WO2014133075A1 - Steel-aluminium composite foil - Google Patents

Steel-aluminium composite foil Download PDF

Info

Publication number
WO2014133075A1
WO2014133075A1 PCT/JP2014/054856 JP2014054856W WO2014133075A1 WO 2014133075 A1 WO2014133075 A1 WO 2014133075A1 JP 2014054856 W JP2014054856 W JP 2014054856W WO 2014133075 A1 WO2014133075 A1 WO 2014133075A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
steel
containing metal
aluminum composite
composite foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2014/054856
Other languages
French (fr)
Japanese (ja)
Inventor
直哉 佐脇
寺嶋 晋一
將元 田中
修司 長▲崎▼
海野 裕人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Materials Co Ltd filed Critical Nippon Steel and Sumikin Materials Co Ltd
Priority to JP2015503017A priority Critical patent/JP5932132B2/en
Publication of WO2014133075A1 publication Critical patent/WO2014133075A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/16Material structures, e.g. crystalline structures, film structures or crystal plane orientations
    • H10F77/169Thin semiconductor films on metallic or insulating substrates
    • H10F77/1692Thin semiconductor films on metallic or insulating substrates the films including only Group IV materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/16Material structures, e.g. crystalline structures, film structures or crystal plane orientations
    • H10F77/169Thin semiconductor films on metallic or insulating substrates
    • H10F77/1696Thin semiconductor films on metallic or insulating substrates the films including Group II-VI materials, e.g. CdTe or CdS
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/16Material structures, e.g. crystalline structures, film structures or crystal plane orientations
    • H10F77/169Thin semiconductor films on metallic or insulating substrates
    • H10F77/1698Thin semiconductor films on metallic or insulating substrates the metallic or insulating substrates being flexible
    • H10F77/1699Thin semiconductor films on metallic or insulating substrates the metallic or insulating substrates being flexible the films including Group I-III-VI materials, e.g. CIS or CIGS on metal foils or polymer foils
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a steel aluminum composite foil.
  • Compound-based solar cells such as CIGS (Copper-Indium-Gallium-Selenium), CIS (Copper-Indium-Selenium), CdTe (Cadmium-Tellur), etc., thin-film solar cells such as amorphous Si, etc.
  • a base called a base material is used for the purpose of strongly supporting a CIGS layer, a CIS layer, a CdTe layer, an amorphous Si layer, or an organic EL layer. .
  • Patent Document 1 Conventionally, a glass substrate is often used as the substrate as described in Patent Document 1. Since glass is easy to break, it is necessary to increase the thickness to improve the strength. However, when the thickness of the glass is increased, there is a problem that the solar cell and the organic EL lighting itself become heavy.
  • the metal foil as the substrate is required to have good corrosion resistance, surface smoothness, and elastoplastic deformation.
  • the corrosion resistance of the base material is required to enable the metal foil used as the base material to be exposed to the outdoor environment for a long period of 20 years or longer.
  • the surface smoothness of the base material is required to prevent the solar cell layer and the organic EL layer laminated on the base material from being physically damaged by the protruding defects present on the base material surface. .
  • the surface of the base material is desirably a smooth surface having no protruding defects.
  • the elasto-plastic deformability of the base material is required to enable the base material to be wound into a roll shape. If the base material can be wound into a roll shape, the manufacturing process of solar cells and the like is changed from a conventional batch process to a continuous process such as a Roll to Roll process that was impossible with a hard glass base material. It becomes possible to change. As a result, the manufacturing cost of solar cells and organic EL lighting can be greatly reduced.
  • a metal foil for a base material use of a metal foil (referred to as a stainless steel foil) using stainless steel having excellent corrosion resistance is generally in progress.
  • a base material in which an organic film is further formed on a stainless steel foil is used.
  • stainless steel foil is used as a metal foil for a substrate because it has excellent corrosion resistance.
  • stainless steel foil has a problem of high price because it contains chromium.
  • the stainless steel foil is not easy to roll because of the high hardness of the stainless steel itself, and has a problem that the manufacturing cost for forming the foil is high. Therefore, the use frequency is low compared with a glass substrate.
  • metal foil (hereinafter referred to as ordinary steel foil) using ordinary steel (carbon steel) is less expensive than stainless steel and has a high plastic deformability. Significantly lower than stainless steel foil.
  • ordinary steel foil itself cannot satisfy the corrosion resistance required as a metal foil for a substrate. With ordinary steel foil that satisfies the above-mentioned corrosion resistance, surface smoothness, and elastoplastic deformation required for metal foil for base materials, production costs for solar cells and organic EL lighting are expected to be significantly reduced. it can.
  • the metal foil for a substrate after a laminated film such as a CIGS layer or an organic EL layer is formed is about several hundred degrees Celsius. May be cooled after being heated.
  • the aluminum plating layer may be peeled or cracked when such heat treatment is performed.
  • the present invention has been made in view of the above circumstances, and simultaneously satisfies the corrosion resistance, surface smoothness, and elastoplastic deformability required as a metal foil for a substrate for solar cells and organic EL lighting, and is heated to a high temperature. It is an object of the present invention to provide a steel / aluminum composite foil in which peeling or cracking of an Al-containing metal layer or the like hardly occurs even when cooled.
  • the gist of the present invention is as follows.
  • a steel aluminum composite foil according to an aspect of the present invention is laminated on a steel layer and a core layer having an Al-containing metal layer formed on the steel layer, and the Al-containing metal layer of the core layer.
  • the Fe—Al alloy particles dispersed and separated from the steel layer included in the Al-containing metal layer when viewed in the cross section.
  • the area fraction may be in the range of 7.5 area% or more and less than 50 area% with respect to the Fe—Al alloy grains contained in the cross section.
  • the particle diameter of the Fe—Al alloy particles dispersed and separated from the steel layer contained in the Al-containing metal layer is: It may be in the range of 0.1 to 5 ⁇ m.
  • the Fe aluminum dispersed and separated from the steel layer in the Al layer. -Al alloy grains may be included.
  • the rate may be in the range of 7.5 area% or more and less than 40 area% with respect to the Fe—Al alloy grains contained in the cross section.
  • the Fe—Al alloy particles dispersed and separated from the steel layer contained in the Al layer have a particle size of 0. 0. It may be in the range of 1-5 ⁇ m.
  • the Al A contained metal layer may be disposed on each of the steel layer surfaces.
  • the Al layer is You may distribute
  • a void included in the cross section may have an equivalent circle diameter of less than 1 ⁇ m.
  • the chemical component of the Al-containing metal layer contains 1 to 15% by mass of Si, and the balance is Al and It may consist of impurities.
  • the Fe—Al alloy particles are selected from at least FeAl 3 , Fe 2 Al 8 Si, and FeAl 5 Si. One intermetallic compound may be included.
  • the chemical component of the Al layer may be composed of 99.0% by mass or more of Al and impurities.
  • the surface roughness Ra of the surface of the Al layer may be 10 to 25 nm.
  • the surface of the Al layer further includes at least one selected from an AlN layer and an Al 2 O 3 layer. May be.
  • the surface of the Al layer may further include at least one selected from a sol-gel layer and a laminate layer. Good.
  • FIG. 3 is an enlarged schematic cross-sectional view showing Fe—Al alloy grains and their vicinity included in the steel aluminum composite foil according to the present embodiment. It is a cross-sectional schematic diagram which shows the principal part of the modification of the steel aluminum composite foil which concerns on this embodiment. It is a cross-sectional schematic diagram of the steel aluminum composite foil which concerns on this embodiment.
  • an aluminum-plated steel foil can be cited as a candidate in addition to an aluminum foil and a stainless steel foil.
  • This aluminum plated steel foil is a metal foil in which an aluminum plated layer that is an Al-containing metal layer is disposed on a steel plate that is plain steel.
  • Aluminum plated steel foil is more promising as a metal foil for a substrate than aluminum foil and stainless steel foil because it is excellent in strength and cost such as raw material costs and manufacturing costs.
  • it is necessary to further improve the surface smoothness and further suppress peeling and cracking.
  • an aluminum-plated steel foil is manufactured by rolling an aluminum-plated steel sheet into a foil shape.
  • the said aluminum plating steel plate before rolling is manufactured by immersing the steel plate which is plain steel in a hot dipping aluminum plating bath.
  • This molten aluminum plating bath may contain Si for the purpose of lowering the melting temperature.
  • a eutectic structure of an Al phase and a Si phase is generated in the aluminum plating layer.
  • an Fe—Al alloy layer is also formed at the interface (boundary) between the aluminum plating layer and the steel layer (base metal).
  • the manufacturing process of solar cells and organic EL lighting includes a process of heating the substrate to a relatively high temperature and then cooling it.
  • the steel layer and the aluminum plated layer may be peeled off, and cracks may occur in the aluminum plated layer.
  • the occurrence of such peeling and cracking is due to the large difference between the thermal expansion coefficient of the steel layer and the aluminum plating layer, and the presence of an Fe-Al alloy layer at the interface between the steel layer and the aluminum plating layer. Due to such things.
  • the present inventors diligently studied whether or not peeling of the aluminum plating layer and the steel layer and cracking of the aluminum plating layer can be prevented by modifying the aluminum plating layer which is an Al-containing metal layer. As a result, the steel aluminum composite foil described below was found.
  • the steel aluminum composite foil 1 is configured by laminating an Al layer 3 on a core layer 2 as shown in FIG.
  • the core layer 2 is composed of a steel layer 4 and an Al-containing metal layer 5 formed on the steel layer 4.
  • FIG. 1 shows a steel / aluminum composite foil 1 when viewed in a cross section in which the thickness direction and the cutting direction are parallel, and a part of the core layer 2 and Al laminated on the core layer 2 are shown. Layer 3 is shown enlarged.
  • the steel layer 4 constituting the core layer 2 has a thickness of about 5 to 200 ⁇ m and is preferably plain steel (carbon steel). If thickness is this range, sufficient intensity
  • the Al-containing metal layer 5 constituting the core layer 2 is formed by Al-containing plating, and more specifically, is formed by hot-dip aluminum plating. By forming this Al-containing metal layer 5 on the steel layer 4, the corrosion resistance of the steel layer 4 can be enhanced.
  • the chemical component of the Al-containing metal layer 5 preferably contains 1 to 15% by mass of Si on the average, and the balance is made of Al and impurities.
  • the “impurities” in the present embodiment refer to those mixed from raw materials or the manufacturing environment.
  • the chemical component as an average means an average value when a plurality of measurements are performed at a plurality of locations.
  • the melting point of the molten aluminum plating bath can be preferably reduced. As a result, the hot dipping operation can be facilitated. Furthermore, by containing Si in the molten aluminum plating bath, excessive growth of the hard Fe—Al alloy layer generated at the interface 6 between the steel layer 4 and the Al-containing metal layer 5 can be preferably suppressed. If the Si content is 15% by mass or less, coarse Si does not precipitate in the Al-containing metal layer 5, and there is no possibility of impairing corrosion resistance and plating adhesion. Further, if the Si content is low, the entire Al of the Al-containing metal layer 5 may be alloyed with Fe of the steel layer 4 (ground iron), so the Si content is preferably 1% by mass or more. The mass% or more is more preferable.
  • the thickness of the Al-containing metal layer 5 is preferably in the range of 0.3 to 25 ⁇ m, more preferably in the range of 1 to 25 ⁇ m, still more preferably in the range of 3 to 25 ⁇ m, and most preferably in the range of 8 to 25 ⁇ m. If thickness is 0.3 micrometer or more, a suitable corrosion-resistant effect will be acquired. Further, if the thickness is 25 ⁇ m or less, it is not necessary to plate a large amount of Al, and the production cost can be improved.
  • Fe—Al alloy grains 7 are dispersedly formed at the interface 6 between the steel layer 4 and the Al-containing metal layer 5.
  • an Fe—Al alloy phase is formed in layers at the interface 6 between the steel layer 4 and the Al-containing metal layer 5.
  • the Fe—Al alloy grains 7 are formed by dispersing this Fe—Al alloy layer.
  • the Fe—Al alloy grain 7 preferably contains at least one intermetallic compound selected from, for example, FeAl 3 , Fe 2 Al 8 Si, and FeAl 5 Si.
  • the Fe—Al alloy layer is very hard and brittle, if it remains in a layered state, it cannot follow the deformation when the steel-aluminum composite foil 1 is elastically plastically deformed, and the steel layer 4 and the Al-containing metal layer 5 are peeled off. And the crack of the Al-containing metal layer 5 is induced.
  • the Fe—Al alloy grains 7 are dispersed, so that the steel layer 4 and the Al-containing metal layer 5 are formed when the steel / aluminum composite foil 1 is elastically plastically deformed. And peeling of the Al-containing metal layer 5 can be prevented.
  • the Fe—Al alloy layer formed at the interface 6 between the steel layer 4 and the Al-containing metal layer 5 has an average chemical composition of Fe: 10 to 35 atomic%, Al: 50 to 80 atomic%, Si: 0 It is preferable that the total amount of Fe, Al, and Si is 95 atomic% or more.
  • the chemical components of the Fe—Al alloy grains 7 formed from this Fe—Al alloy layer are, on average, Fe: 10 to 35 atomic%, Al: 50 to 80 atomic%, Si: 0.5 to 20 atomic%, And it is preferable that the sum total of Fe, Al, and Si becomes 95 atomic% or more.
  • the Fe—Al alloy grains 7 may have different chemical components for each grain.
  • the chemical components of the Fe—Al alloy grains 7 are more preferably, on average, Fe: 15 to 25 atomic%, Al: 60 to 75 atomic%, and Si: 1 to 15 atomic%.
  • the Fe—Al alloy grains 7 are in contact with the steel layer 4 and dispersed in the interface 6 between the steel layer 4 and the Al-containing metal layer 5, while being separated from the steel layer 4.
  • Fe—Al alloy grains 7b dispersed in the Al-containing metal layer 5 are included. Among these, the presence of the Fe—Al alloy particles 7 b dispersed in the Al-containing metal layer 5 in a state of being separated from the steel layer 4 can improve the elastoplastic deformability.
  • the thermal expansion coefficient of the steel layer 4 (for example, 10.5 to 12.2 ⁇ 10 ⁇ 6 / K) and the thermal expansion coefficient of Al forming the Al-containing metal layer 5 (for example, 22.3 ⁇ 10 ⁇ 6 / K).
  • the difference from K) is large.
  • the Fe—Al alloy grains 7 are separated from the steel layer 4 and dispersed in the Al-containing metal layer 5, a thermal expansion pinning effect on the Al-containing metal layer 5 is exhibited.
  • the steel-aluminum composite foil 1 of the present embodiment is subjected to a heat history that is heated to several hundred degrees Celsius during manufacturing processes such as solar cells and organic EL lighting, and then cooled to near room temperature, the steel layer 4 and the Al-containing metal layer 5 are prevented from peeling off and the Al-containing metal layer 5 is prevented from cracking.
  • This effect is that the thermal expansion coefficient of the Al-containing metal layer 5 is apparently lowered by the Fe—Al alloy grains 7b, and the difference between the thermal expansion coefficient of the steel layer 4 and the thermal expansion coefficient of the Al-containing metal layer 5 is small. It is presumed to be caused by In order to disperse the Fe—Al alloy grains 7b in the Al-containing metal layer 5, the cold rolling conditions after clad rolling may be controlled.
  • the area fraction of the Fe—Al alloy particles 7b dispersed and separated from the steel layer 4 contained in the Al-containing metal layer 5 is the above cross section.
  • a range of 7.5 area% or more and less than 50 area% is preferable with respect to the Fe—Al alloy grains 7 contained therein.
  • the lower limit of the area fraction of the Fe—Al alloy grains 7b is more preferably 10 area%, and further preferably 15 area%.
  • the upper limit of the area fraction of the Fe—Al alloy particles 7b is more preferably 40 area%, and further preferably 35 area%.
  • the area fraction of the Fe—Al alloy grains 7b is 7.5 area% or more, peeling between the steel layer 4 and the Al-containing metal layer 5 and cracking of the Al-containing metal layer 5 can be effectively prevented.
  • the area fraction of the Fe—Al alloy grain 7b is preferably as large as possible, but it is difficult to make it 50 area% or more due to restrictions on the manufacturing process, so the upper limit is less than 50 area%. Whether the Fe—Al alloy particles 7 are separated from the steel layer 4 may be determined by observing the cross section of the steel layer 4 and the Al-containing metal layer 5.
  • the particle diameter of the Fe—Al alloy particles 7b dispersed away from the steel layer 4 contained in the Al-containing metal layer 5 is preferably in the range of 0.1 to 5 ⁇ m.
  • the lower limit of the particle size of the Fe—Al alloy particles 7b is more preferably 0.2 ⁇ m.
  • the upper limit of the particle diameter of the Fe—Al alloy particles 7b is more preferably 4 ⁇ m, and further preferably 3 ⁇ m. If the particle diameter of the Fe—Al alloy particles 7b exceeds 5 ⁇ m, the Al-containing metal layer 5 may crack when the steel / aluminum composite foil 1 is deformed.
  • the particle diameter of the Fe—Al alloy particles 7b is less than 0.1 ⁇ m, even if the Fe—Al alloy particles 7b are dispersed in the Al-containing metal layer 5, the pinning effect of thermal expansion is not sufficiently exhibited. There is a fear.
  • the interface 6 between the steel layer 4 and the Al-containing metal layer 5 is preferably not a flat surface but an uneven surface.
  • the uneven interface 6 is formed when the Fe—Al alloy layer 7 is dispersed as Fe—Al alloy grains 7 by cold rolling after clad rolling, so that the Fe—Al alloy grains 7 become the steel layer 4 and the Al-containing metal layer. It is estimated that it is formed by biting into 5 respectively.
  • the interface 6 between the steel layer 4 and the Al-containing metal layer 5 is an uneven surface, the anchor effect is exhibited when the steel layer 4 and the Al-containing metal layer 5 are thermally expanded at a high temperature, The peeling between the steel layer 4 and the Al-containing metal layer 5 can be prevented more effectively.
  • the Al layer 3 is laminated on the Al-containing metal layer 5 of the core layer 2.
  • the Al layer 3 is formed by clad rolling a core material (aluminum-plated steel plate) and an Al material, and further cold rolling.
  • the thickness of the Al layer 3 is preferably in the range of 1 to 140 ⁇ m.
  • the lower limit of the thickness of the Al layer 3 is more preferably 3 ⁇ m and even more preferably 5 ⁇ m.
  • the upper limit of the thickness of the Al layer 3 is more preferably 50 ⁇ m and even more preferably 30 ⁇ m. If the thickness of the Al layer 3 is 1 ⁇ m or more, it becomes a preferable thickness for flattening the surface 3 a of the Al layer 3. Moreover, if this thickness is 140 micrometers or less, since the mass of the Al layer 3 does not increase and the weight reduction of the steel aluminum composite foil 1 is achieved, it is preferable.
  • the Al layer 3 preferably has an average chemical composition of 99.0% by mass or more of Al and impurities.
  • the Al layer 3 more preferably contains 99.9% by mass or more of Al. Thereby, a eutectic structure is not generated in the Al layer 3, and the surface smoothness of the surface 3a of the Al layer 3 can be preferably increased.
  • the surface 3a of the Al layer 3 has acceptable surface smoothness when the surface roughness Ra is 600 nm or less, but the surface roughness Ra of the surface 3a of the Al layer 3 is preferably in the range of 10 to 25 nm. A range of ⁇ 20 nm is more preferable. If the surface roughness Ra of the Al layer 3 is 25 nm or less, the surface smoothness required as a substrate for solar cells and organic EL lighting can be preferably satisfied. The smaller the surface roughness Ra of the Al layer 3 is, the better. However, when the surface roughness Ra is less than 10 nm, the cost of the planarization process increases.
  • the surface roughness Ra of the Al layer 3 is controlled in the cold rolling process after clad rolling.
  • FIG. 2 is an enlarged schematic cross-sectional view showing a main part of a modified example of the steel aluminum composite foil 1 according to the present embodiment.
  • 2 shows a steel / aluminum composite foil 1 when viewed in a cross section in which the thickness direction and the cutting direction are parallel, as in FIG. 1, and a part of the core layer 2 and the core layer are shown.
  • 2 shows an enlarged view of the Al layer 3 stacked on the substrate 2.
  • the Al—layer 3 may include Fe—Al alloy grains 7 c dispersed away from the steel layer 4.
  • the thermal expansion coefficient of the Al layer 3 is apparently lowered by the Fe—Al alloy grains 7c, the difference between the thermal expansion coefficient of the steel layer 4 and the thermal expansion coefficient of the Al layer 3, and the Al-containing metal layer. It is presumed that the difference between the thermal expansion coefficient of 5 and the thermal expansion coefficient of the Al layer 3 is reduced.
  • the thickness of the Al-containing metal layer 5 is smaller than a value obtained by doubling the maximum value of the grain size range of the Fe—Al alloy grains 7.
  • the area fraction of the Fe—Al alloy particles 7c dispersed away from the steel layer 4 included in the Al layer 3 is A range of 7.5 area% or more and less than 40 area% with respect to the Fe—Al alloy grains 7 contained is preferable.
  • the lower limit of the area fraction of the Fe—Al alloy grains 7c is more preferably 10 area%, and further preferably 15 area%.
  • the upper limit of the area fraction of the Fe—Al alloy particles 7c is more preferably 30 area%, further preferably 25 area%.
  • the area fraction of the Fe—Al alloy grain 7c is 7.5 area% or more, peeling between the Al layer 3 and the Al-containing metal layer 5, peeling between the Al-containing metal layer 5 and the steel layer 4, and Al layer 3 And cracking of the Al-containing metal layer 5 can be preferably prevented.
  • the area fraction of the Fe—Al alloy grain 7c is preferably as large as possible, but it is difficult to make it 40% by area or more because of restrictions on the manufacturing process.
  • the particle diameter of the Fe—Al alloy particles 7c dispersed away from the steel layer 4 included in the Al layer 3 is preferably in the range of 0.1 to 5 ⁇ m.
  • the lower limit of the particle size of the Fe—Al alloy particles 7c is more preferably 0.2 ⁇ m, and still more preferably 0.3 ⁇ m.
  • the upper limit of the particle diameter of the Fe—Al alloy particles 7c is more preferably 4 ⁇ m, and further preferably 3.5 ⁇ m. If the particle diameter of the Fe—Al alloy particles 7c exceeds 5 ⁇ m, the Al layer 3 or the Al-containing metal layer 5 may break when the steel / aluminum composite foil 1 is deformed.
  • the particle diameter of the Fe—Al alloy particles 7c is less than 0.1 ⁇ m, even if the Fe—Al alloy particles 7c are dispersed in the Al layer 3, the pinning effect of thermal expansion may not be sufficiently exhibited. is there. Note that the grain size of the Fe—Al alloy grains 7 c is always smaller than the thickness of the Al layer 3.
  • FIG. 3 is an enlarged schematic cross-sectional view showing Fe—Al alloy grains 7 included in the steel aluminum composite foil 1 according to the present embodiment and the vicinity thereof.
  • FIG. 3 shows the steel / aluminum composite foil 1 when viewed in a cross section in which the thickness direction and the cutting direction are parallel, as in FIGS. 1 and 2.
  • the steel aluminum composite foil 1 according to the present embodiment may include voids 9.
  • the steel layer 4 and the Al-containing metal layer 5 are peeled off, and the Al-containing metal layer. 5 and the Al layer 3 may be peeled off, the Al-containing metal layer 5 may be cracked, or the Al layer 3 may be cracked. Therefore, the electrical resistance of the steel / aluminum composite foil 1 is increased, the photoelectric conversion efficiency is lowered, and the temperature cycle resistance may be lowered. Therefore, it is preferable that the size of the void 9 is small.
  • the void 9 included in the cross section has an equivalent circle diameter (equivalent circle diameter) of less than 1 ⁇ m. If the equivalent circle diameter of the void 9 is less than 1 ⁇ m, peeling between the steel layer 4 and the Al-containing metal layer 5, peeling between the Al-containing metal layer 5 and the Al layer 3, cracking of the Al-containing metal layer 5, or Al layer 3 is less likely to cause cracking.
  • the equivalent circle diameter of the void 9 the total thickness of the aluminum plating layer (Al-containing metal layer) and the Al material before the clad rolling process, and the total reduction ratio in the clad rolling and cold rolling Can be controlled.
  • FIG. 4 is an enlarged schematic cross-sectional view showing a main part of a modified example of the steel aluminum composite foil 1 according to the present embodiment.
  • various coating layers 8 may be formed on the Al layer 3 of the steel aluminum composite foil 1 of the present embodiment.
  • the coating layer 8 has acceptable surface smoothness when the surface roughness Ra is 600 nm or less, but the surface roughness Ra of these coating layers 8 is Al in the case where these coating layers 8 are not formed. Similar to the surface 3a of the layer 3, the range of 10 to 25 nm is preferable, and the range of 10 to 20 nm is more preferable.
  • an AlN layer having a thickness of 0.01 to 4 ⁇ m or an Al 2 O 3 layer having a thickness of 0.05 to 50 ⁇ m is preferably formed on the Al layer 3 as the covering layer 8.
  • the thickness of the AlN layer is 0.01 ⁇ m or more, or the thickness of the Al 2 O 3 layer is 0.05 ⁇ m or more
  • the surface of the Al layer 3 can be made insulative, and insulation of solar cells and organic EL lighting It is preferable because it can function as a conductive underlayer. Generating an AlN layer with a thickness of more than 4 ⁇ m or an Al 2 O 3 layer with a thickness of more than 50 ⁇ m is not preferable because production costs increase.
  • a sol-gel layer having a thickness of 0.001 to 8 ⁇ m may be formed on the Al layer 3.
  • the sol-gel layer is an sol-gel layer having an inorganic skeleton having a siloxane bond developed in a three-dimensional network structure as a main skeleton, and at least one of bridging oxygens of the skeleton is substituted with an organic group and / or a hydrogen atom. .
  • the sol-gel layer the same effect as the AlN layer and the Al 2 O 3 layer can be obtained. More preferably, when the thickness is 0.1 ⁇ m or more, the above-described effect may be further increased. When the thickness of the sol-gel layer is less than 0.001 ⁇ m, the above effect cannot be obtained. If the thickness exceeds 8 ⁇ m, the production cost increases.
  • a laminate layer having a thickness of 1 to 50 ⁇ m may be formed on the Al layer 3.
  • the laminate layer include a laminate layer made of a plastic film selected from polyolefin, polyester, polyamide, and polyimide.
  • a withstand voltage of 500 V or more can be secured, and dielectric breakdown can be avoided. Even if dielectric breakdown does not occur, the presence of leakage current causes a decrease in photoelectric conversion efficiency of the solar cell module, but such leakage can be prevented by adopting the above structure.
  • a photoelectric converting layer formed on the steel aluminum composite foil 1 of this embodiment compound type solar cells, such as CIGS, CIS, and CdTe, thin film type solar cells, such as amorphous Si, and the hybrid which laminated
  • An organic EL lighting circuit can also be formed on the steel aluminum composite foil 1.
  • the main components of the above-described CIGS and CIS are not particularly limited, and are preferably at least one compound semiconductor having a chalcopyrite structure.
  • the main components of the photoelectric conversion layer are the group Ib element and the group IIIb element. It is preferably at least one compound semiconductor containing a VIb group element.
  • the main component of the photoelectric conversion layer is at least one kind of Ib group element selected from Cu and Ag, Al, Ga, In, and the like. It is preferable that the semiconductor is at least one compound semiconductor containing at least one group IIIb element selected from more and at least one group VIb element selected from S, Se, Te and the like.
  • examples of the compound semiconductor include CuAlS 2 , CuGaS 2 , CuInS 2 , CuAlSe 2 , CuGaSe 2 , CuInSe 2 (CIS), AgAlS 2 , AgGaS 2 , AgInS 2 , AgAlSe 2 , AgGaSe 2 , AgInSe 2 , AgAlTe 2 , AgGaTe 2 , AgInTe 2 , Cu (In 1-x Ga x ) Se 2 (CIGS), Cu (In 1-x Al x ) Se 2 , Cu (In 1-x Ga x ) (S, Se) 2, Ag (In 1-x Ga x) Se 2 and Ag (In 1-x Ga x ) (S, Se) 2 or the like can be used.
  • the steel / aluminum composite foil 1 according to the present embodiment only needs to have the Al-containing metal layer 5 and the Al layer 3 on one foil surface on the side where the power generation layer and the organic EL element of the solar cell are formed.
  • the steel-aluminum composite foil 1 according to the present embodiment is also provided with an Al-containing metal on the other foil surface, which is the foil surface opposite to the one foil surface on the side where the power generation layer and the organic EL element of the solar cell are formed. It may have a layer 5.
  • the steel / aluminum composite foil 1 according to the present embodiment is provided with an Al-containing metal also on the other foil surface, which is the opposite foil surface to the one on which the power generation layer and the organic EL element of the solar cell are formed.
  • the layer 5 and the Al layer 3 may be included.
  • FIG. 5 is a schematic cross-sectional view of the steel / aluminum composite foil according to the present embodiment.
  • the steel / aluminum composite foil 1 according to the present embodiment is one foil on the side on which a power generation layer or an organic EL element of a solar cell is formed.
  • the case where the Al-containing metal layer 5 and the Al layer 3 are provided on the surface and the other foil surface is illustrated.
  • the two outer surfaces of the steel layer 4 having the thickness direction as the normal line are the steel layer surfaces 4a (the steel layer surface 4a is the interface 6).
  • the Al-containing metal layer 5 is preferably disposed on each steel layer surface 4a.
  • the steel-aluminum composite foil 1 having the Al-containing metal layer 5 and the Al layer 3 only on one foil surface is wound in a roll shape, it is wound in a roll shape when manufacturing a solar cell or organic EL lighting. It may be necessary to reverse the winding direction of the steel aluminum composite foil 1 being taken.
  • the solar cell power generation layer and the organic EL element can be formed on either foil surface during manufacturing of organic EL lighting or the like, so that the operability is excellent.
  • the difference in plastic deformability and mechanical properties between the steel layer 4 and the Al-containing metal layer 5 Due to differences in plastic deformability and mechanical properties between the steel layer 4 and the Al layer 3, and differences in plastic deformability and mechanical properties between the Al-containing metal layer 5 and the Al layer 3, the cladding After cold rolling following rolling, warp may occur in the steel aluminum composite foil 1. When warpage occurs in the steel / aluminum composite foil 1, it may be difficult to form a power generation layer or an organic EL element of a solar cell on the steel / aluminum composite foil 1.
  • the steel aluminum composite foil 1 having the Al-containing metal layer 5 on the other foil surface which is the opposite foil surface to the one on which the power generation layer and the organic EL element of the solar cell are formed. Then, after the cold rolling following the clad rolling, the steel aluminum composite foil 1 is less likely to warp, which is preferable. Also, a steel / aluminum composite foil having an Al-containing metal layer 5 and an Al layer 3 on the other foil surface, which is the opposite foil surface to the one on which the power generation layer and organic EL element of the solar cell are formed. No. 1 is preferable because warp is less likely to occur in the steel-aluminum composite foil 1 after cold rolling following clad rolling.
  • an Al-containing metal layer 5 is formed.
  • the Al layer 3 may be laminated only on one Al-containing metal layer surface 5 a of the two Al-containing metal layer surfaces 5 a of the Al-containing metal layer 5, or the two Al-containing metal layers 5 may contain two Al
  • the Al layer 3 may be laminated on the metal layer surface 5a.
  • the side edge of the aluminum-plated steel plate in which the Al-containing metal layer 5 is formed over the entire circumference of the contour line of the steel layer 4 (the end in the plate width direction of the steel plate and the portion along the longitudinal direction of the steel plate) May be cut off.
  • Al is contained only on the two steel layer surfaces 4a of the steel layer 4 having the thickness direction as a normal when viewed in a cross section in which the thickness direction and the cutting direction are parallel.
  • a metal layer 5 is disposed.
  • the Al layer 3 may be laminated only on one Al-containing metal layer surface 5 a of the two Al-containing metal layer surfaces 5 a of the Al-containing metal layer 5, or the two Al-containing metal layers 5 may contain two Al
  • the Al layer 3 may be laminated on the metal layer surface 5a. That is, in the steel / aluminum composite foil 1 according to the present embodiment, the Al-containing metal layer 5 may be arranged over the entire circumference of the contour line of the steel layer 4, and on the two steel layer surfaces 4 a of the steel layer 4. May be arranged only.
  • the Al layer 3 is laminated
  • the Al layer 3 may be laminated on the two Al-containing metal layer surfaces 5 a of the Al-containing metal layer 5.
  • the Al-containing metal layer 5 is disposed only on one steel layer surface 4a.
  • the Al layer 3 may be laminated on the formed Al-containing metal layer 5.
  • the method of measuring the constituent phases and the equivalent circle diameter of the void 9 may be by observing a cut surface obtained by plane cutting along the thickness direction so that the plate width direction orthogonal to the rolling direction becomes the observation surface. In addition, it is preferable to average each measured value measured from several observation visual fields in several cut surfaces.
  • the average thickness, particle size, area fraction, surface roughness Ra, etc. can be determined by image analysis of the metal structure of the cut surface.
  • the image analysis is preferably performed at a magnification such that the observation visual field is within 200 ⁇ m in the plate width direction, and at least 15 visual fields are analyzed so that the total visual field in the plate width direction is 3000 ⁇ m or more. Further, the equivalent-circle diameter of each Fe—Al alloy grain 7 (7a, 7b, 7c) observed within the analysis field of view was measured as the grain size, and the grain size range was examined.
  • the portion contained in the Al-containing metal layer 5 is removed from the Fe—Al alloy particles 7b.
  • the area fraction and the equivalent circle diameter (particle diameter) were calculated with the portion contained in the Al layer 3 as the Fe—Al alloy grain 7c.
  • the circle-equivalent diameter of the void 9 can be obtained by image analysis of the metal structure of the cut surface.
  • the image analysis is preferably performed at a magnification such that the observation visual field is within 200 ⁇ m in the plate width direction, and a plurality of visual fields are analyzed so that the total visual field in the plate width direction is 3000 ⁇ m or more.
  • the above-mentioned methods for measuring the thickness and chemical composition of the various coating layers 8 include a method of analyzing while digging in the film thickness direction from the surface of the metal foil by a sputtering method, or a line at the cut surface in the film thickness direction of the metal foil.
  • An analysis or point analysis method is effective. In the method using the sputtering method, it takes too much time to measure as the measurement depth increases, but in the method of performing line analysis or point analysis of the cut surface, the concentration distribution is measured or the reproducibility is confirmed over the entire cross section. Is relatively easy. If you want to improve the accuracy of line analysis or point analysis, it is also effective to narrow the analysis interval with line analysis or expand the analysis area with point analysis. is there.
  • Identification of the various coating layers 8 is performed by measuring the value of a standard sample (that is, concentration 100%) in advance and discriminating a region where the concentration is 50% or more by analyzing the chemical component.
  • a standard sample that is, concentration 100%
  • the manufacturing method of the steel aluminum composite foil 1 of this embodiment includes a clad rolling process in which a core material and an Al material are clad rolled to form a clad material, and the clad material is cold rolled to obtain a steel aluminum composite foil 1.
  • a cold rolling process in which you may further have the hot dipping process for obtaining the aluminum plating steel plate which is a core material before a clad rolling process.
  • each process will be described sequentially.
  • the process of manufacturing the aluminum plating steel plate (core material) in which the aluminum plating layer (Al-containing metal layer) is arranged on the steel plate (steel layer) is not particularly limited.
  • a thermal spraying method, a sputtering method, an ion plating method, a vapor deposition method, an electroplating method, or the like may be employed.
  • an aluminum plated steel sheet having an aluminum plating layer can be mass-produced at low cost.
  • molten aluminum plating bath which has said chemical component, melting
  • an Fe—Al alloy layer formed by alloying Fe of the steel plate and Al of the aluminum plating layer is formed.
  • the thickness of the aluminum plating layer after the hot dipping process and before the clad rolling process is preferably in the range of 1 to 60 ⁇ m. Further, the lower limit of the thickness of the aluminum plating layer is more preferably 5 ⁇ m, and further preferably 10 ⁇ m. The upper limit of the thickness of the aluminum plating layer is more preferably 40 ⁇ m and even more preferably 30 ⁇ m. By setting the thickness of the aluminum plating layer within the above range, the thickness of the Al-containing metal layer 5 of the steel-aluminum composite foil 1 after the cold rolling step can be controlled within the above-described preferable range.
  • the thickness of the steel sheet after the hot dipping process and before the clad rolling process is preferably in the range of 50 to 2000 ⁇ m. Further, the lower limit of the thickness of the steel sheet is more preferably 100 ⁇ m and even more preferably 200 ⁇ m. The upper limit of the thickness of the steel sheet is more preferably 1500 ⁇ m, and still more preferably 1200 ⁇ m. If the thickness of the steel plate is less than 50 ⁇ m, the thickness of the steel-aluminum composite foil 1 after cold rolling may become too thin, resulting in insufficient strength. On the other hand, when the thickness of the steel plate exceeds 2000 ⁇ m, the thickness of the aluminum-plated steel plate is too thick, and a load is imposed on the subsequent process, and the number of rolling passes may increase, resulting in an increase in cost.
  • an aluminum plating layer (Al-containing metal layer) is formed on each steel plate surface. May be.
  • the steel aluminum composite foil 1 is hardly warped after the cold rolling subsequent to the clad rolling, so that the handling in the subsequent process is facilitated.
  • the steel plate used for hot dip aluminum plating finally becomes the steel layer 4 of the steel aluminum composite foil 1, and the aluminum plating layer formed by hot dip aluminum plating finally has the Al-containing metal layer 5 of the steel aluminum composite foil 1. It becomes.
  • Clad rolling process In the clad rolling process, a core material (aluminum plated steel sheet) in which an aluminum plating layer (Al-containing metal layer) including an Fe-Al alloy layer is formed on a steel sheet (steel layer) is overlaid with an Al material. In this state, the clad rolling is performed to obtain a clad material.
  • an Al material may be bonded onto the aluminum plating layer (Al-containing metal layer), and the rolling conditions of the clad rolling are not particularly limited.
  • the clad rolling temperature may be between room temperature and 500 ° C.
  • clad rolling may be performed under conditions of a heating temperature of 400 ° C. and a reduction rate of 9%, or clad rolling may be performed under conditions of a temperature of 20 ° C. (room temperature) and a reduction rate of 15%. Further, the rolling reduction may be greater than 15%.
  • the Al material used for the clad rolling step is preferably an Al plate made of 99.0% by mass or more of Al and impurities, more preferably an Al plate made of 99.9% by mass or more of Al and impurities. Since such an Al material does not generate a eutectic structure, the surface smoothness of the surface 3a of the Al layer 3 of the steel-aluminum composite foil 1 after cold rolling can be preferably increased.
  • the thickness of the Al material used for the clad rolling process is preferably in the range of 1 to 1500 ⁇ m. Further, the lower limit of the thickness of the Al material is more preferably 10 ⁇ m, and still more preferably 40 ⁇ m. The upper limit of the thickness of the Al material is more preferably 1000 ⁇ m and even more preferably 500 ⁇ m. If the thickness of the Al material is less than 1 ⁇ m, it may be too thin to be handled during clad rolling. On the other hand, when the thickness of the Al material exceeds 1500 ⁇ m, the number of rolling passes for rolling to a thickness suitable as a base material increases, which may increase the cost.
  • the Al materials are respectively It may be joined on the plated surface by clad rolling.
  • Al layers are formed on the two plating surfaces of the aluminum plating layer (Al-containing metal layer), it is difficult for warp to occur in the steel-aluminum composite foil 1 after cold rolling following clad rolling. Is easy to handle and is preferable.
  • the Al material used for the clad rolling finally becomes the Al layer 3 of the steel aluminum composite foil 1.
  • a part of the Fe-Al alloy layer in the Al-containing metal layer is steel layer by cold rolling the clad material obtained in the clad rolling process.
  • the steel-aluminum composite foil 1 is obtained by controlling the Fe—Al alloy grains that are separated from the (steel plate) and dispersed in the Al-containing metal layer.
  • Cold rolling is performed by performing a plurality of rolling passes using either tandem cold rolling equipment or reverse rolling equipment.
  • a part of the Fe—Al alloy particles can be preferably dispersed in the Al-containing metal layer.
  • the surface roughness Ra of the Al layer can be preferably reduced.
  • the sheeting speed of cold rolling is preferably set for each rolling pass in the range of 30 to 400 m / min.
  • the plate passing speed corresponds to the energy used for plastic deformation of the clad material, and a part of the Fe—Al alloy particles can be dispersed in the Al-containing metal layer by applying a certain amount of energy.
  • the sheet passing speed is 30 m / min or more
  • a certain amount of energy can be applied to the clad material, and the Al-containing metal layer breaks the adhesion between the Fe—Al alloy grains and the steel layer, and Fe—Al
  • the Al-containing metal layer is plastically deformed so as to envelop the alloy grains, and as a result, the Fe—Al alloy grains are dispersed in the Al-containing metal layer and / or in the Al layer.
  • the energy applied to the clad material is small, the Fe—Al alloy grains may remain at the interface between the steel layer and the Al-containing metal layer, and the Al-containing metal layer may wrap the Fe—Al alloy grains.
  • coarse voids may be formed without being plastically deformed.
  • the plate passing speed is 400 m / min or less, there is no possibility of causing plate breakage.
  • a more preferred cold rolling speed is 30 to 300 m / min.
  • the plate speed of cold rolling may be the same for all rolling passes or may be changed for each rolling pass.
  • the effect of dispersing the alloy grains due to the sheet passing speed is greatly affected by the rolling pass at an earlier stage, and it becomes difficult to obtain the dispersing effect as it passes through the rolling pass. Therefore, by increasing the sheet passing speed for each rolling pass, the production efficiency can be improved while controlling the dispersion of the alloy grains within a more preferable range.
  • the foil shape can be easily controlled while controlling the dispersion of alloy grains in a more preferable range.
  • the rolling reduction of each rolling pass of the cold rolling is preferably in the range of 15 to 40% of each rolling reduction of the first rolling pass and the second rolling pass. Moreover, it is preferable that the rolling reduction rate in the rolling pass after the second rolling pass is equal to or lower than the rolling reduction rate of the immediately preceding rolling pass.
  • the rolling pass rolling reduction is in the above range, the amount of plastic deformation with respect to the Al-containing metal layer is sufficient, the Fe—Al alloy layer is divided into Fe—Al alloy grains, and Al A part of the contained metal layer enters the interface between the Fe—Al alloy grains and the steel layer (base iron), and as a result, the Fe—Al alloy grains are dispersed in the Al-containing metal layer and / or in the Al layer.
  • the respective rolling reductions in the first rolling pass and the second rolling pass are 15% or more, the amount of plastic deformation of the Al-containing metal layer increases, and the Fe—Al alloy layer is divided to obtain Fe—Al alloy grains.
  • Fe—Al alloy grains can be dispersed in the Al-containing metal layer and / or in the Al layer.
  • each rolling reduction in a 1st rolling pass and a 2nd rolling pass is 30% or less, since shape control of the steel aluminum composite foil 1 becomes easy, it is preferable.
  • the dispersion of Fe—Al alloy grains in the Al-containing metal layer and / or Al layer is preferably achieved when the amount of energy applied to the clad material in the cold rolling process and the amount of plastic deformation of the Al-containing metal layer are not less than a predetermined value. Is done. Therefore, it is preferable to control both the plate passing speed and the rolling reduction within the above range of the present embodiment. If only one of them is controlled, the Fe—Al alloy grains may not be dispersed.
  • control of the surface roughness of the Al layer 3 uses a mirror surface roll having a roll roughness (surface roughness Ra) of 10 nm or less as a work roll used in the final pass, and the Al purity of the Al layer 3 is 99.0. What is necessary is just to control in the range of the mass% or more.
  • the surface roughness Ra of the surface 3a of the Al layer 3 of the steel-aluminum composite foil 1 after cold rolling can be preferably controlled in the range of 10 to 25 nm.
  • the total thickness of the aluminum plating layer (Al-containing metal layer) and the thickness of the Al material before the clad rolling process is 20 ⁇ m or more, and the total rolling reduction in the clad rolling process and the cold rolling process is 65%.
  • the above is preferable.
  • the void 9 containing the steel-aluminum composite foil 1 after cold rolling can be preferably controlled to be less than 1 ⁇ m in terms of equivalent circle diameter.
  • the plastic deformation of the aluminum plating layer (Al-containing metal layer) and the Al material (Al layer) in the clad rolling process and the cold rolling process includes two deformations that are stretched in the rolling direction and deformation that fills the void. Species included. When the total thickness of the aluminum plating layer (Al-containing metal layer) and the Al material (Al layer) of the core material before the clad rolling process satisfies the above conditions, not only the deformation stretched in the rolling direction, Deformation that fills the void is also preferable.
  • the total volume of the aluminum plating layer (Al-containing metal layer) and the Al material (Al layer) is insufficient, so that only deformation that extends in the rolling direction occurs. As a result, voids may remain. Further, when the total rolling reduction in the clad rolling process and the cold rolling process satisfies the above conditions, a deformation that fills the void is preferably generated.
  • the total reduction ratio of the clad rolling process and the cold rolling process is “the total thickness of the steel plate (steel layer), the aluminum plating layer (Al-containing metal layer), and the Al material (Al layer) before the clad rolling (cladding). Is defined as the ratio of “the thickness reduced from the total thickness of the material before clad rolling to the thickness of the steel-aluminum composite foil after cold rolling” to the “total thickness of the material before rolling” To do.
  • total rolling reduction ratio of clad rolling process and cold rolling process [(total thickness of steel layer before clad rolling, Al-containing metal layer and Al layer) ⁇ (steel aluminum after cold rolling) Thickness of composite foil)] / (total thickness of steel layer, Al-containing metal layer, and Al layer before clad rolling) ⁇ 100.
  • the steel aluminum composite foil 1 of this embodiment is manufactured by the clad rolling process and the cold rolling process.
  • the heat treatment of the steel aluminum composite foil 1 is performed at 500 to 600 ° C. in an inert gas (argon, nitrogen, mixed gas of nitrogen and hydrogen, etc.) containing 10% by volume ⁇ 2% by volume of ammonia or hydrazine. Heating may be performed for 1 to 10 hours in the temperature range.
  • an inert gas argon, nitrogen, mixed gas of nitrogen and hydrogen, etc.
  • the surface 3a of the Al layer 3 is preferably anodized.
  • the ratio of the hydrogen concentration [H] (mol / l) to the silicon concentration [Si] (mol / l) in the film obtained in the final baking step is 0.1 ⁇ [H] / [Si].
  • a sol is prepared such that ⁇ 10. Next, the prepared sol is applied to the surface 3a of the Al layer 3 and dried.
  • the steel aluminum composite foil 1 provided with the inorganic-organic hybrid film coating can be manufactured by baking after the last drying.
  • a film forming process of the laminate layer For example, a plastic film selected from polyolefin, polyester, polyamide, polyimide, or the like is laminated on the surface 3a of the Al layer 3 via a nylon adhesive and then heated and thermocompression bonded at a pressure of about 1 MPa.
  • a heat laminating method the steel aluminum composite foil 1 having a laminate layer can be produced.
  • a heat-resistant resin made of polyimide can be used.
  • the Al-containing metal layer 5 positioned between the steel layer 4 and the Al layer 3 was dispersed away from the steel layer 4. Since the Fe—Al alloy grains 7b are included, it is estimated that the thermal expansion coefficient of the Al-containing metal layer 5 is approximately between the thermal expansion coefficient of the steel layer 4 and the thermal expansion coefficient of the Al layer 3. . Thereby, even if the steel aluminum composite foil 1 is heated to 400 ° C. or higher and receives a heat history of cooling to near room temperature, the Al-containing metal layer 5 and the like are hardly peeled off or cracked.
  • the steel layer 4 is coat
  • the Al layer 3 is distribute
  • the Fe—Al alloy layer is divided and dispersed as Fe—Al alloy grains 7, and therefore, the elastic-plastic deformability is excellent.
  • the steel / aluminum composite foil 1 of the present embodiment simultaneously satisfies the corrosion resistance, surface smoothness, and elastoplastic deformation required as a metal foil for a base material of a solar cell or organic EL lighting, and is heated to a high temperature. Even when cooled, the peeling and cracking of the Al-containing metal layer 5 and the like are preferably suppressed. Therefore, the steel aluminum composite foil 1 of this embodiment can be suitably used as a metal foil for a base material for solar cells or organic EL lighting.
  • the steel-aluminum composite foil 1 of the present embodiment includes Fe-Al alloy particles 7c dispersed away from the steel layer 4, the steel-aluminum composite foil 1 is heated to 400 ° C or higher. Even after receiving a thermal history that is cooled to near room temperature after being removed, peeling between the Al layer 3 and the Al-containing metal layer 5, peeling between the Al-containing metal layer 5 and the steel layer 4, cracking of the Al layer 3, and Cracking of the Al-containing metal layer 5 is further preferably prevented.
  • the Al layer 3 of the steel aluminum composite foil 1 of the present embodiment contains 99.0% by mass or more of Al, no eutectic structure is generated in the Al layer 3. For this reason, minute unevenness derived from the eutectic structure does not appear on the surface 3a of the Al layer 3, and the surface smoothness of the steel aluminum composite foil 1 can be further enhanced.
  • the void 9 contained in the steel aluminum composite foil 1 of the present embodiment is less than 1 ⁇ m in equivalent circle diameter, the steel layer 4 and the Al-containing metal layer 5 are peeled off, the Al-containing metal layer 5 and the Al layer 3 are Peeling, cracking of the Al-containing metal layer 5, or cracking of the Al layer 3 is further preferably prevented.
  • the core material and the Al material are clad-rolled to form a clad material, and this clad material is cold-rolled to obtain Fe-- in the Al-containing metal layer 5.
  • a part of the Al alloy layer is formed as Fe—Al alloy grains 7 b and 7 c which are separated from the steel layer and dispersed in the Al-containing metal layer 5 and / or in the Al layer 3. Therefore, it is presumed that the thermal expansion coefficient of the Al-containing metal layer 5 can be set to an intermediate level between the thermal expansion coefficient of the steel layer 4 and the thermal expansion coefficient of the Al layer 3.
  • the Al—Fe alloy layer present at the interface between the steel layer and the Al-containing metal layer is divided by clad rolling and cold rolling, and cold rolling is performed. Then, Fe—Al alloy grains 7 b and 7 c are dispersed in the Al-containing metal layer and / or in the Al layer 3. Therefore, the Al—Fe alloy layer that has conventionally caused the aluminum plating layer to peel or crack can be changed to a useful structure.
  • the method for producing the steel / aluminum composite foil 1 of the present embodiment simultaneously satisfies the corrosion resistance, surface smoothness, and elastoplastic deformability required as a metal foil for a base material of a solar cell or organic EL lighting, and has a high temperature. Even when heated and cooled, it is possible to produce a metal foil for a substrate that hardly causes peeling or cracking of an Al-containing metal layer or the like.
  • an aluminum-plated steel sheet is used as a core material, and the aluminum material shown in Tables 1 to 9 is used as a skin material on one or both sides of the core material, and the temperatures and rolling reductions shown in Tables 10 to 18 are used.
  • a clad material was manufactured by performing clad rolling. Further, the obtained clad material was cold-rolled to produce steel aluminum composite foils of Examples 1 to 222. In addition, metal foils of Comparative Examples 1 to 6 were also produced. Tables 10 to 18 show the cold rolling conditions. In addition, cold rolling was performed with the reverse rolling mill, and rolling of the finishing pass was performed using a mirror surface roll processed with a roll roughness (surface roughness Ra) of 10 nm or less as necessary.
  • the cut surfaces obtained by plane cutting along the thickness direction were observed so that the plate width direction perpendicular to the rolling direction was the observation surface.
  • the average thickness of the steel aluminum composite foil, the average thickness of the steel layer, the average thickness of the Al-containing metal layer, the chemical composition of the Al-containing metal layer, dispersed away from the steel layer contained in the Al-containing metal layer The grain size range of the Fe—Al alloy grains formed, the area fraction of the Fe—Al alloy grains dispersed away from the steel layer contained in the Al-containing metal layer with respect to the total Fe—Al alloy grains, the average of the Al layer Thickness, surface roughness Ra of Al layer, particle size range of Fe—Al alloy particles dispersed away from steel layer contained in Al layer, dispersed away from steel layer contained in Al layer.
  • the area fraction of Fe—Al alloy grains to the total Fe—Al alloy grains and the equivalent circle diameter of voids were measured.
  • the average thickness of the steel layer, Al-containing metal layer, and Al layer was determined by measuring the thicknesses of 20 arbitrarily selected locations. Further, the chemical components of the Al-containing metal layer and the Al layer were determined by performing elemental analysis using a glow discharge emission analyzer (generally also referred to as a high frequency GDS). As for the chemical components of the Al-containing metal layer, the balance other than Si shown in Tables 19 to 27 was Al and impurities. As for the chemical composition of the Al layer, the remainder other than Al shown in Tables 19 to 27 was impurities. Further, the intermetallic compounds of Fe—Al alloy grains dispersed away from the Al-containing metal layer and the steel layer contained in the Al layer are the intermetallic compounds of the Fe—Al alloy layers shown in Tables 1 to 9. It corresponded.
  • the particle size range and area fraction of Fe—Al alloy grains and the equivalent circle diameter of voids were determined from image analysis.
  • the image analysis was performed at a magnification such that the observation visual field was within 200 ⁇ m in the plate width direction, and at least 15 visual fields were observed so that the total visual field in the plate width direction was 3000 ⁇ m or more. From the observation results of 15 fields of view or more, Fe—Al alloy grains dispersed away from the steel layer contained in the Al-containing metal layer, and Fe— dispersed in the Al layer, separated from the steel layer.
  • the particle size range of the Al alloy grains was determined.
  • the area fraction of Fe—Al alloy grains dispersed away from the steel layer contained in the Al-containing metal layer with respect to the total Fe—Al alloy grains, and included in the Al layer The area fraction of the Fe—Al alloy particles dispersed away from the steel layer to the total Fe—Al alloy particles was determined.
  • the void was evaluated by observing the above-mentioned cross section with SEM (Scanning Electron Microscope) and analyzing the image of the metal structure. The observation was performed in a plurality of visual fields so that the total visual field in the plate width direction was 3000 ⁇ m or more. In all of these observation fields, if no void with a circle equivalent diameter exceeding 1 ⁇ m is visually recognized, it is judged as “None”, and if any void with a circle equivalent diameter exceeding 1 ⁇ m is visually recognized, “Yes” I decided.
  • SEM Sccanning Electron Microscope
  • the steel aluminum composite foils of Examples 1 to 222 were subjected to a corrosion resistance test, a 180-degree adhesion bending test, a defect number test after CIGS film formation, a CIGS conversion efficiency test, and a temperature cycle test.
  • the above tests were performed as necessary.
  • Tables 28 to 36 show the results of the corrosion resistance test, 180-degree bending test, defect number test after CIGS film formation, CIGS conversion efficiency test, and temperature cycle test.
  • the foil surface in which the Al layer was formed was made into the object of evaluation.
  • the steel aluminum composite foil in which Al layer is formed in both foil surfaces arbitrary one foil surface was made into the object of evaluation.
  • the corrosion resistance test was evaluated by a salt spray test (SST). When 5% NaCl water maintained at 35 ° C. is sprayed on the surface of the Al layer of the steel / aluminum composite foil, VG (Very Good) when corrosion cannot be confirmed visually for 400 hours or more, G (Good) for 300 hours or more, 120 hours or more was A (Acceptable), 100 hours or more was NG (Not Good), and less than 100 hours was B (Bad). Then, VG, G, and A were accepted, and NG and B were rejected.
  • SST salt spray test
  • the 180-degree contact bending test was performed by repeating 180-degree contact bending with a steel aluminum composite foil having an inner radius of zero and a bending angle of 180 °. And the frequency
  • the observation of peeling or cracking of the Al layer or Al-containing metal layer of the steel / aluminum composite foil was performed by observing the bending outer peripheral portion of the steel / aluminum composite foil with an optical microscope every cycle of 180-degree contact bending.
  • the number of times of processing when peeling or cracking of the Al layer or the Al-containing metal layer of the steel / aluminum composite foil was observed with an optical microscope was defined as the number of times of destruction.
  • the number of fractures was 2 times or more, it was judged that the elastoplastic deformability was acceptable, and when the number of fractures was 3 times or more, the elastoplastic deformability was judged to be particularly good.
  • the defect number test after CIGS film formation was carried out by forming a Mo electrode and a CIGS photovoltaic layer on a steel aluminum composite foil.
  • the steel aluminum composite foil was heated to 400 degreeC or more at maximum, and was cooled to room temperature.
  • fever added in a film-forming process was investigated by observing the cut surface cut
  • CIGS photoelectric conversion efficiency is less than 7% NG (Not Good), 7% to less than 8% A (Acceptable), 8% to less than 10% G (Good), 10 to less than 12% VG (Very Good) , 12% or more was evaluated as GG (Greatly Good). Then, A, G, VG, and GG were accepted and NG was rejected.
  • Temperature cycle test A Mo module and a CIGS photovoltaic layer were formed on a steel / aluminum composite foil to produce a submodule, and a temperature cycle test was performed to evaluate the reliability against temperature changes.
  • the above-mentioned submodule as a test material was subjected to 200 cycles of one cycle of atmospheric change that was held at ⁇ 40 ° C. for 15 minutes and then held at 85 ° C. for 15 minutes. Then, the power generation efficiency of the submodule was measured before and after the 200 cycle test, and the decrease in power generation efficiency was examined.
  • Example 2 In Experimental Example 2, an AlN layer, an Al 2 O 3 layer, a sol-gel layer, or a laminate layer is formed on the Al layer of the steel / aluminum composite foil produced in Experimental Example 1, and a Mo electrode and CIGS light are further formed thereon. A power generation layer was formed to produce a submodule.
  • the Mo electrode and the CIGS photovoltaic layer the steel / aluminum composite foil was heated to 400 ° C. or higher at maximum and cooled to room temperature.
  • the withstand voltage, the surface roughness Ra, and the CIGS photoelectric conversion efficiency were examined. When the withstand voltage was 500 V or more, it was judged that the withstand voltage was excellent.
  • the AlN layer was produced by heat treatment using an inert gas containing ammonia.
  • the Al 2 O 3 layer was prepared by performing anodization with a direct current in a sulfuric acid solution.
  • sol-gel layer a mixture of 10 mol of methyltriethoxysilane and 10 mol of tetraethoxysilane was used as a starting material for the preparation of sol, and 20 mol of ethanol was added to this mixture and stirred well. Thereafter, while stirring, an aqueous solution of acetic acid in which 2 mol of acetic acid and 100 mol of water were mixed was added dropwise for hydrolysis. 100 mol of ethanol was added to the sol thus obtained to obtain a final sol.
  • the sol was applied to the surface of the steel / aluminum composite foil by the dip coating method, and then dried in air at 100 ° C. for 1 minute. Thereafter, the temperature was raised from room temperature to 400 ° C. in a nitrogen atmosphere at a rate of temperature rise of 10 ° C./min, and baked at 400 ° C. for 30 minutes to obtain a sol-gel layer.
  • the nylon adhesive was dissolved in a mixed solvent of cresol and xylene in a mass ratio of 70:30 at a concentration of 15% by mass, and the dissolved material was applied to the resin. It heat-laminated by thermocompression bonding to the steel aluminum composite foil heated to 1 MPa with the pressure of 1 MPa.
  • Examples 1 to 240 are excellent in corrosion resistance, surface smoothness, and elastoplastic deformability, and peel off Al-containing metal layers and Al layers even when heated to high temperatures and cooled. And cracks were suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)
  • Coating With Molten Metal (AREA)
  • Metal Rolling (AREA)

Abstract

This steel-aluminium composite foil is provided with: a core layer provided with a steel layer, and an Al-containing metal layer formed upon the steel layer; and an Al layer stacked upon the Al-containing metal layer of the core layer. When viewed in a cross section having a cutting direction that is parallel with a thickness direction, dispersed Fe-Al alloy particles separated from the steel layer are included in the Al-containing metal layer.

Description

鋼アルミニウム複合箔Steel aluminum composite foil

 本発明は、鋼アルミニウム複合箔に関する。
 本願は、2013年2月28日に、日本に出願された特願2013-39706号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a steel aluminum composite foil.
This application claims priority on February 28, 2013 based on Japanese Patent Application No. 2013-39706 filed in Japan, the contents of which are incorporated herein by reference.

 CIGS(Copper-Indium-Gallium-Selenium)、CIS(Copper-Indium-Selenium,)、CdTe(Cadmium-Tellur)等の化合物系太陽電池、アモルファスSi等の薄膜系太陽電池、それらを複数層積層させたハイブリッド型太陽電池、または有機EL(Electroluminescence)照明には、CIGS層、CIS層、CdTe層、アモルファスSi層、または有機EL層等を強度的に支える目的で、基材と呼ばれる土台が使用される。 Compound-based solar cells such as CIGS (Copper-Indium-Gallium-Selenium), CIS (Copper-Indium-Selenium), CdTe (Cadmium-Tellur), etc., thin-film solar cells such as amorphous Si, etc. For a hybrid solar cell or organic EL (Electroluminescence) illumination, a base called a base material is used for the purpose of strongly supporting a CIGS layer, a CIS layer, a CdTe layer, an amorphous Si layer, or an organic EL layer. .

 従来、上記基材として、特許文献1に記載のように、ガラス基材が使用されることが多かった。ガラスは割れやすいので、厚みを大きくして強度を向上させる必要がある。しかし、ガラスの厚みを大きくすると、太陽電池や有機EL照明そのものが重くなる問題がある。 Conventionally, a glass substrate is often used as the substrate as described in Patent Document 1. Since glass is easy to break, it is necessary to increase the thickness to improve the strength. However, when the thickness of the glass is increased, there is a problem that the solar cell and the organic EL lighting itself become heavy.

 一方、ガラス基材に代わる基材として、割れにくくかつ厚みを小さくすることに適した金属箔を使用することが試みられている。基材としての金属箔には、耐食性、表面平滑性、及び弾塑性変形性の何れもが良好である要求がある。 On the other hand, it has been attempted to use a metal foil that is difficult to break and is suitable for reducing the thickness, as a substrate that can replace the glass substrate. The metal foil as the substrate is required to have good corrosion resistance, surface smoothness, and elastoplastic deformation.

 基材の耐食性は、基材として用いる金属箔が、20年以上の長期間に渡って屋外環境に曝されることを可能とするために必要とされる。 The corrosion resistance of the base material is required to enable the metal foil used as the base material to be exposed to the outdoor environment for a long period of 20 years or longer.

 基材の表面平滑性は、基材表面に存在する突起状欠陥によって、基材上に積層される太陽電池層や有機EL層が、物理的な損傷を受けることを避けるために必要とされる。基材表面は、突起状欠陥を有さない平滑な表面であることが望まれる。 The surface smoothness of the base material is required to prevent the solar cell layer and the organic EL layer laminated on the base material from being physically damaged by the protruding defects present on the base material surface. . The surface of the base material is desirably a smooth surface having no protruding defects.

 基材の弾塑性変形性は、基材をロール形状へ巻き取ることを可能とするために必要とされる。基材をロール形状へ巻き取ることが可能になれば、太陽電池等の製造工程を、従来のBatch処理から、硬質なガラス基材では不可能であったRoll to Roll処理のような連続処理に変更することが可能となる。その結果、太陽電池や有機EL照明の製造コストの大幅な低減が可能になる。 The elasto-plastic deformability of the base material is required to enable the base material to be wound into a roll shape. If the base material can be wound into a roll shape, the manufacturing process of solar cells and the like is changed from a conventional batch process to a continuous process such as a Roll to Roll process that was impossible with a hard glass base material. It becomes possible to change. As a result, the manufacturing cost of solar cells and organic EL lighting can be greatly reduced.

 基材用金属箔として、一般的に、耐食性に優れるステンレス鋼を用いた金属箔(ステンレス箔という)の使用が進められている。特許文献2では、ステンレス箔上に、更に有機被膜を形成した基材が使用されている。 As a metal foil for a base material, use of a metal foil (referred to as a stainless steel foil) using stainless steel having excellent corrosion resistance is generally in progress. In Patent Document 2, a base material in which an organic film is further formed on a stainless steel foil is used.

 ステンレス箔は、優れた耐食性を有しているため、基材用金属箔として用いられる。しかし、ステンレス箔は、クロムを含むため価格が高い問題がある。加えて、ステンレス箔は、ステンレス鋼自体の硬度が高いために圧延が容易ではなく、箔にするための製造コストが高い問題も有している。そのため、ガラス基材と比べると使用頻度は低い。 Stainless steel foil is used as a metal foil for a substrate because it has excellent corrosion resistance. However, stainless steel foil has a problem of high price because it contains chromium. In addition, the stainless steel foil is not easy to roll because of the high hardness of the stainless steel itself, and has a problem that the manufacturing cost for forming the foil is high. Therefore, the use frequency is low compared with a glass substrate.

 一方、普通鋼(炭素鋼)を用いた金属箔(以下、普通鋼箔という)は、ステンレス鋼よりも材料自体が安価であり、また、高い塑性変形能を有しているので、製造コストもステンレス箔に比べて大幅に低い。しかし、普通鋼箔そのものは、基材用金属箔として要求される耐食性を満足できない。基材用金属箔に要求される上記の耐食性、表面平滑性、及び弾塑性変形性を満足する普通鋼箔があれば、太陽電池や有機EL照明などの製造コストを大幅に低減することが期待できる。 On the other hand, metal foil (hereinafter referred to as ordinary steel foil) using ordinary steel (carbon steel) is less expensive than stainless steel and has a high plastic deformability. Significantly lower than stainless steel foil. However, ordinary steel foil itself cannot satisfy the corrosion resistance required as a metal foil for a substrate. With ordinary steel foil that satisfies the above-mentioned corrosion resistance, surface smoothness, and elastoplastic deformation required for metal foil for base materials, production costs for solar cells and organic EL lighting are expected to be significantly reduced. it can.

 耐食性を高めた普通鋼箔として、アルミニウムめっき層等のAl含有金属層を備えた普通鋼箔が検討されている。しかし、従来のAl含有金属層を有する普通鋼箔は、表面平滑性が十分ではない。 As a normal steel foil with improved corrosion resistance, a normal steel foil provided with an Al-containing metal layer such as an aluminum plating layer has been studied. However, the conventional steel foil having a conventional Al-containing metal layer has insufficient surface smoothness.

 また、太陽電池や有機EL照明の製造工程では、各種の目的で熱処理を行うために、CIGS層や有機EL層などの積層膜が形成された後の基材用金属箔を、数百℃程度に加熱してから冷却する場合がある。しかしながら、例えば上記のAl含有金属層を有する普通鋼箔では、このような熱処理を行うと、アルミニウムめっき層の剥離や割れが生じるおそれがある。 Moreover, in the manufacturing process of a solar cell or organic EL lighting, in order to perform heat treatment for various purposes, the metal foil for a substrate after a laminated film such as a CIGS layer or an organic EL layer is formed is about several hundred degrees Celsius. May be cooled after being heated. However, for example, in a normal steel foil having the Al-containing metal layer, the aluminum plating layer may be peeled or cracked when such heat treatment is performed.

日本国特開2006-80370号公報Japanese Unexamined Patent Publication No. 2006-80370 日本国特開2006-295035号公報Japanese Unexamined Patent Publication No. 2006-295035

 本発明は上記事情に鑑みてなされたものであり、太陽電池や有機EL照明の基材用金属箔として要求される耐食性、表面平滑性、及び弾塑性変形性を同時に満足するとともに、高温に加熱して冷却した場合にもAl含有金属層などの剥離や割れが生じにくい鋼アルミニウム複合箔を提供することを課題とする。 The present invention has been made in view of the above circumstances, and simultaneously satisfies the corrosion resistance, surface smoothness, and elastoplastic deformability required as a metal foil for a substrate for solar cells and organic EL lighting, and is heated to a high temperature. It is an object of the present invention to provide a steel / aluminum composite foil in which peeling or cracking of an Al-containing metal layer or the like hardly occurs even when cooled.

 本発明の要旨は以下の通りである。
(1)本発明の一態様にかかる鋼アルミニウム複合箔は、鋼層及び前記鋼層上に形成されたAl含有金属層を有する芯層と、前記芯層の前記Al含有金属層上に積層されたAl層と、を備え、厚さ方向と切断方向とが平行な断面で見た場合に、前記Al含有金属層中に、前記鋼層から離間して分散されたFe-Al合金粒が含まれる。
(2)上記(1)に記載の鋼アルミニウム複合箔では、前記断面で見た場合に、前記Al含有金属層中に含まれる前記鋼層から離間して分散された前記Fe-Al合金粒の面積分率が、前記断面中に含まれるFe-Al合金粒に対して、7.5面積%以上50面積%未満の範囲であってもよい。
(3)上記(1)または(2)に記載の鋼アルミニウム複合箔では、前記Al含有金属層中に含まれる前記鋼層から離間して分散された前記Fe-Al合金粒の粒径が、0.1~5μmの範囲であってもよい。
(4)上記(1)~(3)の何れか一項に記載の鋼アルミニウム複合箔では、前記断面で見た場合に、前記Al層中に、前記鋼層から離間して分散されたFe-Al合金粒が含まれてもよい。
(5)上記(4)に記載の鋼アルミニウム複合箔では、前記断面で見た場合に、前記Al層中に含まれる前記鋼層から離間して分散された前記Fe-Al合金粒の面積分率が、前記断面中に含まれるFe-Al合金粒に対して、7.5面積%以上40面積%未満の範囲であってもよい。
(6)上記(4)または(5)に記載の鋼アルミニウム複合箔では、前記Al層中に含まれる前記鋼層から離間して分散された前記Fe-Al合金粒の粒径が、0.1~5μmの範囲であってもよい。
(7)上記(1)~(6)の何れか一項に記載の鋼アルミニウム複合箔では、前記厚さ方向を法線とする前記鋼層の2つの外面を鋼層面としたとき、前記Al含有金属層が、それぞれの前記鋼層面上に配されてもよい。
(8)上記(7)に記載の鋼アルミニウム複合箔では、前記厚さ方向を法線とする前記Al含有金属層の2つの外面をAl含有金属層面としたとき、前記Al層が、それぞれの前記Al含有金属層面上に配されてもよい。
(9)上記(1)~(8)の何れか一項に記載の鋼アルミニウム複合箔では、前記断面中に含まれるボイドが、円相当径で1μm未満であってもよい。
(10)上記(1)~(9)の何れか一項に記載の鋼アルミニウム複合箔では、前記Al含有金属層の化学成分が、1~15質量%のSiを含有し、残部がAl及び不純物からなってもよい。
(11)上記(1)~(10)の何れか一項に記載の鋼アルミニウム複合箔では、前記Fe-Al合金粒が、FeAl、FeAlSi、FeAlSiから選択される少なくとも1つの金属間化合物を含んでもよい。
(12)上記(1)~(11)の何れか一項に記載の鋼アルミニウム複合箔では、前記Al層の化学成分が、99.0質量%以上のAl及び不純物からなってもよい。
(13)上記(1)~(12)の何れか一項に記載の鋼アルミニウム複合箔では、前記Al層の表面の表面粗さRaが、10~25nmであってもよい。
(14)上記(1)~(13)の何れか一項に記載の鋼アルミニウム複合箔では、前記Al層の表面に、さらに、AlN層及びAl層から選択される少なくとも1つが備えられてもよい。
(15)上記(1)~(13)の何れか一項に記載の鋼アルミニウム複合箔では、前記Al層の表面に、さらに、ゾルゲル層及びラミネート層から選択される少なくとも1つが備えられてもよい。
The gist of the present invention is as follows.
(1) A steel aluminum composite foil according to an aspect of the present invention is laminated on a steel layer and a core layer having an Al-containing metal layer formed on the steel layer, and the Al-containing metal layer of the core layer. An Al layer, and when viewed in a cross section in which the thickness direction and the cutting direction are parallel, the Al-containing metal layer includes Fe-Al alloy particles dispersed away from the steel layer. It is.
(2) In the steel / aluminum composite foil according to (1), the Fe—Al alloy particles dispersed and separated from the steel layer included in the Al-containing metal layer when viewed in the cross section. The area fraction may be in the range of 7.5 area% or more and less than 50 area% with respect to the Fe—Al alloy grains contained in the cross section.
(3) In the steel / aluminum composite foil according to the above (1) or (2), the particle diameter of the Fe—Al alloy particles dispersed and separated from the steel layer contained in the Al-containing metal layer is: It may be in the range of 0.1 to 5 μm.
(4) In the steel aluminum composite foil according to any one of the above (1) to (3), when viewed in the cross section, the Fe aluminum dispersed and separated from the steel layer in the Al layer. -Al alloy grains may be included.
(5) In the steel / aluminum composite foil according to (4), the area of the Fe—Al alloy grains dispersed and separated from the steel layer contained in the Al layer when viewed in the cross section. The rate may be in the range of 7.5 area% or more and less than 40 area% with respect to the Fe—Al alloy grains contained in the cross section.
(6) In the steel / aluminum composite foil according to the above (4) or (5), the Fe—Al alloy particles dispersed and separated from the steel layer contained in the Al layer have a particle size of 0. 0. It may be in the range of 1-5 μm.
(7) In the steel aluminum composite foil according to any one of the above (1) to (6), when the two outer surfaces of the steel layer having the thickness direction as a normal line are steel layer surfaces, the Al A contained metal layer may be disposed on each of the steel layer surfaces.
(8) In the steel / aluminum composite foil according to (7), when the two outer surfaces of the Al-containing metal layer whose normal direction is the thickness direction are Al-containing metal layer surfaces, the Al layer is You may distribute | arrange on the said Al containing metal layer surface.
(9) In the steel / aluminum composite foil according to any one of (1) to (8), a void included in the cross section may have an equivalent circle diameter of less than 1 μm.
(10) In the steel aluminum composite foil according to any one of the above (1) to (9), the chemical component of the Al-containing metal layer contains 1 to 15% by mass of Si, and the balance is Al and It may consist of impurities.
(11) In the steel aluminum composite foil according to any one of (1) to (10), the Fe—Al alloy particles are selected from at least FeAl 3 , Fe 2 Al 8 Si, and FeAl 5 Si. One intermetallic compound may be included.
(12) In the steel / aluminum composite foil according to any one of (1) to (11), the chemical component of the Al layer may be composed of 99.0% by mass or more of Al and impurities.
(13) In the steel aluminum composite foil according to any one of (1) to (12), the surface roughness Ra of the surface of the Al layer may be 10 to 25 nm.
(14) In the steel / aluminum composite foil according to any one of (1) to (13), the surface of the Al layer further includes at least one selected from an AlN layer and an Al 2 O 3 layer. May be.
(15) In the steel aluminum composite foil according to any one of (1) to (13), the surface of the Al layer may further include at least one selected from a sol-gel layer and a laminate layer. Good.

 本発明の上記態様によれば、太陽電池や有機EL照明の基材用金属箔として要求される耐食性、表面平滑性、及び弾塑性変形性を同時に満足するするとともに、高温に加熱して冷却した場合にもAl含有金属層などの剥離や割れが生じにくい鋼アルミニウム複合箔を提供できる。 According to the said aspect of this invention, while satisfy | filling simultaneously the corrosion resistance, surface smoothness, and elastic-plastic deformability which are requested | required as a metal foil for base materials of a solar cell or organic electroluminescent illumination, it heated and cooled to high temperature Even in such a case, it is possible to provide a steel / aluminum composite foil in which peeling or cracking of an Al-containing metal layer or the like hardly occurs.

本発明の一実施形態に係る鋼アルミニウム複合箔の要部を示す拡大断面模式図である。It is an expanded section schematic diagram showing the important section of the steel aluminum composite foil concerning one embodiment of the present invention. 本実施形態に係る鋼アルミニウム複合箔の変形例の要部を示す拡大断面模式図である。It is a cross-sectional schematic diagram which shows the principal part of the modification of the steel aluminum composite foil which concerns on this embodiment. 本実施形態に係る鋼アルミニウム複合箔に含まれるFe-Al合金粒とその近傍とを示す拡大断面模式図である。FIG. 3 is an enlarged schematic cross-sectional view showing Fe—Al alloy grains and their vicinity included in the steel aluminum composite foil according to the present embodiment. 本実施形態に係る鋼アルミニウム複合箔の変形例の要部を示す拡大断面模式図である。It is a cross-sectional schematic diagram which shows the principal part of the modification of the steel aluminum composite foil which concerns on this embodiment. 本実施形態に係る鋼アルミニウム複合箔の断面模式図である。It is a cross-sectional schematic diagram of the steel aluminum composite foil which concerns on this embodiment.

 太陽電池または有機EL照明に用いる基材用金属箔として、アルミニウム箔やステンレス箔の他に、アルミニウムめっき鋼箔が候補として挙げられる。このアルミニウムめっき鋼箔は、普通鋼である鋼板上に、Al含有金属層であるアルミニウムめっき層が配された金属箔である。アルミニウムめっき鋼箔は、強度に優れ、原料費や製造費などのコストにも優れることから、アルミニウム箔やステンレス箔よりも基材用金属箔として有望と言える。ただ、アルミニウムめっき鋼箔を基材として使用するためには、表面平滑性のさらなる向上や、剥離や割れのさらなる抑制などが必要となる。 As a metal foil for a substrate used for solar cells or organic EL lighting, an aluminum-plated steel foil can be cited as a candidate in addition to an aluminum foil and a stainless steel foil. This aluminum plated steel foil is a metal foil in which an aluminum plated layer that is an Al-containing metal layer is disposed on a steel plate that is plain steel. Aluminum plated steel foil is more promising as a metal foil for a substrate than aluminum foil and stainless steel foil because it is excellent in strength and cost such as raw material costs and manufacturing costs. However, in order to use the aluminum-plated steel foil as a base material, it is necessary to further improve the surface smoothness and further suppress peeling and cracking.

 一般に、アルミニウムめっき鋼箔は、アルミニウムめっき鋼板を箔状になるまで圧延することで製造される。また一般に、上記圧延前のアルミニウムめっき鋼板は、普通鋼である鋼板を溶融アルミニウムめっき浴に浸漬することで製造される。この溶融アルミニウムめっき浴には、溶融温度を低下させる目的で、Siを含有させる場合がある。この場合、アルミニウムめっき層には、Al相とSi相との共晶組織が生成される。また、溶融アルミニウムめっきを行うことによって、アルミニウムめっき層と鋼層(地鉄)との界面(境界)には、Fe-Al合金層も形成される。 Generally, an aluminum-plated steel foil is manufactured by rolling an aluminum-plated steel sheet into a foil shape. Moreover, generally the said aluminum plating steel plate before rolling is manufactured by immersing the steel plate which is plain steel in a hot dipping aluminum plating bath. This molten aluminum plating bath may contain Si for the purpose of lowering the melting temperature. In this case, a eutectic structure of an Al phase and a Si phase is generated in the aluminum plating layer. In addition, by performing hot-dip aluminum plating, an Fe—Al alloy layer is also formed at the interface (boundary) between the aluminum plating layer and the steel layer (base metal).

 アルミニウムめっき鋼箔を基材として用いる場合、アルミニウムめっき鋼箔のアルミニウムめっき層上に、太陽電池の発電層や有機EL素子を形成する。そのため、このアルミニウムめっき層の表面には高い平坦性(表面平滑性)が求められる。しかし、上述したAl相とSi相との共晶組織がアルミニウムめっき層に存在する場合、Al相とSi相との界面に起因して、アルミニウムめっき層の表面に凹凸が生じやすい。すなわち、Si等の合金成分を含むアルミニウムめっき層では、その表面平滑性の向上に限界があると言える。 When using an aluminum plated steel foil as a substrate, a power generation layer of a solar cell or an organic EL element is formed on the aluminum plated layer of the aluminum plated steel foil. Therefore, high flatness (surface smoothness) is required for the surface of the aluminum plating layer. However, when the above eutectic structure of the Al phase and the Si phase is present in the aluminum plating layer, the surface of the aluminum plating layer is likely to be uneven due to the interface between the Al phase and the Si phase. That is, it can be said that there is a limit in improving the surface smoothness of an aluminum plating layer containing an alloy component such as Si.

 また、太陽電池や有機EL照明の製造工程には、基材を比較的高温に加熱してから冷却する工程が含まれる。このような熱履歴をアルミニウムめっき鋼箔が受けると、鋼層とアルミニウムめっき層との剥離が生じることがあり、またアルミニウムめっき層で割れが起きることがある。このような剥離や割れの発生は、鋼層の熱膨張係数とアルミニウムめっき層の熱膨張係数との差が大きいことや、鋼層とアルミニウムめっき層との界面にFe-Al合金層が存在することなどに起因する。 Also, the manufacturing process of solar cells and organic EL lighting includes a process of heating the substrate to a relatively high temperature and then cooling it. When the aluminum plated steel foil receives such a heat history, the steel layer and the aluminum plated layer may be peeled off, and cracks may occur in the aluminum plated layer. The occurrence of such peeling and cracking is due to the large difference between the thermal expansion coefficient of the steel layer and the aluminum plating layer, and the presence of an Fe-Al alloy layer at the interface between the steel layer and the aluminum plating layer. Due to such things.

 このように、アルミニウムめっき鋼箔を基材として用いるためには、表面平滑性を向上させるとともに、アルミニウムめっき層の剥がれや割れを防止する必要がある。 Thus, in order to use an aluminum-plated steel foil as a base material, it is necessary to improve surface smoothness and prevent peeling and cracking of the aluminum plating layer.

 これらの課題に対して、アルミニウムめっき鋼箔の表面平滑性を高める方法として、クラッド圧延によってアルミニウムめっき鋼板上に純アルミニウム材を積層させることが検討されている。純アルミニウム材は共晶組織を有さずAl相単相であるので、クラッド圧延して得られる鋼アルミニウム複合箔は、基材として要求される表面平滑性を満足する。しかし、この鋼アルミニウム複合箔は、アルミニウムめっき層と鋼層との剥離やアルミニウムめっき層の割れなどの問題を依然として有する。 In response to these problems, as a method for improving the surface smoothness of the aluminum-plated steel foil, it has been studied to laminate a pure aluminum material on the aluminum-plated steel sheet by clad rolling. Since the pure aluminum material does not have a eutectic structure and is an Al phase single phase, the steel aluminum composite foil obtained by clad rolling satisfies the surface smoothness required as a base material. However, this steel aluminum composite foil still has problems such as peeling between the aluminum plating layer and the steel layer and cracking of the aluminum plating layer.

 本発明者らは、Al含有金属層であるアルミニウムめっき層を改質することで、アルミニウムめっき層と鋼層との剥離やアルミニウムめっき層の割れが防止可能であるかを鋭意検討した。その結果、以下に説明する鋼アルミニウム複合箔を見出した。 The present inventors diligently studied whether or not peeling of the aluminum plating layer and the steel layer and cracking of the aluminum plating layer can be prevented by modifying the aluminum plating layer which is an Al-containing metal layer. As a result, the steel aluminum composite foil described below was found.

 以下、本発明の一実施形態に係る鋼アルミニウム複合箔ついて詳細に説明する。 Hereinafter, a steel aluminum composite foil according to an embodiment of the present invention will be described in detail.

 本実施形態に係る鋼アルミニウム複合箔1は、図1に示すように、芯層2上にAl層3が積層されて構成されている。また、芯層2は、鋼層4及び鋼層4上に形成されたAl含有金属層5から構成されている。なお、図1は、厚さ方向と切断方向とが平行な断面で見た場合の鋼アルミニウム複合箔1を示しており、かつ芯層2の一部とこの芯層2上に積層されたAl層3とを拡大して示している。 The steel aluminum composite foil 1 according to the present embodiment is configured by laminating an Al layer 3 on a core layer 2 as shown in FIG. The core layer 2 is composed of a steel layer 4 and an Al-containing metal layer 5 formed on the steel layer 4. FIG. 1 shows a steel / aluminum composite foil 1 when viewed in a cross section in which the thickness direction and the cutting direction are parallel, and a part of the core layer 2 and Al laminated on the core layer 2 are shown. Layer 3 is shown enlarged.

 芯層2を構成する鋼層4は、厚さが5~200μm程度であり、普通鋼(炭素鋼)であることが好ましい。厚さがこの範囲であれば、十分な強度と優れた弾塑性変形性とを保つことができる。厚さが200μm以下であれば、鋼アルミニウム複合箔1の質量が過剰に重くなることがない。また、厚さが5μm以上であれば、十分な強度が得られる。鋼層4の厚さのより好ましい範囲は10~160μmである。 The steel layer 4 constituting the core layer 2 has a thickness of about 5 to 200 μm and is preferably plain steel (carbon steel). If thickness is this range, sufficient intensity | strength and the outstanding elastic-plastic deformability can be maintained. If thickness is 200 micrometers or less, the mass of the steel aluminum composite foil 1 will not become excessively heavy. If the thickness is 5 μm or more, sufficient strength can be obtained. A more preferable range of the thickness of the steel layer 4 is 10 to 160 μm.

 芯層2を構成するAl含有金属層5は、Al含有めっきにより形成されたものであり、より具体的には溶融アルミニウムめっきにより形成されたものである。このAl含有金属層5を鋼層4上に形成することで、鋼層4の耐食性を高めることができる。Al含有金属層5の化学成分は、平均として、1~15質量%のSiを含有し、残部がAl及び不純物からなることが好ましい。なお、本実施形態での「不純物」とは、原料または製造環境等から混入するものを指す。また、平均としての化学成分とは、複数個所で複数回の測定を行ったときの平均値を意味する。 The Al-containing metal layer 5 constituting the core layer 2 is formed by Al-containing plating, and more specifically, is formed by hot-dip aluminum plating. By forming this Al-containing metal layer 5 on the steel layer 4, the corrosion resistance of the steel layer 4 can be enhanced. The chemical component of the Al-containing metal layer 5 preferably contains 1 to 15% by mass of Si on the average, and the balance is made of Al and impurities. The “impurities” in the present embodiment refer to those mixed from raw materials or the manufacturing environment. Moreover, the chemical component as an average means an average value when a plurality of measurements are performed at a plurality of locations.

 溶融アルミニウムめっき浴にSiを含有させることで、溶融アルミニウムめっき浴の融点を好ましく低下させることができる。その結果、溶融めっきの操業をより容易にできる。さらに、溶融アルミニウムめっき浴にSiを含有させることで、鋼層4とAl含有金属層5との界面6に生成する硬質なFe-Al合金層の過大な成長を好ましく抑制することができる。Siの含有率が15質量%以下であれば、Al含有金属層5中に粗大なSiが析出することがなく、耐食性、めっき密着性を損なうおそれがない。また、Si含有率が低いとAl含有金属層5の全部のAlが鋼層4(地鉄)のFeと合金化してしまうおそれがあるので、Si含有率は、1質量%以上が好ましく、4質量%以上がより好ましい。 By containing Si in the molten aluminum plating bath, the melting point of the molten aluminum plating bath can be preferably reduced. As a result, the hot dipping operation can be facilitated. Furthermore, by containing Si in the molten aluminum plating bath, excessive growth of the hard Fe—Al alloy layer generated at the interface 6 between the steel layer 4 and the Al-containing metal layer 5 can be preferably suppressed. If the Si content is 15% by mass or less, coarse Si does not precipitate in the Al-containing metal layer 5, and there is no possibility of impairing corrosion resistance and plating adhesion. Further, if the Si content is low, the entire Al of the Al-containing metal layer 5 may be alloyed with Fe of the steel layer 4 (ground iron), so the Si content is preferably 1% by mass or more. The mass% or more is more preferable.

 Al含有金属層5の厚さは、0.3~25μmの範囲が好ましく、1~25μmの範囲がより好ましく、3~25μmの範囲が更に好ましく、8~25μmの範囲が最も好ましい。厚さが0.3μm以上であれば、好適な耐食効果が得られる。また、厚さが25μm以下であれば、Alを大量にめっきする必要がなく、生産コストを向上できる。 The thickness of the Al-containing metal layer 5 is preferably in the range of 0.3 to 25 μm, more preferably in the range of 1 to 25 μm, still more preferably in the range of 3 to 25 μm, and most preferably in the range of 8 to 25 μm. If thickness is 0.3 micrometer or more, a suitable corrosion-resistant effect will be acquired. Further, if the thickness is 25 μm or less, it is not necessary to plate a large amount of Al, and the production cost can be improved.

 図1に示すように、鋼層4とAl含有金属層5との界面6には、Fe-Al合金粒7が分散して形成される。溶融アルミニウムめっきを行う際に、鋼層4とAl含有金属層5との界面6にはFe-Al合金相が層状に形成される。Fe-Al合金粒7は、このFe-Al合金層を分散させることにより形成されたものである。Fe-Al合金粒7は、例えば、FeAl、FeAlSi、FeAlSiから選択される少なくとも1つの金属間化合物を含むことが好ましい。Fe-Al合金層は非常に硬くて脆いため、層状のままだと鋼アルミニウム複合箔1を弾塑性変形させた際の変形に追随できず、鋼層4とAl含有金属層5との剥離、及び、Al含有金属層5の割れを誘発する。しかしながら、本実施形態の鋼アルミニウム複合箔1では、Fe-Al合金粒7が分散されていることで、鋼アルミニウム複合箔1を弾塑性変形させた際に、鋼層4とAl含有金属層5との剥離、及び、Al含有金属層5の割れを防止できる。 As shown in FIG. 1, Fe—Al alloy grains 7 are dispersedly formed at the interface 6 between the steel layer 4 and the Al-containing metal layer 5. When hot-dip aluminum plating is performed, an Fe—Al alloy phase is formed in layers at the interface 6 between the steel layer 4 and the Al-containing metal layer 5. The Fe—Al alloy grains 7 are formed by dispersing this Fe—Al alloy layer. The Fe—Al alloy grain 7 preferably contains at least one intermetallic compound selected from, for example, FeAl 3 , Fe 2 Al 8 Si, and FeAl 5 Si. Since the Fe—Al alloy layer is very hard and brittle, if it remains in a layered state, it cannot follow the deformation when the steel-aluminum composite foil 1 is elastically plastically deformed, and the steel layer 4 and the Al-containing metal layer 5 are peeled off. And the crack of the Al-containing metal layer 5 is induced. However, in the steel / aluminum composite foil 1 of the present embodiment, the Fe—Al alloy grains 7 are dispersed, so that the steel layer 4 and the Al-containing metal layer 5 are formed when the steel / aluminum composite foil 1 is elastically plastically deformed. And peeling of the Al-containing metal layer 5 can be prevented.

 鋼層4とAl含有金属層5との界面6に形成されるFe-Al合金層は、化学成分が、平均として、Fe:10~35原子%、Al:50~80原子%、Si:0.5~20原子%、かつFeとAlとSiとの合計が95原子%以上となることが好ましい。このFe-Al合金層から形成されるFe-Al合金粒7の化学成分も、平均として、Fe:10~35原子%、Al:50~80原子%、Si:0.5~20原子%、かつFeとAlとSiとの合計が95原子%以上となることが好ましい。ただ、Fe-Al合金粒7は、粒ごとに異なる化学成分を有する場合がある。Fe-Al合金粒7の化学成分は、平均として、Fe:15~25原子%、Al:60~75原子%、Si:1~15原子%であることがより好ましい。 The Fe—Al alloy layer formed at the interface 6 between the steel layer 4 and the Al-containing metal layer 5 has an average chemical composition of Fe: 10 to 35 atomic%, Al: 50 to 80 atomic%, Si: 0 It is preferable that the total amount of Fe, Al, and Si is 95 atomic% or more. The chemical components of the Fe—Al alloy grains 7 formed from this Fe—Al alloy layer are, on average, Fe: 10 to 35 atomic%, Al: 50 to 80 atomic%, Si: 0.5 to 20 atomic%, And it is preferable that the sum total of Fe, Al, and Si becomes 95 atomic% or more. However, the Fe—Al alloy grains 7 may have different chemical components for each grain. The chemical components of the Fe—Al alloy grains 7 are more preferably, on average, Fe: 15 to 25 atomic%, Al: 60 to 75 atomic%, and Si: 1 to 15 atomic%.

 Fe-Al合金粒7には、鋼層4に接した状態で鋼層4とAl含有金属層5との界面6に分散されたFe-Al合金粒7aと、鋼層4から離間した状態でAl含有金属層5中に分散されたFe-Al合金粒7bとが含まれる。このうち、鋼層4から離間した状態でAl含有金属層5中に分散されたFe-Al合金粒7bが存在することで、弾塑性変形性を向上できる。 The Fe—Al alloy grains 7 are in contact with the steel layer 4 and dispersed in the interface 6 between the steel layer 4 and the Al-containing metal layer 5, while being separated from the steel layer 4. Fe—Al alloy grains 7b dispersed in the Al-containing metal layer 5 are included. Among these, the presence of the Fe—Al alloy particles 7 b dispersed in the Al-containing metal layer 5 in a state of being separated from the steel layer 4 can improve the elastoplastic deformability.

 ここで、鋼層4の熱膨張係数(例えば10.5~12.2×10-6/K)と、Al含有金属層5をなすAlの熱膨張係数(例えば22.3×10-6/K)との差は大きい。しかし、Fe-Al合金粒7が鋼層4から離間してAl含有金属層5中に分散することで、Al含有金属層5に対する熱膨張のピン留め効果が発揮される。その結果、本実施形態の鋼アルミニウム複合箔1が、太陽電池や有機EL照明等の製造プロセス中で数百℃に加熱され、その後室温近くまで冷却される熱履歴を受けたとしても、鋼層4とAl含有金属層5との剥離、及びAl含有金属層5の割れが防止される。この効果は、Al含有金属層5の熱膨張係数がFe-Al合金粒7bによって見かけ上で低下して、鋼層4の熱膨張係数とAl含有金属層5の熱膨張係数との差が小さくなることに起因すると推測される。なお、Fe-Al合金粒7bをAl含有金属層5中に分散させるには、クラッド圧延後の冷間圧延条件を制御すればよい。 Here, the thermal expansion coefficient of the steel layer 4 (for example, 10.5 to 12.2 × 10 −6 / K) and the thermal expansion coefficient of Al forming the Al-containing metal layer 5 (for example, 22.3 × 10 −6 / K). The difference from K) is large. However, since the Fe—Al alloy grains 7 are separated from the steel layer 4 and dispersed in the Al-containing metal layer 5, a thermal expansion pinning effect on the Al-containing metal layer 5 is exhibited. As a result, even if the steel-aluminum composite foil 1 of the present embodiment is subjected to a heat history that is heated to several hundred degrees Celsius during manufacturing processes such as solar cells and organic EL lighting, and then cooled to near room temperature, the steel layer 4 and the Al-containing metal layer 5 are prevented from peeling off and the Al-containing metal layer 5 is prevented from cracking. This effect is that the thermal expansion coefficient of the Al-containing metal layer 5 is apparently lowered by the Fe—Al alloy grains 7b, and the difference between the thermal expansion coefficient of the steel layer 4 and the thermal expansion coefficient of the Al-containing metal layer 5 is small. It is presumed to be caused by In order to disperse the Fe—Al alloy grains 7b in the Al-containing metal layer 5, the cold rolling conditions after clad rolling may be controlled.

 厚さ方向と切断方向とが平行な断面で見た場合に、Al含有金属層5中に含まれる鋼層4から離間して分散されたFe-Al合金粒7bの面積分率は、上記断面中に含まれるFe-Al合金粒7に対して、7.5面積%以上50面積%未満の範囲が好ましい。このFe-Al合金粒7bの面積分率の下限は、10面積%がより好ましく、15面積%が更に好ましい。また、このFe-Al合金粒7bの面積分率の上限は、40面積%がより好ましく、35面積%が更に好ましい。Fe-Al合金粒7bの面積分率が7.5面積%以上であれば、鋼層4とAl含有金属層5との剥離、及び、Al含有金属層5の割れを効果的に防止できる。Fe-Al合金粒7bの面積分率は大きいほど好ましいが、50面積%以上にするのは製造工程の制約上困難なので、50面積%未満を上限とする。なお、Fe-Al合金粒7が鋼層4から離間しているか否かは、鋼層4とAl含有金属層5との上記断面を観察して判断すればよい。 When viewed in a cross section in which the thickness direction and the cutting direction are parallel, the area fraction of the Fe—Al alloy particles 7b dispersed and separated from the steel layer 4 contained in the Al-containing metal layer 5 is the above cross section. A range of 7.5 area% or more and less than 50 area% is preferable with respect to the Fe—Al alloy grains 7 contained therein. The lower limit of the area fraction of the Fe—Al alloy grains 7b is more preferably 10 area%, and further preferably 15 area%. Further, the upper limit of the area fraction of the Fe—Al alloy particles 7b is more preferably 40 area%, and further preferably 35 area%. If the area fraction of the Fe—Al alloy grains 7b is 7.5 area% or more, peeling between the steel layer 4 and the Al-containing metal layer 5 and cracking of the Al-containing metal layer 5 can be effectively prevented. The area fraction of the Fe—Al alloy grain 7b is preferably as large as possible, but it is difficult to make it 50 area% or more due to restrictions on the manufacturing process, so the upper limit is less than 50 area%. Whether the Fe—Al alloy particles 7 are separated from the steel layer 4 may be determined by observing the cross section of the steel layer 4 and the Al-containing metal layer 5.

 Al含有金属層5中に含まれる鋼層4から離間して分散されたFe-Al合金粒7bの粒径は、0.1~5μmの範囲であることが好ましい。このFe-Al合金粒7bの粒径の下限は、0.2μmがより好ましい。また、このFe-Al合金粒7bの粒径の上限は、4μmがより好ましく、3μmが更に好ましい。Fe-Al合金粒7bの粒径が5μmを超えると、鋼アルミニウム複合箔1が変形された際にAl含有金属層5が割れるおそれがある。また、Fe-Al合金粒7bの粒径が0.1μm未満であると、Fe-Al合金粒7bがAl含有金属層5中に分散したとしても、熱膨張のピン留め効果が十分に発揮されないおそれがある。 The particle diameter of the Fe—Al alloy particles 7b dispersed away from the steel layer 4 contained in the Al-containing metal layer 5 is preferably in the range of 0.1 to 5 μm. The lower limit of the particle size of the Fe—Al alloy particles 7b is more preferably 0.2 μm. Further, the upper limit of the particle diameter of the Fe—Al alloy particles 7b is more preferably 4 μm, and further preferably 3 μm. If the particle diameter of the Fe—Al alloy particles 7b exceeds 5 μm, the Al-containing metal layer 5 may crack when the steel / aluminum composite foil 1 is deformed. Further, when the particle diameter of the Fe—Al alloy particles 7b is less than 0.1 μm, even if the Fe—Al alloy particles 7b are dispersed in the Al-containing metal layer 5, the pinning effect of thermal expansion is not sufficiently exhibited. There is a fear.

 鋼層4とAl含有金属層5との界面6は、平坦ではなく凹凸面となっていることが好ましい。この凹凸状の界面6は、クラッド圧延後の冷間圧延によってFe-Al合金層がFe-Al合金粒7として分散された際に、Fe-Al合金粒7が鋼層4及びAl含有金属層5にそれぞれ食い込むことで形成されると推測される。このように、鋼層4とAl含有金属層5との界面6が凹凸面となることで、高温下で鋼層4とAl含有金属層5とが熱膨張した際にアンカー効果が発揮され、鋼層4とAl含有金属層5との剥離をより効果的に防止できる。 The interface 6 between the steel layer 4 and the Al-containing metal layer 5 is preferably not a flat surface but an uneven surface. The uneven interface 6 is formed when the Fe—Al alloy layer 7 is dispersed as Fe—Al alloy grains 7 by cold rolling after clad rolling, so that the Fe—Al alloy grains 7 become the steel layer 4 and the Al-containing metal layer. It is estimated that it is formed by biting into 5 respectively. Thus, when the interface 6 between the steel layer 4 and the Al-containing metal layer 5 is an uneven surface, the anchor effect is exhibited when the steel layer 4 and the Al-containing metal layer 5 are thermally expanded at a high temperature, The peeling between the steel layer 4 and the Al-containing metal layer 5 can be prevented more effectively.

 また、Al層3は、芯層2のAl含有金属層5上に積層されている。このAl層3は、芯材(アルミニウムめっき鋼板)とAl材とをクラッド圧延し、更に冷間圧延することで形成される。Al層3の厚さは、1~140μmの範囲が好ましい。Al層3の厚さの下限は、3μmがより好ましく、5μmが更に好ましい。Al層3の厚さの上限は、50μmがより好ましく、30μmが更に好ましい。Al層3の厚さが1μm以上であれば、Al層3の表面3aを平坦化するのに好ましい厚さとなる。また、この厚さが140μm以下であれば、Al層3の質量が増大することがなく、鋼アルミニウム複合箔1の軽量化が図られるので好ましい。 The Al layer 3 is laminated on the Al-containing metal layer 5 of the core layer 2. The Al layer 3 is formed by clad rolling a core material (aluminum-plated steel plate) and an Al material, and further cold rolling. The thickness of the Al layer 3 is preferably in the range of 1 to 140 μm. The lower limit of the thickness of the Al layer 3 is more preferably 3 μm and even more preferably 5 μm. The upper limit of the thickness of the Al layer 3 is more preferably 50 μm and even more preferably 30 μm. If the thickness of the Al layer 3 is 1 μm or more, it becomes a preferable thickness for flattening the surface 3 a of the Al layer 3. Moreover, if this thickness is 140 micrometers or less, since the mass of the Al layer 3 does not increase and the weight reduction of the steel aluminum composite foil 1 is achieved, it is preferable.

 Al層3は、化学成分が、平均として、99.0質量%以上のAl及び不純物からなることが好ましい。また、Al層3は、99.9質量%以上のAlを含むことがより好ましい。これにより、Al層3中に共晶組織が生成することがなく、Al層3の表面3aの表面平滑性を好ましく高めることができる。 The Al layer 3 preferably has an average chemical composition of 99.0% by mass or more of Al and impurities. The Al layer 3 more preferably contains 99.9% by mass or more of Al. Thereby, a eutectic structure is not generated in the Al layer 3, and the surface smoothness of the surface 3a of the Al layer 3 can be preferably increased.

 Al層3の表面3aは、その表面粗さRaが600nm以下であるとき許容できる表面平滑性となるが、Al層3の表面3aの表面粗さRaは、10~25nmの範囲が好ましく、10~20nmの範囲がより好ましい。Al層3の表面粗さRaが25nm以下であれば、太陽電池や有機EL照明の基材として要求される表面平滑性を好ましく満足できる。Al層3の表面粗さRaは小さければ小さいほどよいが、表面粗さRaを10nm未満にすることは、平坦化プロセスのコスト増となる。なお、Al層3の表面粗さRaの制御は、クラッド圧延後の冷間圧延工程で実施する。 The surface 3a of the Al layer 3 has acceptable surface smoothness when the surface roughness Ra is 600 nm or less, but the surface roughness Ra of the surface 3a of the Al layer 3 is preferably in the range of 10 to 25 nm. A range of ˜20 nm is more preferable. If the surface roughness Ra of the Al layer 3 is 25 nm or less, the surface smoothness required as a substrate for solar cells and organic EL lighting can be preferably satisfied. The smaller the surface roughness Ra of the Al layer 3 is, the better. However, when the surface roughness Ra is less than 10 nm, the cost of the planarization process increases. The surface roughness Ra of the Al layer 3 is controlled in the cold rolling process after clad rolling.

 図2は、本実施形態に係る鋼アルミニウム複合箔1の変形例の要部を示す拡大断面模式図である。なお、この図2は、図1と同様に、厚さ方向と切断方向とが平行な断面で見た場合の鋼アルミニウム複合箔1を示しており、かつ芯層2の一部とこの芯層2上に積層されたAl層3とを拡大して示している。この図2に示すように、本実施形態に係る鋼アルミニウム複合箔1では、Al層3中に、鋼層4から離間して分散されたFe-Al合金粒7cが含まれてもよい。 FIG. 2 is an enlarged schematic cross-sectional view showing a main part of a modified example of the steel aluminum composite foil 1 according to the present embodiment. 2 shows a steel / aluminum composite foil 1 when viewed in a cross section in which the thickness direction and the cutting direction are parallel, as in FIG. 1, and a part of the core layer 2 and the core layer are shown. 2 shows an enlarged view of the Al layer 3 stacked on the substrate 2. As shown in FIG. 2, in the steel / aluminum composite foil 1 according to this embodiment, the Al—layer 3 may include Fe—Al alloy grains 7 c dispersed away from the steel layer 4.

 鋼層4から離間して分散されたFe-Al合金粒7cがAl層3中に含まれるとき、Al層3に対する熱膨張のピン留め効果が好ましく発揮される。その結果、鋼アルミニウム複合箔1が、数百℃に加熱され、その後室温近くまで冷却される熱履歴を受けたとしても、Al層3とAl含有金属層5との剥離、Al含有金属層5と鋼層4との剥離、Al層3の割れ、及びAl含有金属層5の割れが好ましく防止される。この効果は、Al層3の熱膨張係数がFe-Al合金粒7cによって見かけ上で低下して、鋼層4の熱膨張係数とAl層3の熱膨張係数との差、及びAl含有金属層5の熱膨張係数とAl層3の熱膨張係数との差が小さくなることに起因すると推測される。なお、Fe-Al合金粒7cをAl層3中に分散させるには、Al含有金属層5の厚さが、Fe-Al合金粒7の粒径範囲の最大値を2倍した値よりも小さくなるように、素材となる鋼板のめっき付着量(Al含有金属層5の厚さ)と、Fe-Al合金層の厚さとを制御すれば良い。このようにすれば、鋼層4から離間して分散されたFe-Al合金粒7の一部が、冷間圧延工程で、Al含有金属層5を経てさらにAl層3中へと分散する。 When Fe—Al alloy particles 7c dispersed away from the steel layer 4 are contained in the Al layer 3, the pinning effect of thermal expansion on the Al layer 3 is preferably exhibited. As a result, even if the steel-aluminum composite foil 1 is subjected to a heat history that is heated to several hundred degrees Celsius and then cooled to near room temperature, peeling between the Al layer 3 and the Al-containing metal layer 5, the Al-containing metal layer 5 And peeling of the steel layer 4, cracking of the Al layer 3, and cracking of the Al-containing metal layer 5 are preferably prevented. This effect is that the thermal expansion coefficient of the Al layer 3 is apparently lowered by the Fe—Al alloy grains 7c, the difference between the thermal expansion coefficient of the steel layer 4 and the thermal expansion coefficient of the Al layer 3, and the Al-containing metal layer. It is presumed that the difference between the thermal expansion coefficient of 5 and the thermal expansion coefficient of the Al layer 3 is reduced. In order to disperse the Fe—Al alloy grains 7 c in the Al layer 3, the thickness of the Al-containing metal layer 5 is smaller than a value obtained by doubling the maximum value of the grain size range of the Fe—Al alloy grains 7. Thus, it is only necessary to control the coating amount of the steel sheet as the material (the thickness of the Al-containing metal layer 5) and the thickness of the Fe—Al alloy layer. In this way, a part of the Fe—Al alloy particles 7 dispersed away from the steel layer 4 is further dispersed into the Al layer 3 through the Al-containing metal layer 5 in the cold rolling process.

 厚さ方向と切断方向とが平行な断面で見た場合に、Al層3中に含まれる鋼層4から離間して分散されたFe-Al合金粒7cの面積分率は、上記断面中に含まれるFe-Al合金粒7に対して、7.5面積%以上40面積%未満の範囲が好ましい。このFe-Al合金粒7cの面積分率の下限は、10面積%がより好ましく、15面積%が更に好ましい。また、このFe-Al合金粒7cの面積分率の上限は、30面積%がより好ましく、25面積%が更に好ましい。Fe-Al合金粒7cの面積分率が7.5面積%以上であれば、Al層3とAl含有金属層5との剥離、Al含有金属層5と鋼層4との剥離、Al層3の割れ、及びAl含有金属層5の割れを好ましく防止できる。Fe-Al合金粒7cの面積分率は大きいほど好ましいが、40面積%以上にするのは製造工程の制約上困難なので、40面積%未満を上限とする。 When viewed in a cross section in which the thickness direction and the cutting direction are parallel, the area fraction of the Fe—Al alloy particles 7c dispersed away from the steel layer 4 included in the Al layer 3 is A range of 7.5 area% or more and less than 40 area% with respect to the Fe—Al alloy grains 7 contained is preferable. The lower limit of the area fraction of the Fe—Al alloy grains 7c is more preferably 10 area%, and further preferably 15 area%. Further, the upper limit of the area fraction of the Fe—Al alloy particles 7c is more preferably 30 area%, further preferably 25 area%. If the area fraction of the Fe—Al alloy grain 7c is 7.5 area% or more, peeling between the Al layer 3 and the Al-containing metal layer 5, peeling between the Al-containing metal layer 5 and the steel layer 4, and Al layer 3 And cracking of the Al-containing metal layer 5 can be preferably prevented. The area fraction of the Fe—Al alloy grain 7c is preferably as large as possible, but it is difficult to make it 40% by area or more because of restrictions on the manufacturing process.

 Al層3中に含まれる鋼層4から離間して分散されたFe-Al合金粒7cの粒径は、0,1~5μmの範囲であることが好ましい。このFe-Al合金粒7cの粒径の下限は、0.2μmがより好ましく、0.3μmが更に好ましい。また、このFe-Al合金粒7cの粒径の上限は、4μmがより好ましく、3.5μmが更に好ましい。Fe-Al合金粒7cの粒径が5μmを超えると、鋼アルミニウム複合箔1が変形された際にAl層3またはAl含有金属層5が割れるおそれがある。また、Fe-Al合金粒7cの粒径が0.1μm未満であると、Fe-Al合金粒7cがAl層3中に分散したとしても、熱膨張のピン留め効果が十分に発揮されないおそれがある。なお、Fe-Al合金粒7cの粒径は、Al層3の厚さよりも必ず小さくなる。 The particle diameter of the Fe—Al alloy particles 7c dispersed away from the steel layer 4 included in the Al layer 3 is preferably in the range of 0.1 to 5 μm. The lower limit of the particle size of the Fe—Al alloy particles 7c is more preferably 0.2 μm, and still more preferably 0.3 μm. Further, the upper limit of the particle diameter of the Fe—Al alloy particles 7c is more preferably 4 μm, and further preferably 3.5 μm. If the particle diameter of the Fe—Al alloy particles 7c exceeds 5 μm, the Al layer 3 or the Al-containing metal layer 5 may break when the steel / aluminum composite foil 1 is deformed. Further, if the particle diameter of the Fe—Al alloy particles 7c is less than 0.1 μm, even if the Fe—Al alloy particles 7c are dispersed in the Al layer 3, the pinning effect of thermal expansion may not be sufficiently exhibited. is there. Note that the grain size of the Fe—Al alloy grains 7 c is always smaller than the thickness of the Al layer 3.

 図3は、本実施形態に係る鋼アルミニウム複合箔1に含まれるFe-Al合金粒7とその近傍とを示す拡大断面模式図である。この図3は、図1及び図2と同様に、厚さ方向と切断方向とが平行な断面で見た場合の鋼アルミニウム複合箔1を示している。この図3に示すように、本実施形態に係る鋼アルミニウム複合箔1には、ボイド9が含まれる場合がある。 FIG. 3 is an enlarged schematic cross-sectional view showing Fe—Al alloy grains 7 included in the steel aluminum composite foil 1 according to the present embodiment and the vicinity thereof. FIG. 3 shows the steel / aluminum composite foil 1 when viewed in a cross section in which the thickness direction and the cutting direction are parallel, as in FIGS. 1 and 2. As shown in FIG. 3, the steel aluminum composite foil 1 according to the present embodiment may include voids 9.

 このボイド9は、鋼アルミニウム複合箔1が数百℃に加熱された後に室温近くまで冷却される熱履歴を受けたときに、鋼層4とAl含有金属層5との剥離、Al含有金属層5とAl層3との剥離、Al含有金属層5の割れ、またはAl層3の割れなどの原因となる可能性がある。そのため、鋼アルミニウム複合箔1の電気抵抗が高まり、光電変換効率が低下し、耐温度サイクル性が低下するおそれがある。よって、このボイド9のサイズは小さいことが好ましい。具体的には、厚さ方向と切断方向とが平行な断面で見た場合に、断面中に含まれるボイド9が、円相当径(円相当直径)で1μm未満であることが好ましい。ボイド9の円相当径が1μm未満であれば、鋼層4とAl含有金属層5との剥離、Al含有金属層5とAl層3との剥離、Al含有金属層5の割れ、またはAl層3の割れなどを引き起こす可能性が小さい。なお、ボイド9の円相当径を制御するには、クラッド圧延工程前のアルミニウムめっき層(Al含有金属層)及びAl材の合計の厚さと、クラッド圧延及び冷間圧延での合計の圧下率とを制御すればよい。 When the void 9 is subjected to a thermal history in which the steel aluminum composite foil 1 is heated to several hundred degrees Celsius and then cooled to near room temperature, the steel layer 4 and the Al-containing metal layer 5 are peeled off, and the Al-containing metal layer. 5 and the Al layer 3 may be peeled off, the Al-containing metal layer 5 may be cracked, or the Al layer 3 may be cracked. Therefore, the electrical resistance of the steel / aluminum composite foil 1 is increased, the photoelectric conversion efficiency is lowered, and the temperature cycle resistance may be lowered. Therefore, it is preferable that the size of the void 9 is small. Specifically, when viewed in a cross section in which the thickness direction and the cutting direction are parallel, it is preferable that the void 9 included in the cross section has an equivalent circle diameter (equivalent circle diameter) of less than 1 μm. If the equivalent circle diameter of the void 9 is less than 1 μm, peeling between the steel layer 4 and the Al-containing metal layer 5, peeling between the Al-containing metal layer 5 and the Al layer 3, cracking of the Al-containing metal layer 5, or Al layer 3 is less likely to cause cracking. In order to control the equivalent circle diameter of the void 9, the total thickness of the aluminum plating layer (Al-containing metal layer) and the Al material before the clad rolling process, and the total reduction ratio in the clad rolling and cold rolling Can be controlled.

 図4は、本実施形態に係る鋼アルミニウム複合箔1の変形例の要部を示す拡大断面模式図である。この図4に示すように、本実施形態の鋼アルミニウム複合箔1のAl層3上に、各種の被覆層8を形成してもよい。また、被覆層8は、その表面粗さRaが600nm以下であるとき許容できる表面平滑性となるが、これらの被覆層8の表面粗さRaは、これらの被覆層8を形成しない場合のAl層3の表面3aと同様に、10~25nmの範囲が好ましく、10~20nmの範囲がより好ましい。 FIG. 4 is an enlarged schematic cross-sectional view showing a main part of a modified example of the steel aluminum composite foil 1 according to the present embodiment. As shown in FIG. 4, various coating layers 8 may be formed on the Al layer 3 of the steel aluminum composite foil 1 of the present embodiment. Further, the coating layer 8 has acceptable surface smoothness when the surface roughness Ra is 600 nm or less, but the surface roughness Ra of these coating layers 8 is Al in the case where these coating layers 8 are not formed. Similar to the surface 3a of the layer 3, the range of 10 to 25 nm is preferable, and the range of 10 to 20 nm is more preferable.

 被覆層8として例えば、Al層3の上に、厚さ0.01~4μmのAlN層または厚さ0.05~50μmのAl層を形成することが好ましい。AlN層の厚さが0.01μm以上、またはAl層の厚さが0.05μm以上のとき、Al層3の表面を絶縁性にすることができ、太陽電池や有機EL照明の絶縁性下地膜として機能させることができるので好ましい。厚さ4μm超のAlN層や厚さ50μm超のAl層を生成することは、生産コストが上昇するので、好ましくない。 For example, an AlN layer having a thickness of 0.01 to 4 μm or an Al 2 O 3 layer having a thickness of 0.05 to 50 μm is preferably formed on the Al layer 3 as the covering layer 8. When the thickness of the AlN layer is 0.01 μm or more, or the thickness of the Al 2 O 3 layer is 0.05 μm or more, the surface of the Al layer 3 can be made insulative, and insulation of solar cells and organic EL lighting It is preferable because it can function as a conductive underlayer. Generating an AlN layer with a thickness of more than 4 μm or an Al 2 O 3 layer with a thickness of more than 50 μm is not preferable because production costs increase.

 また、AlN層やAl層に代えて、Al層3の上に、厚さ0.001~8μmのゾルゲル層を形成してもよい。ゾルゲル層は、三次元網目構造状に発達したシロキサン結合を主骨格とした無機骨格を有し、この骨格の架橋酸素の少なくとも1個が有機基および/または水素原子で置換されたゾルゲル層である。ゾルゲル層を有することで、AlN層及びAl層と同様の効果が得られる。より好ましくは、0.1μm以上の厚さとすると上述の効果がより増すのでよい。ゾルゲル層の厚さが0.001μm未満では、上述の効果が得られない。厚さが8μm超では、生産コストが上昇する。 Further, instead of the AlN layer or the Al 2 O 3 layer, a sol-gel layer having a thickness of 0.001 to 8 μm may be formed on the Al layer 3. The sol-gel layer is an sol-gel layer having an inorganic skeleton having a siloxane bond developed in a three-dimensional network structure as a main skeleton, and at least one of bridging oxygens of the skeleton is substituted with an organic group and / or a hydrogen atom. . By having the sol-gel layer, the same effect as the AlN layer and the Al 2 O 3 layer can be obtained. More preferably, when the thickness is 0.1 μm or more, the above-described effect may be further increased. When the thickness of the sol-gel layer is less than 0.001 μm, the above effect cannot be obtained. If the thickness exceeds 8 μm, the production cost increases.

 また、AlN層やAl層に代えて、Al層3の上に、厚さ1~50μmのラミネート層を形成してもよい。ラミネート層は、ポリオレフィン、ポリエステル、ポリアミド、ポリイミドから選ばれるプラスティックフィルムなどから構成されるラミネート層を例示できる。ラミネート層を有することで、AlN層及びAl層と同様の効果を得ることができる。ラミネート層の厚さが1μm未満では、上述の効果が得られない。厚さが50μm超では、生産コストが上昇する。 Further, instead of the AlN layer or the Al 2 O 3 layer, a laminate layer having a thickness of 1 to 50 μm may be formed on the Al layer 3. Examples of the laminate layer include a laminate layer made of a plastic film selected from polyolefin, polyester, polyamide, and polyimide. By having a laminate layer, it is possible to obtain the same effect as the AlN layer and the Al 2 O 3 layer. If the thickness of the laminate layer is less than 1 μm, the above effect cannot be obtained. If the thickness exceeds 50 μm, the production cost increases.

 上記の構造とすることで、例えばCIGSの太陽電池セルが直列に接続されたモジュール回路で、500V以上の耐電圧が確保でき、絶縁破壊を回避できる。また、絶縁破壊に至らずとも、漏れ電流が存在すると太陽電池モジュールの光電変換効率低下の要因となるが、上記の構造とすることでそのような漏れを防止できる。 With the above structure, for example, with a module circuit in which CIGS solar cells are connected in series, a withstand voltage of 500 V or more can be secured, and dielectric breakdown can be avoided. Even if dielectric breakdown does not occur, the presence of leakage current causes a decrease in photoelectric conversion efficiency of the solar cell module, but such leakage can be prevented by adopting the above structure.

 また、本実施形態の鋼アルミニウム複合箔1上に形成する光電変換層としては、CIGS、CIS、CdTe等の化合物系太陽電池、アモルファスSi等の薄膜系太陽電池、それらを複数層積層させたハイブリッド型太陽電池が使用できる。また、鋼アルミニウム複合箔1上には有機EL照明回路を形成することもできる。特に、上記のCIGS、CISの主成分は特に制限されず、少なくとも1種のカルコパイライト構造の化合物半導体であることが好ましく、また、光電変換層の主成分は、Ib族元素とIIIb族元素とVIb族元素とを含む少なくとも1種の化合物半導体であることが好ましい。さらに、光吸収率が高く、高い光電変換効率が得られることから、上記光電変換層の主成分は、Cu及びAg等より選択された少なくとも1種のIb族元素と、Al、Ga及びIn等より選択された少なくとも1種のIIIb族元素と、S、Se、及びTe等から選択された少なくとも1種のVIb族元素とを含む少なくとも1種の化合物半導体であることが好ましい。具体的には、上記化合物半導体としては、CuAlS、CuGaS、CuInS、CuAlSe、CuGaSe、CuInSe(CIS)、AgAlS、AgGaS、AgInS、AgAlSe、AgGaSe、AgInSe、AgAlTe、AgGaTe、AgInTe、Cu(In1-xGa)Se(CIGS)、Cu(In1-xAl)Se、Cu(In1-xGa)(S,Se)、Ag(In1-xGa)Se及びAg(In1-xGa)(S,Se)等が使用できる。 Moreover, as a photoelectric converting layer formed on the steel aluminum composite foil 1 of this embodiment, compound type solar cells, such as CIGS, CIS, and CdTe, thin film type solar cells, such as amorphous Si, and the hybrid which laminated | stacked two or more layers thereof Type solar cells can be used. An organic EL lighting circuit can also be formed on the steel aluminum composite foil 1. In particular, the main components of the above-described CIGS and CIS are not particularly limited, and are preferably at least one compound semiconductor having a chalcopyrite structure. The main components of the photoelectric conversion layer are the group Ib element and the group IIIb element. It is preferably at least one compound semiconductor containing a VIb group element. Furthermore, since the light absorptance is high and high photoelectric conversion efficiency is obtained, the main component of the photoelectric conversion layer is at least one kind of Ib group element selected from Cu and Ag, Al, Ga, In, and the like. It is preferable that the semiconductor is at least one compound semiconductor containing at least one group IIIb element selected from more and at least one group VIb element selected from S, Se, Te and the like. Specifically, examples of the compound semiconductor include CuAlS 2 , CuGaS 2 , CuInS 2 , CuAlSe 2 , CuGaSe 2 , CuInSe 2 (CIS), AgAlS 2 , AgGaS 2 , AgInS 2 , AgAlSe 2 , AgGaSe 2 , AgInSe 2 , AgAlTe 2 , AgGaTe 2 , AgInTe 2 , Cu (In 1-x Ga x ) Se 2 (CIGS), Cu (In 1-x Al x ) Se 2 , Cu (In 1-x Ga x ) (S, Se) 2, Ag (In 1-x Ga x) Se 2 and Ag (In 1-x Ga x ) (S, Se) 2 or the like can be used.

 本実施形態に係る鋼アルミニウム複合箔1は、太陽電池の発電層や有機EL素子を形成する側である一方の箔面に、Al含有金属層5及びAl層3を有していればよい。ただ、本実施形態に係る鋼アルミニウム複合箔1は、太陽電池の発電層や有機EL素子を形成する側である一方の箔面と反対の箔面である他方の箔面にも、Al含有金属層5を有してもよい。または、本実施形態に係る鋼アルミニウム複合箔1は、太陽電池の発電層や有機EL素子を形成する側である一方の箔面と反対の箔面である他方の箔面にも、Al含有金属層5及びAl層3を有してもよい。 The steel / aluminum composite foil 1 according to the present embodiment only needs to have the Al-containing metal layer 5 and the Al layer 3 on one foil surface on the side where the power generation layer and the organic EL element of the solar cell are formed. However, the steel-aluminum composite foil 1 according to the present embodiment is also provided with an Al-containing metal on the other foil surface, which is the foil surface opposite to the one foil surface on the side where the power generation layer and the organic EL element of the solar cell are formed. It may have a layer 5. Alternatively, the steel / aluminum composite foil 1 according to the present embodiment is provided with an Al-containing metal also on the other foil surface, which is the opposite foil surface to the one on which the power generation layer and the organic EL element of the solar cell are formed. The layer 5 and the Al layer 3 may be included.

 図5は、本実施形態に係る鋼アルミニウム複合箔の断面模式図であり、本実施形態に係る鋼アルミニウム複合箔1が、太陽電池の発電層や有機EL素子を形成する側である一方の箔面とその他方の箔面とに、Al含有金属層5及びAl層3を有する場合を例示している。図5に示すように、厚さ方向と切断方向とが平行な断面で見た場合に、厚さ方向を法線とする鋼層4の2つの外面を鋼層面4a(鋼層面4aが界面6となる)としたとき、Al含有金属層5が、それぞれの鋼層面4a上に配されることが好ましい。そして、上記断面で見た場合に、厚さ方向を法線とするAl含有金属層5の2つの外面をAl含有金属層面5aとしたとき、Al層3が、それぞれのAl含有金属層面5a上に配されることが好ましい。なお、図5では、Fe-Al合金粒7(7a、7b、7c)、ボイド9、または各種の被覆層8などの図示を省略している。 FIG. 5 is a schematic cross-sectional view of the steel / aluminum composite foil according to the present embodiment. The steel / aluminum composite foil 1 according to the present embodiment is one foil on the side on which a power generation layer or an organic EL element of a solar cell is formed. The case where the Al-containing metal layer 5 and the Al layer 3 are provided on the surface and the other foil surface is illustrated. As shown in FIG. 5, when viewed in a cross section in which the thickness direction and the cutting direction are parallel, the two outer surfaces of the steel layer 4 having the thickness direction as the normal line are the steel layer surfaces 4a (the steel layer surface 4a is the interface 6). The Al-containing metal layer 5 is preferably disposed on each steel layer surface 4a. And when it sees in the said cross section, when the two outer surfaces of the Al containing metal layer 5 which make a thickness direction a normal line are made into the Al containing metal layer surface 5a, the Al layer 3 is on each Al containing metal layer surface 5a. It is preferable to be arranged in In FIG. 5, illustration of Fe—Al alloy grains 7 (7a, 7b, 7c), voids 9, various coating layers 8 and the like is omitted.

 例えば、一方の箔面にのみAl含有金属層5及びAl層3を有する鋼アルミニウム複合箔1がロール状に巻き取られている場合、太陽電池や有機EL照明等の製造時に、ロール状に巻き取られている鋼アルミニウム複合箔1の巻き取り方向を反転させなければいけないこともある。これに対して、一方の箔面にAl含有金属層5及びAl層3を有し、かつ他方の箔面にもAl含有金属層5及びAl層3を有する鋼アルミニウム複合箔1では、太陽電池や有機EL照明等の製造時にどちらの箔面上にも太陽電池の発電層や有機EL素子を形成することができるので操業性に優れる。 For example, when the steel-aluminum composite foil 1 having the Al-containing metal layer 5 and the Al layer 3 only on one foil surface is wound in a roll shape, it is wound in a roll shape when manufacturing a solar cell or organic EL lighting. It may be necessary to reverse the winding direction of the steel aluminum composite foil 1 being taken. On the other hand, in the steel aluminum composite foil 1 having the Al-containing metal layer 5 and the Al layer 3 on one foil surface and the Al-containing metal layer 5 and the Al layer 3 on the other foil surface, In addition, the solar cell power generation layer and the organic EL element can be formed on either foil surface during manufacturing of organic EL lighting or the like, so that the operability is excellent.

 加えて、一方の箔面にのみAl含有金属層5及びAl層3を有する鋼アルミニウム複合箔1では、鋼層4とAl含有金属層5との間の塑性変形能や機械的性質の差、鋼層4とAl層3との間の塑性変形能や機械的性質の差、及びAl含有金属層5とAl層3との間の塑性変形能や機械的性質の差に起因して、クラッド圧延に続く冷間圧延後に、鋼アルミニウム複合箔1に反りが発生する場合がある。鋼アルミニウム複合箔1に反りが発生すると、鋼アルミニウム複合箔1上に太陽電池の発電層や有機EL素子を形成することが困難になることもある。これに対して、太陽電池の発電層や有機EL素子を形成する側である一方の箔面と反対の箔面である他方の箔面にも、Al含有金属層5を有する鋼アルミニウム複合箔1では、クラッド圧延に続く冷間圧延後に、鋼アルミニウム複合箔1に反りが発生しにくいので好ましい。また、太陽電池の発電層や有機EL素子を形成する側である一方の箔面と反対の箔面である他方の箔面にも、Al含有金属層5及びAl層3を有する鋼アルミニウム複合箔1では、クラッド圧延に続く冷間圧延後に、鋼アルミニウム複合箔1に反りがさらに発生しにくいので好ましい。 In addition, in the steel aluminum composite foil 1 having the Al-containing metal layer 5 and the Al layer 3 only on one foil surface, the difference in plastic deformability and mechanical properties between the steel layer 4 and the Al-containing metal layer 5, Due to differences in plastic deformability and mechanical properties between the steel layer 4 and the Al layer 3, and differences in plastic deformability and mechanical properties between the Al-containing metal layer 5 and the Al layer 3, the cladding After cold rolling following rolling, warp may occur in the steel aluminum composite foil 1. When warpage occurs in the steel / aluminum composite foil 1, it may be difficult to form a power generation layer or an organic EL element of a solar cell on the steel / aluminum composite foil 1. On the other hand, the steel aluminum composite foil 1 having the Al-containing metal layer 5 on the other foil surface, which is the opposite foil surface to the one on which the power generation layer and the organic EL element of the solar cell are formed. Then, after the cold rolling following the clad rolling, the steel aluminum composite foil 1 is less likely to warp, which is preferable. Also, a steel / aluminum composite foil having an Al-containing metal layer 5 and an Al layer 3 on the other foil surface, which is the opposite foil surface to the one on which the power generation layer and organic EL element of the solar cell are formed. No. 1 is preferable because warp is less likely to occur in the steel-aluminum composite foil 1 after cold rolling following clad rolling.

 なお、鋼板を溶融アルミニウムめっき浴に浸漬することでアルミニウムめっき鋼板を製造する場合、厚さ方向と切断方向とが平行な断面で見たときに、鋼層4の輪郭線の全周に渡ってAl含有金属層5が形成される。この場合、Al含有金属層5の2つのAl含有金属層面5aのうちの一つのAl含有金属層面5a上にのみAl層3を積層してもよく、またはAl含有金属層5の2つのAl含有金属層面5a上にAl層3を積層してもよい。一方、鋼層4の輪郭線の全周に渡ってAl含有金属層5が形成されたアルミニウムめっき鋼板の側縁(鋼板の板幅方向の端部でかつ、鋼板の長手方向に沿った部分)を切断する場合もある。側縁が切断されたアルミニウムめっき鋼板では、厚さ方向と切断方向とが平行な断面で見たときに、厚さ方向を法線とする鋼層4の2つの鋼層面4a上にのみAl含有金属層5が配される。この場合、Al含有金属層5の2つのAl含有金属層面5aのうちの一つのAl含有金属層面5a上にのみAl層3を積層してもよく、またはAl含有金属層5の2つのAl含有金属層面5a上にAl層3を積層してもよい。すなわち、本実施形態に係る鋼アルミニウム複合箔1では、Al含有金属層5が、鋼層4の輪郭線の全周に渡って配されてもよく、鋼層4の2つの鋼層面4a上にのみ配されてもよい。そして、本実施形態に係る鋼アルミニウム複合箔1では、必要に応じて、Al含有金属層5の2つのAl含有金属層面5aのうちの一つのAl含有金属層面5a上にのみAl層3を積層してもよく、またはAl含有金属層5の2つのAl含有金属層面5a上にAl層3を積層してもよい。なお、カーテンコーター等でアルミニウムめっき鋼板を製造する場合、厚さ方向と切断方向とが平行な断面で見たときに、厚さ方向を法線とする鋼層4の2つの鋼層面4aのうちの一つの鋼層面4a上にのみAl含有金属層5が配される。この場合には、形成されたAl含有金属層5上にAl層3を積層すればよい。 In addition, when manufacturing an aluminum plating steel plate by immersing a steel plate in a molten aluminum plating bath, when it sees in the cross section in which the thickness direction and a cutting direction are parallel, it extends over the perimeter of the outline of the steel layer 4. An Al-containing metal layer 5 is formed. In this case, the Al layer 3 may be laminated only on one Al-containing metal layer surface 5 a of the two Al-containing metal layer surfaces 5 a of the Al-containing metal layer 5, or the two Al-containing metal layers 5 may contain two Al The Al layer 3 may be laminated on the metal layer surface 5a. On the other hand, the side edge of the aluminum-plated steel plate in which the Al-containing metal layer 5 is formed over the entire circumference of the contour line of the steel layer 4 (the end in the plate width direction of the steel plate and the portion along the longitudinal direction of the steel plate) May be cut off. In the aluminum-plated steel sheet whose side edge is cut, Al is contained only on the two steel layer surfaces 4a of the steel layer 4 having the thickness direction as a normal when viewed in a cross section in which the thickness direction and the cutting direction are parallel. A metal layer 5 is disposed. In this case, the Al layer 3 may be laminated only on one Al-containing metal layer surface 5 a of the two Al-containing metal layer surfaces 5 a of the Al-containing metal layer 5, or the two Al-containing metal layers 5 may contain two Al The Al layer 3 may be laminated on the metal layer surface 5a. That is, in the steel / aluminum composite foil 1 according to the present embodiment, the Al-containing metal layer 5 may be arranged over the entire circumference of the contour line of the steel layer 4, and on the two steel layer surfaces 4 a of the steel layer 4. May be arranged only. And in the steel aluminum composite foil 1 which concerns on this embodiment, the Al layer 3 is laminated | stacked only on one Al containing metal layer surface 5a of the two Al containing metal layer surfaces 5a of the Al containing metal layer 5 as needed. Alternatively, the Al layer 3 may be laminated on the two Al-containing metal layer surfaces 5 a of the Al-containing metal layer 5. In addition, when manufacturing an aluminum plating steel plate with a curtain coater etc., when it sees in the cross section in which the thickness direction and a cutting direction are parallel, among the two steel layer surfaces 4a of the steel layer 4 which makes a thickness direction a normal line The Al-containing metal layer 5 is disposed only on one steel layer surface 4a. In this case, the Al layer 3 may be laminated on the formed Al-containing metal layer 5.

 上述した、鋼層4の厚さ、Al含有金属層5の厚さ、Al含有金属層5の化学成分、Al層3の厚さ、Al層3の化学成分、Al層3の表面粗さRa、Fe-Al合金粒7(7a、7b、7c)の粒径、Fe-Al合金粒7(7a、7b、7c)の面積分率、Fe-Al合金粒7(7a、7b、7c)の構成相、及びボイド9の円相当径を測定する方法は、圧延方向と直交する板幅方向が観察面となるように厚さ方向に沿って平面切断した切断面を観察すればよい。なお、複数の切断面内の複数の観察視野から測定した各測定値を平均することが好ましい。 As described above, the thickness of the steel layer 4, the thickness of the Al-containing metal layer 5, the chemical component of the Al-containing metal layer 5, the thickness of the Al layer 3, the chemical component of the Al layer 3, the surface roughness Ra of the Al layer 3 , Fe—Al alloy grain 7 (7a, 7b, 7c) grain size, Fe—Al alloy grain 7 (7a, 7b, 7c) area fraction, Fe—Al alloy grain 7 (7a, 7b, 7c) The method of measuring the constituent phases and the equivalent circle diameter of the void 9 may be by observing a cut surface obtained by plane cutting along the thickness direction so that the plate width direction orthogonal to the rolling direction becomes the observation surface. In addition, it is preferable to average each measured value measured from several observation visual fields in several cut surfaces.

 上記の切断面の金属組織を画像解析することで、平均厚さ、粒径、面積分率、表面粗さRaなどを求めることができる。画像解析は、観察視野が板幅方向で200μm以内となる倍率で行い、板幅方向の合計視野が3000μm以上となるように、少なくとも15視野以上を解析することが好ましい。また、解析視野内で観察された各Fe-Al合金粒7(7a、7b、7c)の円相当径を粒径として測定し、粒径範囲を調べた。また、鋼層4から離間したFe-Al合金粒7がAl含有金属層5とAl層3の両方にまたがる位置に存在する場合、Al含有金属層5に含まれる部分をFe-Al合金粒7b、Al層3に含まれる部分をFe-Al合金粒7cとして、それぞれ面積分率と円相当径(粒径)とを算出した。なお、上記の表面粗さRaは、表面粗さ測定機を用いて測定してもよい。 The average thickness, particle size, area fraction, surface roughness Ra, etc. can be determined by image analysis of the metal structure of the cut surface. The image analysis is preferably performed at a magnification such that the observation visual field is within 200 μm in the plate width direction, and at least 15 visual fields are analyzed so that the total visual field in the plate width direction is 3000 μm or more. Further, the equivalent-circle diameter of each Fe—Al alloy grain 7 (7a, 7b, 7c) observed within the analysis field of view was measured as the grain size, and the grain size range was examined. In addition, when the Fe—Al alloy particles 7 separated from the steel layer 4 are present at a position extending over both the Al-containing metal layer 5 and the Al layer 3, the portion contained in the Al-containing metal layer 5 is removed from the Fe—Al alloy particles 7b. The area fraction and the equivalent circle diameter (particle diameter) were calculated with the portion contained in the Al layer 3 as the Fe—Al alloy grain 7c. In addition, you may measure said surface roughness Ra using a surface roughness measuring machine.

 また、上記の切断面の金属組織を画像解析することで、ボイド9の円相当径を求めることができる。画像解析は、観察視野が板幅方向で200μm以内となる倍率で行い、板幅方向の合計視野が3000μm以上となるように、複数視野を解析することが好ましい。 Also, the circle-equivalent diameter of the void 9 can be obtained by image analysis of the metal structure of the cut surface. The image analysis is preferably performed at a magnification such that the observation visual field is within 200 μm in the plate width direction, and a plurality of visual fields are analyzed so that the total visual field in the plate width direction is 3000 μm or more.

 また、上記の切断面で、EPMA(電子線マイクロ分析、Electron Probe Micro Analysis)やEDX(エネルギー分散型X線分析、Energy Dispersive X-Ray Analysis)などを用いて分析することで、化学成分、構成相などを求めることができる。なお、上記の化学成分は、グロー放電発光分析装置(一般に高周波GDSとも呼ばれる)を用いて分析してもよい。 In addition, by using EPMA (Electron Probe Micro Analysis, Electron Probe Micro Analysis), EDX (Energy Dispersive X-ray Analysis, Energy Dispersive X-Ray Analysis), etc. on the above cut surface, chemical components and components Phases can be obtained. The chemical components may be analyzed using a glow discharge emission analyzer (generally also called a high frequency GDS).

 上述の各種の被覆層8の厚さ及び化学成分を測定する方法は、スパッタ法により金属箔の表面から膜厚方向に掘り下げながら分析する手法や、金属箔の膜厚方向の切断面にて線分析または点分析を行う手法が有効である。スパッタ法を利用した手法では、測定深さが大きくなると測定時間が掛かり過ぎるが、切断面を線分析または点分析する手法では、断面全体での濃度分布の測定や再現性の確認等を行うのが比較的容易である。線分析または点分析で、分析の精度を向上させたい場合には、線分析にて分析間隔を狭くして分析したり、点分析にて分析領域を拡大して分析したりすることも有効である。各種の被覆層8の同定は、標準試料(即ち濃度100%)の値をあらかじめ測定しておき、上記化学成分の分析でその濃度が50%以上となる領域を判別することで行う。これらの分析に用いる分析装置として、EPMA、EDX、GDS、AES(オージェ電子分光法、Auger Electron Spectroscopy)、TEM(透過型電子顕微鏡、Transmission Electron Microscope)等が利用できる。なお、各種の被覆層8の厚さが上述した数値限定を満たすかどうかの判定は、各種の被覆層8の平均厚さによって評価される。局所的に各種の被覆層8の厚さが数値限定を満たさない場合があったとしても、上記判定に考慮しない。 The above-mentioned methods for measuring the thickness and chemical composition of the various coating layers 8 include a method of analyzing while digging in the film thickness direction from the surface of the metal foil by a sputtering method, or a line at the cut surface in the film thickness direction of the metal foil. An analysis or point analysis method is effective. In the method using the sputtering method, it takes too much time to measure as the measurement depth increases, but in the method of performing line analysis or point analysis of the cut surface, the concentration distribution is measured or the reproducibility is confirmed over the entire cross section. Is relatively easy. If you want to improve the accuracy of line analysis or point analysis, it is also effective to narrow the analysis interval with line analysis or expand the analysis area with point analysis. is there. Identification of the various coating layers 8 is performed by measuring the value of a standard sample (that is, concentration 100%) in advance and discriminating a region where the concentration is 50% or more by analyzing the chemical component. EPMA, EDX, GDS, AES (Auger Electron Spectroscopy), TEM (Transmission Electron Microscope, Transmission Electron Microscope), and the like can be used as analyzers used for these analyses. Note that whether or not the thicknesses of the various coating layers 8 satisfy the above-described numerical limitations is evaluated by the average thickness of the various coating layers 8. Even if the thicknesses of the various coating layers 8 do not satisfy the numerical limitation locally, they are not considered in the determination.

 次に、本発明の一実施形態に係る鋼アルミニウム複合箔の製造方法ついて詳細に説明する。 Next, a method for producing a steel / aluminum composite foil according to an embodiment of the present invention will be described in detail.

 本実施形態の鋼アルミニウム複合箔1の製造方法は、芯材とAl材とをクラッド圧延してクラッド材とするクラッド圧延工程と、このクラッド材を冷間圧延して鋼アルミニウム複合箔1を得る冷間圧延工程と、を備えている。また、クラッド圧延工程前に、芯材であるアルミニウムめっき鋼板を得るための溶融めっき工程をさらに有してもよい。また、冷間圧延工程後に、鋼アルミニウム複合箔1に各種の被覆層8を形成する成膜工程をさらに有してもよい。以下、各工程について順次説明する。 The manufacturing method of the steel aluminum composite foil 1 of this embodiment includes a clad rolling process in which a core material and an Al material are clad rolled to form a clad material, and the clad material is cold rolled to obtain a steel aluminum composite foil 1. A cold rolling process. Moreover, you may further have the hot dipping process for obtaining the aluminum plating steel plate which is a core material before a clad rolling process. Moreover, you may further have the film-forming process which forms the various coating layers 8 in the steel aluminum composite foil 1 after a cold rolling process. Hereinafter, each process will be described sequentially.

 溶融めっき工程
 鋼板(鋼層)上にアルミニウムめっき層(Al含有金属層)が配されるアルミニウムめっき鋼板(芯材)を製造する工程は特に限定されない。例えば、溶射法、スパッタリング法、イオンプレーティング法、蒸着法、電気めっき法などを採用してもよい。ただ、芯材として、普通鋼である鋼板に溶融アルミニウムめっきが施されたアルミニウムめっき鋼板を用いることが好ましい。すなわち、クラッド圧延工程前に、1~15質量%のSiを含有し、残部がAl及び不純物からなる化学成分の溶融アルミニウムめっき浴を用いて鋼板をめっきする溶融めっき工程を行うことが好ましく、この溶融めっき工程によって、鋼板(鋼層)上にアルミニウムめっき層(Al含有金属層)が配されるアルミニウムめっき鋼板(芯材)を得ることが好ましい。溶融アルミニウムめっき法では、アルミニウムめっき層を有するアルミニウムめっき鋼板を安価に大量生産できる。また、上記の化学成分を有する溶融アルミニウムめっき浴を用いることで、溶融アルミニウムめっき浴の融点を好ましく低下させることができ、比較的低温で溶融アルミニウムめっきを行うことができる。鋼板とアルミニウムめっき層との界面6には、鋼板のFeとアルミニウムめっき層のAlとが合金化してなるFe-Al合金層が形成される。
Hot dipping process The process of manufacturing the aluminum plating steel plate (core material) in which the aluminum plating layer (Al-containing metal layer) is arranged on the steel plate (steel layer) is not particularly limited. For example, a thermal spraying method, a sputtering method, an ion plating method, a vapor deposition method, an electroplating method, or the like may be employed. However, it is preferable to use an aluminum-plated steel sheet obtained by applying hot-dip aluminum plating to a steel sheet that is plain steel as the core material. That is, it is preferable to perform a hot dipping step of plating a steel sheet using a hot aluminum plating bath containing a chemical component containing 1 to 15% by mass of Si and the balance being Al and impurities before the clad rolling step. It is preferable to obtain an aluminum plated steel plate (core material) in which an aluminum plating layer (Al-containing metal layer) is arranged on a steel plate (steel layer) by a hot dipping process. In the molten aluminum plating method, an aluminum plated steel sheet having an aluminum plating layer can be mass-produced at low cost. Moreover, by using the molten aluminum plating bath which has said chemical component, melting | fusing point of a molten aluminum plating bath can be reduced preferably, and molten aluminum plating can be performed at a comparatively low temperature. At the interface 6 between the steel plate and the aluminum plating layer, an Fe—Al alloy layer formed by alloying Fe of the steel plate and Al of the aluminum plating layer is formed.

 溶融めっき工程後でクラッド圧延工程前のアルミニウムめっき層の厚さは、1~60μmの範囲が好ましい。また、このアルミニウムめっき層の厚さの下限は、5μmがより好ましく、10μmが更に好ましい。このアルミニウムめっき層の厚さの上限は、40μmがより好ましく、30μmが更に好ましい。アルミニウムめっき層の厚さを上記範囲内とすることで、冷間圧延工程後の鋼アルミニウム複合箔1のAl含有金属層5の厚さを、上述した好ましい範囲に制御できる。 The thickness of the aluminum plating layer after the hot dipping process and before the clad rolling process is preferably in the range of 1 to 60 μm. Further, the lower limit of the thickness of the aluminum plating layer is more preferably 5 μm, and further preferably 10 μm. The upper limit of the thickness of the aluminum plating layer is more preferably 40 μm and even more preferably 30 μm. By setting the thickness of the aluminum plating layer within the above range, the thickness of the Al-containing metal layer 5 of the steel-aluminum composite foil 1 after the cold rolling step can be controlled within the above-described preferable range.

 また、溶融めっき工程後でクラッド圧延工程前の鋼板の厚さは、50~2000μmの範囲が好ましい。また、この鋼板の厚さの下限は、100μmがより好ましく、200μmが更に好ましい。この鋼板の厚さの上限は、1500μmがより好ましく、1200μmが更に好ましい。鋼板の厚さが50μm未満では、冷間圧延後の鋼アルミニウム複合箔1の厚さが薄くなりすぎて強度不足となるおそれがある。また、鋼板の厚さが2000μm超では、アルミニウムめっき鋼板の厚さが厚すぎて後工程に負荷がかかり、また圧延パス数が多くなってコスト増となるおそれがある。 The thickness of the steel sheet after the hot dipping process and before the clad rolling process is preferably in the range of 50 to 2000 μm. Further, the lower limit of the thickness of the steel sheet is more preferably 100 μm and even more preferably 200 μm. The upper limit of the thickness of the steel sheet is more preferably 1500 μm, and still more preferably 1200 μm. If the thickness of the steel plate is less than 50 μm, the thickness of the steel-aluminum composite foil 1 after cold rolling may become too thin, resulting in insufficient strength. On the other hand, when the thickness of the steel plate exceeds 2000 μm, the thickness of the aluminum-plated steel plate is too thick, and a load is imposed on the subsequent process, and the number of rolling passes may increase, resulting in an increase in cost.

 また、溶融めっき工程では、厚さ方向を法線とする鋼板(鋼層)の2つの板面を鋼板面としたとき、アルミニウムめっき層(Al含有金属層)が、それぞれの鋼板面上に形成されてもよい。鋼板の2つの鋼板面上にアルミニウムめっき層が形成されている場合、クラッド圧延に続く冷間圧延後に、鋼アルミニウム複合箔1に反りが発生しにくく、そのため後工程でのハンドリングが容易となり好ましい。なお、溶融アルミニウムめっきに供する鋼板は、最終的に鋼アルミニウム複合箔1の鋼層4となり、溶融アルミニウムめっきによって形成されるアルミニウムめっき層は、最終的に鋼アルミニウム複合箔1のAl含有金属層5となる。 Also, in the hot dipping process, when two plate surfaces of a steel plate (steel layer) whose thickness direction is the normal line are steel plate surfaces, an aluminum plating layer (Al-containing metal layer) is formed on each steel plate surface. May be. When the aluminum plating layer is formed on the two steel plate surfaces of the steel plate, it is preferable that the steel aluminum composite foil 1 is hardly warped after the cold rolling subsequent to the clad rolling, so that the handling in the subsequent process is facilitated. In addition, the steel plate used for hot dip aluminum plating finally becomes the steel layer 4 of the steel aluminum composite foil 1, and the aluminum plating layer formed by hot dip aluminum plating finally has the Al-containing metal layer 5 of the steel aluminum composite foil 1. It becomes.

 クラッド圧延工程
 クラッド圧延工程では、Fe-Al合金層を含むアルミニウムめっき層(Al含有金属層)が鋼板(鋼層)上に形成されてなる芯材(アルミニウムめっき鋼板)とAl材とを重ね合わせた状態でクラッド圧延してクラッド材を得る。クラッド圧延工程では、アルミニウムめっき層(Al含有金属層)上にAl材が接合されればよく、クラッド圧延の圧延条件は特に限定されない。クラッド圧延の温度は室温から500℃の間であればよい。例えば、加熱温度400℃及び圧下率9%の条件でクラッド圧延を行ってもよく、または温度20℃(室温)及び圧下率15%の条件でクラッド圧延を行ってもよい。また、圧下率は15%よりも大きくても良い。
Clad rolling process In the clad rolling process, a core material (aluminum plated steel sheet) in which an aluminum plating layer (Al-containing metal layer) including an Fe-Al alloy layer is formed on a steel sheet (steel layer) is overlaid with an Al material. In this state, the clad rolling is performed to obtain a clad material. In the clad rolling process, an Al material may be bonded onto the aluminum plating layer (Al-containing metal layer), and the rolling conditions of the clad rolling are not particularly limited. The clad rolling temperature may be between room temperature and 500 ° C. For example, clad rolling may be performed under conditions of a heating temperature of 400 ° C. and a reduction rate of 9%, or clad rolling may be performed under conditions of a temperature of 20 ° C. (room temperature) and a reduction rate of 15%. Further, the rolling reduction may be greater than 15%.

 また、クラッド圧延工程に供するAl材は、99.0質量%以上のAl及び不純物からなるAl板が好ましく、99.9%質量以上のAl及び不純物からなるAl板がより好ましい。このようなAl材では共晶組織が生成することがないので、冷間圧延後の鋼アルミニウム複合箔1のAl層3の表面3aの表面平滑性を好ましく高めることができる。 Also, the Al material used for the clad rolling step is preferably an Al plate made of 99.0% by mass or more of Al and impurities, more preferably an Al plate made of 99.9% by mass or more of Al and impurities. Since such an Al material does not generate a eutectic structure, the surface smoothness of the surface 3a of the Al layer 3 of the steel-aluminum composite foil 1 after cold rolling can be preferably increased.

 クラッド圧延工程に供するAl材の厚さは、1~1500μmの範囲が好ましい。また、このAl材の厚さの下限は、10μmがより好ましく、40μmが更に好ましい。このAl材の厚さの上限は、1000μmがより好ましく、500μmが更に好ましい。Al材の厚さが1μm未満では、薄すぎてクラッド圧延の際の取り扱いが困難となるおそれがある。また、Al材の厚さが1500μm超では、基材として適した厚さまで圧延する圧延パス数が多くなってコスト増となるおそれがある。 The thickness of the Al material used for the clad rolling process is preferably in the range of 1 to 1500 μm. Further, the lower limit of the thickness of the Al material is more preferably 10 μm, and still more preferably 40 μm. The upper limit of the thickness of the Al material is more preferably 1000 μm and even more preferably 500 μm. If the thickness of the Al material is less than 1 μm, it may be too thin to be handled during clad rolling. On the other hand, when the thickness of the Al material exceeds 1500 μm, the number of rolling passes for rolling to a thickness suitable as a base material increases, which may increase the cost.

 また、クラッド圧延工程では、厚さ方向を法線とするアルミニウムめっき層(Al含有金属層)の2つの板面(芯材の2つの板面)をめっき面としたとき、Al材が、それぞれのめっき面上にクラッド圧延により接合されてもよい。アルミニウムめっき層(Al含有金属層)の2つのめっき面上にAl層が形成されている場合、クラッド圧延に続く冷間圧延後に、鋼アルミニウム複合箔1に反りが発生しにくく、そのため後工程でのハンドリングが容易となり好ましい。なお、クラッド圧延に供するAl材は、最終的に鋼アルミニウム複合箔1のAl層3となる。 Also, in the clad rolling process, when two plate surfaces (two plate surfaces of the core material) of the aluminum plating layer (Al-containing metal layer) whose thickness direction is a normal line are used as the plating surfaces, the Al materials are respectively It may be joined on the plated surface by clad rolling. When Al layers are formed on the two plating surfaces of the aluminum plating layer (Al-containing metal layer), it is difficult for warp to occur in the steel-aluminum composite foil 1 after cold rolling following clad rolling. Is easy to handle and is preferable. The Al material used for the clad rolling finally becomes the Al layer 3 of the steel aluminum composite foil 1.

 冷間圧延工程
 冷間圧延工程では、クラッド圧延工程で得られたクラッド材を冷間圧延することにより、Al含有金属層(アルミニウムめっき層)中のFe-Al合金層の一部を、鋼層(鋼板)から離間させてAl含有金属層中に分散したFe-Al合金粒に制御して、鋼アルミニウム複合箔1を得る。
Cold rolling process In the cold rolling process, a part of the Fe-Al alloy layer in the Al-containing metal layer (aluminum plating layer) is steel layer by cold rolling the clad material obtained in the clad rolling process. The steel-aluminum composite foil 1 is obtained by controlling the Fe—Al alloy grains that are separated from the (steel plate) and dispersed in the Al-containing metal layer.

 冷間圧延は、タンデム冷間圧延設備またはリバース圧延設備のいずれかを用いて、複数回の圧延パスを行うことにより実施する。特に、圧延パスごとに圧下率及び通板速度を調整可能なリバース圧延設備を用いて冷間圧延を行うことが好ましい。圧延パスごとに圧下率及び通板速度を調整しつつ冷間圧延を行うことで、Fe-Al合金粒の一部をAl含有金属層中に好ましく分散させることができる。また、Al層の表面粗さRaを好ましく低減できる。 Cold rolling is performed by performing a plurality of rolling passes using either tandem cold rolling equipment or reverse rolling equipment. In particular, it is preferable to perform cold rolling using a reverse rolling facility that can adjust the rolling reduction and the sheet passing speed for each rolling pass. By performing cold rolling while adjusting the rolling reduction and sheeting speed for each rolling pass, a part of the Fe—Al alloy particles can be preferably dispersed in the Al-containing metal layer. Moreover, the surface roughness Ra of the Al layer can be preferably reduced.

 冷間圧延の通板速度は、30~400m/分の範囲で圧延パスごとに設定することが好ましい。通板速度は、クラッド材の塑性変形に用いられるエネルギーに相当し、一定以上のエネルギーを加えることで、Fe-Al合金粒の一部をAl含有金属層中に分散させることができる。特に、通板速度を30m/分以上とすることで、一定以上のエネルギーをクラッド材に加えることができ、Al含有金属層がFe-Al合金粒と鋼層との密着を破り、Fe-Al合金粒を包み込むようにAl含有金属層が塑性変形し、結果としてFe-Al合金粒がAl含有金属層中および/またはAl層中に分散する。クラッド材に与えるエネルギーが小さいと、Fe-Al合金粒は鋼層とAl含有金属層との界面に留まったままとなるおそれがあり、また、Al含有金属層がFe-Al合金粒を包み込むように塑性変形できずに粗大なボイドが形成されるおそれがある。また、通板速度が400m/分以下であれば、板破断を起こすおそれがない。より好ましい冷間圧延の通板速度は、30~300m/分である。 The sheeting speed of cold rolling is preferably set for each rolling pass in the range of 30 to 400 m / min. The plate passing speed corresponds to the energy used for plastic deformation of the clad material, and a part of the Fe—Al alloy particles can be dispersed in the Al-containing metal layer by applying a certain amount of energy. In particular, when the sheet passing speed is 30 m / min or more, a certain amount of energy can be applied to the clad material, and the Al-containing metal layer breaks the adhesion between the Fe—Al alloy grains and the steel layer, and Fe—Al The Al-containing metal layer is plastically deformed so as to envelop the alloy grains, and as a result, the Fe—Al alloy grains are dispersed in the Al-containing metal layer and / or in the Al layer. If the energy applied to the clad material is small, the Fe—Al alloy grains may remain at the interface between the steel layer and the Al-containing metal layer, and the Al-containing metal layer may wrap the Fe—Al alloy grains. There is a possibility that coarse voids may be formed without being plastically deformed. Moreover, if the plate passing speed is 400 m / min or less, there is no possibility of causing plate breakage. A more preferred cold rolling speed is 30 to 300 m / min.

 なお、冷間圧延の通板速度は、すべての圧延パスの通板速度を同じにしてもよく、圧延パスごとに変更してもよい。さらに、通板速度による合金粒の分散効果は、より早い段階での圧延パスの影響が大きく、圧延パスを経るにつれて分散効果が得にくくなる。したがって、通板速度を圧延パスごとに速くすることで、合金粒の分散をより好ましい範囲に制御しつつ生産効率を向上できる。一方で、通板速度を圧延パスごとに遅くすることで、合金粒の分散をより好ましい範囲に制御しつつ箔形状を容易に制御することができる。 In addition, the plate speed of cold rolling may be the same for all rolling passes or may be changed for each rolling pass. Furthermore, the effect of dispersing the alloy grains due to the sheet passing speed is greatly affected by the rolling pass at an earlier stage, and it becomes difficult to obtain the dispersing effect as it passes through the rolling pass. Therefore, by increasing the sheet passing speed for each rolling pass, the production efficiency can be improved while controlling the dispersion of the alloy grains within a more preferable range. On the other hand, by reducing the sheet passing speed for each rolling pass, the foil shape can be easily controlled while controlling the dispersion of alloy grains in a more preferable range.

 冷間圧延の各圧延パスの圧下率は、第1圧延パス及び第2圧延パスの各圧下率を15~40%の範囲とすることが好ましい。また、第2圧延パス以降の圧延パスにおける圧下率は、直前の圧延パスの圧下率以下にすることが好ましい。このように各圧延パスの圧下率を制御することにより、各圧延パスでAl含有金属層に対する十分な塑性変形量を与えることができ、Fe-Al合金粒の分散を好ましく生じさせることができる。具体的には、圧延パスの圧下率が上記の範囲であれば、Al含有金属層に対する塑性変形量が十分になって、Fe-Al合金層がFe-Al合金粒に分断されるとともに、Al含有金属層の一部がFe-Al合金粒と鋼層(地鉄)との界面に侵入し、結果的にFe-Al合金粒がAl含有金属層中および/またはAl層中に分散する。特に、後半の圧延パスでは加工硬化により大きな圧下率が得られなくなるため、第1圧延パスで高圧下することが好ましい。 The rolling reduction of each rolling pass of the cold rolling is preferably in the range of 15 to 40% of each rolling reduction of the first rolling pass and the second rolling pass. Moreover, it is preferable that the rolling reduction rate in the rolling pass after the second rolling pass is equal to or lower than the rolling reduction rate of the immediately preceding rolling pass. By controlling the rolling reduction of each rolling pass in this way, a sufficient amount of plastic deformation can be given to the Al-containing metal layer in each rolling pass, and dispersion of Fe—Al alloy grains can be preferably generated. Specifically, if the rolling pass rolling reduction is in the above range, the amount of plastic deformation with respect to the Al-containing metal layer is sufficient, the Fe—Al alloy layer is divided into Fe—Al alloy grains, and Al A part of the contained metal layer enters the interface between the Fe—Al alloy grains and the steel layer (base iron), and as a result, the Fe—Al alloy grains are dispersed in the Al-containing metal layer and / or in the Al layer. In particular, since a large rolling reduction cannot be obtained by work hardening in the latter half of the rolling pass, it is preferable to reduce the pressure in the first rolling pass.

 第1圧延パス及び第2圧延パスにおけるそれぞれの圧下率が15%以上であれば、Al含有金属層の塑性変形量が大きくなり、Fe-Al合金層を分断させてFe-Al合金粒を得ることのみならず、Fe-Al合金粒をAl含有金属層中および/またはAl層中に分散させることができるので好ましい。また、第1圧延パス及び第2圧延パスにおけるそれぞれの圧下率が30%以下であれば、鋼アルミニウム複合箔1の形状制御が容易になるため好ましい。 If the respective rolling reductions in the first rolling pass and the second rolling pass are 15% or more, the amount of plastic deformation of the Al-containing metal layer increases, and the Fe—Al alloy layer is divided to obtain Fe—Al alloy grains. In addition, it is preferable because Fe—Al alloy grains can be dispersed in the Al-containing metal layer and / or in the Al layer. Moreover, if each rolling reduction in a 1st rolling pass and a 2nd rolling pass is 30% or less, since shape control of the steel aluminum composite foil 1 becomes easy, it is preferable.

 なお、Fe-Al合金粒のAl含有金属層および/またはAl層への分散は、冷間圧延工程でクラッド材に与えるエネルギー量とAl含有金属層の塑性変形量とが所定以上の時に好ましく達成される。従って、通板速度と圧下率との両方を本実施形態の上記範囲内に制御することが好ましい。いずれか一方を制御するだけでは、Fe-Al合金粒の分散が起こらないおそれがある。 The dispersion of Fe—Al alloy grains in the Al-containing metal layer and / or Al layer is preferably achieved when the amount of energy applied to the clad material in the cold rolling process and the amount of plastic deformation of the Al-containing metal layer are not less than a predetermined value. Is done. Therefore, it is preferable to control both the plate passing speed and the rolling reduction within the above range of the present embodiment. If only one of them is controlled, the Fe—Al alloy grains may not be dispersed.

 なお、Al層3の表面粗さの制御は、最終パスに使用するワークロールとして、ロール粗度(表面粗さRa)10nm以下の鏡面ロールを用いるとともに、Al層3のAl純度を99.0質量%以上の範囲で制御すればよい。上記の条件を満足するとき、冷間圧延後の鋼アルミニウム複合箔1のAl層3の表面3aの表面粗さRaを、10~25nmの範囲に好ましく制御することができる。 In addition, control of the surface roughness of the Al layer 3 uses a mirror surface roll having a roll roughness (surface roughness Ra) of 10 nm or less as a work roll used in the final pass, and the Al purity of the Al layer 3 is 99.0. What is necessary is just to control in the range of the mass% or more. When the above conditions are satisfied, the surface roughness Ra of the surface 3a of the Al layer 3 of the steel-aluminum composite foil 1 after cold rolling can be preferably controlled in the range of 10 to 25 nm.

 また、クラッド圧延工程前のアルミニウムめっき層(Al含有金属層)の厚さとAl材の厚さとが合計で20μm以上であり、かつクラッド圧延工程と冷間圧延工程とでの合計圧下率が65%以上であることが好ましい。上記の条件を満足するとき、冷間圧延後の鋼アルミニウム複合箔1が含まれるボイド9を、円相当径で1μm未満に好ましく制御することができる。 Further, the total thickness of the aluminum plating layer (Al-containing metal layer) and the thickness of the Al material before the clad rolling process is 20 μm or more, and the total rolling reduction in the clad rolling process and the cold rolling process is 65%. The above is preferable. When the above conditions are satisfied, the void 9 containing the steel-aluminum composite foil 1 after cold rolling can be preferably controlled to be less than 1 μm in terms of equivalent circle diameter.

 クラッド圧延工程及び冷間圧延工程でのアルミニウムめっき層(Al含有金属層)及びAl材(Al層)の塑性変形には、圧延方向に引き延ばされる変形と、ボイドを埋めるような変形との2種が含まれる。クラッド圧延工程前の芯材のアルミニウムめっき層(Al含有金属層)とAl材(Al層)との合計での厚さが上記条件を満足するとき、圧延方向に引き延ばされる変形だけでなく、ボイドを埋めるような変形も好ましく生じる。一方、上記の厚さが上記条件を満足しないとき、アルミニウムめっき層(Al含有金属層)とAl材(Al層)との合計の体積が不足するために圧延方向に引き延ばされる変形しか生じず、その結果、ボイドが残存するおそれがある。また、クラッド圧延工程と冷間圧延工程とでの合計圧下率が上記条件を満足するとき、ボイドを埋めるような変形が好ましく生じる。 The plastic deformation of the aluminum plating layer (Al-containing metal layer) and the Al material (Al layer) in the clad rolling process and the cold rolling process includes two deformations that are stretched in the rolling direction and deformation that fills the void. Species included. When the total thickness of the aluminum plating layer (Al-containing metal layer) and the Al material (Al layer) of the core material before the clad rolling process satisfies the above conditions, not only the deformation stretched in the rolling direction, Deformation that fills the void is also preferable. On the other hand, when the above-mentioned thickness does not satisfy the above conditions, the total volume of the aluminum plating layer (Al-containing metal layer) and the Al material (Al layer) is insufficient, so that only deformation that extends in the rolling direction occurs. As a result, voids may remain. Further, when the total rolling reduction in the clad rolling process and the cold rolling process satisfies the above conditions, a deformation that fills the void is preferably generated.

 クラッド圧延工程と冷間圧延工程との合計圧下率は、「クラッド圧延前の鋼板(鋼層)、アルミニウムめっき層(Al含有金属層)、及びAl材(Al層)の合計の厚さ(クラッド圧延前の素材の合計厚さ)」に対する、「クラッド圧延前の素材の合計厚さから、冷間圧延後の鋼アルミニウム複合箔の厚さにするまでに減少させた厚さ」の割合として定義する。すなわち、(クラッド圧延工程と冷間圧延工程との合計圧下率)=[(クラッド圧延前の鋼層、Al含有金属層、及びAl層の合計の厚さ)-(冷間圧延後の鋼アルミニウム複合箔の厚さ)]÷(クラッド圧延前の鋼層、Al含有金属層、及びAl層の合計の厚さ)×100、である。 The total reduction ratio of the clad rolling process and the cold rolling process is “the total thickness of the steel plate (steel layer), the aluminum plating layer (Al-containing metal layer), and the Al material (Al layer) before the clad rolling (cladding). Is defined as the ratio of “the thickness reduced from the total thickness of the material before clad rolling to the thickness of the steel-aluminum composite foil after cold rolling” to the “total thickness of the material before rolling” To do. That is, (total rolling reduction ratio of clad rolling process and cold rolling process) = [(total thickness of steel layer before clad rolling, Al-containing metal layer and Al layer) − (steel aluminum after cold rolling) Thickness of composite foil)] / (total thickness of steel layer, Al-containing metal layer, and Al layer before clad rolling) × 100.

 成膜工程
 クラッド圧延工程及び冷間圧延工程によって、本実施形態の鋼アルミニウム複合箔1が製造される。成膜工程として、必要に応じて、冷間圧延工程後の鋼アルミニウム複合箔1のAl層3の表面3aに各種の被覆層8を形成してもよい。
Film-forming process The steel aluminum composite foil 1 of this embodiment is manufactured by the clad rolling process and the cold rolling process. As a film-forming process, you may form the various coating layers 8 in the surface 3a of the Al layer 3 of the steel aluminum composite foil 1 after a cold rolling process as needed.

 鋼アルミニウム複合箔1のAl層3の表面3aに、被覆層8としてAlN層を形成するには、加熱処理を行うことが好ましい。加熱処理は例えば、鋼アルミニウム複合箔1を、アンモニアまたはヒドラジンを10体積%±2体積%含有する不活性ガス(アルゴン、窒素、窒素と水素の混合ガス等)中にて、500~600℃の温度範囲で1~10時間の加熱を行えばよい。 In order to form an AlN layer as the coating layer 8 on the surface 3a of the Al layer 3 of the steel / aluminum composite foil 1, it is preferable to perform a heat treatment. For example, the heat treatment of the steel aluminum composite foil 1 is performed at 500 to 600 ° C. in an inert gas (argon, nitrogen, mixed gas of nitrogen and hydrogen, etc.) containing 10% by volume ± 2% by volume of ammonia or hydrazine. Heating may be performed for 1 to 10 hours in the temperature range.

 鋼アルミニウム複合箔1のAl層3の表面3aに、Al層を形成するには、Al層3の表面3aを陽極酸化処理することが好ましい。 In order to form an Al 2 O 3 layer on the surface 3a of the Al layer 3 of the steel / aluminum composite foil 1, the surface 3a of the Al layer 3 is preferably anodized.

 鋼アルミニウム複合箔1のAl層3の表面3aに、ゾルゲル層を形成するには、ゾルゲル層の成膜処理を行うことが好ましい。例えば、最終的な焼き付け工程で得られる被膜中の水素濃度[H](mol/l)とシリコン濃度[Si](mol/l)との比が、0.1≦[H]/[Si]≦10となるようなゾルを調製する。次いで、調製したゾルをAl層3の表面3aに塗布して乾燥させる。最後に乾燥した後に焼付けを行うことによって、無機有機ハイブリッド膜被覆を備えた鋼アルミニウム複合箔1を製造できる。 In order to form a sol-gel layer on the surface 3a of the Al layer 3 of the steel / aluminum composite foil 1, it is preferable to perform a film forming process of the sol-gel layer. For example, the ratio of the hydrogen concentration [H] (mol / l) to the silicon concentration [Si] (mol / l) in the film obtained in the final baking step is 0.1 ≦ [H] / [Si]. A sol is prepared such that ≦ 10. Next, the prepared sol is applied to the surface 3a of the Al layer 3 and dried. The steel aluminum composite foil 1 provided with the inorganic-organic hybrid film coating can be manufactured by baking after the last drying.

 鋼アルミニウム複合箔1のAl層3の表面3aに、ラミネート層を形成するには、ラミネート層の成膜処理を行うことが好ましい。例えば、ポリオレフィン、ポリエステル、ポリアミド、ポリイミドなどから選ばれるプラスティックフィルムを、ナイロン系接着剤を介して、Al層3の表面3aに積層した後に加熱し、1MPa程度の圧力で熱圧着する。このような熱ラミネート法によって、ラミネート層を備える鋼アルミニウム複合箔1を製造できる。尚、ポリイミドから選ばれるプラスティックフィルムの代わりに、ポリイミドから成る耐熱樹脂を使うこともできる。 In order to form a laminate layer on the surface 3a of the Al layer 3 of the steel / aluminum composite foil 1, it is preferable to perform a film forming process of the laminate layer. For example, a plastic film selected from polyolefin, polyester, polyamide, polyimide, or the like is laminated on the surface 3a of the Al layer 3 via a nylon adhesive and then heated and thermocompression bonded at a pressure of about 1 MPa. By such a heat laminating method, the steel aluminum composite foil 1 having a laminate layer can be produced. In place of the plastic film selected from polyimide, a heat-resistant resin made of polyimide can be used.

 以上説明したように、本実施形態の鋼アルミニウム複合箔1によれば、鋼層4とAl層3との間に位置するAl含有金属層5中に、鋼層4から離間して分散されたFe-Al合金粒7bが含まれているため、Al含有金属層5の熱膨張係数が、鋼層4の熱膨張係数とAl層3の熱膨張係数との中間程度になるものと推測される。これにより、鋼アルミニウム複合箔1が400℃以上に加熱された後に室温近くまで冷却される熱履歴を受けたとしても、Al含有金属層5などの剥離や割れが生じにくい。 As described above, according to the steel / aluminum composite foil 1 of the present embodiment, the Al-containing metal layer 5 positioned between the steel layer 4 and the Al layer 3 was dispersed away from the steel layer 4. Since the Fe—Al alloy grains 7b are included, it is estimated that the thermal expansion coefficient of the Al-containing metal layer 5 is approximately between the thermal expansion coefficient of the steel layer 4 and the thermal expansion coefficient of the Al layer 3. . Thereby, even if the steel aluminum composite foil 1 is heated to 400 ° C. or higher and receives a heat history of cooling to near room temperature, the Al-containing metal layer 5 and the like are hardly peeled off or cracked.

 また、本実施形態の鋼アルミニウム複合箔1では、鋼層4がAl含有金属層5及びAl層3に被覆されているので、耐食性に優れる。また、本実施形態の鋼アルミニウム複合箔1では、Al含有金属層5上にAl層3が配されるので、表面平滑性に優れる。また、本実施形態の鋼アルミニウム複合箔1では、Fe-Al合金層が分断してFe-Al合金粒7として分散するので、弾塑性変形性に優れる。 Moreover, in the steel aluminum composite foil 1 of this embodiment, since the steel layer 4 is coat | covered with the Al containing metal layer 5 and the Al layer 3, it is excellent in corrosion resistance. Moreover, in the steel aluminum composite foil 1 of this embodiment, since the Al layer 3 is distribute | arranged on the Al containing metal layer 5, it is excellent in surface smoothness. Further, in the steel / aluminum composite foil 1 of the present embodiment, the Fe—Al alloy layer is divided and dispersed as Fe—Al alloy grains 7, and therefore, the elastic-plastic deformability is excellent.

 すなわち、本実施形態の鋼アルミニウム複合箔1は、太陽電池や有機EL照明の基材用金属箔として要求される耐食性、表面平滑性、及び弾塑性変形性を同時に満足するするとともに、高温に加熱して冷却した場合にもAl含有金属層5などの剥離や割れが好ましく抑制される。従って、本実施形態の鋼アルミニウム複合箔1は、太陽電池や有機EL照明の基材用金属箔として好適に用いることができる。 That is, the steel / aluminum composite foil 1 of the present embodiment simultaneously satisfies the corrosion resistance, surface smoothness, and elastoplastic deformation required as a metal foil for a base material of a solar cell or organic EL lighting, and is heated to a high temperature. Even when cooled, the peeling and cracking of the Al-containing metal layer 5 and the like are preferably suppressed. Therefore, the steel aluminum composite foil 1 of this embodiment can be suitably used as a metal foil for a base material for solar cells or organic EL lighting.

 加えて、本実施形態の鋼アルミニウム複合箔1のAl層3中に鋼層4から離間して分散されたFe-Al合金粒7cが含まれるとき、鋼アルミニウム複合箔1が400℃以上に加熱された後に室温近くまで冷却される熱履歴を受けたとしても、Al層3とAl含有金属層5との剥離、Al含有金属層5と鋼層4との剥離、Al層3の割れ、及びAl含有金属層5の割れがさらに好ましく防止される。 In addition, when the Al-layer 3 of the steel-aluminum composite foil 1 of the present embodiment includes Fe-Al alloy particles 7c dispersed away from the steel layer 4, the steel-aluminum composite foil 1 is heated to 400 ° C or higher. Even after receiving a thermal history that is cooled to near room temperature after being removed, peeling between the Al layer 3 and the Al-containing metal layer 5, peeling between the Al-containing metal layer 5 and the steel layer 4, cracking of the Al layer 3, and Cracking of the Al-containing metal layer 5 is further preferably prevented.

 また、本実施形態の鋼アルミニウム複合箔1のAl層3が99.0質量%以上のAlを含有するとき、Al層3中に共晶組織が生成しない。このため、共晶組織に由来する微小な凹凸がAl層3の表面3aに現れず、鋼アルミニウム複合箔1の表面平滑性をより高めることができる。 Further, when the Al layer 3 of the steel aluminum composite foil 1 of the present embodiment contains 99.0% by mass or more of Al, no eutectic structure is generated in the Al layer 3. For this reason, minute unevenness derived from the eutectic structure does not appear on the surface 3a of the Al layer 3, and the surface smoothness of the steel aluminum composite foil 1 can be further enhanced.

 また、本実施形態の鋼アルミニウム複合箔1に含まれるボイド9が円相当径で1μm未満であるとき、鋼層4とAl含有金属層5との剥離、Al含有金属層5とAl層3との剥離、Al含有金属層5の割れ、またはAl層3の割れがさらに好ましく防止される。 Moreover, when the void 9 contained in the steel aluminum composite foil 1 of the present embodiment is less than 1 μm in equivalent circle diameter, the steel layer 4 and the Al-containing metal layer 5 are peeled off, the Al-containing metal layer 5 and the Al layer 3 are Peeling, cracking of the Al-containing metal layer 5, or cracking of the Al layer 3 is further preferably prevented.

 本実施形態の鋼アルミニウム複合箔1の製造方法によれば、芯材とAl材とをクラッド圧延してクラッド材とし、このクラッド材を冷間圧延して、Al含有金属層5中のFe-Al合金層の一部を、鋼層から離間させAl含有金属層5中および/またはAl層3中に分散したFe-Al合金粒7b及び7cとする。そのため、Al含有金属層5の熱膨張係数を、鋼層4の熱膨張係数とAl層3の熱膨張係数との中間程度にできると推測される。 According to the method for manufacturing the steel / aluminum composite foil 1 of the present embodiment, the core material and the Al material are clad-rolled to form a clad material, and this clad material is cold-rolled to obtain Fe-- in the Al-containing metal layer 5. A part of the Al alloy layer is formed as Fe—Al alloy grains 7 b and 7 c which are separated from the steel layer and dispersed in the Al-containing metal layer 5 and / or in the Al layer 3. Therefore, it is presumed that the thermal expansion coefficient of the Al-containing metal layer 5 can be set to an intermediate level between the thermal expansion coefficient of the steel layer 4 and the thermal expansion coefficient of the Al layer 3.

 また、本実施形態の鋼アルミニウム複合箔1の製造方法では、クラッド圧延及び冷間圧延によって、鋼層とAl含有金属層との界面に存在するAl-Fe合金層を分断し、冷間圧延によって、Al含有金属層中および/またはAl層3中にFe-Al合金粒7b及び7cを分散させる。そのため、従来ではアルミニウムめっき層が剥離したり割れたりする原因であったAl-Fe合金層を、有用な組織形態に変化させることができる。 Further, in the method for producing the steel-aluminum composite foil 1 of the present embodiment, the Al—Fe alloy layer present at the interface between the steel layer and the Al-containing metal layer is divided by clad rolling and cold rolling, and cold rolling is performed. Then, Fe—Al alloy grains 7 b and 7 c are dispersed in the Al-containing metal layer and / or in the Al layer 3. Therefore, the Al—Fe alloy layer that has conventionally caused the aluminum plating layer to peel or crack can be changed to a useful structure.

 すなわち、本実施形態の鋼アルミニウム複合箔1の製造方法は、太陽電池や有機EL照明の基材用金属箔として要求される耐食性、表面平滑性、及び弾塑性変形性を同時に満足するとともに、高温に加熱して冷却した場合にもAl含有金属層などの剥離や割れが生じにくい基材用金属箔を製造できる。 That is, the method for producing the steel / aluminum composite foil 1 of the present embodiment simultaneously satisfies the corrosion resistance, surface smoothness, and elastoplastic deformability required as a metal foil for a base material of a solar cell or organic EL lighting, and has a high temperature. Even when heated and cooled, it is possible to produce a metal foil for a substrate that hardly causes peeling or cracking of an Al-containing metal layer or the like.

 実施例により本発明の一態様の効果を更に具体的に説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限り、種々の条件を採用し得る。 The effects of one embodiment of the present invention will be described more specifically with reference to examples. However, the conditions in the examples are one example of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention It is not limited to this one condition example. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

 (実験例1)
 鋼板として、厚さ0.05~2mmのSPCC(Steel Plate Cold Commercial)を用意した。この鋼板の片面または両面に対して、表1~表9に示す溶融アルミニウムめっき浴を用いて溶融アルミニウムめっきを施し、アルミニウムめっき鋼板とした。得られたアルミニウムめっき層と鋼板との界面には、表1~表9に示す化学成分及び平均厚さを有するFe-Al合金層が形成されていた。なお、溶融アルミニウムめっき浴の化学成分は、表1~表9に示すSi以外の残部はAl及び不純物であった。なお、本実施例では、表中に示す「―」は、未使用、未実施、または該当なしを表す。
(Experimental example 1)
SPCC (Steel Plate Cold Commercial) having a thickness of 0.05 to 2 mm was prepared as a steel plate. One side or both sides of this steel plate was subjected to hot-dip aluminum plating using hot-dip aluminum plating baths shown in Tables 1 to 9 to obtain aluminum-plated steel plates. At the interface between the obtained aluminum plating layer and the steel sheet, an Fe—Al alloy layer having chemical components and average thicknesses shown in Tables 1 to 9 was formed. As for chemical components of the molten aluminum plating bath, the balance other than Si shown in Tables 1 to 9 was Al and impurities. In this embodiment, “-” shown in the table indicates unused, not implemented, or not applicable.

 次に、アルミニウムめっき鋼板を芯材とし、この芯材の片面または両面に対して、表1~表9に示すAl材を皮材として用いて、表10~表18に示す温度及び圧下率でクラッド圧延を行うことにより、クラッド材を製造した。更に得られたクラッド材を冷間圧延することにより、実施例1~222の鋼アルミニウム複合箔を製造した。また、比較例1~6の金属箔も製造した。表10~表18に冷間圧延条件を示す。なお、冷間圧延はリバース圧延機で行い、必要に応じて、仕上げパスの圧延をロール粗度(表面粗さRa)を10nm以下に加工した鏡面ロールを用いて実施した。 Next, an aluminum-plated steel sheet is used as a core material, and the aluminum material shown in Tables 1 to 9 is used as a skin material on one or both sides of the core material, and the temperatures and rolling reductions shown in Tables 10 to 18 are used. A clad material was manufactured by performing clad rolling. Further, the obtained clad material was cold-rolled to produce steel aluminum composite foils of Examples 1 to 222. In addition, metal foils of Comparative Examples 1 to 6 were also produced. Tables 10 to 18 show the cold rolling conditions. In addition, cold rolling was performed with the reverse rolling mill, and rolling of the finishing pass was performed using a mirror surface roll processed with a roll roughness (surface roughness Ra) of 10 nm or less as necessary.

 実施例1~222の鋼アルミニウム複合箔及び比較例1~6の金属箔について、圧延方向と直交する板幅方向が観察面となるように厚さ方向に沿って平面切断した切断面を観察した。そして、鋼アルミニウム複合箔の平均厚さ、鋼層の平均厚さ、Al含有金属層の平均厚さ、Al含有金属層の化学成分、Al含有金属層中に含まれる鋼層から離間して分散されたFe-Al合金粒の粒径範囲、Al含有金属層中に含まれる鋼層から離間して分散されたFe-Al合金粒の全Fe-Al合金粒に対する面積分率、Al層の平均厚さ、Al層の表面粗さRa、Al層中に含まれる鋼層から離間して分散されたFe-Al合金粒の粒径範囲、Al層中に含まれる鋼層から離間して分散されたFe-Al合金粒の全Fe-Al合金粒に対する面積分率、ボイドの円相当径を測定した。 Regarding the steel / aluminum composite foils of Examples 1 to 222 and the metal foils of Comparative Examples 1 to 6, the cut surfaces obtained by plane cutting along the thickness direction were observed so that the plate width direction perpendicular to the rolling direction was the observation surface. . And the average thickness of the steel aluminum composite foil, the average thickness of the steel layer, the average thickness of the Al-containing metal layer, the chemical composition of the Al-containing metal layer, dispersed away from the steel layer contained in the Al-containing metal layer The grain size range of the Fe—Al alloy grains formed, the area fraction of the Fe—Al alloy grains dispersed away from the steel layer contained in the Al-containing metal layer with respect to the total Fe—Al alloy grains, the average of the Al layer Thickness, surface roughness Ra of Al layer, particle size range of Fe—Al alloy particles dispersed away from steel layer contained in Al layer, dispersed away from steel layer contained in Al layer The area fraction of Fe—Al alloy grains to the total Fe—Al alloy grains and the equivalent circle diameter of voids were measured.

 鋼層、Al含有金属層、及びAl層の平均厚さは、任意に選択した20箇所の厚さを測定してその平均値とした。また、Al含有金属層及びAl層の化学成分は、グロー放電発光分析装置(一般に高周波GDSとも呼ばれる)を用いて、元素分析を行うことにより求めた。なお、Al含有金属層の化学成分は、表19~表27に示すSi以外の残部はAl及び不純物であった。そして、Al層の化学成分は、表19~表27に示すAl以外の残部は不純物であった。また、Al含有金属層及びAl層中に含まれる鋼層から離間して分散されたFe-Al合金粒の金属間化合物は、表1~表9に示すFe-Al合金層の金属間化合物と対応していた。 The average thickness of the steel layer, Al-containing metal layer, and Al layer was determined by measuring the thicknesses of 20 arbitrarily selected locations. Further, the chemical components of the Al-containing metal layer and the Al layer were determined by performing elemental analysis using a glow discharge emission analyzer (generally also referred to as a high frequency GDS). As for the chemical components of the Al-containing metal layer, the balance other than Si shown in Tables 19 to 27 was Al and impurities. As for the chemical composition of the Al layer, the remainder other than Al shown in Tables 19 to 27 was impurities. Further, the intermetallic compounds of Fe—Al alloy grains dispersed away from the Al-containing metal layer and the steel layer contained in the Al layer are the intermetallic compounds of the Fe—Al alloy layers shown in Tables 1 to 9. It corresponded.

 Fe-Al合金粒の粒径範囲及び面積分率、ボイドの円相当径は、画像解析から求めた。画像解析は、観察視野が板幅方向で200μm以内となる倍率で行い、板幅方向の合計視野が3000μm以上となるように、少なくとも15視野以上を観察した。15視野以上の観察結果から、Al含有金属層中に含まれる鋼層から離間して分散されたFe-Al合金粒、及びAl層中に含まれる、鋼層から離間して分散されたFe-Al合金粒の粒径範囲を求めた。また、15視野以上の観察結果から、Al含有金属層中に含まれる鋼層から離間して分散されたFe-Al合金粒の全Fe-Al合金粒に対する面積分率、及びAl層中に含まれる鋼層から離間して分散されたFe-Al合金粒の全Fe-Al合金粒に対する面積分率を求めた。 The particle size range and area fraction of Fe—Al alloy grains and the equivalent circle diameter of voids were determined from image analysis. The image analysis was performed at a magnification such that the observation visual field was within 200 μm in the plate width direction, and at least 15 visual fields were observed so that the total visual field in the plate width direction was 3000 μm or more. From the observation results of 15 fields of view or more, Fe—Al alloy grains dispersed away from the steel layer contained in the Al-containing metal layer, and Fe— dispersed in the Al layer, separated from the steel layer. The particle size range of the Al alloy grains was determined. Further, from the observation results of 15 or more fields of view, the area fraction of Fe—Al alloy grains dispersed away from the steel layer contained in the Al-containing metal layer with respect to the total Fe—Al alloy grains, and included in the Al layer The area fraction of the Fe—Al alloy particles dispersed away from the steel layer to the total Fe—Al alloy particles was determined.

 また、ボイドは、上記断面をSEM(Scanning Electron Microscope)で観察し、金属組織を画像解析することで評価した。板幅方向の合計視野が3000μm以上となるように、複数視野で観察した。このすべての観察視野内で、円相当直径が1μm超であるボイドが1つも視認されなければ「無し」と判断し、円相当直径が1μm超であるボイドが1つでも視認されれば「有り」と判断した。 Moreover, the void was evaluated by observing the above-mentioned cross section with SEM (Scanning Electron Microscope) and analyzing the image of the metal structure. The observation was performed in a plurality of visual fields so that the total visual field in the plate width direction was 3000 μm or more. In all of these observation fields, if no void with a circle equivalent diameter exceeding 1 μm is visually recognized, it is judged as “None”, and if any void with a circle equivalent diameter exceeding 1 μm is visually recognized, “Yes” I decided.

 表面平滑性の評価
 鋼アルミニウム複合箔のAl層の表面粗さRaが、600nm以下であるとき表面平滑性が許容できると判断し、25nm以下であるとき表面平滑性に特に優れると判断した。これらの結果を表19~表27に示す。
Evaluation of surface smoothness When the surface roughness Ra of the Al layer of the steel aluminum composite foil was 600 nm or less, it was judged that the surface smoothness was acceptable, and when it was 25 nm or less, it was judged that the surface smoothness was particularly excellent. These results are shown in Tables 19 to 27.

 更に、実施例1~222の鋼アルミニウム複合箔について、耐食試験、180度密着曲げ試験、CIGS成膜後の欠陥数試験、CIGSの変換効率試験、及び温度サイクル試験を行った。比較例1~6の金属箔についても、必要に応じて、上記の各試験を行った。表28~表36に、耐食試験、180度曲げ試験、CIGS成膜後の欠陥数試験、CIGSの変換効率試験、及び温度サイクル試験の結果を記す。なお、片方の箔面にのみAl層が形成されている鋼アルミニウム複合箔については、Al層が形成されている箔面を評価の対象とした。また、両方の箔面にAl層が形成されている鋼アルミニウム複合箔については、任意の一方の箔面を評価の対象とした。 Further, the steel aluminum composite foils of Examples 1 to 222 were subjected to a corrosion resistance test, a 180-degree adhesion bending test, a defect number test after CIGS film formation, a CIGS conversion efficiency test, and a temperature cycle test. For the metal foils of Comparative Examples 1 to 6, the above tests were performed as necessary. Tables 28 to 36 show the results of the corrosion resistance test, 180-degree bending test, defect number test after CIGS film formation, CIGS conversion efficiency test, and temperature cycle test. In addition, about the steel aluminum composite foil in which the Al layer was formed only on one foil surface, the foil surface in which the Al layer was formed was made into the object of evaluation. Moreover, about the steel aluminum composite foil in which Al layer is formed in both foil surfaces, arbitrary one foil surface was made into the object of evaluation.

 耐食性の評価
 耐食試験は、塩水噴霧試験(SST)によって評価した。35℃に保持された5%NaCl水を鋼アルミニウム複合箔のAl層の表面に噴霧し、400時間以上目視で腐食を確認できない場合をVG(Very Good)、300時間以上をG(Good)、120時間以上をA(Acceptable)、100時間以上をNG(Not Good)、100時間未満をB(Bad)とした。そして、VG、G、Aを合格とし、NG、Bを不合格とした。
Evaluation of corrosion resistance The corrosion resistance test was evaluated by a salt spray test (SST). When 5% NaCl water maintained at 35 ° C. is sprayed on the surface of the Al layer of the steel / aluminum composite foil, VG (Very Good) when corrosion cannot be confirmed visually for 400 hours or more, G (Good) for 300 hours or more, 120 hours or more was A (Acceptable), 100 hours or more was NG (Not Good), and less than 100 hours was B (Bad). Then, VG, G, and A were accepted, and NG and B were rejected.

 弾塑性変形性の評価
 180度密着曲げ試験は、鋼アルミニウム複合箔に、内側半径がゼロで、曲げ角度が180°となる180度密着曲げ加工を繰り返すことで実施した。そして、鋼アルミニウム複合箔のAl層またはAl含有金属層の剥離または亀裂が生じる加工回数を調査した。鋼アルミニウム複合箔のAl層またはAl含有金属層の剥離または亀裂の観察は、180度密着曲げ加工の1サイクル毎に、鋼アルミニウム複合箔の曲げ外周部を光学顕微鏡で観察することで行った。鋼アルミニウム複合箔のAl層またはAl含有金属層の剥離または亀裂が、光学顕微鏡で観察された時点の加工回数を破壊回数とした。破壊回数が2回以上であるとき弾塑性変形性が許容できると判断し、破壊回数が3回以上であるとき弾塑性変形性が特に良好であると判断した。
Evaluation of Elasto-Plastic Deformability The 180-degree contact bending test was performed by repeating 180-degree contact bending with a steel aluminum composite foil having an inner radius of zero and a bending angle of 180 °. And the frequency | count of a process with which peeling or a crack of the Al layer or Al-containing metal layer of steel aluminum composite foil was investigated. The observation of peeling or cracking of the Al layer or Al-containing metal layer of the steel / aluminum composite foil was performed by observing the bending outer peripheral portion of the steel / aluminum composite foil with an optical microscope every cycle of 180-degree contact bending. The number of times of processing when peeling or cracking of the Al layer or the Al-containing metal layer of the steel / aluminum composite foil was observed with an optical microscope was defined as the number of times of destruction. When the number of fractures was 2 times or more, it was judged that the elastoplastic deformability was acceptable, and when the number of fractures was 3 times or more, the elastoplastic deformability was judged to be particularly good.

 高温に加熱して冷却した後の剥離や割れの評価
 CIGS成膜後の欠陥数試験は、鋼アルミニウム複合箔上にMo電極及びCIGS光発電層を成膜することで実施した。なお、Mo電極及びCIGS光発電層を形成する際に、鋼アルミニウム複合箔は、最高で400℃以上に加熱され、室温まで冷却された。そして、圧延方向と直交する板幅方向が観察面となるように厚さ方向に沿って平面切断した切断面を観察することで、成膜プロセスで加わる熱によって生じる欠陥の有無を調べた。観察視野が板幅方向で200μm以内となる倍率で、1サンプルあたり10視野以上の観察を10サンプルで実施した。鋼層とAl含有金属層との剥離、Al含有金属層の割れ、Al含有金属層とAl層との剥離、及びAl層の割れの発生しているサンプルの合計数を、CIGS成膜後の欠陥数と定義した。CIGS成膜後の欠陥数が5サンプル以下であるとき許容できると判断し、CIGS成膜後の欠陥数が2サンプル以下であるとき特に良好であると判断した。
Evaluation of peeling and cracking after heating to high temperature and cooling The defect number test after CIGS film formation was carried out by forming a Mo electrode and a CIGS photovoltaic layer on a steel aluminum composite foil. In addition, when forming Mo electrode and a CIGS photovoltaic layer, the steel aluminum composite foil was heated to 400 degreeC or more at maximum, and was cooled to room temperature. And the presence or absence of the defect which arises with the heat | fever added in a film-forming process was investigated by observing the cut surface cut | disconnected plane-wise along the thickness direction so that the plate width direction orthogonal to a rolling direction might turn into an observation surface. Observation with 10 or more fields per sample was performed with 10 samples at a magnification at which the viewing field was within 200 μm in the plate width direction. The total number of samples in which peeling of the steel layer and the Al-containing metal layer, cracking of the Al-containing metal layer, peeling of the Al-containing metal layer and the Al layer, and cracking of the Al layer occurred was measured after the CIGS film formation. It was defined as the number of defects. When the number of defects after CIGS film formation was 5 samples or less, it was judged that it was acceptable, and when the number of defects after CIGS film formation was 2 samples or less, it was judged to be particularly good.

 CIGS光電変換効率の評価
 鋼アルミニウム複合箔上にMo電極及びCIGS光発電層を成膜してサブモジュールを作製し、CIGS光電変換効率を調べた。CIGS光電変換効率は、7%未満をNG(NotGood)、7%以上8%未満をA(Acceptable)、8%以上10%未満をG(Good)、10以上12%未満をVG(Very Good)、12%以上をGG(Greatly Good)として評価した。そして、A、G、VG、GGを合格とし、NGを不合格とした。
Evaluation of CIGS photoelectric conversion efficiency A sub-module was prepared by forming a Mo electrode and a CIGS photovoltaic layer on a steel aluminum composite foil, and the CIGS photoelectric conversion efficiency was examined. CIGS photoelectric conversion efficiency is less than 7% NG (Not Good), 7% to less than 8% A (Acceptable), 8% to less than 10% G (Good), 10 to less than 12% VG (Very Good) , 12% or more was evaluated as GG (Greatly Good). Then, A, G, VG, and GG were accepted and NG was rejected.

 温度サイクル試験
 鋼アルミニウム複合箔上にMo電極及びCIGS光発電層を成膜してサブモジュールを作製し、温度サイクル試験を行うことで温度変化に対する信頼性を評価した。温度サイクル試験は、試験材である上記サブモジュールに対して、-40℃で15分保持した後85℃で15分保持する1サイクルの雰囲気変化を、200サイクル実施した。そして、200サイクル試験の前後でサブモジュールの発電効率を測定し、発電効率の低下を調べた。200サイクル試験前と試験後とで、サブモジュールの発電効率の低下が5%以内の場合をG(Good)、5%超の低下の場合をNG(NotGood)と判断した。そして、NGを不合格とした。これらの結果を表28~表36に示す。
Temperature cycle test A Mo module and a CIGS photovoltaic layer were formed on a steel / aluminum composite foil to produce a submodule, and a temperature cycle test was performed to evaluate the reliability against temperature changes. In the temperature cycle test, the above-mentioned submodule as a test material was subjected to 200 cycles of one cycle of atmospheric change that was held at −40 ° C. for 15 minutes and then held at 85 ° C. for 15 minutes. Then, the power generation efficiency of the submodule was measured before and after the 200 cycle test, and the decrease in power generation efficiency was examined. The case where the decrease in power generation efficiency of the submodule was within 5% before and after the 200 cycle test was determined as G (Good), and the case where the decrease was more than 5% was determined as NG (NotGood). NG was rejected. These results are shown in Tables 28 to 36.

 (実験例2)
 実験例2では、実験例1で作製した鋼アルミニウム複合箔のAl層上に、AlN層、Al層、ゾルゲル層、またはラミネート層を形成させ、更にこれらの上にMo電極及びCIGS光発電層を成膜してサブモジュールを作製した。Mo電極及びCIGS光発電層を形成する際に、鋼アルミニウム複合箔は、最高で400℃以上に加熱され、室温まで冷却された。これら実施例223~240について、耐電圧、表面粗さRa、及びCIGS光電変換効率を調べた。耐電圧が500V以上であるとき、耐電圧性に優れると判断した。表面粗さRaが25nm以下であるとき、表面平滑性に特に優れると判断した。また、CIGS光電変換効率は、7%未満をNG(NotGood)、7%以上8%未満をA(Acceptable)、8%以上10%未満をG(Good)、10以上12%未満をVG(Very Good)、12%以上をGG(Greatly Good)として評価した。そして、NGを不合格とした。これらの結果を表37に示す。
(Experimental example 2)
In Experimental Example 2, an AlN layer, an Al 2 O 3 layer, a sol-gel layer, or a laminate layer is formed on the Al layer of the steel / aluminum composite foil produced in Experimental Example 1, and a Mo electrode and CIGS light are further formed thereon. A power generation layer was formed to produce a submodule. When forming the Mo electrode and the CIGS photovoltaic layer, the steel / aluminum composite foil was heated to 400 ° C. or higher at maximum and cooled to room temperature. With respect to these Examples 223 to 240, the withstand voltage, the surface roughness Ra, and the CIGS photoelectric conversion efficiency were examined. When the withstand voltage was 500 V or more, it was judged that the withstand voltage was excellent. When the surface roughness Ra was 25 nm or less, it was judged that the surface smoothness was particularly excellent. Further, CIGS photoelectric conversion efficiency is NG (Not Good) less than 7%, A (Acceptable) from 7% to less than 8%, G (Good) from 8% to less than 10%, VG (Very) from 10% to less than 12%. Good), 12% or more was evaluated as GG (Greatly Good). NG was rejected. These results are shown in Table 37.

 なお、AlN層は、アンモニア含有する不活性ガスを用いた加熱処理により作製した。Al層は硫酸溶液中で直流電流による陽極酸化を行うことで作製した。 The AlN layer was produced by heat treatment using an inert gas containing ammonia. The Al 2 O 3 layer was prepared by performing anodization with a direct current in a sulfuric acid solution.

 また、ゾルゲル層の形成では、ゾル調製の出発原料として10モルのメチルトリエトキシシランと10モルのテトラエトキシシランの混合物を用い、この混合物に20モルのエタノールを加えて良く撹拌した。その後、撹拌しながら、2モルの酢酸と100モルの水とを混合した酢酸水溶液を滴下し加水分解を行った。この様にして得たゾルに100モルのエタノールを加えて最終的なゾルを得た。ディップコーティング法によって鋼アルミニウム複合箔の表面にこのゾルを塗布した後、空気中で100℃、1分間の乾燥を行った。その後、窒素雰囲気中で昇温速度10℃/分として室温から400℃まで昇温し、400℃で30分間焼き付けてゾルゲル層を得た。 In forming the sol-gel layer, a mixture of 10 mol of methyltriethoxysilane and 10 mol of tetraethoxysilane was used as a starting material for the preparation of sol, and 20 mol of ethanol was added to this mixture and stirred well. Thereafter, while stirring, an aqueous solution of acetic acid in which 2 mol of acetic acid and 100 mol of water were mixed was added dropwise for hydrolysis. 100 mol of ethanol was added to the sol thus obtained to obtain a final sol. The sol was applied to the surface of the steel / aluminum composite foil by the dip coating method, and then dried in air at 100 ° C. for 1 minute. Thereafter, the temperature was raised from room temperature to 400 ° C. in a nitrogen atmosphere at a rate of temperature rise of 10 ° C./min, and baked at 400 ° C. for 30 minutes to obtain a sol-gel layer.

 また、ラミネート層の形成では、ナイロン系接着剤をクレゾールとキシレンの質量比70:30の混合溶剤に15質量%の濃度で溶解し、その溶解物を樹脂に塗布した後、その樹脂を300℃に加熱された鋼アルミニウム複合箔に1MPaの圧力で熱圧着することで熱ラミネートした。 In forming the laminate layer, the nylon adhesive was dissolved in a mixed solvent of cresol and xylene in a mass ratio of 70:30 at a concentration of 15% by mass, and the dissolved material was applied to the resin. It heat-laminated by thermocompression bonding to the steel aluminum composite foil heated to 1 MPa with the pressure of 1 MPa.

 表1~表37に示すように、実施例1~240は、耐食性、表面平滑性、及び弾塑性変形性に優れ、かつ高温に加熱して冷却した場合でもAl含有金属層やAl層の剥離や割れが抑制されていた。 As shown in Tables 1 to 37, Examples 1 to 240 are excellent in corrosion resistance, surface smoothness, and elastoplastic deformability, and peel off Al-containing metal layers and Al layers even when heated to high temperatures and cooled. And cracks were suppressed.

 一方、比較例1~6は、耐食性、表面平滑性、または弾塑性変形性のいずれかが不十分となっており、または高温に加熱して冷却した場合にAl含有金属層やAl層の剥離や割れが発生した。 On the other hand, in Comparative Examples 1 to 6, any of corrosion resistance, surface smoothness, and elastoplastic deformation is insufficient, or when the Al-containing metal layer or Al layer is peeled off when heated to high temperature and cooled And cracks occurred.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008

Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009

Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010

Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011

Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012

Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013

Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014

Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015

Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016

Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017

Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018

Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019

Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020

Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021

Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022

Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023

Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024

Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025

Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026

Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027

Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028

Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029

Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030

Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031

Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032

Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033

Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034

Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035

Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036

Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037

 本発明の上記態様によれば、太陽電池や有機EL照明の基材用金属箔として要求される耐食性、表面平滑性、及び弾塑性変形性を同時に満足するするとともに、高温に加熱して冷却した場合にもAl含有金属層などの剥離や割れが生じにくい鋼アルミニウム複合箔を提供できる。そのため、産業上の利用可能性が高い。 According to the said aspect of this invention, while satisfy | filling simultaneously the corrosion resistance, surface smoothness, and elastic-plastic deformability which are requested | required as a metal foil for base materials of a solar cell or organic electroluminescent illumination, it heated and cooled to high temperature Even in such a case, it is possible to provide a steel / aluminum composite foil in which peeling or cracking of an Al-containing metal layer or the like hardly occurs. Therefore, industrial applicability is high.

 1…鋼アルミニウム複合箔
 2…芯層
 3…Al層
 3a…Al層3の表面
 4…鋼層
 4a…鋼層4の鋼層面
 5…Al含有金属層
 5a…Al含有金属層5のAl含有金属層面
 6…界面
 7…Fe-Al合金粒
 7a…界面6上に分散されたFe-Al合金粒
 7b…Al含有金属層5中に分散されたFe-Al合金粒
 7c…Al層3中に分散されたFe-Al合金粒
 8…各種の被覆層
 9…ボイド
DESCRIPTION OF SYMBOLS 1 ... Steel aluminum composite foil 2 ... Core layer 3 ... Al layer 3a ... Surface of Al layer 3 4 ... Steel layer 4a ... Steel layer surface of steel layer 4 5 ... Al containing metal layer 5a ... Al containing metal of Al containing metal layer 5 Layer surface 6 ... Interface 7 ... Fe-Al alloy grain 7a ... Fe-Al alloy grain dispersed on interface 6 7b ... Fe-Al alloy grain dispersed in Al-containing metal layer 5 7c ... Dispersed in Al layer 3 Fe-Al alloy particles 8 ... Various coating layers 9 ... Void

Claims (15)

 鋼層及び前記鋼層上に形成されたAl含有金属層を有する芯層と、
 前記芯層の前記Al含有金属層上に積層されたAl層と、を具備してなり、
 厚さ方向と切断方向とが平行な断面で見た場合に、前記Al含有金属層中に、前記鋼層から離間して分散されたFe-Al合金粒が含まれていることを特徴とする鋼アルミニウム複合箔。
A core layer having a steel layer and an Al-containing metal layer formed on the steel layer;
An Al layer laminated on the Al-containing metal layer of the core layer,
When viewed in a cross section in which the thickness direction and the cutting direction are parallel, the Al-containing metal layer includes Fe—Al alloy particles dispersed and separated from the steel layer. Steel aluminum composite foil.
 前記断面で見た場合に、前記Al含有金属層中に含まれる前記鋼層から離間して分散された前記Fe-Al合金粒の面積分率が、前記断面中に含まれるFe-Al合金粒に対して、7.5面積%以上50面積%未満の範囲であることを特徴とする請求項1に記載の鋼アルミニウム複合箔。 When viewed in the cross section, the area fraction of the Fe—Al alloy grains dispersed and separated from the steel layer contained in the Al-containing metal layer is the Fe—Al alloy grain contained in the cross section. On the other hand, the steel aluminum composite foil according to claim 1, which is in a range of 7.5 area% or more and less than 50 area%.  前記Al含有金属層中に含まれる前記鋼層から離間して分散された前記Fe-Al合金粒の粒径が、0.1~5μmの範囲であることを特徴とする請求項1または請求項2に記載の鋼アルミニウム複合箔。 2. The particle size of the Fe—Al alloy particles dispersed and spaced apart from the steel layer contained in the Al-containing metal layer is in the range of 0.1 to 5 μm. 2. The steel aluminum composite foil according to 2.  前記断面で見た場合に、前記Al層中に、前記鋼層から離間して分散されたFe-Al合金粒が含まれていることを特徴とする請求項1~3の何れか一項に記載の鋼アルミニウム複合箔。 The Fe-Al alloy particles dispersed and spaced apart from the steel layer are included in the Al layer when viewed in the cross section. Steel aluminum composite foil of description.  前記断面で見た場合に、前記Al層中に含まれる前記鋼層から離間して分散された前記Fe-Al合金粒の面積分率が、前記断面中に含まれるFe-Al合金粒に対して、7.5面積%以上40面積%未満の範囲であることを特徴とする請求項4に記載の鋼アルミニウム複合箔。 When viewed in the cross section, the area fraction of the Fe—Al alloy grains dispersed away from the steel layer contained in the Al layer is smaller than the Fe—Al alloy grains contained in the cross section. The steel aluminum composite foil according to claim 4, wherein the steel aluminum composite foil is in a range of 7.5 area% or more and less than 40 area%.  前記Al層中に含まれる前記鋼層から離間して分散された前記Fe-Al合金粒の粒径が、0.1~5μmの範囲であることを特徴とする請求項4または請求項5に記載の鋼アルミニウム複合箔。 6. The particle diameter of the Fe—Al alloy particles dispersed and separated from the steel layer contained in the Al layer is in the range of 0.1 to 5 μm. Steel aluminum composite foil of description.  前記厚さ方向を法線とする前記鋼層の2つの外面を鋼層面としたとき、前記Al含有金属層が、それぞれの前記鋼層面上に配されることを特徴とする請求項1~6の何れか一項に記載の鋼アルミニウム複合箔。 The Al-containing metal layer is disposed on each steel layer surface when the two outer surfaces of the steel layer having the thickness direction as a normal line are steel layer surfaces. Steel aluminum composite foil as described in any one of these.  前記厚さ方向を法線とする前記Al含有金属層の2つの外面をAl含有金属層面としたとき、前記Al層が、それぞれの前記Al含有金属層面上に配されることを特徴とする請求項7に記載の鋼アルミニウム複合箔。 The Al layer is arranged on each of the Al-containing metal layer surfaces when two outer surfaces of the Al-containing metal layer having the thickness direction as a normal line are Al-containing metal layer surfaces. Item 8. The steel aluminum composite foil according to Item 7.  前記断面中に含まれるボイドが、円相当径で1μm未満であることを特徴とする請求項1~8の何れか一項に記載の鋼アルミニウム複合箔。 The steel / aluminum composite foil according to any one of claims 1 to 8, wherein a void contained in the cross section has an equivalent circle diameter of less than 1 µm.  前記Al含有金属層の化学成分が、1~15質量%のSiを含有し、残部がAl及び不純物からなることを特徴とする請求項1~9の何れか一項に記載の鋼アルミニウム複合箔。 The steel-aluminum composite foil according to any one of claims 1 to 9, wherein the chemical component of the Al-containing metal layer contains 1 to 15 mass% of Si, and the balance is made of Al and impurities. .  前記Fe-Al合金粒が、FeAl、FeAlSi、FeAlSiから選択される少なくとも1つの金属間化合物を含むことを特徴とする請求項1~10の何れか一項に記載の鋼アルミニウム複合箔。 11. The Fe—Al alloy grain according to claim 1, wherein the Fe—Al alloy grain contains at least one intermetallic compound selected from FeAl 3 , Fe 2 Al 8 Si, and FeAl 5 Si. Steel aluminum composite foil.  前記Al層の化学成分が、99.0質量%以上のAl及び不純物からなることを特徴とする請求項1~11の何れか一項に記載の鋼アルミニウム複合箔。 The steel-aluminum composite foil according to any one of claims 1 to 11, wherein the chemical component of the Al layer comprises 99.0% by mass or more of Al and impurities.  前記Al層の表面の表面粗さRaが、10~25nmであることを特徴とする請求項1~12の何れか一項に記載の鋼アルミニウム複合箔。 The steel aluminum composite foil according to any one of claims 1 to 12, wherein the surface roughness Ra of the surface of the Al layer is 10 to 25 nm.  前記Al層の表面に、さらに、AlN層及びAl層から選択される少なくとも1つが備えられていることを特徴とする請求項1~13の何れか一項に記載の鋼アルミニウム複合箔。 The steel aluminum composite foil according to any one of claims 1 to 13, further comprising at least one selected from an AlN layer and an Al 2 O 3 layer on the surface of the Al layer. .  前記Al層の表面に、さらに、ゾルゲル層及びラミネート層から選択される少なくとも1つが備えられていることを特徴とする請求項1~13の何れか一項に記載の鋼アルミニウム複合箔。 The steel / aluminum composite foil according to any one of claims 1 to 13, further comprising at least one selected from a sol-gel layer and a laminate layer on the surface of the Al layer.
PCT/JP2014/054856 2013-02-28 2014-02-27 Steel-aluminium composite foil Ceased WO2014133075A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015503017A JP5932132B2 (en) 2013-02-28 2014-02-27 Steel aluminum composite foil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-039706 2013-02-28
JP2013039706 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014133075A1 true WO2014133075A1 (en) 2014-09-04

Family

ID=51428334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054856 Ceased WO2014133075A1 (en) 2013-02-28 2014-02-27 Steel-aluminium composite foil

Country Status (3)

Country Link
JP (1) JP5932132B2 (en)
TW (1) TWI601635B (en)
WO (1) WO2014133075A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159319A (en) * 2015-02-27 2016-09-05 新日鐵住金株式会社 Aluminum clad steel strip and manufacturing method thereof
JP2018125522A (en) * 2017-01-27 2018-08-09 積水化学工業株式会社 Flexible solar cell
CN111492087A (en) * 2017-12-22 2020-08-04 Posco公司 Aluminum alloy plated steel sheet having excellent resistance to weld embrittlement and plating adhesion
TWI771066B (en) * 2021-06-18 2022-07-11 中國鋼鐵股份有限公司 Simulation test method for welding lamellar tearing of high-strength steel plate for offshore underwater foundation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107138527B (en) * 2017-05-25 2018-10-30 哈尔滨工业大学 The preparation method of CNTs/Ti biomimetic micro-nano laminated composite materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732357A (en) * 1980-08-04 1982-02-22 Nisshin Steel Co Ltd Aluminum clad steel plate
JPS5883457U (en) * 1981-12-02 1983-06-06 日新製鋼株式会社 can
JPH0230526A (en) * 1988-07-20 1990-01-31 Nippon Steel Corp Steel plates for cans and can lids, can bodies and can lids
WO2012067143A1 (en) * 2010-11-17 2012-05-24 新日鉄マテリアルズ株式会社 Metal foil for base and process for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732357A (en) * 1980-08-04 1982-02-22 Nisshin Steel Co Ltd Aluminum clad steel plate
JPS5883457U (en) * 1981-12-02 1983-06-06 日新製鋼株式会社 can
JPH0230526A (en) * 1988-07-20 1990-01-31 Nippon Steel Corp Steel plates for cans and can lids, can bodies and can lids
WO2012067143A1 (en) * 2010-11-17 2012-05-24 新日鉄マテリアルズ株式会社 Metal foil for base and process for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159319A (en) * 2015-02-27 2016-09-05 新日鐵住金株式会社 Aluminum clad steel strip and manufacturing method thereof
JP2018125522A (en) * 2017-01-27 2018-08-09 積水化学工業株式会社 Flexible solar cell
CN111492087A (en) * 2017-12-22 2020-08-04 Posco公司 Aluminum alloy plated steel sheet having excellent resistance to weld embrittlement and plating adhesion
CN111492087B (en) * 2017-12-22 2022-12-06 Posco公司 Aluminum alloy plated steel sheet having excellent weld embrittlement resistance and plating adhesion
TWI771066B (en) * 2021-06-18 2022-07-11 中國鋼鐵股份有限公司 Simulation test method for welding lamellar tearing of high-strength steel plate for offshore underwater foundation

Also Published As

Publication number Publication date
TWI601635B (en) 2017-10-11
TW201437010A (en) 2014-10-01
JP5932132B2 (en) 2016-06-08
JPWO2014133075A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6529553B2 (en) Polyimide layer-containing flexible substrate, polyimide layer-containing flexible solar cell substrate, flexible solar cell and method for producing them
JP5932132B2 (en) Steel aluminum composite foil
US20080257404A1 (en) Metal Strip Product
JP5816615B2 (en) Metal foil for substrate
KR101378053B1 (en) Insulating metal substrate and semiconductor device
EP2925089B1 (en) Substrate for flexible devices and method for producing same
CN110592515B (en) A kind of hot dip tinned copper material and its manufacturing method
US10465275B2 (en) Iron bus bar having copper layer, and method for manufacturing the same
JP6208869B2 (en) Metal substrate and panel for electronic device fabrication
JP5816617B2 (en) Metal foil for substrate and manufacturing method thereof
WO2014057771A1 (en) Metal substrate
KR20230076427A (en) Black bus bar and manufacturing method thereof
JP2015111621A (en) Semiconductor element forming substrate and method for manufacturing semiconductor element forming substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757436

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015503017

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14757436

Country of ref document: EP

Kind code of ref document: A1