WO2014129522A1 - Fundus imaging device and retinal tissue characteristic value measurement method - Google Patents

Fundus imaging device and retinal tissue characteristic value measurement method Download PDF

Info

Publication number
WO2014129522A1
WO2014129522A1 PCT/JP2014/053963 JP2014053963W WO2014129522A1 WO 2014129522 A1 WO2014129522 A1 WO 2014129522A1 JP 2014053963 W JP2014053963 W JP 2014053963W WO 2014129522 A1 WO2014129522 A1 WO 2014129522A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
fundus
imaging
eye
feature amount
Prior art date
Application number
PCT/JP2014/053963
Other languages
French (fr)
Japanese (ja)
Inventor
中川 俊明
篤志 覺内
Original Assignee
興和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 興和株式会社 filed Critical 興和株式会社
Priority to JP2015501484A priority Critical patent/JPWO2014129522A1/en
Publication of WO2014129522A1 publication Critical patent/WO2014129522A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography

Definitions

  • the present invention relates to a fundus imaging apparatus that images a fundus of a subject's eye and measures a retinal tissue feature quantity such as oxygen saturation from the obtained image, and a feature quantity measurement method.
  • Patent Document 1 and Patent Document 2 describe an ophthalmologic photographing apparatus that divides light reflected from the fundus of an eye to be examined into two optical paths and generates a three-dimensional image of the fundus using parallax. Stereoscopic images of the fundus are useful for early detection of glaucoma and retinitis pigmentosa.
  • Patent Document 3 describes a fundus examination apparatus that can measure oxygen saturation.
  • FIG. 7 shows the principle of a conventional oxygen saturation measurement method.
  • the reflected light 101 from the fundus 100 is separated by, for example, a half mirror 102 and imaged on two imaging means 105 and 106 via optical filters 103 and 104 that transmit light in different wavelength regions, and the same part of the fundus 100 Two images without parallax are captured. Then, the oxygen saturation is measured by performing arithmetic processing on these two images.
  • Patent Document 4 also describes a retinal function camera that measures oxygen saturation by a similar method.
  • the fundus oxygen saturation can be measured, but since the obtained image has no parallax, fundus stereoscopic photography must be performed by another imaging device. There wasn't. Therefore, shooting for oxygen saturation measurement and shooting for generating a 3D fundus image must be performed separately. Since the pupil contracts, there is an annoyance that it takes a certain amount of time to shoot the other. In addition, when the images are taken with different apparatuses, the magnification rate and the angle of view of the stereoscopic fundus image and the oxygen saturation measurement image are different, and thus it is necessary to integrate and diagnose the examination results in consideration of them.
  • the present invention provides a fundus imaging apparatus capable of both stereoscopic fundus imaging and retinal tissue feature quantity measurement, and a retinal tissue feature quantity measurement method that can be performed using an apparatus that performs stereoscopic fundus imaging. It is in.
  • the fundus imaging apparatus of the present invention that solves the above problems is as follows.
  • Electronic imaging means optical path splitting means for dividing the reflected light beam from the fundus of the eye to be examined, which is arranged at the anterior eye conjugate position of the eye to be examined, into a pair of right and left light beams with parallax, and a pair of left and right fundus from the divided light flux
  • an ophthalmic imaging apparatus that shoots an image of the fundus of the eye to be examined, including an imaging optical system that separates the images into left and right and forms an image on the imaging surface of the electronic imaging means,
  • a first optical filter disposed in a first optical path in which one of the pair of right and left light beams travels and substantially transmits only the first wavelength range;
  • a second optical filter disposed in the second optical path through which one of the pair of right and left light beams travels and substantially transmits only the second wavelength region;
  • the feature amount measuring method of the present invention includes: The reflected light beam from the fundus of the eye to be examined is divided into a pair of right and left light beams with parallax by the optical path dividing means arranged at the anterior eye conjugate position of the eye to be examined, A first image formed on the imaging surface of the electronic imaging means by passing through a first optical filter that substantially transmits only one of the pair of right and left light beams only in the first wavelength range; An image signal obtained from the electronic imaging means for the second image formed on the imaging surface of the electronic imaging means through the second optical filter that substantially transmits only the other of the pair of left and right light beams only in the second wavelength range By calculating the feature amount of the retinal tissue of the fundus of the eye to be examined.
  • the reflected light from the fundus divided into two parts is passed through an optical filter that passes through different wavelength regions, and is characterized based on two parallax images formed on the electronic imaging unit.
  • the amount calculation means calculates the feature amount of the retina. Therefore, stereoscopic fundus imaging and retinal tissue feature quantity measurement can be performed using the same device.
  • FIG. 1 is an optical diagram showing the overall configuration of a fundus imaging apparatus.
  • A is a front view of a two-hole aperture stop.
  • B is a front view of an imaging mask. It is a functional block diagram of a fundus imaging apparatus.
  • A is an example of the fundus image imaged through the first optical filter.
  • B is an example of a fundus image captured through the second optical filter.
  • C is an example of a feature amount image. It is a figure which shows the principle of the measuring method of the feature-value in this invention. It is the figure which showed the result of having measured the feature-value in this invention. It is a figure which shows the principle of the measuring method of the conventional feature-value.
  • FIG. 1 is an optical diagram showing the overall structure of a fundus imaging apparatus 10 capable of stereo photography (stereoscopic photography).
  • a position conjugate with the fundus 1a of the eye 1 to be examined is indicated by R
  • a position conjugate with the anterior eye part (particularly the pupil) is indicated by P.
  • FIG. 5 shows in principle the method of calculating the feature amount of the retinal tissue by the fundus imaging apparatus 10.
  • a reflected light beam from the fundus 1a of the eye 1 to be examined is divided into a pair of left and right light beams 110 and 111 having parallax, and passes through a first optical filter 53 that substantially transmits only one of the pair of left and right light beams 110 in a first wavelength region.
  • the first image formed on the imaging surface of the electronic imaging means 57 and the second optical filter 54 that substantially transmits only the second wavelength band of the other 111 of the pair of left and right light beams is passed through the electronic imaging means.
  • the feature amount of the retinal tissue of the fundus 1a of the eye 1 to be examined is calculated by calculating the image signal obtained from the electronic imaging means 57 for the second image formed on the imaging surface 57.
  • the fundus imaging apparatus 10 includes a main body 2 and an image processing apparatus 3.
  • the main body 2 is provided with an illumination optical system that illuminates the fundus and an imaging optical system that forms an image of the illuminated fundus.
  • the illumination optical system during stereo photography, light emitted from the light source 11 such as a halogen lamp and light reflected by the concave mirror 12 become infrared light through a visible cut infrared transmission filter 13 that can be inserted into and removed from the optical path.
  • the light passes through the strobe 14, enters the diffusion plate 15, is diffused, and illuminates the ring slit 16 disposed at a position conjugate with the anterior eye portion (pupil) 1 b of the eye 1 to be examined.
  • the visible cut infrared transmission filter 13 is removed from the optical path, and an optical filter 23 is inserted between the diffusion plate 15 and the ring slit 16 instead.
  • the optical filter 23 is a filter having a characteristic that allows infrared light and light in a first wavelength range and a second wavelength range, which will be described later, to pass therethrough and blocks light in other wavelength ranges.
  • the optical filters 53 and 54 are also provided in front of the electronic image pickup means 57, the blocking of other wavelength regions is not perfect, and there may be some passage.
  • the illumination light that has passed through the ring slit 16 passes through the lens 17, the black dot plate 18 for removing the reflection of the objective lens 22, the half mirror 19, and the relay lens 20, and has a perforated total reflection mirror 21 with a hole in the center. Reflected by.
  • the black spot plate 18 is configured by depositing black spots on the center of a transparent square glass plate.
  • the illumination optical system is provided with a focus dot light source 30, and a light beam from the light source 30 is incident on the fundus 1 a via the half mirror 19, and the focus dot position changes according to the movement of the focus lens 32.
  • the examiner can focus on the fundus 1a to be examined by observing the focus dot.
  • the illumination light reflected by the perforated total reflection mirror 21 passes through the objective lens 22 and enters the fundus 1a from the anterior eye portion 1b of the subject eye 1 to illuminate the fundus 1a.
  • the reflected light from the fundus 1a is received through the objective lens 22, passes through the hole of the perforated total reflection mirror 21, and has two circular holes 31a and 31b as shown in FIG.
  • the light enters a two-hole diaphragm 31 as a photographing diaphragm.
  • the two-hole aperture 31 is an example of an optical path dividing means, and is arranged at a position substantially conjugate with the anterior eye portion 1b of the eye 1 to be examined with its center 31c aligned with the imaging optical axis 48. , 31b divides the optical path of the reflected light from the fundus into left and right.
  • a pair of right and left light beams with parallax from the fundus la with the optical path divided is movable along the imaging optical axis 48 and is incident on a focus lens 32 that corrects a shift in the fundus imaging position due to individual differences in the eye diopter. .
  • the light enters the external transmission visible reflection mirror 36.
  • the focus lens 32 and the imaging lens 33 constitute a first imaging optical system that forms a pair of left and right fundus images with parallax via the two-hole aperture 31 as intermediate images at the position of the photographing mask 42. .
  • the photographing mask 42 is a thin plate-shaped member comprising a square opening 42a, a circular area 42b that transmits only infrared light, and a light-shielding part 42c that does not transmit all wavelengths. It is.
  • the photographing mask 42 is fixedly disposed on the optical path with its center 42d aligned with the photographing optical axis 48.
  • the infrared light transmitted through the infrared transmission visible reflection mirror 36 is reflected by the mirror 38, passes through an optical path length adjusting means 39 constituted by a lens 37 and a glass plate, for example, and becomes infrared light.
  • the light is incident on an electronic image pickup means 40 composed of an infrared CCD having sensitivity.
  • the output signal of the electronic imaging means 40 is input to the monitor 41.
  • the monitor 41 displays a pair of fundus images formed at the position of the photographing mask 42 as a single fundus image.
  • the focus lens 32 is adjusted to focus again so that the double image is eliminated.
  • the anterior segment lens 44 is inserted into the optical path, so that the examiner can confirm the image of the anterior segment 1b of the subject eye 1 on the monitor 41. Further, during alignment or focusing operation, one of the internal fixation lamps 45 composed of a plurality of LED light sources 45a is turned on, and the examiner performs alignment by causing the subject to gaze at the fixation lamps. And focusing operation can be ensured.
  • the region 42 b of the imaging mask 42 is a region that transmits only infrared light, and the rectangular opening 42 a transmits light beams in all bands, so that an image captured by the image sensor 40 and displayed on the monitor 41 is displayed.
  • a rectangular outline 43c corresponding to the rectangular opening 42a is displayed, and the examiner can confirm the extent of the imaging range during stereo imaging. it can.
  • a relay lens 47 is arranged to connect an exit pupil image of the first imaging optical system to a second imaging optical system described later. Visible light reflected by the infrared transmission mirror 36 is arranged at a conjugate position with the anterior segment 1b via the relay lens 47, and divides the reflected light beam from the fundus 1b to be examined into a pair of right and left light beams having parallax 2 The light enters the aperture stop 50.
  • the two-hole stop 50 is a stop similar to the two-hole stop 31 shown in FIG. 2A, and is close to the two-hole stop 50 (that is, at a position almost conjugate with the two-hole stop 31). Lenses 51 and 52 are arranged.
  • the pair of optical path dividing lenses 51 and 52 divides the optical path from the photographing mask 42 and separates a pair of left and right fundus images formed as intermediate images at the position of the photographing mask 42 so as not to overlap each other.
  • a second imaging optical system for re-imaging is configured.
  • the optical path dividing lenses 51 and 52 are arranged symmetrically with respect to the photographing optical axis 48.
  • a first optical filter 53 that substantially transmits only the first wavelength region is disposed after the optical path dividing lens 51, and a second optical filter 54 that substantially transmits only the second wavelength region is disposed after the optical path dividing lens 52, respectively.
  • the first wavelength range is the visible green (495 to 570 nm) range
  • the second wavelength range is the visible orange (590 to 620 nm) range. This is an area.
  • Chromatic aberration correction lenses 55 and 56 are arranged after the first optical filter 53 and the second optical filter 54 as optical elements for correcting chromatic aberration. Since this is for correcting chromatic aberration between the two optical paths, the chromatic aberration correcting lens may be arranged only after one of the first optical filter 53 and the second optical filter 54.
  • the first optical filter 53, the second optical filter 54, and the chromatic aberration correction lenses 55 and 56 are configured to be inserted into and removed from the optical path. These optical elements are detached from the optical path when observing the fundus oculi 1b with the display 41 or the eyepiece lens 62, and are inserted into the optical path when calculating the feature amount of the retinal tissue.
  • An imaging surface 57a of an electronic imaging means 57 composed of a visible CCD having sensitivity to visible light is disposed on the imaging surface of the second imaging optical system, and the optical path dividing lenses 51 and 52 and the electronic imaging means 57 are arranged.
  • a return mirror 60 is disposed between the two.
  • the electronic imaging means 57 operates in conjunction with the shutter switch 46 provided on the housing of the main body 1.
  • the examiner displays a pair of left and right fundus images via the mirror 61.
  • the eyepiece 62 can be observed with the naked eye.
  • the observed fundus image is a separated pair of left and right fundus images 1c and 1d as shown by B in the upper right of FIG. 1, and the examiner can stereoscopically view the fundus. .
  • the fundus image picked up by the electronic image pickup means 57 can be stored in the memory 54.
  • the fundus image stored in the memory 54 is displayed on the monitor 41 or output to a printer (not shown). Further, the fundus image captured in a state where the optical filters 23, 53, 54 and the chromatic aberration correction lenses 55, 56 are arranged in the optical path is taken into the image processing apparatus 3 configured by, for example, a personal computer, and the feature amount Used for calculation.
  • FIG. 3 shows a functional block diagram of the image processing apparatus 3.
  • the control unit 70 is configured by a CPU and controls each hardware of the image processing apparatus 3.
  • the display unit 72 is configured by a liquid crystal display device or the like, and displays an image generated by the image processing unit 80.
  • the operation unit 73 includes a keyboard, a mouse, and the like, and serves as an interface for the examiner to operate the image processing apparatus 3.
  • the storage unit 74 is configured by a storage device such as a semiconductor memory or a hard disk device, and stores an image generated by the image processing unit 80, a program executed by the control unit 71, and the like.
  • the image processing unit 80 includes a feature amount calculation unit 81, a stereoscopic image generation unit 82, and a feature amount image generation unit 83.
  • the feature amount calculating unit 81 passes through the first optical filter 53 and forms a first image formed on the imaging surface 57a of the electronic imaging unit 57, and passes through the second optical filter 54 and passes through the second optical filter 54.
  • an image signal obtained from the electronic imaging means 57 for the second image formed on the imaging surface 57a a feature amount of the retinal tissue of the eye fundus 1a to be examined, for example, oxygen saturation is calculated.
  • FIG. 4A shows an example of the first image
  • FIG. 4B shows an example of the second image
  • a substantially circular macular portion 121 appears in the vicinity of the center, and the state in which the blood vessels 120 extend radially can be visually recognized.
  • the first image is actually obtained as a green grayscale image
  • the second image is obtained as a red grayscale image. Due to the difference in transmittance of the retinal tissue between the light in the first wavelength region and the light in the second wavelength region, the shape of the blood vessel 120 is different between the two images. Moreover, since there is parallax, the position of the macular part 121 is slightly shifted between the two images.
  • the feature amount calculating means 81 performs the following processing.
  • the first image and the second image are images having a slight parallax. Therefore, first, alignment processing of both images is performed based on parallax information or the like.
  • the transmittance to the retina is different between the first wavelength region and the second wavelength region, a blood vessel region that is commonly displayed in both images, for example, reference numeral 121a in FIGS. 4A and 4B is attached. If the alignment is performed based on the information of the part, the influence of the transmittance can usually be ignored. If it cannot be ignored, correction may be made based on the degree of chromatic aberration. Then, the oxygen saturation of the retinal tissue is calculated based on the intensity ratio of the image signals for both images after alignment. Other feature quantities such as macular tissue density can also be calculated by the same method as described above.
  • the stereoscopic image generating unit 82 generates a stereo image or a stereoscopic image of the fundus 1a to be examined by calculating an image signal obtained from the electronic imaging unit 57 for the first image and the second image.
  • the first image and the second image are viewed with the naked eye, they are grayscale images of different colors, but are basically images with parallax obtained by photographing the same part as in the conventional example.
  • a stereo image that can be stereoscopically viewed with a stereoscope or the like, or a stereoscopic image that provides a stereoscopic effect when displayed on a display device, can be generated as a monochromatic grayscale image by calculating parallax.
  • the feature amount image generating means 83 generates a feature amount image in which the measurement result of the feature amount of the retinal tissue of the eye fundus 1a to be examined is associated with the stereoscopic image.
  • FIG. 4C shows an example of the feature amount image.
  • the oxygen saturation is indicated by the thickness of the line representing the blood vessel, and the portion indicated by the thick line as indicated by reference numeral 120 is a portion where the oxygen saturation is large.
  • the line thickness is set to two levels, but actually, it is better to divide and display in more stages.
  • a stereoscopic image generated in black and white gray scale is displayed by color-coding corresponding to the magnitude of oxygen saturation, and an image showing the oxygen saturation of each part in a graph is superimposed on the stereoscopic image.
  • an image displayed side by side with a stereoscopic image may be generated.
  • Each unit of the image processing unit 80 is realized by the above-described CPU executing a program stored in the storage unit 74.
  • the image processing apparatus 3 is configured by a personal computer or the like in a separate housing from the main body 2.
  • the image processing unit 80 is configured by a microcomputer built in the main body 2, and a generated stereoscopic image is generated. Etc. may be displayed on the display 41.
  • FIG. 6 is a black and white grayscale image due to the limitation of the drawing style, but in reality, dark red, red, orange, yellow, green, It is displayed in seven colors, light blue and blue.
  • the reflected light from the fundus 1 a is divided into a pair of left and right light beams by the two-hole aperture 31, passes through the first optical filter 53, and forms an image on the imaging surface 57 a of the electronic imaging unit 57.
  • the feature amount calculating unit 81 calculates an image signal obtained from the electronic imaging unit 57 for the first image and the second image that has passed through the second optical filter 54 and formed on the imaging surface 57a of the electronic imaging unit 57. By processing, the feature amount of the retinal tissue of the eye fundus 1a to be examined is calculated. Therefore, according to the fundus imaging apparatus 10, it is possible to perform both the feature amount calculation and the stereoscopic image generation by one shooting.
  • the stereoscopic image generating means 82 generates a stereoscopic image of the fundus from the same first image and second image used for calculating the feature amount. In other words, since the feature amount calculation and the stereoscopic image generation are performed based on the same image captured by the same device, the examiner can make a diagnosis without considering the difference in magnification and angle of view. it can.
  • the examiner can use the eyepiece 62 to form a stereoscopic image of the fundus as in the conventional case. Can be observed.
  • the chromatic aberration correction lenses 55 and 56 are provided between the optical path splitting lenses 51 and 52 and the electronic image pickup means 57, the calculation accuracy of the feature amount can be increased.
  • the feature amount image generating unit 83 since the feature amount image generating unit 83 generates a feature amount image in which the stereoscopic image and the feature amount are associated with each other, the examiner can observe this and use it for diagnosis.
  • the feature amount is oxygen saturation, it can be used for early detection of glaucoma.

Abstract

A fundus imaging device comprises: an electronic imaging means; an optical path dividing means; an imaging optical system which separates fundus images into left and right and forms an image on an imaging plane of the electronic imaging means; a first optical filter which is disposed on a first light path and substantially transmits only a first wavelength region; a second optical filter which is disposed on a second light path and substantially transmits only a second wavelength region; and a characteristic value calculation means which calculates a characteristic value of the retinal tissue of the subject's fundus from a first image which passes through the first optical filter and is imaged on the imaging plane of the electronic imaging means and a second image which passes through the second optical filter and is imaged on the imaging plane of the electronic imaging means.

Description

眼底撮像装置および網膜組織特徴量測定方法Fundus imaging apparatus and retinal tissue feature amount measuring method
 本発明は、被検眼の眼底を撮像し、得られた画像から酸素飽和度等の網膜組織特徴量を測定する眼底撮像装置および特徴量の測定方法に関する。 The present invention relates to a fundus imaging apparatus that images a fundus of a subject's eye and measures a retinal tissue feature quantity such as oxygen saturation from the obtained image, and a feature quantity measurement method.
 特許文献1と特許文献2には、被検眼の眼底から反射された光を二つの光路に分け視差を利用して眼底の立体的な画像を生成する眼科撮影装置が記載されている。眼底の立体画像は緑内障や網膜色素変性症の早期発見に有用である。 Patent Document 1 and Patent Document 2 describe an ophthalmologic photographing apparatus that divides light reflected from the fundus of an eye to be examined into two optical paths and generates a three-dimensional image of the fundus using parallax. Stereoscopic images of the fundus are useful for early detection of glaucoma and retinitis pigmentosa.
 近年、眼底の酸素飽和度測定による緑内障の早期発見が期待されている。特許文献3には、酸素飽和度を測定することができる眼底検査装置が記載されている。図7に、従来の酸素飽和度測定方法の原理を示す。眼底100からの反射光101を例えばハーフミラー102により分離して、異なる波長領域の光を透過させる光学フィルタ103、104を介して二つの撮像手段105、106に結像させて眼底100の同一部分の視差のない2つの画像を撮像する。そして、これら2つの画像に対して演算処理を行うことにより酸素飽和度を測定する。特許文献4にも同様の方法で酸素飽和度を測定する網膜機能カメラが記載されている。 In recent years, early detection of glaucoma is expected by measuring oxygen saturation in the fundus. Patent Document 3 describes a fundus examination apparatus that can measure oxygen saturation. FIG. 7 shows the principle of a conventional oxygen saturation measurement method. The reflected light 101 from the fundus 100 is separated by, for example, a half mirror 102 and imaged on two imaging means 105 and 106 via optical filters 103 and 104 that transmit light in different wavelength regions, and the same part of the fundus 100 Two images without parallax are captured. Then, the oxygen saturation is measured by performing arithmetic processing on these two images. Patent Document 4 also describes a retinal function camera that measures oxygen saturation by a similar method.
国際公開第2010/087046号International Publication No. 2010/087046 国際公開第2010/140246号International Publication No. 2010/140246 特開平8-71045号公報JP-A-8-71045 特許第4197953号公報Japanese Patent No. 4197953
 特許文献3、4に記載の装置によれば眼底の酸素飽和度の測定をすることができるが、得られる画像は視差のないものであるから眼底立体撮影は別の撮像装置で行わなければならなかった。そのため、酸素飽和度測定のための撮影と立体眼底画像生成のための撮影を別に行わなければならず、無散瞳状態で撮影しようと思えば、先に行ったどちらかの撮影で被検眼の瞳孔が縮小するため、ある程度の間を取って、もう一方の撮影をしなければならない、という煩わしさがあった。また、異なる装置で撮影された場合、立体眼底画像と酸素飽和度測定画像の拡大率や画角が異なるため、それらを考慮して検査結果を統合し診断する必要があった。 According to the devices described in Patent Documents 3 and 4, the fundus oxygen saturation can be measured, but since the obtained image has no parallax, fundus stereoscopic photography must be performed by another imaging device. There wasn't. Therefore, shooting for oxygen saturation measurement and shooting for generating a 3D fundus image must be performed separately. Since the pupil contracts, there is an annoyance that it takes a certain amount of time to shoot the other. In addition, when the images are taken with different apparatuses, the magnification rate and the angle of view of the stereoscopic fundus image and the oxygen saturation measurement image are different, and thus it is necessary to integrate and diagnose the examination results in consideration of them.
 本発明は上記課題に鑑み、立体眼底撮影と網膜組織特徴量測定の両方が可能な眼底撮影装置、および立体眼底撮影を行う装置を用いて行うことができる網膜組織特徴量測定方法を提供することにある。 In view of the above problems, the present invention provides a fundus imaging apparatus capable of both stereoscopic fundus imaging and retinal tissue feature quantity measurement, and a retinal tissue feature quantity measurement method that can be performed using an apparatus that performs stereoscopic fundus imaging. It is in.
 上記課題を解決する本発明の眼底撮影装置は、
 電子撮像手段と、被検眼の前眼部共役位置に配置され被検眼眼底からの反射光束を視差のある左右一対の光束に分割するための光路分割手段と、分割された光束から左右一対の眼底像をそれぞれ左右に分離して電子撮像手段の撮像面に結像する結像光学系と、を備え被検眼眼底の画像を撮影する眼科撮像装置において、
 左右一対の光束の一方が進む第一の光路に配置され第一の波長域のみ実質透過させる第一の光学フィルタと、
 左右一対の光束の一方が進む第二の光路に配置され第二の波長域のみ実質透過させる第二の光学フィルタと、
 第一の光学フィルタを通過して電子撮像手段の撮像面に結像した第一の画像と、第二の光学フィルタを通過して電子撮像手段の撮像面に結像した第二の画像とについて電子撮像手段から得られる画像信号を演算することにより被検眼眼底の網膜組織の特徴量を算出する特徴量算出手段と、を備えることを特徴とする。
The fundus imaging apparatus of the present invention that solves the above problems is as follows.
Electronic imaging means, optical path splitting means for dividing the reflected light beam from the fundus of the eye to be examined, which is arranged at the anterior eye conjugate position of the eye to be examined, into a pair of right and left light beams with parallax, and a pair of left and right fundus from the divided light flux In an ophthalmic imaging apparatus that shoots an image of the fundus of the eye to be examined, including an imaging optical system that separates the images into left and right and forms an image on the imaging surface of the electronic imaging means,
A first optical filter disposed in a first optical path in which one of the pair of right and left light beams travels and substantially transmits only the first wavelength range;
A second optical filter disposed in the second optical path through which one of the pair of right and left light beams travels and substantially transmits only the second wavelength region;
A first image that passes through the first optical filter and forms an image on the imaging surface of the electronic imaging means, and a second image that passes through the second optical filter and forms an image on the imaging surface of the electronic imaging means Characteristic amount calculating means for calculating a characteristic amount of the retinal tissue of the fundus of the eye to be examined by calculating an image signal obtained from the electronic imaging means.
 また、本発明の特徴量測定方法は、
 被検眼の前眼部共役位置に配置された光路分割手段により被検眼眼底からの反射光束を視差のある左右一対の光束に分割し、
 左右一対の光束の一方を第一の波長域のみ実質透過させる第一の光学フィルタを通過させて電子撮像手段の撮像面に結像させた第一の画像と、
 左右一対の光束の他方を第二の波長域のみ実質透過させる第二の光学フィルタを通過させて電子撮像手段の撮像面に結像させた第二の画像とについて電子撮像手段から得られる画像信号を演算することにより被検眼眼底の網膜組織の特徴量を算出することを特徴とする。
The feature amount measuring method of the present invention includes:
The reflected light beam from the fundus of the eye to be examined is divided into a pair of right and left light beams with parallax by the optical path dividing means arranged at the anterior eye conjugate position of the eye to be examined,
A first image formed on the imaging surface of the electronic imaging means by passing through a first optical filter that substantially transmits only one of the pair of right and left light beams only in the first wavelength range;
An image signal obtained from the electronic imaging means for the second image formed on the imaging surface of the electronic imaging means through the second optical filter that substantially transmits only the other of the pair of left and right light beams only in the second wavelength range By calculating the feature amount of the retinal tissue of the fundus of the eye to be examined.
 本発明の眼底撮像装置によれば、二つに分割した眼底からの反射光を異なる波長領域を通過させる光学フィルタを通過させ、電子撮像手段に結像した二つの視差のある画像に基づいて特徴量算出手段が網膜の特徴量を算出する。そのため、立体眼底撮影と網膜組織特徴量測定を同一の装置を用いて行うことができる。 According to the fundus imaging apparatus of the present invention, the reflected light from the fundus divided into two parts is passed through an optical filter that passes through different wavelength regions, and is characterized based on two parallax images formed on the electronic imaging unit. The amount calculation means calculates the feature amount of the retina. Therefore, stereoscopic fundus imaging and retinal tissue feature quantity measurement can be performed using the same device.
眼底撮像装置の全体の構成を示す光学図である。1 is an optical diagram showing the overall configuration of a fundus imaging apparatus. (a)は2孔絞りの正面図である。(b)は撮影マスクの正面図である。(A) is a front view of a two-hole aperture stop. (B) is a front view of an imaging mask. 眼底撮像装置の機能ブロック図である。It is a functional block diagram of a fundus imaging apparatus. (a)は第一の光学フィルタを介して撮像された眼底像の例である。(b)は第二の光学フィルタを介して撮像された眼底像の例である。(c)は特徴量画像の例である。(A) is an example of the fundus image imaged through the first optical filter. (B) is an example of a fundus image captured through the second optical filter. (C) is an example of a feature amount image. 本発明における特徴量の測定方法の原理を示す図である。It is a figure which shows the principle of the measuring method of the feature-value in this invention. 本発明における特徴量の測定を行った結果を示した図である。It is the figure which showed the result of having measured the feature-value in this invention. 従来の特徴量の測定方法の原理を示す図である。It is a figure which shows the principle of the measuring method of the conventional feature-value.
 以下、図面を参照しながら実施例に基づいて本発明の眼底撮像装置を詳細に説明する。 Hereinafter, the fundus imaging apparatus of the present invention will be described in detail based on examples with reference to the drawings.
 図1は、ステレオ撮影(立体撮影)が可能な眼底撮像装置10の全体構造を示す光学図である。図1において、被検眼1の眼底1aと共役な位置がRで、また前眼部(特に瞳)と共役な位置がPで図示されている。 FIG. 1 is an optical diagram showing the overall structure of a fundus imaging apparatus 10 capable of stereo photography (stereoscopic photography). In FIG. 1, a position conjugate with the fundus 1a of the eye 1 to be examined is indicated by R, and a position conjugate with the anterior eye part (particularly the pupil) is indicated by P.
 図5は、眼底撮像装置10による網膜組織の特徴量の算出方法を原理的に示したものである。被検眼1の眼底1aからの反射光束を視差のある左右一対の光束110、111に分割し、左右一対の光束の一方110を第一の波長域のみ実質透過させる第一の光学フィルタ53を通過させて電子撮像手段57の撮像面に結像させた第一の画像と、 左右一対の光束の他方111を第二の波長域のみ実質透過させる第二の光学フィルタ54を通過させて電子撮像手段57の撮像面に結像させた第二の画像とについて電子撮像手段57から得られる画像信号を演算することにより被検眼1の眼底1aの網膜組織の特徴量を算出する。 FIG. 5 shows in principle the method of calculating the feature amount of the retinal tissue by the fundus imaging apparatus 10. A reflected light beam from the fundus 1a of the eye 1 to be examined is divided into a pair of left and right light beams 110 and 111 having parallax, and passes through a first optical filter 53 that substantially transmits only one of the pair of left and right light beams 110 in a first wavelength region. The first image formed on the imaging surface of the electronic imaging means 57 and the second optical filter 54 that substantially transmits only the second wavelength band of the other 111 of the pair of left and right light beams is passed through the electronic imaging means. The feature amount of the retinal tissue of the fundus 1a of the eye 1 to be examined is calculated by calculating the image signal obtained from the electronic imaging means 57 for the second image formed on the imaging surface 57.
 眼底撮像装置10は、本体2と画像処理装置3により構成され、本体2には眼底を照明する照明光学系と、照明された眼底を結像する結像光学系が設けられている。照明光学系では、ステレオ撮影時には、ハロゲンランプなどの光源11から発せられた光並びに凹面鏡12で反射した光は、光路に挿脱可能な可視カット赤外透過フィルタ13を介して赤外光となり、ストロボ14を通過して拡散板15に入射して拡散され、被検眼1の前眼部(瞳)1bと共役な位置に配置されたリングスリット16を照明する。 The fundus imaging apparatus 10 includes a main body 2 and an image processing apparatus 3. The main body 2 is provided with an illumination optical system that illuminates the fundus and an imaging optical system that forms an image of the illuminated fundus. In the illumination optical system, during stereo photography, light emitted from the light source 11 such as a halogen lamp and light reflected by the concave mirror 12 become infrared light through a visible cut infrared transmission filter 13 that can be inserted into and removed from the optical path. The light passes through the strobe 14, enters the diffusion plate 15, is diffused, and illuminates the ring slit 16 disposed at a position conjugate with the anterior eye portion (pupil) 1 b of the eye 1 to be examined.
 酸素飽和度の測定時には、可視カット赤外透過フィルタ13が光路から取り除かれ、代わりに光学フィルタ23が拡散板15とリングスリット16の間に挿入される。光学フィルタ23は、赤外光と後述する第一の波長域と第二の波長域の光を通過させ、その他の波長域の光を遮断する特性を持ったフィルタである。なお、後述するように電子撮像手段57の前にも光学フィルタ53、54が設けられるので、その他の波長域の遮断は完全なものでなく多少の通過があってもかまわない。 At the time of measuring oxygen saturation, the visible cut infrared transmission filter 13 is removed from the optical path, and an optical filter 23 is inserted between the diffusion plate 15 and the ring slit 16 instead. The optical filter 23 is a filter having a characteristic that allows infrared light and light in a first wavelength range and a second wavelength range, which will be described later, to pass therethrough and blocks light in other wavelength ranges. As will be described later, since the optical filters 53 and 54 are also provided in front of the electronic image pickup means 57, the blocking of other wavelength regions is not perfect, and there may be some passage.
 リングスリット16を通過した照明光は、レンズ17、対物レンズ22の反射を除去するための黒点板18、ハーフミラー19、リレーレンズ20を通過し、中心に穴の開いた穴あき全反射ミラー21で反射される。黒点板18は、透明な正方形のガラス板中心に黒点を蒸着したものとして構成される。 The illumination light that has passed through the ring slit 16 passes through the lens 17, the black dot plate 18 for removing the reflection of the objective lens 22, the half mirror 19, and the relay lens 20, and has a perforated total reflection mirror 21 with a hole in the center. Reflected by. The black spot plate 18 is configured by depositing black spots on the center of a transparent square glass plate.
 また、照明光学系には、フォーカスドット光源30が設けられ、この光源30からの光束がハーフミラー19を介して眼底1aに入射され、フォーカスレンズ32の移動に応じてフォーカスドット位置が変化するので、検者はフォーカスドットを観察することにより被検眼眼底1aにピントを合わせることができる。 Further, the illumination optical system is provided with a focus dot light source 30, and a light beam from the light source 30 is incident on the fundus 1 a via the half mirror 19, and the focus dot position changes according to the movement of the focus lens 32. The examiner can focus on the fundus 1a to be examined by observing the focus dot.
 穴あき全反射ミラー21で反射された照明光は対物レンズ22を経て、被検眼1の前眼部1bより眼底1aに入射し、眼底1aを照明する。 The illumination light reflected by the perforated total reflection mirror 21 passes through the objective lens 22 and enters the fundus 1a from the anterior eye portion 1b of the subject eye 1 to illuminate the fundus 1a.
 眼底1aからの反射光は、対物レンズ22を介して受光され、穴あき全反射ミラー21の穴を通過して、図2(a)に示したような円形の2つの孔31aと31bを有する撮影絞りとしての2孔絞り31に入射する。2孔絞り31は、光路分割手段の一例で、その中心31cを撮影光軸48に合わせて被検眼1の前眼部1bとほぼ共役な位置に配置され、2孔絞り31の2つの孔31a、31bにより眼底からの反射光はその光路が左右に分割される。光路が分割された眼底1aからの視差のある左右一対の光束は撮影光軸48に沿って移動可能で被検眼視度の個体差による眼底結像位置のずれを補正するフォーカスレンズ32に入射する。 The reflected light from the fundus 1a is received through the objective lens 22, passes through the hole of the perforated total reflection mirror 21, and has two circular holes 31a and 31b as shown in FIG. The light enters a two-hole diaphragm 31 as a photographing diaphragm. The two-hole aperture 31 is an example of an optical path dividing means, and is arranged at a position substantially conjugate with the anterior eye portion 1b of the eye 1 to be examined with its center 31c aligned with the imaging optical axis 48. , 31b divides the optical path of the reflected light from the fundus into left and right. A pair of right and left light beams with parallax from the fundus la with the optical path divided is movable along the imaging optical axis 48 and is incident on a focus lens 32 that corrects a shift in the fundus imaging position due to individual differences in the eye diopter. .
 フォーカスレンズ32を通過した眼底像は、続いて結像レンズ33を通過して、ハーフミラー34で反射され、眼底1aと共役な位置に配置され眼底の撮影範囲を定める撮影マスク42を介して赤外透過可視反射ミラー36に入射する。フォーカスレンズ32と結像レンズ33は、2孔絞り31を介した視差のある左右一対の2つの眼底像を撮影マスク42の位置に中間像として結像する第一の結像光学系を構成する。 The fundus image that has passed through the focus lens 32 subsequently passes through the imaging lens 33, is reflected by the half mirror 34, is placed at a position conjugate with the fundus la, and is red via the imaging mask 42 that defines the fundus imaging range. The light enters the external transmission visible reflection mirror 36. The focus lens 32 and the imaging lens 33 constitute a first imaging optical system that forms a pair of left and right fundus images with parallax via the two-hole aperture 31 as intermediate images at the position of the photographing mask 42. .
 撮影マスク42は、図2(b)に図示したように、正方形の開口部42aと赤外光のみを透過させる外周が円形な領域42bと全波長不透過の遮光部42cからなる薄板状の部材である。撮影マスク42はその中心42dを撮影光軸48に合わせて光路に固定配置されている。 As shown in FIG. 2B, the photographing mask 42 is a thin plate-shaped member comprising a square opening 42a, a circular area 42b that transmits only infrared light, and a light-shielding part 42c that does not transmit all wavelengths. It is. The photographing mask 42 is fixedly disposed on the optical path with its center 42d aligned with the photographing optical axis 48.
 図1に戻って、赤外透過可視反射ミラー36を透過した赤外光は、ミラー38で反射され、レンズ37と例えばガラス板により構成される光路長調整手段39を通過して赤外光に感度を有する赤外CCDなどで構成される電子撮像手段40に入射される。電子撮像手段40の出力信号は、モニタ41に入力される。眼底1aにピントが合っていると、モニタ41には、撮影マスク42の位置に結像された一対の眼底像が重なり合って一つの眼底像として表示される。一対の眼底像がずれて2重像として表示される場合には、2重像が解消するように、フォーカスレンズ32を調節して再度ピント合わせを行う。 Returning to FIG. 1, the infrared light transmitted through the infrared transmission visible reflection mirror 36 is reflected by the mirror 38, passes through an optical path length adjusting means 39 constituted by a lens 37 and a glass plate, for example, and becomes infrared light. The light is incident on an electronic image pickup means 40 composed of an infrared CCD having sensitivity. The output signal of the electronic imaging means 40 is input to the monitor 41. When the fundus 1a is in focus, the monitor 41 displays a pair of fundus images formed at the position of the photographing mask 42 as a single fundus image. When the pair of fundus images are shifted and displayed as a double image, the focus lens 32 is adjusted to focus again so that the double image is eliminated.
 また、アライメントの初期段階では、前眼部レンズ44が光路に挿入されるので、検者は被検眼1の前眼部1bの画像をモニタ41で確認することができる。また、アライメントや合焦操作のときは、複数のLED光源45aからなる内部固視灯45のいずれかのLED光源が点灯され、検者は被検者にこの固視灯を注視させることによりアライメントや合焦操作を確実にすることができる。 In the initial stage of alignment, the anterior segment lens 44 is inserted into the optical path, so that the examiner can confirm the image of the anterior segment 1b of the subject eye 1 on the monitor 41. Further, during alignment or focusing operation, one of the internal fixation lamps 45 composed of a plurality of LED light sources 45a is turned on, and the examiner performs alignment by causing the subject to gaze at the fixation lamps. And focusing operation can be ensured.
 撮影マスク42の領域42bは、赤外光のみを透過する領域であり、矩形開口部42aは、すべての帯域の光束を透過させるので、撮像素子40で撮像され、モニタ41に表示される画像には、図1の右上のAで示したように、矩形開口部42aに対応した矩形の輪郭線43cが表示され、検者はステレオ撮影時の撮影範囲がどの程度であるかを確認することができる。 The region 42 b of the imaging mask 42 is a region that transmits only infrared light, and the rectangular opening 42 a transmits light beams in all bands, so that an image captured by the image sensor 40 and displayed on the monitor 41 is displayed. As shown by A in the upper right of FIG. 1, a rectangular outline 43c corresponding to the rectangular opening 42a is displayed, and the examiner can confirm the extent of the imaging range during stereo imaging. it can.
 リレーレンズ47が、第一の結像光学系の射出瞳像を後述の第二の結像光学系に結ぶために配置されている。赤外透過ミラー36で反射された可視光が、このリレーレンズ47を介して前眼部1bと共役位置に配置され被検眼眼底1bからの反射光束を視差のある左右一対の光束に分割する2孔絞り50に入射する。2孔絞り50は、図2(a)に示した2孔絞り31と同様な絞りであり、2孔絞り50に近接して(つまり2孔絞り31とほぼ共役な位置に)一対の光路分割レンズ51、52が配置される。この一対の光路分割レンズ51、52は、撮影マスク42からの光路を分割し、撮影マスク42の位置に中間像として結像された左右一対の眼底像を互いに重ならないように左右に分離して再結像する第二の結像光学系を構成する。ここで光路分割レンズ51、52は撮影光軸48に対して軸対称に配置されることが最適である。 A relay lens 47 is arranged to connect an exit pupil image of the first imaging optical system to a second imaging optical system described later. Visible light reflected by the infrared transmission mirror 36 is arranged at a conjugate position with the anterior segment 1b via the relay lens 47, and divides the reflected light beam from the fundus 1b to be examined into a pair of right and left light beams having parallax 2 The light enters the aperture stop 50. The two-hole stop 50 is a stop similar to the two-hole stop 31 shown in FIG. 2A, and is close to the two-hole stop 50 (that is, at a position almost conjugate with the two-hole stop 31). Lenses 51 and 52 are arranged. The pair of optical path dividing lenses 51 and 52 divides the optical path from the photographing mask 42 and separates a pair of left and right fundus images formed as intermediate images at the position of the photographing mask 42 so as not to overlap each other. A second imaging optical system for re-imaging is configured. Here, it is optimal that the optical path dividing lenses 51 and 52 are arranged symmetrically with respect to the photographing optical axis 48.
 光路分割レンズ51の後には第一の波長域のみ実質透過させる第一の光学フィルタ53が、 光路分割レンズ52の後には第二の波長域のみ実質透過させる第二の光学フィルタ54がそれぞれ配置される。ここで、特徴量として酸素飽和度を測定する際には、第一の波長域は可視光の緑(495~570nm)の領域、第二の波長域は可視光の橙(590~620nm)の領域とする。 A first optical filter 53 that substantially transmits only the first wavelength region is disposed after the optical path dividing lens 51, and a second optical filter 54 that substantially transmits only the second wavelength region is disposed after the optical path dividing lens 52, respectively. The Here, when measuring the oxygen saturation as a feature quantity, the first wavelength range is the visible green (495 to 570 nm) range, and the second wavelength range is the visible orange (590 to 620 nm) range. This is an area.
 第一の光学フィルタ53、第二の光学フィルタ54の後には色収差を補正する光学素子として色収差補正レンズ55、56が配置される。これは、二つの光路の間の色収差を補正するためのものであるから、第一の光学フィルタ53と第二の光学フィルタ54の一方の後にだけ色収差補正レンズを配置するようにしてもよい。 Chromatic aberration correction lenses 55 and 56 are arranged after the first optical filter 53 and the second optical filter 54 as optical elements for correcting chromatic aberration. Since this is for correcting chromatic aberration between the two optical paths, the chromatic aberration correcting lens may be arranged only after one of the first optical filter 53 and the second optical filter 54.
 第一の光学フィルタ53、第二の光学フィルタ54、色収差補正レンズ55、56は光路に挿脱可能に構成されている。これらの光学素子は、ディスプレイ41または接眼レンズ62で眼底1bを観察する際には光路から離脱され、網膜組織の特徴量を算出する際には光路に挿入される。 The first optical filter 53, the second optical filter 54, and the chromatic aberration correction lenses 55 and 56 are configured to be inserted into and removed from the optical path. These optical elements are detached from the optical path when observing the fundus oculi 1b with the display 41 or the eyepiece lens 62, and are inserted into the optical path when calculating the feature amount of the retinal tissue.
 この第二の結像光学系による結像面に、可視光に感度を有する可視CCDなどで構成される電子撮像手段57の撮像面57aが配置され、光路分割レンズ51、52と電子撮像手段57との間にはリターンミラー60が配置される。電子撮像手段57は、本体1の筐体に設けられたシャッタスイッチ46と連動して動作する。光学フィルタ23、53、54および色収差補正レンズ55、56が光路から離脱され、リターンミラー60が光路に挿入される場合には、検者は分離された左右一対の眼底像をミラー61を介して接眼レンズ62により肉眼観察することができる。このとき、観察される眼底像は、図1の右上のBで示したように、分離された左右一対の視差のある眼底像1c、1dであり、検者は眼底を立体視することができる。 An imaging surface 57a of an electronic imaging means 57 composed of a visible CCD having sensitivity to visible light is disposed on the imaging surface of the second imaging optical system, and the optical path dividing lenses 51 and 52 and the electronic imaging means 57 are arranged. A return mirror 60 is disposed between the two. The electronic imaging means 57 operates in conjunction with the shutter switch 46 provided on the housing of the main body 1. When the optical filters 23, 53, 54 and the chromatic aberration correction lenses 55, 56 are detached from the optical path and the return mirror 60 is inserted into the optical path, the examiner displays a pair of left and right fundus images via the mirror 61. The eyepiece 62 can be observed with the naked eye. At this time, the observed fundus image is a separated pair of left and right fundus images 1c and 1d as shown by B in the upper right of FIG. 1, and the examiner can stereoscopically view the fundus. .
 電子撮像手段57で撮像された眼底像は、メモリ54に記憶することがでる。メモリ54に記憶された眼底像は、モニタ41に表示したり、不図示のプリンタに出力したりする。また、光学フィルタ23、53、54および色収差補正レンズ55、56が光路に配置された状態で撮像された眼底像は、例えばパーソナルコンピュータにより構成される画像処理装置3に取り込まれて、特徴量の算出に用いられる。 The fundus image picked up by the electronic image pickup means 57 can be stored in the memory 54. The fundus image stored in the memory 54 is displayed on the monitor 41 or output to a printer (not shown). Further, the fundus image captured in a state where the optical filters 23, 53, 54 and the chromatic aberration correction lenses 55, 56 are arranged in the optical path is taken into the image processing apparatus 3 configured by, for example, a personal computer, and the feature amount Used for calculation.
 図3に、画像処理装置3の機能ブロック図を示す。制御部70は、CPUにより構成され画像処理装置3の各ハードウェアを制御する。表示部72は、液晶ディスプレイ装置等により構成され、画像処理部80により生成された画像の表示を行う。操作部73は、キーボード、マウス等により構成され検者が画像処理装置3を操作するためのインターフェースとなる。記憶部74は、半導体メモリ、ハードディスク装置等の記憶装置により構成され、画像処理部80により生成された画像、制御部71が実行するプログラム等を記憶する。 FIG. 3 shows a functional block diagram of the image processing apparatus 3. The control unit 70 is configured by a CPU and controls each hardware of the image processing apparatus 3. The display unit 72 is configured by a liquid crystal display device or the like, and displays an image generated by the image processing unit 80. The operation unit 73 includes a keyboard, a mouse, and the like, and serves as an interface for the examiner to operate the image processing apparatus 3. The storage unit 74 is configured by a storage device such as a semiconductor memory or a hard disk device, and stores an image generated by the image processing unit 80, a program executed by the control unit 71, and the like.
 画像処理部80は、特徴量算出手段81、立体画像生成手段82、特徴量画像生成手段83を備えている。特徴量算出手段81は、第一の光学フィルタ53を通過して電子撮像手段57の撮像面57aに結像した第一の画像と、第二の光学フィルタ54を通過して電子撮像手段57の撮像面57aに結像した第二の画像について電子撮像手段57から得られる画像信号を演算することにより被検眼眼底1aの網膜組織の特徴量、例えば酸素飽和度を算出する。 The image processing unit 80 includes a feature amount calculation unit 81, a stereoscopic image generation unit 82, and a feature amount image generation unit 83. The feature amount calculating unit 81 passes through the first optical filter 53 and forms a first image formed on the imaging surface 57a of the electronic imaging unit 57, and passes through the second optical filter 54 and passes through the second optical filter 54. By calculating an image signal obtained from the electronic imaging means 57 for the second image formed on the imaging surface 57a, a feature amount of the retinal tissue of the eye fundus 1a to be examined, for example, oxygen saturation is calculated.
 図4(a)に第一の画像の例を、図4(b)に第二の画像の例を、それぞれ示す。中心付近に略円形の黄斑部121が表れ、ここから放射状に血管120が伸びている状態が視認できる。ここでは、模式的に線図としているが、実際には第一の画像は緑色のグレースケール画像、第二の画像は赤色のグレースケール画像として得られる。第一の波長領域の光と第二の波長領域の光との間の網膜組織の透過率の違いにより血管120の形状は二つの画像の間で異なっている。また、視差があるため、黄斑部121の位置が二つの画像の間で若干ずれている。 4A shows an example of the first image, and FIG. 4B shows an example of the second image. A substantially circular macular portion 121 appears in the vicinity of the center, and the state in which the blood vessels 120 extend radially can be visually recognized. Although a schematic diagram is used here, the first image is actually obtained as a green grayscale image, and the second image is obtained as a red grayscale image. Due to the difference in transmittance of the retinal tissue between the light in the first wavelength region and the light in the second wavelength region, the shape of the blood vessel 120 is different between the two images. Moreover, since there is parallax, the position of the macular part 121 is slightly shifted between the two images.
 酸素飽和度を算出する場合、特徴量算出手段81は次のような処理を行う。第一の画像と第二の画像は若干の視差がある画像である。そのため、まず視差情報等に基づいて両画像の位置合わせ処理を行う。第一の波長領域と第二の波長領域とでは網膜への透過率が異なるが、両画像に共通して表れている血管領域、例えば図4(a)、(b)の符号121aを付した部分、の情報に基づいて位置合わせを行えば通常は透過率の影響を無視することができる。無視することができない場合には、色収差の程度に基づいて補正をするようにしてもよい。そして、位置合わせ後の両画像について画像信号の強度比に基づいて網膜組織の酸素飽和度を算出する。黄斑組織密度等の他の特徴量も上記と同様の方法で算出することができる。 When calculating the oxygen saturation, the feature amount calculating means 81 performs the following processing. The first image and the second image are images having a slight parallax. Therefore, first, alignment processing of both images is performed based on parallax information or the like. Although the transmittance to the retina is different between the first wavelength region and the second wavelength region, a blood vessel region that is commonly displayed in both images, for example, reference numeral 121a in FIGS. 4A and 4B is attached. If the alignment is performed based on the information of the part, the influence of the transmittance can usually be ignored. If it cannot be ignored, correction may be made based on the degree of chromatic aberration. Then, the oxygen saturation of the retinal tissue is calculated based on the intensity ratio of the image signals for both images after alignment. Other feature quantities such as macular tissue density can also be calculated by the same method as described above.
 立体画像生成手段82は、第一の画像と第二の画像について、電子撮像手段57から得られる画像信号を演算することにより、被検眼眼底1aのステレオ画像または立体画像を生成する。第一の画像と第二の画像を肉眼で見た場合は、異なる色のグレースケール画像であるが、基本的には、従来例と同様な同一箇所を撮影した視差のある画像であるから、ステレオスコープ等によって立体視することができるステレオ画像や表示装置に表示したとき立体感が得られる立体画像を、視差の計算を行うことにより単色のグレースケール画像として生成することができる。 The stereoscopic image generating unit 82 generates a stereo image or a stereoscopic image of the fundus 1a to be examined by calculating an image signal obtained from the electronic imaging unit 57 for the first image and the second image. When the first image and the second image are viewed with the naked eye, they are grayscale images of different colors, but are basically images with parallax obtained by photographing the same part as in the conventional example. A stereo image that can be stereoscopically viewed with a stereoscope or the like, or a stereoscopic image that provides a stereoscopic effect when displayed on a display device, can be generated as a monochromatic grayscale image by calculating parallax.
 特徴量画像生成手段83は、被検眼眼底1aの網膜組織の特徴量の測定結果と立体画像とを対応付けた特徴量画像を生成する。図4に(c)に特徴量画像の一例を示す。この例では、血管を表す線の太さで酸素飽和度を示しており、符号120で示したように太線となっている箇所は酸素飽和度が大きい箇所である。ここでは、線の太さを2段階としているが、実際にはもっと多くの段階に分けて表示するとよい。このほか、特徴量画像として、白黒のグレースケールで生成された立体画像を酸素飽和度の大小に対応して色分けして表示した画像、各部の酸素飽和度をグラフ表示した画像を立体画像に重ねて、あるいは立体画像と並べて表示した画像等を生成してもよい。 The feature amount image generating means 83 generates a feature amount image in which the measurement result of the feature amount of the retinal tissue of the eye fundus 1a to be examined is associated with the stereoscopic image. FIG. 4C shows an example of the feature amount image. In this example, the oxygen saturation is indicated by the thickness of the line representing the blood vessel, and the portion indicated by the thick line as indicated by reference numeral 120 is a portion where the oxygen saturation is large. Here, the line thickness is set to two levels, but actually, it is better to divide and display in more stages. In addition, as a feature amount image, a stereoscopic image generated in black and white gray scale is displayed by color-coding corresponding to the magnitude of oxygen saturation, and an image showing the oxygen saturation of each part in a graph is superimposed on the stereoscopic image. Alternatively, an image displayed side by side with a stereoscopic image may be generated.
 画像処理部80の各手段は前述のCPUが記憶部74に記憶されたプログラムを実行することにより実現される。 Each unit of the image processing unit 80 is realized by the above-described CPU executing a program stored in the storage unit 74.
 この実施例では、画像処理装置3は本体2とは別筐体のパーソナルコンピュータ等で構成されるものとしたが、本体2に内蔵したマイクロコンピュータにより画像処理部80を構成し、生成した立体画像等をディスプレイ41に表示するようにしてもよい。 In this embodiment, the image processing apparatus 3 is configured by a personal computer or the like in a separate housing from the main body 2. However, the image processing unit 80 is configured by a microcomputer built in the main body 2, and a generated stereoscopic image is generated. Etc. may be displayed on the display 41.
 また、上記実施例では、網膜上で血管と認識できる部位に注目した特徴量算出手法について述べたが、図6のように、毛細血管の特徴量を算出する方法として、画像全域で特徴量算出を行ってもよい。なお図6は、図面様式の制約のため白黒のグレースケール画像としてあるが、実際には、画像の全領域の画素について特徴量の大きさに応じて暗い赤、赤、橙、黄、緑、水色、青の7色に色分けして表示している。 In the above-described embodiment, the feature amount calculation method focusing on a portion that can be recognized as a blood vessel on the retina has been described. However, as shown in FIG. May be performed. Note that FIG. 6 is a black and white grayscale image due to the limitation of the drawing style, but in reality, dark red, red, orange, yellow, green, It is displayed in seven colors, light blue and blue.
 そして、眼底撮像装置10では、2孔絞り31により眼底1aからの反射光を左右一対の光束に分割し、第一の光学フィルタ53を通過して電子撮像手段57の撮像面57aに結像した第一の画像と、第二の光学フィルタ54を通過して電子撮像手段57の撮像面57aに結像した第二の画像について電子撮像手段57から得られる画像信号を特徴量算出手段81が演算処理することにより被検眼眼底1aの網膜組織の特徴量を算出する。そのため、眼底撮像装置10によれば、1回の撮影で特徴量の算出と立体画像の生成の両方を行うことができる。 In the fundus imaging apparatus 10, the reflected light from the fundus 1 a is divided into a pair of left and right light beams by the two-hole aperture 31, passes through the first optical filter 53, and forms an image on the imaging surface 57 a of the electronic imaging unit 57. The feature amount calculating unit 81 calculates an image signal obtained from the electronic imaging unit 57 for the first image and the second image that has passed through the second optical filter 54 and formed on the imaging surface 57a of the electronic imaging unit 57. By processing, the feature amount of the retinal tissue of the eye fundus 1a to be examined is calculated. Therefore, according to the fundus imaging apparatus 10, it is possible to perform both the feature amount calculation and the stereoscopic image generation by one shooting.
 また、立体画像生成手段82は、特徴量の算出に用いたものと同じ第一の画像、第二の画像から眼底の立体画像を生成する。すなわち、特徴量の算出と立体画像の生成を同一の装置で撮像された同一の画像に基づいて行っているので、検者は拡大率や画角の相違を考慮することなく診断を行うことができる。 Further, the stereoscopic image generating means 82 generates a stereoscopic image of the fundus from the same first image and second image used for calculating the feature amount. In other words, since the feature amount calculation and the stereoscopic image generation are performed based on the same image captured by the same device, the examiner can make a diagnosis without considering the difference in magnification and angle of view. it can.
 また、 第一の光学フィルタ53、第二の光学フィルタ54、色収差補正レンズ55、56は光路に挿脱可能に構成されているから、検者は従来と同様に接眼レンズ62により眼底の立体画像を観察することができる。 In addition, since the first optical filter 53, the second optical filter 54, and the chromatic aberration correction lenses 55 and 56 are configured to be inserted into and removed from the optical path, the examiner can use the eyepiece 62 to form a stereoscopic image of the fundus as in the conventional case. Can be observed.
 光路分割レンズ51、52と電子撮像手段57の間には色収差補正レンズ55、56が設けられているから、特徴量の算出精度を高めることができる。 Since the chromatic aberration correction lenses 55 and 56 are provided between the optical path splitting lenses 51 and 52 and the electronic image pickup means 57, the calculation accuracy of the feature amount can be increased.
 また、特徴量画像生成手段83は立体画像と特徴量を関連づけた特徴量画像を生成するので、検者はこれを観察し診断に役立てることができる。特に、特徴量が酸素飽和度である場合は緑内障の早期発見に役立てることができる。 In addition, since the feature amount image generating unit 83 generates a feature amount image in which the stereoscopic image and the feature amount are associated with each other, the examiner can observe this and use it for diagnosis. In particular, when the feature amount is oxygen saturation, it can be used for early detection of glaucoma.
 1 被検眼
 2 本体
 3 画像処理装置
10 眼底撮像装置
11 光源
12 凹面鏡
13 可視カット赤外透過フィルタ
14 ストロボ
15 拡散板
16 リングスリット
17 レンズ
18 黒点板
19 ハーフミラー
20 リレーレンズ
21 穴あき全反射ミラー
22 対物レンズ
23 光学フィルタ
31 2孔絞り
32 フォーカスレンズ
33 結像レンズ
34 ハーフミラー
36 赤外透過可視反射ミラー
37 レンズ
38 ミラー
39 光路長調整手段
40 電子撮像手段
41 ディスプレイ
42 撮影マスク
46 シャッタスイッチ
47 リレーレンズ
48 撮影光軸
50 2孔絞り
51、52 光路分割レンズ
53 第一の光学フィルタ
54 第二の光学フィルタ
55、56 色収差補正レンズ
57 電子撮像手段
58 メモリ
60 リターンミラー
61 ミラー
62 接眼レンズ
71 制御部
72 表示部
73 操作部
74 記憶部
80 画像処理部
81 特徴量算出手段
82 立体画像生成手段
83 特徴量画像生成手段
DESCRIPTION OF SYMBOLS 1 Test eye 2 Main body 3 Image processing apparatus 10 Fundus imaging apparatus 11 Light source 12 Concave mirror 13 Visible cut infrared transmission filter 14 Strobe 15 Diffuser plate 16 Ring slit 17 Lens 18 Black spot plate 19 Half mirror 20 Relay lens 21 Perforated total reflection mirror 22 Objective lens 23 Optical filter 31 Two-hole aperture 32 Focus lens 33 Imaging lens 34 Half mirror 36 Infrared transmission visible reflection mirror 37 Lens 38 Mirror 39 Optical path length adjustment means 40 Electronic imaging means 41 Display 42 Shooting mask 46 Shutter switch 47 Relay lens 48 Optical axis 50 Two- hole aperture 51, 52 Optical path splitting lens 53 First optical filter 54 Second optical filter 55, 56 Chromatic aberration correction lens 57 Electronic imaging means 58 Memory 60 Return mirror 61 Mirror 62 Eyepiece 71 Control Part 72 display unit 73 operating unit 74 storage unit 80 an image processing unit 81 feature calculating unit 82 three-dimensional image generating unit 83 characteristic amount image generating means

Claims (9)

  1.  電子撮像手段と、被検眼の前眼部共役位置に配置され被検眼眼底からの反射光束を視差のある左右一対の光束に分割するための光路分割手段と、分割された光束から左右一対の眼底像をそれぞれ左右に分離して電子撮像手段の撮像面に結像する結像光学系とを備え被検眼眼底の画像を撮影する眼科撮像装置において、
     左右一対の光束の一方が進む第一の光路に配置され第一の波長域のみ実質透過させる第一の光学フィルタと、
     左右一対の光束の他方が進む第二の光路に配置され第二の波長域のみ実質透過させる第二の光学フィルタと、
     第一の光学フィルタを通過して電子撮像手段の撮像面に結像した第一の画像と、第二の光学フィルタを通過して電子撮像手段の撮像面に結像した第二の画像とについて電子撮像手段から得られる画像信号を演算することにより被検眼眼底の網膜組織の特徴量を算出する特徴量算出手段と、
    を備えることを特徴とする眼底撮像装置。
    Electronic imaging means, optical path splitting means for dividing the reflected light beam from the fundus of the eye to be examined, which is arranged at the anterior eye conjugate position of the eye to be examined, into a pair of right and left light beams with parallax, and a pair of left and right fundus from the divided light flux In an ophthalmic imaging apparatus that shoots an image of the fundus of the eye to be examined, including an imaging optical system that separates the images into left and right images and forms an image on the imaging surface of the electronic imaging means.
    A first optical filter disposed in a first optical path in which one of the pair of right and left light beams travels and substantially transmits only the first wavelength range;
    A second optical filter that is disposed in a second optical path along which the other of the pair of right and left light beams travels and substantially transmits only the second wavelength range;
    A first image that passes through the first optical filter and forms an image on the imaging surface of the electronic imaging means, and a second image that passes through the second optical filter and forms an image on the imaging surface of the electronic imaging means A feature amount calculating means for calculating a feature amount of the retinal tissue of the fundus of the eye to be examined by calculating an image signal obtained from the electronic imaging means;
    A fundus imaging apparatus comprising:
  2.  光路分割手段が2孔絞りであることを特徴とした、請求項1に記載の眼底撮像装置。 2. The fundus imaging apparatus according to claim 1, wherein the optical path dividing means is a two-hole aperture.
  3.  前記第一の画像と第二の画像とについて電子撮像手段から得られる画像信号を演算することにより被検眼眼底の立体画像を生成する立体画像生成手段を備えることを特徴とする請求項1または請求項2に記載の眼底撮像装置。 The stereoscopic image generating means for generating a stereoscopic image of the fundus of the eye to be examined by calculating an image signal obtained from the electronic imaging means for the first image and the second image. Item 3. A fundus imaging apparatus according to Item 2.
  4.  第一の光路と第二の光路の一方または両方に、色収差を補正する光学素子が挿入されることを特徴とする請求項1から3のいずれか1項に記載の眼底撮像装置。 4. The fundus imaging apparatus according to claim 1, wherein an optical element for correcting chromatic aberration is inserted into one or both of the first optical path and the second optical path.
  5.  網膜組織の特徴量と立体画像とを対応付けた特徴量画像を生成する特徴量画像生成手段を備えることを特徴とする請求項1から4のいずれか1項に記載の眼底撮像装置。 The fundus imaging apparatus according to any one of claims 1 to 4, further comprising a feature amount image generation unit that generates a feature amount image in which a feature amount of a retinal tissue and a stereoscopic image are associated with each other.
  6.  第一の光学フィルタは第一の光路に、第二の光学フィルタは第二の光路にそれぞれ挿脱可能に構成されることを特徴とする請求項1から5のいずれか1項に記載の眼底撮像装置。 The fundus according to any one of claims 1 to 5, wherein the first optical filter is configured to be inserted into and removed from the first optical path, and the second optical filter is configured to be inserted into and removed from the second optical path. Imaging device.
  7.  網膜組織の特徴量が酸素飽和度であることを特徴とする請求項1から6のいずれか1項に記載の眼底撮像装置。 The fundus imaging apparatus according to any one of claims 1 to 6, wherein the feature amount of the retinal tissue is oxygen saturation.
  8.  網膜組織の特徴量が黄斑色素密度であることを特徴とする請求項1から6のいずれか1項に記載の眼底撮像装置。 The fundus imaging apparatus according to any one of claims 1 to 6, wherein the feature amount of the retinal tissue is macular pigment density.
  9.  被検眼の前眼部共役位置に配置された光路分割手段により被検眼眼底からの反射光束を視差のある左右一対の光束に分割し、
     左右一対の光束の一方を第一の波長域のみ実質透過させる第一の光学フィルタを通過させて電子撮像手段の撮像面に結像させた第一の画像と、
     左右一対の光束の他方を第二の波長域のみ実質透過させる第二の光学フィルタを通過させて電子撮像手段の撮像面に結像させた第二の画像とについて電子撮像手段から得られる画像信号を演算することにより被検眼眼底の網膜組織の特徴量を算出する特徴量測定方法。
    The reflected light beam from the fundus of the eye to be examined is divided into a pair of right and left light beams with parallax by the optical path dividing means arranged at the anterior eye conjugate position of the eye to be examined,
    A first image formed on the imaging surface of the electronic imaging means by passing through a first optical filter that substantially transmits only one of the pair of right and left light beams only in the first wavelength range;
    An image signal obtained from the electronic imaging means for the second image formed on the imaging surface of the electronic imaging means through the second optical filter that substantially transmits only the other of the pair of left and right light beams only in the second wavelength range A feature amount measuring method for calculating a feature amount of the retinal tissue of the fundus of the eye to be examined by calculating.
PCT/JP2014/053963 2013-02-21 2014-02-20 Fundus imaging device and retinal tissue characteristic value measurement method WO2014129522A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015501484A JPWO2014129522A1 (en) 2013-02-21 2014-02-20 Fundus imaging apparatus and retinal tissue feature amount measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013031631 2013-02-21
JP2013-031631 2013-02-21

Publications (1)

Publication Number Publication Date
WO2014129522A1 true WO2014129522A1 (en) 2014-08-28

Family

ID=51391306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053963 WO2014129522A1 (en) 2013-02-21 2014-02-20 Fundus imaging device and retinal tissue characteristic value measurement method

Country Status (2)

Country Link
JP (1) JPWO2014129522A1 (en)
WO (1) WO2014129522A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104997519A (en) * 2015-08-13 2015-10-28 中国科学院光电技术研究所 Dual-wavelength retinal vessel blood oxygen measuring system based on fundus camera
WO2017149181A1 (en) * 2016-02-29 2017-09-08 Universidad De Murcia Instrument for obtaining images of the eye and associated method
JP2021519182A (en) * 2018-03-29 2021-08-10 イメドース システムズ ゲーエムベーハー Devices and methods for testing the automatic regulation of metabolism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246695A (en) * 2009-04-15 2010-11-04 Kowa Co Image processing method and image processing apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246695A (en) * 2009-04-15 2010-11-04 Kowa Co Image processing method and image processing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104997519A (en) * 2015-08-13 2015-10-28 中国科学院光电技术研究所 Dual-wavelength retinal vessel blood oxygen measuring system based on fundus camera
WO2017149181A1 (en) * 2016-02-29 2017-09-08 Universidad De Murcia Instrument for obtaining images of the eye and associated method
JP2021519182A (en) * 2018-03-29 2021-08-10 イメドース システムズ ゲーエムベーハー Devices and methods for testing the automatic regulation of metabolism

Also Published As

Publication number Publication date
JPWO2014129522A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
US11672421B2 (en) Alignment improvements for ophthalmic diagnostic systems
EP1809162B1 (en) Optical apparatus and method for comprehensive eye diagnosis
JP5341386B2 (en) Ophthalmic imaging equipment
WO2010087046A1 (en) Ophthalmologic photographing device
EP3430976B1 (en) Eye-fatigue examining device and eye-fatigue examining method
WO2014129522A1 (en) Fundus imaging device and retinal tissue characteristic value measurement method
JP6407631B2 (en) Ophthalmic equipment
WO2018135175A1 (en) Ophthalmological device
JP5048103B2 (en) Ophthalmic imaging equipment
JP7266375B2 (en) Ophthalmic device and method of operation thereof
JP7314392B2 (en) Retinal camera with dynamic illuminator for extending eyebox
JP7430082B2 (en) Ophthalmological equipment and its operating method
WO2020218576A1 (en) Ophthalmological device
KR20190073040A (en) Eye examining apparatus having integrated visible optical channel and infrared optical channel
JP5409410B2 (en) Ophthalmic imaging equipment
JP7423378B2 (en) ophthalmology equipment
JP5677501B2 (en) Ophthalmic equipment
JP5693682B2 (en) Ophthalmic photographing apparatus and ophthalmic photographing method
KR20020084738A (en) Eyesight and cornea curvature radius measurement optometry device using laser diode
JP4566654B2 (en) Ophthalmic imaging equipment
JP6140947B2 (en) Ophthalmic apparatus and ophthalmic imaging method
JP6159445B2 (en) Fundus photographing device
JPS6159134B2 (en)
WO2016063413A1 (en) Observation device
JP2014198277A (en) Corneal shape measuring apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501484

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754039

Country of ref document: EP

Kind code of ref document: A1