WO2014132506A1 - Method for detecting display panel defects and device for detecting display panel defects - Google Patents

Method for detecting display panel defects and device for detecting display panel defects Download PDF

Info

Publication number
WO2014132506A1
WO2014132506A1 PCT/JP2013/081769 JP2013081769W WO2014132506A1 WO 2014132506 A1 WO2014132506 A1 WO 2014132506A1 JP 2013081769 W JP2013081769 W JP 2013081769W WO 2014132506 A1 WO2014132506 A1 WO 2014132506A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
pixel
display panel
blue
picture element
Prior art date
Application number
PCT/JP2013/081769
Other languages
French (fr)
Japanese (ja)
Inventor
裕史 狩田
孝好 永安
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014132506A1 publication Critical patent/WO2014132506A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels

Definitions

  • the present invention relates to a defect detection method and a defect detection apparatus for each display pixel in a display panel, and more particularly to improvement of defect detection sensitivity.
  • the liquid crystal display panel is inspected for defects in each display pixel of the liquid crystal display panel in the latter half of the manufacturing process.
  • the defect handled in this specification is, for example, a bright spot defect caused by the occurrence of foreign matter in the liquid crystal layer in the liquid crystal display panel. For this reason, a bright spot defect mainly caused by a defect due to, for example, a short circuit or disconnection of wiring in a TFT (Thin Film Transistor) thin film transistor is not included.
  • TFT Thin Film Transistor
  • Inspecting whether or not each display pixel of the liquid crystal display panel is defective is a visual inspection in which the lit liquid crystal display panel is visually inspected by an operator, and the liquid crystal display panel is a line sensor or an area sensor. There is an automatic inspection performed by a defect detection apparatus that processes a signal obtained by imaging with a simple sensor camera.
  • Patent Document 1 a defect detection method using the defect detection apparatus disclosed in Patent Document 1 is known as the automatic inspection.
  • a defect part candidate includes, for example, a plurality of types of color picture elements in a large defect part including a red picture element and a green picture element adjacent thereto. In this case, it is determined that a single color does not include a plurality of types of color picture elements, and it is possible to prevent the occurrence of erroneous detection of a defect by determining the quality of a defective part candidate based on the determined determination criterion for the single color. It has been proposed to do so.
  • a defect detection method of a defect detection apparatus disclosed in Patent Document 1 includes a step of capturing a pixel composed of a plurality of picture elements and acquiring it as image data, and a luminance of the pixel of the image data. Extracting a pixel having an absolute value of a contrast value, which is a difference between a signal amount and a luminance signal amount of the pixel when the pixel has no defect, as a defective part candidate, and a picture of the defective part candidate A step of specifying a prime color and a step of calculating a defect degree by multiplying the contrast value by a correction coefficient that varies depending on the color of the picture element and determining a defect when the defect degree is larger than a determination value are executed. To do.
  • the contrast value for each color of the picture element is multiplied by a correction coefficient that differs depending on the color of the picture element, and the total is calculated as a defect degree. Including a step of calculating.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2011-196685 (published on October 6, 2011)”
  • the defect detection device In the automatic inspection performed by the defect detection device and the visual inspection performed by the operator's visual observation of the lit liquid crystal display panel, for example, in the case of a minute defect having a size of one picture element or less, The difference from the detection sensitivity of the defect detection device is large, and the defect detection device detects even a minute defect exceeding the visual limit level.
  • the defect detection method using the conventional defect detection apparatus has a problem in that defects are detected more excessively than visual detection, and the process yield is reduced.
  • the present invention has been made in view of the above-described conventional problems, and its purpose is to reduce the number of defects that are detected excessively more than visual detection, and thus to suppress a reduction in process yield.
  • a defect detection method and a display panel defect detection apparatus are provided.
  • a defect detection method for a display panel includes at least a blue (B) pixel among red (R), green (G), and blue (B) picture elements in a display panel. And a pixel lighting process for lighting the blue (B) picture element by applying an applied voltage to the picture element, and image data obtained by picking up pixels comprising a plurality of picture elements of the display panel and obtaining them as image data
  • the absolute value of the contrast value which is the difference between the acquisition step and the imaging pixel luminance signal amount of the pixel of the image data and the non-defective pixel luminance signal amount of the non-defective pixel of the image data in the non-defective pixel in which the pixel is not defective, is obtained.
  • a display panel defect detection device includes at least a blue (B) pixel among red (R), green (G), and blue (B) picture elements in a display panel.
  • the pixel lighting means for lighting the blue (B) picture element by applying an applied voltage to the picture element of (), and the pixel composed of a plurality of picture elements of the display panel are picked up by an imaging camera as image data
  • a contrast value that is a difference between a captured pixel luminance signal amount of a pixel of the image data and a non-defective pixel luminance signal amount of the non-defective pixel of the image data in a non-defective pixel in which the pixel is not defective
  • a defective part candidate extracting unit that extracts a pixel having an absolute value equal to or greater than a threshold value as a defective part candidate, a defective part pixel specifying unit that specifies a color of a pixel of the defective part candidate, and a color of the pixel Different correction The number was
  • a display panel defect detection method and a display panel defect detection apparatus capable of reducing the number of defects that are detected excessively more than visual detection, and thereby suppressing a decrease in process yield. The effect of doing.
  • FIG. 1 It is a flowchart which shows the defect detection method of the display panel by the defect detection apparatus of the display panel in Embodiment 1 of this invention. It is a block diagram which shows the structure of the defect detection apparatus for performing the defect detection method of the said display panel.
  • A is a top view which shows the whole structure of a liquid crystal display panel
  • (b) is a liquid crystal in a state where only a backlight is lit and red (R), green (G) and blue (B) picture elements are not lit.
  • (c) turns on a backlight, and is a blue (B) picture among red (R), green (G), and a blue (B) picture element.
  • the display panel defect detection method it is a diagram illustrating an example of a correction coefficient when a bright spot defect occurs in each of red (R), green (G), and blue (B) picture elements.
  • (A) is a principal part top view which shows the brightness
  • FIG. 2 shows the defect detection method of the display panel in Embodiment 2 of this invention.
  • A shows the defect detection method of the said display panel, Comprising: When there exists a defect over both a red (R) picture element and a green (G) picture element, when only a backlight is lighted It is a principal part top view which shows the brightness
  • (b) is a background picture element and defect when lighting a backlight and lighting all the picture elements of red (R), green (G), and blue (B) picture elements It is a principal part top view which shows the brightness
  • FIG. 2 is a block diagram showing a configuration of the defect detection apparatus 10 of the present embodiment and the liquid crystal display panel 1 that is a defect detection target.
  • the defect detection apparatus 10 includes a display panel operation unit 2 for applying a display input signal to a liquid crystal display panel 1 as a display panel, an imaging camera 11, and a defect site detection. Unit 12, color identification unit 13, defect determination unit 14, and result output unit 15. In addition, after detecting the defective part of the pixel in the defect detection apparatus 10 of the present embodiment, the defective part is repaired.
  • the liquid crystal display panel 1 is composed of a plurality of pixels composed of picture elements of three colors of red (R: Red), green (G: Green), and blue (B: Blue) arranged in a matrix. .
  • the liquid crystal display panel 1 includes a panel body composed of a TFT (thin film transistor) (not shown) substrate, a color filter substrate, and a liquid crystal layer interposed therebetween, and a back disposed on the back surface of the panel body. With lights. Therefore, the liquid crystal display panel 1 can apply a voltage for each picture element by the display panel operation unit 2.
  • the liquid crystal display panel 1 is used as a display panel.
  • the present invention is not limited to the liquid crystal display panel and may be another display panel.
  • the display panel operation unit 2 can turn on / off the backlight and apply a driving signal for lighting to each of the red (R), green (G), and blue (B) picture elements. It has become.
  • the imaging camera 11 captures the liquid crystal display panel 1 and acquires it as image data, and includes a sensor camera such as a line sensor or an area sensor. Therefore, the imaging camera 11 captures a column or row of pixels along a line, or captures a region of a certain size, that is, a certain matrix region, and acquires it as image data.
  • the sensor camera is a monochrome camera.
  • the defective part detection unit 12 calculates the absolute value of the contrast value, which is the difference between the imaging pixel luminance signal amount of the pixel of the image data and the non-defective pixel luminance signal amount of the non-defective pixel in the non-defective pixel in which the pixel is not defective.
  • a pixel having a value equal to or greater than a threshold value is extracted as a candidate defect part.
  • the color specifying unit 13 specifies the color of the defective part candidate pixel.
  • the defect determination unit 14 calculates a defect degree by multiplying the contrast value by a correction coefficient that varies depending on the color of the pixel, and if the defect degree is larger than the determination value, the pixel of the color is defective. It comes to judge. Further, the result output unit 15 displays which picture element in the image data of the liquid crystal display panel 1 is defective.
  • FIG. 1 is a flowchart showing a defect detection method of the liquid crystal display panel 1 in the present embodiment.
  • FIG. 3A is a plan view showing the overall configuration of the liquid crystal display panel 1.
  • FIG. 3B is a main part plan view showing the configuration of the liquid crystal display panel 1 in a state where only the backlight is lit and the red (R), green (G), and blue (B) picture elements are not lit.
  • FIG. 3C shows a liquid crystal display panel 1 in a state in which the backlight is turned on and only the blue (B) picture element among the red (R), green (G), and blue (B) picture elements is lit. It is a principal part top view which shows the structure of this.
  • the defect to be handled is a bright spot defect that is caused by the occurrence of foreign matter in the liquid crystal layer in the liquid crystal display panel. For this reason, a bright spot defect mainly caused by a defect due to, for example, a short circuit or disconnection of wiring in a TFT (Thin Film Transistor) thin film transistor is not included.
  • TFT Thin Film Transistor
  • the defect detection apparatus 10 of the present embodiment detects a defect generated in a picture element, first, as shown in FIG. 1, the backlight in the liquid crystal display panel 1 is turned on (S1). Subsequently, in the picture element lighting step, at least the blue (B) picture element is lit among the red (R), green (G), and blue (B) picture elements (S2).
  • the display pattern of the above-mentioned lighting state is displayed on the liquid crystal display panel 1, in the image data acquisition step, the display pattern is imaged by the imaging camera 11 and acquired as image data (S3).
  • the magnitude of the signal output by the light receiving element according to the intensity of light received by the light receiving element of the imaging camera 11 is referred to as “luminance signal amount”. Therefore, the value of each pixel of the image data is a luminance signal amount.
  • the defective part detection unit 12 calculates a contrast value for the image data and creates a contrast image (S4).
  • the contrast value refers to the luminance signal amount of the picture element of the image data and the display pattern displayed on the liquid crystal display panel 1 normally, that is, the picture element is defective. This is the difference from the luminance signal amount when there is no signal.
  • a value obtained in advance may be used, but each time it may be a non-defective pixel luminance signal amount predicted from the obtained image data.
  • FIG. 4 is a plan view showing a picture element array 1a of red (R), green (G), and blue (B) picture elements of the liquid crystal display panel 1.
  • red (R), green (G), and blue (B) picture elements are arranged in the horizontal direction to form one unit, and this one unit is in the vertical and horizontal directions.
  • Each is arranged in multiple numbers.
  • the red picture element constituting the unit of the m-th row and the n-th column is indicated by Rmn
  • the green picture element is indicated by Gmn
  • the blue picture element is indicated by Bmn.
  • the pattern has a spatial period of one unit in the horizontal direction.
  • R21 there is no defective picture element R21 with respect to the defective picture element R22.
  • R23 is a pixel of the same phase that is one cycle apart horizontally. If the phase is the same even if the period is different, the luminance signal amounts should be similar, and the average of the luminance signal amount of the picture element R21 and the luminance signal quantity of the picture element R23 indicates that the pattern is displayed normally. In this case, that is, the luminance signal amount of the pixel R22 when there is no defect should be approximated.
  • defective part candidates are extracted from the contrast image of the image data (S5). That is, since the contrast value of a normal pixel without a defect should be about 0 by the above-described calculation of the contrast value, the liquid crystal display panel 1 corresponding to a pixel having a value greatly different from 0 in the contrast image. The site is likely a defect. Therefore, a picture element having an absolute value of the contrast value larger than a certain threshold value may be extracted as a defective part candidate.
  • the color specifying unit 13 specifies the color of the picture element that is the object for each pixel included in the defective part candidate (S6).
  • the color is specified based on the luminance signal amount in the image data.
  • a display pattern for alignment is displayed on the liquid crystal display panel 1, the display pattern is captured by the imaging camera 11 as image data, and the display pattern and the display pattern in the image data are collated to establish a correspondence relationship.
  • the registration information to be specified is created, the picture element corresponding to the pixel is specified based on the pixel position and the registration information, and further, based on the design information of the liquid crystal display panel 1, the picture element corresponding to the pixel is selected from the specified picture element. You may specify by specifying the color of a picture element.
  • the defect determination unit 14 calculates the defect degree based on the specified color (S7).
  • the correction coefficient which is the ratio between the absolute value of the contrast value and the defect level, differs depending on the display pattern and the color of the picture element. Three examples are shown below.
  • a picture element that is controlled to be displayed in black based on the display pattern is displayed in black when normal. If the picture element to be displayed in black is displayed in red (R), green (G), or blue (B) (contrast value is positive), it is considered a bright spot defect.
  • the eye sensitivity is high for green (G) and low for blue (B).
  • the picture element to be displayed in black is green by multiplying by a small correction coefficient.
  • a large correction coefficient is multiplied. Since the imaging camera 11 is a monochrome camera, it is unknown which color the bright spot defect is displayed. However, since the probability that a bright spot defect is displayed in a color different from the original color of the picture element is extremely rare, it is estimated that the color is specified by the color specifying unit 13 and is multiplied by the correction coefficient.
  • picture elements that are controlled to be brightly displayed based on the display pattern are displayed in the colors of the red (R), green (G), and blue (B) picture elements when normal.
  • a small correction coefficient is obtained after multiplying the contrast value by -1 to make the sign positive.
  • the sign is positive by multiplying the contrast value by ⁇ 1, and then multiplied by a large correction coefficient.
  • the degree of defect is set to a value close to the sensitivity of the human eye.
  • picture elements that are controlled to be brightly displayed based on the display pattern are displayed in the colors of the red (R), green (G), and blue (B) picture elements when normal.
  • a large correction coefficient is multiplied when the picture element to be displayed in blue (B) is displayed in white.
  • a small correction coefficient is multiplied.
  • the degree of defect is set to a value close to the sensitivity of the human eye.
  • the white defect occurs when ink is not placed on the color filter and all light is transmitted.
  • FIG. 5 is a diagram illustrating an example of the correction coefficient in the case where a bright spot defect has occurred in each of the red (R), green (G), and blue (B) picture elements.
  • the visual sensitivity / luminance signal amount is used as a correction coefficient.
  • the luminance signal amounts of image data in red (R), green (G), and blue (B) colors displayed on the liquid crystal display panel 1 are 0.4, 0.3, and 0.3.
  • the human visual sensitivity is 0.3, 0.6, and 0.1.
  • the visual sensitivity of each color of red (R), green (G), and blue (B) can be specified by measuring each color displayed on the liquid crystal display panel 1 with a color luminance meter.
  • an appropriate correction coefficient is selected based on the display pattern, the sign of the contrast value, and the color specified by the color specifying unit 13, and multiplied by the contrast value.
  • the correction coefficient is a value to be set depending on the color of the picture element and the sensitivity of the light receiving element with respect to the color of the picture element, and may be a correction coefficient other than the above.
  • the defect degrees of the plurality of picture elements may be summed to obtain the defect degree of the entire defect part candidate. That is, when one defect includes picture elements of a plurality of types of colors, the degree of defect is calculated by multiplying the contrast value for each color by a correction coefficient that differs depending on the color and summing up the defects.
  • the defect is determined in the defect determination step (S8). Specifically, for each defective part candidate extracted in S5, the defect degree is compared with the determination value, and if the defect degree is larger than the determination value, it is determined as a defect.
  • the result output unit 15 outputs information on the part determined to be defective (S9).
  • the information regarding the part determined to be a defect includes a defect sitting value, a color, and a defect type in the display panel.
  • the defect sitting value in the liquid crystal display panel 1 is obtained by converting the coordinate value of the defect in the contrast image into the sitting face in the liquid crystal display panel 1 based on information for specifying a picture element corresponding to each pixel of the pixel data.
  • the types of defects include black spot defects, bright spot defects, white spot defects, and the like.
  • the defect degree is corrected in accordance with the ratio of the included colors, so that it is possible to make a determination based on an appropriate standard, and erroneous detection Can be detected and defects can be accurately detected.
  • FIG. 6A is a main part plan view showing a luminance difference between the background picture element and the defect when only the backlight is turned on when the blue (B) picture element has a defect.
  • FIG. 6B shows the background picture element when the backlight is turned on and only the blue (B) picture element among the red (R), green (G), and blue (B) picture elements is lit. It is a principal part top view which shows the luminance difference with a defect.
  • FIG. 6A for example, it is assumed that a defect F exists in the blue picture element Bp.
  • the picture elements are controlled to be displayed in black achromatic colors. Therefore, when it is normal, that is, when there is no defect, it is displayed in a dark black achromatic color. Therefore, as shown in FIG. 6A, a part of the contrast picture is brightly displayed with the blue picture element Bp, so that it is considered to be a defect F. That is, when one or more of the red picture element Rp, the green picture element Gp, and the blue picture element Bp are displayed brightly, it becomes a defect F because it becomes a certain luminance difference or more.
  • the display panel operation unit 2 applies a voltage to blue (B).
  • the visual sensitivity ratio is approximately when normalized so that the sum of red (R), green (G), and blue (B) is 1.
  • Red (R): Green (G): Blue (B) 0.3: 0.6: 0.1 It becomes.
  • the input signal to be applied is the voltage [V] and not the luminance value, the input signal is adjusted so as to obtain a desired background luminance value.
  • the defect F existing in the blue picture element Bp is not the defect F as shown in FIG. 6B.
  • the defect detection method of the liquid crystal display panel 1 in the defect detection apparatus 10 of the present embodiment at least one of the red (R), green (G), and blue (B) picture elements in the liquid crystal display panel 1.
  • a pixel lighting process for lighting the blue (B) picture element by applying an applied voltage to the blue (B) picture element, and imaging a pixel composed of a plurality of picture elements of the liquid crystal display panel 1 by the imaging camera 11 The difference between the image data acquisition step of acquiring the image data as image data, and the amount of imaging pixel luminance signal of the pixel of the image data and the amount of non-defective pixel luminance signal of the non-defective pixel of the image data in the non-defective pixel where the pixel is not defective
  • the image data acquisition process and the defective part candidate are performed without applying a voltage to each pixel constituting the pixel of the liquid crystal display panel 1.
  • the extraction process, the defective part picture element identification process, and the defect determination process are performed in this order to detect the defect.
  • the human visual detection sensitivity and the defect The difference from the detection sensitivity of the detection device is large, and the defect detection device will detect even a microdefect exceeding the visual limit level. For example, as shown in FIG. 6A, when the defect F exists in the blue picture element Bp, the difference in brightness between the background brightness of the blue picture element Bp and the brightness of the defect F is large. Immediately, it is determined that the defect F exists in the blue picture element Bp.
  • the defect detection method using the conventional defect detection apparatus has a problem that the defect is over-detected rather than the visual detection and the process yield decreases.
  • a defect determination step of calculating a defect degree by multiplying the contrast value by a correction coefficient that differs depending on the color of the picture element, and determining that the pixel of the color is a defect when the defect degree is larger than a determination value A method of changing the correction coefficient in is also conceivable.
  • accurate defect detection is difficult with the method of changing the correction coefficient.
  • defect detection apparatus 10 of the present embodiment when performing the conventional image data acquisition process, defective part candidate extraction process, defective part pixel identification process, and defect determination process, first, in the pixel lighting process. Then, an applied voltage is applied to at least the blue (B) picture element among the red (R), green (G), and blue (B) picture elements in the liquid crystal display panel 1, and the blue (B) picture element is obtained. Light.
  • the blue (B) picture element is turned on in human visual observation when only the backlight is turned on, and in addition to the backlight, red (R), green (G), blue ( This is because the brightness difference from when each of the B) picture elements is lit is the largest in the case of the blue (B) picture element. That is, when only the backlight is turned on, the blue (B) picture element has a luminance of the blue (B) picture element among the red (R), green (G), and blue (B) picture elements. Smallest. For this reason, when the defect exists in the blue (B) picture element, the brightness of the defect is high. Therefore, the defect detection method using the conventional defect detection apparatus can easily extract the defect of the blue (B) picture element. Tend.
  • the blue (B) picture element is often lit when viewing the liquid crystal display panel 1, the human visual observation does not recognize a defect existing in the blue (B) picture element. There are many cases. For this reason, even if such a defect detection method is adopted, there is substantially no problem.
  • the blue (B) picture element whose defect is frequently detected more frequently than the visual detection is turned on to detect the defect. Do. Accordingly, it is possible to provide a defect detection method for the liquid crystal display panel 1 that can efficiently reduce the overdetection of defects rather than the visual detection and thereby suppress a decrease in process yield.
  • the applied voltage is applied only to the blue (B) picture element among the green (G) and blue (B) picture elements.
  • the blue (B) picture element was turned on.
  • each of the red (R), green (G), and blue (B) pictures in the liquid crystal display panel 1 in the picture element lighting step is that blue (B) and red (R) picture elements are lit so that the applied voltage applied to each picture element is blue (B)> red (R). .
  • the luminance difference between when only the backlight is lit and when each of the red (R), green (G), and blue (B) picture elements is lit in addition to the backlight is
  • the red (R) picture element is the second largest after the blue (B) picture element.
  • the red (R) picture element is lit so that the applied voltage applied to each picture element is blue (B)> red (R).
  • the difference in luminance between the background luminance of the blue (B) and red (R) picture elements and the luminance of the defect is reduced. As a result, it becomes difficult to be extracted as a defect.
  • the blue (B) and red (R) picture elements whose defects are more frequently detected than the visual detection are turned on. Then, defect detection is performed. Accordingly, it is possible to provide a defect detection method for the liquid crystal display panel 1 that can more efficiently reduce the number of defects that are detected excessively than the visual detection, and that can suppress a decrease in the process yield.
  • FIG. 7 is a flowchart showing a defect detection method of the liquid crystal display panel 1 in the present embodiment.
  • FIG. 8A shows a defect detection method of the liquid crystal display panel 1, where only the backlight is present when there is a defect extending over both the red (R) picture element and the green (G) picture element. It is a principal part top view which shows the brightness
  • the backlight is turned on, and among the red (R), green (G), and blue (B) picture elements, the blue (B) picture element and the red (R) picture element are displayed. It is a principal part top view which shows the brightness
  • the defect detection apparatus 10 of the present embodiment detects a defect occurring in a picture element, first, as shown in FIG. 7, the backlight in the liquid crystal display panel 1 is turned on (S1). Subsequently, in the picture element lighting step, the blue (B) and red (R) picture elements among the red (R), green (G), and blue (B) picture elements in the liquid crystal display panel 1 Lights up so that the applied voltage applied to the picture element is blue (B)> red (R) (S11).
  • FIG. 8A for example, it is assumed that there is a defect F straddling the red picture element Rp and the green picture element Gp.
  • the backlight is turned on, and when the red (R), green (G), and blue (B) picture elements are not turned on, the picture elements are controlled to be displayed in black achromatic colors. Therefore, when it is normal, that is, when there is no defect, it is displayed in a dark black achromatic color. Therefore, as shown in FIG. 8A, a part of each red picture element Rp and green picture element Gp is brightly displayed on the contrast screen, so that it is considered to be a defect F. That is, when one or more of the red picture element Rp, the green picture element Gp, and the blue picture element Bp are displayed brightly, it becomes a defect F because it becomes a certain luminance difference or more.
  • the display panel operation unit 2 applies voltages to red (R) and blue (B).
  • the visual sensitivity ratio is approximately when normalized so that the sum of red (R), green (G), and blue (B) is 1.
  • Red (R): Green (G): Blue (B) 0.3: 0.6: 0.1 It becomes.
  • the input signal to be applied is the voltage [V] and not the luminance value, the input signal is adjusted so as to obtain a desired background luminance value.
  • the defect F existing across the red picture element Rp and the green picture element Gp is converted into a red picture as shown in FIG.
  • the element Rp is no longer a defect F.
  • the luminance value refers to the magnitude of a signal output from the imaging camera 11 according to the intensity of light received by the imaging camera 11.
  • the contrast volume is the absolute value of the difference between the luminance value of the imaging camera 11 for a certain picture element and the predicted value of the luminance value when the picture element is normally displayed on the screen of the liquid crystal display panel 1. The value added in the area.
  • Embodiment 3 The following will describe still another embodiment of the present invention with reference to FIGS.
  • the configurations other than those described in the present embodiment are the same as those in the first embodiment and the second embodiment.
  • members having the same functions as those shown in the drawings of Embodiment 1 and Embodiment 2 are given the same reference numerals, and explanation thereof is omitted.
  • the applied voltage is applied only to the blue (B) picture element among the green (G) and blue (B) picture elements.
  • the blue (B) picture element was turned on.
  • each of the red (R), green (G), and blue (B) pictures in the liquid crystal display panel 1 in the picture element lighting step is lit so that the applied voltage is blue (B)> red (R) ⁇ green (G).
  • the luminance difference between when only the backlight is lit and when each of the red (R), green (G), and blue (B) picture elements is lit in addition to the backlight is , Blue (B) picture element, red (R) picture element, and green (G) picture element.
  • red (R) and green (G) picture elements are applied to each picture element with a blue (B)> red (R) ⁇ green (G ) To light up.
  • the luminance difference between the background luminance of the blue (B), red (R), and green (G) picture elements and the luminance of the defect becomes small, so that it is difficult to be extracted as a defect.
  • FIG. 9 is a flowchart showing a defect detection method of the liquid crystal display panel 1 in the present embodiment.
  • FIG. 10A shows a defect detection method for the liquid crystal display panel 1, and the background pixel and defect when only the backlight is turned on when the green (G) pixel is defective. It is a principal part top view which shows a luminance difference.
  • FIG. 10B shows the luminance difference between the background picture element and the defect when the backlight is turned on and all of the red (R), green (G), and blue (B) picture elements are lit. It is a principal part top view which shows.
  • the defect detection apparatus 10 of the present embodiment detects a defect occurring in a picture element
  • the backlight in the liquid crystal display panel 1 is turned on as shown in FIG. 9 (S1).
  • the applied voltage for applying the red (R), green (G), and blue (B) picture elements in the liquid crystal display panel 1 to the picture elements is blue (B)> Lights up so that red (R) ⁇ green (G) (S21).
  • FIG. 10A for example, it is assumed that a defect F exists in the green picture element Gp.
  • the picture elements are controlled to be displayed in black achromatic colors. Therefore, when it is normal, that is, when there is no defect, it is displayed in a dark black achromatic color. Therefore, as shown in FIG. 10A, when a part of the green picture element Gp is displayed brightly on the contrast screen, it is considered to be a defect F. That is, when one or more of the red picture element Rp, the green picture element Gp, and the blue picture element Bp are displayed brightly, it becomes a defect F because it becomes a certain luminance difference or more.
  • the display panel operation unit 2 applies voltages to red (R) and blue (B).
  • the visual sensitivity ratio is approximately when normalized so that the sum of red (R), green (G), and blue (B) is 1.
  • Red (R): Green (G): Blue (B) 0.3: 0.6: 0.1 It becomes.
  • a voltage is applied to green (G) and blue (B).
  • the input signal to be applied is the voltage [V] and not the luminance value, the input signal is adjusted so as to obtain a desired background luminance value.
  • the defect F existing in the green picture element Gp becomes the defect F after the picture element is turned on as shown in FIG. Disappear.
  • the defect detection is employed in the lighting defect detection procedure in which the image data acquisition process, the defective part candidate extraction process, the defective part pixel identification process, and the defect determination process are performed in this order.
  • the defect detection apparatus 10 cannot grasp how many defects F actually exist.
  • both the lighting defect detection procedure and the non-lighting defect detection procedure in which no pixel is lit are performed. Therefore, the defect F which exists actually can be grasped.
  • FIG. 11 is a flowchart showing a defect detection method of the liquid crystal display panel 1 in the present embodiment.
  • the backlight in the liquid crystal display panel 1 is turned on as shown in FIG. S1).
  • the picture element lighting step at least each blue (B) picture element among the red (R), green (G), and blue (B) picture elements in the liquid crystal display panel 1 is lit (S31).
  • the pixel lighting process of S31 is the same as the pixel lighting process of any of the first to third embodiments (S2 shown in FIG. 1, S11 shown in FIG. 7, and FIG. 9). S21).
  • steps S3 to S9 are performed. Since steps S3 to S9 are the same as those described in the flowchart shown in FIG. 1 in the first embodiment, the description thereof is omitted.
  • the lighting defect detection procedure shown in S31 to S9 is performed. Therefore, a defect detection result at the visual inspection level is obtained.
  • the defect detection method of the liquid crystal display panel 1 of the present embodiment the defect at the time of non-lighting in which the defect is detected without lighting the red (R), green (G), and blue (B) picture elements. Run the detection procedure.
  • the red (R), green (G), and blue (B) picture elements are turned off (S32), and then the steps S3 to S9 are similarly executed. .
  • the processing time has a margin.
  • the defect detection procedure at the time of non-lighting is performed.
  • the present invention is not necessarily limited to this. It is also possible to perform a lighting defect detection procedure after performing the above. That is, either the lighting defect detection procedure or the non-lighting defect detection procedure may be performed first. This is because, regardless of which is performed first, it is possible to grasp the true level defect and the visual observation level defect.
  • the defect detection method for the display panel (liquid crystal display panel 1) is at least one of red (R), green (G), and blue (B) picture elements in the display panel (liquid crystal display panel 1). Applying an applied voltage to the blue (B) picture element to light the blue (B) picture element, a plurality of picture element lighting steps (S2, S11, S21), and a plurality of display panels (liquid crystal display panel 1)
  • An image data acquisition step (S3) in which pixels consisting of picture elements are captured and acquired as image data, and the non-defective pixels of the image data in the non-defective pixels in which the pixels are not defective and the imaging pixel luminance signal amount of the pixels of the image data
  • a defective part candidate extraction step (S4, S5) for extracting a pixel whose absolute value of the contrast value, which is the difference from the non-defective pixel luminance signal amount, is greater than or equal to a threshold value as a defective part candidate, and the picture of the defective part candidate
  • the defect detection apparatus 10 for the display panel (liquid crystal display panel 1) is a red (R), green (G), or blue (B) picture element in the display panel (liquid crystal display panel 1).
  • a plurality of picture element lighting means (display panel operation unit 2) for applying an applied voltage to at least a blue (B) picture element to light up the blue (B) picture element, and the display panel (liquid crystal display panel 1).
  • Image data acquisition means (imaging camera 11) that captures a pixel consisting of a picture element and acquires it as image data; and the amount of imaging pixel luminance signal of the pixel of the image data and the image data of a non-defective pixel in which the pixel is not defective
  • a defective part candidate extracting means (defective part detecting unit 12) for extracting, as a defective part candidate, a pixel whose absolute value of a contrast value, which is a difference between the non-defective pixel and the non-defective pixel luminance signal amount, is a threshold value or more;
  • Lack of Defect part pixel specifying means (color specifying part 13) for specifying the color of the part candidate picture element and the correction coefficient that differs depending on the color of the picture element are multiplied by the contrast value to calculate the defect degree.
  • Defect determining means (defect determining unit 14) that determines that the picture element of the color is defective when larger than the determination value is characterized.
  • a defective part candidate extraction process when performing a conventional image data acquisition process, a defective part candidate extraction process, a defective part pixel identification process, and a defect determination process, first, in the pixel lighting process, in the display panel An applied voltage is applied to at least the blue (B) picture element among the red (R), green (G), and blue (B) picture elements to light the blue (B) picture element.
  • the blue (B) picture element is turned on in human visual observation when only the backlight is turned on, and in addition to the backlight, red (R), green (G), blue ( This is because the brightness difference from when each of the B) picture elements is lit is the largest in the case of the blue (B) picture element. That is, when only the backlight is turned on, the blue (B) picture element has a luminance of the blue (B) picture element among the red (R), green (G), and blue (B) picture elements. Smallest. For this reason, when the defect exists in the blue (B) picture element, the brightness of the defect is high. Therefore, the defect detection method using the conventional defect detection apparatus can easily extract the defect of the blue (B) picture element. Tend. On the other hand, if the defect detection is performed by turning on the blue (B) picture element as in the present invention, the brightness difference between the background brightness of the blue (B) picture element and the brightness of the defect becomes small. It becomes difficult to extract.
  • the blue (B) picture element whose defect is frequently detected more frequently than the visual detection is turned on to detect the defect.
  • a display panel defect detection method and a display panel defect detection apparatus that can efficiently reduce overdetection of defects rather than visual detection, and thus can suppress a decrease in process yield. it can.
  • the defect detection method for the display panel (liquid crystal display panel 1) according to aspect 2 of the present invention is the same as the defect detection method for the display panel (liquid crystal display panel 1) according to aspect 1, in the picture element lighting step (S11).
  • Application that applies at least blue (B) and red (R) picture elements to each of the red (R), green (G), and blue (B) picture elements in (liquid crystal display panel 1) It is preferable to light up so that the voltage is blue (B)> red (R).
  • the luminance difference between when only the backlight is lit and when each of the red (R), green (G), and blue (B) picture elements is lit in addition to the backlight is
  • the red (R) picture element is the second largest after the blue (B) picture element.
  • the red (R) picture element is lit so that the applied voltage applied to each picture element is blue (B)> red (R).
  • the difference in luminance between the background luminance of the blue (B) and red (R) picture elements and the luminance of the defect becomes small, so that it is difficult to be extracted as a defect.
  • the blue (B) and red (R) picture elements whose defects are more frequently detected than the visual detection are turned on. Then, defect detection is performed. Accordingly, it is possible to provide a display panel defect detection method that can more efficiently reduce the number of defects that are detected excessively than visual detection, and that can suppress a decrease in process yield.
  • the defect detection method for the display panel (liquid crystal display panel 1) according to aspect 3 of the present invention is the display panel defect detection method according to aspect 2, in the pixel lighting step (S21), the red (R) in the display panel, It is preferable that the green (G) and blue (B) picture elements are lit so that the applied voltage applied to each picture element is blue (B)> red (R) ⁇ green (G).
  • the luminance difference between when only the backlight is lit and when each of the red (R), green (G), and blue (B) picture elements is lit in addition to the backlight is , Blue (B), red (R), green (G) picture elements in order.
  • red (R) and green (G) picture elements are applied to each picture element with a blue (B)> red (R) ⁇ green (G ) To light up.
  • the luminance difference between the background luminance of the blue (B), red (R), and green (G) picture elements and the luminance of the defect becomes small, so that it is difficult to be extracted as a defect.
  • the defect detection method for the display panel (liquid crystal display panel 1) in aspect 4 of the present invention is the defect detection method for the display panel (liquid crystal display panel 1) in aspect 1, 2, or 3, wherein the pixel lighting step is performed.
  • the non-lighting defect detection procedure (S32 to S9) in which the image data acquisition process, the defective part candidate extraction process, the defective part pixel identification process, and the defect determination process are performed in this order and the pixel lighting process are performed. Thereafter, it is preferable to perform both of the above-described image data acquisition step, defect portion candidate extraction step, defect portion pixel element identification step, and defect determination step in the lighting defect detection procedure (S31 to S9) in this order.
  • the defect detection is performed only by the lighting defect detection procedure that performs picture element lighting, as described above, it is possible to reliably reduce the overdetection of defects rather than the visual detection, thereby reducing the process yield. It is possible to provide a display panel defect detection method capable of suppressing the above.
  • both the lighting defect detection procedure and the non-lighting defect detection procedure are performed. Therefore, the true defect which exists actually can be grasped
  • either the lighting defect detection procedure or the non-lighting defect detection procedure may be performed first. This is because, regardless of which is performed first, it is possible to grasp the true level defect and the visual observation level defect.
  • the present invention can be used for detecting or repairing defects in display panels such as a liquid crystal display panel, an organic EL display panel, a plasma display, an LCD display panel and the like composed of multicolor picture elements.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Nonlinear Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

The method for detecting display panel defects according to the present invention includes a picture element lighting step (S2) for lighting at least the blue (B) picture elements of a display panel; an image data acquisition step (S3) for imaging a plurality of picture elements and acquiring image data thereof; defective region candidate extraction steps (S4, S5) for extracting, as a defective region candidate, a pixel of the image data for which the absolute value of a contrast value that is the difference between the imaged-pixel luminance signal level of the pixel and the non-defective-pixel luminance signal level of a non-defective pixel is at or above a threshold value; a defective region picture element identification step (S6); and defect determination steps (S7, S8) for calculating a degree of defectiveness by multiplying a correction coefficient that is different for each picture element color by the contrast value and determining that a picture element of a given color is defective if the degree of defectiveness exceeds a determination value.

Description

表示パネルの欠陥検出方法及び表示パネルの欠陥検出装置Display panel defect detection method and display panel defect detection apparatus
 本発明は、表示パネルにおける各表示画素の欠陥検出方法及び欠陥検出装置に関するものであり、詳細には、欠陥検出感度の改善に関するものである。 The present invention relates to a defect detection method and a defect detection apparatus for each display pixel in a display panel, and more particularly to improvement of defect detection sensitivity.
 液晶表示パネルは、その製造後半工程において、該液晶表示パネルの各表示画素に欠陥がないか否か検査される。尚、本明細書で取り扱う欠陥は、例えば、液晶表示パネルにおける液晶層内の異物が発生起因となる輝点欠陥を対象としている。このため、主にTFT(Thin Film Transistor:薄膜トランジスタ)基板における例えば配線の短絡又は断線による不具合を発生起因とする輝点欠陥は含まれない。 The liquid crystal display panel is inspected for defects in each display pixel of the liquid crystal display panel in the latter half of the manufacturing process. The defect handled in this specification is, for example, a bright spot defect caused by the occurrence of foreign matter in the liquid crystal layer in the liquid crystal display panel. For this reason, a bright spot defect mainly caused by a defect due to, for example, a short circuit or disconnection of wiring in a TFT (Thin Film Transistor) thin film transistor is not included.
 上述した液晶表示パネルの各表示画素に欠陥がないか否かの検査には、点灯された液晶表示パネルを作業者の目視により検査する目視検査と、液晶表示パネルをラインセンサやエリアセンサのようなセンサカメラにて撮像して得られた信号を処理する欠陥検出装置にて行う自動検査とが存在する。 Inspecting whether or not each display pixel of the liquid crystal display panel is defective is a visual inspection in which the lit liquid crystal display panel is visually inspected by an operator, and the liquid crystal display panel is a line sensor or an area sensor. There is an automatic inspection performed by a defect detection apparatus that processes a signal obtained by imaging with a simple sensor camera.
 上記の自動検査として、例えば特許文献1に開示された欠陥検出装置を用いた欠陥検出方法が知られている。 For example, a defect detection method using the defect detection apparatus disclosed in Patent Document 1 is known as the automatic inspection.
 この特許文献1に開示された欠陥検出方法は、欠陥部位候補が、例えば、赤の絵素とその隣にある緑の絵素とを含む大きな欠陥部位等における複数種類の色の絵素を含む場合に、複数種類の色の絵素を含まない単一色と判定され、該判定された単一色の判定基準に基づいて欠陥部位候補の良否を判定することによる欠陥の誤検出の発生防止を解決するために提案されたものである。 In the defect detection method disclosed in Patent Document 1, a defect part candidate includes, for example, a plurality of types of color picture elements in a large defect part including a red picture element and a green picture element adjacent thereto. In this case, it is determined that a single color does not include a plurality of types of color picture elements, and it is possible to prevent the occurrence of erroneous detection of a defect by determining the quality of a defective part candidate based on the determined determination criterion for the single color. It has been proposed to do so.
 この課題を解決するために、特許文献1に開示された欠陥検出装置の欠陥検出方法は、複数の絵素からなる画素を撮像して画像データとして取得するステップと、上記画像データの画素の輝度信号量と画素に欠陥がない場合の該画素の輝度信号量との差であるコントラスト値の絶対値がしきい値以上である画素を欠陥部位候補として抽出するステップと、上記欠陥部位候補の絵素の色を特定するステップと、上記絵素の色によって異なる補正係数を上記コントラスト値に乗じて欠陥度を算出し、該欠陥度が判定値よりも大きい場合に欠陥と判定するステップとを実行する。そして、1つの欠陥部位候補が複数種類の色の絵素を含んでいる場合に、上記絵素の色毎のコントラスト値に該絵素の色によって異なる補正係数を乗じた後に合計して欠陥度を算出するステップを含むことを特徴としている。 In order to solve this problem, a defect detection method of a defect detection apparatus disclosed in Patent Document 1 includes a step of capturing a pixel composed of a plurality of picture elements and acquiring it as image data, and a luminance of the pixel of the image data. Extracting a pixel having an absolute value of a contrast value, which is a difference between a signal amount and a luminance signal amount of the pixel when the pixel has no defect, as a defective part candidate, and a picture of the defective part candidate A step of specifying a prime color and a step of calculating a defect degree by multiplying the contrast value by a correction coefficient that varies depending on the color of the picture element and determining a defect when the defect degree is larger than a determination value are executed. To do. When one defect site candidate includes a plurality of types of color picture elements, the contrast value for each color of the picture element is multiplied by a correction coefficient that differs depending on the color of the picture element, and the total is calculated as a defect degree. Including a step of calculating.
 これにより、絵素の色毎に欠陥を検出するので、例えば、赤の絵素とその隣にある緑の絵素とを含む大きな欠陥部位等における複数種類の色の絵素を含む場合に、赤の絵素のみの欠陥であるとの誤検出されることを防止できるようになっている。 As a result, since defects are detected for each color of the picture element, for example, when a plurality of types of color picture elements are included in a large defective part including a red picture element and a green picture element adjacent thereto, It is possible to prevent erroneous detection that the defect is only a red picture element.
 尚、特許文献1に開示された欠陥検出装置の欠陥検出方法では、バックライトは点灯するが、表示パネルの各絵素については点灯することなく欠陥検出を行っている。 In the defect detection method of the defect detection apparatus disclosed in Patent Document 1, the backlight is turned on, but each pixel of the display panel is detected without being turned on.
日本国公開特許公報「特開2011-196685号公報(2011年10月6日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2011-196685 (published on October 6, 2011)”
 ところで、欠陥検出装置にて行う自動検査と点灯された液晶表示パネルを作業者の目視により行う目視検査とでは、例えば1絵素以下の大きさを持つ微小欠陥の場合、人の目視検出感度と欠陥検出装置の検出感度との差が大きく、目視限度レベル以上の微小欠陥でも欠陥検出装置は検出してしまう。 By the way, in the automatic inspection performed by the defect detection device and the visual inspection performed by the operator's visual observation of the lit liquid crystal display panel, for example, in the case of a minute defect having a size of one picture element or less, The difference from the detection sensitivity of the defect detection device is large, and the defect detection device detects even a minute defect exceeding the visual limit level.
 ここで、液晶表示パネルを視聴するのは人間であり、人間の目で見て欠陥と認識し得ないものであれば、その欠陥は欠陥として認識して修理する必要はない。 Here, it is human beings who view the liquid crystal display panel, and it is not necessary to recognize and repair the defect as a defect if it cannot be recognized as a defect by human eyes.
 しかしながら、従来の欠陥検出装置による欠陥検出方法では、目視検出よりも欠陥を過検出しており、工程の歩留まりが低下するという問題点を有している。 However, the defect detection method using the conventional defect detection apparatus has a problem in that defects are detected more excessively than visual detection, and the process yield is reduced.
 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、目視検出よりも欠陥が過検出されるのを削減し、延いては工程の歩留まり低下を抑制し得る表示パネルの欠陥検出方法及び表示パネルの欠陥検出装置を提供することにある。 The present invention has been made in view of the above-described conventional problems, and its purpose is to reduce the number of defects that are detected excessively more than visual detection, and thus to suppress a reduction in process yield. A defect detection method and a display panel defect detection apparatus are provided.
 本発明の一態様における表示パネルの欠陥検出方法は、上記の課題を解決するために、表示パネルにおける赤色(R)、緑色(G)、青色(B)の各絵素のうち少なくとも青色(B)の絵素に印加電圧を付与して該青色(B)の絵素を点灯する絵素点灯工程と、上記表示パネルの複数の絵素からなる画素を撮像して画像データとして取得する画像データ取得工程と、上記画像データの画素の撮像画素輝度信号量と画素に欠陥がない非欠陥画素における画像データの該非欠陥画素の非欠陥画素輝度信号量との差であるコントラスト値の絶対値がしきい値以上である画素を欠陥部位候補として抽出する欠陥部位候補抽出工程と、上記欠陥部位候補の絵素の色を特定する欠陥部位絵素特定工程と、上記絵素の色によって異なる補正係数を上記コントラスト値に乗じて欠陥度を算出し、該欠陥度が判定値よりも大きい場合に該色の絵素が欠陥であると判定する欠陥判定工程とを含むことを特徴としている。 In order to solve the above problem, a defect detection method for a display panel according to one embodiment of the present invention includes at least a blue (B) pixel among red (R), green (G), and blue (B) picture elements in a display panel. And a pixel lighting process for lighting the blue (B) picture element by applying an applied voltage to the picture element, and image data obtained by picking up pixels comprising a plurality of picture elements of the display panel and obtaining them as image data The absolute value of the contrast value, which is the difference between the acquisition step and the imaging pixel luminance signal amount of the pixel of the image data and the non-defective pixel luminance signal amount of the non-defective pixel of the image data in the non-defective pixel in which the pixel is not defective, is obtained. A defective part candidate extracting step for extracting pixels having a threshold value or more as a defective part candidate, a defective part pixel specifying step for specifying the color of the pixel of the defective part candidate, and a correction coefficient that differs depending on the color of the pixel Above Calculating a defectivity by multiplying the last value, the defect degree picture element the color is greater than the determination value is characterized in that it comprises a defect determination step of determining that the defect.
 本発明の一態様における表示パネルの欠陥検出装置は、上記の課題を解決するために、表示パネルにおける赤色(R)、緑色(G)、青色(B)の各絵素のうち少なくとも青色(B)の絵素に印加電圧を付与して該青色(B)の絵素を点灯する絵素点灯手段と、上記表示パネルの複数の絵素からなる画素を撮像カメラにて撮像して画像データとして取得する画像データ取得手段と、上記画像データの画素の撮像画素輝度信号量と画素に欠陥がない非欠陥画素における画像データの該非欠陥画素の非欠陥画素輝度信号量との差であるコントラスト値の絶対値がしきい値以上である画素を欠陥部位候補として抽出する欠陥部位候補抽出手段と、上記欠陥部位候補の絵素の色を特定する欠陥部位絵素特定手段と、上記絵素の色によって異なる補正係数を上記コントラスト値に乗じて欠陥度を算出し、該欠陥度が判定値よりも大きい場合に該色の絵素が欠陥であると判定する欠陥判定手段とを含むことを特徴としている。 In order to solve the above problems, a display panel defect detection device according to one embodiment of the present invention includes at least a blue (B) pixel among red (R), green (G), and blue (B) picture elements in a display panel. The pixel lighting means for lighting the blue (B) picture element by applying an applied voltage to the picture element of (), and the pixel composed of a plurality of picture elements of the display panel are picked up by an imaging camera as image data A contrast value that is a difference between a captured pixel luminance signal amount of a pixel of the image data and a non-defective pixel luminance signal amount of the non-defective pixel of the image data in a non-defective pixel in which the pixel is not defective; A defective part candidate extracting unit that extracts a pixel having an absolute value equal to or greater than a threshold value as a defective part candidate, a defective part pixel specifying unit that specifies a color of a pixel of the defective part candidate, and a color of the pixel Different correction The number was calculated defectivity by multiplying the above contrast value, the defect degree picture element the color is greater than the determination value is characterized in that it comprises a determining defect determining means to be defective.
 本発明の一態様によれば、目視検出よりも欠陥が過検出されるのを削減し、延いては工程の歩留まり低下を抑制し得る表示パネルの欠陥検出方法及び表示パネルの欠陥検出装置を提供するという効果を奏する。 According to one aspect of the present invention, there is provided a display panel defect detection method and a display panel defect detection apparatus capable of reducing the number of defects that are detected excessively more than visual detection, and thereby suppressing a decrease in process yield. The effect of doing.
本発明の実施形態1における表示パネルの欠陥検出装置による表示パネルの欠陥検出方法を示すフローチャートである。It is a flowchart which shows the defect detection method of the display panel by the defect detection apparatus of the display panel in Embodiment 1 of this invention. 上記表示パネルの欠陥検出方法を行うための欠陥検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the defect detection apparatus for performing the defect detection method of the said display panel. (a)は液晶表示パネルの全体構成を示す平面図であり、(b)はバックライトのみ点灯し、赤色(R)、緑色(G)、青色(B)の絵素を点灯しない状態の液晶表示パネルの構成を示す要部平面図であり、(c)はバックライトを点灯し、かつ赤色(R)、緑色(G)、青色(B)の絵素のうちの青色(B)の絵素のみ点灯した状態の液晶表示パネルの構成を示す要部平面図である。(A) is a top view which shows the whole structure of a liquid crystal display panel, (b) is a liquid crystal in a state where only a backlight is lit and red (R), green (G) and blue (B) picture elements are not lit. It is a principal part top view which shows the structure of a display panel, (c) turns on a backlight, and is a blue (B) picture among red (R), green (G), and a blue (B) picture element. It is a principal part top view which shows the structure of the liquid crystal display panel of the state which only lighted up. 上記液晶表示パネルの絵素配列を示す平面図である。It is a top view which shows the pixel arrangement | sequence of the said liquid crystal display panel. 上記表示パネルの欠陥検出方法において、赤色(R)、緑色(G)、青色(B)の各絵素に輝点欠陥が発生している場合における補正係数の一例を示す図である。In the display panel defect detection method, it is a diagram illustrating an example of a correction coefficient when a bright spot defect occurs in each of red (R), green (G), and blue (B) picture elements. (a)は青色(B)の絵素に欠陥がある場合にバックライトのみを点灯したときの背景絵素と欠陥との輝度差を示す要部平面図であり、(b)はバックライトを点灯し、かつ赤色(R)、緑色(G)、青色(B)の絵素のうちの青色(B)の絵素のみ点灯したときの背景絵素と欠陥との輝度差を示す要部平面図である。(A) is a principal part top view which shows the brightness | luminance difference of a background picture element and a defect when only a backlight is lighted when a blue (B) picture element has a defect, (b) is a backlight. Illustrated main plane showing the luminance difference between the background picture element and the defect when only the blue (B) picture element is lit up among the red (R), green (G), and blue (B) picture elements. FIG. 本発明の実施形態2における表示パネルの欠陥検出方法を示すフローチャートである。It is a flowchart which shows the defect detection method of the display panel in Embodiment 2 of this invention. (a)は上記表示パネルの欠陥検出方法を示すものであって、赤色(R)の絵素及び緑色(G)の絵素の両方に跨る欠陥がある場合にバックライトのみを点灯したときの背景絵素と欠陥との輝度差を示す要部平面図であり、(b)はバックライトを点灯し、かつ赤色(R)、緑色(G)、青色(B)の絵素のうちの赤色(R)の絵素と青色(B)の絵素を点灯したときの背景絵素と欠陥との輝度差を示す要部平面図である。(A) shows the defect detection method of the said display panel, Comprising: When there exists a defect over both a red (R) picture element and a green (G) picture element, when only a backlight is lighted It is a principal part top view which shows the brightness | luminance difference of a background picture element and a defect, (b) lights up a backlight, and is red among red (R), green (G), and blue (B) picture elements. It is a principal part top view which shows the luminance difference of a background picture element when a picture element of (R) and a blue (B) picture element are lighted, and a defect. 本発明の実施形態3における表示パネルの欠陥検出方法を示すフローチャートである。It is a flowchart which shows the defect detection method of the display panel in Embodiment 3 of this invention. (a)は上記表示パネルの欠陥検出方法を示すものであって、緑色(G)の絵素に欠陥がある場合にバックライトのみを点灯したときの背景絵素と欠陥との輝度差を示す要部平面図であり、(b)はバックライトを点灯し、かつ赤色(R)、緑色(G)、青色(B)の絵素の全ての絵素を点灯したときの背景絵素と欠陥との輝度差を示す要部平面図である。(A) shows the defect detection method of the said display panel, Comprising: The brightness | luminance difference of a background picture element and a defect when only a backlight is lighted when a green (G) picture element has a defect is shown. It is a principal part top view, (b) is a background picture element and defect when lighting a backlight and lighting all the picture elements of red (R), green (G), and blue (B) picture elements It is a principal part top view which shows the brightness | luminance difference with. 本発明の実施形態4における表示パネルの欠陥検出方法を示すフローチャートである。It is a flowchart which shows the defect detection method of the display panel in Embodiment 4 of this invention.
  〔実施の形態1〕
 本発明の一実施形態について図1~図6に基づいて説明すれば、以下のとおりである。
[Embodiment 1]
An embodiment of the present invention will be described below with reference to FIGS.
 本実施の形態の欠陥検出装置10の構成について、図2に基づいて説明する。図2は、本実施の形態の欠陥検出装置10と欠陥検出対象である液晶表示パネル1との構成を示すブロック図である。 The configuration of the defect detection apparatus 10 according to the present embodiment will be described with reference to FIG. FIG. 2 is a block diagram showing a configuration of the defect detection apparatus 10 of the present embodiment and the liquid crystal display panel 1 that is a defect detection target.
 本実施の形態の欠陥検出装置10は、図2に示すように、表示パネルとしての液晶表示パネル1に表示入力信号を印加するための表示パネル操作部2と、撮像カメラ11と、欠陥部位検出部12と、色特定部13と、欠陥判定部14と、結果出力部15とを備えている。尚、本実施の形態の欠陥検出装置10での絵素の欠陥部位を検出した後に、該欠陥部位が修復されるようになっている。 As shown in FIG. 2, the defect detection apparatus 10 according to the present embodiment includes a display panel operation unit 2 for applying a display input signal to a liquid crystal display panel 1 as a display panel, an imaging camera 11, and a defect site detection. Unit 12, color identification unit 13, defect determination unit 14, and result output unit 15. In addition, after detecting the defective part of the pixel in the defect detection apparatus 10 of the present embodiment, the defective part is repaired.
 上記液晶表示パネル1は、赤(R:Red)、緑(G:Green)、青(B:Blue)の3色の絵素からなる画素がマトリクス状に複数配設されたものからなっている。この液晶表示パネル1は、図示しないTFT(Thin Film Transistor:薄膜トランジスタ)基板、カラーフィルタ基板、及びこれらの間に介装された液晶層からなるパネル本体と、そのパネル本体の裏面に配されたバックライトとを有している。したがって、この液晶表示パネル1は、表示パネル操作部2にて絵素毎に電圧を印加することができるものとなっている。尚、本実施の形態では、表示パネルとしての液晶表示パネル1を使用しているが、本発明においては必ずしも液晶表示パネルに限らず、他の表示パネルであってもよい。 The liquid crystal display panel 1 is composed of a plurality of pixels composed of picture elements of three colors of red (R: Red), green (G: Green), and blue (B: Blue) arranged in a matrix. . The liquid crystal display panel 1 includes a panel body composed of a TFT (thin film transistor) (not shown) substrate, a color filter substrate, and a liquid crystal layer interposed therebetween, and a back disposed on the back surface of the panel body. With lights. Therefore, the liquid crystal display panel 1 can apply a voltage for each picture element by the display panel operation unit 2. In the present embodiment, the liquid crystal display panel 1 is used as a display panel. However, the present invention is not limited to the liquid crystal display panel and may be another display panel.
 表示パネル操作部2は、バックライトのオン・オフを行うと共に、赤色(R)、緑色(G)、青色(B)の各絵素に点灯のための駆動信号を印加することができるようになっている。 The display panel operation unit 2 can turn on / off the backlight and apply a driving signal for lighting to each of the red (R), green (G), and blue (B) picture elements. It has become.
 撮像カメラ11は、液晶表示パネル1を撮像して、画像データとして取得するものであり、ラインセンサ又はエリアセンサ等のセンサカメラからなっている。したがって、撮像カメラ11は、画素の列又は行をラインに沿って撮像するか、又は一定の大きさの領域つまり一定のマトリクス領域毎に撮像して画像データとして取得するようになっている。また、本実施の形態では、センサカメラは、モノクロカメラからなっている。 The imaging camera 11 captures the liquid crystal display panel 1 and acquires it as image data, and includes a sensor camera such as a line sensor or an area sensor. Therefore, the imaging camera 11 captures a column or row of pixels along a line, or captures a region of a certain size, that is, a certain matrix region, and acquires it as image data. In the present embodiment, the sensor camera is a monochrome camera.
 欠陥部位検出部12は、画像データの画素の撮像画素輝度信号量と画素に欠陥がない非欠陥画素における画像データの該非欠陥画素の非欠陥画素輝度信号量との差であるコントラスト値の絶対値がしきい値以上である画素を欠陥部位候補として抽出するようになっている。 The defective part detection unit 12 calculates the absolute value of the contrast value, which is the difference between the imaging pixel luminance signal amount of the pixel of the image data and the non-defective pixel luminance signal amount of the non-defective pixel in the non-defective pixel in which the pixel is not defective. A pixel having a value equal to or greater than a threshold value is extracted as a candidate defect part.
 色特定部13は、欠陥部位候補の絵素の色を特定する。また、欠陥判定部14は、絵素の色によって異なる補正係数を上記コントラスト値に乗じて欠陥度を算出し、該欠陥度が判定値よりも大きい場合に該色の絵素が欠陥であると判定するようになっている。さらに、結果出力部15は、液晶表示パネル1の画像データ中のどの絵素が欠陥であるかを表示するようになっている。 The color specifying unit 13 specifies the color of the defective part candidate pixel. In addition, the defect determination unit 14 calculates a defect degree by multiplying the contrast value by a correction coefficient that varies depending on the color of the pixel, and if the defect degree is larger than the determination value, the pixel of the color is defective. It comes to judge. Further, the result output unit 15 displays which picture element in the image data of the liquid crystal display panel 1 is defective.
 上記構成を有する欠陥検出装置10における欠陥検出方法について、図1及び図3に基づいて説明する。図1は本実施の形態における液晶表示パネル1の欠陥検出方法を示すフローチャートである。図3の(a)は液晶表示パネル1の全体構成を示す平面図である。図3の(b)はバックライトのみ点灯し、赤色(R)、緑色(G)、青色(B)の絵素を点灯しない状態の液晶表示パネル1の構成を示す要部平面図である。図3の(c)はバックライトを点灯し、かつ赤色(R)、緑色(G)、青色(B)の絵素のうちの青色(B)の絵素のみ点灯した状態の液晶表示パネル1の構成を示す要部平面図である。 A defect detection method in the defect detection apparatus 10 having the above configuration will be described with reference to FIGS. FIG. 1 is a flowchart showing a defect detection method of the liquid crystal display panel 1 in the present embodiment. FIG. 3A is a plan view showing the overall configuration of the liquid crystal display panel 1. FIG. 3B is a main part plan view showing the configuration of the liquid crystal display panel 1 in a state where only the backlight is lit and the red (R), green (G), and blue (B) picture elements are not lit. FIG. 3C shows a liquid crystal display panel 1 in a state in which the backlight is turned on and only the blue (B) picture element among the red (R), green (G), and blue (B) picture elements is lit. It is a principal part top view which shows the structure of this.
 尚、本実施の形態において、取り扱う欠陥は、液晶表示パネルにおける液晶層内の異物が発生起因となる輝点欠陥を対象としている。このため、主にTFT(Thin Film Transistor:薄膜トランジスタ)基板における例えば配線の短絡又は断線による不具合を発生起因とする輝点欠陥は含まれない。 In the present embodiment, the defect to be handled is a bright spot defect that is caused by the occurrence of foreign matter in the liquid crystal layer in the liquid crystal display panel. For this reason, a bright spot defect mainly caused by a defect due to, for example, a short circuit or disconnection of wiring in a TFT (Thin Film Transistor) thin film transistor is not included.
 本実施の形態の欠陥検出装置10にて絵素に生じている欠陥を検出する場合には、図1に示すように、まず、液晶表示パネル1におけるバックライトを点灯する(S1)。続いて、絵素点灯工程において、赤色(R)、緑色(G)、青色(B)の各絵素のうち少なくとも青色(B)の絵素を点灯する(S2)。 When the defect detection apparatus 10 of the present embodiment detects a defect generated in a picture element, first, as shown in FIG. 1, the backlight in the liquid crystal display panel 1 is turned on (S1). Subsequently, in the picture element lighting step, at least the blue (B) picture element is lit among the red (R), green (G), and blue (B) picture elements (S2).
 次いで、液晶表示パネル1における上記の点灯状態の表示パターンを表示しているときに、画像データ取得工程において、撮像カメラ11にて該表示パターンを撮像し、画像データとして取得する(S3)。尚、本明細書においては、撮像カメラ11の受光素子が受けた光の強度に応じて該受光素子が出力した信号の大きさを「輝度信号量」と呼ぶこととする。したがって、画像データの各画素の値は輝度信号量となっている。 Next, when the display pattern of the above-mentioned lighting state is displayed on the liquid crystal display panel 1, in the image data acquisition step, the display pattern is imaged by the imaging camera 11 and acquired as image data (S3). In the present specification, the magnitude of the signal output by the light receiving element according to the intensity of light received by the light receiving element of the imaging camera 11 is referred to as “luminance signal amount”. Therefore, the value of each pixel of the image data is a luminance signal amount.
 具体的には、液晶表示パネル1におけるバックライトを点灯し、かつ赤色(R)、緑色(G)、青色(B)のいずれの絵素にも電圧を印加しない場合には、図3の(a)(b)に示すように、画像データにおいては、液晶表示パネル1の赤色絵素Rp・緑色絵素Gp・青色絵素Bpの輝度は低い値となっている。そして、この状態で、青色絵素Bpを点灯した場合には、図3の(c)に示すように、青色絵素Bpの輝度が高くなる。 Specifically, when the backlight in the liquid crystal display panel 1 is turned on and no voltage is applied to any of the red (R), green (G), and blue (B) picture elements, ( a) As shown in (b), in the image data, the luminance of the red picture element Rp, the green picture element Gp, and the blue picture element Bp of the liquid crystal display panel 1 is low. In this state, when the blue picture element Bp is turned on, the luminance of the blue picture element Bp is increased as shown in FIG.
 次に、欠陥部位候補抽出工程において、欠陥部位検出部12が画像データに関してコントラスト値の計算を行ない、コントラスト画像を作成する(S4)。ここで、コントラスト値とは、画像データの最小単位である絵素について、画像データの絵素の輝度信号量と、液晶表示パネル1に表示パターンが正常に表示された場合、つまり絵素に欠陥がない場合における輝度信号量との差を言う。この絵素に欠陥がない場合における輝度信号量は、予め求めた値を使用してもよいが、その都度、得られた画像データから予測する非欠陥画素輝度信号量としてもよい。 Next, in the defective part candidate extraction step, the defective part detection unit 12 calculates a contrast value for the image data and creates a contrast image (S4). Here, the contrast value refers to the luminance signal amount of the picture element of the image data and the display pattern displayed on the liquid crystal display panel 1 normally, that is, the picture element is defective. This is the difference from the luminance signal amount when there is no signal. As the luminance signal amount when there is no defect in the picture element, a value obtained in advance may be used, but each time it may be a non-defective pixel luminance signal amount predicted from the obtained image data.
 ここで、非欠陥画素輝度信号量を得られた画像データから予測する方法を採用してコントラスト値を求める方法の一例について、図4に基づいて説明する。図4は、液晶表示パネル1の赤色(R)、緑色(G)、青色(B)の絵素の絵素配列1aを示す平面図である。尚、この配列においては、赤色(R)、緑色(G)、青色(B)の絵素が横方向に配設されて1つの単位を構成し、かつこの1単位が縦方向及び横方向にそれぞれ複数配列されている。ここでは、m行n列目の単位を構成する赤の絵素をRmn、緑の絵素をGmn、青の絵素をBmnにて示している。 Here, an example of a method for obtaining a contrast value by adopting a method of predicting non-defective pixel luminance signal amounts from obtained image data will be described with reference to FIG. FIG. 4 is a plan view showing a picture element array 1a of red (R), green (G), and blue (B) picture elements of the liquid crystal display panel 1. FIG. In this arrangement, red (R), green (G), and blue (B) picture elements are arranged in the horizontal direction to form one unit, and this one unit is in the vertical and horizontal directions. Each is arranged in multiple numbers. Here, the red picture element constituting the unit of the m-th row and the n-th column is indicated by Rmn, the green picture element is indicated by Gmn, and the blue picture element is indicated by Bmn.
 まず、図4に示す液晶表示パネル1の絵素配列1aにおいては、横方向1単位を空間的周期とするパターンとなるので、例えば、欠陥のある絵素R22に対して欠陥のない絵素R21・R23がそれぞれ横に1周期離れた同位相の絵素となる。周期が異なっても位相が同じであれば、その輝度信号量は類似するはずであり、絵素R21の輝度信号量と絵素R23の輝度信号量との平均は、パターンが正常に表示された場合つまり欠陥がない場合の絵素R22の輝度信号量と近似するはずである。 First, in the picture element array 1a of the liquid crystal display panel 1 shown in FIG. 4, the pattern has a spatial period of one unit in the horizontal direction. For example, there is no defective picture element R21 with respect to the defective picture element R22. R23 is a pixel of the same phase that is one cycle apart horizontally. If the phase is the same even if the period is different, the luminance signal amounts should be similar, and the average of the luminance signal amount of the picture element R21 and the luminance signal quantity of the picture element R23 indicates that the pattern is displayed normally. In this case, that is, the luminance signal amount of the pixel R22 when there is no defect should be approximated.
 したがって、例えば、欠陥のある絵素R22におけるコントラスト値CR22を、
 CR22=R22-(R21+R23)/2
として求めることができる。
Therefore, for example, the contrast value CR22 in the defective pixel R22 is
CR22 = R22− (R21 + R23) / 2
Can be obtained as
 これにより、画像データから表示パターンの空間的周期性及び液晶表示パネル1上の絵素配列1aの空間的周期性を原因とする輝度信号量の変動が排除される。 This eliminates variations in the luminance signal amount caused by the spatial periodicity of the display pattern and the spatial periodicity of the picture element array 1a on the liquid crystal display panel 1 from the image data.
 続いて、図1に示すように、欠陥部位候補抽出工程において、画像データのコントラスト画像から欠陥部位候補を抽出する(S5)。すなわち、上述したコントラスト値の計算により、欠陥ない正常な絵素のコントラスト値は約0となっているはずであるので、コントラスト画像において0と大きく異なる値を有する画素に対応する液晶表示パネル1の部位は、欠陥である可能性が高い。したがって、コントラスト値の絶対値があるしきい値よりも大きな絵素を欠陥部位候補として抽出すればよい。 Subsequently, as shown in FIG. 1, in the defective part candidate extracting step, defective part candidates are extracted from the contrast image of the image data (S5). That is, since the contrast value of a normal pixel without a defect should be about 0 by the above-described calculation of the contrast value, the liquid crystal display panel 1 corresponding to a pixel having a value greatly different from 0 in the contrast image. The site is likely a defect. Therefore, a picture element having an absolute value of the contrast value larger than a certain threshold value may be extracted as a defective part candidate.
 次に、欠陥部位絵素特定工程において、色特定部13が、欠陥部位候補に含まれる各画素についての対象物である絵素の色を特定する(S6)。色の特定は、画像データにおける輝度信号量に基づいて特定する。ただし、必ずしもこれに限らない。例えば、液晶表示パネル1に位置合せ用の表示パターンを表示し、該表示パターンを撮像カメラ11にて撮像して画像データとし、該表示パターンと画像データにおける表示パターンとを照合して対応関係を特定する位置合せ情報を作成し、画素の座慓と該位置合せ情報とに基づいて画素に対応する絵素を特定し、さらに液晶表示パネル1の設計情報に基づき、特定された絵素から該絵素の色を特定することによって特定してもよい。 Next, in the defective part picture element specifying step, the color specifying unit 13 specifies the color of the picture element that is the object for each pixel included in the defective part candidate (S6). The color is specified based on the luminance signal amount in the image data. However, it is not necessarily limited to this. For example, a display pattern for alignment is displayed on the liquid crystal display panel 1, the display pattern is captured by the imaging camera 11 as image data, and the display pattern and the display pattern in the image data are collated to establish a correspondence relationship. The registration information to be specified is created, the picture element corresponding to the pixel is specified based on the pixel position and the registration information, and further, based on the design information of the liquid crystal display panel 1, the picture element corresponding to the pixel is selected from the specified picture element. You may specify by specifying the color of a picture element.
 次に、欠陥判定工程において、欠陥判定部14が、特定された色に基づいて欠陥度を算出する(S7)。コントラスト値の絶対値と欠陥度との比である補正係数は、表示パターン及び絵素の色により異なる。以下に、3つの例を示す。 Next, in the defect determination step, the defect determination unit 14 calculates the defect degree based on the specified color (S7). The correction coefficient, which is the ratio between the absolute value of the contrast value and the defect level, differs depending on the display pattern and the color of the picture element. Three examples are shown below.
 例えば、表示パターンに基づいて黒色で表示されるように制御されている絵素は、正常な場合は黒で表示される。該黒で表示されるべき絵素が赤色(R)、緑色(G)、青色(B)のいずれか(コントラスト値が正)で表示された場合、輝点欠陥であると考えられるが、人間の目の感度は緑色(G)に対し高く、青色(B)に対しては低い。欠陥度を人間の目の感度に一致させるため、黒で表示されるべき絵素が青色(B)で表示される場合については、小さな補正係数を乗じ、黒で表示されるべき絵素が緑色(G)で表示される場合については、大きな補正係数を乗ずる。尚、撮像カメラ11がモノクロカメラであるので、輝点欠陥がいずれの色で表示されているかは不明である。しかし、輝点欠陥において、絵素本来の色と異なる色で表示される確率は、極めて希であるので、色特定部13が特定する色で表示されたと推定して上記の補正係数を乗ずることとする。 For example, a picture element that is controlled to be displayed in black based on the display pattern is displayed in black when normal. If the picture element to be displayed in black is displayed in red (R), green (G), or blue (B) (contrast value is positive), it is considered a bright spot defect. The eye sensitivity is high for green (G) and low for blue (B). In order to make the defect degree coincide with the sensitivity of the human eye, when the picture element to be displayed in black is displayed in blue (B), the picture element to be displayed in black is green by multiplying by a small correction coefficient. When displayed in (G), a large correction coefficient is multiplied. Since the imaging camera 11 is a monochrome camera, it is unknown which color the bright spot defect is displayed. However, since the probability that a bright spot defect is displayed in a color different from the original color of the picture element is extremely rare, it is estimated that the color is specified by the color specifying unit 13 and is multiplied by the correction coefficient. And
 また、表示パターンに基づいて、明るく表示されるように制御されている絵素は、正常な場合は、赤色(R)、緑色(G)、青色(B)それぞれの絵素の色で表示される。赤色(R)、緑色(G)、青色(B)のいずれかで表示されるべき絵素が黒(コントラスト値が負)で表示された場合、黒点欠陥であると考えられる。しかし、人間の目の感度に応じて補正するため、青で表示されるべき絵素が黒で表示される場合については、コントラスト値に-1を乗じて符号を正とした後に、小さな補正係数を乗じる。また、緑で表示されるべき絵素が黒で表示される場合については、コントラスト値に-1を乗じて符号を正とした後に、大きな補正係数を乗ずる。これによって、欠陥度を人間の目の感度に近い値とする。 Also, picture elements that are controlled to be brightly displayed based on the display pattern are displayed in the colors of the red (R), green (G), and blue (B) picture elements when normal. The When a picture element to be displayed in any one of red (R), green (G), and blue (B) is displayed in black (contrast value is negative), it is considered to be a black spot defect. However, in order to perform correction according to the sensitivity of the human eye, when the picture element to be displayed in blue is displayed in black, a small correction coefficient is obtained after multiplying the contrast value by -1 to make the sign positive. Multiply Further, in the case where a picture element to be displayed in green is displayed in black, the sign is positive by multiplying the contrast value by −1, and then multiplied by a large correction coefficient. As a result, the degree of defect is set to a value close to the sensitivity of the human eye.
 また、表示パターンに基づいて、明るく表示されるように制御されている絵素は、正常な場合は、赤色(R)、緑色(G)、青色(B)それぞれの絵素の色で表示される。赤色(R)、緑色(G)、青色(B)のいずれかで表示されるべき絵素が白(コントラスト値が正)で表示された場合、白点欠陥と考えられる。しかし、人間の目の感度に応じて補正するため、青色(B)で表示されるべき絵素が白で表示される場合については、大きな補正係数を乗じる。また、緑色(G)で表示されるべき絵素が白で表示される場合については、小さな補正係数を乗じる。これによって、欠陥度を人間の目の感度に近い値とする。尚、白色欠陥は、カラーフィルタにインクが載っておらず、全ての光を透過する場合等に発生する。 Also, picture elements that are controlled to be brightly displayed based on the display pattern are displayed in the colors of the red (R), green (G), and blue (B) picture elements when normal. The When a picture element to be displayed in red (R), green (G), or blue (B) is displayed in white (contrast value is positive), it is considered as a white point defect. However, since correction is performed according to the sensitivity of the human eye, a large correction coefficient is multiplied when the picture element to be displayed in blue (B) is displayed in white. In addition, when a picture element to be displayed in green (G) is displayed in white, a small correction coefficient is multiplied. As a result, the degree of defect is set to a value close to the sensitivity of the human eye. The white defect occurs when ink is not placed on the color filter and all light is transmitted.
 具体的な、補正係数の一例について、図5に基づいて説明する。図5は、赤色(R)、緑色(G)、青色(B)の各絵素に輝点欠陥が発生している場合における補正係数の一例を示す図である。 A specific example of the correction coefficient will be described with reference to FIG. FIG. 5 is a diagram illustrating an example of the correction coefficient in the case where a bright spot defect has occurred in each of the red (R), green (G), and blue (B) picture elements.
 すなわち、赤色(R)、緑色(G)、青色(B)の各絵素に輝点欠陥が発生している場合に、図5に示すように、輝度信号量を目視感度に一致させるため、目視感度/輝度信号量を補正係数とする。例えば、液晶表示パネル1が表示する赤色(R)、緑色(G)、青色(B)の各色における画像データの輝度信号量が0.4、0.3、0.3であったとする。また、人間の目視感度が0.3、0.6、0.1であったとする。この場合、赤色(R)に関する補正係数は0.3/0.4=0.75とし、緑色(G)に関する補正係数は0.6/0.3=2.0とし、青色(B)に関する補正係数は0.1/0.3=0.33とする。尚、赤色(R)、緑色(G)、青色(B)の各色の目視感度は、液晶表示パネル1に表示された各色を色彩輝度計によって測定することによって特定することができる。 That is, when a bright spot defect has occurred in each of the red (R), green (G), and blue (B) picture elements, as shown in FIG. The visual sensitivity / luminance signal amount is used as a correction coefficient. For example, it is assumed that the luminance signal amounts of image data in red (R), green (G), and blue (B) colors displayed on the liquid crystal display panel 1 are 0.4, 0.3, and 0.3. Further, it is assumed that the human visual sensitivity is 0.3, 0.6, and 0.1. In this case, the correction coefficient for red (R) is 0.3 / 0.4 = 0.75, the correction coefficient for green (G) is 0.6 / 0.3 = 2.0, and is related to blue (B). The correction coefficient is 0.1 / 0.3 = 0.33. The visual sensitivity of each color of red (R), green (G), and blue (B) can be specified by measuring each color displayed on the liquid crystal display panel 1 with a color luminance meter.
 上述のように、表示パターンとコントラスト値の符号及び色特定部13が特定した色とに基づき、適切な補正係数を選択し、コントラスト値に乗ずる。尚、補正係数は、絵素の色、及び絵素の色に対する受光素子の感度によって、設定するべき値であり、上記の以外の補正係数であってもよい。 As described above, an appropriate correction coefficient is selected based on the display pattern, the sign of the contrast value, and the color specified by the color specifying unit 13, and multiplied by the contrast value. The correction coefficient is a value to be set depending on the color of the picture element and the sensitivity of the light receiving element with respect to the color of the picture element, and may be a correction coefficient other than the above.
 また、欠陥部位候補が複数の絵素からなる場合は、該複数の絵素の欠陥度を合計し、欠陥部位候補全体の欠陥度とすればよい。すなわち、1つの欠陥が複数種類の色の絵素を含んでいる場合には、該色毎のコントラスト値に該色によって異なる補正係数を乗じた後に合計し欠陥度を算出することとなる。 In addition, when the defect part candidate is composed of a plurality of picture elements, the defect degrees of the plurality of picture elements may be summed to obtain the defect degree of the entire defect part candidate. That is, when one defect includes picture elements of a plurality of types of colors, the degree of defect is calculated by multiplying the contrast value for each color by a correction coefficient that differs depending on the color and summing up the defects.
 続いて、図1に示すように、欠陥判定工程において、欠陥を判定する(S8)。具体的には、S5にて抽出された各欠陥部位候補について、欠陥度と判定値とを比較し、判定値よりも欠陥度が大きければ、欠陥と判定する。 Subsequently, as shown in FIG. 1, the defect is determined in the defect determination step (S8). Specifically, for each defective part candidate extracted in S5, the defect degree is compared with the determination value, and if the defect degree is larger than the determination value, it is determined as a defect.
 最後に、結果出力部15が、欠陥と判定された部位に関する情報を出力する(S9)。欠陥と判定された部位に関する情報としては、その表示パネルにおける欠陥の座慓値、色、欠陥の種類等がある。液晶表示パネル1における欠陥の座慓値は、コントラスト画像における欠陥の座標値を、画素データの各画素に対応する絵素を特定する情報に基づいて、液晶表示パネル1における座慓に変換することにより可能である。また、欠陥の種類としては、黒点欠陥、輝点欠陥、白点欠陥等がある。 Finally, the result output unit 15 outputs information on the part determined to be defective (S9). The information regarding the part determined to be a defect includes a defect sitting value, a color, and a defect type in the display panel. The defect sitting value in the liquid crystal display panel 1 is obtained by converting the coordinate value of the defect in the contrast image into the sitting face in the liquid crystal display panel 1 based on information for specifying a picture element corresponding to each pixel of the pixel data. Is possible. Also, the types of defects include black spot defects, bright spot defects, white spot defects, and the like.
 本実施の形態によれば、欠陥が複数の色の絵素を含む場合においても、含まれる色の割合に応じて欠陥度に補正を行なうので、適切な基準で判断することができ、誤検出を防止し、欠陥を正確に検出することができる。 According to the present embodiment, even when the defect includes a plurality of color picture elements, the defect degree is corrected in accordance with the ratio of the included colors, so that it is possible to make a determination based on an appropriate standard, and erroneous detection Can be detected and defects can be accurately detected.
 尚、本実施の形態では、以下の操作については説明を省略するが、この後の工程として、欠陥の修復が行われる。 In the present embodiment, description of the following operations is omitted, but defect repair is performed as a subsequent process.
 上記の欠陥検出装置10における欠陥検出方法を、図6の(a)(b)の具体例に基づいて説明する。図6の(a)は青色(B)の絵素に欠陥がある場合にバックライトのみを点灯したときの背景絵素と欠陥との輝度差を示す要部平面図である。図6の(b)はバックライトを点灯し、かつ赤色(R)、緑色(G)、青色(B)の絵素のうちの青色(B)の絵素のみ点灯したときの背景絵素と欠陥との輝度差を示す要部平面図である。 The defect detection method in the above-described defect detection apparatus 10 will be described based on a specific example of FIGS. FIG. 6A is a main part plan view showing a luminance difference between the background picture element and the defect when only the backlight is turned on when the blue (B) picture element has a defect. FIG. 6B shows the background picture element when the backlight is turned on and only the blue (B) picture element among the red (R), green (G), and blue (B) picture elements is lit. It is a principal part top view which shows the luminance difference with a defect.
 図6の(a)に示すように、例えば青色絵素Bpに欠陥Fが存在しているとする。このとき、バックライトの点灯のみ行い、赤色(R)、緑色(G)、青色(B)の各絵素を点灯しないときは、絵素が黒系の無彩色で表示されるように制御されているため、正常な場合つまり欠陥がない場合には、濃い黒の無彩色で表示される。したがって、図6(a)に示すように、コントラスト画面において、青色絵素Bpで一部が明るく表示されているので、欠陥Fであると考えられる。すなわち、赤色絵素Rp・緑色絵素Gp・青色絵素Bpのいずれか又は複数で一部が明るく表示された場合、一定の輝度差以上となるので欠陥Fであると判断される。 As shown in FIG. 6A, for example, it is assumed that a defect F exists in the blue picture element Bp. At this time, only the backlight is turned on, and when the red (R), green (G), and blue (B) picture elements are not turned on, the picture elements are controlled to be displayed in black achromatic colors. Therefore, when it is normal, that is, when there is no defect, it is displayed in a dark black achromatic color. Therefore, as shown in FIG. 6A, a part of the contrast picture is brightly displayed with the blue picture element Bp, so that it is considered to be a defect F. That is, when one or more of the red picture element Rp, the green picture element Gp, and the blue picture element Bp are displayed brightly, it becomes a defect F because it becomes a certain luminance difference or more.
 しかし、人の目視感度は、緑色(G)に対して高く、赤色(R)及び青色(B)に対しては低い。そこで、欠陥検出装置10の検出感度を人の目視感度に合わせるため、表示パネル操作部2にて、青色(B)に対して電圧を印加する。尚、目視感度比は、赤色(R)、緑色(G)、青色(B)の合計が1となるように正規化した場合、おおよそ、
 赤色(R):緑色(G):青色(B)=0.3:0.6:0.1
となる。
However, human visual sensitivity is high for green (G) and low for red (R) and blue (B). Therefore, in order to match the detection sensitivity of the defect detection apparatus 10 with the human visual sensitivity, the display panel operation unit 2 applies a voltage to blue (B). The visual sensitivity ratio is approximately when normalized so that the sum of red (R), green (G), and blue (B) is 1.
Red (R): Green (G): Blue (B) = 0.3: 0.6: 0.1
It becomes.
 したがって、青色(B)、赤色(R)、緑色(G)の順に印加電圧を高くするのが好ましい。本実施の形態では、例えば、赤色(R)=0、緑色(G)=0、及び青色(B)=15の印加電圧比となるように、表示パネル操作部2にて、赤色(R)及び青色(B)に対して電圧を印加する。尚、このとき、印加する入力信号は、電圧[V]であり、輝度値ではないため、所望の背景輝度値が得られるように入力信号を調整する。 Therefore, it is preferable to increase the applied voltage in the order of blue (B), red (R), and green (G). In the present embodiment, for example, red (R) is displayed on the display panel operation unit 2 so that the applied voltage ratio is red (R) = 0, green (G) = 0, and blue (B) = 15. And a voltage is applied to blue (B). At this time, since the input signal to be applied is the voltage [V] and not the luminance value, the input signal is adjusted so as to obtain a desired background luminance value.
 これにより、図6の(a)に示すように、例えば、青色絵素Bpに存在していた欠陥Fは、図6の(b)に示すように、欠陥Fではなくなる。 Thereby, as shown in FIG. 6A, for example, the defect F existing in the blue picture element Bp is not the defect F as shown in FIG. 6B.
 したがって、目視検出よりも欠陥Fが過検出されるのをさらに効率的に削減し、延いては工程の歩留まり低下を抑制し得る液晶表示パネル1の欠陥検出方法を提供することができる。 Therefore, it is possible to provide a defect detection method for the liquid crystal display panel 1 that can more efficiently reduce the overdetection of the defect F than the visual detection, and further suppress the reduction in the process yield.
 このように、本実施の形態の欠陥検出装置10における液晶表示パネル1の欠陥検出方法では、液晶表示パネル1における赤色(R)、緑色(G)、青色(B)の各絵素のうち少なくとも青色(B)の絵素に印加電圧を付与して該青色(B)の絵素を点灯する絵素点灯工程と、液晶表示パネル1の複数の絵素からなる画素を撮像カメラ11にて撮像して画像データとして取得する画像データ取得工程と、画像データの画素の撮像画素輝度信号量と画素に欠陥がない非欠陥画素における画像データの該非欠陥画素の非欠陥画素輝度信号量との差であるコントラスト値の絶対値がしきい値以上である画素を欠陥部位候補として抽出する欠陥部位候補抽出工程と、欠陥部位候補の絵素の色を特定する欠陥部位絵素特定工程と、上記絵素の色によって異なる補正係数を上記コントラスト値に乗じて欠陥度を算出し、該欠陥度が判定値よりも大きい場合に該色の絵素が欠陥であると判定する欠陥判定工程とを含んでいる。 As described above, in the defect detection method of the liquid crystal display panel 1 in the defect detection apparatus 10 of the present embodiment, at least one of the red (R), green (G), and blue (B) picture elements in the liquid crystal display panel 1. A pixel lighting process for lighting the blue (B) picture element by applying an applied voltage to the blue (B) picture element, and imaging a pixel composed of a plurality of picture elements of the liquid crystal display panel 1 by the imaging camera 11 The difference between the image data acquisition step of acquiring the image data as image data, and the amount of imaging pixel luminance signal of the pixel of the image data and the amount of non-defective pixel luminance signal of the non-defective pixel of the image data in the non-defective pixel where the pixel is not defective A defective part candidate extracting step of extracting a pixel whose absolute value of a certain contrast value is equal to or greater than a threshold value as a defective part candidate; a defective part pixel specifying step of specifying a color of a pixel of the defective part candidate; Depending on the color of Different correction factors to calculate the defectivity by multiplying the above contrast value, the defect degree picture element the color is greater than the determination value and a defect determination step of determining that the defect.
 すなわち、従来、液晶表示パネル1の欠陥を欠陥検出装置にて検出する場合には、液晶表示パネル1の画素を構成する各絵素に電圧を印加することなく、画像データ取得工程と欠陥部位候補抽出工程と欠陥部位絵素特定工程と欠陥判定工程とをこの順で行って欠陥を検出していた。しかしながら、欠陥検出装置10にて行う自動検査と点灯された表示パネルを作業者の目視により行う目視検査とでは、例えば1絵素以下の大きさを持つ欠陥の場合、人の目視検出感度と欠陥検出装置の検出感度との差が大きく、目視限度レベル以上の微小欠陥でも欠陥検出装置は検出してしまう。例えば、図6の(a)に示すように、青色絵素Bpに欠陥Fが存在する場合に、青色絵素Bpの背景輝度と欠陥Fの輝度との輝度差が大きいので、欠陥検出装置は直ちに青色絵素Bpに欠陥Fが存在すると判断する。 That is, conventionally, when a defect of the liquid crystal display panel 1 is detected by a defect detection device, the image data acquisition process and the defective part candidate are performed without applying a voltage to each pixel constituting the pixel of the liquid crystal display panel 1. The extraction process, the defective part picture element identification process, and the defect determination process are performed in this order to detect the defect. However, in the automatic inspection performed by the defect detection apparatus 10 and the visual inspection performed by the operator's visual inspection of the lit display panel, for example, in the case of a defect having a size of one picture element or less, the human visual detection sensitivity and the defect The difference from the detection sensitivity of the detection device is large, and the defect detection device will detect even a microdefect exceeding the visual limit level. For example, as shown in FIG. 6A, when the defect F exists in the blue picture element Bp, the difference in brightness between the background brightness of the blue picture element Bp and the brightness of the defect F is large. Immediately, it is determined that the defect F exists in the blue picture element Bp.
 ここで、液晶表示パネル1を視聴するのは人間であり、人間の目で見て欠陥と認識し得ないものであれば、その欠陥は欠陥として認識して修理する必要はない。この結果、従来の欠陥検出装置による欠陥検出方法では、欠陥を目視検出よりも過検出しており、工程の歩留まりが低下するという問題点を有していた。ここで、記絵素の色によって異なる補正係数をコントラスト値に乗じて欠陥度を算出し、該欠陥度が判定値よりも大きい場合に該色の絵素が欠陥であると判定する欠陥判定工程における補正係数を変更する方法も考えられる。しかし、絵素の点灯時と非点灯時とでは絵素の背景輝度に差があるので、補正係数を変更する方法では、正確な欠陥検出は困難である。 Here, the person who views the liquid crystal display panel 1 is a human, and if it cannot be recognized as a defect by human eyes, the defect does not need to be recognized and repaired. As a result, the defect detection method using the conventional defect detection apparatus has a problem that the defect is over-detected rather than the visual detection and the process yield decreases. Here, a defect determination step of calculating a defect degree by multiplying the contrast value by a correction coefficient that differs depending on the color of the picture element, and determining that the pixel of the color is a defect when the defect degree is larger than a determination value A method of changing the correction coefficient in is also conceivable. However, since there is a difference in the background luminance of the picture element between when the picture element is lit and when it is not lit, accurate defect detection is difficult with the method of changing the correction coefficient.
 そこで、本実施の形態の欠陥検出装置10では、従来の画像データ取得工程と欠陥部位候補抽出工程と欠陥部位絵素特定工程と欠陥判定工程とを行う際に、まず、絵素点灯工程にて、液晶表示パネル1における赤色(R)、緑色(G)、青色(B)の各絵素のうち少なくとも青色(B)の絵素に印加電圧を付与して該青色(B)の絵素を点灯する。 Therefore, in the defect detection apparatus 10 of the present embodiment, when performing the conventional image data acquisition process, defective part candidate extraction process, defective part pixel identification process, and defect determination process, first, in the pixel lighting process. Then, an applied voltage is applied to at least the blue (B) picture element among the red (R), green (G), and blue (B) picture elements in the liquid crystal display panel 1, and the blue (B) picture element is obtained. Light.
 ここで、少なくとも青色(B)の絵素を点灯するのは、人間の目視観察においては、バックライトのみを点灯したときと、バックライトに加えて赤色(R)、緑色(G)、青色(B)の各絵素を点灯したときとの輝度差が、青色(B)の絵素の場合に最も大きいためである。すなわち、バックライトのみの点灯時においては、青色(B)の絵素は、赤色(R)、緑色(G)、青色(B)の絵素のうち、青色(B)の絵素の輝度が最も小さい。このため、青色(B)の絵素に欠陥が存在する場合に、欠陥の輝度は大きいので、従来の欠陥検出装置による欠陥検出方法では、この青色(B)の絵素の欠陥を抽出し易い傾向がある。一方、本実施の形態のように、図6の(b)に示すように、青色絵素Bpを点灯して欠陥検出を行えば、青色絵素Bpの背景輝度と欠陥Fの輝度との輝度差が小さくなるので、欠陥として抽出され難くなる。 Here, at least the blue (B) picture element is turned on in human visual observation when only the backlight is turned on, and in addition to the backlight, red (R), green (G), blue ( This is because the brightness difference from when each of the B) picture elements is lit is the largest in the case of the blue (B) picture element. That is, when only the backlight is turned on, the blue (B) picture element has a luminance of the blue (B) picture element among the red (R), green (G), and blue (B) picture elements. Smallest. For this reason, when the defect exists in the blue (B) picture element, the brightness of the defect is high. Therefore, the defect detection method using the conventional defect detection apparatus can easily extract the defect of the blue (B) picture element. Tend. On the other hand, as shown in FIG. 6B, when the defect is detected by turning on the blue picture element Bp as in this embodiment, the luminance between the background brightness of the blue picture element Bp and the brightness of the defect F is obtained. Since the difference is small, it is difficult to extract as a defect.
 ここで、液晶表示パネル1の視聴時においては青色(B)の絵素が点灯されている場合が多いので、人間の目視観察においては、青色(B)の絵素に存在する欠陥を認識しないことが多い。このため、このような欠陥検出方法を採用しても、実質的には問題は生じない。 Here, since the blue (B) picture element is often lit when viewing the liquid crystal display panel 1, the human visual observation does not recognize a defect existing in the blue (B) picture element. There are many cases. For this reason, even if such a defect detection method is adopted, there is substantially no problem.
 したがって、赤色(R)、緑色(G)、青色(B)の各絵素のうち、目視検出よりも欠陥が過検出される頻度が多い青色(B)の絵素を点灯して欠陥検出を行う。これにより、目視検出よりも欠陥が過検出されるのを効率的に削減し、延いては工程の歩留まり低下を抑制し得る液晶表示パネル1の欠陥検出方法を提供することができる。 Therefore, among the red (R), green (G), and blue (B) picture elements, the blue (B) picture element whose defect is frequently detected more frequently than the visual detection is turned on to detect the defect. Do. Accordingly, it is possible to provide a defect detection method for the liquid crystal display panel 1 that can efficiently reduce the overdetection of defects rather than the visual detection and thereby suppress a decrease in process yield.
  〔実施の形態2〕
 本発明の他の実施の形態について図7及び図8に基づいて説明すれば、以下のとおりである。尚、本実施の形態において説明すること以外の構成は、前記実施の形態1と同じである。また、説明の便宜上、前記の実施の形態1の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
[Embodiment 2]
The following will describe another embodiment of the present invention with reference to FIGS. The configurations other than those described in the present embodiment are the same as those in the first embodiment. For convenience of explanation, members having the same functions as those shown in the drawings of the first embodiment are given the same reference numerals, and explanation thereof is omitted.
 前記実施の形態1の欠陥検出装置10の欠陥検出方法では、絵素点灯工程においては、緑色(G)、青色(B)の各絵素のうち青色(B)の絵素にのみ印加電圧を付与して該青色(B)の絵素を点灯していた。 In the defect detection method of the defect detection apparatus 10 of the first embodiment, in the picture element lighting process, the applied voltage is applied only to the blue (B) picture element among the green (G) and blue (B) picture elements. The blue (B) picture element was turned on.
 しかしながら、本実施の形態の欠陥検出装置10における液晶表示パネル1の欠陥検出方法では、絵素点灯工程において、液晶表示パネル1における赤色(R)、緑色(G)、青色(B)の各絵素のうち青色(B)及び赤色(R)の絵素を、該各絵素に付与する印加電圧が、青色(B)>赤色(R)となるように点灯している点が異なっている。 However, in the defect detection method for the liquid crystal display panel 1 in the defect detection apparatus 10 of the present embodiment, each of the red (R), green (G), and blue (B) pictures in the liquid crystal display panel 1 in the picture element lighting step. The difference is that blue (B) and red (R) picture elements are lit so that the applied voltage applied to each picture element is blue (B)> red (R). .
 すなわち、人間の目視観察においては、バックライトのみを点灯したときと、バックライトに加えて赤色(R)、緑色(G)、青色(B)の各絵素を点灯したときとの輝度差は、青色(B)の絵素の場合の次に赤色(R)の絵素の場合が大きい。このため、青色(B)の絵素に加えて赤色(R)の絵素を、各絵素に付与する印加電圧が、青色(B)>赤色(R)となるように点灯することによって、青色(B)及び赤色(R)の絵素の背景輝度と欠陥の輝度との輝度差がそれぞれ小さくなる。その結果、欠陥として抽出され難くなる。 That is, in human visual observation, the luminance difference between when only the backlight is lit and when each of the red (R), green (G), and blue (B) picture elements is lit in addition to the backlight is The red (R) picture element is the second largest after the blue (B) picture element. For this reason, in addition to the blue (B) picture element, the red (R) picture element is lit so that the applied voltage applied to each picture element is blue (B)> red (R). The difference in luminance between the background luminance of the blue (B) and red (R) picture elements and the luminance of the defect is reduced. As a result, it becomes difficult to be extracted as a defect.
 したがって、赤色(R)、緑色(G)、青色(B)の各絵素のうち、目視検出よりも欠陥が過検出される頻度が多い青色(B)及び赤色(R)の絵素を点灯して欠陥検出を行う。これにより、目視検出よりも欠陥が過検出されるのをさらに効率的に削減し、延いては工程の歩留まり低下を抑制し得る液晶表示パネル1の欠陥検出方法を提供することができる。 Therefore, among the red (R), green (G), and blue (B) picture elements, the blue (B) and red (R) picture elements whose defects are more frequently detected than the visual detection are turned on. Then, defect detection is performed. Accordingly, it is possible to provide a defect detection method for the liquid crystal display panel 1 that can more efficiently reduce the number of defects that are detected excessively than the visual detection, and that can suppress a decrease in the process yield.
 本実施の形態の欠陥検出装置10における欠陥検出方法について、図7及び図8に基づいて説明する。図7は本実施の形態における液晶表示パネル1の欠陥検出方法を示すフローチャートである。図8の(a)は上記液晶表示パネル1の欠陥検出方法を示すものであって、赤色(R)の絵素及び緑色(G)の絵素の両方に跨る欠陥がある場合にバックライトのみを点灯したときの背景絵素と欠陥との輝度差を示す要部平面図である。図8の(b)はバックライトを点灯し、かつ赤色(R)、緑色(G)、青色(B)の絵素のうちの青色(B)の絵素と赤色(R)の絵素を点灯したときの背景絵素と欠陥との輝度差を示す要部平面図である。 A defect detection method in the defect detection apparatus 10 according to the present embodiment will be described with reference to FIGS. FIG. 7 is a flowchart showing a defect detection method of the liquid crystal display panel 1 in the present embodiment. FIG. 8A shows a defect detection method of the liquid crystal display panel 1, where only the backlight is present when there is a defect extending over both the red (R) picture element and the green (G) picture element. It is a principal part top view which shows the brightness | luminance difference of a background picture element when a is lighted, and a defect. In FIG. 8B, the backlight is turned on, and among the red (R), green (G), and blue (B) picture elements, the blue (B) picture element and the red (R) picture element are displayed. It is a principal part top view which shows the brightness | luminance difference of a background picture element and a defect when it lights.
 本実施の形態の欠陥検出装置10にて絵素に生じている欠陥を検出する場合には、図7に示すように、まず、液晶表示パネル1におけるバックライトを点灯する(S1)。続いて、絵素点灯工程において、液晶表示パネル1における赤色(R)、緑色(G)、青色(B)の各絵素のうち青色(B)及び赤色(R)の絵素を、該各絵素に付与する印加電圧が、青色(B)>赤色(R)となるように点灯する(S11)。 When the defect detection apparatus 10 of the present embodiment detects a defect occurring in a picture element, first, as shown in FIG. 7, the backlight in the liquid crystal display panel 1 is turned on (S1). Subsequently, in the picture element lighting step, the blue (B) and red (R) picture elements among the red (R), green (G), and blue (B) picture elements in the liquid crystal display panel 1 Lights up so that the applied voltage applied to the picture element is blue (B)> red (R) (S11).
 この後の工程S3~S9は、前記実施の形態1において図1に示すフローチャートにて説明したと同じであるので、ここではその説明を省略する。 Since the subsequent steps S3 to S9 are the same as those described in the flowchart shown in FIG. 1 in the first embodiment, the description thereof is omitted here.
 上記の欠陥検出装置10における欠陥検出方法を具体例にて説明する。 A specific example of the defect detection method in the defect detection apparatus 10 will be described.
 図8の(a)に示すように、例えば赤色絵素Rpと緑色絵素Gpとに跨る欠陥Fが存在しているとする。このとき、バックライトの点灯のみ行い、赤色(R)、緑色(G)、青色(B)の各絵素を点灯しないときは、絵素が黒系の無彩色で表示されるように制御されているため、正常な場合つまり欠陥がない場合には、濃い黒の無彩色で表示される。したがって、図8の(a)に示すように、コントラスト画面において、各赤色絵素Rp及び緑色絵素Gpで一部が明るく表示されているので、欠陥Fであると考えられる。すなわち、赤色絵素Rp・緑色絵素Gp・青色絵素Bpのいずれか又は複数で一部が明るく表示された場合、一定の輝度差以上となるので欠陥Fであると判断される。 As shown in FIG. 8A, for example, it is assumed that there is a defect F straddling the red picture element Rp and the green picture element Gp. At this time, only the backlight is turned on, and when the red (R), green (G), and blue (B) picture elements are not turned on, the picture elements are controlled to be displayed in black achromatic colors. Therefore, when it is normal, that is, when there is no defect, it is displayed in a dark black achromatic color. Therefore, as shown in FIG. 8A, a part of each red picture element Rp and green picture element Gp is brightly displayed on the contrast screen, so that it is considered to be a defect F. That is, when one or more of the red picture element Rp, the green picture element Gp, and the blue picture element Bp are displayed brightly, it becomes a defect F because it becomes a certain luminance difference or more.
 しかし、人の目視感度は、緑色(G)に対して高く、赤色(R)及び青色(B)に対しては低い。そこで、欠陥検出装置10の検出感度を人の目視感度に合わせるため、表示パネル操作部2にて、赤色(R)及び青色(B)に対して電圧を印加する。尚、目視感度比は、赤色(R)、緑色(G)、青色(B)の合計が1となるように正規化した場合、おおよそ、
 赤色(R):緑色(G):青色(B)=0.3:0.6:0.1
となる。
However, human visual sensitivity is high for green (G) and low for red (R) and blue (B). Therefore, in order to match the detection sensitivity of the defect detection apparatus 10 with the human visual sensitivity, the display panel operation unit 2 applies voltages to red (R) and blue (B). The visual sensitivity ratio is approximately when normalized so that the sum of red (R), green (G), and blue (B) is 1.
Red (R): Green (G): Blue (B) = 0.3: 0.6: 0.1
It becomes.
 したがって、青色(B)、赤色(R)、緑色(G)の順に印加電圧を高くするのが好ましい。本実施の形態では、例えば、赤色(R)=10、緑色(G)=0、及び青色(B)=15の印加電圧比となるように、表示パネル操作部2にて、赤色(R)及び青色(B)に対して電圧を印加する。尚、このとき、印加する入力信号は、電圧[V]であり、輝度値ではないため、所望の背景輝度値が得られるように入力信号を調整する。 Therefore, it is preferable to increase the applied voltage in the order of blue (B), red (R), and green (G). In the present embodiment, for example, the display panel operation unit 2 uses red (R) so that the applied voltage ratio is red (R) = 10, green (G) = 0, and blue (B) = 15. And a voltage is applied to blue (B). At this time, since the input signal to be applied is the voltage [V] and not the luminance value, the input signal is adjusted so as to obtain a desired background luminance value.
 これにより、図8の(a)に示すように、例えば、赤色絵素Rpと緑色絵素Gpとに跨って存在していた欠陥Fは、図8の(b)に示すように、赤色絵素Rpにおいては欠陥Fではなくなる。 Accordingly, as shown in FIG. 8A, for example, the defect F existing across the red picture element Rp and the green picture element Gp is converted into a red picture as shown in FIG. The element Rp is no longer a defect F.
 すなわち、図8の(a)(b)に示す例では、赤色絵素Rpに位置する欠陥Fの輝度値と赤色絵素Rpの輝度値との輝度差が小さくなり、その結果、欠陥Fのコントラスト体積が小さくなる。このため、コントラスト体積の小さい目視限度レベル以上の欠陥Fが欠陥検出装置10にて検出され難くなる。尚、輝度値とは、撮像カメラ11が受けた光の強度に応じて、撮像カメラ11が出力した信号の大きさをいう。また、コントラスト体積とは、ある絵素における撮像カメラ11の輝度値と、液晶表示パネル1の画面に絵素が正常に表示された場合における輝度値の予測値との差分の絶対値を、欠陥領域にて加算した値をいう。 That is, in the example shown in FIGS. 8A and 8B, the luminance difference between the luminance value of the defect F located in the red picture element Rp and the luminance value of the red picture element Rp becomes small. The contrast volume is reduced. For this reason, it becomes difficult for the defect detection apparatus 10 to detect the defect F having a small contrast volume and a visual limit level or more. The luminance value refers to the magnitude of a signal output from the imaging camera 11 according to the intensity of light received by the imaging camera 11. The contrast volume is the absolute value of the difference between the luminance value of the imaging camera 11 for a certain picture element and the predicted value of the luminance value when the picture element is normally displayed on the screen of the liquid crystal display panel 1. The value added in the area.
 したがって、目視検出よりも欠陥が過検出されるのをさらに効率的に削減し、延いては工程の歩留まり低下を抑制し得る液晶表示パネル1の欠陥検出方法を提供することができる。 Therefore, it is possible to provide a defect detection method for the liquid crystal display panel 1 that can more efficiently reduce the number of defects that are detected excessively than visual detection, and that can suppress a decrease in process yield.
  〔実施の形態3〕
 本発明のさらに他の実施の形態について図9及び図10に基づいて説明すれば、以下のとおりである。尚、本実施の形態において説明すること以外の構成は、前記実施の形態1及び実施の形態2と同じである。また、説明の便宜上、前記の実施の形態1及び実施の形態2の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
[Embodiment 3]
The following will describe still another embodiment of the present invention with reference to FIGS. The configurations other than those described in the present embodiment are the same as those in the first embodiment and the second embodiment. For convenience of explanation, members having the same functions as those shown in the drawings of Embodiment 1 and Embodiment 2 are given the same reference numerals, and explanation thereof is omitted.
 前記実施の形態1の欠陥検出装置10の欠陥検出方法では、絵素点灯工程においては、緑色(G)、青色(B)の各絵素のうち青色(B)の絵素にのみ印加電圧を付与して該青色(B)の絵素を点灯していた。 In the defect detection method of the defect detection apparatus 10 of the first embodiment, in the picture element lighting process, the applied voltage is applied only to the blue (B) picture element among the green (G) and blue (B) picture elements. The blue (B) picture element was turned on.
 しかしながら、本実施の形態の欠陥検出装置10における液晶表示パネル1の欠陥検出方法では、絵素点灯工程において、液晶表示パネル1における赤色(R)、緑色(G)、青色(B)の各絵素を、該各絵素に付与する印加電圧が、青色(B)>赤色(R)≧緑色(G)となるように点灯している点が異なっている。 However, in the defect detection method for the liquid crystal display panel 1 in the defect detection apparatus 10 of the present embodiment, each of the red (R), green (G), and blue (B) pictures in the liquid crystal display panel 1 in the picture element lighting step. The difference is that the voltage applied to each pixel is lit so that the applied voltage is blue (B)> red (R) ≧ green (G).
 すなわち、人間の目視観察においては、バックライトのみを点灯したときと、バックライトに加えて赤色(R)、緑色(G)、青色(B)の各絵素を点灯したときとの輝度差は、青色(B)の絵素、赤色(R)の絵素、緑色(G)の絵素の順に大きい。このため、青色(B)の絵素に加えて赤色(R)、緑色(G)の絵素を、各絵素に付与する印加電圧が、青色(B)>赤色(R)≧緑色(G)となるように点灯する。これによって、青色(B)、赤色(R)、緑色(G)の絵素の背景輝度と欠陥の輝度との輝度差がそれぞれ小さくなるので、欠陥として抽出され難くなる。 That is, in human visual observation, the luminance difference between when only the backlight is lit and when each of the red (R), green (G), and blue (B) picture elements is lit in addition to the backlight is , Blue (B) picture element, red (R) picture element, and green (G) picture element. For this reason, in addition to the blue (B) picture element, red (R) and green (G) picture elements are applied to each picture element with a blue (B)> red (R) ≧ green (G ) To light up. As a result, the luminance difference between the background luminance of the blue (B), red (R), and green (G) picture elements and the luminance of the defect becomes small, so that it is difficult to be extracted as a defect.
 したがって、赤色(R)、緑色(G)、青色(B)の各絵素のうち、全ての絵素を点灯して欠陥検出を行えば、目視検出よりも欠陥が過検出されるのを確実に削減し、延いては工程の歩留まり低下を抑制し得る表示パネルの欠陥検出方法を提供することができる。 Therefore, if all of the red (R), green (G), and blue (B) picture elements are lit and defect detection is performed, defects are more reliably detected than visual detection. Therefore, it is possible to provide a defect detection method for a display panel that can reduce the process yield and, in turn, suppress a decrease in process yield.
 本実施の形態の欠陥検出装置10における欠陥検出方法について、図9及び図10に基づいて説明する。図9は本実施の形態における液晶表示パネル1の欠陥検出方法を示すフローチャートである。図10の(a)は液晶表示パネル1の欠陥検出方法を示すものであって、緑色(G)の絵素に欠陥がある場合にバックライトのみを点灯したときの背景絵素と欠陥との輝度差を示す要部平面図である。図10の(b)はバックライトを点灯し、かつ赤色(R)、緑色(G)、青色(B)の絵素の全ての絵素を点灯したときの背景絵素と欠陥との輝度差を示す要部平面図である。 A defect detection method in the defect detection apparatus 10 according to the present embodiment will be described with reference to FIGS. FIG. 9 is a flowchart showing a defect detection method of the liquid crystal display panel 1 in the present embodiment. FIG. 10A shows a defect detection method for the liquid crystal display panel 1, and the background pixel and defect when only the backlight is turned on when the green (G) pixel is defective. It is a principal part top view which shows a luminance difference. FIG. 10B shows the luminance difference between the background picture element and the defect when the backlight is turned on and all of the red (R), green (G), and blue (B) picture elements are lit. It is a principal part top view which shows.
 本実施の形態の欠陥検出装置10にて絵素に生じている欠陥を検出する場合には、図9に示すように、まず、液晶表示パネル1におけるバックライトを点灯する(S1)。続いて、絵素点灯工程において、液晶表示パネル1における赤色(R)、緑色(G)、青色(B)の各絵素を、該各絵素に付与する印加電圧が、青色(B)>赤色(R)≧緑色(G)となるように点灯する(S21)。 When the defect detection apparatus 10 of the present embodiment detects a defect occurring in a picture element, first, the backlight in the liquid crystal display panel 1 is turned on as shown in FIG. 9 (S1). Subsequently, in the picture element lighting step, the applied voltage for applying the red (R), green (G), and blue (B) picture elements in the liquid crystal display panel 1 to the picture elements is blue (B)> Lights up so that red (R) ≧ green (G) (S21).
 この後の工程S3~S9は、前記実施の形態1において図1に示すフローチャートにて説明したと同じであるので、ここではその説明を省略する。 Since the subsequent steps S3 to S9 are the same as those described in the flowchart shown in FIG. 1 in the first embodiment, the description thereof is omitted here.
 上記の欠陥検出装置10における欠陥検出方法を具体例にて説明する。 A specific example of the defect detection method in the defect detection apparatus 10 will be described.
 図10の(a)に示すように、例えば、緑色絵素Gpに欠陥Fが存在しているとする。このとき、バックライトの点灯のみ行い、赤色(R)、緑色(G)、青色(B)の各絵素を点灯しないときは、絵素が黒系の無彩色で表示されるように制御されているため、正常な場合つまり欠陥がない場合には、濃い黒の無彩色で表示される。したがって、図10の(a)に示すように、コントラスト画面において、緑色絵素Gpの一部が明るく表示された場合、欠陥Fであると考えられる。すなわち、赤色絵素Rp・緑色絵素Gp・青色絵素Bpのいずれか又は複数で一部が明るく表示された場合、一定の輝度差以上となるので欠陥Fであると判断される。 As shown in FIG. 10A, for example, it is assumed that a defect F exists in the green picture element Gp. At this time, only the backlight is turned on, and when the red (R), green (G), and blue (B) picture elements are not turned on, the picture elements are controlled to be displayed in black achromatic colors. Therefore, when it is normal, that is, when there is no defect, it is displayed in a dark black achromatic color. Therefore, as shown in FIG. 10A, when a part of the green picture element Gp is displayed brightly on the contrast screen, it is considered to be a defect F. That is, when one or more of the red picture element Rp, the green picture element Gp, and the blue picture element Bp are displayed brightly, it becomes a defect F because it becomes a certain luminance difference or more.
 しかし、人の目視感度は、緑色(G)に対して高く、赤色(R)及び青色(B)に対しては低い。そこで、欠陥検出装置10の検出感度を人の目視感度に合わせるため、表示パネル操作部2にて、赤色(R)及び青色(B)に対して電圧を印加する。尚、目視感度比は、赤色(R)、緑色(G)、青色(B)の合計が1となるように正規化した場合、おおよそ、
 赤色(R):緑色(G):青色(B)=0.3:0.6:0.1
となる。
However, human visual sensitivity is high for green (G) and low for red (R) and blue (B). Therefore, in order to match the detection sensitivity of the defect detection apparatus 10 with the human visual sensitivity, the display panel operation unit 2 applies voltages to red (R) and blue (B). The visual sensitivity ratio is approximately when normalized so that the sum of red (R), green (G), and blue (B) is 1.
Red (R): Green (G): Blue (B) = 0.3: 0.6: 0.1
It becomes.
 したがって、青色(B)、赤色(R)、緑色(G)の順に印加電圧を高くするのが好ましい。本実施の形態では、例えば、赤色(R)=10、緑色(G)=5、及び青色(B)=15の印加電圧比となるように、表示パネル操作部2にて、赤色(R)、緑色(G)及び青色(B)に対して電圧を印加する。尚、このとき、印加する入力信号は、電圧[V]であり、輝度値ではないため、所望の背景輝度値が得られるように入力信号を調整する。 Therefore, it is preferable to increase the applied voltage in the order of blue (B), red (R), and green (G). In this embodiment, for example, red (R) is displayed on the display panel operation unit 2 so that the applied voltage ratio is red (R) = 10, green (G) = 5, and blue (B) = 15. A voltage is applied to green (G) and blue (B). At this time, since the input signal to be applied is the voltage [V] and not the luminance value, the input signal is adjusted so as to obtain a desired background luminance value.
 これにより、図10の(a)に示すように、例えば、緑色絵素Gpに存在していた欠陥Fは、図10の(b)に示すように、絵素の点灯後においては欠陥Fではなくなる。 As a result, as shown in FIG. 10A, for example, the defect F existing in the green picture element Gp becomes the defect F after the picture element is turned on as shown in FIG. Disappear.
 したがって、目視検出よりも欠陥が過検出されるのを確実に効率的に削減し、延いては工程の歩留まり低下を抑制し得る液晶表示パネル1の欠陥検出方法を提供することができる。 Therefore, it is possible to provide a defect detection method for the liquid crystal display panel 1 that can reliably and efficiently reduce overdetection of defects as compared with visual detection, and thus can suppress a decrease in process yield.
  〔実施の形態4〕
 本発明のさらに他の実施の形態について図11に基づいて説明すれば、以下のとおりである。尚、本実施の形態において説明すること以外の構成は、前記実施の形態1~実施の形態3と同じである。また、説明の便宜上、前記の実施の形態1~実施の形態3の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
[Embodiment 4]
The following will describe still another embodiment of the present invention with reference to FIG. The configurations other than those described in the present embodiment are the same as those in the first to third embodiments. For convenience of explanation, members having the same functions as those shown in the drawings of Embodiments 1 to 3 are given the same reference numerals, and descriptions thereof are omitted.
 前記実施の形態1~実施の形態3の欠陥検出装置10の欠陥検出方法では、いずれの実施の形態においても、少なくとも青色(B)の絵素の点灯を行う絵素点灯工程を行った後、画像データ取得工程と欠陥部位候補抽出工程と欠陥部位絵素特定工程と欠陥判定工程とをこの順で行う点灯時欠陥検出手順にて欠陥検出を採用していた。 In the defect detection method of the defect detection apparatus 10 according to the first to third embodiments, in any of the embodiments, after performing the pixel lighting process for lighting at least the blue (B) pixel, The defect detection is employed in the lighting defect detection procedure in which the image data acquisition process, the defective part candidate extraction process, the defective part pixel identification process, and the defect determination process are performed in this order.
 しかしながら、この点灯時欠陥検出手順ばかりを行っていれば、欠陥検出装置10にて実際にどの程度の欠陥Fが存在するのかを把握できなくなる。 However, if only the defect detection procedure at the time of lighting is performed, the defect detection apparatus 10 cannot grasp how many defects F actually exist.
 そこで、本実施の形態の欠陥検出装置10における液晶表示パネル1の欠陥検出方法では、点灯時欠陥検出手順と絵素の点灯を行わない非点灯時欠陥検出手順との両方を行う。これにより、実際に存在する欠陥Fを把握することができるものとなる。 Therefore, in the defect detection method of the liquid crystal display panel 1 in the defect detection apparatus 10 of the present embodiment, both the lighting defect detection procedure and the non-lighting defect detection procedure in which no pixel is lit are performed. Thereby, the defect F which exists actually can be grasped.
 本実施の形態の欠陥検出装置10における液晶表示パネル1の欠陥検出方法について、図11に基づいて説明する。図11は本実施の形態における液晶表示パネル1の欠陥検出方法を示すフローチャートである。 A defect detection method for the liquid crystal display panel 1 in the defect detection apparatus 10 of the present embodiment will be described with reference to FIG. FIG. 11 is a flowchart showing a defect detection method of the liquid crystal display panel 1 in the present embodiment.
 本実施の形態の液晶表示パネル1の絵素に生じている欠陥を欠陥検出装置10にて検出する場合には、図11に示すように、まず、液晶表示パネル1におけるバックライトを点灯する(S1)。続いて、絵素点灯工程において、液晶表示パネル1における赤色(R)、緑色(G)、青色(B)の各絵素のうちの少なくとも青色(B)の各絵素を点灯する(S31)。すなわち、このS31の絵素点灯工程は、前記実施の形態1~3のいずれかの絵素点灯工程と同じ絵素点灯工程(図1に示すS2、図7に示すS11、及び図9に示すS21)になっている。そして、その後、工程S3~S9を行う。この工程S3~S9は、前記実施の形態1において図1に示すフローチャートにて説明したと同じであるので、その説明を省略する。これにより、S31~S9に示す点灯時欠陥検出手順が行われる。したがって、目視検査レベルの欠陥検出結果が得られる。 When a defect occurring in a picture element of the liquid crystal display panel 1 of the present embodiment is detected by the defect detection device 10, first, the backlight in the liquid crystal display panel 1 is turned on as shown in FIG. S1). Subsequently, in the picture element lighting step, at least each blue (B) picture element among the red (R), green (G), and blue (B) picture elements in the liquid crystal display panel 1 is lit (S31). . That is, the pixel lighting process of S31 is the same as the pixel lighting process of any of the first to third embodiments (S2 shown in FIG. 1, S11 shown in FIG. 7, and FIG. 9). S21). Thereafter, steps S3 to S9 are performed. Since steps S3 to S9 are the same as those described in the flowchart shown in FIG. 1 in the first embodiment, the description thereof is omitted. As a result, the lighting defect detection procedure shown in S31 to S9 is performed. Therefore, a defect detection result at the visual inspection level is obtained.
 しかしながら、実際の詳細な欠陥の発生状況を把握したい場合もある。 However, there are cases where it is desired to grasp the actual detailed occurrence of defects.
 そこで、本実施の形態の液晶表示パネル1の欠陥検出方法では、続いて、赤色(R)、緑色(G)、青色(B)の絵素を点灯しないで欠陥の検出を行う非点灯時欠陥検出手順を実行する。 Therefore, in the defect detection method of the liquid crystal display panel 1 of the present embodiment, the defect at the time of non-lighting in which the defect is detected without lighting the red (R), green (G), and blue (B) picture elements. Run the detection procedure.
 具体的には、図11に示すように、赤色(R)、緑色(G)、青色(B)の各絵素を非点灯とし(S32)、その後、同様にS3~S9の工程を実行する。 Specifically, as shown in FIG. 11, the red (R), green (G), and blue (B) picture elements are turned off (S32), and then the steps S3 to S9 are similarly executed. .
 これにより、実際の詳細な欠陥の発生状況を把握することができる。 This makes it possible to grasp the actual details of the occurrence of defects.
 尚、本実施の形態の液晶表示パネル1の欠陥検出方法を採用するに際しては、処理時間に余裕があることが好ましい。 In addition, when adopting the defect detection method of the liquid crystal display panel 1 of the present embodiment, it is preferable that the processing time has a margin.
 また、本実施の形態では、最初に、点灯時欠陥検出手順を行った後、非点灯時欠陥検出手順を行ったが、必ずしもこれに限らず、最初に、従来のとおり非点灯時欠陥検出手順を行った後、点灯時欠陥検出手順を行うことも可能である。すなわち、点灯時欠陥検出手順と非点灯時欠陥検出手順とは、いずれを先に行ってもよい。いずれを先に行っても、詳細レベルの真欠陥の把握と目視観察レベルの欠陥の把握とが可能になるためである。 Further, in the present embodiment, after performing the defect detection procedure at the time of lighting, the defect detection procedure at the time of non-lighting is performed. However, the present invention is not necessarily limited to this. It is also possible to perform a lighting defect detection procedure after performing the above. That is, either the lighting defect detection procedure or the non-lighting defect detection procedure may be performed first. This is because, regardless of which is performed first, it is possible to grasp the true level defect and the visual observation level defect.
 (まとめ)
 本発明の態様1における表示パネル(液晶表示パネル1)の欠陥検出方法は、表示パネル(液晶表示パネル1)における赤色(R)、緑色(G)、青色(B)の各絵素のうち少なくとも青色(B)の絵素に印加電圧を付与して該青色(B)の絵素を点灯する絵素点灯工程(S2,S11,S21)と、上記表示パネル(液晶表示パネル1)の複数の絵素からなる画素を撮像して画像データとして取得する画像データ取得工程(S3)と、上記画像データの画素の撮像画素輝度信号量と画素に欠陥がない非欠陥画素における画像データの該非欠陥画素の非欠陥画素輝度信号量との差であるコントラスト値の絶対値がしきい値以上である画素を欠陥部位候補として抽出する欠陥部位候補抽出工程と(S4,S5)、上記欠陥部位候補の絵素の色を特定する欠陥部位絵素特定工程(S6)と、上記絵素の色によって異なる補正係数を上記コントラスト値に乗じて欠陥度を算出し、該欠陥度が判定値よりも大きい場合に該色の絵素が欠陥であると判定する欠陥判定工程(S7,S8)とを含むことを特徴としている。
(Summary)
The defect detection method for the display panel (liquid crystal display panel 1) according to the first aspect of the present invention is at least one of red (R), green (G), and blue (B) picture elements in the display panel (liquid crystal display panel 1). Applying an applied voltage to the blue (B) picture element to light the blue (B) picture element, a plurality of picture element lighting steps (S2, S11, S21), and a plurality of display panels (liquid crystal display panel 1) An image data acquisition step (S3) in which pixels consisting of picture elements are captured and acquired as image data, and the non-defective pixels of the image data in the non-defective pixels in which the pixels are not defective and the imaging pixel luminance signal amount of the pixels of the image data A defective part candidate extraction step (S4, S5) for extracting a pixel whose absolute value of the contrast value, which is the difference from the non-defective pixel luminance signal amount, is greater than or equal to a threshold value as a defective part candidate, and the picture of the defective part candidate The prime color Defect site picture element identification step (S6) to be determined, and the degree of defect is calculated by multiplying the contrast value by a correction coefficient that differs depending on the color of the picture element. If the degree of defect is greater than the judgment value, the picture of the color And a defect determination step (S7, S8) for determining that the element is a defect.
 本発明の態様5における表示パネル(液晶表示パネル1)の欠陥検出装置10は、表示パネル(液晶表示パネル1)における赤色(R)、緑色(G)、青色(B)の各絵素のうち少なくとも青色(B)の絵素に印加電圧を付与して該青色(B)の絵素を点灯する絵素点灯手段(表示パネル操作部2)と、上記表示パネル(液晶表示パネル1)の複数の絵素からなる画素を撮像して画像データとして取得する画像データ取得手段(撮像カメラ11)と、上記画像データの画素の撮像画素輝度信号量と画素に欠陥がない非欠陥画素における画像データの該非欠陥画素の非欠陥画素輝度信号量との差であるコントラスト値の絶対値がしきい値以上である画素を欠陥部位候補として抽出する欠陥部位候補抽出手段(欠陥部位検出部12)と、上記欠陥部位候補の絵素の色を特定する欠陥部位絵素特定手段(色特定部13)と、上記絵素の色によって異なる補正係数を上記コントラスト値に乗じて欠陥度を算出し、該欠陥度が判定値よりも大きい場合に該色の絵素が欠陥であると判定する欠陥判定手段(欠陥判定部14)とを含むことを特徴としている。 The defect detection apparatus 10 for the display panel (liquid crystal display panel 1) according to the fifth aspect of the present invention is a red (R), green (G), or blue (B) picture element in the display panel (liquid crystal display panel 1). A plurality of picture element lighting means (display panel operation unit 2) for applying an applied voltage to at least a blue (B) picture element to light up the blue (B) picture element, and the display panel (liquid crystal display panel 1). Image data acquisition means (imaging camera 11) that captures a pixel consisting of a picture element and acquires it as image data; and the amount of imaging pixel luminance signal of the pixel of the image data and the image data of a non-defective pixel in which the pixel is not defective A defective part candidate extracting means (defective part detecting unit 12) for extracting, as a defective part candidate, a pixel whose absolute value of a contrast value, which is a difference between the non-defective pixel and the non-defective pixel luminance signal amount, is a threshold value or more; Lack of Defect part pixel specifying means (color specifying part 13) for specifying the color of the part candidate picture element and the correction coefficient that differs depending on the color of the picture element are multiplied by the contrast value to calculate the defect degree. Defect determining means (defect determining unit 14) that determines that the picture element of the color is defective when larger than the determination value is characterized.
 本発明の一態様によれば、従来の画像データ取得工程と欠陥部位候補抽出工程と欠陥部位絵素特定工程と欠陥判定工程とを行う際に、まず、絵素点灯工程にて、表示パネルにおける赤色(R)、緑色(G)、青色(B)の各絵素のうち少なくとも青色(B)の絵素に印加電圧を付与して該青色(B)の絵素を点灯する。 According to one aspect of the present invention, when performing a conventional image data acquisition process, a defective part candidate extraction process, a defective part pixel identification process, and a defect determination process, first, in the pixel lighting process, in the display panel An applied voltage is applied to at least the blue (B) picture element among the red (R), green (G), and blue (B) picture elements to light the blue (B) picture element.
 ここで、少なくとも青色(B)の絵素を点灯するのは、人間の目視観察においては、バックライトのみを点灯したときと、バックライトに加えて赤色(R)、緑色(G)、青色(B)の各絵素を点灯したときとの輝度差が、青色(B)の絵素の場合に最も大きいためである。すなわち、バックライトのみの点灯時においては、青色(B)の絵素は、赤色(R)、緑色(G)、青色(B)の絵素のうち、青色(B)の絵素の輝度が最も小さい。このため、青色(B)の絵素に欠陥が存在する場合に、欠陥の輝度は大きいので、従来の欠陥検出装置による欠陥検出方法では、この青色(B)の絵素の欠陥を抽出し易い傾向がある。一方、本発明のように、青色(B)の絵素を点灯して欠陥検出を行えば、青色(B)の絵素の背景輝度と欠陥の輝度との輝度差が小さくなるので、欠陥として抽出され難くなる。 Here, at least the blue (B) picture element is turned on in human visual observation when only the backlight is turned on, and in addition to the backlight, red (R), green (G), blue ( This is because the brightness difference from when each of the B) picture elements is lit is the largest in the case of the blue (B) picture element. That is, when only the backlight is turned on, the blue (B) picture element has a luminance of the blue (B) picture element among the red (R), green (G), and blue (B) picture elements. Smallest. For this reason, when the defect exists in the blue (B) picture element, the brightness of the defect is high. Therefore, the defect detection method using the conventional defect detection apparatus can easily extract the defect of the blue (B) picture element. Tend. On the other hand, if the defect detection is performed by turning on the blue (B) picture element as in the present invention, the brightness difference between the background brightness of the blue (B) picture element and the brightness of the defect becomes small. It becomes difficult to extract.
 ここで、表示パネルの視聴時においては青色(B)の絵素が点灯されている場合が多いので、人間の目視観察においては、青色(B)の絵素に存在する欠陥を認識しないことが多い。このため、このような欠陥検出方法を採用しても、実質的には問題は生じない。 Here, since the blue (B) picture element is often lit when viewing the display panel, a defect existing in the blue (B) picture element may not be recognized in human visual observation. Many. For this reason, even if such a defect detection method is adopted, there is substantially no problem.
 したがって、赤色(R)、緑色(G)、青色(B)の各絵素のうち、目視検出よりも欠陥が過検出される頻度が多い青色(B)の絵素を点灯して欠陥検出を行う。これにより、目視検出よりも欠陥が過検出されるのを効率的に削減し、延いては工程の歩留まり低下を抑制し得る表示パネルの欠陥検出方法及び表示パネルの欠陥検出装置を提供することができる。 Therefore, among the red (R), green (G), and blue (B) picture elements, the blue (B) picture element whose defect is frequently detected more frequently than the visual detection is turned on to detect the defect. Do. Accordingly, it is possible to provide a display panel defect detection method and a display panel defect detection apparatus that can efficiently reduce overdetection of defects rather than visual detection, and thus can suppress a decrease in process yield. it can.
 本発明の態様2における表示パネル(液晶表示パネル1)の欠陥検出方法は、前記態様1における表示パネル(液晶表示パネル1)の欠陥検出方法において、絵素点灯工程(S11)において、前記表示パネル(液晶表示パネル1)における赤色(R)、緑色(G)、青色(B)の各絵素のうち少なくとも青色(B)及び赤色(R)の絵素を、該各絵素に付与する印加電圧が、青色(B)>赤色(R)となるように点灯することが好ましい。 The defect detection method for the display panel (liquid crystal display panel 1) according to aspect 2 of the present invention is the same as the defect detection method for the display panel (liquid crystal display panel 1) according to aspect 1, in the picture element lighting step (S11). Application that applies at least blue (B) and red (R) picture elements to each of the red (R), green (G), and blue (B) picture elements in (liquid crystal display panel 1) It is preferable to light up so that the voltage is blue (B)> red (R).
 すなわち、人間の目視観察においては、バックライトのみを点灯したときと、バックライトに加えて赤色(R)、緑色(G)、青色(B)の各絵素を点灯したときとの輝度差は、青色(B)の絵素の場合の次に赤色(R)の絵素の場合が大きい。このため、青色(B)の絵素に加えて赤色(R)の絵素を、各絵素に付与する印加電圧が、青色(B)>赤色(R)となるように点灯する。これによって、青色(B)及び赤色(R)の絵素の背景輝度と欠陥の輝度との輝度差がそれぞれ小さくなるので、欠陥として抽出され難くなる。 That is, in human visual observation, the luminance difference between when only the backlight is lit and when each of the red (R), green (G), and blue (B) picture elements is lit in addition to the backlight is The red (R) picture element is the second largest after the blue (B) picture element. For this reason, in addition to the blue (B) picture element, the red (R) picture element is lit so that the applied voltage applied to each picture element is blue (B)> red (R). As a result, the difference in luminance between the background luminance of the blue (B) and red (R) picture elements and the luminance of the defect becomes small, so that it is difficult to be extracted as a defect.
 したがって、赤色(R)、緑色(G)、青色(B)の各絵素のうち、目視検出よりも欠陥が過検出される頻度が多い青色(B)及び赤色(R)の絵素を点灯して欠陥検出を行う。これにより、目視検出よりも欠陥が過検出されるのをさらに効率的に削減し、延いては工程の歩留まり低下を抑制し得る表示パネルの欠陥検出方法を提供することができる。 Therefore, among the red (R), green (G), and blue (B) picture elements, the blue (B) and red (R) picture elements whose defects are more frequently detected than the visual detection are turned on. Then, defect detection is performed. Accordingly, it is possible to provide a display panel defect detection method that can more efficiently reduce the number of defects that are detected excessively than visual detection, and that can suppress a decrease in process yield.
 本発明の態様3における表示パネル(液晶表示パネル1)の欠陥検出方法は、前記態様2における表示パネルの欠陥検出方法において、絵素点灯工程(S21)において、前記表示パネルにおける赤色(R)、緑色(G)、青色(B)の各絵素を、該各絵素に付与する印加電圧が、青色(B)>赤色(R)≧緑色(G)となるように点灯することが好ましい。 The defect detection method for the display panel (liquid crystal display panel 1) according to aspect 3 of the present invention is the display panel defect detection method according to aspect 2, in the pixel lighting step (S21), the red (R) in the display panel, It is preferable that the green (G) and blue (B) picture elements are lit so that the applied voltage applied to each picture element is blue (B)> red (R) ≧ green (G).
 すなわち、人間の目視観察においては、バックライトのみを点灯したときと、バックライトに加えて赤色(R)、緑色(G)、青色(B)の各絵素を点灯したときとの輝度差は、青色(B)、赤色(R)、緑色(G)の絵素の順に大きい。このため、青色(B)の絵素に加えて赤色(R)、緑色(G)の絵素を、各絵素に付与する印加電圧が、青色(B)>赤色(R)≧緑色(G)となるように点灯する。これにより、青色(B)、赤色(R)、緑色(G)の絵素の背景輝度と欠陥の輝度との輝度差がそれぞれ小さくなるので、欠陥として抽出され難くなる。 That is, in human visual observation, the luminance difference between when only the backlight is lit and when each of the red (R), green (G), and blue (B) picture elements is lit in addition to the backlight is , Blue (B), red (R), green (G) picture elements in order. For this reason, in addition to the blue (B) picture element, red (R) and green (G) picture elements are applied to each picture element with a blue (B)> red (R) ≧ green (G ) To light up. As a result, the luminance difference between the background luminance of the blue (B), red (R), and green (G) picture elements and the luminance of the defect becomes small, so that it is difficult to be extracted as a defect.
 したがって、赤色(R)、緑色(G)、青色(B)の各絵素のうち、全ての絵素を点灯して欠陥検出を行えば、目視検出よりも欠陥が過検出されるのを確実に削減し、延いては工程の歩留まり低下を抑制し得る表示パネルの欠陥検出方法を提供することができる。 Therefore, if all of the red (R), green (G), and blue (B) picture elements are lit and defect detection is performed, defects are more reliably detected than visual detection. Therefore, it is possible to provide a defect detection method for a display panel that can reduce the process yield and, in turn, suppress a decrease in process yield.
 本発明の態様4における表示パネル(液晶表示パネル1)の欠陥検出方法は、前記態様1,2又は3における表示パネル(液晶表示パネル1)の欠陥検出方法において、前記絵素点灯工程を行うことなく、画像データ取得工程と欠陥部位候補抽出工程と欠陥部位絵素特定工程と欠陥判定工程とをこの順で行う非点灯時欠陥検出手順(S32~S9)と、前記絵素点灯工程を行った後、上記画像データ取得工程と欠陥部位候補抽出工程と欠陥部位絵素特定工程と欠陥判定工程とをこの順で行う点灯時欠陥検出手順(S31~S9)との両方を行うことが好ましい。 The defect detection method for the display panel (liquid crystal display panel 1) in aspect 4 of the present invention is the defect detection method for the display panel (liquid crystal display panel 1) in aspect 1, 2, or 3, wherein the pixel lighting step is performed. In addition, the non-lighting defect detection procedure (S32 to S9) in which the image data acquisition process, the defective part candidate extraction process, the defective part pixel identification process, and the defect determination process are performed in this order and the pixel lighting process are performed. Thereafter, it is preferable to perform both of the above-described image data acquisition step, defect portion candidate extraction step, defect portion pixel element identification step, and defect determination step in the lighting defect detection procedure (S31 to S9) in this order.
 すなわち、絵素点灯を行う点灯時欠陥検出手順のみにて欠陥検出を行えば、上述のように、目視検出よりも欠陥が過検出されるのを確実に削減し、延いては工程の歩留まり低下を抑制し得る表示パネルの欠陥検出方法を提供することができる。 In other words, if the defect detection is performed only by the lighting defect detection procedure that performs picture element lighting, as described above, it is possible to reliably reduce the overdetection of defects rather than the visual detection, thereby reducing the process yield. It is possible to provide a display panel defect detection method capable of suppressing the above.
 しかしながら、この点灯時欠陥検出手順ばかりを行っていれば、欠陥検出装置にて実際にどの程度の真欠陥が存在するのかを把握できなくなる。 However, if only the defect detection procedure at the time of lighting is performed, it becomes impossible to grasp how many true defects actually exist in the defect detection apparatus.
 そこで、本発明では、点灯時欠陥検出手順と非点灯時欠陥検出手順との両方を行う。これにより、実際に存在する真欠陥を把握することができる。 Therefore, in the present invention, both the lighting defect detection procedure and the non-lighting defect detection procedure are performed. Thereby, the true defect which exists actually can be grasped | ascertained.
 尚、点灯時欠陥検出手順と非点灯時欠陥検出手順とは、いずれを先に行ってもよい。いずれを先に行っても、詳細レベルの真欠陥の把握と目視観察レベルの欠陥の把握とが可能になるためである。 Incidentally, either the lighting defect detection procedure or the non-lighting defect detection procedure may be performed first. This is because, regardless of which is performed first, it is possible to grasp the true level defect and the visual observation level defect.
 尚、本発明は、上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the technical means disclosed in different embodiments can be appropriately combined. Such embodiments are also included in the technical scope of the present invention.
 本発明は、多色の絵素から構成される例えば液晶表示パネル、有機EL表示パネル、プラズマディスプレイ、LCD表示パネル等の表示パネルの欠陥を検出又は修復するに際して利用可能である。 The present invention can be used for detecting or repairing defects in display panels such as a liquid crystal display panel, an organic EL display panel, a plasma display, an LCD display panel and the like composed of multicolor picture elements.
 1    液晶表示パネル(表示パネル)
 2    表示パネル操作部(絵素点灯手段)
10    欠陥検出装置
11    撮像カメラ(画像データ取得手段)
12    欠陥部位検出部(欠陥部位候補抽出手段)
13    色特定部(欠陥部位絵素特定手段)
14    欠陥判定部(欠陥判定手段)
15    結果出力部
 F    欠陥
 Rp   赤色絵素
 Gp   緑色絵素
 Bp   青色絵素
1 Liquid crystal display panel (display panel)
2 Display panel operation section (picture element lighting means)
DESCRIPTION OF SYMBOLS 10 Defect detection apparatus 11 Imaging camera (Image data acquisition means)
12 Defective part detection unit (defective part candidate extraction means)
13 color identification part (defect part picture element identification means)
14 Defect determination unit (defect determination means)
15 Result output part F Defect Rp Red picture element Gp Green picture element Bp Blue picture element

Claims (5)

  1.  表示パネルにおける赤色(R)、緑色(G)、青色(B)の各絵素のうち少なくとも青色(B)の絵素に印加電圧を付与して該青色(B)の絵素を点灯する絵素点灯工程と、
     上記表示パネルの複数の絵素からなる画素を撮像して画像データとして取得する画像データ取得工程と、
     上記画像データの画素の撮像画素輝度信号量と画素に欠陥がない非欠陥画素における画像データの該非欠陥画素の非欠陥画素輝度信号量との差であるコントラスト値の絶対値がしきい値以上である画素を欠陥部位候補として抽出する欠陥部位候補抽出工程と、
     上記欠陥部位候補の絵素の色を特定する欠陥部位絵素特定工程と、
     上記絵素の色によって異なる補正係数を上記コントラスト値に乗じて欠陥度を算出し、該欠陥度が判定値よりも大きい場合に該色の絵素が欠陥であると判定する欠陥判定工程とを含むことを特徴とする表示パネルの欠陥検出方法。
    A picture in which an applied voltage is applied to at least the blue (B) picture element among the red (R), green (G), and blue (B) picture elements on the display panel to light the blue (B) picture element. An elementary lighting process,
    An image data acquisition step of capturing pixels as a plurality of picture elements of the display panel and acquiring them as image data;
    The absolute value of the contrast value, which is the difference between the imaging pixel luminance signal amount of the pixel of the image data and the non-defective pixel luminance signal amount of the non-defective pixel of the non-defective pixel in which the pixel is not defective, is greater than or equal to a threshold value. A defective part candidate extraction step of extracting a certain pixel as a defective part candidate;
    A defective part picture element specifying step for specifying the color of the defective part candidate picture element;
    A defect determination step of calculating a defect degree by multiplying the contrast value by a correction coefficient that varies depending on the color of the pixel and determining that the pixel of the color is defective when the defect degree is larger than a determination value. A defect detection method for a display panel, comprising:
  2.  前記絵素点灯工程において、前記表示パネルにおける赤色(R)、緑色(G)、青色(B)の各絵素のうち少なくとも青色(B)及び赤色(R)の絵素を、該各絵素に付与する印加電圧が、
     青色(B)>赤色(R)
    となるように点灯することを特徴とする請求項1記載の表示パネルの欠陥検出方法。
    In the picture element lighting step, at least the blue (B) and red (R) picture elements are selected from the red (R), green (G), and blue (B) picture elements in the display panel. The applied voltage applied to
    Blue (B)> Red (R)
    The display panel defect detection method according to claim 1, wherein the display panel is lit so that
  3.  前記絵素点灯工程において、前記表示パネルにおける赤色(R)、緑色(G)、青色(B)の各絵素を、該各絵素に付与する印加電圧が、
     青色(B)>赤色(R)≧緑色(G)
    となるように点灯することを特徴とする請求項2記載の表示パネルの欠陥検出方法。
    In the picture element lighting step, an applied voltage for applying each of the red (R), green (G), and blue (B) picture elements in the display panel to the picture elements is:
    Blue (B)> Red (R) ≧ Green (G)
    The display panel defect detection method according to claim 2, wherein the display panel is lit so that
  4.  前記絵素点灯工程を行うことなく、画像データ取得工程と欠陥部位候補抽出工程と欠陥部位絵素特定工程と欠陥判定工程とをこの順で行う非点灯時欠陥検出手順と、
     前記絵素点灯工程を行った後、上記画像データ取得工程と欠陥部位候補抽出工程と欠陥部位絵素特定工程と欠陥判定工程とをこの順で行う点灯時欠陥検出手順との両方を行うことを特徴とする請求項1、2又は3記載の表示パネルの欠陥検出方法。
    Without performing the picture element lighting step, non-lighting defect detection procedure for performing the image data acquisition step, the defective portion candidate extraction step, the defective portion pixel element identification step and the defect determination step in this order,
    After performing the picture element lighting step, performing both the image data acquisition step, the defective portion candidate extraction step, the defective portion pixel element identification step, and the defect determination step in this order in the lighting defect detection procedure. 4. The display panel defect detection method according to claim 1, 2, or 3.
  5.  表示パネルにおける赤色(R)、緑色(G)、青色(B)の各絵素のうち少なくとも青色(B)の絵素に印加電圧を付与して該青色(B)の絵素を点灯する絵素点灯手段と、
     上記表示パネルの複数の絵素からなる画素を撮像カメラにて撮像して画像データとして取得する画像データ取得手段と、
     上記画像データの画素の撮像画素輝度信号量と画素に欠陥がない非欠陥画素における画像データの該非欠陥画素の非欠陥画素輝度信号量との差であるコントラスト値の絶対値がしきい値以上である画素を欠陥部位候補として抽出する欠陥部位候補抽出手段と、
     上記欠陥部位候補の絵素の色を特定する欠陥部位絵素特定手段と、
     上記絵素の色によって異なる補正係数を上記コントラスト値に乗じて欠陥度を算出し、該欠陥度が判定値よりも大きい場合に該色の絵素が欠陥であると判定する欠陥判定手段とを含むことを特徴とする表示パネルの欠陥検出装置。
    A picture in which an applied voltage is applied to at least the blue (B) picture element among the red (R), green (G), and blue (B) picture elements on the display panel to light the blue (B) picture element. Elementary lighting means,
    An image data acquisition means for acquiring, as image data, imaging a pixel composed of a plurality of picture elements of the display panel with an imaging camera;
    The absolute value of the contrast value, which is the difference between the imaging pixel luminance signal amount of the pixel of the image data and the non-defective pixel luminance signal amount of the non-defective pixel of the non-defective pixel in which the pixel is not defective, is greater than or equal to a threshold value. A defective part candidate extracting means for extracting a certain pixel as a defective part candidate;
    A defective part pixel specifying means for specifying the color of the defective part candidate picture element;
    Defect determination means for calculating a defect degree by multiplying the contrast value by a correction coefficient that varies depending on the color of the pixel and determining that the pixel of the color is defective when the defect degree is larger than a determination value. A display panel defect detection apparatus comprising:
PCT/JP2013/081769 2013-02-27 2013-11-26 Method for detecting display panel defects and device for detecting display panel defects WO2014132506A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013036974A JP2014164221A (en) 2013-02-27 2013-02-27 Defect detection method for display panel and defect detection device for display panel
JP2013-036974 2013-02-27

Publications (1)

Publication Number Publication Date
WO2014132506A1 true WO2014132506A1 (en) 2014-09-04

Family

ID=51427795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081769 WO2014132506A1 (en) 2013-02-27 2013-11-26 Method for detecting display panel defects and device for detecting display panel defects

Country Status (2)

Country Link
JP (1) JP2014164221A (en)
WO (1) WO2014132506A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104977154A (en) * 2015-06-26 2015-10-14 清华大学 Defect classification method of spatial light modulator with sub pixel structures
WO2017177492A1 (en) * 2016-04-13 2017-10-19 深圳市华星光电技术有限公司 Test device for display panel
CN110782782A (en) * 2019-11-28 2020-02-11 合肥维信诺科技有限公司 Array substrate repairing method and system
CN111883033A (en) * 2020-07-28 2020-11-03 云谷(固安)科技有限公司 Display panel detection method and system and display panel
CN112198685A (en) * 2020-10-30 2021-01-08 成都中电熊猫显示科技有限公司 COA substrate detection method and device
CN112304969A (en) * 2019-07-15 2021-02-02 西安诺瓦星云科技股份有限公司 Display module detection device, method, apparatus and system and storage medium
CN112666178A (en) * 2020-12-14 2021-04-16 杭州当虹科技股份有限公司 Outdoor LED large screen dead pixel online monitoring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113034464B (en) * 2021-03-23 2022-07-26 昆明理工大学 Visual real-time detection method for defects of liquid crystal display under multiple backgrounds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241561A (en) * 2007-03-28 2008-10-09 Casio Comput Co Ltd Inspecting method of matrix display device
WO2010146745A1 (en) * 2009-06-15 2010-12-23 シャープ株式会社 Method for inspecting display panel, and method for producing display device
WO2011086634A1 (en) * 2010-01-14 2011-07-21 シャープ株式会社 Liquid crystal panel inspection method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241561A (en) * 2007-03-28 2008-10-09 Casio Comput Co Ltd Inspecting method of matrix display device
WO2010146745A1 (en) * 2009-06-15 2010-12-23 シャープ株式会社 Method for inspecting display panel, and method for producing display device
WO2011086634A1 (en) * 2010-01-14 2011-07-21 シャープ株式会社 Liquid crystal panel inspection method and device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104977154A (en) * 2015-06-26 2015-10-14 清华大学 Defect classification method of spatial light modulator with sub pixel structures
WO2017177492A1 (en) * 2016-04-13 2017-10-19 深圳市华星光电技术有限公司 Test device for display panel
CN112304969A (en) * 2019-07-15 2021-02-02 西安诺瓦星云科技股份有限公司 Display module detection device, method, apparatus and system and storage medium
CN110782782A (en) * 2019-11-28 2020-02-11 合肥维信诺科技有限公司 Array substrate repairing method and system
CN110782782B (en) * 2019-11-28 2022-03-29 合肥维信诺科技有限公司 Array substrate repairing method and system
CN111883033A (en) * 2020-07-28 2020-11-03 云谷(固安)科技有限公司 Display panel detection method and system and display panel
CN112198685A (en) * 2020-10-30 2021-01-08 成都中电熊猫显示科技有限公司 COA substrate detection method and device
CN112198685B (en) * 2020-10-30 2023-10-03 成都京东方显示科技有限公司 COA substrate detection method and device
CN112666178A (en) * 2020-12-14 2021-04-16 杭州当虹科技股份有限公司 Outdoor LED large screen dead pixel online monitoring method

Also Published As

Publication number Publication date
JP2014164221A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
WO2014132506A1 (en) Method for detecting display panel defects and device for detecting display panel defects
CN108682365B (en) OLED color spot detection and repair integrated system and method
WO2010146733A1 (en) Defect inspection method and defect inspection device for display panel
WO2010146732A1 (en) Defect inspection method and defect inspection device for display panel
JP2011196685A (en) Defect detection device, defect repairing device, display panel, display device, defect detection method and program
JP6000356B2 (en) Liquid crystal display panel inspection method and liquid crystal display panel inspection apparatus
JP4534825B2 (en) Defect inspection method and defect inspection apparatus
JPWO2013175703A1 (en) Display device inspection method and display device inspection device
US11321811B2 (en) Imaging apparatus and driving method of the same
JP2009229197A (en) Linear defect detecting method and device
KR102209953B1 (en) Mura Detecting Device
WO2013118306A1 (en) Defect-detecting device, defect-detecting method, computer-readable recording medium for recording defect-detecting program
JP2008020369A (en) Image analysis means, image analysis device, inspection device, image analysis program and computer-readable recording medium
KR101409568B1 (en) Inspectiing device of display panel and inspecting method of the same
US20120129419A1 (en) Display-panel inspection method, and method for fabricating display device
JP4664417B2 (en) Display panel lighting inspection device and display panel lighting inspection method.
CN115167021A (en) Detection method and detection device for display panel
KR20090074388A (en) Apparatus for inspecting of display panel and method thereof
JPH06236162A (en) Test method for defect of color liquid crystal panel and device for test
JP2005148670A (en) Method and device for generating inspection image for liquid crystal panel, and method and device for inspecting outward shape
KR100643248B1 (en) Method and apparatus for inspecting display panel
JP2011027907A (en) Method and device for creating correction data for correcting luminance unevenness
JP2001083474A (en) Method for inspecting liquid crystal display panel
JP2004294290A (en) Apparatus for inspecting display defect of display panel
JP2004170109A (en) Apparatus and method for inspecting irregular color

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876403

Country of ref document: EP

Kind code of ref document: A1