WO2014057771A1 - Metal substrate - Google Patents

Metal substrate Download PDF

Info

Publication number
WO2014057771A1
WO2014057771A1 PCT/JP2013/074973 JP2013074973W WO2014057771A1 WO 2014057771 A1 WO2014057771 A1 WO 2014057771A1 JP 2013074973 W JP2013074973 W JP 2013074973W WO 2014057771 A1 WO2014057771 A1 WO 2014057771A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal substrate
reaction suppression
base material
aluminum
Prior art date
Application number
PCT/JP2013/074973
Other languages
French (fr)
Japanese (ja)
Inventor
晋司 山本
井上 良二
啓太 渡辺
Original Assignee
株式会社Neomaxマテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Neomaxマテリアル filed Critical 株式会社Neomaxマテリアル
Priority to JP2014534838A priority Critical patent/JPWO2014057771A1/en
Publication of WO2014057771A1 publication Critical patent/WO2014057771A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/12Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/142Metallic substrates having insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a metal substrate suitable as a substrate of an electronic device using a semiconductor such as a solar cell.
  • thin-film solar cells in which a semiconductor film as a photoelectric conversion element is stacked on a glass substrate have been used from silicon-based solar cells using a silicon substrate.
  • silicon-based semiconductors have been mainly used as semiconductor film materials, but recently, compound-based semiconductors such as CIS, CIGS, CZTS, and CdTe, and organic semiconductors have been used. It has become.
  • Compound-based semiconductor films have high light absorptance, and heat treatment is performed at a high temperature of about 500 ° C. during film formation or after film formation to improve crystallinity of the semiconductor film and reduce defects. Can be realized and show high conversion efficiency.
  • Patent Document 1 proposes a metal substrate including a metal base material, an aluminum layer formed thereon, and an insulating layer formed of an anodized film integrally formed on the outer surface of the aluminum layer.
  • the anodized film is formed by anodizing the surface layer portion of the initial aluminum layer that is the base of the aluminum layer.
  • By forming the insulating layer a large number of semiconductor elements can be formed thereon.
  • a metal substrate can be reduced in weight as compared with a glass substrate, and has an advantage of excellent flexibility.
  • the metal substrate is not limited to a substrate for a thin film solar cell, but is also used as a substrate for an electronic device using a semiconductor such as a thin film transistor, LED, or organic EL.
  • the thermal expansion coefficients of the aluminum layer and the anodic oxide film are greatly different, so that the anodic oxide film is cracked even at a temperature of about several hundred degrees Celsius. Insulation properties are likely to deteriorate, and sufficient heat resistance is not obtained. Therefore, as described in Patent Document 2, a metal substrate provided with a steel base material and a porous anodic oxide film thereon has been proposed. Since the porous anodic oxide film can relieve thermal stress acting on the porous anodic oxide film, the metal substrate can suppress the occurrence of cracks in the anodic oxide film at a temperature of about 500 ° C.
  • Patent Document 3 proposes a metal substrate in which an aluminum layer is formed on a steel base via a Ti layer. According to this metal substrate, the Ti layer suppresses the diffusion reaction between Al and Fe even at a high temperature of 550 ° C., so that the growth of intermetallic compounds is suppressed.
  • the growth of the intermetallic compound generated between the steel base and the aluminum layer is suppressed by the Ti layer, and the heat resistance of the metal substrate is improved. Since is an expensive material, an increase in material cost is inevitable. Although this problem can be alleviated to some extent by reducing the thickness of the Ti layer to about several ⁇ mTi, Ti is a material that has low extensibility and is easy to break. It is practically difficult to form a Ti layer. Therefore, it is difficult to realize it without using a physical vapor deposition method such as sputtering. Thus, an expensive vapor deposition apparatus is required to form a thin Ti layer, and the manufacturing cost of the metal substrate also increases.
  • the present invention has been made in view of such a problem, and is easy to manufacture, and even when subjected to heat treatment at a high temperature exceeding 500 ° C. without using an expensive material such as Ti, an aluminum layer or an insulating layer
  • An object of the present invention is to provide a metal substrate having excellent heat resistance that does not peel from the iron base material as a base.
  • the present inventor does not use an expensive material such as Ti, and various materials in which an intermetallic compound formed between an iron base and an aluminum layer hardly grows even when heated at a high temperature exceeding 500 ° C. As a result of the investigation, it was found that an Al—Si alloy material containing a specific amount of Si hardly grows an intermetallic compound even though the main component is Al, and the present invention has been completed.
  • the present invention relates to a metal substrate used in an electronic device using a semiconductor, and the metal substrate according to the first aspect of the present invention includes a base material layer and a reaction suppression layer, and is provided on one surface of the base material layer.
  • the reaction suppression layer is bonded, the base material layer is formed of an iron base material, and the reaction suppression layer is formed of an Al—Si alloy having a Si content of 0.2 mass% or more and 8.5 mass% or less. is there.
  • “mass%” is simply described as “%”.
  • the amount of Si in the Al—Si alloy is preferably 0.4% or more and 1.6% or less, more preferably 0.5% or more and 1.0% or less.
  • the reaction suppression layer is formed of an Al—Si alloy containing Si of 0.2% or more and 8.5% or less
  • the metal substrate is heat-treated at a high temperature exceeding 500 ° C.
  • Si inevitably diffuses and mixes into the Al—Fe-based intermetallic compound generated between the base material layer and the reaction suppression layer, so that the growth of the Al—Fe-based intermetallic compound is suppressed, As a result, peeling of the reaction suppression layer due to the growth of the intermetallic compound layer is prevented, and the heat resistance of the substrate is improved.
  • the base material layer and the reaction suppression layer can be easily bonded to each other by pressure welding, the metal substrate according to the present invention can be easily manufactured by a clad method without using an expensive vapor deposition apparatus. .
  • iron base material various alloy steels are used in addition to pure iron and carbon steel.
  • Stainless steel is preferable as the alloy steel.
  • ferritic stainless steel is more preferable than austenitic stainless steel in terms of thermal expansion coefficient and cost.
  • Stainless steel has excellent corrosion resistance, and Cr contained in the stainless steel inevitably diffuses and mixes with the intermetallic compound during the heat treatment, so that the growth of the intermetallic compound can be further suppressed. This advantage has been found in the process of the present invention.
  • the metal substrate of the second form according to the present invention is obtained by joining an aluminum layer to the outer surface of the reaction suppression layer, that is, the exposed surface, based on the metal substrate having the two-layer structure of the first form.
  • the aluminum layer is easily bonded to the reaction suppression layer by a cladding method.
  • the aluminum layer is preferably formed of pure Al. Since pure Al has few inclusions, the aluminum layer is excellent in surface smoothness as compared with the Al—Si alloy forming the reaction suppression layer. Furthermore, an aluminum anodic oxide film having a uniform thickness can be formed on the aluminum layer, and a semiconductor film having a uniform thickness can be formed thereon.
  • the reaction suppression layer has a relatively smooth surface. In particular, when the Si content is as low as 1.6% or less, a smoother surface can be obtained. Therefore, even with a metal substrate that does not include the aluminum layer, a semiconductor film having a uniform thickness can be stacked above the reaction suppression layer.
  • the metal substrate of the third form according to the present invention is obtained by joining another reaction suppression layer to the other surface of the base material layer on the basis of the metal substrate having the two-layer structure of the first form.
  • the metal substrate of the 4th form by this invention is based on the metal substrate of the 3 layer structure of the said 2nd form, and another reaction suppression layer was joined to the other surface of the base material layer.
  • a metal substrate having a four-layer structure according to the fourth embodiment in which another aluminum layer is bonded to the outer surface of the other reaction suppression layer, that is, the exposed surface. It is.
  • the other reaction suppression layer is also formed of the Al—Si alloy in the same manner as the reaction suppression layer.
  • the said other aluminum layer is also formed with a pure aluminum like the said aluminum layer.
  • the other reaction suppressing layers and the other aluminum layers are also easily bonded to the adjacent layers by the cladding method.
  • the total thickness of the metal substrate in each form is 30 ⁇ m to 150 ⁇ m. By setting it to such a thickness, good flexibility can be imparted to the substrate.
  • an insulating layer may be formed on the outermost surface of the aluminum layer or the reaction suppression layer, that is, the exposed surface. That is, on the outer surface of the reaction suppression layer of the metal substrate of the first form, on the outer surface of the aluminum layer of the metal substrate of the second form, the reaction suppression layer and the other reaction suppression layer of the metal substrate of the third form
  • An insulating layer may be formed on any one or each of the outer surfaces, and on any one or each of the outer surfaces of the aluminum layer and the other reaction suppressing layer of the metal substrate of the fourth embodiment.
  • an insulating layer may be formed on the outer surface of either or each of the aluminum layer and the other aluminum layer of the metal substrate of the fifth embodiment.
  • the insulating layer for example, an anodic oxide film of aluminum can be used.
  • the insulating film By providing the insulating film, a semiconductor element composed of a number of semiconductor films electrically insulated from each other can be easily formed thereon.
  • the insulating layer also has an advantage of improving the corrosion resistance of the exposed surface of the reaction suppression layer or the aluminum layer.
  • a reaction suppression layer made of an Al—Si alloy containing a predetermined amount of Si is joined to a base material layer formed of an iron base material.
  • intermetallic compounds are difficult to grow. For this reason, even if it heat-processes at a high temperature over 500 degreeC to a metal substrate, peeling with a base material layer and a reaction suppression layer is suppressed, and the heat resistance excellent in the metal substrate can be provided.
  • the Al—Si alloy has a lower material cost than Ti and has good bondability by pressure welding, the metal substrate of the present invention is easy to manufacture and economical.
  • the present invention can provide a metal substrate suitable as a substrate for an electronic device using a semiconductor such as a solar cell.
  • FIG. 1 shows a metal substrate having a two-layer structure according to a first embodiment of the present invention.
  • the metal substrate is bonded to a base layer 1 formed of an iron base and the base layer 1.
  • the reaction suppression layer 2 is provided.
  • FIG. 2 shows a metal substrate having a three-layer structure according to the second embodiment of the present invention.
  • the metal substrate is composed of a base material layer 1 formed of an iron base material and an upper surface of the base material layer 1.
  • the reaction suppression layer 2 is bonded to the reaction suppression layer 2, and the aluminum layer 3 is further bonded to the reaction suppression layer 2.
  • adjacent layers may be joined only by pressure welding, but may be further diffusion joined.
  • FIG. 2 parts corresponding to the constituent parts of the metal substrate of the first embodiment are indicated by the same reference numerals. In other embodiments to be described later, corresponding parts are indicated by the same reference numerals.
  • an Fe-based alloy containing 50% or more of Fe is used.
  • pure iron, carbon steel, stainless steel, and iron-nickel alloy (Fe— (35% to 50%) Ni alloy) can be used.
  • the iron-nickel alloy has a thermal expansion coefficient lower than that of carbon steel or stainless steel.
  • the thickness of the base material layer 1 can be variously selected depending on the use of the metal substrate, it is about 20 ⁇ m to 80 ⁇ m for the solar cell substrate.
  • the carbon steel is preferably a mild steel having a C content of 0.3% or less, more preferably a 0.2% or less extremely mild steel from the viewpoint of workability.
  • the carbon steel material SPCC, SPCD, or the like, which is a cold rolled steel sheet defined by JIS, can be used.
  • the stainless steel either austenitic stainless steel or ferritic stainless steel can be used. However, since ferritic stainless steel has a smaller coefficient of thermal expansion than austenitic stainless steel, the difference in thermal expansion from the semiconductor element can be reduced, and it is more preferable because it is economical.
  • the ferritic stainless steel include JIS-defined SUS405, 429, 430, and 434.
  • Si is essentially 0.2% or more and 8.5% or less, preferably 0.4% or more and 1.6% or less, more preferably 0.5% or more and 1.0%. %, And the balance is Al—Si alloy composed of Al and inevitable impurities.
  • Si is essentially 0.2% or more and 8.5% or less, preferably 0.4% or more and 1.6% or less, more preferably 0.5% or more and 1.0%. %
  • Al—Si alloy composed of Al and inevitable impurities.
  • the thickness of the reaction suppression layer 2 can be variously selected depending on the use of the metal substrate, but is about 0.1 ⁇ m to 30 ⁇ m for a solar cell substrate.
  • the metal substrate is held at 580 ° C. for 20 minutes by setting the Si content of the reaction suppression layer 2 to 0.4% to 1.6%, the bonding between the base material layer 1 and the reaction suppression layer 2 is performed. Is maintained well. However, if it exceeds 1.5%, it will melt at 580 ° C. due to a decrease in the melting point of the Al—Si alloy.
  • the Si amount from 0.5% to 1.0%, a sufficient bonding force can be ensured even when held at 600 ° C. for 10 minutes. However, if it exceeds 1.0%, it will melt at 600 ° C. due to a decrease in the melting point of the Al—Si alloy. Note that the heat treatment for crystallization and defect reduction of the compound semiconductor is more effective as it is heated at a higher temperature. In addition, the retention time can be shortened by processing at a high temperature.
  • the Al—Si alloy may essentially be a binary alloy of Al and Si, but various elements may be contained within a range not impairing the growth inhibiting action of the intermetallic compound. For example, Fe: 0.8% or less, Cu: 0.3% or less, Mn: 0.1% or less, Mg: 1.0% or less, Zn: 0.2% or less, other elements: 0.05 each % Or less and a total amount of 0.15% or less, various elements may be contained alone or in combination. For this reason, as the Al—Si alloy, Al—Si alloys such as 4043 (stretching material), 4004 (brazing material), 4045 (brazing material), and 4343 (brazing material) defined in JIS are used. be able to.
  • the aluminum layer 3 is preferably made of pure aluminum.
  • the purity of Al is preferably 99.0% or more, and more preferably 99.5% or more. The higher the purity of pure aluminum, the fewer the metal inclusions and non-metallic inclusions such as crystallization and precipitates, and a smooth surface can be easily obtained by rolling or chemical polishing.
  • Examples of the pure aluminum include 1N99, 1N90, 1080, 1070, 1060, 1050, and 1100 defined by JIS.
  • the thickness of the aluminum layer 3 is variously selected depending on the use of the metal substrate, but is about 5 ⁇ m to 40 ⁇ m for the solar cell substrate. Further, by setting the total thickness of the base material layer 1, the reaction suppression layer 2 and the aluminum layer 3 to about 30 ⁇ m to 150 ⁇ m, preferably about 50 to 120 ⁇ m, it is possible to impart good flexibility to the metal substrate. it can.
  • an iron base material base plate from which the base material layer 1 is based, an Al—Si alloy base plate from which the reaction suppression layer 2 is based, and a pure aluminum base plate from which the aluminum layer is based are prepared. These base plates are preferably softened and annealed in advance. Next, these base plates are superposed in the same order, the superposed material is cold-rolled, and the adjacent base plates are pressed against each other. At this time, it is preferable that the cold rolling is performed at a reduction rate of about 40% to 80% and only one reduction.
  • the pressure welding material obtained as described above is subjected to diffusion annealing as necessary, and adjacent layers of the pressure welding material are diffusion bonded to each other.
  • Diffusion annealing is not indispensable, but this improves the bonding strength between the layers and improves the durability and handleability of the metal substrate.
  • an annealing temperature of about 350 to 450 ° C. and a holding time of about 1 to 10 minutes are sufficient.
  • the intermetallic compound layer formed between the base material layer and the reaction suppression layer is so thin that it cannot be observed with a microscope, and the bonding strength of these layers is considerably increased.
  • cold rolling may be performed as necessary.
  • a laminated material of an iron base material base plate, an Al—Si alloy base plate and a pure aluminum base plate was pressed by cold rolling to obtain a three-layer structure pressure contact material.
  • the present invention is not limited to this method.
  • an iron base material plate and an Al—Si alloy base plate are pressure-welded to produce a two-layered pressure-contact material, and this pressure-welding material and pure aluminum base plate are pressure-contacted.
  • a pressure contact material having a layer structure may be used.
  • a three-layer structure pressure contact material may be formed by pressure-contacting an iron base material base plate to a pressure-contact material having a two-layer structure obtained by pressure-contacting an Al—Si alloy base plate and a pure aluminum base plate.
  • the metal substrate according to the present invention is not limited to the metal substrate having the above-described two-layer structure and three-layer structure, and may have other laminated structures as described below. These laminated metal substrates can also be manufactured in the same manner as the three-layered metal substrate.
  • FIG. 3 shows the metal substrate according to the third embodiment, and the other surface of the base material layer 1 suppresses other reactions based on the metal substrate having the two-layer structure according to the first embodiment shown in FIG. Layer 2A is joined.
  • the thickness of the reaction suppression layer 2 bonded to one surface of the base material layer 1 and the other reaction suppression layer 2A bonded to the other surface the same or substantially the same, It is possible to prevent the warpage of the substrate that occurs when manufacturing by pressure welding.
  • FIG. 4 shows a metal substrate according to the fourth embodiment. Based on the metal substrate having a three-layer structure according to the second embodiment shown in FIG. Layer 2A is joined. In this case, by making the total thickness of the reaction suppression layer 2 and the aluminum layer 3 the same as or substantially the same as the thickness of the other reaction suppression layer 2A, it is possible to prevent the warpage of the substrate that occurs during the pressure contact. .
  • FIG. 5 shows a metal substrate according to the fifth embodiment. Based on the metal substrate having a four-layer structure according to the fourth embodiment shown in FIG. 4, another aluminum layer 3A is formed on the other reaction suppression layer 2A. Are joined. In this case, in order to prevent the metal substrate from warping, the total thickness of the reaction suppression layer 2 and the aluminum layer 3 and the total thickness of the other reaction suppression layer 2A and the other aluminum layer 3A should be the same or substantially the same. Is preferred.
  • the total thickness of all layers is preferably set to about 30 ⁇ m to 150 ⁇ m, and preferably about 50 ⁇ m to 120 ⁇ m. Thereby, favorable flexibility can be provided to the metal substrate.
  • the insulating layer 4 may be formed on the outer surface of the aluminum layer 3, that is, the exposed surface.
  • An anodic oxide film can be used as the insulating layer 4.
  • the anodic oxide film is integrally formed on the aluminum layer 3 by anodizing the surface layer of the initial aluminum layer bonded to the base material layer 1.
  • the initial aluminum layer is formed thicker than the thickness of the aluminum layer 3 by the thickness of the anodized film.
  • the insulating layer 4 has a thickness of about 1 ⁇ m to 15 ⁇ m.
  • the insulating layer 4 may be formed on the outer surface of the reaction suppression layer 2 for the metal substrate having the two-layer structure shown in FIG.
  • the method for forming the insulating layer 4 is not limited to anodizing.
  • the insulating layer may be formed by performing heat treatment or plasma treatment on the surface layer of the initial aluminum layer or the initial reaction suppression layer. Moreover, after coating glass frit on the aluminum layer 3 or the reaction suppression layer 2, you may form by heating-melting the coating layer and cooling. Furthermore, it can also be directly formed on the aluminum layer 3 or the reaction suppression layer 2 by vapor deposition or the like. In this case, an insulating layer made of a compound such as alumina or silicon dioxide is formed on the aluminum layer 3 or the reaction suppression layer 2.
  • An insulating layer may be formed on the side surface.
  • the insulating layer 4 drawn by a two-dot chain line is shown on the outer surface of each of the reaction suppressing layer 2 and the other reaction suppressing layer 2 ⁇ / b> A, but the insulating layer is provided only on one of the outer surfaces. It may be formed.
  • the insulating layer 4 made of an anodized film can be simultaneously formed on the outer surface thereof.
  • an anodic oxide film can be formed only on the other outer surface by coating one of the outer surfaces with a resin, for example.
  • the insulating layer 4 may be formed in the metal substrate of the fourth embodiment shown in FIG. 4, one or each of the outer surface of the aluminum layer 3 as one outermost layer and the other reaction suppression layer 2A as the other outermost layer.
  • the insulating layer 4 may be formed in the metal substrate of the fifth embodiment shown in FIG. 5.
  • either one of the outermost aluminum layer 3 and the other outermost aluminum layer 3A or the other outer layer 3A are formed on the outer surface of each.
  • An insulating layer may be formed in FIG. 3 to FIG. 5, the insulating layer 4 drawn by a two-dot chain line is shown on the outer surface of one outermost layer and the other outermost layer, but the insulating layer is formed only on one outer surface. May be formed.
  • the metal substrate provided with the insulating layer by setting the total thickness of all layers including the insulating layer to about 30 to 150 ⁇ m, preferably about 50 to 120 ⁇ m, the metal substrate can be provided with good flexibility. it can.
  • the metal substrate of each sample shown in Table 1 was manufactured by the following method. First, for each sample, the base plate for base layer, the base plate for reaction suppression layer, and the base plate for aluminum layer shown in Table 1 are prepared, the base plates are overlapped, and the overlapping material is pressed. It was. Furthermore, the obtained pressure contact material was subjected to diffusion annealing, and a metal substrate as a sample was manufactured.
  • the base layer base plate is a cold-rolled steel plate (JIS-regulated SPCC) and a stainless steel plate (SUS 430) each having a thickness of 0.5 mm.
  • the Al-Si alloy plate (thickness 0.5 mm) with a Si amount of 5% was used, and the aluminum layer base plate was a pure aluminum plate (thickness 0.4 mm) with a purity of 99.8%.
  • Each base plate was an annealed material having a width of 20 mm and previously softened and annealed.
  • the chemical composition of SPCC of the cold-rolled steel sheet and SUS430 of stainless steel was as follows.
  • the superposed material was cold-rolled by passing it through a pair of rolls at a reduction rate of 70%, and the adjacent layers were pressed together.
  • the obtained pressure contact material had a thickness of 420 ⁇ m mm and a width of 20 mm.
  • the pressure contact material was subjected to diffusion annealing at an annealing temperature of 400 ° C. and an annealing time (holding time) of 3 minutes.
  • the metal substrate manufactured as described above may be further cold-rolled at an appropriate reduction rate so as to have a thickness of about 100 ⁇ m.
  • a test piece having a length of 30 mm and a width of 10 mm was taken from the metal substrate of each sample shown in Table 1 along the length direction of the substrate.
  • Each test piece was heated under the temperature and holding time shown in Table 2 under a hydrogen gas atmosphere.
  • the thickness of the intermetallic compound layer formed between the base material layer and the reaction suppression layer was measured by the following method. Five observation parts were set at equal intervals in the length direction of the test piece, the cross section of each observation part was observed with a microscope (magnification 400), the thickness of the intermetallic compound layer was measured, and the average of the measured thicknesses The value was calculated
  • a bending test was performed using each test piece after heating, and the peeled state of the base material layer and the reaction suppression layer was examined.
  • the bending test was performed by the following method. As shown in FIG. 7, the test piece was bent at a 90 ° angle with a radius of 2 mm with the base material layer 1 side as the inner side at the center in the length direction, and then returned to the original flat state. The peeling state in the bending part of the base material layer 1 and the reaction suppression layer 2 was observed. The observation results are shown in Table 3.

Abstract

The present invention provides an exceptionally heat-resistant metal substrate used in an electronic device in which a semiconductor is used. The metal substrate is provided with a base material layer (1) and a reaction-suppressing layer (2) joined to the base material layer (1). The base material layer (1) is formed of an iron base material such as pure iron, carbon steel, stainless steel, or an iron-nickel alloy. The reaction-suppressing layer (2) is formed of an Al-Si alloy having an Si content of 0.2 to 8.5 percent by mass, and preferably 0.4 to 1.6 percent by mass. An aluminum layer may be joined to the outside surface of the reaction-suppressing layer (2).

Description

金属基板Metal substrate
 本発明は、太陽電池などの半導体を利用した電子機器の基板として好適な金属基板に関する。 The present invention relates to a metal substrate suitable as a substrate of an electronic device using a semiconductor such as a solar cell.
 近年、シリコン基板を用いたシリコン系太陽電池から、ガラス基板の上に光電変換素子としての半導体膜が積層された薄膜太陽電池が用いられるようになってきた。従来、半導体膜の材料として、主にシリコン系半導体が用いられてきたが、最近では、CIS系、CIGS系、CZTS系、CdTe系のような化合物系半導体や、有機系半導体が用いられるようになってきた。化合物系半導体膜は、光吸収率が高く、成膜時あるいは成膜後に500℃程度の高温下で数十分程度保持する加熱処理を行うことにより、半導体膜の結晶性の向上や欠陥の低減が実現できて、高い変換効率を示す。 In recent years, thin-film solar cells in which a semiconductor film as a photoelectric conversion element is stacked on a glass substrate have been used from silicon-based solar cells using a silicon substrate. Conventionally, silicon-based semiconductors have been mainly used as semiconductor film materials, but recently, compound-based semiconductors such as CIS, CIGS, CZTS, and CdTe, and organic semiconductors have been used. It has become. Compound-based semiconductor films have high light absorptance, and heat treatment is performed at a high temperature of about 500 ° C. during film formation or after film formation to improve crystallinity of the semiconductor film and reduce defects. Can be realized and show high conversion efficiency.
 また、薄膜太陽電池ではガラス基板の代わりに、軽量でフレキシブル性の良好な金属基板が用いられるようになってきた。例えば、特許文献1には、金属基材と、その上に形成されたアルミニウム層と、そのアルミニウム層の外側表面に一体的に形成された陽極酸化膜からなる絶縁層を備えた金属基板が提案されている。前記陽極酸化膜は、アルミニウム層の元になる初期アルミニウム層の表層部を陽極酸化処理して形成される。前記絶縁層を形成することによって、その上に多数の半導体素子を形成することができる。金属基板は、ガラス基板に比して軽量化が可能で、フレキシブル性に優れるという利点がある。金属基板は、薄膜太陽電池用の基板に限らず、薄膜トランジスタやLED、有機ELなどの半導体を利用した電子機器の基板としても利用される。 Also, thin-film solar cells have come to use lightweight and flexible metal substrates instead of glass substrates. For example, Patent Document 1 proposes a metal substrate including a metal base material, an aluminum layer formed thereon, and an insulating layer formed of an anodized film integrally formed on the outer surface of the aluminum layer. Has been. The anodized film is formed by anodizing the surface layer portion of the initial aluminum layer that is the base of the aluminum layer. By forming the insulating layer, a large number of semiconductor elements can be formed thereon. A metal substrate can be reduced in weight as compared with a glass substrate, and has an advantage of excellent flexibility. The metal substrate is not limited to a substrate for a thin film solar cell, but is also used as a substrate for an electronic device using a semiconductor such as a thin film transistor, LED, or organic EL.
 前記金属基材にアルミニウム層及び陽極酸化膜を積層した金属基板では、アルミニウム層と陽極酸化膜との熱膨張係数が大きく相違するため、数百℃程度の温度でも陽極酸化膜にクラックが生じて、絶縁性が劣化しやすく、十分な耐熱性が得られていない。そこで、特許文献2に記載されているように、鋼基材と、その上にポーラス状の陽極酸化膜を備えた金属基板が提案された。前記ポーラス状の陽極酸化膜は、そこに作用する熱応力を緩和することができるため、前記金属基板では、500℃程度の温度に対して陽極酸化膜のクラックの発生を抑制することができる。 In the metal substrate in which the aluminum layer and the anodic oxide film are laminated on the metal base material, the thermal expansion coefficients of the aluminum layer and the anodic oxide film are greatly different, so that the anodic oxide film is cracked even at a temperature of about several hundred degrees Celsius. Insulation properties are likely to deteriorate, and sufficient heat resistance is not obtained. Therefore, as described in Patent Document 2, a metal substrate provided with a steel base material and a porous anodic oxide film thereon has been proposed. Since the porous anodic oxide film can relieve thermal stress acting on the porous anodic oxide film, the metal substrate can suppress the occurrence of cracks in the anodic oxide film at a temperature of about 500 ° C.
 しかし、改良された金属基板を用いて、500℃を越える高温下で金属基板を加熱処理すると、鋼基材のFeとアルミニウム層のAlとが反応して脆い金属間化合物が生成する。このため、その金属間化合物層が原因となって、鋼基材からアルミニウム層が剥離し、ひいては絶縁層も破壊するという問題が生じた。この問題を解決するため、特許文献3では、鋼基材にTi層を介してアルミニウム層を形成した金属基板が提案された。この金属基板によると、前記Ti層により、550℃の高温下でもAlとFeとの拡散反応が抑制されるため、金属間化合物の成長が抑制される。このため、半導体膜の成膜の際、あるいはその後に550℃の高温の熱処理が金属基板に施されても、アルミニウム層に形成された陽極酸化膜のクラックの発生が抑制されて、高い絶縁性が維持される。 However, when the metal substrate is heat-treated at a high temperature exceeding 500 ° C. using the improved metal substrate, Fe of the steel base and Al of the aluminum layer react to produce a brittle intermetallic compound. For this reason, due to the intermetallic compound layer, there arises a problem that the aluminum layer is peeled off from the steel substrate, and the insulating layer is also destroyed. In order to solve this problem, Patent Document 3 proposes a metal substrate in which an aluminum layer is formed on a steel base via a Ti layer. According to this metal substrate, the Ti layer suppresses the diffusion reaction between Al and Fe even at a high temperature of 550 ° C., so that the growth of intermetallic compounds is suppressed. For this reason, even when a semiconductor substrate is formed or subsequently subjected to a high-temperature heat treatment at 550 ° C., the generation of cracks in the anodized film formed on the aluminum layer is suppressed, and high insulation properties are achieved. Is maintained.
特開2009-132996JP2009-132996A 特開2011-124526JP2011-124526A 特開2011-124538JP2011-124538A
 上記引用文献3に記載された半導体装置用金属基板により、鋼基材とアルミニウム層との間に生成する金属間化合物の成長がTi層によって抑制され、金属基板の耐熱性が向上したが、Tiは高価な材料であるため、材料コストの上昇が不可避である。Ti層の厚さを数μm 程度に薄くすることで、この問題はある程度軽減することができるが、Tiは展伸性が低く、破断しやすい材料であるため、クラッド法では数ミクロ程度の薄いTi層を形成することは、実際上困難である。それ故、スパッタリングのような物理的蒸着法を用いないとその実現は難しい。このように、薄いTi層を形成するには高価な蒸着装置が必要になり、やはり金属基板の製造コストが上昇する。 With the metal substrate for a semiconductor device described in the above cited document 3, the growth of the intermetallic compound generated between the steel base and the aluminum layer is suppressed by the Ti layer, and the heat resistance of the metal substrate is improved. Since is an expensive material, an increase in material cost is inevitable. Although this problem can be alleviated to some extent by reducing the thickness of the Ti layer to about several μmTi, Ti is a material that has low extensibility and is easy to break. It is practically difficult to form a Ti layer. Therefore, it is difficult to realize it without using a physical vapor deposition method such as sputtering. Thus, an expensive vapor deposition apparatus is required to form a thin Ti layer, and the manufacturing cost of the metal substrate also increases.
 本発明は、かかる問題に鑑みなされたもので、製造が容易であり、Tiのような高価な材料を用いることなく、500℃を越える高温の加熱処理が施されても、アルミニウム層や絶縁層がベースとなる鉄基材から剥離しない、優れた耐熱性を備えた金属基板を提供することを目的とする。 The present invention has been made in view of such a problem, and is easy to manufacture, and even when subjected to heat treatment at a high temperature exceeding 500 ° C. without using an expensive material such as Ti, an aluminum layer or an insulating layer An object of the present invention is to provide a metal substrate having excellent heat resistance that does not peel from the iron base material as a base.
 本発明者は、Tiのような高価な材料を用いることなく、500℃を越える高温下で加熱されても鉄基材とアルミニウム層との間に生成した金属間化合物が成長し難い材料を種々検討したところ、主成分がAlであるにも拘わらず、Siを特定量含有したAl-Si合金材は金属間化合物が成長し難いことを見出し、本発明を完成するに至った。 The present inventor does not use an expensive material such as Ti, and various materials in which an intermetallic compound formed between an iron base and an aluminum layer hardly grows even when heated at a high temperature exceeding 500 ° C. As a result of the investigation, it was found that an Al—Si alloy material containing a specific amount of Si hardly grows an intermetallic compound even though the main component is Al, and the present invention has been completed.
 本発明は、半導体を利用した電子機器に用いられる金属基板に関するものであり、本発明による第1形態の金属基板は、基材層と反応抑制層を備え、前記基材層の一方の表面に前記反応抑制層が接合され、前記基材層は鉄基材で形成され、前記反応抑制層はSi量が0.2mass%以上、8.5mass%以下のAl-Si合金で形成されたものである。以下、「mass%」は単に「%」と記載する。前記Al-Si合金のSi量は、好ましくは0.4%以上,1.6%以下、より好ましくは0.5%以上,1.0%以下である。 The present invention relates to a metal substrate used in an electronic device using a semiconductor, and the metal substrate according to the first aspect of the present invention includes a base material layer and a reaction suppression layer, and is provided on one surface of the base material layer. The reaction suppression layer is bonded, the base material layer is formed of an iron base material, and the reaction suppression layer is formed of an Al—Si alloy having a Si content of 0.2 mass% or more and 8.5 mass% or less. is there. Hereinafter, “mass%” is simply described as “%”. The amount of Si in the Al—Si alloy is preferably 0.4% or more and 1.6% or less, more preferably 0.5% or more and 1.0% or less.
 前記第1形態の金属基板によれば、反応抑制層をSiを0.2%以上,8.5%以下を含むAl-Si合金で形成したので、金属基板に500℃を越える高温で加熱処理を施しても、基材層と反応抑制層との間に生成したAl-Fe系の金属間化合物にSiが不可避的に拡散混入するため、Al-Fe系金属間化合物の成長が抑制され、その結果、金属間化合物層の成長に起因する反応抑制層の剥離が防止され、基板の耐熱性が向上する。また、基材層、反応抑制層は、互いに圧接により容易に接合することができるので、本発明に係る金属基板は、高価な蒸着装置を用いることなく、クラッド法により容易に製造することができる。 According to the metal substrate of the first embodiment, since the reaction suppression layer is formed of an Al—Si alloy containing Si of 0.2% or more and 8.5% or less, the metal substrate is heat-treated at a high temperature exceeding 500 ° C. However, Si inevitably diffuses and mixes into the Al—Fe-based intermetallic compound generated between the base material layer and the reaction suppression layer, so that the growth of the Al—Fe-based intermetallic compound is suppressed, As a result, peeling of the reaction suppression layer due to the growth of the intermetallic compound layer is prevented, and the heat resistance of the substrate is improved. In addition, since the base material layer and the reaction suppression layer can be easily bonded to each other by pressure welding, the metal substrate according to the present invention can be easily manufactured by a clad method without using an expensive vapor deposition apparatus. .
 前記鉄基材として、純鉄や炭素鋼のほか、各種合金鋼が用いられる。合金鋼としてはステンレス鋼が好ましい。さらに、オーステナイト系ステンレス鋼よりフェライト系ステンレス鋼の方が、熱膨張係数やコストの点から好ましい。ステンレス鋼は耐食性が優れる上、ステンレス鋼に含まれるCrが加熱処理の際に前記金属間化合物に不可避的に拡散混合するため、金属間化合物の成長をより一層抑制することができる。この利点は本発明を成す過程で見出されたものである。 As the iron base material, various alloy steels are used in addition to pure iron and carbon steel. Stainless steel is preferable as the alloy steel. Furthermore, ferritic stainless steel is more preferable than austenitic stainless steel in terms of thermal expansion coefficient and cost. Stainless steel has excellent corrosion resistance, and Cr contained in the stainless steel inevitably diffuses and mixes with the intermetallic compound during the heat treatment, so that the growth of the intermetallic compound can be further suppressed. This advantage has been found in the process of the present invention.
 本発明による第2形態の金属基板は、前記第1形態の2層構造の金属基板をベースとして、その反応抑制層の外側表面すなわち露出側表面に、さらにアルミニウム層が接合されたものである。前記アルミニウム層はクラッド法により容易に反応抑制層に接合される。 The metal substrate of the second form according to the present invention is obtained by joining an aluminum layer to the outer surface of the reaction suppression layer, that is, the exposed surface, based on the metal substrate having the two-layer structure of the first form. The aluminum layer is easily bonded to the reaction suppression layer by a cladding method.
 前記アルミニウム層は、純Alで形成することが好ましい。純Alは介在物が少ないため、反応抑制層を形成するAl-Si合金と比較すると、アルミニウム層は表面平滑性に優れる。さらに、アルミニウム層に均一な厚さのアルミニウムの陽極酸化膜を形成することができ、さらにその上に均一厚さの半導体膜を成膜することができる。ところで、前記反応抑制層は前記基材層に圧接により接合される際に、Al-Si合金中に存在した介在物は基地中に埋入される。このため、反応抑制層は比較的平滑な表面を備える。特に、Si量が1.6%以下と少ない場合、より平滑な表面が得られる。このため、前記アルミニウム層を備えていない金属基板でも、反応抑制層の上方に均一厚さの半導体膜を積層することができる。 The aluminum layer is preferably formed of pure Al. Since pure Al has few inclusions, the aluminum layer is excellent in surface smoothness as compared with the Al—Si alloy forming the reaction suppression layer. Furthermore, an aluminum anodic oxide film having a uniform thickness can be formed on the aluminum layer, and a semiconductor film having a uniform thickness can be formed thereon. By the way, when the reaction suppression layer is joined to the base material layer by pressure contact, inclusions present in the Al—Si alloy are embedded in the base. For this reason, the reaction suppression layer has a relatively smooth surface. In particular, when the Si content is as low as 1.6% or less, a smoother surface can be obtained. Therefore, even with a metal substrate that does not include the aluminum layer, a semiconductor film having a uniform thickness can be stacked above the reaction suppression layer.
 本発明による第3形態の金属基板は、前記第1形態の2層構造の金属基板をベースとして、その基材層の他方の表面にさらに他の反応抑制層が接合されたものである。また、本発明による第4形態の金属基板は、前記第2形態の3層構造の金属基板をベースとして、その基材層の他方の表面にさらに他の反応抑制層が接合されたものである。また、本発明による第5形態の金属基板は、前記第4形態の4層構造の金属基板をベースとして、前記他の反応抑制層の外側表面すなわち露出側表面に他のアルミニウム層を接合したものである。前記他の反応抑制層も、前記反応抑制層と同様、前記Al-Si合金により形成される。また、前記他のアルミニウム層も、前記アルミニウム層と同様、純アルミニウムで形成されることが好ましい。前記他の反応抑制層や前記他のアルミニウム層も、それらと隣接する層にクラッド法により容易に接合される。 The metal substrate of the third form according to the present invention is obtained by joining another reaction suppression layer to the other surface of the base material layer on the basis of the metal substrate having the two-layer structure of the first form. Moreover, the metal substrate of the 4th form by this invention is based on the metal substrate of the 3 layer structure of the said 2nd form, and another reaction suppression layer was joined to the other surface of the base material layer. . According to a fifth aspect of the present invention, there is provided a metal substrate having a four-layer structure according to the fourth embodiment in which another aluminum layer is bonded to the outer surface of the other reaction suppression layer, that is, the exposed surface. It is. The other reaction suppression layer is also formed of the Al—Si alloy in the same manner as the reaction suppression layer. Moreover, it is preferable that the said other aluminum layer is also formed with a pure aluminum like the said aluminum layer. The other reaction suppressing layers and the other aluminum layers are also easily bonded to the adjacent layers by the cladding method.
 前記各形態の金属基板は、その全体の厚さを30μm 以上、150μm 以下とすることが好ましい。このような厚さに設定することにより、基板に良好なフレキシブル性を付与することができる。 It is preferable that the total thickness of the metal substrate in each form is 30 μm to 150 μm. By setting it to such a thickness, good flexibility can be imparted to the substrate.
 また、前記アルミニウム層あるいは前記反応抑制層の最外側表面すなわち露出側表面に絶縁層を形成してもよい。すなわち、前記第1形態の金属基板の反応抑制層の外側表面に、第2形態の金属基板のアルミニウム層の外側表面に、第3形態の金属基板の前記反応抑制層及び前記他の反応抑制層のいずれか一方あるいは各々の外側表面に、および第4形態の金属基板の前記アルミニウム層及び前記他の反応抑制層のいずれか一方あるいは各々の外側表面に絶縁層を形成してもよい。同様に、第5形態の金属基板の前記アルミニウム層及び前記他のアルミニウム層のいずれか一方あるいは各々の外側表面に絶縁層を形成してもよい。前記絶縁層として、例えば、アルミニウムの陽極酸化膜を利用することができる。 Further, an insulating layer may be formed on the outermost surface of the aluminum layer or the reaction suppression layer, that is, the exposed surface. That is, on the outer surface of the reaction suppression layer of the metal substrate of the first form, on the outer surface of the aluminum layer of the metal substrate of the second form, the reaction suppression layer and the other reaction suppression layer of the metal substrate of the third form An insulating layer may be formed on any one or each of the outer surfaces, and on any one or each of the outer surfaces of the aluminum layer and the other reaction suppressing layer of the metal substrate of the fourth embodiment. Similarly, an insulating layer may be formed on the outer surface of either or each of the aluminum layer and the other aluminum layer of the metal substrate of the fifth embodiment. As the insulating layer, for example, an anodic oxide film of aluminum can be used.
 前記絶縁膜を設けることにより、その上に互いに電気的に絶縁された多数の半導体膜からなる半導体素子を容易に形成することができる。前記絶縁層は、前記反応抑制層やアルミニウム層の露出側表面の耐食性を向上させる利点もある。 By providing the insulating film, a semiconductor element composed of a number of semiconductor films electrically insulated from each other can be easily formed thereon. The insulating layer also has an advantage of improving the corrosion resistance of the exposed surface of the reaction suppression layer or the aluminum layer.
 本発明の金属基板によると、鉄基材で形成された基材層に所定量のSiを含むAl-Si合金からなる反応抑制層が接合されるので、基材層と反応抑制層との間に金属間化合物が成長し難くなる。このため、金属基板に500℃を越える高温での加熱処理を施しても、基材層と反応抑制層との剥離が抑制され、金属基板に優れた耐熱性を付与することができる。さらに、Tiに比してAl-Si合金は材料コストが低廉であり、また圧接による接合性も良好であるので、本発明の金属基板は製造が容易で、経済的である。このように、本発明は、太陽電池のような、半導体を利用した電子機器用の基板として好適な金属基板を提供することができる。 According to the metal substrate of the present invention, a reaction suppression layer made of an Al—Si alloy containing a predetermined amount of Si is joined to a base material layer formed of an iron base material. In addition, intermetallic compounds are difficult to grow. For this reason, even if it heat-processes at a high temperature over 500 degreeC to a metal substrate, peeling with a base material layer and a reaction suppression layer is suppressed, and the heat resistance excellent in the metal substrate can be provided. Furthermore, since the Al—Si alloy has a lower material cost than Ti and has good bondability by pressure welding, the metal substrate of the present invention is easy to manufacture and economical. Thus, the present invention can provide a metal substrate suitable as a substrate for an electronic device using a semiconductor such as a solar cell.
本発明の第1実施形態による金属基板の断面図である。It is sectional drawing of the metal substrate by 1st Embodiment of this invention. 第2実施形態による金属基板の断面図である。It is sectional drawing of the metal substrate by 2nd Embodiment. 第3実施形態による金属基板の断面図である。It is sectional drawing of the metal substrate by 3rd Embodiment. 第4実施形態による金属基板の断面図である。It is sectional drawing of the metal substrate by 4th Embodiment. 第5実施形態による金属基板の断面図である。It is sectional drawing of the metal substrate by 5th Embodiment. 絶縁層を備えた第2実施形態の金属基板の断面図である。It is sectional drawing of the metal substrate of 2nd Embodiment provided with the insulating layer. 曲げ試験の実施方法を示す説明図である。It is explanatory drawing which shows the implementation method of a bending test.
 以下、本発明の実施形態を図面を参照して説明する。図1は、本発明の第1実施形態による2層構造の金属基板を示しており、この金属基板は、鉄基材で形成された基材層1と、前記基材層1の上に接合された反応抑制層2を備える。また、図2は、本発明の第2実施形態による3層構造の金属基板を示しており、この金属基板は、鉄基材で形成された基材層1と、前記基材層1の上に接合された反応抑制層2を備え、さらに前記反応抑制層2の上に接合されたアルミニウム層3を備えている。第1及び第2実施形態において、隣接する層は、圧接のみにより接合されていてもよいが、さらに拡散接合されていてもよい。拡散接合されると、隣接する層同士の接合力が向上し、剥がれ難くなる。このため、金属基板の耐久性が向上する。なお、図2において、第1実施形態の金属基板の構成部分に対応する部分は同符合で示されている。後述する他の実施例においても、それぞれ対応する部分は同符合で示される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a metal substrate having a two-layer structure according to a first embodiment of the present invention. The metal substrate is bonded to a base layer 1 formed of an iron base and the base layer 1. The reaction suppression layer 2 is provided. FIG. 2 shows a metal substrate having a three-layer structure according to the second embodiment of the present invention. The metal substrate is composed of a base material layer 1 formed of an iron base material and an upper surface of the base material layer 1. The reaction suppression layer 2 is bonded to the reaction suppression layer 2, and the aluminum layer 3 is further bonded to the reaction suppression layer 2. In the first and second embodiments, adjacent layers may be joined only by pressure welding, but may be further diffusion joined. When diffusion bonding is performed, the bonding force between adjacent layers is improved, and peeling is difficult. For this reason, the durability of the metal substrate is improved. In FIG. 2, parts corresponding to the constituent parts of the metal substrate of the first embodiment are indicated by the same reference numerals. In other embodiments to be described later, corresponding parts are indicated by the same reference numerals.
 前記基材層1を形成する鉄基材としては、Feを50%以上含有するFe系合金が用いられる。例えば、純鉄、炭素鋼、ステンレス鋼、鉄-ニッケル合金(Fe-(35%~50%)Ni合金)を挙げることができる。前記鉄-ニッケル合金は、熱膨張係数が炭素鋼やステンレス鋼より低い。基材層1の厚さは、金属基板の用途によって種々選択することができるが、太陽電池用基板では20μm から80μm 程度とされる。 As the iron base material forming the base material layer 1, an Fe-based alloy containing 50% or more of Fe is used. For example, pure iron, carbon steel, stainless steel, and iron-nickel alloy (Fe— (35% to 50%) Ni alloy) can be used. The iron-nickel alloy has a thermal expansion coefficient lower than that of carbon steel or stainless steel. Although the thickness of the base material layer 1 can be variously selected depending on the use of the metal substrate, it is about 20 μm to 80 μm for the solar cell substrate.
 前記炭素鋼としては、加工性の点からC量が0.3%以下の軟鋼が好ましく、0.2%以下の極軟鋼がより好ましい。炭素鋼材としては、JIS規定の冷延鋼板であるSPCCやSPCD等を用いることができる。前記ステンレス鋼としては、オーステナイト系ステンレス鋼、フェライト系ステンレス鋼のいずれも用いることができる。もっとも、フェライト系ステンレス鋼は、オーステナイト系ステンレスより熱膨張係数が小さいため、半導体素子との熱膨張差を軽減することができ、かつ経済的なので、より好ましい。フェライト系ステンレス鋼としては、例えば、JIS規定のSUS405,429,430,434を挙げることができる。 The carbon steel is preferably a mild steel having a C content of 0.3% or less, more preferably a 0.2% or less extremely mild steel from the viewpoint of workability. As the carbon steel material, SPCC, SPCD, or the like, which is a cold rolled steel sheet defined by JIS, can be used. As the stainless steel, either austenitic stainless steel or ferritic stainless steel can be used. However, since ferritic stainless steel has a smaller coefficient of thermal expansion than austenitic stainless steel, the difference in thermal expansion from the semiconductor element can be reduced, and it is more preferable because it is economical. Examples of the ferritic stainless steel include JIS-defined SUS405, 429, 430, and 434.
 前記反応抑制層2は、本質的にSiを0.2%以上,8.5%以下、好ましくは0.4%以上,1.6%以下、より好ましくは0.5%以上,1.0%以下を含み、残部としてAl及び不可避的不純物からなるAl-Si合金で形成される。後述する実施例から明らかなように、Si量を0.2%から8.5%とすることにより、金属基板を520℃の高温で60分間保持した場合でも、基材層1と反応抑制層2との間に生成した金属間化合物の成長が抑制される。このため、基材層1と、反応抑制層2との接合力が劣化せず、基材層1から反応抑制層2が剥離し難くなり、金属基板の耐熱性が向上する。しかし、8.5%を越えると520℃の加熱でも材料の脆化が著しくなり、加工性が低下するので、上限を8.5%とする。前記反応抑制層2の厚さは、金属基板の用途によって種々選択することができるが、太陽電池用基板では0.1μm から30μm 程度とされる。 In the reaction suppression layer 2, Si is essentially 0.2% or more and 8.5% or less, preferably 0.4% or more and 1.6% or less, more preferably 0.5% or more and 1.0%. %, And the balance is Al—Si alloy composed of Al and inevitable impurities. As will be apparent from the examples described later, even when the metal substrate is held at a high temperature of 520 ° C. for 60 minutes by changing the Si amount from 0.2% to 8.5%, the base layer 1 and the reaction suppression layer The growth of the intermetallic compound formed between the two is suppressed. For this reason, the bonding force between the base material layer 1 and the reaction suppression layer 2 does not deteriorate, and the reaction suppression layer 2 becomes difficult to peel from the base material layer 1, thereby improving the heat resistance of the metal substrate. However, if it exceeds 8.5%, the material becomes significantly embrittled even by heating at 520 ° C., and the workability deteriorates, so the upper limit is set to 8.5%. The thickness of the reaction suppression layer 2 can be variously selected depending on the use of the metal substrate, but is about 0.1 μm to 30 μm for a solar cell substrate.
 また、前記反応抑制層2のSi量を0.4%から1.6%とすることにより、金属基板を580℃で20分間保持した場合でも、基材層1と反応抑制層2との接合が良好に維持される。しかし、1.5%を越えると、Al-Si合金の融点の低下により、580℃では溶融するようになる。 Moreover, even when the metal substrate is held at 580 ° C. for 20 minutes by setting the Si content of the reaction suppression layer 2 to 0.4% to 1.6%, the bonding between the base material layer 1 and the reaction suppression layer 2 is performed. Is maintained well. However, if it exceeds 1.5%, it will melt at 580 ° C. due to a decrease in the melting point of the Al—Si alloy.
 さらに、Si量を0.5%から1.0%とすることにより、600℃で10分間保持した場合でも、十分な接合力が確保される。しかし、1.0%を越えると、Al-Si合金の融点の低下により、600℃では溶融するようになる。なお、化合物半導体の結晶化や欠陥低減のための加熱処理は、高温で加熱するほど効果が大きい。また高温で処理することにより、保持時間を短縮することができる。 Furthermore, by setting the Si amount from 0.5% to 1.0%, a sufficient bonding force can be ensured even when held at 600 ° C. for 10 minutes. However, if it exceeds 1.0%, it will melt at 600 ° C. due to a decrease in the melting point of the Al—Si alloy. Note that the heat treatment for crystallization and defect reduction of the compound semiconductor is more effective as it is heated at a higher temperature. In addition, the retention time can be shortened by processing at a high temperature.
 前記Al-Si合金は、本質的にAlとSiの二元合金でよいが、金属間化合物の成長抑制作用を損なわない範囲で種々の元素が含有されてもよい。例えば、Fe:0.8%以下、Cu:0.3%以下、Mn:0.1%以下、Mg:1.0%以下、Zn:0.2%以下、その他の元素:それぞれ0.05%以下で合計量0.15%以下の下で、種々の元素が単独で、あるいは複合して含有されてもよい。このため、前記Al-Si合金としては、JISに規定される4043(展伸材)、4004(ろう材)、4045(ろう材)、4343(ろう材)のようなAl-Si合金を使用することができる。 The Al—Si alloy may essentially be a binary alloy of Al and Si, but various elements may be contained within a range not impairing the growth inhibiting action of the intermetallic compound. For example, Fe: 0.8% or less, Cu: 0.3% or less, Mn: 0.1% or less, Mg: 1.0% or less, Zn: 0.2% or less, other elements: 0.05 each % Or less and a total amount of 0.15% or less, various elements may be contained alone or in combination. For this reason, as the Al—Si alloy, Al—Si alloys such as 4043 (stretching material), 4004 (brazing material), 4045 (brazing material), and 4343 (brazing material) defined in JIS are used. be able to.
 前記アルミニウム層3は、好ましくは純アルミニウムで形成される。Alの純度は99.0%以上が好ましく、99.5%以上がより好ましい。高純度の純アルミニウムほど、晶出物、析出物等の金属系介在物や非金属系介在物が少なく、平滑な表面が圧延や化学研磨により容易に得られる。前記純アルミニウムとしては、例えばJISに規定される1N99,1N90,1080,1070,1060,1050,1100などを挙げることができる。前記アルミニウム層3の厚さは、金属基板の用途によって種々選択されるが、太陽電池用基板では5μm から40μm 程度とされる。また、前記基材層1,反応抑制層2およびアルミニウム層3の合計厚さを30μm から150μm 程度、好ましくは50μm から120μm 程度に設定することによって、金属基板に良好なフレキシブル性を付与することができる。 The aluminum layer 3 is preferably made of pure aluminum. The purity of Al is preferably 99.0% or more, and more preferably 99.5% or more. The higher the purity of pure aluminum, the fewer the metal inclusions and non-metallic inclusions such as crystallization and precipitates, and a smooth surface can be easily obtained by rolling or chemical polishing. Examples of the pure aluminum include 1N99, 1N90, 1080, 1070, 1060, 1050, and 1100 defined by JIS. The thickness of the aluminum layer 3 is variously selected depending on the use of the metal substrate, but is about 5 μm to 40 μm for the solar cell substrate. Further, by setting the total thickness of the base material layer 1, the reaction suppression layer 2 and the aluminum layer 3 to about 30 μm to 150 μm, preferably about 50 to 120 μm, it is possible to impart good flexibility to the metal substrate. it can.
 次に、本発明の金属基板の製造方法を、前記第2実施形態の3層構造の金属基板を基に説明する。まず、基材層1の元になる鉄基材元板、反応抑制層2の元になるAl-Si合金元板、アルミニウム層の元になる純アルミニウム元板を準備する。これらの元板は予め軟化焼鈍されていることが好ましい。次に、これらの元板を同順序で重ね合わせて、その重ね合わせ材を冷間圧延して隣接する元板同士を相互に圧接する。このとき、冷間圧延は、圧下率を40%から80%程度とし、1回の圧下で済ますことが好ましい。 Next, a method for manufacturing a metal substrate according to the present invention will be described based on the metal substrate having a three-layer structure according to the second embodiment. First, an iron base material base plate from which the base material layer 1 is based, an Al—Si alloy base plate from which the reaction suppression layer 2 is based, and a pure aluminum base plate from which the aluminum layer is based are prepared. These base plates are preferably softened and annealed in advance. Next, these base plates are superposed in the same order, the superposed material is cold-rolled, and the adjacent base plates are pressed against each other. At this time, it is preferable that the cold rolling is performed at a reduction rate of about 40% to 80% and only one reduction.
 上記のようにして得られた圧接材を必要に応じて拡散焼鈍し、圧接材の隣接する層同士を互に拡散接合する。拡散焼鈍は必須ではないが、これにより各層間の接合力が向上して、金属基板の耐久性や取り扱い性が向上する。拡散焼鈍条件は、焼鈍温度350℃から450℃程度、保持時間1分から10分程度で十分である。この程度の焼鈍では、基材層と反応抑制層との間に生成する金属間化合物層は、顕微鏡で観察できないほど薄く、それらの層の接合強度はかなり上昇する。また、圧接材あるいは拡散焼鈍材(拡散接合された圧接材)に、目標とする金属基板の厚さに調整するため、必要に応じて冷間圧延を施してもよい。 圧 The pressure welding material obtained as described above is subjected to diffusion annealing as necessary, and adjacent layers of the pressure welding material are diffusion bonded to each other. Diffusion annealing is not indispensable, but this improves the bonding strength between the layers and improves the durability and handleability of the metal substrate. As the diffusion annealing conditions, an annealing temperature of about 350 to 450 ° C. and a holding time of about 1 to 10 minutes are sufficient. In this degree of annealing, the intermetallic compound layer formed between the base material layer and the reaction suppression layer is so thin that it cannot be observed with a microscope, and the bonding strength of these layers is considerably increased. Moreover, in order to adjust the thickness of the metal substrate to the pressure welding material or the diffusion annealing material (the pressure welding material diffusion-bonded), cold rolling may be performed as necessary.
 上記製造方法においては、鉄基材元板、Al-Si合金元板および純アルミニウム元板の重ね合わせ材を冷間圧延により圧接して3層構造の圧接材を得た。しかし、この方法に限らず、まず鉄基材元板とAl-Si合金元板とを圧接して二層構造の圧接材を製作し、この圧接材と純アルミニウム元板とを圧接して3層構造の圧接材としてもよい。あるいはAl-Si合金元板と純アルミニウム元板とを圧接して得られた二層構造の圧接材に鉄基材元板を圧接して3層構造の圧接材としてもよい。なお、第1実施形態の金属基板を製造する場合、アルミニウム元板を用いることなく、鉄基材元板とAl-Si合金元板とを圧接し、必要に応じてその圧接材に拡散焼鈍を施し、さらに必要に応じて冷間圧延を施せばよい。 In the above manufacturing method, a laminated material of an iron base material base plate, an Al—Si alloy base plate and a pure aluminum base plate was pressed by cold rolling to obtain a three-layer structure pressure contact material. However, the present invention is not limited to this method. First, an iron base material plate and an Al—Si alloy base plate are pressure-welded to produce a two-layered pressure-contact material, and this pressure-welding material and pure aluminum base plate are pressure-contacted. A pressure contact material having a layer structure may be used. Alternatively, a three-layer structure pressure contact material may be formed by pressure-contacting an iron base material base plate to a pressure-contact material having a two-layer structure obtained by pressure-contacting an Al—Si alloy base plate and a pure aluminum base plate. When the metal substrate of the first embodiment is manufactured, the iron base plate and the Al—Si alloy base plate are pressure-contacted without using the aluminum base plate, and the pressure-contact material is subjected to diffusion annealing as necessary. And cold rolling as necessary.
 本発明による金属基板は上記2層構造及び3層構造の金属基板に限らず、以下に述べるように他の積層構造とすることができる。これらの積層構造の金属基板も前記3層構造の金属基板と同様の方法で製造することができる。 The metal substrate according to the present invention is not limited to the metal substrate having the above-described two-layer structure and three-layer structure, and may have other laminated structures as described below. These laminated metal substrates can also be manufactured in the same manner as the three-layered metal substrate.
 図3は、第3実施形態による金属基板を示しており、図1で示した第1実施形態による2層構造の金属基板をベースとして、その基材層1の他方の表面に他の反応抑制層2Aが接合されている。この場合、基材層1の一方の表面に接合された反応抑制層2と、他方の表面に接合された他の反応抑制層2Aの厚さを同一ないし略同一とすることにより、金属基板を圧接により製造する際に生じる基板の反りを防止することができる。 FIG. 3 shows the metal substrate according to the third embodiment, and the other surface of the base material layer 1 suppresses other reactions based on the metal substrate having the two-layer structure according to the first embodiment shown in FIG. Layer 2A is joined. In this case, by making the thickness of the reaction suppression layer 2 bonded to one surface of the base material layer 1 and the other reaction suppression layer 2A bonded to the other surface the same or substantially the same, It is possible to prevent the warpage of the substrate that occurs when manufacturing by pressure welding.
 図4は、第4実施形態による金属基板を示しており、図2で示した第2実施形態による3層構造の金属基板をベースとして、その基材層1の他方の表面に他の反応抑制層2Aが接合されている。この場合、反応抑制層2およびアルミニウム層3との合計厚さと、他の反応抑制層2Aの厚さとを同一乃至ほぼ同一にすることにより、圧接の際に生じる基板の反りを防止することができる。 FIG. 4 shows a metal substrate according to the fourth embodiment. Based on the metal substrate having a three-layer structure according to the second embodiment shown in FIG. Layer 2A is joined. In this case, by making the total thickness of the reaction suppression layer 2 and the aluminum layer 3 the same as or substantially the same as the thickness of the other reaction suppression layer 2A, it is possible to prevent the warpage of the substrate that occurs during the pressure contact. .
 図5は、第5実施形態による金属基板を示しており、図4で示した第4実施形態による4層構造の金属基板をベースとして、他の反応抑制層2Aの上に他のアルミニウム層3Aが接合されている。この場合、金属基板の反り防止のため、反応抑制層2及びアルミニウム層3の合計の厚さと、他の反応抑制層2A及び他のアルミニウム層3Aとの合計厚さとを同一乃至ほぼ同一にすることが好ましい。 FIG. 5 shows a metal substrate according to the fifth embodiment. Based on the metal substrate having a four-layer structure according to the fourth embodiment shown in FIG. 4, another aluminum layer 3A is formed on the other reaction suppression layer 2A. Are joined. In this case, in order to prevent the metal substrate from warping, the total thickness of the reaction suppression layer 2 and the aluminum layer 3 and the total thickness of the other reaction suppression layer 2A and the other aluminum layer 3A should be the same or substantially the same. Is preferred.
 上記各実施形態の金属基板において、全ての層の合計厚さは30μm から150μm 程度、好ましくは50μm から120μm 程度に設定することが好ましい。これにより、金属基板に良好なフレキシブル性を付与することができる。 In the metal substrate of each of the above embodiments, the total thickness of all layers is preferably set to about 30 μm to 150 μm, and preferably about 50 μm to 120 μm. Thereby, favorable flexibility can be provided to the metal substrate.
 また、前記第2実施形態の金属基板において、図6に示すように、前記アルミニウム層3の外側表面すなわち露出側表面に絶縁層4を形成してもよい。この絶縁層4として陽極酸化膜を用いることができる。前記陽極酸化膜は、基材層1に接合された初期アルミニウム層の表面層を陽極酸化処理することによって前記アルミニウム層3の上に一体的に形成される。前記初期アルミニウム層は、前記アルミニウム層3の厚さよりも概ね陽極酸化膜の膜厚分だけ厚く形成される。前記絶縁層4の厚さは、1μm から15μm 程度とされる。図1に示した2層構造の金属基板についても、同様にして、前記反応抑制層2の外側表面に絶縁層4を形成してもよい。 Further, in the metal substrate of the second embodiment, as shown in FIG. 6, the insulating layer 4 may be formed on the outer surface of the aluminum layer 3, that is, the exposed surface. An anodic oxide film can be used as the insulating layer 4. The anodic oxide film is integrally formed on the aluminum layer 3 by anodizing the surface layer of the initial aluminum layer bonded to the base material layer 1. The initial aluminum layer is formed thicker than the thickness of the aluminum layer 3 by the thickness of the anodized film. The insulating layer 4 has a thickness of about 1 μm to 15 μm. Similarly, the insulating layer 4 may be formed on the outer surface of the reaction suppression layer 2 for the metal substrate having the two-layer structure shown in FIG.
 前記絶縁層4の形成方法としては陽極酸化処理に限らない。初期アルミニウム層あるいは初期反応抑制層の表面層に加熱処理やプラズマ処理を施して絶縁層を形成してもよい。また、アルミニウム層3や反応抑制層2の上にガラスフリットをコーティングした後、そのコーティング層を加熱溶融し、冷却することによって形成してもよい。さらに、蒸着法等によってアルミニウム層3や反応抑制層2の上に直接形成することもできる。この場合、アルミニウム層3や反応抑制層2の上にアルミナや二酸化ケイ素等の化合物からなる絶縁層が成膜される。 The method for forming the insulating layer 4 is not limited to anodizing. The insulating layer may be formed by performing heat treatment or plasma treatment on the surface layer of the initial aluminum layer or the initial reaction suppression layer. Moreover, after coating glass frit on the aluminum layer 3 or the reaction suppression layer 2, you may form by heating-melting the coating layer and cooling. Furthermore, it can also be directly formed on the aluminum layer 3 or the reaction suppression layer 2 by vapor deposition or the like. In this case, an insulating layer made of a compound such as alumina or silicon dioxide is formed on the aluminum layer 3 or the reaction suppression layer 2.
 また、図3に示された前記第3実施形態の金属基板において、一方の最外層である反応抑制層2及び他方の最外層である反応抑制層2Aのいずれか一方あるいは各々の外側表面(露出側表面)に絶縁層を形成してもよい。図3では、反応抑制層2および他の反応抑制層2Aのいずれの外側表面にも二点鎖線によって描かれた絶縁層4が示されているが、いずれか一方の外側表面のみに絶縁層を形成してもよい。前記反応抑制層2,2Aを備えた金属基板を陽極酸化処理することにより、それらの外側表面に陽極酸化膜からなる絶縁層4を同時に形成することができる。また、陽極酸化処理に際して、いずれか一方の外側表面を、例えば樹脂によって被覆することにより、他方の外側表面のみに陽極酸化膜を形成することができる。 Further, in the metal substrate of the third embodiment shown in FIG. 3, one or each of the reaction suppression layer 2 which is one outermost layer and the reaction suppression layer 2A which is the other outermost layer or the outer surface (exposed). An insulating layer may be formed on the side surface. In FIG. 3, the insulating layer 4 drawn by a two-dot chain line is shown on the outer surface of each of the reaction suppressing layer 2 and the other reaction suppressing layer 2 </ b> A, but the insulating layer is provided only on one of the outer surfaces. It may be formed. By anodizing the metal substrate provided with the reaction suppression layers 2 and 2A, the insulating layer 4 made of an anodized film can be simultaneously formed on the outer surface thereof. Further, in the anodizing treatment, an anodic oxide film can be formed only on the other outer surface by coating one of the outer surfaces with a resin, for example.
 同様に、図4に示された前記第4実施形態の金属基板において、一方の最外層であるアルミニウム層3及び他方の最外層である他の反応抑制層2Aのいずれか一方あるいは各々の外側表面に絶縁層4を形成してもよい。同様に、図5に示された前記第5実施形態の金属基板において、一方の最外層であるアルミニウム層3及び他方の最外層である他のアルミニウム層3Aのいずれか一方あるいは各々の外側表面に絶縁層を形成してもよい。図3から図5では、一方の最外層及び他方の最外層のいずれの外側表面にも二点鎖線によって描かれた絶縁層4が示されているが、いずれか一方の外側表面にのみ絶縁層を形成してもよい。 Similarly, in the metal substrate of the fourth embodiment shown in FIG. 4, one or each of the outer surface of the aluminum layer 3 as one outermost layer and the other reaction suppression layer 2A as the other outermost layer. Alternatively, the insulating layer 4 may be formed. Similarly, in the metal substrate of the fifth embodiment shown in FIG. 5, either one of the outermost aluminum layer 3 and the other outermost aluminum layer 3A or the other outer layer 3A are formed on the outer surface of each. An insulating layer may be formed. In FIG. 3 to FIG. 5, the insulating layer 4 drawn by a two-dot chain line is shown on the outer surface of one outermost layer and the other outermost layer, but the insulating layer is formed only on one outer surface. May be formed.
 前記絶縁層を備えた金属基板についても、絶縁層を含む全層の合計厚さを30μm から150μm 程度、好ましくは50μm から120μm 程度に設定することにより、金属基板に良好なフレキシブル性を与えることができる。 Also for the metal substrate provided with the insulating layer, by setting the total thickness of all layers including the insulating layer to about 30 to 150 μm, preferably about 50 to 120 μm, the metal substrate can be provided with good flexibility. it can.
 以下、実施例を挙げて、本発明をより具体的に説明するが、本発明はかかる実施例によって限定的に解釈されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples.
 表1に示した各試料の金属基板が以下の方法により製作された。まず、各試料ごとに、表1に示した基材層用元板、反応抑制層用元板及びアルミニウム層用元板が準備され、それらの元板が重ね合わされ、その重ね合わせ材が圧接された。さらに、得られた圧接材に拡散焼鈍が施されて、試料となる金属基板が製作された。 The metal substrate of each sample shown in Table 1 was manufactured by the following method. First, for each sample, the base plate for base layer, the base plate for reaction suppression layer, and the base plate for aluminum layer shown in Table 1 are prepared, the base plates are overlapped, and the overlapping material is pressed. It was. Furthermore, the obtained pressure contact material was subjected to diffusion annealing, and a metal substrate as a sample was manufactured.
 前記基材層用元板は、それぞれ厚さが0.5mmの冷延鋼板(JIS規定のSPCC)及びステンレス鋼板(SUS430)であり、前記反応抑制層用元板は、同表に示した種々のSi量のAl-Si合金板(厚さ0.5mm)であり、アルミニウム層用元板は純度が99.8%の純アルミニウム板(厚さ0.4mm)であった。各元板は、幅が20mmであり、予め軟化焼鈍された焼鈍材であった。前記冷延鋼板のSPCC、ステンレス鋼のSUS430の化学組成は以下のとおりであった。
・SPCCの化学組成(残部:Fe及び不純物)
C:0.09%、Si:0.01%、Mn:0.34%、P:0.016%、S:0.008%、N:0.002%
・SUSU430の化学組成(残部:Fe及び不純物)
C:0.06%、Si:0.38%、Mn:0.22%、P:0.020%、S:0.005%、Ni:0.10%、Cr16.11%、Al:0.005%、N:0.021%
The base layer base plate is a cold-rolled steel plate (JIS-regulated SPCC) and a stainless steel plate (SUS 430) each having a thickness of 0.5 mm. The Al-Si alloy plate (thickness 0.5 mm) with a Si amount of 5% was used, and the aluminum layer base plate was a pure aluminum plate (thickness 0.4 mm) with a purity of 99.8%. Each base plate was an annealed material having a width of 20 mm and previously softened and annealed. The chemical composition of SPCC of the cold-rolled steel sheet and SUS430 of stainless steel was as follows.
-Chemical composition of SPCC (remainder: Fe and impurities)
C: 0.09%, Si: 0.01%, Mn: 0.34%, P: 0.016%, S: 0.008%, N: 0.002%
-Chemical composition of SUSU430 (balance: Fe and impurities)
C: 0.06%, Si: 0.38%, Mn: 0.22%, P: 0.020%, S: 0.005%, Ni: 0.10%, Cr 16.11%, Al: 0 .005%, N: 0.021%
 前記重ね合わせ材は、圧下率70%で一対のロールに通すことによって冷間圧延され、隣接する層が互いに圧接された。得られた圧接材の厚さは420μm 、幅は20mmであった。この圧接材に対して焼鈍温度400℃、焼鈍時間(保持時間)3分の拡散焼鈍が施された。なお、フレキシブルな金属基板を製造する場合は、上記のようにして製作した金属基板に更に適宜の圧下率で冷間圧延を施して、その厚さを100μm 程度にすればよい。 The superposed material was cold-rolled by passing it through a pair of rolls at a reduction rate of 70%, and the adjacent layers were pressed together. The obtained pressure contact material had a thickness of 420 μm mm and a width of 20 mm. The pressure contact material was subjected to diffusion annealing at an annealing temperature of 400 ° C. and an annealing time (holding time) of 3 minutes. In the case of manufacturing a flexible metal substrate, the metal substrate manufactured as described above may be further cold-rolled at an appropriate reduction rate so as to have a thickness of about 100 μm.
 次に、表1に示す各試料の金属基板から長さ30mm、幅10mmの試験片が基板の長さ方向に沿って採取された。各試験片は、水素ガス雰囲気下にて、表2に示した温度、保持時間の下で加熱された。加熱後の試験片を用いて、基材層と反応抑制層との間に形成された金属間化合物層の厚さが以下の方法で測定された。前記試験片の長さ方向に等間隔で5つの観察部位を設定し、各観察部位の断面を顕微鏡観察(倍率400)して金属間化合物層の厚さを測定し、測定した厚さの平均値を求め、その平均値を金属間化合物層の厚さとした。その測定結果を表2に示す。表2及び後述する表3において、符合「-」は測定を行わなかったものを示す。また、表2及び表3中、「溶融」と記載したものは、加熱中に反応抑制層が溶融したものを示す。 Next, a test piece having a length of 30 mm and a width of 10 mm was taken from the metal substrate of each sample shown in Table 1 along the length direction of the substrate. Each test piece was heated under the temperature and holding time shown in Table 2 under a hydrogen gas atmosphere. Using the test piece after heating, the thickness of the intermetallic compound layer formed between the base material layer and the reaction suppression layer was measured by the following method. Five observation parts were set at equal intervals in the length direction of the test piece, the cross section of each observation part was observed with a microscope (magnification 400), the thickness of the intermetallic compound layer was measured, and the average of the measured thicknesses The value was calculated | required and let the average value be thickness of the intermetallic compound layer. The measurement results are shown in Table 2. In Table 2 and Table 3 to be described later, the sign “-” indicates that no measurement was performed. Moreover, what was described as "melting" in Table 2 and Table 3 shows that the reaction suppression layer was melted during heating.
 さらに、加熱後の各試験片を用いて、曲げ試験を行い、基材層と反応抑制層の剥離状態を調べた。前記曲げ試験は以下の方法によって実施された。図7に示すように、試験片は、その長さ方向の中央部において、基材層1側を内側として半径2mmで90°の角度で曲げられた後、元の平坦な状態に戻され、基材層1と反応抑制層2との曲げ部における剥離状態が観察された。観察結果を表3に示す。表3中、「○」は曲げ部において剥離が無かった場合を、「△」は曲げ部において一部剥離した場合を、「×」は曲げ部の全範囲で剥離した場合を示す。いずれの試料においても、反応抑制層2とアルミニウム層3との間では剥離は全く認められなかった。この曲げ試験の条件は、曲げ角度90°、曲げ半径2mmであり、かなり厳しい条件である。このため、評価が△でも基材層1と反応抑制層2との接合に実用上、問題はないと考えられる。 Furthermore, a bending test was performed using each test piece after heating, and the peeled state of the base material layer and the reaction suppression layer was examined. The bending test was performed by the following method. As shown in FIG. 7, the test piece was bent at a 90 ° angle with a radius of 2 mm with the base material layer 1 side as the inner side at the center in the length direction, and then returned to the original flat state. The peeling state in the bending part of the base material layer 1 and the reaction suppression layer 2 was observed. The observation results are shown in Table 3. In Table 3, “◯” indicates the case where there is no peeling at the bent portion, “Δ” indicates the case where a portion is peeled off at the bent portion, and “X” indicates the case where the peeling occurs in the entire range of the bent portion. In any sample, no separation was observed between the reaction suppression layer 2 and the aluminum layer 3. The conditions for this bending test are quite severe, with a bending angle of 90 ° and a bending radius of 2 mm. For this reason, even if evaluation is (triangle | delta), it is thought that there is practically no problem in joining to the base material layer 1 and the reaction suppression layer 2.
 表2および表3において、試料No. 1及び試料No. 2の加熱温度520℃、保持時間30分の加熱結果、あるいは試料No. 7及び試料No. 8の580℃、30分の加熱結果より、基材層1と反応抑制層2との間に形成された金属間化合物層の厚さが9μm 以上になると曲げ部で完全に剥離することが分かった。また、試料No. 3から試料No. 13の加熱温度520℃、保持時間30分あるいは60分での加熱結果から、Si量が0.2%程度以上、8.5%程度以下で金属間化合物の生成、成長が8μm 以下に抑えられ、基材層1と反応抑制層2との接合に問題がないことが確認された。 In Tables 2 and 3, from the heating results of Sample No. 1 and Sample No. 2 with a heating temperature of 520 ° C. and a holding time of 30 minutes, or the heating results of Sample No. 7 and Sample No. 8 with 580 ° C. for 30 minutes It has been found that when the thickness of the intermetallic compound layer formed between the base material layer 1 and the reaction suppression layer 2 is 9 μm or more, it is completely peeled off at the bent portion. In addition, from the heating results of sample No. 3 to sample No. 13 at a heating temperature of 520 ° C. and a holding time of 30 minutes or 60 minutes, an intermetallic compound with an Si amount of about 0.2% to 8.5%. Generation and growth were suppressed to 8 μm or less, and it was confirmed that there was no problem in joining the base material layer 1 and the reaction suppression layer 2.
 また、加熱温度580℃、保持時間20分では、試料No. 5から試料No. 9より、Si量が0.4%程度以上、1.5%程度以下で金属間化合物の成長が抑えられ、基材層1と反応抑制層2との接合に問題がないことが確認された。しかし、試料No. 10より、Si量が1.8%程度になると、580℃、10分程度の加熱で反応抑制層のAl-Si合金が溶融することが確認された。 In addition, at a heating temperature of 580 ° C. and a holding time of 20 minutes, the growth of intermetallic compounds is suppressed when the Si amount is about 0.4% or more and about 1.5% or less from Sample No. 5 to Sample No. 9; It was confirmed that there was no problem in joining of the base material layer 1 and the reaction suppression layer 2. However, according to Sample No. 10, it was confirmed that when the Si amount was about 1.8%, the Al—Si alloy of the reaction suppression layer was melted by heating at 580 ° C. for about 10 minutes.
 また、加熱温度600℃、保持時間10分では、試料No. 5から試料No. 7より、Si量が0.5%程度以上、1.0%程度以下で金属間化合物の成長が抑えられ、基材層1と反応抑制層2との接合に問題がないことが確認された。しかし、試料No. 8より、Si量が1.2%程度になると、600℃、10分程度の加熱で反応抑制層のAl-Si合金が溶融することが確認された。また、基材層を炭素鋼(SPCC)で形成した試料No. 6と、基材層をステンレス鋼(SUS430)で形成した試料No. 14とは共に反応抑制層がSi量が0.78%のAl-Si合金で形成されているが、これらを比較すると、加熱温度600℃での試験結果から、基材層を炭素鋼よりステンレス鋼で形成するほうが、金属基板の耐熱性がより向上することが確認された。 In addition, when the heating temperature is 600 ° C. and the holding time is 10 minutes, the growth of intermetallic compounds is suppressed when the Si amount is about 0.5% or more and about 1.0% or less from Sample No. 5 to Sample No. 7; It was confirmed that there was no problem in joining of the base material layer 1 and the reaction suppression layer 2. However, from sample No. 8, it was confirmed that when the Si amount was about 1.2%, the Al—Si alloy of the reaction suppression layer was melted by heating at 600 ° C. for about 10 minutes. Sample No. 6 in which the base material layer was formed of carbon steel (SPCC) and Sample No. 14 in which the base material layer was formed of stainless steel (SUS430) both had a reaction suppression layer with an Si content of 0.78%. Compared to these, the heat resistance of the metal substrate is more improved when the base material layer is formed of stainless steel than carbon steel, based on the test results at a heating temperature of 600 ° C. It was confirmed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 1 基材層
 2,2A 反応抑制層
 3,3A アルミニウム層
 4 絶縁層
DESCRIPTION OF SYMBOLS 1 Base material layer 2, 2A Reaction suppression layer 3, 3A Aluminum layer 4 Insulating layer

Claims (17)

  1.  半導体を利用した電子機器に用いられる金属基板であって、基材層と反応抑制層を備え、前記基材層の一方の表面に前記反応抑制層が接合され、前記基材層は鉄基材で形成され、前記反応抑制層はSi量が0.2mass%以上、8.5mass%以下のAl-Si合金で形成された、金属基板。 A metal substrate used in an electronic device using a semiconductor, comprising a base layer and a reaction suppression layer, wherein the reaction suppression layer is bonded to one surface of the base layer, and the base layer is an iron base The reaction suppression layer is a metal substrate formed of an Al—Si alloy having a Si content of 0.2 mass% or more and 8.5 mass% or less.
  2.  前記Al-Si合金はSi量が0.4mass%以上、1.6mass%以下である、請求項1に記載した金属基板。 The metal substrate according to claim 1, wherein the Al-Si alloy has a Si content of 0.4 mass% or more and 1.6 mass% or less.
  3.  前記Al-Si合金はSi量が0.5mass%以上、1.0mass%以下である、請求項2に記載した金属基板。 The metal substrate according to claim 2, wherein the Al-Si alloy has a Si content of 0.5 mass% or more and 1.0 mass% or less.
  4.  前記鉄基材は、純鉄、炭素鋼、ステンレス鋼及び鉄-ニッケル合金の内のいずれかの金属である、請求項1に記載した金属基板。 2. The metal substrate according to claim 1, wherein the iron base material is one of pure iron, carbon steel, stainless steel, and iron-nickel alloy.
  5.  前記鉄基材は、フェライト系ステンレス鋼である、請求項4に記載した金属基板。 The metal substrate according to claim 4, wherein the iron base material is ferritic stainless steel.
  6.  さらにアルミニウム層を備え、前記アルミニウム層は前記反応抑制層の外側表面に接合された、請求項1に記載した金属基板。 The metal substrate according to claim 1, further comprising an aluminum layer, wherein the aluminum layer is bonded to an outer surface of the reaction suppression layer.
  7.  さらに前記Al-Si合金で形成された他の反応抑制層を備え、前記他の反応抑制層は前記基材層の他方の表面に接合された、請求項1に記載した金属基板。 The metal substrate according to claim 1, further comprising another reaction suppression layer formed of the Al-Si alloy, wherein the other reaction suppression layer is bonded to the other surface of the base material layer.
  8.  さらに前記Al-Si合金で形成された他の反応抑制層を備え、前記他の反応抑制層は前記基材層の他方の表面に接合された、請求項6に記載した金属基板。 The metal substrate according to claim 6, further comprising another reaction suppression layer formed of the Al-Si alloy, wherein the other reaction suppression layer is bonded to the other surface of the base material layer.
  9.  さらに他のアルミニウム層を備え、前記他の反応抑制層の外側表面に前記他のアルミニウム層が接合された、請求項8に記載した金属基板。 The metal substrate according to claim 8, further comprising another aluminum layer, wherein the other aluminum layer is bonded to an outer surface of the other reaction suppression layer.
  10.  金属基板の全体の厚さが30μm 以上、150μm 以下とされた、請求項1、及び6から9のいずれか1項に記載した金属基板。 The metal substrate according to any one of claims 1 and 6 to 9, wherein the entire thickness of the metal substrate is 30 μm or more and 150 μm or less.
  11.  さらに絶縁層を備え、前記絶縁層は前記反応抑制層の外側表面に形成された、請求項1に記載された金属基板。 The metal substrate according to claim 1, further comprising an insulating layer, wherein the insulating layer is formed on an outer surface of the reaction suppression layer.
  12.  さらに絶縁層を備え、前記絶縁層は前記アルミニウム層の外側表面に形成された、請求項6に記載された金属基板。 The metal substrate according to claim 6, further comprising an insulating layer, wherein the insulating layer is formed on an outer surface of the aluminum layer.
  13.  さらに絶縁層を備え、前記絶縁層は前記反応抑制層及び前記他の反応抑制層のいずれか一方あるいは各々の外側表面に形成された、請求項7に記載された金属基板。 The metal substrate according to claim 7, further comprising an insulating layer, wherein the insulating layer is formed on an outer surface of one or each of the reaction suppression layer and the other reaction suppression layer.
  14.  さらに絶縁層を備え、前記絶縁層は前記アルミニウム層及び前記他の反応抑制層のいずれか一方あるいは各々の外側表面に形成された、請求項8に記載された金属基板。 The metal substrate according to claim 8, further comprising an insulating layer, wherein the insulating layer is formed on one or each outer surface of the aluminum layer and the other reaction suppressing layer.
  15.  さらに絶縁層を備え、前記絶縁層は前記アルミニウム層及び前記他のアルミニウム層のいずれか一方あるいは各々の外側表面に形成された、請求項9に記載された金属基板。 10. The metal substrate according to claim 9, further comprising an insulating layer, wherein the insulating layer is formed on an outer surface of one or each of the aluminum layer and the other aluminum layer.
  16.  太陽電池用の基板である、請求項1、6から9、及び11から15のいずれか1項に記載した金属基板。 The metal substrate according to any one of claims 1, 6 to 9, and 11 to 15, which is a substrate for a solar cell.
  17.  太陽電池用の基板である、請求項10に記載した金属基板。 The metal substrate according to claim 10, which is a substrate for a solar cell.
PCT/JP2013/074973 2012-10-12 2013-09-17 Metal substrate WO2014057771A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014534838A JPWO2014057771A1 (en) 2012-10-12 2013-09-17 Metal substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-226483 2012-10-12
JP2012226483 2012-10-12

Publications (1)

Publication Number Publication Date
WO2014057771A1 true WO2014057771A1 (en) 2014-04-17

Family

ID=50477242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074973 WO2014057771A1 (en) 2012-10-12 2013-09-17 Metal substrate

Country Status (2)

Country Link
JP (1) JPWO2014057771A1 (en)
WO (1) WO2014057771A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1022819B1 (en) * 2015-03-12 2016-09-13 Polyvision, Naamloze Vennootschap PHOTOVOLTAIC SOLAR CELL AND METHOD OF MANUFACTURING THEM
JP2021512493A (en) * 2018-01-31 2021-05-13 ラム リサーチ コーポレーションLam Research Corporation Electrostatic chuck (ESC) pedestal voltage separation
US11817341B2 (en) 2017-06-02 2023-11-14 Lam Research Corporation Electrostatic chuck for use in semiconductor processing
US11835868B2 (en) 2018-03-20 2023-12-05 Lam Research Corporation Protective coating for electrostatic chucks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330346A (en) * 1993-05-24 1994-11-29 Nippon Steel Corp Aluminum plated steel sheet
JP2010501732A (en) * 2006-08-30 2010-01-21 ブルースコープ・スティール・リミテッド Metal coated iron strip
JP2010229483A (en) * 2009-03-26 2010-10-14 Nisshin Steel Co Ltd Zn-Al BASED PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE, AND METHOD FOR MANUFACTURING THE SAME
JP2011124538A (en) * 2009-11-11 2011-06-23 Fujifilm Corp Insulating-layer-attached metal substrate, methods for manufacturing semiconductor device using the same and solar cell using the same, and solar cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732357A (en) * 1980-08-04 1982-02-22 Nisshin Steel Co Ltd Aluminum clad steel plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330346A (en) * 1993-05-24 1994-11-29 Nippon Steel Corp Aluminum plated steel sheet
JP2010501732A (en) * 2006-08-30 2010-01-21 ブルースコープ・スティール・リミテッド Metal coated iron strip
JP2010229483A (en) * 2009-03-26 2010-10-14 Nisshin Steel Co Ltd Zn-Al BASED PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE, AND METHOD FOR MANUFACTURING THE SAME
JP2011124538A (en) * 2009-11-11 2011-06-23 Fujifilm Corp Insulating-layer-attached metal substrate, methods for manufacturing semiconductor device using the same and solar cell using the same, and solar cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1022819B1 (en) * 2015-03-12 2016-09-13 Polyvision, Naamloze Vennootschap PHOTOVOLTAIC SOLAR CELL AND METHOD OF MANUFACTURING THEM
US11817341B2 (en) 2017-06-02 2023-11-14 Lam Research Corporation Electrostatic chuck for use in semiconductor processing
JP2021512493A (en) * 2018-01-31 2021-05-13 ラム リサーチ コーポレーションLam Research Corporation Electrostatic chuck (ESC) pedestal voltage separation
JP7374103B2 (en) 2018-01-31 2023-11-06 ラム リサーチ コーポレーション Electrostatic chuck (ESC) pedestal voltage isolation
US11835868B2 (en) 2018-03-20 2023-12-05 Lam Research Corporation Protective coating for electrostatic chucks

Also Published As

Publication number Publication date
JPWO2014057771A1 (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP6865172B2 (en) Metal laminate and its manufacturing method
JP5388156B2 (en) Aluminum alloy clad material for forming
WO2011052517A1 (en) Aluminum-bonding alloy, clad material having bonding alloy layer formed from the alloy, and composite material including bonded aluminum
WO2014057771A1 (en) Metal substrate
KR102598376B1 (en) Ferritic stainless steel sheet and method of producing same, and al or al alloy coated stainless steel sheet
US11178786B2 (en) Method for manufacturing hermetic sealing lid member
WO2011061909A1 (en) Substrate for superconducting compound and method for manufacturing the substrate
JP4492342B2 (en) Brazing clad material, brazing method using the same, and brazed product
JP5932132B2 (en) Steel aluminum composite foil
JP6127941B2 (en) Solder joint material and manufacturing method thereof
WO2017208671A1 (en) Ferritic stainless steel sheet
WO2019198549A1 (en) Roll-bonded body and method for producing roll-bonded body
JP3670235B2 (en) Brazing composite material and brazing structure
JP5883663B2 (en) Flexible metal substrate with insulating layer, manufacturing method thereof, and semiconductor element
JP7147985B2 (en) Copper composite plate, vapor chamber using copper composite plate, and method for manufacturing vapor chamber
JP2003051606A (en) Substrate for thin film formation
WO2000045987A1 (en) Brazing composite material and brazed structure
JP3865091B2 (en) Fe-Cr-Al ferritic stainless steel with excellent high temperature strength, high temperature oxidation resistance and diffusion bonding
JP2021154335A (en) Clad
WO2020170628A1 (en) FERRITE STAINLESS STEEL SHEET, PRODUCTION METHOD FOR SAME, AND STAINLESS STEEL SHEET HAVING Al VAPOR-DEPOSITED LAYER
JP6813142B1 (en) Manufacturing method of Al-plated stainless steel sheet and ferrite-based stainless steel sheet
JP2010042422A (en) Brazing structure and brazing method of steel material with aluminum material
WO2013175643A1 (en) Stainless steel foil solar cell substrate material and method for manufacturing same
JP6337452B2 (en) Semiconductor element forming substrate and method for manufacturing semiconductor element forming substrate
JP2012046791A (en) Pure al coated steel sheet and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534838

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13846030

Country of ref document: EP

Kind code of ref document: A1