10, silicon nitride (Si 3 N 4 ) is deposited on the surface of the wafer W to form the wet etch stop layer 22, and further on the wet etch stop layer 22. A coating layer 23 made of silicon oxide is formed (FIG. 3A).
 次いで、リソグラフィ工程において被覆層23上に所定のパターンの開口部を有するマスク(図示しない)を形成した後、エッチング装置(図示しない)において、被覆層23及びウエットエッチストップ層22に幅が10nm~50nm、好ましくは10nmであって、深さが10~100nmであり、且つアスペクト(深さ/幅)比が1以上、好ましくは3~10のトレンチ24(幅狭の溝)を形成する(図3の(B))。なお、エッチング装置は、ウェットエッチング装置に限らず、ドライエッチング装置であってよい。 Next, after forming a mask (not shown) having an opening of a predetermined pattern on the coating layer 23 in a lithography process, the width of the coating layer 23 and the wet etch stop layer 22 is 10 nm ~ in an etching apparatus (not shown). A trench 24 (narrow groove) having a thickness of 50 nm, preferably 10 nm, a depth of 10 to 100 nm, and an aspect (depth / width) ratio of 1 or more, preferably 3 to 10 is formed (see FIG. 3 (B)). Note that the etching apparatus is not limited to a wet etching apparatus, and may be a dry etching apparatus.
 次いで、ウエットエッチストップ層22をエッチングで除去する際、トレンチ24の底部に露出するウエハWの表面に自然酸化膜(図示しない)が形成されるおそれがあるため、当該自然酸化膜を除去してウエハWのシリコンのミラー指数(001)の結晶面25をトレンチ24の底部に露出させる(図3の(C))(溝形成ステップ)。 Next, when the wet etch stop layer 22 is removed by etching, a natural oxide film (not shown) may be formed on the surface of the wafer W exposed at the bottom of the trench 24. Therefore, the natural oxide film is removed. The crystal face 25 of the silicon Miller index (001) of the wafer W is exposed at the bottom of the trench 24 (FIG. 3C) (groove forming step).
 次いで、CVD成膜装置10において、処理ガスとして気化器を用いて気化されたトリメチルインジウム及びターシャリーブチルホスフィンの混合ガスを用いてインジウムリンを生成する。混合ガスは気相であり、処理空間Sにおいて拡散して濡れ性とは無関係であるため、トレンチ24へ隙間無く進入する。該トレンチ24へ隙間無く進入したインジウムやリンは、互いに反応して固相のインジウムリンを生成し、やがてトレンチ24はインジウムリン26(III−V族半導体)で隙間無く充填される(MOCVD(Metal Organic Chemical Vapor Deposition))。このとき、被覆層23の表面及びトレンチ24の底部のシリコンの結晶面25の化学状態の差異に起因してインジウムリンは被覆層23の表面よりも結晶面25から優先的に生成されるため、CVD成膜装置10ではトレンチ24を選択的にインジウムリン26で充填することができる(図3の(D))(充填ステップ)。なお、トレンチ24へのインジウムリン26の充填方法はCVDに限られず、液相以外でインジウムリンをトレンチ24へ充填する方法であればよい。例えば、インジウム、または、インジウムリンをターゲットとするPVD(Physical Vapor Deposition)を利用してもよく、若しくはインジウムリンの微細粉末をトレンチ24へ直接埋め込んでもよい。 Next, in the CVD film forming apparatus 10, indium phosphide is generated using a mixed gas of trimethylindium and tertiary butylphosphine vaporized using a vaporizer as a processing gas. Since the mixed gas is a gas phase and diffuses in the processing space S and has no relation to the wettability, the mixed gas enters the trench 24 without a gap. The indium and phosphorus that have entered the trench 24 without gaps react with each other to produce solid phase indium phosphorus, and the trench 24 is filled with the indium phosphorus 26 (III-V semiconductor) without gap (MOCVD (Metal)). (Organic Chemical Vapor Deposition))). At this time, indium phosphide is generated preferentially from the crystal face 25 rather than the surface of the cover layer 23 due to the difference in chemical state between the surface of the cover layer 23 and the silicon crystal face 25 at the bottom of the trench 24. The CVD film forming apparatus 10 can selectively fill the trench 24 with indium phosphide 26 ((D) in FIG. 3) (filling step). The filling method of indium phosphide 26 into the trench 24 is not limited to CVD, and any method may be used as long as it fills the trench 24 with indium phosphide other than the liquid phase. For example, PVD (Physical Vapor Deposition) targeting indium or indium phosphide may be used, or a fine powder of indium phosphide may be directly embedded in the trench 24.
 次いで、図5に示すPVD成膜装置28において、インジウムのバルク材29をターゲットとするPVDによって被覆層23の表面及びトレンチ24に充填されたインジウムリン26の表面にインジウム(III族金属)を堆積させ、インジウム層27を成膜する(図3の(E))。なお、PVDの際、ターゲットの融点や成膜レート等の成膜条件を考慮してターゲットを冷却してもよい。インジウム層27の厚さは100nm以上あればよく、より好ましくは200nm~300nmである。なお、インジウム層27の形成方法はPVDに限られず、また、必ずしも被覆層23の表面とトレンチ24に充填されたインジウムリン26の表面の両方にインジウムを堆積させる必要はなく、少なくとも充填されたインジウムリン26の表面にインジウムを堆積させればよい。 Next, in the PVD film forming apparatus 28 shown in FIG. 5, indium (group III metal) is deposited on the surface of the coating layer 23 and the surface of the indium phosphide 26 filled in the trench 24 by PVD targeting the bulk material 29 of indium. Then, an indium layer 27 is formed (FIG. 3E). In PVD, the target may be cooled in consideration of film forming conditions such as a melting point of the target and a film forming rate. The thickness of the indium layer 27 may be 100 nm or more, and more preferably 200 nm to 300 nm. The method of forming the indium layer 27 is not limited to PVD, and it is not always necessary to deposit indium on both the surface of the coating layer 23 and the surface of indium phosphide 26 filled in the trench 24. At least indium filled Indium may be deposited on the surface of the phosphorus 26.
 次いで、CVD成膜装置10等の成膜装置において、インジウム層27上に酸化珪素を堆積させてキャップ層30(他の被覆層)を形成する(図3の(F))。 Next, in a film forming apparatus such as the CVD film forming apparatus 10, silicon oxide is deposited on the indium layer 27 to form a cap layer 30 (another coating layer) ((F) in FIG. 3).
 次いで、熱処理装置16において、ウエハWをランプヒータ19で加熱する。インジウムリンの融点が1062℃である一方、インジウムの融点は156.6℃であるため、ウエハWにおいて、まず、インジウム層27が溶融する。ここで、酸化珪素の融点は1650℃であるため、例え、インジウム層27だけでなくインジウムリン26が溶融する温度(1062℃)となっても、キャップ層30は溶融しない。したがって、インジウム層27が溶融してもインジウムがウエハW上から流出するのを防止することができ、インジウムをトレンチ24上に留めることができる。 Next, the wafer W is heated by the lamp heater 19 in the heat treatment apparatus 16. The melting point of indium phosphide is 1062 ° C., while the melting point of indium is 156.6 ° C. Therefore, in the wafer W, the indium layer 27 is first melted. Here, since the melting point of silicon oxide is 1650 ° C., for example, the cap layer 30 does not melt even when the temperature of the indium phosphide 26 is melted (1062 ° C.) as well as the indium layer 27. Therefore, even if the indium layer 27 is melted, indium can be prevented from flowing out from the wafer W, and indium can be retained on the trench 24.
 溶融したインジウムは溶媒としてトレンチ24内のインジウムリン26へ接触する。インジウムリン26が溶媒としてのインジウム(以下、「溶媒インジウム」という。)27aに接触すると、インジウムリン26に含まれるリンが徐々に溶媒インジウム27aへ移動し、溶媒インジウム27aとインジウムリン26の界面におけるリンの含有量が低下して融点が約700℃まで低下し、インジウムリンの融点である1062℃までウエハWを加熱しなくても、溶媒インジウム27aに接触しているインジウムリン26が徐々に溶融する(図4の(A))。溶融したインジウムリン26は溶媒インジウム27aに溶け込むため、溶融したインジウムリン26の直下のインジウムリン26が続いて溶媒インジウム27aと接触することになり、直下のインジウムリン26も同様に溶融する。すなわち、トレンチ24内のインジウムリン26はトレンチ24の頂部から底部へ向けて徐々に溶融していく(図4の(A)の矢印参照)。ウエハWの温度を約1時間に亘って700℃に保持すれば、トレンチ24内のインジウムリン26は全て溶融し、トレンチ24内にはインジウムリン26が溶質として溶け込んだ溶媒インジウム27aで満たされる。このとき、溶媒インジウム27aに移動したリンが放出されるおそれがあるが、溶媒インジウム27aはキャップ層30に覆われるため、リンは溶媒インジウム27aに留まり、後に析出する結晶性のインジウムリンにおいてリンの含有量が低下するのを防止することができる。 The molten indium contacts the indium phosphide 26 in the trench 24 as a solvent. When the indium phosphorus 26 comes into contact with indium (hereinafter referred to as “solvent indium”) 27a as a solvent, the phosphorus contained in the indium phosphorus 26 gradually moves to the solvent indium 27a, and at the interface between the solvent indium 27a and the indium phosphorus 26. The indium phosphorus 26 in contact with the solvent indium 27a gradually melts without heating the wafer W to 1062 ° C., which is the melting point of indium phosphorus, by decreasing the phosphorus content and the melting point to about 700 ° C. (A in FIG. 4). Since the melted indium phosphide 26 is dissolved in the solvent indium 27a, the indium phosphide 26 immediately below the melted indium phosphide 26 is brought into contact with the solvent indium 27a, and the indium phosphide 26 immediately below is melted in the same manner. In other words, the indium phosphide 26 in the trench 24 gradually melts from the top to the bottom of the trench 24 (see the arrow in FIG. 4A). If the temperature of the wafer W is maintained at 700 ° C. for about 1 hour, all of the indium phosphorus 26 in the trench 24 is melted, and the trench 24 is filled with the solvent indium 27a in which the indium phosphorus 26 is dissolved as a solute. At this time, phosphorus that has moved to the solvent indium 27a may be released. However, since the solvent indium 27a is covered with the cap layer 30, the phosphorus remains in the solvent indium 27a, and the crystalline indium phosphorus that is deposited later forms phosphorus. It can prevent that content falls.
 次いで、サセプタ18の冷却ガス供給路21から冷却ガスを供給してウエハWを底面側から徐冷すると、トレンチ24の底部のシリコンの結晶面25を種として結晶化インジウムリン32が析出する(図4の(B))(析出ステップ)。結晶化インジウムリン32の析出はトレンチ24の底部から上方へ向けて継続する(図4の(B)の矢印参照)。結晶化インジウムリン32の析出の際、ウエハWは約610℃に維持される。このとき、溶媒インジウム27aとウエハWとの温度差を約10℃に維持すると、良質の単結晶の結晶化インジウムリン32が析出する。 Next, when the cooling gas is supplied from the cooling gas supply passage 21 of the susceptor 18 and the wafer W is gradually cooled from the bottom surface side, crystallized indium phosphide 32 is deposited using the silicon crystal surface 25 at the bottom of the trench 24 as a seed (see FIG. 4 (B)) (precipitation step). The precipitation of crystallized indium phosphide 32 continues upward from the bottom of the trench 24 (see the arrow in FIG. 4B). During the deposition of crystallized indium phosphide 32, the wafer W is maintained at about 610 ° C. At this time, if the temperature difference between the solvent indium 27a and the wafer W is maintained at about 10 ° C., high-quality single-crystallized indium phosphide 32 is deposited.
 結晶化インジウムリン32はシリコンの結晶面25を種として析出するため、ミラー指数(001)の結晶性を引き継ぐが、シリコンとインジウムリンの格子定数は異なるため、結晶面25から格子不整合に起因する貫通転位欠陥31が発生する。ここで、貫通転位欠陥31は結晶面25に対して垂直ではなく、斜め、例えば、45°の方向に沿って成長する。したがって、トレンチ24のアスペクト比が1以上であれば、貫通転位欠陥31がトレンチ24の頂部に到達することはなく、同アスペクト比を2以上とすれば、結晶化インジウムリン32において貫通転位欠陥31が存在しない部分を十分に確保することができる。また、同アスペクト比を3~10とすれば、結晶化インジウムリン32において貫通転位欠陥31が存在しない部分をより十分に確保することができる。 Crystallized indium phosphide 32 precipitates using the crystal plane 25 of silicon as a seed, and thus inherits the crystallinity of the Miller index (001). Threading dislocation defects 31 are generated. Here, the threading dislocation defect 31 is not perpendicular to the crystal plane 25 but grows obliquely, for example, along a direction of 45 °. Therefore, if the aspect ratio of the trench 24 is 1 or more, the threading dislocation defect 31 does not reach the top of the trench 24, and if the aspect ratio is 2 or more, the threading dislocation defect 31 in the crystallized indium phosphorus 32. It is possible to secure a sufficient portion where no exists. Further, if the aspect ratio is 3 to 10, a portion where the threading dislocation defect 31 does not exist in the crystallized indium phosphide 32 can be more sufficiently secured.
 次いで、トレンチ24内が全て結晶化インジウムリン32で満たされた後、さらに冷却を継続して溶媒インジウム27aを全て凝固させてインジウム層27を形成し、その後、キャップ層30やトレンチ24よりも上方に存在するインジウム層27をウェットエッチングやCMP(Chemical Mechanical Polishing)によって除去する(図4の(C))。 Next, after the trench 24 is entirely filled with crystallized indium phosphide 32, the cooling is further continued to solidify all of the solvent indium 27a to form the indium layer 27, and then the cap layer 30 and the trench 24 above. The indium layer 27 present in the substrate is removed by wet etching or CMP (Chemical Mechanical Polishing) ((C) in FIG. 4).
 次いで、被覆層23をウェットエッチングによって除去し、結晶化インジウムリン32のフィン構造33を得る(除去ステップ)。トレンチ24よりも上方に存在するインジウム層27のみをウェットエッチングやCMPで除去できる場合には、フィン構造33にトレンチ24の形状が反映され、フィン構造33の幅はトレンチ24の幅と同じになり、同高さもトレンチ24の深さと同じになる。一方、ウェットエッチングやCMPによってトレンチ24よりも上方に存在するインジウム層27だけでなくトレンチ24内に存在するインジウム層27も多少除去される場合には、得られたフィン構造33のアスペクト比がトレンチ24のアスペクト比と同様に、1以上、好ましくは3~10であればよい。次いで、フィン構造33を得た後、本処理を終了する。 Next, the covering layer 23 is removed by wet etching to obtain a fin structure 33 of crystallized indium phosphide 32 (removal step). When only the indium layer 27 existing above the trench 24 can be removed by wet etching or CMP, the shape of the trench 24 is reflected in the fin structure 33, and the width of the fin structure 33 is the same as the width of the trench 24. The height is the same as the depth of the trench 24. On the other hand, when not only the indium layer 27 existing above the trench 24 but also the indium layer 27 existing in the trench 24 is removed to some extent by wet etching or CMP, the aspect ratio of the obtained fin structure 33 is the trench ratio. Similarly to the aspect ratio of 24, it may be 1 or more, preferably 3 to 10. Next, after obtaining the fin structure 33, the present process is terminated.
 図6A及び図6Bは、本実施の形態に係る微細構造形成方法によって形成されるインジウムリンの微細構造が適用されるヒ化インジウムガリウム/ヒ化インジウムアルミニウム量子井戸(Quantum Well)型のチャネルの構成を概略的に示す断面図であり、図6Aはインジウムリンのフィン構造を用いた場合を示し、図6Bはインジウムリンの微細プレーナ構造を用いた場合を示す。 6A and 6B show the configuration of an indium gallium arsenide / indium aluminum arsenide quantum well (Quantum Well) channel to which the fine structure of indium phosphide formed by the fine structure forming method according to the present embodiment is applied. FIG. 6A shows a case where a fin structure of indium phosphide is used, and FIG. 6B shows a case where a fine planar structure of indium phosphide is used.
 図6Aでは、本実施の形態に係る微細構造形成方法によって形成されたフィン構造33の表面を覆うように、順に、ヒ化インジウムアルミニウム(InAlAs)層34、ヒ化インジウムガリウム(InGaAs)層35及びインジウムリン層36が形成され、図6Bでは、本実施の形態に係る微細構造形成方法から図4の(D)の工程を除くことによって結晶化インジウムリン32が被覆層23に埋設された構成が形成され、さらに、露出する結晶化インジウムリン32の表面を覆うように、順に、ヒ化インジウムアルミニウム層34、ヒ化インジウムガリウム層35及びインジウムリン層36が形成される。ヒ化インジウムアルミニウム層34は下部バリア層であり、ヒ化インジウムガリウム層35はチャネル層であり、インジウムリン層36は上部バリア層である。 In FIG. 6A, an indium aluminum arsenide (InAlAs) layer 34, an indium gallium arsenide (InGaAs) layer 35, and a layer are sequentially formed so as to cover the surface of the fin structure 33 formed by the microstructure forming method according to the present embodiment. An indium phosphide layer 36 is formed, and in FIG. 6B, the crystallized indium phosphide 32 is embedded in the coating layer 23 by removing the step (D) of FIG. 4 from the microstructure forming method according to the present embodiment. In addition, an indium aluminum arsenide layer 34, an indium gallium arsenide layer 35, and an indium phosphide layer 36 are sequentially formed so as to cover the exposed surface of the crystallized indium phosphide 32. The indium aluminum arsenide layer 34 is a lower barrier layer, the indium gallium arsenide layer 35 is a channel layer, and the indium phosphide layer 36 is an upper barrier layer.
 従来、ウエハWのシリコンの結晶面へガリウムヒ素(GaAs)層を介してヒ化インジウムガリウム/ヒ化インジウムアルミニウム量子井戸型のチャネルを形成する場合、ガリウムヒ素とヒ化インジウムアルミニウムとの格子定数が異なり、格子不整合に起因する貫通転位欠陥が発生するため、当該貫通転位欠陥を吸収するためのバッファ層であるヒ化インジウムアルミニウム層の膜厚を大きくする、例えば、約700nmにする必要があった。 Conventionally, when a channel of indium gallium arsenide / indium aluminum arsenide quantum well type is formed on a silicon crystal plane of a wafer W through a gallium arsenide (GaAs) layer, the lattice constant of gallium arsenide and indium aluminum arsenide is In contrast, threading dislocation defects due to lattice mismatching occur, and therefore the film thickness of the indium aluminum arsenide layer, which is a buffer layer for absorbing the threading dislocation defects, needs to be increased, for example, about 700 nm. It was.
 しかしながら、本実施の形態に係る微細構造形成方法によって形成されるインジウムリンの微細構造を下地としてヒ化インジウムガリウム/ヒ化インジウムアルミニウム量子井戸型のチャネルを形成する場合、インジウムリンはガリウムヒ素よりもヒ化インジウムアルミニウムとの格子定数が近く、格子不整合に起因する貫通転位欠陥が発生しにくい。その結果、ヒ化インジウムアルミニウム層34を従来のバッファ層よりも薄くすることができる。また、特に、フィン構造33を下地とする場合、例えば、突出したフィン構造33以外をマスク膜で覆い、フィン構造33へヒ化インジウムアルミニウム層34、ヒ化インジウムガリウム層35及びインジウムリン層36を形成すればよいため、ヒ化インジウムアルミニウム層34、ヒ化インジウムガリウム層35及びインジウムリン層36で全体を覆った後、不必要な部分をプラズマによるドライエッチングによって除去する必要がない。その結果、チャネルがプラズマによって損傷するのを抑制することができる。 However, when forming a channel of indium gallium arsenide / indium aluminum arsenide quantum well type using the indium phosphide microstructure formed by the microstructure forming method according to the present embodiment as a base, indium phosphide is more than gallium arsenide. The lattice constant is close to that of indium aluminum arsenide, and threading dislocation defects due to lattice mismatch are unlikely to occur. As a result, the indium aluminum arsenide layer 34 can be made thinner than the conventional buffer layer. In particular, when the fin structure 33 is used as a base, for example, a portion other than the protruding fin structure 33 is covered with a mask film, and an indium aluminum arsenide layer 34, an indium gallium arsenide layer 35, and an indium phosphide layer 36 are formed on the fin structure 33. Therefore, it is not necessary to remove unnecessary portions by dry etching using plasma after the whole is covered with the indium aluminum arsenide layer 34, the indium gallium arsenide layer 35, and the indium phosphide layer 36. As a result, the channel can be prevented from being damaged by the plasma.
 本実施の形態に係る微細構造形成方法によれば、インジウムリン26をトレンチ24に気相で充填するため、インジウムリン26をトレンチ24に隙間無く充填させてトレンチ24の底部のシリコンの結晶面25へ接触させることができるとともに、アスペクト比が1以上、好ましくは3~10のトレンチ24に充填されたインジウムリン26を加熱して溶融した後、溶融したインジウムリン26を徐冷してシリコンの結晶面25を種として結晶化インジウムリン32を析出させるため、トレンチ24の形状が反映され、且つ貫通転位欠陥31が存在しない部分が確保された結晶化インジウムリン32のフィン構造33を得ることができ、その結果、高品質な電子移動度の高いインジウムリンのフィン構造33を得ることができる。 According to the microstructure forming method according to the present embodiment, indium phosphide 26 is filled in the vapor phase in the trench 24, so that the indium phosphide 26 is filled in the trench 24 without any gap and the silicon crystal face 25 at the bottom of the trench 24 is filled. The indium phosphide 26 filled in the trench 24 having an aspect ratio of 1 or more, preferably 3 to 10, is heated and melted, and then the melted indium phosphide 26 is gradually cooled to obtain silicon crystals. Since the crystallized indium phosphide 32 is deposited by using the surface 25 as a seed, the fin structure 33 of the crystallized indium phosphide 32 in which the shape of the trench 24 is reflected and the portion where the threading dislocation defect 31 does not exist can be obtained. As a result, a high-quality indium phosphide fin structure 33 with high electron mobility can be obtained.
 上述した本実施の形態に係る微細構造形成方法では、インジウムリン26が充填されたトレンチ24がインジウム層27で被覆されるので、結晶化インジウムリン32の析出では溶媒インジウム27aがトレンチ24内のインジウムリン26と接触し、インジウムリン26のリンが溶媒インジウム27aへ移動してインジウムリン26におけるリンの含有量が低下する。その結果、インジウムリン26の融点が低下するため、トレンチ24に充填されたインジウムリン26を全て溶融させる際の温度を下げることができ、もって、ウエハWに形成された他の層への熱によるダメージを防止することができるとともに、熱エネルギーを削減でき、さらに加熱時間を短縮してスループットを向上させることができる。 In the fine structure forming method according to the present embodiment described above, the trench 24 filled with indium phosphide 26 is covered with the indium layer 27, so that the solvent indium 27 a is deposited in the indium 24 in the crystallized indium phosphide 32. In contact with the phosphorus 26, the phosphorus in the indium phosphorus 26 moves to the solvent indium 27a, and the phosphorus content in the indium phosphorus 26 decreases. As a result, since the melting point of the indium phosphide 26 is lowered, the temperature at which all of the indium phosphide 26 filled in the trench 24 is melted can be lowered, so that the heat is applied to the other layers formed on the wafer W. Damage can be prevented, thermal energy can be reduced, and heating time can be shortened to improve throughput.
 さらに、上述した本実施の形態に係る微細構造形成方法は、CVD成膜装置10、熱処理装置16、PVD成膜装置28やエッチング装置等の従来の半導体製造装置を用いて実行することができるので、LPE専用の結晶成長炉を用いる必要を無くすことができる。加えて、従来の半導体製造装置は大口径シリコンウエハ(例えば、直径が300mmのシリコンウエハ)を処理するので、比較的小口径の基板等を処理するLPE専用の結晶成長炉よりも生産性よく処理を行うことができる。したがって、フィン構造33の製造コストを大幅に低減することができる。 Furthermore, the fine structure forming method according to the present embodiment described above can be performed using a conventional semiconductor manufacturing apparatus such as the CVD film forming apparatus 10, the heat treatment apparatus 16, the PVD film forming apparatus 28, and the etching apparatus. This eliminates the need to use a crystal growth furnace dedicated to LPE. In addition, since conventional semiconductor manufacturing equipment processes large-diameter silicon wafers (for example, silicon wafers with a diameter of 300 mm), it can process with higher productivity than a crystal growth furnace dedicated to LPE that processes relatively small-diameter substrates. It can be performed. Therefore, the manufacturing cost of the fin structure 33 can be significantly reduced.
 また、上述した本実施の形態に係る微細構造形成方法から図3の(F)の工程を除くことによってキャップ層30を形成しなくてもよい。但し、この場合、溶媒インジウム27aがウエハW上から流出するおそれがあるため、ウエハWの加熱は、図7に示す熱処理装置37によって行う。 Further, the cap layer 30 may not be formed by removing the step (F) of FIG. 3 from the fine structure forming method according to the present embodiment described above. However, in this case, since the solvent indium 27a may flow out of the wafer W, the wafer W is heated by the heat treatment apparatus 37 shown in FIG.
 図7の熱処理装置37は、サセプタ18が載置されるウエハWの回りを囲むように流出防止壁38を有する点で、図2の熱処理装置16と異なる。熱処理装置37では、キャップ層30が形成されていないウエハWを加熱しても、流出防止壁38によって溶媒インジウム27aがウエハW上から流出するのを防止することができる。また、この場合、溶媒インジウム27aはチャンバ17内の処理空間S’に直接晒されるので、インジウムリン26へさらにリンを添加する場合、ガス導入管20によって処理空間S’へ気化したリンを導入し、処理空間S’におけるリンの分圧を高めることにより、溶媒インジウム27aを介して容易にインジウムリン26へリンを添加することができ、インジウムリン26へさらに添加材(例えば、亜鉛(Zn)、硫黄(S)、鉄(Fe))を添加する場合、溶媒インジウム27aを介して容易にインジウムリン26へ添加材を添加することができる(図8A)。また、キャップ層30を形成しない場合、インジウム層27を被覆層23の表面及びトレンチ24の両方を覆うように形成する必要はなく、図8Bに示すように、トレンチ24のみを覆うように形成してもよい。これにより、インジウムの使用量を削減することができる。 7 is different from the heat treatment apparatus 16 of FIG. 2 in that it has an outflow prevention wall 38 so as to surround the wafer W on which the susceptor 18 is placed. In the heat treatment apparatus 37, even if the wafer W on which the cap layer 30 is not formed is heated, the outflow prevention wall 38 can prevent the solvent indium 27 a from flowing out from the wafer W. Further, in this case, since the solvent indium 27a is directly exposed to the processing space S ′ in the chamber 17, when further phosphorus is added to the indium phosphorus 26, the vaporized phosphorus is introduced into the processing space S ′ by the gas introduction pipe 20. By increasing the partial pressure of phosphorus in the processing space S ′, phosphorus can be easily added to the indium phosphorus 26 via the solvent indium 27a. Further, an additive (for example, zinc (Zn), When sulfur (S) or iron (Fe)) is added, the additive can be easily added to the indium phosphide 26 through the solvent indium 27a (FIG. 8A). Further, when the cap layer 30 is not formed, the indium layer 27 does not need to be formed so as to cover both the surface of the covering layer 23 and the trench 24, and is formed so as to cover only the trench 24 as shown in FIG. 8B. May be. Thereby, the usage-amount of indium can be reduced.
 また、本実施の形態に係る微細構造形成方法において、インジウムリンの融点を下げる必要がなければ、インジウム層27を形成する必要はなく、トレンチ24をインジウムリン26で充填した後、ウエハWを加熱してインジウムリン26を溶融し、さらにウエハWを徐冷してシリコンの結晶面25から結晶化インジウムリン32を析出させてもよい。 Further, in the fine structure forming method according to the present embodiment, if it is not necessary to lower the melting point of indium phosphide, it is not necessary to form the indium layer 27, and the wafer W is heated after the trench 24 is filled with the indium phosphide 26. Then, the indium phosphide 26 may be melted, and the wafer W may be gradually cooled to precipitate the crystallized indium phosphide 32 from the silicon crystal face 25.
 上述した本実施の形態に係る微細構造形成方法では、インジウムリンでフィン構造33を形成したが、本実施の形態に係る微細構造形成方法は他のIII−V族半導体、例えば、アルミニウムリン(AlP)、アルミニウムヒ素(AlAs)、アルミニウムアンチモン(AlSb)、ガリウムリン(GaP)、ガリウムヒ素、ガリウムアンチモン(GaSb)、インジウムヒ素(InAs)、インジウムアンチモン(InSb)、又はこれらを含む化合物でフィン構造を形成する場合にも適用することができる。アルミニウム系のIII−V族半導体を用いる場合には、トレンチ24をアルミニウム系のIII−V族半導体で充填した後、トレンチ24をアルミニウム層で覆い、インジウム系のIII−V族半導体を用いる場合には、トレンチ24をインジウム系のIII−V族半導体で充填した後、トレンチ24をインジウム層で覆い、ガリウム系のIII−V族半導体を用いる場合には、トレンチ24をガリウム系のIII−V族半導体で充填した後、トレンチ24をガリウム層で覆う。なお、ガリウムは融点が低く、常温で液相となる場合があるため、トレンチ24をガリウム層で覆う場合、ウエハWの回りを囲む流出防止壁を設けて液相のガリウムの流出を防止するのが好ましい。 In the fine structure forming method according to the present embodiment described above, the fin structure 33 is formed of indium phosphorus. However, the fine structure forming method according to the present embodiment is not limited to other III-V semiconductors such as aluminum phosphorus (AlP). ), Aluminum arsenic (AlAs), aluminum antimony (AlSb), gallium phosphide (GaP), gallium arsenide, gallium antimony (GaSb), indium arsenic (InAs), indium antimony (InSb), or a compound containing these to form a fin structure The present invention can also be applied when forming. When using an aluminum-based III-V group semiconductor, after filling the trench 24 with an aluminum-based III-V group semiconductor, the trench 24 is covered with an aluminum layer, and an indium-based III-V group semiconductor is used. After the trench 24 is filled with an indium III-V group semiconductor, the trench 24 is covered with an indium layer. When a gallium III-V semiconductor is used, the trench 24 is gallium III-V group. After filling with a semiconductor, the trench 24 is covered with a gallium layer. Since gallium has a low melting point and may be in a liquid phase at room temperature, when the trench 24 is covered with a gallium layer, an outflow prevention wall surrounding the wafer W is provided to prevent outflow of liquid gallium. Is preferred.
 次に、本発明の第2の実施の形態に係る微細構造形成方法について説明する。 Next, a microstructure forming method according to the second embodiment of the present invention will be described.
 本実施の形態に係る微細構造形成方法では、トレンチ24へインジウムリンではなくインジウムを充填する。 In the microstructure forming method according to the present embodiment, the trench 24 is filled with indium instead of indium phosphorus.
 図9は、本実施の形態に係る微細構造形成方法を示す工程図である。 FIG. 9 is a process diagram showing the fine structure forming method according to the present embodiment.
 まず、図3の(A)乃至(C)と同様の工程を実行してウエハW上のウエットエッチストップ層22及び被覆層23にトレンチ24を形成し、該トレンチ24の底部にシリコンのミラー指数(001)の結晶面25を露出させる(図9の(A))(溝形成ステップ)。 3A to 3C are performed to form a trench 24 in the wet etch stop layer 22 and the coating layer 23 on the wafer W, and a silicon mirror index is formed at the bottom of the trench 24. The crystal plane 25 of (001) is exposed ((A) of FIG. 9) (groove forming step).
 次いで、PVD成膜装置28において、インジウムのバルク材29をターゲットとするPVDによってトレンチ24や被覆層23の表面を固相のインジウム39で覆う。また、固相のインジウム39は濡れ性とは無関係であるため、トレンチ24へ隙間無く進入し、トレンチ24はインジウム39で隙間無く充填される(図9の(B))(充填ステップ)。 Next, in the PVD film forming apparatus 28, the surface of the trench 24 and the covering layer 23 is covered with solid-state indium 39 by PVD targeting the bulk material 29 of indium. Further, since the solid phase indium 39 has no relation to the wettability, the indium 39 enters the trench 24 without any gap, and the trench 24 is filled with the indium 39 without any gap ((B) in FIG. 9) (filling step).
 トレンチ24へのインジウム充填方法はPVDに限られず、液相以外でインジウムをトレンチ24へ充填する方法であればよい。例えば、気相のインジウムをトレンチ24へ充填するCVDを利用してもよい。CVDは段差被覆性が高いため、トレンチ24のアスペクト比が高くても、トレンチ24の内面をインジウム39で隙間無く覆うことができ、その結果、インジウム39をトレンチ24に隙間無く確実に充填させることができる。 The method of filling the trench 24 with indium is not limited to PVD, and any method may be used as long as it is a method of filling the trench 24 with indium other than the liquid phase. For example, CVD that fills the trench 24 with vapor-phase indium may be used. Since CVD has a high step coverage, even if the aspect ratio of the trench 24 is high, the inner surface of the trench 24 can be covered with indium 39 without gaps, and as a result, the indium 39 can be reliably filled in the trenches 24 without gaps. Can do.
 なお、PVDの後にリフローを利用してインジウム39をトレンチ24内へ充填してもよい。また、予め微量のインジウムリンをトレンチ24へ充填させておき、その後にインジウムをトレンチ24内へ充填してもよい。なお、CVDは、熱CVD、光CVD、プラズマCVDなどの従来の方法を用いることができるが、充填されるインジウム中の不純物を比較的少なくするためには、プラズマCVD以外のCVDを用いることが望ましい。 Note that indium 39 may be filled into the trench 24 by using reflow after PVD. Alternatively, a small amount of indium phosphorus may be filled in the trench 24 in advance, and then indium may be filled in the trench 24. Note that conventional methods such as thermal CVD, photo CVD, and plasma CVD can be used for CVD. However, in order to relatively reduce impurities in indium to be filled, CVD other than plasma CVD is used. desirable.
 次いで、図7の熱処理装置37において、ウエハWをランプヒータ19で加熱してインジウム39を溶融した後、ガス導入管20から気相のリンを処理空間S’へ供給する(図9の(C))。このとき、インジウム39は他の層によって覆われていないため、供給されたリンが溶融したインジウム39へ接触して溶け込み、溶融したインジウム39内においてインジウムリンが形成される。なお、本実施の形態では、ウエハWが流出防止壁38で囲まれるため、溶融したインジウム39がウエハW上から流出することはない。 Next, in the heat treatment apparatus 37 of FIG. 7, the wafer W is heated by the lamp heater 19 to melt the indium 39, and then gaseous phosphorus is supplied from the gas introduction tube 20 to the processing space S ′ (FIG. 9C )). At this time, since the indium 39 is not covered with other layers, the supplied phosphorus contacts and melts into the molten indium 39, and indium phosphorus is formed in the molten indium 39. In this embodiment, since the wafer W is surrounded by the outflow prevention wall 38, the molten indium 39 does not flow out from the wafer W.
 トレンチ24内の溶融したインジウム39においてもインジウムリンが形成された後、サセプタ18の冷却ガス供給路21から冷却ガスを供給してウエハWを底面側から徐冷すると、トレンチ24の底部のシリコンの結晶面25を種として単結晶の結晶化インジウムリン32が析出する(図9の(D))(析出ステップ)。結晶化インジウムリン32の析出はトレンチ24の底部から上方へ向けて継続する(図9の(D)の矢印参照)。 After indium phosphide is also formed in the melted indium 39 in the trench 24, when cooling gas is supplied from the cooling gas supply path 21 of the susceptor 18 and the wafer W is gradually cooled from the bottom surface side, silicon at the bottom of the trench 24 is formed. Single-crystallized indium phosphide 32 is deposited using the crystal plane 25 as a seed (FIG. 9D) (precipitation step). The precipitation of crystallized indium phosphide 32 continues upward from the bottom of the trench 24 (see the arrow in FIG. 9D).
 このとき、第1の実施の形態と同様に、結晶面25から格子不整合に起因する貫通転位欠陥31が発生するが、トレンチ24のアスペクト比が1以上であれば、貫通転位欠陥31がトレンチ24の頂部に到達することはなく、同アスペクト比を2以上とすれば、結晶化インジウムリン32において貫通転位欠陥31が存在しない部分を十分に確保することができる。また、同アスペクト比を3~10とすれば、結晶化インジウムリン32において貫通転位欠陥31が存在しない部分をより十分に確保することができる。 At this time, as in the first embodiment, the threading dislocation defect 31 is generated from the crystal plane 25 due to lattice mismatch. If the aspect ratio of the trench 24 is 1 or more, the threading dislocation defect 31 is a trench. If the aspect ratio is 2 or more, a portion where the threading dislocation defect 31 does not exist in the crystallized indium phosphorus 32 can be sufficiently secured. Further, if the aspect ratio is 3 to 10, a portion where the threading dislocation defect 31 does not exist in the crystallized indium phosphide 32 can be more sufficiently secured.
 次いで、トレンチ24内が全て結晶化インジウムリン32で満たされた後、さらに冷却を継続して溶融したインジウム39を全て凝固させ、その後、トレンチ24よりも上方に存在するインジウム39をCMP等によって除去し(図9の(E))、さらに、被覆層23をドライエッチングまたはウェットエッチングによって除去し、結晶化インジウムリン32のフィン構造33を得(図9の(F))(除去ステップ)、本処理を終了する。 Next, after the inside of the trench 24 is filled with crystallized indium phosphide 32, cooling is further continued to solidify all the melted indium 39, and then the indium 39 existing above the trench 24 is removed by CMP or the like. Further, the covering layer 23 is removed by dry etching or wet etching to obtain a fin structure 33 of crystallized indium phosphide 32 ((F) in FIG. 9) (removal step). The process ends.
 本実施の形態に係る微細構造形成方法によれば、インジウム39をトレンチ24に固相で充填するため、インジウム39をトレンチ24に隙間無く充填させてトレンチ24の底部のシリコンの結晶面25へ接触させることができるとともに、トレンチ24に充填されたインジウム39を加熱して溶融した後、リンを添加して溶融したインジウム39内においてインジウムリンを発生させ、さらに溶融したインジウム39を徐冷してシリコンの結晶面25を種として結晶化インジウムリン32を析出させるため、トレンチ24の形状が反映され、且つ貫通転位欠陥31が存在しない部分が確保された結晶化インジウムリン32のフィン構造33を得ることができる。 According to the fine structure forming method according to the present embodiment, indium 39 is filled in the trench 24 in a solid phase, so that the indium 39 is filled in the trench 24 without any gap and is in contact with the silicon crystal plane 25 at the bottom of the trench 24. Indium 39 filled in the trench 24 is heated and melted, phosphorus is added to generate indium phosphorus in the melted indium 39, and the melted indium 39 is gradually cooled to form silicon. In order to deposit the crystallized indium phosphide 32 using the crystal plane 25 as a seed, the fin structure 33 of the crystallized indium phosphide 32 in which the shape of the trench 24 is reflected and the part where the threading dislocation defect 31 does not exist is secured. Can do.
 上述した本実施の形態に係る微細構造形成方法では、インジウム39は被覆層23の表面も被覆するので、インジウム39を加熱して溶融する際、被覆層23も溶融したインジウム39で覆われる。これにより、処理空間S’へ供給された気相のリンと溶融したインジウム39との接触面積が増えるので、リンを溶融したインジウム39へ容易に添加することができる。 In the fine structure forming method according to the present embodiment described above, the indium 39 also covers the surface of the coating layer 23. Therefore, when the indium 39 is heated and melted, the coating layer 23 is also covered with the molten indium 39. This increases the contact area between the vapor phase phosphorus supplied to the processing space S ′ and the molten indium 39, so that phosphorus can be easily added to the molten indium 39.
 また、上述した本実施の形態に係る微細構造形成方法では、溶融したインジウム39はチャンバ17内の処理空間S’に直接晒されるので、インジウムリンへ添加材を添加する場合、溶融したインジウム39を介して容易にインジウムリンへ添加材を添加することができる。また、インジウム39で被覆層23の表面及びトレンチ24の両方を覆う必要はなく、図10に示すように、トレンチ24のみを覆ってもよい。これにより、インジウムの使用量を削減することができる。 Further, in the fine structure forming method according to the above-described embodiment, the melted indium 39 is directly exposed to the processing space S ′ in the chamber 17. Thus, an additive can be easily added to indium phosphide. Further, it is not necessary to cover both the surface of the coating layer 23 and the trench 24 with indium 39, and only the trench 24 may be covered as shown in FIG. Thereby, the usage-amount of indium can be reduced.
 上述した本実施の形態に係る微細構造形成方法はインジウムリン以外のIII−V族半導体、例えば、アルミニウムリン、アルミニウムヒ素、アルミニウムアンチモン、ガリウムリン、ガリウムヒ素、ガリウムアンチモン、インジウムヒ素、インジウムアンチモン、又はこれらを含む化合物を用いてフィン構造を形成する場合にも適用することができる。アルミニウム系のIII−V族半導体でフィン構造を形成する場合には、トレンチ24をアルミニウムで充填し、インジウム系のIII−V族半導体でフィン構造を形成する場合には、トレンチ24をインジウムで充填し、ガリウム系のIII−V族半導体でフィン構造を形成する場合には、トレンチ24をガリウムで充填する。 The microstructure forming method according to this embodiment described above is a group III-V semiconductor other than indium phosphorus, such as aluminum phosphorus, aluminum arsenic, aluminum antimony, gallium phosphorus, gallium arsenide, gallium antimony, indium arsenic, indium antimony, or The present invention can also be applied to the case where a fin structure is formed using a compound containing these. When the fin structure is formed of an aluminum-based III-V group semiconductor, the trench 24 is filled with aluminum, and when the fin structure is formed of an indium-based III-V group semiconductor, the trench 24 is filled with indium. When the fin structure is formed of a gallium-based III-V group semiconductor, the trench 24 is filled with gallium.
 以上、本発明について、上記各実施の形態を用いて説明したが、本発明は上記各実施の形態に限定されるものではない。 As mentioned above, although this invention was demonstrated using said each embodiment, this invention is not limited to said each embodiment.
 例えば、上記各実施の形態では、トレンチ24の底部においてシリコンのミラー指数(001)の結晶面25が露出したが、露出する結晶面25のミラー指数はこれに限られず、例えば、(010)、(011)、(100)、(101)、(110)又は(111)であってもよい。 For example, in each of the above embodiments, the crystal face 25 of the silicon Miller index (001) is exposed at the bottom of the trench 24, but the Miller index of the exposed crystal face 25 is not limited to this, for example, (010), It may be (011), (100), (101), (110) or (111).
 また、上記各実施の形態では、トレンチ24を用いてインジウムリンの微細構造が形成されたが、ウエットエッチストップ層22や被覆層23に設けられたホールを用いてインジウムリンの微細構造を形成してもよい。 In each of the above embodiments, the indium phosphide microstructure is formed using the trench 24. However, the indium phosphide microstructure is formed using the holes provided in the wet etch stop layer 22 and the covering layer 23. May be.
 また、上記各実施の形態により得られたフィン構造33は、三次元構造のMOSFET、いわゆるFinFETに好適に用いることができる。また、FET以外にも、LED、半導体レーザー、光検出器、太陽電池等のフォトニックデバイスに用いてもよい。 Further, the fin structure 33 obtained by each of the above embodiments can be suitably used for a three-dimensional MOSFET, so-called FinFET. Moreover, you may use for photonic devices other than FET, such as LED, a semiconductor laser, a photodetector, and a solar cell.
 本発明の各実施の形態では、フィン構造33において貫通転位欠陥31が存在しない部分を確保する観点から、トレンチ24(フィン構造33)のアスペクト比を1以上としたが、本発明はトレンチへのインジウムリン/インジウムの充填容易化という効果を奏することができるため、通常、インジウムリン/インジウムの充填が困難となる幅が100nm以下のトレンチへのインジウムリン/インジウムの充填にも本発明を適用することができる。この場合、トレンチの幅が100nm以下であっても該トレンチにインジウムリン/インジウムを確実に充填することができる。 In each embodiment of the present invention, the aspect ratio of the trench 24 (fin structure 33) is set to 1 or more from the viewpoint of securing a portion where the threading dislocation defect 31 does not exist in the fin structure 33. Since the effect of facilitating filling of indium phosphide / indium can be achieved, the present invention is also applied to filling of indium phosphide / indium into trenches having a width of 100 nm or less, which makes filling of indium phosphide / indium difficult. be able to. In this case, even if the width of the trench is 100 nm or less, the trench can be surely filled with indium phosphide / indium.
 また、ULSIではなくレーザー回路や高周波回路においては、幅が100nm以下であるような微細構造のフィン構造33は不要であるが、レーザー回路や高周波回路には幅が100nmより大きくてもIII−V族半導体のフィン構造は有用であるため、本発明を幅が100nmよりも大きいトレンチへのインジウムリン/インジウムの充填に適用してもよい。 Further, in the case of a laser circuit or a high-frequency circuit other than ULSI, the fine fin structure 33 having a width of 100 nm or less is not necessary. However, even if the width is larger than 100 nm, the laser circuit or the high-frequency circuit has III-V. Since the fin structure of a group semiconductor is useful, the present invention may be applied to filling indium phosphide / indium into trenches having a width greater than 100 nm.
 また、本発明の目的は、上述した各実施の形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、CVD成膜装置10等が備えるコンピュータ(図示しない)に供給し、コンピュータのCPUが記憶媒体に格納されたプログラムコードを読み出して実行することによっても達成される。 Another object of the present invention is to supply a storage medium storing software program codes for realizing the functions of the above-described embodiments to a computer (not shown) included in the CVD film forming apparatus 10 and the like, and to execute the CPU of the computer. Is also achieved by reading and executing the program code stored in the storage medium.
 この場合、記憶媒体から読み出されたプログラムコード自体が上述した各実施の形態の機能を実現することになり、プログラムコード及びそのプログラムコードを記憶した記憶媒体は本発明を構成することになる。 In this case, the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the program code and the storage medium storing the program code constitute the present invention.
 また、プログラムコードを供給するための記憶媒体としては、例えば、RAM、NV−RAM、フロッピー(登録商標)ディスク、ハードディスク、光磁気ディスク、CD−ROM、CD−R、CD−RW、DVD(DVD−ROM、DVD−RAM、DVD−RW、DVD+RW)等の光ディスク、磁気テープ、不揮発性のメモリカード、他のROM等の上記プログラムコードを記憶できるものであればよい。或いは、上記プログラムコードは、インターネット、商用ネットワーク、若しくはローカルエリアネットワーク等に接続される不図示の他のコンピュータやデータベース等からダウンロードすることによりコンピュータに供給されてもよい。 Examples of the storage medium for supplying the program code include RAM, NV-RAM, floppy (registered trademark) disk, hard disk, magneto-optical disk, CD-ROM, CD-R, CD-RW, DVD (DVD). -ROM, DVD-RAM, DVD-RW, DVD + RW) and other optical disks, magnetic tapes, non-volatile memory cards, other ROMs, etc., as long as they can store the program code. Alternatively, the program code may be supplied to the computer by downloading from another computer or database (not shown) connected to the Internet, a commercial network, a local area network, or the like.
 また、コンピュータが読み出したプログラムコードを実行することにより、上記各実施の形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、CPU上で稼動しているOS(オペレーティングシステム)等が実際の処理の一部又は全部を行い、その処理によって上述した各実施の形態の機能が実現される場合も含まれる。 Further, by executing the program code read by the computer, not only the functions of the above-described embodiments are realized, but also an OS (operating system) running on the CPU based on the instruction of the program code. Includes a case where part or all of the actual processing is performed and the functions of the above-described embodiments are realized by the processing.
 更に、記憶媒体から読み出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書き込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPU等が実際の処理の一部又は全部を行い、その処理によって上述した各実施の形態の機能が実現される場合も含まれる。 Further, after the program code read from the storage medium is written in a memory provided in a function expansion board inserted into the computer or a function expansion unit connected to the computer, the function expansion is performed based on the instruction of the program code. This includes a case where the CPU or the like provided in the board or the function expansion unit performs part or all of the actual processing, and the functions of the above-described embodiments are realized by the processing.
 上記プログラムコードの形態は、オブジェクトコード、インタプリタにより実行されるプログラムコード、OSに供給されるスクリプトデータ等の形態から成ってもよい。 The form of the program code may be in the form of object code, program code executed by an interpreter, script data supplied to the OS, and the like.
 本出願は、2013年2月27日に出願された日本出願第2013−037136号に基づく優先権を主張するものであり、当該日本出願に記載された全内容を本出願に援用する。 This application claims priority based on Japanese Application No. 2013-037136 filed on Feb. 27, 2013, the entire contents of which are incorporated in this application.
W ウエハ
23 被覆層
24 トレンチ
25 結晶面
26 インジウムリン
27 インジウム層
30 キャップ層
31 貫通転位欠陥
32 結晶化インジウムリン
39 インジウム
W wafer 23 coating layer 24 trench 25 crystal plane 26 indium phosphide 27 indium layer 30 cap layer 31 threading dislocation defect 32 crystallized indium phosphide 39 indium

Claims (21)

  1.  シリコン基板を被覆する被覆層に幅狭の溝を形成し、該溝の底部において前記シリコン基板のシリコンの結晶面を露出させる溝形成ステップと、
     前記溝に気相又は固相でIII−V族半導体を充填する充填ステップと、
     前記充填されたIII−V族半導体を加熱して溶融した後、前記溶融したIII−V族半導体を徐冷して前記シリコンの結晶面を種として前記III−V族半導体の結晶を析出させる析出ステップと、
     前記被覆層を除去する除去ステップとを有することを特徴とする微細構造形成方法。
    Forming a narrow groove in the coating layer covering the silicon substrate, and exposing the silicon crystal plane of the silicon substrate at the bottom of the groove; and
    A filling step of filling the groove with a III-V semiconductor in a gas phase or a solid phase;
    Precipitation for heating and melting the filled group III-V semiconductor and then gradually cooling the melted group III-V semiconductor to precipitate the group III-V semiconductor crystal using the silicon crystal plane as a seed. Steps,
    And a removal step of removing the coating layer.
  2.  前記幅狭の溝のアスペクト比は1以上であることを特徴とする請求項1記載の微細構造形成方法。 2. The fine structure forming method according to claim 1, wherein the narrow groove has an aspect ratio of 1 or more.
  3. 前記充填ステップ及び前記析出ステップの間において、前記III−V族半導体が充填された前記溝をIII族金属層で被覆することを特徴とする請求項1の微細構造形成方法。 2. The method for forming a microstructure according to claim 1, wherein the groove filled with the III-V semiconductor is covered with a group III metal layer between the filling step and the deposition step.
  4.  前記析出ステップでは、前記溶融したIII−V族半導体へV族元素を添加することを特徴とする請求項1記載の微細構造形成方法。 The fine structure forming method according to claim 1, wherein, in the precipitation step, a group V element is added to the molten group III-V semiconductor.
  5.  前記析出ステップでは、前記溶融したIII−V族半導体へ添加材を添加することを特徴とする請求項1記載の微細構造形成方法。 2. The microstructure forming method according to claim 1, wherein an additive is added to the molten group III-V semiconductor in the precipitation step.
  6.  前記充填ステップ及び前記析出ステップの間において、前記III族金属層をさらに他の被覆層で被覆することを特徴とする請求項3記載の微細構造形成方法。 4. The microstructure forming method according to claim 3, wherein the group III metal layer is further covered with another coating layer between the filling step and the deposition step.
  7.  前記充填ステップでは、前記III−V族半導体はMOCVDによって前記溝へ充填されることを特徴とする請求項1記載の微細構造形成方法。 In the filling step, the III-V group semiconductor is filled into the groove by MOCVD.
  8.  前記III族金属層はPVDによって形成されることを特徴とする請求項1記載の微細構造形成方法。 2. The microstructure forming method according to claim 1, wherein the group III metal layer is formed by PVD.
  9.  前記溝の底部において露出する前記シリコンの結晶面のミラー指数は、(001)、(010)、(011)、(100)、(101)、(110)又は(111)であることを特徴とする請求項1記載の微細構造形成方法。 The Miller index of the silicon crystal plane exposed at the bottom of the groove is (001), (010), (011), (100), (101), (110) or (111). The fine structure forming method according to claim 1.
  10.  前記III−V族半導体はインジウムリンであることを特徴とする請求項1記載の微細構造形成方法。 2. The method for forming a microstructure according to claim 1, wherein the III-V semiconductor is indium phosphide.
  11.  シリコン基板を被覆する被覆層に幅狭の溝を形成し、該溝の底部において前記シリコン基板のシリコンの結晶面を露出させる溝形成ステップと、
     前記溝に気相又は固相でIII族金属を充填する充填ステップと、
     前記充填されたIII族金属を加熱して溶融した後、該溶融したIII族金属にV族元素を添加してIII−V族半導体を発生させ、前記溶融したIII族金属から前記シリコンの結晶面を種として前記III−V族半導体の結晶を析出させる析出ステップと、
     前記被覆層を除去する除去ステップとを有することを特徴とする微細構造形成方法。
    Forming a narrow groove in the coating layer covering the silicon substrate, and exposing the silicon crystal plane of the silicon substrate at the bottom of the groove; and
    A filling step of filling the groove with a Group III metal in a gas phase or a solid phase;
    The filled Group III metal is heated and melted, and then a Group V element is added to the melted Group III metal to generate a Group III-V semiconductor. A precipitation step of precipitating a crystal of the group III-V semiconductor using as a seed;
    And a removal step of removing the coating layer.
  12.  前記幅狭の溝のアスペクト比は1以上であることを特徴とする請求項11記載の微細構造形成方法。 12. The method for forming a fine structure according to claim 11, wherein the narrow groove has an aspect ratio of 1 or more.
  13.  前記充填ステップでは、前記III族金属は前記被覆層の表面も被覆することを特徴とする請求項11記載の微細構造形成方法。 12. The microstructure forming method according to claim 11, wherein in the filling step, the group III metal also covers the surface of the coating layer.
  14.  前記析出ステップでは、前記溶融したIII族金属へ添加材を添加することを特徴とする請求項11記載の微細構造形成方法。 12. The microstructure forming method according to claim 11, wherein in the precipitation step, an additive is added to the molten group III metal.
  15.  前記充填ステップでは、前記III族金属はPVDによって前記溝へ充填されることを特徴とする請求項11記載の微細構造形成方法。 12. The microstructure forming method according to claim 11, wherein in the filling step, the group III metal is filled into the groove by PVD.
  16.  前記充填ステップでは、前記III族金属はCVDによって前記溝へ充填されることを特徴とする請求項11記載の微細構造形成方法。 12. The microstructure forming method according to claim 11, wherein in the filling step, the group III metal is filled into the groove by CVD.
  17.  前記溝の底部において露出する前記シリコンの結晶面のミラー指数は、(001)、(010)、(011)、(100)、(101)、(110)又は(111)であることを特徴とする請求項11記載の微細構造形成方法。 The Miller index of the silicon crystal plane exposed at the bottom of the groove is (001), (010), (011), (100), (101), (110) or (111). The fine structure forming method according to claim 11.
  18.  前記III−V族半導体はインジウムリンであることを特徴とする請求項11記載の微細構造形成方法。 12. The method for forming a microstructure according to claim 11, wherein the III-V semiconductor is indium phosphide.
  19.  溝に充填されたIII−V族半導体を加熱して溶融した後、前記溶融したIII−V族半導体を徐冷して基板の結晶面を種として前記III−V族半導体の結晶を析出させる析出ステップを有することを特徴とする微細構造形成方法。 Precipitation in which the III-V semiconductor filled in the groove is heated and melted, and then the molten III-V semiconductor is gradually cooled to precipitate the III-V semiconductor crystal using the crystal plane of the substrate as a seed. A method for forming a microstructure characterized by comprising steps.
  20.  前記微細構造はFin−FETであることを特徴とする請求項19記載の微細構造形成方法。 20. The fine structure forming method according to claim 19, wherein the fine structure is a Fin-FET.
  21.  シリコン基板に形成され、単結晶のIII−V族半導体からなり、幅が10nm~50nmであって、アスペクト比が1以上であることを特徴とするフィン構造。 A fin structure formed on a silicon substrate, made of a single crystal III-V group semiconductor, having a width of 10 nm to 50 nm and an aspect ratio of 1 or more.
PCT/JP2014/055702 2013-02-27 2014-02-27 Method for forming microstructure, and fin structure WO2014133190A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-037136 2013-02-27
JP2013037136A JP2016094303A (en) 2013-02-27 2013-02-27 Formation method of fine structure and fin structure

Publications (1)

Publication Number Publication Date
WO2014133190A1 true WO2014133190A1 (en) 2014-09-04

Family

ID=51428446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055702 WO2014133190A1 (en) 2013-02-27 2014-02-27 Method for forming microstructure, and fin structure

Country Status (3)

Country Link
JP (1) JP2016094303A (en)
TW (1) TW201440130A (en)
WO (1) WO2014133190A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663695A (en) * 2014-09-19 2017-05-10 英特尔公司 Apparatus and methods to create a buffer to reduce leakage in microelectronic transistors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10263151B2 (en) * 2017-08-18 2019-04-16 Globalfoundries Inc. Light emitting diodes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171114A (en) * 1983-03-18 1984-09-27 Agency Of Ind Science & Technol Manufacture of semiconductor single crystal film
JP2008546181A (en) * 2005-05-17 2008-12-18 アンバーウェーブ システムズ コーポレイション Lattice-mismatched semiconductor structure with low dislocation defect density and related device manufacturing method
JP2011023610A (en) * 2009-07-16 2011-02-03 Toshiba Corp Method of fabricating semiconductor device
WO2013121926A1 (en) * 2012-02-13 2013-08-22 東京エレクトロン株式会社 Semiconductor device and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171114A (en) * 1983-03-18 1984-09-27 Agency Of Ind Science & Technol Manufacture of semiconductor single crystal film
JP2008546181A (en) * 2005-05-17 2008-12-18 アンバーウェーブ システムズ コーポレイション Lattice-mismatched semiconductor structure with low dislocation defect density and related device manufacturing method
JP2011023610A (en) * 2009-07-16 2011-02-03 Toshiba Corp Method of fabricating semiconductor device
WO2013121926A1 (en) * 2012-02-13 2013-08-22 東京エレクトロン株式会社 Semiconductor device and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663695A (en) * 2014-09-19 2017-05-10 英特尔公司 Apparatus and methods to create a buffer to reduce leakage in microelectronic transistors

Also Published As

Publication number Publication date
JP2016094303A (en) 2016-05-26
TW201440130A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
Lee et al. Thermodynamically stable synthesis of large‐scale and highly crystalline transition metal dichalcogenide monolayers and their unipolar n–n heterojunction devices
JP4945725B2 (en) Method for producing an improved epitaxial material
JP5328931B2 (en) Low defect density free-standing gallium nitride substrate manufacturing method and device manufactured thereby
US6168659B1 (en) Method of forming gallium nitride crystal
US7686886B2 (en) Controlled shape semiconductor layer by selective epitaxy under seed structure
KR101380717B1 (en) Semi-conductor substrate and method and masking layer for producing a free-standing semi-conductor substrate by means of hydride-gas phase epitaxy
US20070141814A1 (en) Process for producing a free-standing iii-n layer, and free-standing iii-n substrate
JPWO2013121926A1 (en) Semiconductor device and manufacturing method thereof
CN101436531A (en) Method for preparing compound semiconductor substrate
JP2010521810A (en) Semiconductor heterostructure and its manufacture
CN109075022A (en) Forming planar surfaces of III-nitride materials
KR20060126968A (en) Formation of lattice-tuning semiconductor substrates
JP3776374B2 (en) Method for producing SiC single crystal and method for producing SiC wafer with epitaxial film
US9214341B2 (en) Method for manufacturing a semiconductor structure and semiconductor component comprising such a structure
US20130062665A1 (en) Method for producing a iii/v si template
JP2002305160A (en) Manufacturing method for compound semiconductor substrate
WO2014133190A1 (en) Method for forming microstructure, and fin structure
US9356102B2 (en) Double stepped semiconductor substrate
WO2014200077A1 (en) Microstructure forming method, semiconductor device manufacturing method, and cmos forming method
US20090246460A1 (en) Structure And Method For Forming Crystalline Material On An Amorphous Structure
TWI525663B (en) Method for producing a iii/v si template
JP2011187926A (en) Semiconductor substrate, semiconductor device, and manufacturing methods thereof
US5132247A (en) Quantum effective device and process for its production
WO2016093287A1 (en) Microstructure formation method, method for manufacturing semiconductor device, and cmos formation method
JP2649928B2 (en) Method for manufacturing semiconductor wafer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14756389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP