WO2014132607A1 - Liquid dispersion of titanium oxide particles, coating agent composition, and antibacterial/antiviral member - Google Patents

Liquid dispersion of titanium oxide particles, coating agent composition, and antibacterial/antiviral member Download PDF

Info

Publication number
WO2014132607A1
WO2014132607A1 PCT/JP2014/000943 JP2014000943W WO2014132607A1 WO 2014132607 A1 WO2014132607 A1 WO 2014132607A1 JP 2014000943 W JP2014000943 W JP 2014000943W WO 2014132607 A1 WO2014132607 A1 WO 2014132607A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
mass
parts
oxide particles
particle dispersion
Prior art date
Application number
PCT/JP2014/000943
Other languages
French (fr)
Japanese (ja)
Inventor
剛士 植田
絹川 謙作
大悟 山科
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2015502757A priority Critical patent/JP6347368B2/en
Publication of WO2014132607A1 publication Critical patent/WO2014132607A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3669Treatment with low-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to a titanium oxide particle dispersion, a coating composition and an antibacterial and antiviral member.
  • the present invention relates to a titanium oxide particle dispersion and a coating composition capable of obtaining high antibacterial properties, antiviral properties and transparency, and an antibacterial / antiviral component using the coating composition.
  • antimicrobial member which provides antimicrobial property with respect to the interior member for houses or vehicles generally contains antimicrobial materials, such as silver and zinc (for example, refer to patent documents 1 and 2).
  • antimicrobial materials such as silver and zinc (for example, refer to patent documents 1 and 2).
  • silver and zinc have problems in terms of price and ecotoxicity.
  • titanium oxide which is inexpensive, present in a large amount, and has low ecotoxicity, as an antibacterial material (see, for example, Patent Document 3). Since titanium oxide has photocatalytic activity, an antibacterial action using this photocatalytic activity has attracted attention.
  • titanium oxide is a white powder as frequently used in pigments of white paints. Therefore, in order to be used in various applications, a technology for securing transparency even when using titanium oxide is required. Specifically, it is necessary to form titanium oxide into fine particles using bottom-up synthesis or various dispersion techniques.
  • JP 2008-255101 A JP, 2011-42642, A Japanese Patent Laid-Open No. 2003-275601
  • the conventional fine particle dispersion of titanium oxide has a low concentration of titanium oxide.
  • concentration of titanium oxide is low, the coating film becomes thick and problems such as dripping easily occur.
  • the need to increase the drying time and increase the drying temperature arises from the fact that a large amount of solvent is contained.
  • the present invention has been made in view of the problems of the prior art.
  • the object of the present invention is titanium oxide particle dispersion liquid and coating agent composition which can obtain a film which has transparency even when titanium oxide concentration is raised and antibacterial property is improved, and the coating agent composition concerned To provide an antibacterial and antiviral material using the
  • the titanium oxide particle dispersion liquid according to the first aspect of the present invention contains titanium oxide particles and 5 to 100 parts by mass of a nonionic surfactant based on 100 parts by mass of the titanium oxide particles. Furthermore, the titanium oxide particle dispersion liquid contains 300 to 2000 parts by mass of an organic solvent based on 100 parts by mass of titanium oxide particles, containing 50% by mass or more of a glycol ether-based organic solvent.
  • the titanium oxide particles have an average primary particle diameter of 2 to 80 nm, and have an average secondary particle diameter of 50 to 150 nm as measured by a dynamic light scattering method and obtained by a cumulant analysis method.
  • the titanium oxide particles are contained in an amount of 10 parts by mass or more in 100 parts by mass of the heating residue of the titanium oxide particle dispersion.
  • the above-mentioned nonionic surfactant has a weight average molecular weight of 300 to 10,000.
  • the coating agent composition which concerns on the 3rd aspect of this invention contains the said titanium oxide particle dispersion liquid and binder resin.
  • the titanium oxide particles in the coating agent composition are contained in an amount of 10 to 80 parts by mass in 100 parts by mass of the heating residue of the coating agent composition.
  • the antibacterial and antiviral member according to the fourth aspect of the present invention has a substrate, and a film provided on the substrate and containing the above-mentioned coating composition.
  • titanium oxide particle dispersion liquid the coating agent composition, and the antibacterial and antiviral member according to the embodiment of the present invention will be described in detail.
  • the titanium oxide particle dispersion liquid according to the embodiment of the present invention contains titanium oxide particles, a nonionic surfactant, and an organic solvent containing 50% by mass or more of a glycol ether-based organic solvent.
  • titanium oxide particles particles made of anatase type or rutile type titanium oxide can be used.
  • particles in which anatase type titanium oxide and rutile type titanium oxide are mixed can also be used.
  • titanium oxide particles particles of anatase type titanium oxide are preferably used. This is because anatase type titanium oxide has a larger band gap than rutile type titanium oxide and is excellent in photocatalytic property.
  • an amorphous titanium oxide may be mixed with particles of anatase type titanium oxide.
  • the mixing amount is preferably as small as possible.
  • particles of iron oxide and copper oxide supported on the surface of titanium oxide particles may be used.
  • the average primary particle size of the titanium oxide particles is 2 nm to 80 nm.
  • the average primary particle size of the titanium oxide particles can be determined, for example, by measuring the diameters of a plurality of titanium oxide particles using a transmission electron microscope (TEM).
  • the average primary particle diameter of the titanium oxide particles is preferably 5 nm to 50 nm, and more preferably 5 nm to 30 nm. Such an average primary particle size enables high dispersion in an organic solvent while maintaining the surface area of the titanium oxide particles in a high state.
  • a nonionic surfactant is a surfactant which exhibits surfactant activity without being dissociated into ions in an aqueous solution.
  • the photocatalytic activity of the titanium oxide particles that is, the antibacterial property and the antiviral property do not decrease, and furthermore, high dispersion can be achieved in the organic solvent.
  • the nonionic surfactant for example, at least one of a polyoxyethylene type, a polyhydric alcohol fatty acid ester type and a type having both of them can be used.
  • a nonionic surfactant a polyoxyethylene based one is preferable.
  • polyoxyethylene surfactants include, for example, polyoxyethylene ethers of fatty acids, polyoxyethylene ethers of higher alcohols, alkyl phenols, polyoxyethylene ethers, and the like. There are also polyoxyethylene ethers of sorbitan esters, polyoxyethylene ethers of castor oil, polyoxyethylene ethers of polyoxypropylene and alkylolamides of fatty acids.
  • polyhydric alcohol fatty acid ester surfactants include monoglycerite surfactants, sorbitol surfactants, soltabine surfactants, and sugar ester surfactants.
  • a nonionic surfactant may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the weight average molecular weight Mw of the nonionic surfactant is preferably 300 to 10,000.
  • the weight average molecular weight of the nonionic surfactant is 300 or more, a sufficient viscosity reducing action on the titanium oxide particle dispersion can be obtained, and a transparent film can be obtained. Furthermore, due to the steric hindrance of the nonionic surfactant, the repulsion stability of the titanium oxide particles is improved, and the high dispersibility of the titanium oxide particles is easily maintained.
  • the weight average molecular weight of the nonionic surfactant is 10000 or less, the aggregation of particles associated with the binding of the nonionic surfactants after the dispersion treatment is suppressed to maintain the transparency of the film. It becomes possible.
  • the weight average molecular weight Mw of the nonionic surfactant is more preferably 300 to 5,000. With such a weight average molecular weight, it is possible to further improve the dispersibility of the titanium oxide particles.
  • the organic solvent As an organic solvent as a dispersion medium of the said titanium oxide particle, the organic solvent containing 50 mass% or more of glycol ether type
  • a coating agent composition containing the above-mentioned titanium oxide particle dispersion and binder resin is prepared, as described later, by making the glycol ether type organic solvent as the main component, curing inhibition of the composition is hardly caused. It becomes possible. Furthermore, even when titanium oxide particles are contained at a high concentration, the viscosity of the titanium oxide particle dispersion can be reduced, and the efficiency of the coating operation can be improved.
  • glycol ether type organic solvent examples include diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, propylene glycol monomethyl ether, 3-methoxy-3-methyl-1-butanol, hexyl diglycol and the like.
  • One of these glycol ether-based organic solvents may be used alone, or two or more thereof may be used in combination. From among these glycol ether organic solvents, an appropriate solvent can be selected according to the temperature conditions at the time of film formation and the like.
  • the organic solvent as the dispersion medium in the titanium oxide particle dispersion contains 50% by mass or more of the glycol ether-based organic solvent, preferably 70% by mass or more, and more preferably 90% by mass or more. If the content of the glycol ether-based organic solvent is less than 50% by mass, the viscosity of the dispersion may be increased to lower the efficiency of the coating operation, or the thickness of the film may be excessive. In addition, you may use only a glycol-ether type
  • the dispersion medium in addition to the glycol ether type organic solvent, it is possible to mix various organic solvents such as alcohol type and ketone type.
  • alcohol-based organic solvents include methanol, ethanol, n-propanol, isopropanol, butanol, isobutanol, t-butanol, butanediol, 2-ethylhexanol, benzyl alcohol and the like.
  • ketone system organic solvent acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, diacetone alcohol etc. can be mentioned, for example.
  • These alcohol-based organic solvents and ketone-based organic solvents may be used alone or in combination of two or more.
  • the addition amount of the non-ionic surfactant in the titanium oxide particle dispersion can be appropriately adjusted by the content of the titanium oxide particles.
  • the amount of the nonionic surfactant is 5 to 100 parts by mass with respect to 100 parts by mass of the titanium oxide particles. If the amount of the nonionic surfactant is less than 5 parts by mass, titanium oxide particles may be aggregated with each other, and sufficient dispersibility may not be obtained.
  • a nonionic surfactant exceeds 100 mass parts, when mixing with binder resin and forming a film so that it may mention later, there exists a possibility that hardening inhibition may occur.
  • the amount is more than 100 parts by mass, the physical properties of the film such as film forming ability and adhesion may be deteriorated.
  • the addition amount of the nonionic surfactant is more preferably 5 to 90 parts by mass with respect to 100 parts by mass of the titanium oxide particles. With such an addition amount, it is possible to suppress a decrease in film physical properties while improving the dispersibility of the titanium oxide particles.
  • the addition amount of the organic solvent in the titanium oxide particle dispersion can also be appropriately adjusted by the content of the titanium oxide particles.
  • the amount of the organic solvent is 300 to 2000 parts by mass with respect to 100 parts by mass of the titanium oxide particles.
  • the amount of the organic solvent is less than 300 parts by mass, the dispersibility of the titanium oxide particles is reduced, and the viscosity of the titanium oxide particle dispersion is increased, which may lower the efficiency of the coating operation.
  • the organic solvent exceeds 2000 parts by mass, when the film is formed by mixing with the binder resin, the film forming property (drying property) of the film may be lowered, and the working efficiency may be lowered.
  • the amount of the organic solvent added is more preferably 500 to 1800 parts by mass with respect to 100 parts by mass of the titanium oxide particles. With such an addition amount, it is possible to suppress an excessive increase in viscosity while improving the dispersibility of the titanium oxide particles.
  • the titanium oxide particle dispersion liquid of this embodiment becomes a coating agent composition by mixing with binder resin so that it may mention later, and also by apply
  • the average secondary particle diameter of the titanium oxide particles in the titanium oxide particle dispersion needs to be 50 to 150 nm.
  • the average secondary particle size is less than 50 nm, the crystal structure of the photocatalytic material may be destroyed, and photocatalytic activity (antibacterial and antiviral properties) may be reduced.
  • the average secondary particle diameter exceeds 150 nm the surface area of the titanium oxide particles may be reduced, and the photocatalytic activity may be reduced.
  • the average secondary particle size of the titanium oxide particles is measured by the dynamic light scattering method, and the average secondary particle size obtained by the cumulant analysis method is adopted.
  • the titanium oxide particles are contained in an amount of 10 parts by mass or more in 100 parts by mass of the heating residue of the titanium oxide particle dispersion liquid. If the content of the titanium oxide particles in the total heating residue 100 parts by mass is less than 10 parts by mass, the solvent component of the coating agent composition becomes excessive when mixed with the binder resin. Therefore, the compounding quantity of the titanium oxide particle in a coating agent composition may fall, and it may become difficult to ensure high antimicrobial property. In addition, when the solvent component is excessive, liquid dripping or the like occurs during coating of the coating agent composition to cause appearance abnormality, and there is a possibility that physical properties may be lowered due to the fact that a sufficient film thickness can not be obtained.
  • the content of the titanium oxide particles in the titanium oxide particle dispersion is not particularly limited as long as the transparency of the obtained film is secured, but, for example, 50 mass% in 100 parts by mass of the heating residue of the titanium oxide particle dispersion. It can be less than a part.
  • the heating residue in the present specification can be measured in accordance with Japanese Industrial Standard JIS K 5601-1-2 (paint component test method-part 1: general rule-section 2: heating residue).
  • the titanium oxide particle dispersion liquid of the present embodiment contains titanium oxide particles and 5 to 100 parts by mass of a nonionic surfactant with respect to 100 parts by mass of the titanium oxide particles. Furthermore, the titanium oxide particle dispersion liquid contains 300 to 2000 parts by mass of an organic solvent based on 100 parts by mass of titanium oxide particles, containing 50% by mass or more of a glycol ether-based organic solvent.
  • the titanium oxide particles have an average primary particle diameter of 2 to 80 nm, and have an average secondary particle diameter of 50 to 150 nm as measured by a dynamic light scattering method and obtained by a cumulant analysis method.
  • the titanium oxide particles are contained in an amount of 10 parts by mass or more in 100 parts by mass of the heating residue of the titanium oxide particle dispersion. With such a configuration, the dispersibility of the titanium oxide particles is improved even when the concentration of the titanium oxide particles in the titanium oxide particle dispersion is increased, so that the transparency of the antibacterial / antiviral film using this is enhanced. It is possible to secure
  • the titanium oxide particle dispersion liquid can be prepared by mixing the above-mentioned titanium oxide particles, nonionic surfactant and organic solvent and highly dispersing the titanium oxide particles in the organic solvent. Therefore, any method can be used as long as the titanium oxide particles can be highly dispersed.
  • the titanium oxide particles it is preferable to divide the titanium oxide particles into a pre-dispersion treatment and a main dispersion treatment.
  • a pre-dispersion treatment As a result, the surface of the titanium oxide particles gets wet, and the air layer on the surface is replaced with the organic solvent, so that the dispersion proceeds rapidly in the subsequent main dispersion treatment. If this pre-dispersion treatment is insufficient, the progress of dispersion is slow, and there is a risk that waste mechanical impact may be given to the titanium oxide particles. As a result, the crystal structure itself of the titanium oxide particles may be destroyed, resulting in a dispersion with reduced stability.
  • the pre-dispersion treatment may be stirred using a general dissolver.
  • a high-speed stirrer for example, T.I. K. Homomixer, T.I. K. Robomix and T.K. K. Fillix (trade name, manufactured by Primix Co., Ltd.) can be used.
  • Creamix registered trademark
  • UltraDispar trade name, manufactured by Asada Iron Works, Ltd.
  • a dispersing apparatus which performs this dispersing process
  • a kneader two rolls, three rolls, SS5 (trade name, M. Technique Co., Ltd.), Miracle KCK (registered trademark) (trade name, manufactured by Asada Iron Works Co., Ltd.)
  • ultrasonic dispersion machines Microfluidizer (trade name, manufactured by Mizuho Kogyo Co., Ltd.) which is a high pressure homogenizer, NanoVeita (registered trademark) (trade name, manufactured by Yoshida Machine Kogyo Co., Ltd.), and the like can also be mentioned.
  • Starburst registered trademark
  • G-Smasher trade name, Lix, Inc.
  • bead media such as glass and zircon
  • ball mills, bead mills, sand mills, horizontal media mills, dispersers, colloid mills, etc. can be used.
  • media used in a bead mill bead media having a diameter of 1 mm or less are preferable, and bead media having a diameter of 0.5 mm or less are more preferable.
  • the dispersion time of the pre-dispersion treatment and the main dispersion treatment may be appropriately adjusted depending on each dispersion device or medium so that the titanium oxide particles are highly dispersed in the organic solvent together with the nonionic surfactant.
  • processing can be performed in a shorter time by supplying while performing sufficient stirring using a high-speed stirrer or the like. is there.
  • the coating agent composition which concerns on this embodiment contains the above-mentioned titanium oxide particle dispersion liquid, and binder resin. As described above, since the titanium oxide particle dispersion liquid of the present embodiment improves the dispersibility while improving the titanium oxide concentration, the coating agent composition using such a titanium oxide particle dispersion liquid is antibacterial It is possible to form a coating of high sex, antiviral and transparency.
  • the binder resin to be mixed with the titanium oxide particle dispersion is not particularly limited as long as the stability, the antimicrobial property and the transparency of the film obtained from the coating agent composition can be ensured.
  • a binder resin an alkyd resin, an acrylic resin, a melamine resin, a urethane resin, an epoxy resin, a silicone resin etc. can be used, for example.
  • polyester resins, polyamide acid resins, polyimide resins, styrene maleic acid resins, styrene maleic anhydride resins, and the like can also be used.
  • various acrylic acid monomers and acrylate monomers are also applicable.
  • Particularly preferable resins as the binder resin and the monomers include urethane resins, acrylic resins, acrylic acid monomers, polyamic acid resins, polyimide resins, styrene maleic acid resins, and styrene maleic anhydride resins.
  • the binder resin may be used alone or in combination of two or more.
  • the coating agent composition may be added to the titanium oxide particle dispersion liquid and the binder resin, and may contain various additives as long as the photocatalytic activity is not affected. Specifically, dispersants, pigments, fillers, aggregates, thickeners, flow control agents, leveling agents, curing agents, crosslinking agents, curing catalysts and the like can be blended.
  • the coating agent composition which concerns on this embodiment can be prepared by mixing the above-mentioned titanium oxide particle dispersion liquid and binder resin, and also the said additive as needed.
  • mixing for example, mixing can be performed using the above-described dissolver or high-speed stirrer.
  • the titanium oxide particles are preferably contained in an amount of 10 to 80 parts by mass in 100 parts by mass of the heating residue of the coating agent composition. If the content of the titanium oxide particles in the heating residue is less than 10 parts by mass, the antimicrobial properties may be reduced. In addition, the hardness of the coating may be reduced. When the content of the titanium oxide particles exceeds 80 parts by mass, it is possible to obtain sufficient antibacterial properties, but there is a possibility that the film physical properties may deteriorate because the binder resin is insufficient. In addition, the transparency of the film may be reduced.
  • the content of titanium oxide particles in the coating agent composition is more preferably 30 to 70 parts by mass in 100 parts by mass of the heating residue of the coating agent composition, and particularly preferably 40 to 60 parts by mass preferable.
  • the content of the titanium oxide particles is in this range, it is possible to suppress the decrease in film physical properties while securing sufficient antimicrobial properties, and to ensure high transparency.
  • the antibacterial and antiviral member according to the present embodiment has a substrate, and a film provided on the substrate and containing the coating composition.
  • the coating agent composition of the present embodiment has the high antifungal and antiviral properties attributed to the titanium oxide particles, as well as the antifouling / deodorizing effect. Furthermore, because the titanium oxide particles are highly dispersed in the coating agent composition, the resulting film also has high transparency.
  • the material of the base material may be basically anything, such as organic polymer, ceramic, metal, glass, plastic, decorative plywood or a composite thereof.
  • the shape of the substrate is also not particularly limited. For example, it may be a simple shape or a complicated shape such as a plate, a sphere, a cylinder, a cylinder, a rod, a prism, a hollow prism, etc. Good.
  • the substrate may be a porous body such as a filter.
  • the base material building materials such as ceiling materials, tiles, glass, wallpaper, wall materials, floors and construction materials, interior materials for automobiles (instrument panels, sheets, ceiling materials), household appliances such as refrigerators and air conditioners, clothes Textile products such as curtains and the like, industrial equipment, medical equipment and the like are preferable.
  • a door, a door handle, a pull handle, a handrail, an interior counter, furniture, a kitchen, a toilet, a bath, a lighting fixture, a touch panel, a switch, a sheet used for these, etc. are preferable.
  • the coating formed of the coating composition of the present embodiment has high antibacterial and antiviral properties, and thus is particularly effective for such a surface that the human body etc. frequently contacts.
  • the antibacterial and antiviral members according to the present embodiment can also be applied as, for example, a filter for an air purifier or a filter for an air conditioner. And it reduces the risk of infection with bacteria and viruses by being used not only at homes, but also at hospitals and elderly facilities and places used by unspecified people such as public transport such as trains, buses and planes. It is possible and useful.
  • the antimicrobial / antiviral member according to the present embodiment can be obtained by applying a coating composition to a substrate and drying it.
  • the coating method and drying conditions at this time are not particularly limited.
  • methods such as screen printing, spin coating, dip coating, roll coating, brush coating, spray coating, and inkjet can be used.
  • the drying conditions are not particularly limited as long as the organic solvent is removed.
  • the thickness of the coating film of the coating agent composition is preferably 2 to 15 ⁇ m, and more preferably 4 to 13 ⁇ m as a film thickness after curing. When the film thickness after curing is in this range, it is possible to improve adhesion while improving the surface hardness of the cured film.
  • the antibacterial and antiviral member of the present embodiment has a substrate and a film provided on the substrate and containing a coating composition. And, in the coating agent composition, nano level titanium oxide particles are dispersed at a high concentration. Therefore, it is possible to ensure high antibacterial and antiviral properties due to the photocatalytic activity of the titanium oxide particles and to obtain transparency.
  • Example 1 First, ST-01 (average primary particle diameter: 7 nm, crystal structure: anatase) manufactured by Ishihara Sangyo Co., Ltd. was prepared as titanium oxide particles, and diethylene glycol monomethyl ether (DEGME) was prepared as an organic solvent. Furthermore, Uniol (registered trademark) TG-1000 (polyoxypropylene glyceryl ether, weight average molecular weight Mw: 1000) manufactured by NOF Corporation was prepared as a nonionic surfactant.
  • DEGME diethylene glycol monomethyl ether
  • Example 2 A titanium oxide particle dispersion was prepared in the same manner as in Example 1 except that 100 parts by mass of titanium oxide, 500 parts by mass of diethylene glycol monomethyl ether, and 6 parts by mass of nonionic surfactant were mixed.
  • the titanium oxide concentration in the titanium oxide particle dispersion of this example was 17% by mass.
  • Example 2 Furthermore, in the same manner as Example 1, 12 parts by mass of the obtained titanium oxide particle dispersion liquid and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this example.
  • Example 3 A titanium oxide particle dispersion was prepared in the same manner as in Example 1 except that 100 parts by mass of titanium oxide, 500 parts by mass of diethylene glycol monomethyl ether, and 90 parts by mass of nonionic surfactant were mixed.
  • the titanium oxide concentration in the titanium oxide particle dispersion of this example was 14% by mass.
  • Example 2 Furthermore, in the same manner as in Example 1, 14 parts by mass of the obtained titanium oxide particle dispersion liquid and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this example.
  • Example 4 A titanium oxide particle dispersion was prepared in the same manner as in Example 1 except that 100 parts by mass of titanium oxide, 350 parts by mass of diethylene glycol monomethyl ether, and 30 parts by mass of the nonionic surfactant were mixed.
  • the titanium oxide concentration in the titanium oxide particle dispersion of this example was 21% by mass.
  • Example 2 Furthermore, similarly to Example 1, 10 parts by mass of the obtained titanium oxide particle dispersion liquid and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this example.
  • Example 5 A titanium oxide particle dispersion was prepared in the same manner as in Example 1 except that 100 parts by mass of titanium oxide, 900 parts by mass of diethylene glycol monomethyl ether, and 30 parts by mass of a nonionic surfactant were mixed.
  • the titanium oxide concentration in the titanium oxide particle dispersion liquid of this example was 10% by mass.
  • Example 2 Furthermore, in the same manner as in Example 1, 39 parts by mass of the obtained titanium oxide particle dispersion liquid and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this example.
  • Example 6 A titanium oxide particle dispersion was prepared in the same manner as in Example 1 except that 250 parts by mass of diethylene glycol monomethyl ether and 250 parts by mass of methyl ethyl ketone (MEK) were used as the organic solvent.
  • the titanium oxide concentration in the titanium oxide particle dispersion of this example was 16% by mass.
  • Example 2 Furthermore, in the same manner as in Example 1, 13 parts by mass of the obtained titanium oxide particle dispersion and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this example.
  • Example 7 A titanium oxide particle dispersion was prepared in the same manner as in Example 1 except that Uniol TG-330 (polyoxypropylene glyceryl ether, weight average molecular weight Mw: 330) manufactured by NOF Corporation was used as the nonionic surfactant. did.
  • the titanium oxide concentration in the titanium oxide particle dispersion of this example was 16% by mass.
  • Example 2 Furthermore, in the same manner as in Example 1, 13 parts by mass of the obtained titanium oxide particle dispersion and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this example.
  • Example 8 A titanium oxide particle dispersion was prepared in the same manner as in Example 1 except that Uniol TG-4000 (polyoxypropylene glyceryl ether, weight average molecular weight Mw: 4000) manufactured by NOF Corporation was used as the nonionic surfactant. did.
  • the titanium oxide concentration in the titanium oxide particle dispersion of this example was 16% by mass.
  • Example 2 Furthermore, in the same manner as in Example 1, 13 parts by mass of the obtained titanium oxide particle dispersion and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this example.
  • Example 9 A titanium oxide particle dispersion was prepared in the same manner as in Example 1 except that ST-21 (average primary particle diameter: 20 nm, crystal structure: anatase) manufactured by Ishihara Sangyo Co., Ltd. was used as the titanium oxide particles.
  • the titanium oxide concentration in the titanium oxide particle dispersion of this example was 16% by mass.
  • Example 2 Furthermore, in the same manner as in Example 1, 13 parts by mass of the obtained titanium oxide particle dispersion and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this example.
  • Example 10 Twenty-nine parts by mass of the titanium oxide particle dispersion obtained in Example 1 and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this example. The resin described in Example 1 was used as the binder resin.
  • Example 11 Two parts by mass of the titanium oxide particle dispersion obtained in Example 1 and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this example.
  • the resin described in Example 1 was used as the binder resin.
  • Comparative Example 2 A titanium oxide particle dispersion was prepared in the same manner as in Example 1 except that 100 parts by mass of titanium oxide, 500 parts by mass of diethylene glycol monomethyl ether, and 150 parts by mass of a nonionic surfactant were mixed.
  • the titanium oxide concentration in the titanium oxide particle dispersion liquid of the present comparative example was 13% by mass.
  • Example 2 Furthermore, similarly to Example 1, 15 parts by mass of the obtained titanium oxide particle dispersion liquid and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of the present comparative example.
  • Comparative Example 3 A titanium oxide particle dispersion was prepared in the same manner as in Example 1 except that 100 parts by mass of titanium oxide, 4000 parts by mass of diethylene glycol monomethyl ether, and 150 parts by mass of a nonionic surfactant were mixed.
  • the titanium oxide concentration in the titanium oxide particle dispersion liquid of the present comparative example was 2% by mass.
  • Example 2 Furthermore, in the same manner as in Example 1, 83 parts by mass of the obtained titanium oxide particle dispersion and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this comparative example.
  • Comparative Example 6 A titanium oxide particle dispersion was prepared in the same manner as in Example 1 except that DISPERBYK (registered trademark) -111 (ionic surfactant) manufactured by BIC-Chemie Japan Ltd. was used as a surfactant.
  • the titanium oxide concentration in the titanium oxide particle dispersion liquid of the present comparative example was 16% by mass.
  • Example 2 Furthermore, in the same manner as Example 1, 13 parts by mass of the obtained titanium oxide particle dispersion liquid and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this comparative example.
  • TTO-50 (average primary particle diameter: 10 nm, crystal structure: rutile) manufactured by Ishihara Sangyo Co., Ltd. was prepared as titanium oxide particles, and diethylene glycol monomethyl ether was prepared as an organic solvent. Furthermore, Uniol TG-1000 (polyoxypropylene glyceryl ether, weight average molecular weight Mw: 1000) manufactured by NOF Corporation was prepared as a nonionic surfactant.
  • Comparative Example 8 71 parts by mass of the titanium oxide particle dispersion obtained in Example 1 and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this comparative example.
  • the resin described in Example 1 was used as the binder resin.
  • Comparative Example 9 One part by mass of the titanium oxide particle dispersion obtained in Example 1 and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this comparative example. The resin described in Example 1 was used as the binder resin.
  • Table 1 shows the additive amount and average primary particle diameter of titanium oxide particles, the additive amount of an organic solvent, the additive amount and weight average molecular weight of a surfactant, and the titanium oxide particle concentration in the titanium oxide particle dispersion in Examples and Comparative Examples. Shown in 2. Further, the mixing amounts of the titanium oxide particle dispersion and the binder resin in the coating agent composition are also shown in Tables 1 and 2.
  • the titanium oxide particle dispersion obtained in each example was measured by a dynamic light scattering method, and cumulant analysis was performed to measure the average secondary particle size of the titanium oxide particles.
  • a concentrated particle size analyzer FPAR-1000 manufactured by Otsuka Electronics Co., Ltd. was used to measure the particle size.
  • the titanium oxide particle dispersion liquid obtained in each example was adjusted using methyl ethyl ketone so that the titanium oxide concentration was 1% by mass.
  • the diluted titanium oxide particle dispersion was applied onto a glass plate using a bar coater # 10. Further, the obtained coating was dried at 50 ° C. for 30 minutes.
  • the haze of the thin film obtained after drying is measured using a haze meter NDH4000 (manufactured by Nippon Denshoku Kogyo Co., Ltd.), and the haze of 3 or less is evaluated as "o", and 3 or more is evaluated as "x". did.
  • Antibacterial evaluation was carried out using E. coli according to JIS R 1702 (Fine ceramics-Antibacterial test method for antibacterially processed products of photocatalysts and antibacterial effect).
  • the conditions of light irradiation performed irradiation for 1 hour by 1000 Lx of total lights of a fluorescent lamp.
  • An antimicrobial activity value of 3 or more per hour was evaluated as “o”, and 0.5 or more and less than 3 were evaluated as “ ⁇ ”, and less than 0.5 was evaluated as “x”.
  • [Antiviral] Performs antiviral evaluation in accordance with JIS R 1756 (Fine ceramics-Method of testing antiviral materials for visible light responsive photocatalyst materials-Method using bacteriophage Q ⁇ ) established as an alternative evaluation method for antiviral tests did.
  • the conditions of light irradiation performed irradiation for 1 hour by 1000 Lx of total lights of a fluorescent lamp.
  • An antimicrobial activity value of 3 or more per hour was evaluated as “o”, and 0.5 or more and less than 3 were evaluated as “ ⁇ ”, and less than 0.5 was evaluated as “x”.
  • the titanium oxide particle dispersions of Examples 1 to 11 show good results in the dispersion adequacy evaluation, and the obtained coating agent composition is also transparent, antibacterial, antiviral, synthetic. Good results were obtained in each evaluation of film properties, adhesion and pencil hardness.
  • Comparative Example 1 in which the surfactant is not contained, Comparative Example 4 in which the organic solvent consists only of MEK, and Comparative Example 5 in which the weight average molecular weight of the surfactant is too large, The viscosity of the solution increased, and a titanium oxide particle dispersion could not be prepared.
  • Comparative Example 2 in which the amount of surfactant is excessive, film properties such as film forming property, adhesion property and pencil hardness decrease, and accordingly, the antibacterial property and the antiviral property also become insufficient results.
  • Comparative Example 3 in which the surfactant and the organic solvent were excessive, the film forming property was lowered.
  • the surfactant is an ionic surfactant as in Comparative Example 6 or when the average secondary particle size of the titanium oxide particles is too large as in Comparative Example 7, the photocatalytic performance is lowered, Along with that, the antibacterial and antiviral properties also decreased. And, as in Comparative Example 7, when the average secondary particle diameter of the titanium oxide particles is too large, the transparency is also lowered.
  • the titanium oxide particles exceeded 80 parts by mass. Therefore, the result was a decrease in transparency.
  • the titanium oxide particles were less than 10 parts by mass in 100 parts by mass of the heating residue of the coating agent composition. Therefore, the surface hardness of the film decreased.
  • the titanium oxide particle dispersion liquid of the present invention can maintain the dispersibility of the titanium oxide particles in a high state even when the concentration of the titanium oxide particles is increased. As a result, it becomes possible to improve the transparency of the coating agent composition containing the titanium oxide particles and the antibacterial and antiviral member using the coating agent composition. Furthermore, the coating composition and the antibacterial and antiviral member have high content of titanium oxide particles and thus have high antibacterial and antiviral properties.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Inorganic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Paints Or Removers (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

 This liquid dispersion of titanium oxide particles contains titanium oxide particles, and a nonionic surfactant in an amount of 5-100 mass parts per 100 mass parts of the titanium oxide particles. Furthermore, this liquid dispersion of titanium oxide particles contains an organic solvent in an amount of 300-2000 mass parts per 100 mass parts of the titanium oxide particles, the organic solvent containing at least 50% by mass of a glycol ether organic solvent. The titanium oxide particles have a mean primary particle size of 2-80 nm and a mean secondary particle size of 50-150 nm, the mean secondary particle size being measured by dynamic light scattering and obtained by cumulant analysis. In addition, the titanium oxide particle content is 10 mass parts or greater in 100 mass parts of the heating residue of the liquid dispersion of titanium oxide particles.

Description

酸化チタン粒子分散液、コーティング剤組成物及び抗菌・抗ウイルス性部材Titanium oxide particle dispersion, coating composition and antibacterial / antiviral member
 本発明は、酸化チタン粒子分散液、コーティング剤組成物及び抗菌・抗ウイルス性部材に関する。詳細には、本発明は、高い抗菌性、抗ウイルス性及び透明性が得られる酸化チタン粒子分散液及びコーティング剤組成物、並びに当該コーティング剤組成物を用いた抗菌・抗ウイルス性部材に関する。 The present invention relates to a titanium oxide particle dispersion, a coating composition and an antibacterial and antiviral member. In particular, the present invention relates to a titanium oxide particle dispersion and a coating composition capable of obtaining high antibacterial properties, antiviral properties and transparency, and an antibacterial / antiviral component using the coating composition.
 消費者の清潔志向の向上により、生活環境中の微生物を減少させる多様な抗菌性部材が開発され、製品化されている。そして、住宅用や自動車用の内装部材に対して抗菌性を付与する抗菌性部材は、一般的に銀や亜鉛などの抗菌性材料を含有している(例えば、特許文献1及び2参照)。しかし、銀や亜鉛などは、価格や生態毒性の点で課題を有している。 With the improvement of consumers' preference for cleanliness, various antibacterial members for reducing microorganisms in the living environment have been developed and commercialized. And the antimicrobial member which provides antimicrobial property with respect to the interior member for houses or vehicles generally contains antimicrobial materials, such as silver and zinc (for example, refer to patent documents 1 and 2). However, silver and zinc have problems in terms of price and ecotoxicity.
 そこで、安価で多量に存在し、生態毒性の少ない酸化チタンを抗菌性材料として使用する試みが行われている(例えば、特許文献3参照)。酸化チタンは光触媒活性を有するため、この光触媒活性を用いた抗菌作用が注目されている。 Therefore, attempts have been made to use titanium oxide, which is inexpensive, present in a large amount, and has low ecotoxicity, as an antibacterial material (see, for example, Patent Document 3). Since titanium oxide has photocatalytic activity, an antibacterial action using this photocatalytic activity has attracted attention.
 ここで、酸化チタンは、白色塗料の顔料に多用されているように白色の粉末である。そのため、様々な用途で使用できるように、酸化チタンを用いた場合でも透明性を確保するための技術が必要となる。具体的には、ボトムアップ合成や各種分散技術を用いた酸化チタンの微粒子化が必要となる。 Here, titanium oxide is a white powder as frequently used in pigments of white paints. Therefore, in order to be used in various applications, a technology for securing transparency even when using titanium oxide is required. Specifically, it is necessary to form titanium oxide into fine particles using bottom-up synthesis or various dispersion techniques.
特開2008-255101号公報JP 2008-255101 A 特開2011-42642号公報JP, 2011-42642, A 特開2003-275601号公報Japanese Patent Laid-Open No. 2003-275601
 しかしながら、酸化チタンの微粒子分散液として現在上市されているものは、粒子間の電荷による反発作用を用いた水分散液が主流となっている。そのため、このような酸化チタンの水分散液に対し、アクリルウレタンとイソシアネートとを組み合わせたようなバインダーを用いると、水の影響により透明性が損なわれるという問題がある。また、酸化チタンの水分散液にこのようなバインダーを用いると、可使時間が極端に短くなるという問題もある。 However, those currently marketed as fine particle dispersions of titanium oxide are mainly aqueous dispersions using repulsion due to charge between particles. Therefore, there is a problem that the transparency is impaired due to the influence of water when a binder in which an acrylic urethane and an isocyanate are combined is used for such an aqueous dispersion of titanium oxide. In addition, when such a binder is used for the aqueous dispersion of titanium oxide, there is also a problem that the pot life becomes extremely short.
 また、従来の酸化チタンの微粒子分散液は、酸化チタン濃度が低い。酸化チタン濃度が低い場合は塗膜が厚くなり、液だれなどの問題が発生しやすくなる。さらに、溶媒を多量に含むことから、乾燥時間を長くし、乾燥温度を上昇させる必要性が生じてくる。 Moreover, the conventional fine particle dispersion of titanium oxide has a low concentration of titanium oxide. When the concentration of titanium oxide is low, the coating film becomes thick and problems such as dripping easily occur. Furthermore, the need to increase the drying time and increase the drying temperature arises from the fact that a large amount of solvent is contained.
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、酸化チタン濃度を高め、抗菌性を向上させた場合でも透明性を有する被膜を得ることが可能な酸化チタン粒子分散液及びコーティング剤組成物、並びに当該コーティング剤組成物を用いた抗菌・抗ウイルス性部材を提供することにある。 The present invention has been made in view of the problems of the prior art. And the object of the present invention is titanium oxide particle dispersion liquid and coating agent composition which can obtain a film which has transparency even when titanium oxide concentration is raised and antibacterial property is improved, and the coating agent composition concerned To provide an antibacterial and antiviral material using the
 本発明の第1の態様に係る酸化チタン粒子分散液は、酸化チタン粒子と、酸化チタン粒子100質量部に対し、5~100質量部の非イオン界面活性剤とを含有する。さらに酸化チタン粒子分散液は、グリコールエーテル系有機溶剤を50質量%以上含有する、酸化チタン粒子100質量部に対し300~2000質量部の有機溶剤を含有する。そして、酸化チタン粒子は、平均一次粒子径が2~80nmであり、動的光散乱法で測定しキュムラント解析法により得られる平均二次粒子径が50~150nmである。また、酸化チタン粒子は、酸化チタン粒子分散液の加熱残分100質量部中に10質量部以上含有する。 The titanium oxide particle dispersion liquid according to the first aspect of the present invention contains titanium oxide particles and 5 to 100 parts by mass of a nonionic surfactant based on 100 parts by mass of the titanium oxide particles. Furthermore, the titanium oxide particle dispersion liquid contains 300 to 2000 parts by mass of an organic solvent based on 100 parts by mass of titanium oxide particles, containing 50% by mass or more of a glycol ether-based organic solvent. The titanium oxide particles have an average primary particle diameter of 2 to 80 nm, and have an average secondary particle diameter of 50 to 150 nm as measured by a dynamic light scattering method and obtained by a cumulant analysis method. The titanium oxide particles are contained in an amount of 10 parts by mass or more in 100 parts by mass of the heating residue of the titanium oxide particle dispersion.
 本発明の第2の態様に係る酸化チタン粒子分散液は、上記非イオン界面活性剤の重量平均分子量が300~10000である。 In the titanium oxide particle dispersion liquid according to the second aspect of the present invention, the above-mentioned nonionic surfactant has a weight average molecular weight of 300 to 10,000.
 本発明の第3の態様に係るコーティング剤組成物は、上記酸化チタン粒子分散液とバインダー樹脂とを含有する。そして、コーティング剤組成物中の酸化チタン粒子は、コーティング剤組成物の加熱残分100質量部中に10~80質量部含有する。 The coating agent composition which concerns on the 3rd aspect of this invention contains the said titanium oxide particle dispersion liquid and binder resin. The titanium oxide particles in the coating agent composition are contained in an amount of 10 to 80 parts by mass in 100 parts by mass of the heating residue of the coating agent composition.
 本発明の第4の態様に係る抗菌・抗ウイルス性部材は、基材と、当該基材上に設けられ、上記コーティング剤組成物を含有する被膜とを有する。 The antibacterial and antiviral member according to the fourth aspect of the present invention has a substrate, and a film provided on the substrate and containing the above-mentioned coating composition.
 以下、本発明の実施形態に係る酸化チタン粒子分散液、コーティング剤組成物及び抗菌・抗ウイルス性部材について詳細に説明する。 Hereinafter, the titanium oxide particle dispersion liquid, the coating agent composition, and the antibacterial and antiviral member according to the embodiment of the present invention will be described in detail.
[酸化チタン粒子分散液]
 本発明の実施形態に係る酸化チタン粒子分散液は、酸化チタン粒子と、非イオン界面活性剤と、グリコールエーテル系有機溶剤を50質量%以上含有する有機溶剤とを含有する。
[Titanium oxide particle dispersion]
The titanium oxide particle dispersion liquid according to the embodiment of the present invention contains titanium oxide particles, a nonionic surfactant, and an organic solvent containing 50% by mass or more of a glycol ether-based organic solvent.
 酸化チタン粒子としては、アナターゼ型又はルチル型の酸化チタンからなる粒子を用いることができる。また、アナターゼ型酸化チタン及びルチル型酸化チタンが混合した粒子を用いることもできる。ただ、酸化チタン粒子としては、アナターゼ型酸化チタンの粒子を用いることが好ましい。アナターゼ型酸化チタンはルチル型酸化チタンに比べてバンドギャップが大きく、光触媒性に優れているからである。 As the titanium oxide particles, particles made of anatase type or rutile type titanium oxide can be used. In addition, particles in which anatase type titanium oxide and rutile type titanium oxide are mixed can also be used. However, as titanium oxide particles, particles of anatase type titanium oxide are preferably used. This is because anatase type titanium oxide has a larger band gap than rutile type titanium oxide and is excellent in photocatalytic property.
 なお、アナターゼ型酸化チタンの粒子には無定形状の酸化チタンが混合されていてもよい。ただ、無定形状の酸化チタンは光触媒性の乏しいものであるため、混合量はできる限り少量であることが好ましい。また、光触媒活性を向上させるために、酸化チタン粒子の表面に鉄及び銅の酸化物が担持した粒子を用いてもよい。 In addition, an amorphous titanium oxide may be mixed with particles of anatase type titanium oxide. However, since the amorphous titanium oxide has poor photocatalytic properties, the mixing amount is preferably as small as possible. Moreover, in order to improve the photocatalytic activity, particles of iron oxide and copper oxide supported on the surface of titanium oxide particles may be used.
 酸化チタン粒子の平均一次粒子径は、2nm~80nmである。酸化チタン粒子の平均一次粒子径が2nm未満の場合には、個々の酸化チタン粒子の表面積が過少となり、光触媒活性を発揮し難くなる恐れがある。また、酸化チタン粒子の平均一次粒子径が80nmを超える場合には、後述する分散処理工程にて十分な微粒子化が困難となる。その結果、酸化チタン粒子が分散処理工程や分散処理後の貯蔵中に凝集し、沈殿しやすくなる恐れがある。なお、酸化チタン粒子の平均一次粒子径は、例えば透過型電子顕微鏡(TEM)を用いて複数個の酸化チタン粒子の直径を測定することにより求めることができる。 The average primary particle size of the titanium oxide particles is 2 nm to 80 nm. When the average primary particle diameter of the titanium oxide particles is less than 2 nm, the surface area of each titanium oxide particle may be too small, which may make it difficult to exhibit the photocatalytic activity. In addition, when the average primary particle diameter of the titanium oxide particles exceeds 80 nm, it is difficult to form fine particles sufficiently in the dispersion treatment step described later. As a result, there is a possibility that the titanium oxide particles may be aggregated and easily precipitated during the dispersion treatment step or storage after the dispersion treatment. The average primary particle size of the titanium oxide particles can be determined, for example, by measuring the diameters of a plurality of titanium oxide particles using a transmission electron microscope (TEM).
 なお、酸化チタン粒子の平均一次粒子径は、5nm~50nmであることが好ましく、5nm~30nmであることがより好ましい。このような平均一次粒子径であることにより、酸化チタン粒子の表面積を高い状態に維持しつつ、有機溶剤中で高分散させることが可能となる。 The average primary particle diameter of the titanium oxide particles is preferably 5 nm to 50 nm, and more preferably 5 nm to 30 nm. Such an average primary particle size enables high dispersion in an organic solvent while maintaining the surface area of the titanium oxide particles in a high state.
 非イオン界面活性剤は、水溶液中でイオンに解離することなく界面活性を示す界面活性剤である。このような非イオン界面活性剤を用いることによって、酸化チタン粒子の光触媒活性、つまり抗菌性及び抗ウイルス性が低下せず、さらに有機溶剤中で高分散が可能となる。非イオン界面活性剤としては、例えば、ポリオキシエチレン系、多価アルコール脂肪酸エステル系及びこの両者を併せ持つ系の少なくともいずれか一つを用いることができる。ただ、非イオン界面活性剤としては、ポリオキシエチレン系のものが好ましい。ポリオキシエチレン系界面活性剤の例としては、例えば脂肪酸のポリオキシエチレン・エーテル、高級アルコールのポリオキシエチレン・エーテル、アルキル・フェノール・ポリオキシエチレン・エーテルなどがある。また、ソルビタン・エステルのポリオキシエチレン・エーテル、ヒマシ油のポリオキシエチレン・エーテル、ポリオキシ・プロピレンのポリオキシエチレン・エーテル、脂肪酸のアルキロールアマイドなどもある。多価アルコール脂肪酸エステル系界面活性剤の例としては、モノグリセライト型界面活性剤、ソルビトール型界面活性剤、ソルタビン型界面活性剤、シュガーエステル型界面活性剤などがある。非イオン界面活性剤は、一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。 A nonionic surfactant is a surfactant which exhibits surfactant activity without being dissociated into ions in an aqueous solution. By using such a nonionic surfactant, the photocatalytic activity of the titanium oxide particles, that is, the antibacterial property and the antiviral property do not decrease, and furthermore, high dispersion can be achieved in the organic solvent. As the nonionic surfactant, for example, at least one of a polyoxyethylene type, a polyhydric alcohol fatty acid ester type and a type having both of them can be used. However, as a nonionic surfactant, a polyoxyethylene based one is preferable. Examples of polyoxyethylene surfactants include, for example, polyoxyethylene ethers of fatty acids, polyoxyethylene ethers of higher alcohols, alkyl phenols, polyoxyethylene ethers, and the like. There are also polyoxyethylene ethers of sorbitan esters, polyoxyethylene ethers of castor oil, polyoxyethylene ethers of polyoxypropylene and alkylolamides of fatty acids. Examples of polyhydric alcohol fatty acid ester surfactants include monoglycerite surfactants, sorbitol surfactants, soltabine surfactants, and sugar ester surfactants. A nonionic surfactant may be used individually by 1 type, and may be used in combination of 2 or more types.
 非イオン界面活性剤の重量平均分子量Mwは、300~10000であることが好ましい。非イオン界面活性剤の重量平均分子量が300以上の場合には、酸化チタン粒子分散液に対する十分な粘度低減作用が得られ、透明性のある被膜を得ることが可能となる。さらに、非イオン界面活性剤の立体障害により、酸化チタン粒子の反発安定性が向上し、酸化チタン粒子の分散性が高い状態を維持しやすくなる。また、非イオン界面活性剤の重量平均分子量が10000以下の場合には、分散処理後における、非イオン界面活性剤同士の結合に伴う粒子の凝集を抑制し、被膜の透明性を維持することが可能となる。 The weight average molecular weight Mw of the nonionic surfactant is preferably 300 to 10,000. When the weight average molecular weight of the nonionic surfactant is 300 or more, a sufficient viscosity reducing action on the titanium oxide particle dispersion can be obtained, and a transparent film can be obtained. Furthermore, due to the steric hindrance of the nonionic surfactant, the repulsion stability of the titanium oxide particles is improved, and the high dispersibility of the titanium oxide particles is easily maintained. In addition, in the case where the weight average molecular weight of the nonionic surfactant is 10000 or less, the aggregation of particles associated with the binding of the nonionic surfactants after the dispersion treatment is suppressed to maintain the transparency of the film. It becomes possible.
 なお、非イオン界面活性剤の重量平均分子量Mwは、300~5000がより好ましい。このような重量平均分子量であることにより、酸化チタン粒子の分散性をより向上させることが可能となる。 The weight average molecular weight Mw of the nonionic surfactant is more preferably 300 to 5,000. With such a weight average molecular weight, it is possible to further improve the dispersibility of the titanium oxide particles.
 上記酸化チタン粒子の分散媒としての有機溶剤としては、グリコールエーテル系有機溶剤を50質量%以上含有する有機溶剤を使用する。グリコールエーテル系有機溶剤を主成分とすることにより、後述するように、上記酸化チタン粒子分散液とバインダー樹脂とを含有するコーティング剤組成物を調製した場合、当該組成物の硬化阻害を起こし難くすることが可能となる。さらに、酸化チタン粒子を高濃度で含有させた場合であっても、酸化チタン粒子分散液の粘性を低減し、塗布作業の効率を向上させることが可能となる。 As an organic solvent as a dispersion medium of the said titanium oxide particle, the organic solvent containing 50 mass% or more of glycol ether type | system | group organic solvents is used. When a coating agent composition containing the above-mentioned titanium oxide particle dispersion and binder resin is prepared, as described later, by making the glycol ether type organic solvent as the main component, curing inhibition of the composition is hardly caused. It becomes possible. Furthermore, even when titanium oxide particles are contained at a high concentration, the viscosity of the titanium oxide particle dispersion can be reduced, and the efficiency of the coating operation can be improved.
 グリコールエーテル系有機溶剤としては、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、3-メトキシ-3-メチル-1-ブタノール、ヘキシルジグリコール等が挙げられる。これらのグリコールエーテル系有機溶剤は、一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。これらのグリコールエーテル系有機溶剤の中から、成膜時の温度条件などに合わせて、適切な溶剤を選択することができる。 Examples of the glycol ether type organic solvent include diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, propylene glycol monomethyl ether, 3-methoxy-3-methyl-1-butanol, hexyl diglycol and the like. One of these glycol ether-based organic solvents may be used alone, or two or more thereof may be used in combination. From among these glycol ether organic solvents, an appropriate solvent can be selected according to the temperature conditions at the time of film formation and the like.
 酸化チタン粒子分散液における分散媒としての有機溶剤は、グリコールエーテル系有機溶剤を50質量%以上含有するが、70質量%以上含有することが好ましく、90質量%以上含有することがより好ましい。グリコールエーテル系有機溶剤が50質量%未満の場合には、分散液の粘度が上昇して塗布作業の効率が低下したり、被膜の厚さが過剰になる恐れがある。なお、酸化チタン粒子分散液における分散媒として、グリコールエーテル系有機溶剤のみを用いてもよい。 The organic solvent as the dispersion medium in the titanium oxide particle dispersion contains 50% by mass or more of the glycol ether-based organic solvent, preferably 70% by mass or more, and more preferably 90% by mass or more. If the content of the glycol ether-based organic solvent is less than 50% by mass, the viscosity of the dispersion may be increased to lower the efficiency of the coating operation, or the thickness of the film may be excessive. In addition, you may use only a glycol-ether type | system | group organic solvent as a dispersion medium in a titanium oxide particle dispersion liquid.
 分散媒としては、グリコールエーテル系有機溶剤に加え、アルコール系やケトン系などの各種有機溶剤を混合することが可能である。アルコール系有機溶剤としては、例えばメタノール、エタノール、n-プロパノール、イソプロパノール、ブタノール、イソブタノール、t-ブタノール、ブタンジオール、2-エチルヘキサノール、ベンジルアルコール等を挙げることができる。また、ケトン系有機溶剤としては、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、ジアセトンアルコール等を挙げることができる。これらのアルコール系有機溶剤及びケトン系有機溶剤は、一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。 As the dispersion medium, in addition to the glycol ether type organic solvent, it is possible to mix various organic solvents such as alcohol type and ketone type. Examples of alcohol-based organic solvents include methanol, ethanol, n-propanol, isopropanol, butanol, isobutanol, t-butanol, butanediol, 2-ethylhexanol, benzyl alcohol and the like. Moreover, as a ketone system organic solvent, acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, diacetone alcohol etc. can be mentioned, for example. These alcohol-based organic solvents and ketone-based organic solvents may be used alone or in combination of two or more.
 酸化チタン粒子分散液における上記非イオン界面活性剤の添加量は、酸化チタン粒子の含有量によって適宜調整できる。具体的には、酸化チタン粒子100質量部に対し、非イオン界面活性剤は5~100質量部とする。非イオン界面活性剤が5質量部未満の場合には、酸化チタン粒子同士が凝集し、十分な分散性が得られない恐れがある。また、非イオン界面活性剤が100質量部を超える場合には、後述するようにバインダー樹脂と混合して被膜を作成する際に硬化阻害が起こる恐れがある。また、100質量部を超える場合には、成膜性や密着性などの膜物性の低下も生じる恐れがある。 The addition amount of the non-ionic surfactant in the titanium oxide particle dispersion can be appropriately adjusted by the content of the titanium oxide particles. Specifically, the amount of the nonionic surfactant is 5 to 100 parts by mass with respect to 100 parts by mass of the titanium oxide particles. If the amount of the nonionic surfactant is less than 5 parts by mass, titanium oxide particles may be aggregated with each other, and sufficient dispersibility may not be obtained. Moreover, when a nonionic surfactant exceeds 100 mass parts, when mixing with binder resin and forming a film so that it may mention later, there exists a possibility that hardening inhibition may occur. When the amount is more than 100 parts by mass, the physical properties of the film such as film forming ability and adhesion may be deteriorated.
 なお、非イオン界面活性剤の添加量は、酸化チタン粒子100質量部に対し、5~90質量部とすることがより好ましい。このような添加量であることにより、酸化チタン粒子の分散性を向上させつつも、膜物性の低下を抑制することが可能となる。 The addition amount of the nonionic surfactant is more preferably 5 to 90 parts by mass with respect to 100 parts by mass of the titanium oxide particles. With such an addition amount, it is possible to suppress a decrease in film physical properties while improving the dispersibility of the titanium oxide particles.
 酸化チタン粒子分散液における上記有機溶剤の添加量も、酸化チタン粒子の含有量によって適宜調整できる。具体的には、酸化チタン粒子100質量部に対し、有機溶剤は300~2000質量部とする。有機溶剤が300質量部未満の場合には、酸化チタン粒子の分散性が低下し、さらに酸化チタン粒子分散液の粘度が上昇するため塗布作業の効率が低下する恐れがある。また、有機溶剤が2000質量部を超える場合には、バインダー樹脂と混合して被膜を形成した際、被膜の成膜性(乾燥性)が低下し、作業効率が低下する恐れがある。 The addition amount of the organic solvent in the titanium oxide particle dispersion can also be appropriately adjusted by the content of the titanium oxide particles. Specifically, the amount of the organic solvent is 300 to 2000 parts by mass with respect to 100 parts by mass of the titanium oxide particles. When the amount of the organic solvent is less than 300 parts by mass, the dispersibility of the titanium oxide particles is reduced, and the viscosity of the titanium oxide particle dispersion is increased, which may lower the efficiency of the coating operation. In addition, when the organic solvent exceeds 2000 parts by mass, when the film is formed by mixing with the binder resin, the film forming property (drying property) of the film may be lowered, and the working efficiency may be lowered.
 なお、有機溶剤の添加量は、酸化チタン粒子100質量部に対し、500~1800質量部とすることがより好ましい。このような添加量であることにより、酸化チタン粒子の分散性を向上させつつも、過度の粘度上昇を抑制することが可能となる。 The amount of the organic solvent added is more preferably 500 to 1800 parts by mass with respect to 100 parts by mass of the titanium oxide particles. With such an addition amount, it is possible to suppress an excessive increase in viscosity while improving the dispersibility of the titanium oxide particles.
 なお、後述するように、本実施形態の酸化チタン粒子分散液は、バインダー樹脂と混合することによりコーティング剤組成物となり、さらに当該コーティング剤組成物を基材に塗布することにより、抗菌・抗ウイルス性被膜を形成する。そして、当該被膜の透明性を高める観点から、酸化チタン粒子分散液中における酸化チタン粒子の平均二次粒子径は、50~150nmである必要がある。平均二次粒子径が50nm未満の場合には、光触媒材料の有する結晶構造が破壊され、光触媒活性(抗菌性及び抗ウイルス性)が低下する恐れがある。また、平均二次粒子径が150nmを超える場合には、酸化チタン粒子の表面積が減少し、光触媒活性が低下する恐れがある。なお、本明細書において、酸化チタン粒子の平均二次粒子径は、動的光散乱法で測定し、キュムラント解析法により得られる平均二次粒子径を採用する。 In addition, the titanium oxide particle dispersion liquid of this embodiment becomes a coating agent composition by mixing with binder resin so that it may mention later, and also by apply | coating the said coating agent composition to a base material, antibacterial * antiviral Form a protective coating. Then, from the viewpoint of enhancing the transparency of the film, the average secondary particle diameter of the titanium oxide particles in the titanium oxide particle dispersion needs to be 50 to 150 nm. When the average secondary particle size is less than 50 nm, the crystal structure of the photocatalytic material may be destroyed, and photocatalytic activity (antibacterial and antiviral properties) may be reduced. In addition, when the average secondary particle diameter exceeds 150 nm, the surface area of the titanium oxide particles may be reduced, and the photocatalytic activity may be reduced. In the present specification, the average secondary particle size of the titanium oxide particles is measured by the dynamic light scattering method, and the average secondary particle size obtained by the cumulant analysis method is adopted.
 さらに、本実施形態の酸化チタン粒子分散液において、酸化チタン粒子は、酸化チタン粒子分散液の加熱残分100質量部中に10質量部以上含有する。全加熱残分100質量部中の酸化チタン粒子の含有量が10質量部より少ない場合は、バインダー樹脂と混合した際に、コーティング剤組成物の溶媒成分が過大となる。そのため、コーティング剤組成物中の酸化チタン粒子の配合量が低下し、高い抗菌性を確保することが困難となる恐れがある。また、溶媒成分か過大になることにより、コーティング剤組成物の塗工時に液だれなどが発生して外観異常が生じ、さらに十分な膜厚が得られないことによる物性低下を招く恐れがある。なお、酸化チタン粒子分散液における酸化チタン粒子の含有量は、得られる被膜の透明性が確保される限り特に限定されないが、例えば、酸化チタン粒子分散液の加熱残分100質量部中において50質量部以下とすることができる。なお、本明細書における加熱残分は、日本工業規格JIS K5601-1-2(塗料成分試験方法-第1部:通則-第2節:加熱残分)に準拠して測定することができる。 Furthermore, in the titanium oxide particle dispersion liquid of the present embodiment, the titanium oxide particles are contained in an amount of 10 parts by mass or more in 100 parts by mass of the heating residue of the titanium oxide particle dispersion liquid. If the content of the titanium oxide particles in the total heating residue 100 parts by mass is less than 10 parts by mass, the solvent component of the coating agent composition becomes excessive when mixed with the binder resin. Therefore, the compounding quantity of the titanium oxide particle in a coating agent composition may fall, and it may become difficult to ensure high antimicrobial property. In addition, when the solvent component is excessive, liquid dripping or the like occurs during coating of the coating agent composition to cause appearance abnormality, and there is a possibility that physical properties may be lowered due to the fact that a sufficient film thickness can not be obtained. The content of the titanium oxide particles in the titanium oxide particle dispersion is not particularly limited as long as the transparency of the obtained film is secured, but, for example, 50 mass% in 100 parts by mass of the heating residue of the titanium oxide particle dispersion. It can be less than a part. The heating residue in the present specification can be measured in accordance with Japanese Industrial Standard JIS K 5601-1-2 (paint component test method-part 1: general rule-section 2: heating residue).
 このように、本実施形態の酸化チタン粒子分散液は、酸化チタン粒子と、酸化チタン粒子100質量部に対し5~100質量部の非イオン界面活性剤とを含有する。さらに酸化チタン粒子分散液は、グリコールエーテル系有機溶剤を50質量%以上含有する、酸化チタン粒子100質量部に対し300~2000質量部の有機溶剤を含有する。そして、酸化チタン粒子は、平均一次粒子径が2~80nmであり、動的光散乱法で測定しキュムラント解析法により得られる平均二次粒子径が50~150nmである。また、酸化チタン粒子は、酸化チタン粒子分散液の加熱残分100質量部中に10質量部以上含有する。このような構成により、酸化チタン粒子分散液中の酸化チタン粒子の濃度を高めた場合であっても酸化チタン粒子の分散性が向上するため、これを用いた抗菌・抗ウイルス性被膜の透明性を確保することが可能となる。 Thus, the titanium oxide particle dispersion liquid of the present embodiment contains titanium oxide particles and 5 to 100 parts by mass of a nonionic surfactant with respect to 100 parts by mass of the titanium oxide particles. Furthermore, the titanium oxide particle dispersion liquid contains 300 to 2000 parts by mass of an organic solvent based on 100 parts by mass of titanium oxide particles, containing 50% by mass or more of a glycol ether-based organic solvent. The titanium oxide particles have an average primary particle diameter of 2 to 80 nm, and have an average secondary particle diameter of 50 to 150 nm as measured by a dynamic light scattering method and obtained by a cumulant analysis method. The titanium oxide particles are contained in an amount of 10 parts by mass or more in 100 parts by mass of the heating residue of the titanium oxide particle dispersion. With such a configuration, the dispersibility of the titanium oxide particles is improved even when the concentration of the titanium oxide particles in the titanium oxide particle dispersion is increased, so that the transparency of the antibacterial / antiviral film using this is enhanced. It is possible to secure
[酸化チタン粒子分散液の製造方法]
 次に、上記酸化チタン粒子分散液の製造方法について説明する。酸化チタン粒子分散液は、上述の酸化チタン粒子、非イオン界面活性剤及び有機溶剤を混合し、酸化チタン粒子を有機溶剤中に高分散させることにより、調製することが可能である。そのため、酸化チタン粒子を高分散させることが可能な方法であれば、如何なる方法も使用することができる。
[Method of producing titanium oxide particle dispersion]
Next, the method for producing the titanium oxide particle dispersion liquid will be described. The titanium oxide particle dispersion liquid can be prepared by mixing the above-mentioned titanium oxide particles, nonionic surfactant and organic solvent and highly dispersing the titanium oxide particles in the organic solvent. Therefore, any method can be used as long as the titanium oxide particles can be highly dispersed.
 ただ、酸化チタン粒子の分散性を高め、抗菌・抗ウイルス性被膜の透明性を確保しやすくする観点から、酸化チタン粒子の分散工程は前分散処理と本分散処理に分けて行うことが好ましい。これにより酸化チタン粒子の表面が濡れ、表面の空気層が有機溶剤と置き換えられるため、その後の本分散処理で速やかに分散が進行する。この前分散処理が不十分だと、分散の進行が遅く、無駄な機械的衝撃が酸化チタン粒子に与えられる恐れがある。その結果、酸化チタン粒子の結晶構造そのものが破壊され、安定性が低下した分散液となる恐れがある。 However, from the viewpoint of enhancing the dispersibility of the titanium oxide particles and making it easy to ensure the transparency of the antibacterial and antiviral coating, it is preferable to divide the titanium oxide particles into a pre-dispersion treatment and a main dispersion treatment. As a result, the surface of the titanium oxide particles gets wet, and the air layer on the surface is replaced with the organic solvent, so that the dispersion proceeds rapidly in the subsequent main dispersion treatment. If this pre-dispersion treatment is insufficient, the progress of dispersion is slow, and there is a risk that waste mechanical impact may be given to the titanium oxide particles. As a result, the crystal structure itself of the titanium oxide particles may be destroyed, resulting in a dispersion with reduced stability.
 前分散処理は、一般的なディゾルバーを用いて攪拌してもよい。ただ、酸化チタン粒子の表面を濡れやすくさせる観点から、高速攪拌機により攪拌することが好ましい。高速攪拌機としては、例えば、T.K.ホモミクサー、T.K.ロボミックス及びT.K.フィルミックス(商品名、プライミクス株式会社製)を使用することができる。また、クレアミックス(登録商標)(商品名、エム・テクニック株式会社製)及びウルトラディスパー(商品名、浅田鉄工株式会社製)なども使用することができる。 The pre-dispersion treatment may be stirred using a general dissolver. However, from the viewpoint of making the surface of the titanium oxide particles easy to wet, it is preferable to stir with a high-speed stirrer. As a high-speed stirrer, for example, T.I. K. Homomixer, T.I. K. Robomix and T.K. K. Fillix (trade name, manufactured by Primix Co., Ltd.) can be used. In addition, Creamix (registered trademark) (trade name, manufactured by M. Technique Co., Ltd.) and UltraDispar (trade name, manufactured by Asada Iron Works, Ltd.) can also be used.
 本分散処理を行う分散装置としては、例えば、ニーダー、二本ロール、三本ロール、SS5(商品名、エム・テクニック株式会社)、ミラクルKCK(登録商標)(商品名、浅田鉄工株式会社製)といった混練機を使用することができる。また、超音波分散機や、高圧ホモジナイザーであるマイクロフルイダイザー(商品名、みづほ工業株式会社製)、ナノヴェイタ(登録商標)(商品名、吉田機械興業株式会社製)なども挙げられる。さらに、スターバースト(登録商標)(商品名、株式会社スギノマシン)、G-スマッシャー(商品名、リックス株式会社)なども挙げられる。ガラスやジルコンなどのビーズメディアを使用したものでは、ボールミルやビーズミル、サンドミル、横型メディアミル分散機、コロイドミルなどが使用できる。ビーズミルにおいて使用するメディアとしては、直径1mm以下のビーズメディアが好ましく、直径0.5mm以下のビーズメディアがより好ましい。なお、前分散処理及び本分散処理の分散時間は、酸化チタン粒子が非イオン界面活性剤と共に有機溶剤中で高分散されるように、各分散装置やメディアによって適宜調整すればよい。 As a dispersing apparatus which performs this dispersing process, for example, a kneader, two rolls, three rolls, SS5 (trade name, M. Technique Co., Ltd.), Miracle KCK (registered trademark) (trade name, manufactured by Asada Iron Works Co., Ltd.) Can be used. In addition, ultrasonic dispersion machines, Microfluidizer (trade name, manufactured by Mizuho Kogyo Co., Ltd.) which is a high pressure homogenizer, NanoVeita (registered trademark) (trade name, manufactured by Yoshida Machine Kogyo Co., Ltd.), and the like can also be mentioned. Furthermore, Starburst (registered trademark) (trade name, Sugino Machine Co., Ltd.), G-Smasher (trade name, Lix, Inc.), and the like can also be mentioned. When using bead media such as glass and zircon, ball mills, bead mills, sand mills, horizontal media mills, dispersers, colloid mills, etc. can be used. As media used in a bead mill, bead media having a diameter of 1 mm or less are preferable, and bead media having a diameter of 0.5 mm or less are more preferable. The dispersion time of the pre-dispersion treatment and the main dispersion treatment may be appropriately adjusted depending on each dispersion device or medium so that the titanium oxide particles are highly dispersed in the organic solvent together with the nonionic surfactant.
 また、前分散処理を行った処理液を上記本分散装置に供給する際にも、高速攪拌機等を用いて十分な攪拌を実施しながら供給することにより、より短時間で処理することが可能である。 Also, even when the processing liquid subjected to pre-dispersion processing is supplied to the above-mentioned dispersion apparatus, processing can be performed in a shorter time by supplying while performing sufficient stirring using a high-speed stirrer or the like. is there.
[コーティング剤組成物]
 本実施形態に係るコーティング剤組成物は、上述の酸化チタン粒子分散液と、バインダー樹脂とを含有する。上述のように、本実施形態の酸化チタン粒子分散液は、酸化チタン濃度を向上させつつも分散性を高めているため、このような酸化チタン粒子分散液を用いたコーティング剤組成物は、抗菌性、抗ウイルス性及び透明性が高い被膜を形成することが可能となる。
[Coating agent composition]
The coating agent composition which concerns on this embodiment contains the above-mentioned titanium oxide particle dispersion liquid, and binder resin. As described above, since the titanium oxide particle dispersion liquid of the present embodiment improves the dispersibility while improving the titanium oxide concentration, the coating agent composition using such a titanium oxide particle dispersion liquid is antibacterial It is possible to form a coating of high sex, antiviral and transparency.
 上記酸化チタン粒子分散液と共に混合されるバインダー樹脂としては、コーティング剤組成物より得られる被膜の安定性、抗菌性、透明性が確保される限り、特に限定されない。バインダー樹脂としては、例えばアルキッド系樹脂、アクリル系樹脂、メラミン系樹脂、ウレタン系樹脂、エポキシ系樹脂、シリコン系樹脂などを使用することができる。また、ポリエステル系樹脂、ポリアミド酸系樹脂、ポリイミド系樹脂、スチレンマレイン酸系樹脂、スチレン無水マレイン酸系樹脂なども使用することができる。さらに、各種のアクリル酸系モノマー、アクリレート系モノマーも適用可能である。バインダー樹脂として特に好ましい樹脂、モノマーとしては、ウレタン系樹脂、アクリル系樹脂、アクリル酸系モノマー、ポリアミド酸系樹脂、ポリイミド系樹脂、スチレンマレイン酸系樹脂、スチレン無水マレイン酸系樹脂が挙げられる。バインダー樹脂は、一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。 The binder resin to be mixed with the titanium oxide particle dispersion is not particularly limited as long as the stability, the antimicrobial property and the transparency of the film obtained from the coating agent composition can be ensured. As a binder resin, an alkyd resin, an acrylic resin, a melamine resin, a urethane resin, an epoxy resin, a silicone resin etc. can be used, for example. In addition, polyester resins, polyamide acid resins, polyimide resins, styrene maleic acid resins, styrene maleic anhydride resins, and the like can also be used. Furthermore, various acrylic acid monomers and acrylate monomers are also applicable. Particularly preferable resins as the binder resin and the monomers include urethane resins, acrylic resins, acrylic acid monomers, polyamic acid resins, polyimide resins, styrene maleic acid resins, and styrene maleic anhydride resins. The binder resin may be used alone or in combination of two or more.
 さらに、コーティング剤組成物は、酸化チタン粒子分散液及びバインダー樹脂に加え、光触媒活性に対して影響の出ない範囲において、各種の添加剤を配合してもよい。具体的には、分散剤、顔料、充填剤、骨材、増粘剤、フローコントロール剤、レベリング剤、硬化剤、架橋剤、硬化用触媒などを配合することができる。 Furthermore, the coating agent composition may be added to the titanium oxide particle dispersion liquid and the binder resin, and may contain various additives as long as the photocatalytic activity is not affected. Specifically, dispersants, pigments, fillers, aggregates, thickeners, flow control agents, leveling agents, curing agents, crosslinking agents, curing catalysts and the like can be blended.
 本実施形態に係るコーティング剤組成物は、上述の酸化チタン粒子分散液及びバインダー樹脂、更には必要に応じて上記添加剤を混合することにより、調製することができる。なお、混合工程では、例えば、上述のディゾルバーや高速攪拌機を用いて混合することが可能である。 The coating agent composition which concerns on this embodiment can be prepared by mixing the above-mentioned titanium oxide particle dispersion liquid and binder resin, and also the said additive as needed. In the mixing step, for example, mixing can be performed using the above-described dissolver or high-speed stirrer.
 上記コーティング剤組成物において、酸化チタン粒子は、コーティング剤組成物の加熱残分100質量部中に10~80質量部含有することが好ましい。加熱残分中の酸化チタン粒子の含有量が10質量部より少ない場合は、抗菌性が低下する恐れがある。また、被膜の硬度も低下する恐れもある。酸化チタン粒子の含有量が80質量部を超える場合には、十分な抗菌性を得ることは可能であるが、バインダー樹脂が不足するため、膜物性が低下する可能性がある。また、被膜の透明性も低下する可能性がある。 In the coating agent composition, the titanium oxide particles are preferably contained in an amount of 10 to 80 parts by mass in 100 parts by mass of the heating residue of the coating agent composition. If the content of the titanium oxide particles in the heating residue is less than 10 parts by mass, the antimicrobial properties may be reduced. In addition, the hardness of the coating may be reduced. When the content of the titanium oxide particles exceeds 80 parts by mass, it is possible to obtain sufficient antibacterial properties, but there is a possibility that the film physical properties may deteriorate because the binder resin is insufficient. In addition, the transparency of the film may be reduced.
 なお、コーティング剤組成物における酸化チタン粒子の含有量は、コーティング剤組成物の加熱残分100質量部中に30~70質量部含有することがより好ましく、40~60質量部含有することが特に好ましい。酸化チタン粒子の含有量がこの範囲内であることにより、十分な抗菌性を備えつつも膜物性の低下を抑制し、高い透明性を確保することが可能となる。 The content of titanium oxide particles in the coating agent composition is more preferably 30 to 70 parts by mass in 100 parts by mass of the heating residue of the coating agent composition, and particularly preferably 40 to 60 parts by mass preferable. When the content of the titanium oxide particles is in this range, it is possible to suppress the decrease in film physical properties while securing sufficient antimicrobial properties, and to ensure high transparency.
[抗菌・抗ウイルス性部材]
 本実施形態に係る抗菌・抗ウイルス性部材は、基材と、基材上に設けられ、上記コーティング剤組成物を含有する被膜とを有するものである。上述のように、本実施形態のコーティング剤組成物は、酸化チタン粒子に起因する高い抗菌性及び抗ウイルス性と共に防汚・防臭の効果も有する。さらに、コーティング剤組成物において酸化チタン粒子が高分散していることから、得られる被膜も高い透明性を有している。
[Antibacterial and antiviral material]
The antibacterial and antiviral member according to the present embodiment has a substrate, and a film provided on the substrate and containing the coating composition. As described above, the coating agent composition of the present embodiment has the high antifungal and antiviral properties attributed to the titanium oxide particles, as well as the antifouling / deodorizing effect. Furthermore, because the titanium oxide particles are highly dispersed in the coating agent composition, the resulting film also has high transparency.
 本実施形態において、基材の材質は、有機高分子、セラミック、金属、ガラス、プラスチック、化粧合板又はそれらの複合物等、基本的に何でもよい。基材の形状も特に限定されず、例えば板状物や球状物、円柱状物、円筒状物、棒状物、角柱状物、中空の角柱状物などの単純形状のものでも複雑形状のものでもよい。また、基材はフィルターのような多孔質体でもよい。 In the present embodiment, the material of the base material may be basically anything, such as organic polymer, ceramic, metal, glass, plastic, decorative plywood or a composite thereof. The shape of the substrate is also not particularly limited. For example, it may be a simple shape or a complicated shape such as a plate, a sphere, a cylinder, a cylinder, a rod, a prism, a hollow prism, etc. Good. Also, the substrate may be a porous body such as a filter.
 基材としては、天井材、タイル、ガラス、壁紙、壁材、床及び造作材などの建築資材、自動車用内装材(インストルメントパネル、シート、天井材)、冷蔵庫やエアコン等の家電製品、衣類やカーテン等の繊維製品、工業用設備、医療用設備などが好ましい。さらに基材としては、例えば、ドア、ドアハンドル、引き手、手摺り、内装カウンター、家具、キッチン、トイレ、風呂、照明器具、タッチパネル、スイッチ及びこれらに用途に用いられるシートなども好ましい。本実施形態のコーティング剤組成物からなる被膜は抗菌性及び抗ウイルス性が高いため、このような人体などが頻繁に接触する面に対して特に有効である。 As the base material, building materials such as ceiling materials, tiles, glass, wallpaper, wall materials, floors and construction materials, interior materials for automobiles (instrument panels, sheets, ceiling materials), household appliances such as refrigerators and air conditioners, clothes Textile products such as curtains and the like, industrial equipment, medical equipment and the like are preferable. Furthermore, as the base material, for example, a door, a door handle, a pull handle, a handrail, an interior counter, furniture, a kitchen, a toilet, a bath, a lighting fixture, a touch panel, a switch, a sheet used for these, etc. are preferable. The coating formed of the coating composition of the present embodiment has high antibacterial and antiviral properties, and thus is particularly effective for such a surface that the human body etc. frequently contacts.
 また、本実施形態に係る抗菌・抗ウイルス性部材は、例えば空気清浄機用フィルターやエアコン用フィルターなどとしても適用することができる。そして、住宅だけでなく、病院及び高齢者施設、並びに電車、バス及び飛行機のような公共交通機関等の不特定多数の人が利用する場所に用いられることにより、菌・ウイルスの感染リスクを低減することが可能となり、有用である。 The antibacterial and antiviral members according to the present embodiment can also be applied as, for example, a filter for an air purifier or a filter for an air conditioner. And it reduces the risk of infection with bacteria and viruses by being used not only at homes, but also at hospitals and elderly facilities and places used by unspecified people such as public transport such as trains, buses and planes. It is possible and useful.
 本実施形態に係る抗菌・抗ウイルス性部材は、基材にコーティング剤組成物を塗布し乾燥させることにより得ることができる。この際の塗布方法及び乾燥条件は特に限定されない。コーティング剤組成物を基材の少なくとも一部に塗布する方法としては、スクリーン印刷、スピンコート、ディップコート、ロールコート、刷毛コート、スプレーコート、インクジェットなどの方法を用いることができる。また、乾燥条件としては、有機溶剤が除去される条件ならば特に限定されない。 The antimicrobial / antiviral member according to the present embodiment can be obtained by applying a coating composition to a substrate and drying it. The coating method and drying conditions at this time are not particularly limited. As a method of applying the coating composition to at least a part of the substrate, methods such as screen printing, spin coating, dip coating, roll coating, brush coating, spray coating, and inkjet can be used. The drying conditions are not particularly limited as long as the organic solvent is removed.
 コーティング剤組成物の塗布膜の厚さは、硬化後の膜厚として、2~15μmが好ましく、4~13μmがより好ましい。硬化後の膜厚がこの範囲であることにより、硬化膜の表面硬度を向上させつつも、密着性を高めることが可能となる。 The thickness of the coating film of the coating agent composition is preferably 2 to 15 μm, and more preferably 4 to 13 μm as a film thickness after curing. When the film thickness after curing is in this range, it is possible to improve adhesion while improving the surface hardness of the cured film.
 このように、本実施形態の抗菌・抗ウイルス性部材は、基材と、当該基材上に設けられ、コーティング剤組成物を含有する被膜とを有する。そして、コーティング剤組成物では、ナノレベルの酸化チタン粒子が高濃度で分散している。そのため、酸化チタン粒子の光触媒活性に起因する高い抗菌性及び抗ウイルス性を確保すると共に、透明性も得ることが可能となる。 Thus, the antibacterial and antiviral member of the present embodiment has a substrate and a film provided on the substrate and containing a coating composition. And, in the coating agent composition, nano level titanium oxide particles are dispersed at a high concentration. Therefore, it is possible to ensure high antibacterial and antiviral properties due to the photocatalytic activity of the titanium oxide particles and to obtain transparency.
 以下、本発明を実施例及び比較例によりさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples and comparative examples, but the present invention is not limited to these examples.
[実施例1]
 まず、酸化チタン粒子として、石原産業株式会社製ST-01(平均一次粒子径:7nm、結晶構造:アナターゼ)を準備し、有機溶剤として、ジエチレングリコールモノメチルエーテル(DEGME)を準備した。さらに、非イオン界面活性剤として、日油株式会社製ユニオール(登録商標)TG-1000(ポリオキシプロピレングリセリルエーテル、重量平均分子量Mw:1000)を準備した。
Example 1
First, ST-01 (average primary particle diameter: 7 nm, crystal structure: anatase) manufactured by Ishihara Sangyo Co., Ltd. was prepared as titanium oxide particles, and diethylene glycol monomethyl ether (DEGME) was prepared as an organic solvent. Furthermore, Uniol (registered trademark) TG-1000 (polyoxypropylene glyceryl ether, weight average molecular weight Mw: 1000) manufactured by NOF Corporation was prepared as a nonionic surfactant.
 次に、上記酸化チタン100質量部、ジエチレングリコールモノメチルエーテル500質量部、非イオン界面活性剤30質量部を混合し、前分散処理として、攪拌機を用い、8000rpmにて30分間攪拌を行った。なお、攪拌機は、プライミクス株式会社製T.K.ロボミックスを使用した。 Next, 100 parts by mass of the titanium oxide, 500 parts by mass of diethylene glycol monomethyl ether, and 30 parts by mass of the nonionic surfactant were mixed, and stirring was performed at 8,000 rpm for 30 minutes using a stirrer as predispersion treatment. In addition, the stirrer is T.M. K. I used Robomix.
 その後、前分散処理で得られた処理液1Lを、攪拌機(プライミクス株式会社製T.K.ロボミックス)を用いて3000rpmにて攪拌した後、続いて分散機(浅田鉄工株式会社製ピコミル)を用いて本分散処理を行った。なお、分散機の分散メディアとしては0.3mmのジルコニアビーズを用い、2時間循環することにより分散処理を行った。これにより、酸化チタン濃度が16質量%である本実施例の酸化チタン粒子分散液を調製した。さらに、得られた酸化チタン粒子分散液13質量部と、バインダー樹脂10質量部とを混合し、本実施例のコーティング剤組成物を調製した。なお、バインダー樹脂としては、次の樹脂を用いた。 Thereafter, 1 L of the treatment liquid obtained by the pre-dispersion treatment is stirred at 3000 rpm using a stirrer (TK Robotix manufactured by Primix, Inc.), and then a dispersing machine (Picomill manufactured by Asada Iron Works, Ltd.) This distributed processing was performed using this. In addition, the dispersion process was performed by circulating for 2 hours using the zirconia bead of 0.3 mm as a dispersion medium of a dispersion machine. Thus, a titanium oxide particle dispersion liquid of the present example having a titanium oxide concentration of 16% by mass was prepared. Furthermore, 13 parts by mass of the obtained titanium oxide particle dispersion and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this example. In addition, the following resin was used as binder resin.
 まず、イソシアネート硬化用アクリル樹脂としてのアクリディック(登録商標)A801(DIC株式会社製)とデュラネート(登録商標)TPA100(旭化成ケミカルズ株式会社製)とを、イソシアネート基と水酸基がNCO/OH=1となるように混合した。次に、この混合物に対して、メチルエチルケトンを用いて加熱残分が20質量%となるように希釈を行うことにより、バインダー樹脂を調製した。 First, Acrydic (registered trademark) A801 (made by DIC Corporation) and Duranate (registered trademark) TPA 100 (made by Asahi Kasei Chemicals Corporation) as an acrylic resin for isocyanate curing are used, and the isocyanate group and the hydroxyl group are NCO / OH = 1. Mixed to become. Next, a binder resin was prepared by diluting this mixture with methyl ethyl ketone so that the heating residue became 20% by mass.
[実施例2]
 酸化チタン100質量部と、ジエチレングリコールモノメチルエーテル500質量部と、非イオン界面活性剤6質量部とを混合した以外は実施例1と同様にして、酸化チタン粒子分散液を調製した。なお、本実施例の酸化チタン粒子分散液における酸化チタン濃度は、17質量%であった。
Example 2
A titanium oxide particle dispersion was prepared in the same manner as in Example 1 except that 100 parts by mass of titanium oxide, 500 parts by mass of diethylene glycol monomethyl ether, and 6 parts by mass of nonionic surfactant were mixed. The titanium oxide concentration in the titanium oxide particle dispersion of this example was 17% by mass.
 さらに、実施例1と同様に、得られた酸化チタン粒子分散液12質量部と、バインダー樹脂10質量部とを混合し、本実施例のコーティング剤組成物を調製した。 Furthermore, in the same manner as Example 1, 12 parts by mass of the obtained titanium oxide particle dispersion liquid and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this example.
[実施例3]
 酸化チタン100質量部と、ジエチレングリコールモノメチルエーテル500質量部と、非イオン界面活性剤90質量部とを混合した以外は実施例1と同様にして、酸化チタン粒子分散液を調製した。なお、本実施例の酸化チタン粒子分散液における酸化チタン濃度は、14質量%であった。
[Example 3]
A titanium oxide particle dispersion was prepared in the same manner as in Example 1 except that 100 parts by mass of titanium oxide, 500 parts by mass of diethylene glycol monomethyl ether, and 90 parts by mass of nonionic surfactant were mixed. The titanium oxide concentration in the titanium oxide particle dispersion of this example was 14% by mass.
 さらに、実施例1と同様に、得られた酸化チタン粒子分散液14質量部と、バインダー樹脂10質量部とを混合し、本実施例のコーティング剤組成物を調製した。 Furthermore, in the same manner as in Example 1, 14 parts by mass of the obtained titanium oxide particle dispersion liquid and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this example.
[実施例4]
 酸化チタン100質量部と、ジエチレングリコールモノメチルエーテル350質量部と、非イオン界面活性剤30質量部とを混合した以外は実施例1と同様にして、酸化チタン粒子分散液を調製した。なお、本実施例の酸化チタン粒子分散液における酸化チタン濃度は、21質量%であった。
Example 4
A titanium oxide particle dispersion was prepared in the same manner as in Example 1 except that 100 parts by mass of titanium oxide, 350 parts by mass of diethylene glycol monomethyl ether, and 30 parts by mass of the nonionic surfactant were mixed. The titanium oxide concentration in the titanium oxide particle dispersion of this example was 21% by mass.
 さらに、実施例1と同様に、得られた酸化チタン粒子分散液10質量部と、バインダー樹脂10質量部とを混合し、本実施例のコーティング剤組成物を調製した。 Furthermore, similarly to Example 1, 10 parts by mass of the obtained titanium oxide particle dispersion liquid and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this example.
[実施例5]
 酸化チタン100質量部と、ジエチレングリコールモノメチルエーテル900質量部と、非イオン界面活性剤30質量部とを混合した以外は実施例1と同様にして、酸化チタン粒子分散液を調製した。なお、本実施例の酸化チタン粒子分散液における酸化チタン濃度は、10質量%であった。
[Example 5]
A titanium oxide particle dispersion was prepared in the same manner as in Example 1 except that 100 parts by mass of titanium oxide, 900 parts by mass of diethylene glycol monomethyl ether, and 30 parts by mass of a nonionic surfactant were mixed. The titanium oxide concentration in the titanium oxide particle dispersion liquid of this example was 10% by mass.
 さらに、実施例1と同様に、得られた酸化チタン粒子分散液39質量部と、バインダー樹脂10質量部とを混合し、本実施例のコーティング剤組成物を調製した。 Furthermore, in the same manner as in Example 1, 39 parts by mass of the obtained titanium oxide particle dispersion liquid and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this example.
[実施例6]
 有機溶剤として、ジエチレングリコールモノメチルエーテル250質量部とメチルエチルケトン(MEK)250質量部を用いた以外は実施例1と同様にして、酸化チタン粒子分散液を調製した。なお、本実施例の酸化チタン粒子分散液における酸化チタン濃度は、16質量%であった。
[Example 6]
A titanium oxide particle dispersion was prepared in the same manner as in Example 1 except that 250 parts by mass of diethylene glycol monomethyl ether and 250 parts by mass of methyl ethyl ketone (MEK) were used as the organic solvent. The titanium oxide concentration in the titanium oxide particle dispersion of this example was 16% by mass.
 さらに、実施例1と同様に、得られた酸化チタン粒子分散液13質量部と、バインダー樹脂10質量部とを混合し、本実施例のコーティング剤組成物を調製した。 Furthermore, in the same manner as in Example 1, 13 parts by mass of the obtained titanium oxide particle dispersion and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this example.
[実施例7]
 非イオン界面活性剤として、日油株式会社製ユニオールTG-330(ポリオキシプロピレングリセリルエーテル、重量平均分子量Mw:330)を用いた以外は実施例1と同様にして、酸化チタン粒子分散液を調製した。なお、本実施例の酸化チタン粒子分散液における酸化チタン濃度は、16質量%であった。
[Example 7]
A titanium oxide particle dispersion was prepared in the same manner as in Example 1 except that Uniol TG-330 (polyoxypropylene glyceryl ether, weight average molecular weight Mw: 330) manufactured by NOF Corporation was used as the nonionic surfactant. did. The titanium oxide concentration in the titanium oxide particle dispersion of this example was 16% by mass.
 さらに、実施例1と同様に、得られた酸化チタン粒子分散液13質量部と、バインダー樹脂10質量部とを混合し、本実施例のコーティング剤組成物を調製した。 Furthermore, in the same manner as in Example 1, 13 parts by mass of the obtained titanium oxide particle dispersion and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this example.
[実施例8]
 非イオン界面活性剤として、日油株式会社製ユニオールTG-4000(ポリオキシプロピレングリセリルエーテル、重量平均分子量Mw:4000)を用いた以外は実施例1と同様にして、酸化チタン粒子分散液を調製した。なお、本実施例の酸化チタン粒子分散液における酸化チタン濃度は、16質量%であった。
[Example 8]
A titanium oxide particle dispersion was prepared in the same manner as in Example 1 except that Uniol TG-4000 (polyoxypropylene glyceryl ether, weight average molecular weight Mw: 4000) manufactured by NOF Corporation was used as the nonionic surfactant. did. The titanium oxide concentration in the titanium oxide particle dispersion of this example was 16% by mass.
 さらに、実施例1と同様に、得られた酸化チタン粒子分散液13質量部と、バインダー樹脂10質量部とを混合し、本実施例のコーティング剤組成物を調製した。 Furthermore, in the same manner as in Example 1, 13 parts by mass of the obtained titanium oxide particle dispersion and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this example.
[実施例9]
 酸化チタン粒子として、石原産業株式会社製ST-21(平均一次粒子径:20nm、結晶構造:アナターゼ)を用いた以外は実施例1と同様にして、酸化チタン粒子分散液を調製した。なお、本実施例の酸化チタン粒子分散液における酸化チタン濃度は、16質量%であった。
[Example 9]
A titanium oxide particle dispersion was prepared in the same manner as in Example 1 except that ST-21 (average primary particle diameter: 20 nm, crystal structure: anatase) manufactured by Ishihara Sangyo Co., Ltd. was used as the titanium oxide particles. The titanium oxide concentration in the titanium oxide particle dispersion of this example was 16% by mass.
 さらに、実施例1と同様に、得られた酸化チタン粒子分散液13質量部と、バインダー樹脂10質量部とを混合し、本実施例のコーティング剤組成物を調製した。 Furthermore, in the same manner as in Example 1, 13 parts by mass of the obtained titanium oxide particle dispersion and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this example.
[実施例10]
 実施例1で得られた酸化チタン粒子分散液29質量部と、バインダー樹脂10質量部とを混合し、本実施例のコーティング剤組成物を調製した。バインダー樹脂としては、実施例1に記載の樹脂を使用した。
[Example 10]
Twenty-nine parts by mass of the titanium oxide particle dispersion obtained in Example 1 and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this example. The resin described in Example 1 was used as the binder resin.
[実施例11]
 実施例1で得られた酸化チタン粒子分散液2質量部と、バインダー樹脂10質量部とを混合し、本実施例のコーティング剤組成物を調製した。バインダー樹脂としては、実施例1に記載の樹脂を使用した。
[Example 11]
Two parts by mass of the titanium oxide particle dispersion obtained in Example 1 and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this example. The resin described in Example 1 was used as the binder resin.
[比較例1]
 まず、酸化チタン粒子として、石原産業株式会社製ST-01(平均一次粒子径:7nm、結晶構造:アナターゼ)を準備し、有機溶剤として、ジエチレングリコールモノメチルエーテルを準備した。
Comparative Example 1
First, ST-01 (average primary particle diameter: 7 nm, crystal structure: anatase) manufactured by Ishihara Sangyo Co., Ltd. was prepared as titanium oxide particles, and diethylene glycol monomethyl ether was prepared as an organic solvent.
 次に、上記酸化チタン100質量部、ジエチレングリコールモノメチルエーテル500質量部を混合し、前分散処理として、攪拌機(プライミクス株式会社製T.K.ロボミックス)を用い、8000rpmにて30分間攪拌を行った。 Next, 100 parts by mass of the above titanium oxide and 500 parts by mass of diethylene glycol monomethyl ether were mixed, and as a pre-dispersion treatment, stirring was performed for 30 minutes at 8000 rpm using a stirrer (TK. .
 その後、前分散処理で得られた処理液1Lを、攪拌機(プライミクス株式会社製T.K.ロボミックス)を用いて3000rpmにて攪拌した後、続いて分散機(浅田鉄工株式会社製ピコミル)を用いて本分散処理を行おうとした。しかしながら、前分散処理で得られた処理液の粘度が分散機に供給可能な程度まで低下しなかったことから、本分散処理を実施することができなかった。 Thereafter, 1 L of the treatment liquid obtained by the pre-dispersion treatment is stirred at 3000 rpm using a stirrer (TK Robotix manufactured by Primix, Inc.), and then a dispersing machine (Picomill manufactured by Asada Iron Works, Ltd.) We tried to use this for distributed processing. However, since the viscosity of the treatment liquid obtained by the pre-dispersion treatment did not decrease to such an extent that it can be supplied to the disperser, this dispersion treatment could not be carried out.
[比較例2]
 酸化チタン100質量部と、ジエチレングリコールモノメチルエーテル500質量部と、非イオン界面活性剤150質量部とを混合した以外は実施例1と同様にして、酸化チタン粒子分散液を調製した。なお、本比較例の酸化チタン粒子分散液における酸化チタン濃度は、13質量%であった。
Comparative Example 2
A titanium oxide particle dispersion was prepared in the same manner as in Example 1 except that 100 parts by mass of titanium oxide, 500 parts by mass of diethylene glycol monomethyl ether, and 150 parts by mass of a nonionic surfactant were mixed. The titanium oxide concentration in the titanium oxide particle dispersion liquid of the present comparative example was 13% by mass.
 さらに、実施例1と同様に、得られた酸化チタン粒子分散液15質量部と、バインダー樹脂10質量部とを混合し、本比較例のコーティング剤組成物を調製した。 Furthermore, similarly to Example 1, 15 parts by mass of the obtained titanium oxide particle dispersion liquid and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of the present comparative example.
[比較例3]
 酸化チタン100質量部と、ジエチレングリコールモノメチルエーテル4000質量部と、非イオン界面活性剤150質量部とを混合した以外は実施例1と同様にして、酸化チタン粒子分散液を調製した。なお、本比較例の酸化チタン粒子分散液における酸化チタン濃度は、2質量%であった。
Comparative Example 3
A titanium oxide particle dispersion was prepared in the same manner as in Example 1 except that 100 parts by mass of titanium oxide, 4000 parts by mass of diethylene glycol monomethyl ether, and 150 parts by mass of a nonionic surfactant were mixed. The titanium oxide concentration in the titanium oxide particle dispersion liquid of the present comparative example was 2% by mass.
 さらに、実施例1と同様に、得られた酸化チタン粒子分散液83質量部と、バインダー樹脂10質量部とを混合し、本比較例のコーティング剤組成物を調製した。 Furthermore, in the same manner as in Example 1, 83 parts by mass of the obtained titanium oxide particle dispersion and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this comparative example.
[比較例4]
 まず、酸化チタン粒子として、石原産業株式会社製ST-01(平均一次粒子径:7nm、結晶構造:アナターゼ)を準備し、有機溶剤として、メチルエチルケトン(MEK)を準備した。さらに、非イオン界面活性剤として、日油株式会社製ユニオールTG-1000(ポリオキシプロピレングリセリルエーテル、重量平均分子量Mw:1000)を準備した。
Comparative Example 4
First, ST-01 (average primary particle diameter: 7 nm, crystal structure: anatase) manufactured by Ishihara Sangyo Co., Ltd. was prepared as titanium oxide particles, and methyl ethyl ketone (MEK) was prepared as an organic solvent. Furthermore, Uniol TG-1000 (polyoxypropylene glyceryl ether, weight average molecular weight Mw: 1000) manufactured by NOF Corporation was prepared as a nonionic surfactant.
 次に、上記酸化チタン100質量部、メチルエチルケトン500質量部、非イオン界面活性剤150質量部を混合し、前分散処理として、攪拌機(プライミクス株式会社製T.K.ロボミックス)を用い、8000rpmにて30分間攪拌を行った。 Next, 100 parts by mass of the above-mentioned titanium oxide, 500 parts by mass of methyl ethyl ketone and 150 parts by mass of non-ionic surfactant are mixed, and as a pre-dispersion treatment, using a stirrer (TK Robomix manufactured by Primix, Inc.) The mixture was stirred for 30 minutes.
 その後、前分散処理で得られた処理液1Lを、攪拌機(プライミクス株式会社製T.K.ロボミックス)を用いて3000rpmにて攪拌した後、続いて分散機(浅田鉄工株式会社製ピコミル)を用いて本分散処理を行おうとした。しかしながら、前分散処理で得られた処理液の粘度が分散機に供給可能な程度まで低下しなかったことから、本分散処理を実施することができなかった。 Thereafter, 1 L of the treatment liquid obtained by the pre-dispersion treatment is stirred at 3000 rpm using a stirrer (TK Robotix manufactured by Primix, Inc.), and then a dispersing machine (Picomill manufactured by Asada Iron Works, Ltd.) We tried to use this for distributed processing. However, since the viscosity of the treatment liquid obtained by the pre-dispersion treatment did not decrease to such an extent that it can be supplied to the disperser, this dispersion treatment could not be carried out.
[比較例5]
 まず、酸化チタン粒子として、石原産業株式会社製ST-01(平均一次粒子径:7nm、結晶構造:アナターゼ)を準備し、有機溶剤として、ジエチレングリコールモノメチルエーテルを準備した。さらに、非イオン界面活性剤として、日油株式会社製ユニループ70DP-600B(重量平均分子量Mw:13000)を準備した。
Comparative Example 5
First, ST-01 (average primary particle diameter: 7 nm, crystal structure: anatase) manufactured by Ishihara Sangyo Co., Ltd. was prepared as titanium oxide particles, and diethylene glycol monomethyl ether was prepared as an organic solvent. Furthermore, Uniloop 70 DP-600B (weight-average molecular weight Mw: 13000) manufactured by NOF Corporation was prepared as a nonionic surfactant.
 次に、上記酸化チタン100質量部、メチルエチルケトン500質量部、非イオン界面活性剤30質量部を混合し、前分散処理として、攪拌機(プライミクス株式会社製T.K.ロボミックス)を用い、8000rpmにて30分間攪拌を行った。 Next, 100 parts by mass of the above-mentioned titanium oxide, 500 parts by mass of methyl ethyl ketone and 30 parts by mass of nonionic surfactant are mixed, and as a pre-dispersion treatment, using a stirrer (TK Robomix manufactured by Primix Co., Ltd.) The mixture was stirred for 30 minutes.
 その後、前分散処理で得られた処理液1Lを、攪拌機(プライミクス株式会社製T.K.ロボミックス)を用いて3000rpmにて攪拌した後、続いて分散機(浅田鉄工株式会社製ピコミル)を用いて本分散処理を行おうとした。しかしながら、前分散処理で得られた処理液の粘度が分散機に供給可能な程度まで低下しなかったことから、本分散処理を実施することができなかった。 Thereafter, 1 L of the treatment liquid obtained by the pre-dispersion treatment is stirred at 3000 rpm using a stirrer (TK Robotix manufactured by Primix, Inc.), and then a dispersing machine (Picomill manufactured by Asada Iron Works, Ltd.) We tried to use this for distributed processing. However, since the viscosity of the treatment liquid obtained by the pre-dispersion treatment did not decrease to such an extent that it can be supplied to the disperser, this dispersion treatment could not be carried out.
[比較例6]
 界面活性剤として、ビックケミー・ジャパン株式会社製DISPERBYK(登録商標)-111(イオン性界面活性剤)を用いた以外は実施例1と同様にして、酸化チタン粒子分散液を調製した。なお、本比較例の酸化チタン粒子分散液における酸化チタン濃度は、16質量%であった。
Comparative Example 6
A titanium oxide particle dispersion was prepared in the same manner as in Example 1 except that DISPERBYK (registered trademark) -111 (ionic surfactant) manufactured by BIC-Chemie Japan Ltd. was used as a surfactant. The titanium oxide concentration in the titanium oxide particle dispersion liquid of the present comparative example was 16% by mass.
 さらに、実施例1と同様に、得られた酸化チタン粒子分散液13質量部と、バインダー樹脂10質量部とを混合し、本比較例のコーティング剤組成物を調製した。 Furthermore, in the same manner as Example 1, 13 parts by mass of the obtained titanium oxide particle dispersion liquid and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this comparative example.
[比較例7]
 まず、酸化チタン粒子として、石原産業株式会社製TTO-50(平均一次粒子径:10nm、結晶構造:ルチル)を準備し、有機溶剤として、ジエチレングリコールモノメチルエーテルを準備した。さらに、非イオン界面活性剤として、日油株式会社製ユニオールTG-1000(ポリオキシプロピレングリセリルエーテル、重量平均分子量Mw:1000)を準備した。
Comparative Example 7
First, TTO-50 (average primary particle diameter: 10 nm, crystal structure: rutile) manufactured by Ishihara Sangyo Co., Ltd. was prepared as titanium oxide particles, and diethylene glycol monomethyl ether was prepared as an organic solvent. Furthermore, Uniol TG-1000 (polyoxypropylene glyceryl ether, weight average molecular weight Mw: 1000) manufactured by NOF Corporation was prepared as a nonionic surfactant.
 次に、上記酸化チタン100質量部、ジエチレングリコールモノメチルエーテル500質量部、非イオン界面活性剤30質量部を混合し、前分散処理として、攪拌機(プライミクス株式会社製TKロボミックス)を用い、8000rpmにて30分間攪拌を行った。 Next, 100 parts by mass of the above titanium oxide, 500 parts by mass of diethylene glycol monomethyl ether, and 30 parts by mass of nonionic surfactant are mixed, and pre-dispersion treatment is performed using a stirrer (TK Robomix manufactured by Primix, Inc.) at 8,000 rpm. Stirring was performed for 30 minutes.
 その後、前分散処理で得られた処理液1Lを、攪拌機(プライミクス株式会社製T.K.ロボミックス)を用いて3000rpmにて攪拌することにより、酸化チタン分散液を得た。これにより、酸化チタン濃度が16質量%である本比較例の酸化チタン粒子分散液を調製した。なお、本例では、分散機を用いた本分散処理を行わなかった。 Thereafter, 1 L of the treatment liquid obtained by the pre-dispersion treatment was stirred at 3000 rpm using a stirrer (TK Robomix manufactured by Primix, Inc.) to obtain a titanium oxide dispersion. Thereby, the titanium oxide particle dispersion liquid of this comparative example whose titanium oxide concentration is 16 mass% was prepared. In the present example, this dispersion processing using a dispersing machine was not performed.
 さらに、得られた酸化チタン粒子分散液2質量部と、バインダー樹脂10質量部とを混合し、本比較例のコーティング剤組成物を調製した。バインダー樹脂としては、実施例1に記載の化合物を使用した。 Furthermore, 2 parts by mass of the obtained titanium oxide particle dispersion and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this comparative example. The compound described in Example 1 was used as the binder resin.
[比較例8]
 実施例1で得られた酸化チタン粒子分散液71質量部と、バインダー樹脂10質量部とを混合し、本比較例のコーティング剤組成物を調製した。バインダー樹脂としては、実施例1に記載の樹脂を使用した。
Comparative Example 8
71 parts by mass of the titanium oxide particle dispersion obtained in Example 1 and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this comparative example. The resin described in Example 1 was used as the binder resin.
[比較例9]
 実施例1で得られた酸化チタン粒子分散液1質量部と、バインダー樹脂10質量部とを混合し、本比較例のコーティング剤組成物を調製した。バインダー樹脂としては、実施例1に記載の樹脂を使用した。
Comparative Example 9
One part by mass of the titanium oxide particle dispersion obtained in Example 1 and 10 parts by mass of a binder resin were mixed to prepare a coating agent composition of this comparative example. The resin described in Example 1 was used as the binder resin.
 実施例及び比較例における酸化チタン粒子の添加量及び平均一次粒子径、有機溶剤の添加量、界面活性剤の添加量及び重量平均分子量、酸化チタン粒子分散液中の酸化チタン粒子濃度を表1及び2に示す。さらに、コーティング剤組成物中の酸化チタン粒子分散液及びバインダー樹脂の混合量も表1及び2に示す。 Table 1 shows the additive amount and average primary particle diameter of titanium oxide particles, the additive amount of an organic solvent, the additive amount and weight average molecular weight of a surfactant, and the titanium oxide particle concentration in the titanium oxide particle dispersion in Examples and Comparative Examples. Shown in 2. Further, the mixing amounts of the titanium oxide particle dispersion and the binder resin in the coating agent composition are also shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記実施例及び比較例で得られた酸化チタン粒子分散液及びコーティング剤組成物に対して、次の評価試験を実施した。評価試験の結果を表3及び4に示す。 The following evaluation test was implemented with respect to the titanium oxide particle dispersion liquid and coating agent composition which were obtained by the said Example and comparative example. The results of the evaluation test are shown in Tables 3 and 4.
[分散適正]
 攪拌機を用いて前分散処理を実施した後に、分散機を用いて本分散処理する際に、送液ポンプを用いて処理液を攪拌機から分散機に送液可能であったものを「○」と評価した。しかし、処理液の粘度が高すぎて、送液できなかったものを「×」と評価した。なお、送液ポンプとしては、PTFEポンプヘッドを備えたMASTER FLEX社製MASTER FLEX送液ポンプを使用した。
[Distribution appropriate]
After the pre-dispersion treatment using a stirrer, when performing the main dispersion treatment using a disperser, "○" indicates that the treatment liquid can be transferred from the stirrer to the disperser using a liquid feed pump. evaluated. However, the viscosity of the processing liquid was too high, and what was not able to be sent was evaluated as "x". As a liquid transfer pump, a MASTER FLEX liquid transfer pump manufactured by MASTER FLEX Co., Ltd. equipped with a PTFE pump head was used.
[平均二次粒子径測定]
 各例で得られた酸化チタン粒子分散液を動的光散乱法にて測定し、キュムラント解析することにより、酸化チタン粒子の平均二次粒子径を測定した。なお、粒子径の測定には、濃厚系粒径アナライザーFPAR-1000(大塚電子株式会社製)を使用した。
[Average secondary particle size measurement]
The titanium oxide particle dispersion obtained in each example was measured by a dynamic light scattering method, and cumulant analysis was performed to measure the average secondary particle size of the titanium oxide particles. A concentrated particle size analyzer FPAR-1000 (manufactured by Otsuka Electronics Co., Ltd.) was used to measure the particle size.
[透明性]
 各例で得られた酸化チタン粒子分散液を、メチルエチルケトンを用いて、酸化チタン濃度が1質量%となるように調整した。次に、希釈した酸化チタン粒子分散液を、バーコーター#10を用いてガラス板上に塗布を行った。さらに、得られた塗膜に対して、50℃で30分間乾燥を行った。乾燥後に得られた薄膜の曇り度を、ヘーズメーターNDH4000(日本電色工業株式会社製)を用いて測定し、曇り度が3以下を「○」と評価とし、3以上を「×」と評価した。
[transparency]
The titanium oxide particle dispersion liquid obtained in each example was adjusted using methyl ethyl ketone so that the titanium oxide concentration was 1% by mass. Next, the diluted titanium oxide particle dispersion was applied onto a glass plate using a bar coater # 10. Further, the obtained coating was dried at 50 ° C. for 30 minutes. The haze of the thin film obtained after drying is measured using a haze meter NDH4000 (manufactured by Nippon Denshoku Kogyo Co., Ltd.), and the haze of 3 or less is evaluated as "o", and 3 or more is evaluated as "x". did.
[抗菌性]
 JIS R1702(ファインセラミックス-光触媒抗菌加工製品の抗菌性試験方法・抗菌効果)に準拠して大腸菌を用いて、抗菌性評価を実施した。なお、光照射の条件は、蛍光灯の全光1000Lxにて1時間照射を行った。1時間あたりの抗菌活性値が3以上を「○」と評価し、0.5以上3未満を「△」と評価し、0.5未満を「×」と評価した。
[Antibacterial]
Antibacterial evaluation was carried out using E. coli according to JIS R 1702 (Fine ceramics-Antibacterial test method for antibacterially processed products of photocatalysts and antibacterial effect). In addition, the conditions of light irradiation performed irradiation for 1 hour by 1000 Lx of total lights of a fluorescent lamp. An antimicrobial activity value of 3 or more per hour was evaluated as “o”, and 0.5 or more and less than 3 were evaluated as “Δ”, and less than 0.5 was evaluated as “x”.
[抗ウイルス性]
 抗ウイルス性試験の代替評価方法として制定されているJIS R1756(ファインセラミックス-可視光応答形光触媒材料の抗ウイルス性試験方法-バクテリオファージQβを用いる方法)に準拠して、抗ウイルス性評価を実施した。なお、光照射の条件は、蛍光灯の全光1000Lxにて1時間照射を行った。1時間あたりの抗菌活性値が3以上を「○」と評価し、0.5以上3未満を「△」と評価し、0.5未満を「×」と評価した。
[Antiviral]
Performs antiviral evaluation in accordance with JIS R 1756 (Fine ceramics-Method of testing antiviral materials for visible light responsive photocatalyst materials-Method using bacteriophage Qβ) established as an alternative evaluation method for antiviral tests did. In addition, the conditions of light irradiation performed irradiation for 1 hour by 1000 Lx of total lights of a fluorescent lamp. An antimicrobial activity value of 3 or more per hour was evaluated as “o”, and 0.5 or more and less than 3 were evaluated as “Δ”, and less than 0.5 was evaluated as “x”.
[成膜性]
 各実施例及び比較例のコーティング剤組成物を、バーコーター#10を用いて、厚み2mm、大きさ10cm×10cmのガラス板上に塗布した。次に、100℃で30秒間乾燥することにより、各例の被膜を調製した。
[Film forming ability]
The coating agent compositions of the respective examples and comparative examples were coated on a glass plate having a thickness of 2 mm and a size of 10 cm × 10 cm using a bar coater # 10. Next, the coating of each example was prepared by drying at 100 ° C. for 30 seconds.
 次に、得られた各例の被膜の指触乾燥性を評価した。具体的には、各例の被膜の中央を指で触れ、目視により指紋跡が確認できないものを「○」と評価し、指紋跡は確認されないが粘着性を有するものを「△」と評価し、指紋跡が確認できるものを「×」と評価した。 Next, the touch to dryness of the coating obtained in each example was evaluated. Specifically, the center of the film of each example is touched with a finger, those which can not confirm a fingerprint mark visually are evaluated as "○", and those which have no fingerprint mark but have adhesiveness are evaluated as "Δ". , Those which can confirm the fingerprint mark were evaluated as "x".
[密着性(付着性)]
 成膜性評価において得られた各実施例及び比較例の被膜に対して、JIS K5600(塗料一般試験方法)におけるクロスカット法に準拠して、1mmのカット間隔にて密着性を評価した。この際、剥離が見られないものを「○」と評価し、剥離が見られるものを「×」と評価した。
[Adhesiveness (adhesiveness)]
With respect to the films of the respective Examples and Comparative Examples obtained in the film formation evaluation, the adhesion was evaluated at a cut interval of 1 mm in accordance with the cross cut method in JIS K5600 (paint general test method). Under the present circumstances, the thing in which peeling is not seen was evaluated as "(circle)", and the thing in which peeling is seen was evaluated as "x".
[鉛筆硬度]
 成膜性評価において得られた各実施例及び比較例の被膜に対して、JIS K5600(塗料一般試験方法)における引っかき硬度(鉛筆法)に準拠し評価した。
[Pencil hardness]
It evaluated based on the scratch hardness (pencil method) in JISK5600 (paint general test method) with respect to the film of each Example and comparative example obtained in film-forming evaluation.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3に示すように、実施例1~11の酸化チタン粒子分散液は、分散適正評価で良好な結果を示し、さらに得られたコーティング剤組成物も透明性、抗菌性、抗ウイルス性、成膜性、密着性及び鉛筆硬度の各評価で良好な結果を示した。 As shown in Table 3, the titanium oxide particle dispersions of Examples 1 to 11 show good results in the dispersion adequacy evaluation, and the obtained coating agent composition is also transparent, antibacterial, antiviral, synthetic. Good results were obtained in each evaluation of film properties, adhesion and pencil hardness.
 これに対し表4に示すように、界面活性剤を含有していない比較例1、有機溶剤がMEKのみからなる比較例4及び界面活性剤の重量平均分子量が大きすぎる比較例5では、分散液の粘度が上昇し、酸化チタン粒子分散液を調製することができなかった。また、界面活性剤が過多の比較例2では、成膜性、密着性及び鉛筆硬度などの膜特性が低下し、それに伴い抗菌性及び抗ウイルス性も不十分な結果となった。また、界面活性剤及び有機溶剤が過多の比較例3では、成膜性が低下した。さらに、比較例6のように界面活性剤がイオン性界面活性剤の場合や、比較例7のように酸化チタン粒子の平均二次粒子径が大きすぎる場合には、光触媒性能が低下し、それに伴い抗菌性及び抗ウイルス性も低下した。そして、比較例7のように、酸化チタン粒子の平均二次粒子径が大きすぎる場合には、透明性も低下する結果となった。 On the other hand, as shown in Table 4, in Comparative Example 1 in which the surfactant is not contained, Comparative Example 4 in which the organic solvent consists only of MEK, and Comparative Example 5 in which the weight average molecular weight of the surfactant is too large, The viscosity of the solution increased, and a titanium oxide particle dispersion could not be prepared. In addition, in Comparative Example 2 in which the amount of surfactant is excessive, film properties such as film forming property, adhesion property and pencil hardness decrease, and accordingly, the antibacterial property and the antiviral property also become insufficient results. In addition, in Comparative Example 3 in which the surfactant and the organic solvent were excessive, the film forming property was lowered. Furthermore, when the surfactant is an ionic surfactant as in Comparative Example 6 or when the average secondary particle size of the titanium oxide particles is too large as in Comparative Example 7, the photocatalytic performance is lowered, Along with that, the antibacterial and antiviral properties also decreased. And, as in Comparative Example 7, when the average secondary particle diameter of the titanium oxide particles is too large, the transparency is also lowered.
 なお、比較例8のコーティング剤組成物における加熱残分を調査した結果、コーティング剤組成物の加熱残分100質量部において、酸化チタン粒子は80質量部を超えていた。そのため、透明性が低下する結果となった。また、比較例9のコーティング剤組成物における加熱残分を調査した結果、コーティング剤組成物の加熱残分100質量部において、酸化チタン粒子は10質量部未満であった。そのため、被膜の表面硬度が低下する結果となった。 In addition, as a result of investigating the heating residue in the coating agent composition of Comparative Example 8, in 100 parts by mass of the heating residue of the coating agent composition, the titanium oxide particles exceeded 80 parts by mass. Therefore, the result was a decrease in transparency. Moreover, as a result of investigating the heating residue in the coating agent composition of Comparative Example 9, the titanium oxide particles were less than 10 parts by mass in 100 parts by mass of the heating residue of the coating agent composition. Therefore, the surface hardness of the film decreased.
 特願2013-036788号(出願日:2013年2月27日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2013-036788 (filing date: February 27, 2013) are incorporated herein by reference.
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。 Although the contents of the present invention have been described above according to the embodiments, the present invention is not limited to these descriptions, and it is obvious to those skilled in the art that various modifications and improvements are possible.
 本発明の酸化チタン粒子分散液は、酸化チタン粒子の濃度を高めた場合であっても酸化チタン粒子の分散性を高い状態に維持することができる。その結果、当該酸化チタン粒子を含有するコーティング剤組成物及び当該コーティング剤組成物を用いた抗菌・抗ウイルス性部材の透明性を向上させることが可能となる。さらに、当該コーティング剤組成物及び抗菌・抗ウイルス性部材は酸化チタン粒子の含有量が多いため、高い抗菌性及び抗ウイルス性を有する。 The titanium oxide particle dispersion liquid of the present invention can maintain the dispersibility of the titanium oxide particles in a high state even when the concentration of the titanium oxide particles is increased. As a result, it becomes possible to improve the transparency of the coating agent composition containing the titanium oxide particles and the antibacterial and antiviral member using the coating agent composition. Furthermore, the coating composition and the antibacterial and antiviral member have high content of titanium oxide particles and thus have high antibacterial and antiviral properties.

Claims (4)

  1.  酸化チタン粒子と、
     前記酸化チタン粒子100質量部に対し、5~100質量部の非イオン界面活性剤と、
     グリコールエーテル系有機溶剤を50質量%以上含有する、前記酸化チタン粒子100質量部に対し300~2000質量部の有機溶剤と、
     を含有し、
     前記酸化チタン粒子は、平均一次粒子径が2~80nmであり、動的光散乱法で測定しキュムラント解析法により得られる平均二次粒子径が50~150nmであり、
     前記酸化チタン粒子は、酸化チタン粒子分散液の加熱残分100質量部中に10質量部以上含有する酸化チタン粒子分散液。
    Titanium oxide particles,
    5 to 100 parts by mass of a nonionic surfactant with respect to 100 parts by mass of the titanium oxide particles,
    300 to 2000 parts by mass of an organic solvent containing 50% by mass or more of a glycol ether-based organic solvent with respect to 100 parts by mass of the titanium oxide particles,
    Contains
    The titanium oxide particles have an average primary particle size of 2 to 80 nm, and have an average secondary particle size of 50 to 150 nm as measured by a dynamic light scattering method and obtained by a cumulant analysis method.
    The titanium oxide particle dispersion liquid contains 10 parts by mass or more in 100 parts by mass of the heating residue of the titanium oxide particle dispersion liquid.
  2.  前記非イオン界面活性剤の重量平均分子量は、300~10000である請求項1に記載の酸化チタン粒子分散液。 The titanium oxide particle dispersion liquid according to claim 1, wherein the weight average molecular weight of the nonionic surfactant is 300 to 10,000.
  3.  請求項1又は2に記載の酸化チタン粒子分散液と、バインダー樹脂とを含有し、
     前記酸化チタン粒子は、コーティング剤組成物の加熱残分100質量部中に10~80質量部含有するコーティング剤組成物。
    A titanium oxide particle dispersion liquid according to claim 1 or 2, and a binder resin,
    The coating agent composition, wherein the titanium oxide particles are contained in an amount of 10 to 80 parts by mass in 100 parts by mass of the heating residue of the coating agent composition.
  4.  基材と、
     前記基材上に設けられ、請求項3に記載のコーティング剤組成物を含有する被膜と、
     を有する抗菌・抗ウイルス性部材。
    A substrate,
    A film provided on the substrate and containing the coating composition according to claim 3;
    Antibacterial and antiviral material having
PCT/JP2014/000943 2013-02-27 2014-02-24 Liquid dispersion of titanium oxide particles, coating agent composition, and antibacterial/antiviral member WO2014132607A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015502757A JP6347368B2 (en) 2013-02-27 2014-02-24 Titanium oxide particle dispersion, coating composition and antibacterial / antiviral component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013036788 2013-02-27
JP2013-036788 2013-02-27

Publications (1)

Publication Number Publication Date
WO2014132607A1 true WO2014132607A1 (en) 2014-09-04

Family

ID=51427886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000943 WO2014132607A1 (en) 2013-02-27 2014-02-24 Liquid dispersion of titanium oxide particles, coating agent composition, and antibacterial/antiviral member

Country Status (2)

Country Link
JP (1) JP6347368B2 (en)
WO (1) WO2014132607A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105397894A (en) * 2015-10-26 2016-03-16 王璐 Production technique for sterilized wood floor
JP2016102072A (en) * 2014-11-27 2016-06-02 ロンシール工業株式会社 Surface treatment agent having anti-viral property, and anti-viral sheet shaped product coated with surface treatment agent
JP2021524847A (en) * 2018-05-16 2021-09-16 ノルディック バイオテック グループ オサケ ユキチュアNordic Biotech Group Oy Antimicrobial composition
KR20220106127A (en) 2019-11-29 2022-07-28 이시하라 산교 가부시끼가이샤 Organic solvent dispersion of titanium dioxide fine particles, manufacturing method thereof, and use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012891A (en) * 2000-06-29 2002-01-15 Lion Corp Cleanser containing photocatalyst
WO2005044447A1 (en) * 2003-11-06 2005-05-19 Toagosei Co., Ltd. Composite oxide type titania photocatalyst and use thereof
JP2011148668A (en) * 2010-01-25 2011-08-04 Jsr Corp Metal oxide particle dispersion, metal oxide particle-containing composition and film formed using the same, and photoelectric conversion element
JP2013015666A (en) * 2011-07-04 2013-01-24 Jnc Corp Photosensitive composition, organic film using the same, and electronic component having the film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012891A (en) * 2000-06-29 2002-01-15 Lion Corp Cleanser containing photocatalyst
WO2005044447A1 (en) * 2003-11-06 2005-05-19 Toagosei Co., Ltd. Composite oxide type titania photocatalyst and use thereof
JP2011148668A (en) * 2010-01-25 2011-08-04 Jsr Corp Metal oxide particle dispersion, metal oxide particle-containing composition and film formed using the same, and photoelectric conversion element
JP2013015666A (en) * 2011-07-04 2013-01-24 Jnc Corp Photosensitive composition, organic film using the same, and electronic component having the film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016102072A (en) * 2014-11-27 2016-06-02 ロンシール工業株式会社 Surface treatment agent having anti-viral property, and anti-viral sheet shaped product coated with surface treatment agent
CN105397894A (en) * 2015-10-26 2016-03-16 王璐 Production technique for sterilized wood floor
JP2021524847A (en) * 2018-05-16 2021-09-16 ノルディック バイオテック グループ オサケ ユキチュアNordic Biotech Group Oy Antimicrobial composition
KR20220106127A (en) 2019-11-29 2022-07-28 이시하라 산교 가부시끼가이샤 Organic solvent dispersion of titanium dioxide fine particles, manufacturing method thereof, and use thereof

Also Published As

Publication number Publication date
JP6347368B2 (en) 2018-06-27
JPWO2014132607A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP5914890B2 (en) Copper composite titanium oxide dispersion, coating composition and antibacterial / antiviral component
JP5919528B2 (en) Cuprous oxide particle dispersion, coating composition and antibacterial / antiviral component
TWI557192B (en) Coating composition and antibacterial and antiviral components
JP6145758B2 (en) Antiviral resin composition and antiviral member
EP3006523B1 (en) Cold-curing photocatalytic coating material, cold-curing coating composition and interior material
JP6347368B2 (en) Titanium oxide particle dispersion, coating composition and antibacterial / antiviral component
CN112437794A (en) Antibacterial coating material, method for producing antibacterial coating material, and method for producing antibacterial coating material
AU2014237704B2 (en) Superhydrophilic coating composition
JP7238877B2 (en) Aqueous composition of titanium oxide supporting metal compound
JP6631656B2 (en) Inorganic oxide dispersion with high transparency
JP2022076642A (en) Aqueous coating, and article coated with the aqueous coating
JP2023006883A (en) Copper-carrying titanium oxide slurry, method for producing copper-carrying titanium oxide slurry, and method for producing coating composition
Knight Recent Advances in Waterborne Acrylic Nanocomposite Paints and Coatings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756611

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015502757

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14756611

Country of ref document: EP

Kind code of ref document: A1