WO2014129091A1 - Touch panel controller, integrated circuit, touch panel device, and electronic apparatus - Google Patents

Touch panel controller, integrated circuit, touch panel device, and electronic apparatus Download PDF

Info

Publication number
WO2014129091A1
WO2014129091A1 PCT/JP2013/085158 JP2013085158W WO2014129091A1 WO 2014129091 A1 WO2014129091 A1 WO 2014129091A1 JP 2013085158 W JP2013085158 W JP 2013085158W WO 2014129091 A1 WO2014129091 A1 WO 2014129091A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch panel
linear sum
capacitance
panel controller
noise
Prior art date
Application number
PCT/JP2013/085158
Other languages
French (fr)
Japanese (ja)
Inventor
雄亮 金澤
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014129091A1 publication Critical patent/WO2014129091A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04182Filtering of noise external to the device and not generated by digitiser components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the present invention relates to a touch panel controller and an integrated circuit in which the touch panel controller is integrated.
  • the present invention also relates to a touch panel device including a touch panel controller and an electronic device including the touch panel controller.
  • Patent Document 1 As a device for detecting capacitance values distributed in a matrix, the distribution of capacitance values in a capacitance matrix formed between M drive lines and L sense lines is detected ( A touch panel device to be estimated) is disclosed in Patent Document 1.
  • the touch panel device described in Patent Document 1 when the user touches the touch panel with a finger, a pen, or the like, the user detects a change in capacitance value (for example, becomes smaller) at the touched position. Detects the touched position on the touch panel.
  • FIG. 6 is a circuit diagram showing a configuration of the touch panel system 51 according to Patent Document 1. As shown in FIG.
  • the touch panel system 51 includes a touch panel 52 and a touch panel controller 53.
  • capacitances C11 to C44 are formed at positions where the drive lines DL1 to DL4, the sense lines SL1 to SL4, and the drive lines DL1 to DL4 and the sense lines SL1 to SL4 intersect.
  • the touch panel controller 53 is provided with a drive unit 54.
  • the drive unit 54 is expressed by equation (1).
  • the drive lines DL1 to DL4 are driven based on the orthogonal code sequence of 4 rows and 4 columns shown in FIG.
  • the element of the orthogonal code sequence is either “1” or “ ⁇ 1”.
  • the drive unit 54 applies the voltage Vdrive when the element of the orthogonal code sequence is “1”, and applies ⁇ Vdrive when the element is “ ⁇ 1”.
  • the voltage Vdrive may be a power supply voltage, for example, but may be a voltage other than the power supply voltage.
  • An example of the “orthogonal code sequence” is a Hadamard matrix generated by the sylvester method.
  • the Hadamard matrix by the Sylvester method creates a basic unit of 2 rows and 2 columns as a basic structure.
  • the upper right, upper left, and lower left bits of the basic unit are the same, and the lower right is an inversion of these bits.
  • a basic element of 2 rows and 2 columns is set as one block and arranged at the upper right, the upper left, the lower right, and the lower left, respectively, to create a code of a bit array of 4 rows and 4 columns.
  • the lower right block is bit-inverted with respect to the other blocks.
  • Equation (1) a bit array code of 8 rows and 8 columns and 16 rows and 16 columns is generated.
  • Such a matrix is an example satisfying the definition of the “orthogonal code sequence”.
  • the 4-by-4 orthogonal code sequence shown in Equation (1) is a 4-row ⁇ 4-column Hadamard matrix by the Sylvester method.
  • the Hadamard matrix is a square matrix whose elements are either 1 or -1 and whose rows are orthogonal to each other. That is, any two rows of the Hadamard matrix represent vectors that are perpendicular to each other.
  • orthogonal code sequence can use a matrix obtained by arbitrarily extracting N rows from an M-dimensional Hadamard matrix (where N ⁇ M). Further, a Hadamard matrix by a method other than the Sylvester method can be applied as follows.
  • a Hadamard matrix by a method other than the Sylvester method can also be used as an orthogonal code sequence.
  • the touch panel system 51 has four amplifiers 55 arranged at positions corresponding to the sense lines SL1 to SL4, respectively.
  • the amplifier 55 receives and amplifies the linear sum signals Y1, Y2, Y3, and Y4 output from the capacitance sense line driven by the drive unit.
  • the drive unit 54 applies the voltage Vdrive to all the drive lines DL1 to DL4 in the first drive among the four times of the four-row, four-column orthogonal code sequence.
  • the measured value Y1 output from the sense line SL3 expressed by the following equation (2) is amplified by the amplifier 55.
  • the drive unit 54 applies the voltage Vdrive to the drive lines DL1 and DL3, and applies -Vdrive to the drive lines DL2 and DL4.
  • the measured value Y2 output from the sense line SL3 expressed by the following formula (3) is amplified by the amplifier 55.
  • the drive unit 54 applies the voltage Vdrive to the drive lines DL1 and DL2, and applies -Vdrive to the drive lines DL3 and DL4. As a result, the measured value Y3 output from the sense line SL3 is amplified by the amplifier 55. Further, in the fourth drive, the drive unit 54 applies the voltage Vdrive to the drive lines DL1 and DL4, and applies ⁇ Vdrive to the drive lines DL2 and DL3. As a result, the measured value Y4 output from the sense line SL3 is amplified by the amplifier 55.
  • the capacitances C31 to C34 of the touch panel system 51 shown in FIG. 6 are estimated by the following equations (4) and (5). Specifically, as shown in Expression (4), by performing an inner product calculation of the measurement values Y1, Y2, Y3, and Y4 and the orthogonal code sequence, as shown in Expression (5), the capacitance C1 ⁇ C4 can be estimated.
  • the capacitances C31 to C34 are indicated by C1 to C4 for simplification of explanation. Further, for simplification of description, the coefficient ( ⁇ Vdrive / Cint) is omitted for the measured values Y1 to Y4.
  • the object of the present invention has been made in view of the above problems, and its main object is to provide a touch panel controller capable of more accurately estimating the capacitance.
  • the touch panel controller includes M drive lines (M is an integer of 2 or more) and M sense lines formed between one sense line and the M drive lines. Capacitance is driven in parallel by N M-dimensional vectors (N is an integer and M ⁇ N), and a linear sum signal based on the charges accumulated in the M capacitances is output from the sense line.
  • the controller wherein the drive unit drives the capacitance in parallel K times (K is an integer of 2 or more) by one M-dimensional vector of the N M-dimensional vectors, and the sense K pieces from the line
  • a signal processing unit that outputs a shape sum signal and generates a noise-reduced linear sum signal in which noise mixed in the linear sum signal is reduced based on a reference value derived from the K linear sum signals
  • the inner product calculation unit estimates the value of the M electrostatic capacitances by an inner product calculation of the noise-reduced linear sum signal generated by the signal processing unit and the N M-dimensional vectors.
  • the signal processing unit derives a reference value from the K linear sum signals output from the sense line by the driving unit, and mixes in the linear sum signal based on the reference value.
  • a noise-reduced linear sum signal in which the generated noise is reduced is generated.
  • the inner product calculation unit uses the noise-reduced linear sum signal for inner product calculation with the N M-dimensional vectors when estimating the M capacitance values.
  • the inner product calculation unit estimates the capacitance using the noise-reduced linear sum signal in which noise mixed in the linear sum signal is reduced. An error from the capacity can be reduced. Accordingly, the touch panel controller can more accurately estimate the capacitance.
  • FIG. 1 is a circuit diagram showing a configuration of a touch panel device 1 according to the present embodiment.
  • the touch panel device 1 includes a touch panel controller 10 and a touch panel 20.
  • the touch panel 20 receives a user's touch operation.
  • the touch panel 20 includes M drive lines DL1 to DLM arranged parallel to each other at a predetermined interval, and L lines arranged at predetermined intervals in parallel to each other so as to be orthogonal to the drive lines DL1 to DLM.
  • the touch panel controller 10 controls driving of the touch panel 20. Further, the touch panel controller 10 detects a user touch operation on the touch panel 20 and a position on the touch panel 20 touched by the user.
  • the touch panel controller 10 includes a drive unit 110, an amplifier 120, an AD conversion unit 130, a signal processing unit 140, and an inner product calculation unit 150.
  • touch panel controller 10 may be realized by a single integrated circuit. Thereby, the space in the touch panel apparatus 1 for mounting the touch panel controller 10 can be minimized.
  • M is an integer of 2 or more
  • the electrostatic capacitances C1i to CMi are driven in parallel by N M-dimensional vectors (code sequences).
  • the driving unit 110 outputs a linear sum signal based on the charges accumulated in the M electrostatic capacitors C1i to CMi from the certain one sense line SLi.
  • code sequences D1 to DM having a sequence length N having a low correlation with each other are input to the drive unit 110.
  • the drive unit 110 switches the value of the voltage to be applied to each of the M drive lines DL1 to DLM N times according to each value of the input code series D1 to DM. Details of the code sequences D1 to DM input to the drive unit 110 will be described later.
  • the drive unit 110 applies the voltage “Vdrive” to the corresponding drive line DLj, and the value of the code sequence Dj is “ ⁇ ”. In the case of “1”, the voltage “ ⁇ Vdrive” is applied to the corresponding drive line DLj.
  • the driving unit 110 switches the voltages to be applied to the M drive lines DL1 to DLM according to the input code sequences D1 to DM, and drives the M capacitances C1i to CMi in parallel. . Accordingly, the driving unit 110 outputs a linear sum signal based on the charges accumulated in the M electrostatic capacitances C1i to CMi from a certain sense line SLi.
  • the driving unit 110 sets the capacitances C1i to CMi K times (K is 2 or more) by one M-dimensional vector among N M-dimensional vectors (N is an integer and M ⁇ N). (Integer integer) is driven in parallel, and a linear sum signal is output K times from a single sense line SLi.
  • the amplifier 120 amplifies the linear sum signal output from the connected sense line SLi.
  • the sense lines SL1 to SLL are connected to corresponding amplifiers 120 (1) to 120 (L), respectively.
  • Each of the amplifiers 120 (1) to 120 (L) amplifies the linear sum signal input from the connected sense lines SL1 to SLL, and converts the amplified linear sum signal to the corresponding AD conversion unit 130 (1).
  • the amplified linear sum signal output from the amplifier 120 is also referred to as an output signal OUTt.
  • AD conversion unit 130 converts the amplified linear sum signal input from the amplifier 120 from an analog signal to a digital signal (hereinafter also simply referred to as AD conversion).
  • the amplifiers 120 (1) to 120 (L) are connected to corresponding AD converters 130 (1) to 130 (L), respectively.
  • Each AD conversion unit 130 (1) to 130 (L) AD-converts the amplified linear sum signals input from the connected amplifiers 120 (1) to 120 (L), respectively, and corresponding signal processing units Output to 140 (1) to 140 (L).
  • the signal processing unit 140 derives a reference value from the K output signals OUTt supplied from the amplifier 120, reduces noise mixed in the output signal OUTt based on the derived reference value (noise reduction processing), and reduces noise. Generate a linear sum signal. Details of the noise reduction processing will be described later.
  • the method for deriving the reference value is not particularly limited.
  • the reference value may be a median of K linear sum signals or an arithmetic average value of K linear sum signals.
  • the linear sum signal (noise reduced linear sum signal) subjected to noise reduction processing by the signal processing unit 140 is supplied to the inner product calculation unit 150.
  • the inner product calculation unit 150 performs an inner product calculation of the linear sum signal output from one sense line SLi and input via the amplifier 120, the AD conversion unit 130, and the signal processing unit 140, and N M-dimensional vectors. By executing, the values of the M electrostatic capacitances Ci1 to CiM are estimated.
  • Djt represents a code sequence input to the drive unit 110
  • Cint represents the integration capacity of the amplifier 120.
  • the inner product calculation unit 150 calculates the inner product of the code sequence D1t and the output signal OUTt. Specifically, the inner product calculation unit 150
  • T represents the period of the code sequence.
  • the capacitance value C1i is obtained.
  • the inner product calculation unit 150 performs the inner product calculation with another code sequence to obtain the capacitance values C11 to CM1.
  • the output signal OUTt of the amplifier 120 uses the noise signal as Vnoise.
  • the estimated value of the capacitance value of the capacitance C1i includes
  • the driving unit 110 does not change the value of the code sequence (that is, by one M-dimensional vector), and does one sense line SLi (that is, the capacitances C1i to CMi). ) Is driven a plurality of times, and a linear sum signal is output a plurality of times from the one sense line SLi.
  • the amplifier 120 amplifies a plurality of linear sum signals output from a certain sense line SLi, and outputs an output signal OUTt a plurality of times.
  • the value of the code sequence for driving one drive line DLj in the drive unit 110 is assumed to be Dj1. Further, the number of output signals OUTt output from the amplifier 120 is K times (that is, the capacitances C1i to CMi are driven K times by one M-dimensional vector).
  • the output signal OUTt of the amplifier 120 is
  • Vnoise indicating the noise signal component fluctuates when the noise is not low frequency noise.
  • the signal processing unit 140 outputs, as a reference value, the median of K output signals OUTt (one value corresponding to the center when the observation values are arranged in order of magnitude, or the arithmetic average of two values at the center). Noise reduction processing is performed on the signal OUTt. Specifically, the signal processing unit 140 reduces noise of the output signal OUTt by performing processing for removing signals having an extremely large size on the K output signals OUTt using a median filter.
  • the output signals are OUTB1 to OUTB8.
  • the signal processing unit 140 sets the average value of the values of the fourth and fifth output signals OUTB4 and OUTB5 counted from the smallest value of the rearranged output signals OUTBi as the “reference value”. Filter. Further, the signal processing unit 140 performs filtering by replacing the output signal OUTBi having a value 20% or more larger than the reference value or the output signal OUTBi having a value smaller by 20% or more with the reference value.
  • the signal processing unit 140 uses the median of the K output signals OUTt as the reference value, thereby being influenced by the output signal OUTt in which extremely large noise is mixed among the K output signals OUTt.
  • a noise-reduced linear sum signal can be generated and output.
  • FIG. 2 is a diagram illustrating an example of a code sequence input to the drive unit 110 according to the present embodiment.
  • the integration capacitance Cint of the amplifier 120 is 1 (pF), and the voltage Vdrive is 1 (V).
  • FIG. 3 shows the output signal OUTt output from the amplifier 120 and the noise-reduced linear sum signal output from the signal processing unit 140 in the touch panel device 1 according to the present embodiment.
  • FIG. 3 shows the number of times t (times) of driving of the capacitance C1i at a certain time in the touch panel device 1 according to the present embodiment (where t is the subscript “t” in the output signal OUTt (that is, the electrostatic capacity of the driving unit 110) 6 is a graph showing signal characteristics with respect to the number of times of driving of the capacitor C1i).
  • a dotted line A1 indicates the characteristic of the output signal OUTt of the amplifier 120 with respect to the number of times t of driving of the capacitance C1i at a certain time.
  • a solid line A2 indicates the characteristic of the noise-reduced linear sum signal OUTCi of the signal processing unit 140 with respect to the number of driving times t of the capacitance C1i at a certain time.
  • the output signal OUTt of the amplifier 120 includes noise, and the signal value fluctuates greatly every time the capacitance C1i is driven.
  • the signal processing unit 140 can generate and output a noise-reduced linear sum signal OUTCi with reduced noise by performing noise reduction processing on the output signal OUTt.
  • FIG. 4 is a graph illustrating characteristics of the estimation result of the capacitance Cji in the touch panel device 1 according to the present embodiment.
  • a solid line A3 indicates actual values of the capacitances C11 to C15 formed between the drive lines DL1 to DL5 and one sense line SL1.
  • a dotted line A4 indicates the values of the capacitances C11 to C15 estimated by the inner product calculation of the output signal OUTt and the code sequence Dj.
  • An alternate long and short dash line A5 indicates the values of the capacitances C11 to C15 estimated by the inner product calculation of the noise reduction linear sum signal OUTCi and the code sequence Dj.
  • the estimation result when the capacitance Cji is estimated by the inner product operation of the output signal OUTt and the code sequence Dj is as follows:
  • the touch panel device 1 performs noise reduction processing on the output signal OUTt in the signal processing unit 140, thereby obtaining an actual capacitance Cji and an estimated capacitance Cji.
  • the error can be reduced. Therefore, the touch panel controller 10 included in the touch panel device 1 according to the present embodiment can estimate the capacitance more accurately.
  • the code sequence is an orthogonal sequence
  • the code sequence may be an M sequence, a Gold sequence, a bulk sequence, or the like.
  • the driving unit 110 has been described by taking as an example a configuration in which the capacitance Cji is driven K times continuously by one M-dimensional vector out of N M-dimensional vectors. Is not limited to this.
  • K 8 8 but when noise is concentrated in a short time, noise is mixed in all eight output signals OUTt output from the amplifier 120, and signal processing is performed. The case where the effect of the noise reduction process in the part 140 is not sufficiently obtained can be considered.
  • the drive unit 110 in the touch panel device 1 includes two consecutive code sequences Dj1 and Dj2 (that is, one M-dimensional vector out of N M-dimensional vectors and another one A plurality of output signals OUTt are obtained for each of the code sequences Dj1 and Dj2 using an (M-dimensional vector).
  • K output signals OUTt are obtained from the code sequence Dj1 and K output signals OUTt are obtained from the code sequence Dj2 in accordance with the driving of the touch panel 20 by the drive unit 110.
  • the output signal OUTt of the amplifier 120 is
  • the amplifier 120 includes the K output signals OUTt (OUTt, OUTt + 2, OUTt + 4,..., OUTt + 2K ⁇ 2) based on the code sequence Dj1, and the K output signals OUTt (OUTt + 1, OUTt + 3) based on the code sequence Dj2. ,..., OUTt + 2K ⁇ 1) are output.
  • the driving unit 110 drives the electrostatic capacitance Cji with one code sequence Dj1 discontinuously by driving the electrostatic capacitance Cji alternately using the two code sequences Dj1 and Dj2. Will be done.
  • the period during which the signal processing unit 140 acquires the output signal OUTt from the amplifier 120 via the AD conversion unit 130 is from t to t + 2K ⁇ 1, and the capacitance Cji is driven by only one code sequence Dj1. It becomes longer than the period (from t to K-1).
  • the touch panel device 1 according to the present embodiment can appropriately perform the noise reduction processing of the output signal OUTt in the signal processing unit 140 even when noise is concentrated in a short time.
  • the touch panel controller 10 included in the touch panel device 1 according to the present embodiment can reduce an error between the actual electrostatic capacitance Cji and the estimated electrostatic capacitance Cji.
  • the touch panel controller 10 can more accurately estimate the capacitance.
  • the driving unit 110 may drive the electrostatic capacitance Cji a predetermined number of times by the code sequence Dj1, and then drive the electrostatic capacitance Cji a predetermined number of times by the code sequence Dj2, and alternately repeat this.
  • the configuration in which the capacitance Cji is driven by two consecutive code sequences Dj1 and Dj2 has been described as an example.
  • the present invention is not limited to this.
  • the capacitance Cji may be driven using two non-consecutive code sequences such as code sequences Dj1 and Dj3, or, for example, three or more code sequences Dj1, Dj2, and Dj4.
  • the electrostatic capacitance Cji may be driven using the code sequence.
  • the configuration in which the capacitance Cji is driven K times by each of the two code sequences Dj1 and Dj2 has been described as an example.
  • the present invention is not limited to this.
  • a electrostatic capacitances Cji are driven in parallel, of which A times (A is an integer of 2 or more) are electrostatic capacitances by the code sequence Dj2. What is necessary is just to drive Cji.
  • the value of the code sequence for driving one drive line DLj in the drive unit 110 is Dj1, and the output signal OUTt of the amplifier 120 is obtained K times (that is, one of M M-dimensional vectors). Capacitances C1i to CMi are driven K times by M-dimensional vectors).
  • the output signal OUTt of the obtained amplifier 120 is the same as in the first embodiment.
  • the signal processing unit 140 can reduce the noise of the output signal OUTt of the amplifier 120 using the arithmetic average of the K output signals OUTt as a reference value.
  • the touch panel controller 10 included in the touch panel device 1 according to the present embodiment can reduce an error between the actual capacitance Cji and the estimated capacitance Cji.
  • the capacity can be estimated more accurately.
  • FIG. 5 is a block diagram showing a main configuration of the mobile phone 300 according to the present embodiment.
  • the mobile phone 300 includes a touch panel device 1, a CPU 310, a ROM 311, a RAM 312, a camera 313, a microphone 314, a speaker 315, an operation key 316, a display control circuit 317, and a display panel 318. It has.
  • the components of the mobile phone 300 are connected to each other by a data bus.
  • the touch panel device 1 includes a touch panel controller 10 and a touch panel 20. Note that the touch panel device 1 (the touch panel controller 10 and the touch panel 20) included in the mobile phone 300 according to the present embodiment is the same as the touch panel device 1 according to the first embodiment, and thus description thereof is omitted here.
  • the CPU 310 comprehensively controls the operation of the mobile phone 300.
  • the CPU 310 controls the operation of the mobile phone 300 by executing a program stored in the ROM 311.
  • a ROM (Read Only Memory) 311 is a readable and non-writable memory that stores fixed data such as a program executed by the CPU 310 such as an EPROM (Erasable Programmable Read-Only Memory).
  • a RAM (Random Access Memory) 312 is a readable and writable memory, such as a flash memory, in which variable data such as data referred to by the CPU 310 for calculation or data generated by the CPU 310 is stored. .
  • the operation key 316 receives an instruction input from the user to the mobile phone 300. Data input via the operation key 316 is stored in the RAM 312 in a volatile manner.
  • the camera 313 shoots a subject based on a shooting instruction input by the user via the operation key 316.
  • Image data of a subject photographed by the camera 313 is stored in the RAM 312 or an external memory (for example, a memory card).
  • the microphone 314 receives user's voice input.
  • the input voice data (analog data) indicating the voice of the user is converted into digital data in the mobile phone 300 and sent to another mobile phone (communication partner).
  • the speaker 315 outputs sound represented by music data stored in the RAM 312 or the like, for example.
  • the display control circuit 317 drives the display panel 318 to display an image represented by the image data stored in the ROM 311 or the RAM 312 based on a user instruction input via the operation key 316.
  • the display panel 318 may be provided so as to overlap the touch panel 20, or may include the touch panel 20, and the configuration thereof is not particularly limited.
  • the mobile phone 300 may further include an interface (IF) (not shown) for wired connection with other electronic devices.
  • IF interface
  • the mobile phone 300 according to the present embodiment includes the touch panel device 1, it is possible to estimate the capacitance more accurately, and thus it is possible to operate the touch panel controller satisfactorily. Therefore, since the mobile phone 300 can recognize the touch operation by the user more accurately, the mobile phone 300 can more accurately execute the process desired by the user.
  • the touch panel controller 10 includes the M static lines formed between the M drive lines DLj (M is an integer of 2 or more) and one sense line SLi.
  • the capacitances C1i to CMi are driven in parallel by N M-dimensional vectors (N is an integer and M ⁇ N), and a linear sum signal based on the charges accumulated in the M capacitances C1i to CMi is obtained.
  • the values of the M capacitances C1i to CMi are calculated by an inner product calculation of the driving unit 110 that outputs the sense line SLi and the linear sum signal output from the sense line SLi and the N M-dimensional vectors.
  • the touch panel controller 10 includes an inner product calculation unit 150 for estimation, wherein the driving unit 110 uses a single M-dimensional vector of the N M-dimensional vectors to calculate a previous value.
  • Capacitances C1i to CMi are driven in parallel K times (K is an integer of 2 or more), K linear sum signals are output from the sense lines SLi, and a reference value derived from the K linear sum signals
  • a signal processing unit 140 that generates a noise-reduced linear sum signal in which noise mixed in the linear sum signal is reduced
  • the inner product operation unit 150 includes a noise-reduced linearity generated by the signal processing unit 140.
  • the values of the M electrostatic capacitances C1i to CMi are estimated by an inner product operation of the sum signal and the N M-dimensional vectors.
  • the signal processing unit derives a reference value from the K linear sum signals output from the sense line by the driving unit, and mixes in the linear sum signal based on the reference value.
  • a noise-reduced linear sum signal in which the generated noise is reduced is generated.
  • the inner product calculation unit uses the noise-reduced linear sum signal for inner product calculation with the N M-dimensional vectors when estimating the M capacitance values.
  • the inner product calculation unit estimates the capacitance using the noise-reduced linear sum signal in which noise mixed in the linear sum signal is reduced. An error from the capacity can be reduced. Accordingly, the touch panel controller can more accurately estimate the capacitance.
  • the driving unit according to aspect 1 is configured such that the capacitance is continuously paralleled K times by the one M-dimensional vector of the N M-dimensional vectors. It may be driven.
  • the driving unit outputs K linear sum signals continuously from the sense line.
  • the inner product calculation unit calculates the value of the M electrostatic capacitances by calculating the inner product of the K noise-reduced linear sum signals continuously generated by the signal processing unit and the N M-dimensional vectors. Can be estimated. Therefore, the touch panel controller can more accurately estimate the capacitance based on the K linear sum signals continuously obtained from the sense lines.
  • the drive unit according to aspect 1 may drive K capacitances in parallel by one M-dimensional vector out of the N M-dimensional vectors, so that K linear Before obtaining the sum signal, the capacitances are driven in parallel at least K + A times, of which A times (A is an integer of 2 or more) is determined by another M-dimensional vector among the N M-dimensional vectors.
  • the capacitance may be driven.
  • the driving unit drives the capacitance for a long period of time even when noise is mixed in the linear sum signal in a short period of time.
  • the drive unit can output a linear sum signal that does not contain noise even when noise is mixed in most of the linear sum signals that are obtained in a short period of time.
  • the touch panel controller can remove noise that is concentrated in a short time and estimate the capacitance more accurately.
  • the reference value in the aspects 1 to 3 may be a value derived by a median of the K linear sum signals.
  • the signal processing unit uses a value derived by a median of the K linear sum signals as the reference value. Accordingly, the signal processing unit can generate a noise-reduced linear sum signal without being affected by a linear sum signal mixed with extremely large noise among the K linear sum signals.
  • the integrated circuit according to aspect 4 of the present invention integrates the touch panel controller according to aspects 1 to 3.
  • the touch panel controller is integrated in an integrated circuit, a space for mounting the touch panel controller can be minimized.
  • a touch panel device includes the touch panel controller according to aspects 1 to 3 and a touch panel controlled by the touch panel controller.
  • An electronic device includes the touch panel controller according to aspects 1 to 3 and a touch panel controlled by the touch panel controller.
  • the present invention can be suitably applied to an electronic device including a touch panel controller, such as a touch panel device, a smartphone, an electronic blackboard, and a touch panel personal computer.
  • a touch panel controller such as a touch panel device, a smartphone, an electronic blackboard, and a touch panel personal computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

A touch panel controller (10) according to an aspect of the present invention comprises: a drive unit (110) which subjects capacitors (Cji) to K iterations of parallel driving according to one M-dimensional vector of N M-dimensional vectors, and outputs K linear sum signals from sense lines (SLi); signal processing units (140) which generate noise reduction linear sum signals; and inner product computation units (150) which, by inner product computation of the noise reduction linear sum signals and the N M-dimensional vectors, estimate the value of M capacitors.

Description

タッチパネルコントローラ、集積回路、タッチパネル装置、及び、電子機器Touch panel controller, integrated circuit, touch panel device, and electronic device
 本発明は、タッチパネルコントローラ、及び、当該タッチパネルコントローラを集積した集積回路に関する。また、タッチパネルコントローラを備えたタッチパネル装置、及び、タッチパネルコントローラを備えた電子機器に関する。 The present invention relates to a touch panel controller and an integrated circuit in which the touch panel controller is integrated. The present invention also relates to a touch panel device including a touch panel controller and an electronic device including the touch panel controller.
 マトリックス状に分布した静電容量の値を検出する装置として、M本のドライブラインとL本のセンスラインとの間に形成される静電容量行列の各静電容量の値の分布を検出(推定)するタッチパネル装置が、特許文献1に開示されている。特許文献1に記載のタッチパネル装置は、ユーザが指やペンなどでタッチパネルに触れたときに、触れられた位置における静電容量の値の変化(例えば、小さくなる)を検出することによって、ユーザが触れたタッチパネル上の位置を検出する。 As a device for detecting capacitance values distributed in a matrix, the distribution of capacitance values in a capacitance matrix formed between M drive lines and L sense lines is detected ( A touch panel device to be estimated) is disclosed in Patent Document 1. In the touch panel device described in Patent Document 1, when the user touches the touch panel with a finger, a pen, or the like, the user detects a change in capacitance value (for example, becomes smaller) at the touched position. Detects the touched position on the touch panel.
日本国公開特許公報「特許第4927216号公報(2012年5月9日発行)」Japanese Patent Publication “Patent No. 4927216 (issued on May 9, 2012)”
 ここで、特許文献1に記載のタッチパネルシステム51について、図6を参照して説明する。図6は、特許文献1に係るタッチパネルシステム51の構成を示す回路図である。 Here, the touch panel system 51 described in Patent Document 1 will be described with reference to FIG. FIG. 6 is a circuit diagram showing a configuration of the touch panel system 51 according to Patent Document 1. As shown in FIG.
 タッチパネルシステム51は、タッチパネル52とタッチパネルコントローラ53とを備えている。タッチパネル52は、ドライブラインDL1~DL4と、センスラインSL1~SL4と、ドライブラインDL1~DL4とセンスラインSL1~SL4とが交差する位置には、静電容量C11~C44が形成されている。 The touch panel system 51 includes a touch panel 52 and a touch panel controller 53. On the touch panel 52, capacitances C11 to C44 are formed at positions where the drive lines DL1 to DL4, the sense lines SL1 to SL4, and the drive lines DL1 to DL4 and the sense lines SL1 to SL4 intersect.
 タッチパネルコントローラ53には、駆動部54が設けられている。駆動部54は、式(1) The touch panel controller 53 is provided with a drive unit 54. The drive unit 54 is expressed by equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
に示される4行4列の直交符号系列に基づいてドライブラインDL1~DL4を駆動する。直交符号系列の要素は、「1」及び「-1」のいずれかである。駆動部54は、直交符号系列の要素が「1」である場合には電圧Vdriveを印加し、要素が「-1」である場合には-Vdriveを印加する。電圧Vdriveは、例えば電源電圧であればよいが、電源電圧以外の電圧であってもよい。 The drive lines DL1 to DL4 are driven based on the orthogonal code sequence of 4 rows and 4 columns shown in FIG. The element of the orthogonal code sequence is either “1” or “−1”. The drive unit 54 applies the voltage Vdrive when the element of the orthogonal code sequence is “1”, and applies −Vdrive when the element is “−1”. The voltage Vdrive may be a power supply voltage, for example, but may be a voltage other than the power supply voltage.
 なお、「直交符号系列」とは、符号長Nの符合系列di=(di1、di2、…、diN)(i=1、…、M)が、下記に示す条件を満足することをいうものとする。 The term “orthogonal code sequence” means that a code sequence N having a code length N = (di1, di2,..., DiN) (i = 1,..., M) satisfies the following conditions. To do.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 「直交符号系列」の一例としては、シルベスター(sylvester)法によって生成されるアダマール(Hadamard)行列が挙げられる。シルベスター法によるアダマール行列は、基本的な構造として、2行2列の基本単位を作る。この基本単位の右上、左上、及び左下のビットは同一であり、右下はこれらのビット反転となっている。次に、2行2列の基本要素を1ブロックとして、右上、左上、右下、及び左下にそれぞれ配置して、4行4列のビット配列の符号を作る。ここで、2行2列の基本単位と同様に、右下のブロックは他のブロックに対してビット反転となる。 An example of the “orthogonal code sequence” is a Hadamard matrix generated by the sylvester method. The Hadamard matrix by the Sylvester method creates a basic unit of 2 rows and 2 columns as a basic structure. The upper right, upper left, and lower left bits of the basic unit are the same, and the lower right is an inversion of these bits. Next, a basic element of 2 rows and 2 columns is set as one block and arranged at the upper right, the upper left, the lower right, and the lower left, respectively, to create a code of a bit array of 4 rows and 4 columns. Here, similarly to the basic unit of 2 rows and 2 columns, the lower right block is bit-inverted with respect to the other blocks.
 同様な手順で、8行8列、16行16列のビット配列の符号を生成する。このような行列は、上記「直交符号系列」の定義を満足する一例である。式(1)に示される4行4列の直交符号系列は、シルベスター法による4行×4列のアダマール行列である。 In the same procedure, a bit array code of 8 rows and 8 columns and 16 rows and 16 columns is generated. Such a matrix is an example satisfying the definition of the “orthogonal code sequence”. The 4-by-4 orthogonal code sequence shown in Equation (1) is a 4-row × 4-column Hadamard matrix by the Sylvester method.
 なお、アダマール行列とは、要素が1または-1のいずれかであり、かつ、各行が互いに直交であるような正方行列をいう。すなわち、アダマール行列の任意の2つの行は、互いに垂直なベクトルを表す。 The Hadamard matrix is a square matrix whose elements are either 1 or -1 and whose rows are orthogonal to each other. That is, any two rows of the Hadamard matrix represent vectors that are perpendicular to each other.
 上述した「直交符号系列」は、M次元のアダマール行列から任意にN行取り出した行列を使用することができる(ここで、N≦Mである)。また、以下のように、シルベスター法以外の方法によるアダマール行列も適用することができる。 The above-mentioned “orthogonal code sequence” can use a matrix obtained by arbitrarily extracting N rows from an M-dimensional Hadamard matrix (where N ≦ M). Further, a Hadamard matrix by a method other than the Sylvester method can be applied as follows.
 シルベスター法によるN次元のアダマール行列はM=2のべき乗になるが、Mが4の倍数であればアダマール行列は存在するという予想が存在する。例えば、M=12のとき、及び、M=20のときにアダマール行列が存在する。このようなシルベスター法以外の方法によるアダマール行列も、直交符号系列として使用することができる。 The N-dimensional Hadamard matrix by the Sylvester method is a power of M = 2, but there is a prediction that the Hadamard matrix exists if M is a multiple of 4. For example, there is a Hadamard matrix when M = 12, and when M = 20. A Hadamard matrix by a method other than the Sylvester method can also be used as an orthogonal code sequence.
 タッチパネルシステム51は、センスラインSL1~SL4にそれぞれ対応する位置に配置された4個の増幅器55を有している。増幅器55は、駆動部54により駆動された静電容量のセンスラインから出力される線形和信号Y1、Y2、Y3、Y4を受け取って増幅する。 The touch panel system 51 has four amplifiers 55 arranged at positions corresponding to the sense lines SL1 to SL4, respectively. The amplifier 55 receives and amplifies the linear sum signals Y1, Y2, Y3, and Y4 output from the capacitance sense line driven by the drive unit.
 例えば、駆動部54は、4行4列の直交符号系列による4回の駆動のうちの最初の駆動において、すべてのドライブラインDL1~DL4に電圧Vdriveを印加する。このとき、下記式(2)で示される、センスラインSL3から出力される測定値Y1が、増幅器55において増幅される。 For example, the drive unit 54 applies the voltage Vdrive to all the drive lines DL1 to DL4 in the first drive among the four times of the four-row, four-column orthogonal code sequence. At this time, the measured value Y1 output from the sense line SL3 expressed by the following equation (2) is amplified by the amplifier 55.
 次に、駆動部54は、2回目の駆動において、ドライブラインDL1及びDL3に電圧Vdriveを印加し、ドライブラインDL2及びDL4に-Vdriveを印加する。このとき、下記式(3)で示される、センスラインSL3から出力される測定値Y2が、増幅器55において増幅される。 Next, in the second drive, the drive unit 54 applies the voltage Vdrive to the drive lines DL1 and DL3, and applies -Vdrive to the drive lines DL2 and DL4. At this time, the measured value Y2 output from the sense line SL3 expressed by the following formula (3) is amplified by the amplifier 55.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 また、駆動部54は、3回目の駆動において、ドライブラインDL1及びDL2に電圧Vdriveを印加し、ドライブラインDL3及びDL4に-Vdriveを印加する。これにより、センスラインSL3から出力される測定値Y3が増幅器55において増幅される。さらに、駆動部54は、4回目の駆動において、ドライブラインDL1及びDL4に電圧Vdriveを印加し、ドライブラインDL2及びDL3に-Vdriveを印加する。これにより、センスラインSL3から出力される測定値Y4が増幅器55において増幅される。 Further, in the third drive, the drive unit 54 applies the voltage Vdrive to the drive lines DL1 and DL2, and applies -Vdrive to the drive lines DL3 and DL4. As a result, the measured value Y3 output from the sense line SL3 is amplified by the amplifier 55. Further, in the fourth drive, the drive unit 54 applies the voltage Vdrive to the drive lines DL1 and DL4, and applies −Vdrive to the drive lines DL2 and DL3. As a result, the measured value Y4 output from the sense line SL3 is amplified by the amplifier 55.
 上述の構成により、図6に示すタッチパネルシステム51の静電容量C31~C34は、下記式(4)、(5)によって推定される。具体的には、式(4)に示すように、測定値Y1、Y2、Y3、Y4と直交符号系列との内積演算を実行することにより、式(5)に示すように、静電容量C1~C4を推定することができる。 With the above configuration, the capacitances C31 to C34 of the touch panel system 51 shown in FIG. 6 are estimated by the following equations (4) and (5). Specifically, as shown in Expression (4), by performing an inner product calculation of the measurement values Y1, Y2, Y3, and Y4 and the orthogonal code sequence, as shown in Expression (5), the capacitance C1 ~ C4 can be estimated.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 なお、式(1)、(4)、(5)においては、説明の簡略化のため、静電容量C31~C34をC1~C4により示している。また、表記の簡略化のため、測定値Y1~Y4について、係数(-Vdrive/Cint)を省略している。 In the formulas (1), (4), and (5), the capacitances C31 to C34 are indicated by C1 to C4 for simplification of explanation. Further, for simplification of description, the coefficient (−Vdrive / Cint) is omitted for the measured values Y1 to Y4.
 しかしながら、特許文献1に記載の上述の技術では、測定値Yにノイズが混入した場合に、静電容量の容量値の推定が不正確になるという問題がある。このため、特許文献1に記載の技術では、測定値Yにノイズが混入した場合に、タッチパネルコントローラを良好に動作させることが困難になってしまう。 However, the above-described technique described in Patent Document 1 has a problem that when noise is mixed in the measured value Y, the estimation of the capacitance value of the capacitance becomes inaccurate. For this reason, in the technique described in Patent Document 1, when noise is mixed in the measurement value Y, it is difficult to operate the touch panel controller satisfactorily.
 本発明の目的は、上記の問題に鑑みてなされたものであり、その主たる目的は、静電容量の推定をより正確に行うことのできるタッチパネルコントローラを提供することにある。 The object of the present invention has been made in view of the above problems, and its main object is to provide a touch panel controller capable of more accurately estimating the capacitance.
 本発明の一態様に係るタッチパネルコントローラは、上記の課題を解決するために、M本のドライブライン(Mは2以上の整数)と1本のセンスラインとの間にそれぞれ形成されるM個の静電容量を、N個のM次元ベクトル(Nは整数、且つ、M<N)により並列駆動し、前記M個の静電容量に蓄積された電荷に基づく線形和信号を前記センスラインから出力させる駆動部と、前記センスラインから出力された線形和信号と前記N個のM次元ベクトルとの内積演算により、前記M個の静電容量の値を推定する内積演算部と、を備えたタッチパネルコントローラであって、前記駆動部は、前記N個のM次元ベクトルのうちの1個のM次元ベクトルにより、前記静電容量をK回(Kは2以上の整数)並列駆動して、前記センスラインからK個の線形和信号を出力させ、前記K個の線形和信号から導出された基準値に基づいて、前記線形和信号に混入したノイズを低減したノイズ低減線形和信号を生成する信号処理部をさらに備え、前記内積演算部は、前記信号処理部により生成されたノイズ低減線形和信号と前記N個のM次元ベクトルとの内積演算により、前記M個の静電容量の値を推定する。 In order to solve the above-described problem, the touch panel controller according to one embodiment of the present invention includes M drive lines (M is an integer of 2 or more) and M sense lines formed between one sense line and the M drive lines. Capacitance is driven in parallel by N M-dimensional vectors (N is an integer and M <N), and a linear sum signal based on the charges accumulated in the M capacitances is output from the sense line. A touch panel, and an inner product operation unit that estimates a value of the M capacitances by an inner product operation of the linear sum signal output from the sense line and the N M-dimensional vectors. The controller, wherein the drive unit drives the capacitance in parallel K times (K is an integer of 2 or more) by one M-dimensional vector of the N M-dimensional vectors, and the sense K pieces from the line A signal processing unit that outputs a shape sum signal and generates a noise-reduced linear sum signal in which noise mixed in the linear sum signal is reduced based on a reference value derived from the K linear sum signals; The inner product calculation unit estimates the value of the M electrostatic capacitances by an inner product calculation of the noise-reduced linear sum signal generated by the signal processing unit and the N M-dimensional vectors.
 上記の構成によれば、前記信号処理部は、前記駆動部により前記センスラインから出力された前記K個の線形和信号から基準値を導出し、当該基準値に基づいて前記線形和信号に混入したノイズを低減したノイズ低減線形和信号を生成する。また、前記内積演算部は、前記M個の静電容量の値を推定するに際し、前記N個のM次元ベクトルとの内積演算に、前記ノイズ低減線形和信号を用いる。 According to the above configuration, the signal processing unit derives a reference value from the K linear sum signals output from the sense line by the driving unit, and mixes in the linear sum signal based on the reference value. A noise-reduced linear sum signal in which the generated noise is reduced is generated. The inner product calculation unit uses the noise-reduced linear sum signal for inner product calculation with the N M-dimensional vectors when estimating the M capacitance values.
 このように、前記内積演算部は、線形和信号に混入したノイズの低減された前記ノイズ低減線形和信号を用いて前記静電容量を推定するため、実際の静電容量と、推定した静電容量との誤差を低減することができる。これによって、前記タッチパネルコントローラは、静電容量の推定をより正確に行うことができる。 In this way, the inner product calculation unit estimates the capacitance using the noise-reduced linear sum signal in which noise mixed in the linear sum signal is reduced. An error from the capacity can be reduced. Accordingly, the touch panel controller can more accurately estimate the capacitance.
本発明の一実施形態に係るタッチパネル装置の構成を示す回路図である。It is a circuit diagram showing the composition of the touch panel device concerning one embodiment of the present invention. 本発明の一実施形態に係る駆動部に入力される符号系列の一例を示す図である。It is a figure which shows an example of the code series input into the drive part which concerns on one Embodiment of this invention. 本発明の一実施形態に係るタッチパネル装置における、ある時刻における静電容量の駆動回数に対する信号特性を示すグラフである。It is a graph which shows the signal characteristic with respect to the frequency | count of an electrostatic capacitance drive in a certain time in the touchscreen apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るタッチパネル装置における静電容量の推定結果の特性を示すグラフである。It is a graph which shows the characteristic of the estimation result of the electrostatic capacitance in the touch panel device concerning one embodiment of the present invention. 本発明の一実施形態に係る携帯電話機の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the mobile telephone which concerns on one Embodiment of this invention. 特許文献1に係るタッチパネル装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the touchscreen apparatus which concerns on patent document 1.
 <実施形態1>
 本発明の一実施形態に係るタッチパネル装置について、図1から図4を参照して以下に説明する。但し、この実施形態に記載されている構成は、特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例に過ぎない。
<Embodiment 1>
A touch panel device according to an embodiment of the present invention will be described below with reference to FIGS. However, unless otherwise specified, the configuration described in this embodiment is not merely intended to limit the scope of the present invention, but is merely an illustrative example.
 〔タッチパネル装置の構成〕
 まず、本実施形態に係るタッチパネル装置1の構成について、図1を参照して説明する。図1は、本実施形態に係るタッチパネル装置1の構成を示す回路図である。
[Configuration of touch panel device]
First, the configuration of the touch panel device 1 according to the present embodiment will be described with reference to FIG. FIG. 1 is a circuit diagram showing a configuration of a touch panel device 1 according to the present embodiment.
 図1に示すように、タッチパネル装置1は、タッチパネルコントローラ10、及び、タッチパネル20を備えている。 As shown in FIG. 1, the touch panel device 1 includes a touch panel controller 10 and a touch panel 20.
 (タッチパネル)
 タッチパネル20は、ユーザのタッチ操作を受け付ける。
(Touch panel)
The touch panel 20 receives a user's touch operation.
 タッチパネル20は、互いに平行に所定の間隔を空けて配置されたM本のドライブラインDL1~DLMと、ドライブラインDL1~DLMに直交するように互いに平行に所定の間隔を空けて配置されたL本のセンスラインSL1~SLLと、を備えている。また、M本のドライブラインDL1~DLMのそれぞれとL本のセンスラインSL1~SLLのそれぞれとの間には、M行×L列のマトリックス状に静電容量Cji(j=1~M、i=1~L)が形成されている。 The touch panel 20 includes M drive lines DL1 to DLM arranged parallel to each other at a predetermined interval, and L lines arranged at predetermined intervals in parallel to each other so as to be orthogonal to the drive lines DL1 to DLM. Sense lines SL1 to SLL. Further, between each of the M drive lines DL1 to DLM and each of the L sense lines SL1 to SLL, the capacitance Cji (j = 1 to M, i, in a matrix of M rows × L columns). = 1 to L).
 (タッチパネルコントローラ)
 タッチパネルコントローラ10は、タッチパネル20の駆動を制御する。また、タッチパネルコントローラ10は、タッチパネル20に対するユーザのタッチ操作、及び、ユーザのタッチしたタッチパネル20上の位置を検出する。
(Touch panel controller)
The touch panel controller 10 controls driving of the touch panel 20. Further, the touch panel controller 10 detects a user touch operation on the touch panel 20 and a position on the touch panel 20 touched by the user.
 図1に示すように、タッチパネルコントローラ10は、駆動部110、増幅器120、AD変換部130、信号処理部140、及び、内積演算部150を備えている。 As shown in FIG. 1, the touch panel controller 10 includes a drive unit 110, an amplifier 120, an AD conversion unit 130, a signal processing unit 140, and an inner product calculation unit 150.
 なお、タッチパネルコントローラ10は、1つの集積回路において実現されていてもよい。これにより、当該タッチパネルコントローラ10を実装するための、タッチパネル装置1におけるスペースを極小化することができる。 Note that the touch panel controller 10 may be realized by a single integrated circuit. Thereby, the space in the touch panel apparatus 1 for mounting the touch panel controller 10 can be minimized.
 (駆動部)
 駆動部110は、タッチパネル20の備えるM本のドライブラインDL1~DLMと(Mは2以上の整数)、ある1本のセンスラインSLi(i=1~L)との間にそれぞれ形成されるM個の静電容量C1i~CMiを、N個のM次元ベクトル(符号系列)により並列駆動する。駆動部110は、これにより、M個の静電容量C1i~CMiに蓄積された電荷に基づく線形和信号を、当該ある1本のセンスラインSLiから出力させる。
(Drive part)
The drive unit 110 includes M drive lines DL1 to DLM included in the touch panel 20 (M is an integer of 2 or more) and one sense line SLi (i = 1 to L). The electrostatic capacitances C1i to CMi are driven in parallel by N M-dimensional vectors (code sequences). Thus, the driving unit 110 outputs a linear sum signal based on the charges accumulated in the M electrostatic capacitors C1i to CMi from the certain one sense line SLi.
 具体的には、駆動部110には、互いに相関の低い系列長Nの符号系列D1~DMが入力される。駆動部110は、入力された符号系列D1~DMの各値に応じて、M本のドライブラインDL1~DLMのそれぞれに対して印加する電圧の値をN回切り替える。なお、駆動部110に入力される符号系列D1~DMの詳細については、後述する。 Specifically, code sequences D1 to DM having a sequence length N having a low correlation with each other are input to the drive unit 110. The drive unit 110 switches the value of the voltage to be applied to each of the M drive lines DL1 to DLM N times according to each value of the input code series D1 to DM. Details of the code sequences D1 to DM input to the drive unit 110 will be described later.
 また、駆動部110は、符号系列Dj(j=1~M)の値が「1」である場合に、対応するドライブラインDLjに電圧「Vdrive」を印加し、符号系列Djの値が「-1」である場合に、対応するドライブラインDLjに電圧「-Vdrive」を印加する。 Further, when the value of the code sequence Dj (j = 1 to M) is “1”, the drive unit 110 applies the voltage “Vdrive” to the corresponding drive line DLj, and the value of the code sequence Dj is “−”. In the case of “1”, the voltage “−Vdrive” is applied to the corresponding drive line DLj.
 このように、駆動部110は、入力される符号系列D1~DMに応じてM本のドライブラインDL1~DLMに印加する電圧をそれぞれ切り替え、M個の静電容量C1i~CMiを並列に駆動する。これにより、駆動部110は、ある1本のセンスラインSLiから、M個の静電容量C1i~CMiに蓄積された電荷に基づく線形和信号を出力させる。 As described above, the driving unit 110 switches the voltages to be applied to the M drive lines DL1 to DLM according to the input code sequences D1 to DM, and drives the M capacitances C1i to CMi in parallel. . Accordingly, the driving unit 110 outputs a linear sum signal based on the charges accumulated in the M electrostatic capacitances C1i to CMi from a certain sense line SLi.
 また、駆動部110は、N個のM次元ベクトル(Nは、整数、且つ、M<N)のうちの1個のM次元ベクトルにより、静電容量C1i~CMiをK回(Kは2以上の整数)並列駆動して、ある1本のセンスラインSLiから線形和信号をK回出力させる。 Further, the driving unit 110 sets the capacitances C1i to CMi K times (K is 2 or more) by one M-dimensional vector among N M-dimensional vectors (N is an integer and M <N). (Integer integer) is driven in parallel, and a linear sum signal is output K times from a single sense line SLi.
 (増幅器)
 増幅器120は、接続されているセンスラインSLiから出力される線形和信号を増幅する。
(amplifier)
The amplifier 120 amplifies the linear sum signal output from the connected sense line SLi.
 図1に示すように、センスラインSL1~SLLは、それぞれ対応する増幅器120(1)~120(L)に接続されている。各増幅器120(1)~120(L)は、接続されているセンスラインSL1~SLLから入力される線形和信号をそれぞれ増幅し、増幅した線形和信号を、対応するAD変換部130(1)~130(L)に出力する。なお、以降では、増幅器120から出力される、増幅された線形和信号を、出力信号OUTtとも記載する。 As shown in FIG. 1, the sense lines SL1 to SLL are connected to corresponding amplifiers 120 (1) to 120 (L), respectively. Each of the amplifiers 120 (1) to 120 (L) amplifies the linear sum signal input from the connected sense lines SL1 to SLL, and converts the amplified linear sum signal to the corresponding AD conversion unit 130 (1). To 130 (L). Hereinafter, the amplified linear sum signal output from the amplifier 120 is also referred to as an output signal OUTt.
 (AD変換部)
 AD変換部130は、増幅器120から入力される、増幅された線形和信号を、アナログ信号からデジタル信号に変換(以降、単にAD変換とも記載する)する。
(AD converter)
The AD conversion unit 130 converts the amplified linear sum signal input from the amplifier 120 from an analog signal to a digital signal (hereinafter also simply referred to as AD conversion).
 図1に示すように、増幅器120(1)~120(L)は、それぞれ対応するAD変換部130(1)~130(L)に接続されている。各AD変換部130(1)~130(L)は、接続されている増幅器120(1)~120(L)から入力される増幅された線形和信号をそれぞれAD変換し、対応する信号処理部140(1)~140(L)に出力する。 As shown in FIG. 1, the amplifiers 120 (1) to 120 (L) are connected to corresponding AD converters 130 (1) to 130 (L), respectively. Each AD conversion unit 130 (1) to 130 (L) AD-converts the amplified linear sum signals input from the connected amplifiers 120 (1) to 120 (L), respectively, and corresponding signal processing units Output to 140 (1) to 140 (L).
 (信号処理部)
 信号処理部140は、増幅器120から供給されるK個の出力信号OUTtから基準値を導出し、導出した基準値に基づいて出力信号OUTtに混入したノイズを低減し(ノイズ低減処理)、ノイズ低減線形和信号を生成する。ノイズ低減処理の詳細については、後述する。
(Signal processing part)
The signal processing unit 140 derives a reference value from the K output signals OUTt supplied from the amplifier 120, reduces noise mixed in the output signal OUTt based on the derived reference value (noise reduction processing), and reduces noise. Generate a linear sum signal. Details of the noise reduction processing will be described later.
 なお、基準値の導出方法については、特に限定されるものではない。例えば、基準値は、K個の線形和信号のメディアンであってもよいし、K個の線形和信号の算術平均値であってもよい。 The method for deriving the reference value is not particularly limited. For example, the reference value may be a median of K linear sum signals or an arithmetic average value of K linear sum signals.
 信号処理部140によってノイズ低減処理の施された線形和信号(ノイズ低減線形和信号)は、内積演算部150に供給される。 The linear sum signal (noise reduced linear sum signal) subjected to noise reduction processing by the signal processing unit 140 is supplied to the inner product calculation unit 150.
 (内積演算部)
 内積演算部150は、1本のセンスラインSLiから出力されて増幅器120、AD変換部130及び信号処理部140を介して入力される線形和信号と、N個のM次元ベクトルとの内積演算を実行することにより、M個の静電容量Ci1~CiMの値を推定する。
(Inner product operation part)
The inner product calculation unit 150 performs an inner product calculation of the linear sum signal output from one sense line SLi and input via the amplifier 120, the AD conversion unit 130, and the signal processing unit 140, and N M-dimensional vectors. By executing, the values of the M electrostatic capacitances Ci1 to CiM are estimated.
 〔ノイズ低減処理〕
 次に、本実施形態に係るタッチパネルコントローラ10におけるノイズ低減処理について説明する。
[Noise reduction processing]
Next, noise reduction processing in the touch panel controller 10 according to the present embodiment will be described.
 M本のドライブラインDL1~DLMと、ある1本のセンスラインSLiとの間にそれぞれ形成されるM個の静電容量C1i~CMiに蓄積される電荷の合計(すなわち、ある1本のセンスラインSLiから出力される線形和信号)は、 The sum of charges accumulated in M capacitances C1i to CMi formed between the M drive lines DL1 to DLM and one sense line SLi (that is, one sense line) Linear sum signal output from SLi)
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
となる。また、ある1本のセンスラインSLiに接続される増幅器120の出力信号OUTtは、 It becomes. Further, the output signal OUTt of the amplifier 120 connected to one certain sense line SLi is
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
となる。なお、Djtは駆動部110に入力される符号系列を示し、Cintは増幅器120の積分容量を示している。 It becomes. Djt represents a code sequence input to the drive unit 110, and Cint represents the integration capacity of the amplifier 120.
 この信号に対して、例えば静電容量C1iの容量値を得るには、内積演算部150において、符号系列D1tと出力信号OUTtとの内積を計算する。具体的には、内積演算部150は、 For example, in order to obtain the capacitance value of the capacitance C1i for this signal, the inner product calculation unit 150 calculates the inner product of the code sequence D1t and the output signal OUTt. Specifically, the inner product calculation unit 150
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
によって、符号系列D1tと出力信号OUTtとの内積演算を実行する。なお、Tは符号系列の周期を示している。 Thus, the inner product calculation of the code sequence D1t and the output signal OUTt is executed. T represents the period of the code sequence.
 符号系列D1~DMは、上述のように「1」又は「-1」であるため、 Since the code sequences D1 to DM are “1” or “−1” as described above,
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
となる。また、符号系列D1~DMの相関が0であるとすると、 It becomes. If the correlation between the code sequences D1 to DM is 0,
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
となり、容量値C1iが得られる。同様にして、内積演算部150において別の符号系列で内積演算を行うことにより、容量値C11~CM1が得られる。 Thus, the capacitance value C1i is obtained. Similarly, the inner product calculation unit 150 performs the inner product calculation with another code sequence to obtain the capacitance values C11 to CM1.
 ここで、タッチパネル装置1においてノイズが生じる場合、つまり、ある1本のセンスラインSLiから出力される線形和信号にノイズが混入する場合、増幅器120の出力信号OUTtは、ノイズ信号をVnoisetとして、 Here, when noise occurs in the touch panel device 1, that is, when noise is mixed into a linear sum signal output from a single sense line SLi, the output signal OUTt of the amplifier 120 uses the noise signal as Vnoise.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
と表すことができる。 It can be expressed as.
 この場合において、符号系列Djtと出力信号OUTtとの内積を計算すると、静電容量C1iの容量値の推定値は、 In this case, when the inner product of the code sequence Djt and the output signal OUTt is calculated, the estimated value of the capacitance value of the capacitance C1i is
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
となる。つまり、静電容量C1iの容量値の推定値には、 It becomes. That is, the estimated value of the capacitance value of the capacitance C1i includes
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
で表されるノイズ信号が含まれ、ノイズ信号が大きければ大きいほど、静電容量C1iの容量値推定値の誤りが大きくなる。 The larger the noise signal, the larger the error in the capacitance value estimation value of the capacitance C1i.
 このような場合に、信号処理部140において以下に示すノイズ低減処理を行うことにより、出力信号OUTtに含まれるノイズを低減して、静電容量C1iをより正確に推定することが可能となる。 In such a case, by performing the following noise reduction processing in the signal processing unit 140, it is possible to reduce noise included in the output signal OUTt and estimate the capacitance C1i more accurately.
 駆動部110は、上述の駆動とは独立して、符号系列の値を変えずに(すなわち、1個のM次元ベクトルにより)、ある1本のセンスラインSLi(つまり、静電容量C1i~CMi)を複数回駆動し、当該ある1本のセンスラインSLiから線形和信号を複数回出力させる。増幅器120は、ある1本のセンスラインSLiから出力された複数の線形和信号をそれぞれ増幅し、出力信号OUTtを複数回出力する。 Independent of the driving described above, the driving unit 110 does not change the value of the code sequence (that is, by one M-dimensional vector), and does one sense line SLi (that is, the capacitances C1i to CMi). ) Is driven a plurality of times, and a linear sum signal is output a plurality of times from the one sense line SLi. The amplifier 120 amplifies a plurality of linear sum signals output from a certain sense line SLi, and outputs an output signal OUTt a plurality of times.
 ここで、駆動部110における、ある1本のドライブラインDLjを駆動するための符号系列の値をDj1とする。また、増幅器120が出力する出力信号OUTtの回数をK回(つまり、1個のM次元ベクトルにより、静電容量C1i~CMiがK回駆動される)とする。 Here, the value of the code sequence for driving one drive line DLj in the drive unit 110 is assumed to be Dj1. Further, the number of output signals OUTt output from the amplifier 120 is K times (that is, the capacitances C1i to CMi are driven K times by one M-dimensional vector).
 このとき、タッチパネル装置1が所定の時間毎に離散時間動作しているとすると、増幅器120の出力信号OUTtは、 At this time, if the touch panel device 1 operates for a predetermined time every predetermined time, the output signal OUTt of the amplifier 120 is
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
となる。この場合、増幅器120の出力信号OUTtに含まれる信号のうち、線形和信号の成分を示す。 It becomes. In this case, the component of the linear sum signal among the signals included in the output signal OUTt of the amplifier 120 is shown.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
の値は、K個の出力信号OUTtのそれぞれにおいて同じある。また、ノイズ信号の成分を示すVnoisetは、ノイズが低周波ノイズでない場合には、その値が変動する。 Is the same for each of the K output signals OUTt. The value of Vnoise indicating the noise signal component fluctuates when the noise is not low frequency noise.
 信号処理部140は、K個の出力信号OUTtのメディアン(観測値を大きさの順に並べたとき、ちょうどその中央に当たる一つの値、又は中央の二つの値の算術平均)を基準値として、出力信号OUTtに対してノイズ低減処理を施す。具体的には、信号処理部140は、K個の出力信号OUTtに対して、メディアンフィルタを用いて極端な大きさの信号を取り除く処理を行うことにより、出力信号OUTtのノイズを低減する。 The signal processing unit 140 outputs, as a reference value, the median of K output signals OUTt (one value corresponding to the center when the observation values are arranged in order of magnitude, or the arithmetic average of two values at the center). Noise reduction processing is performed on the signal OUTt. Specifically, the signal processing unit 140 reduces noise of the output signal OUTt by performing processing for removing signals having an extremely large size on the K output signals OUTt using a median filter.
 例えば、K=8とした場合、信号処理部140は、まず、8個の出力信号OUTtを値の小さな順に並び替えて出力信号OUTBi(i=1~8)とし、値の小さな出力信号から順に出力信号OUTB1~OUTB8とする。 For example, when K = 8, the signal processing unit 140 first rearranges the eight output signals OUTt in ascending order of values to obtain the output signal OUTBi (i = 1 to 8), and sequentially outputs the output signals in ascending order. The output signals are OUTB1 to OUTB8.
 次に、信号処理部140は、並び替えた出力信号OUTBiのうち、値の小さい方から数えて4番目、及び、5番目である出力信号OUTB4、OUTB5の値の平均値を「基準値」としてフィルタリングする。さらに、信号処理部140は、当該基準値よりも20%以上大きな値の出力信号OUTBi、又は、20%以上小さな値の出力信号OUTBiを基準値に置換し、フィルタリングを行う。 Next, the signal processing unit 140 sets the average value of the values of the fourth and fifth output signals OUTB4 and OUTB5 counted from the smallest value of the rearranged output signals OUTBi as the “reference value”. Filter. Further, the signal processing unit 140 performs filtering by replacing the output signal OUTBi having a value 20% or more larger than the reference value or the output signal OUTBi having a value smaller by 20% or more with the reference value.
 信号処理部140は、上述のようにノイズ低減処理を施した出力信号OUTtを、ノイズ低減線形和信号OUTCi(i=1~8)として、内積演算部150に出力する。なお、ノイズ低減線形和信号OUTCiは、 The signal processing unit 140 outputs the output signal OUTt subjected to the noise reduction processing as described above to the inner product calculation unit 150 as the noise reduction linear sum signal OUTCi (i = 1 to 8). Note that the noise-reduced linear sum signal OUTCi is
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
で与えられる。 Given in.
 このように、信号処理部140は、基準値としてK個の出力信号OUTtのメディアンを用いることにより、前記K個の出力信号OUTtのうち極端に大きなノイズの混入した出力信号OUTtに影響を受けることなくノイズ低減線形和信号を生成し、出力することができる。 As described above, the signal processing unit 140 uses the median of the K output signals OUTt as the reference value, thereby being influenced by the output signal OUTt in which extremely large noise is mixed among the K output signals OUTt. A noise-reduced linear sum signal can be generated and output.
 (ノイズ低減処理の効果)
 次に、信号処理部140において、上述のように増幅器120の出力信号OUTtに対してノイズ低減処理を施した場合の、タッチパネル装置1におけるノイズ低減の効果を、図2から図4を参照して説明する。
(Effect of noise reduction processing)
Next, the noise reduction effect in the touch panel device 1 when the signal processing unit 140 performs noise reduction processing on the output signal OUTt of the amplifier 120 as described above will be described with reference to FIGS. explain.
 ここでは、センスラインSLiの数を1本、ドライブラインDLjの数を5本とし、符号系列Djとして系列長16の直交M系列(つまり、16個の5次元ベクトル)を使用するとする。なお、系列長16の直交M系列の一例を、図2に示す。図2は、本実施形態に係る駆動部110に入力される符号系列の一例を示す図である。 Here, it is assumed that the number of sense lines SLi is 1, the number of drive lines DLj is 5, and an orthogonal M sequence having a sequence length of 16 (that is, 16 five-dimensional vectors) is used as the code sequence Dj. An example of an orthogonal M sequence having a sequence length of 16 is shown in FIG. FIG. 2 is a diagram illustrating an example of a code sequence input to the drive unit 110 according to the present embodiment.
 また、静電容量C11~C51を、 Also, the capacitances C11 to C51 are
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
とし、増幅器120の積分容量Cintを1(pF)とし、電圧Vdriveを1(V)とする。 The integration capacitance Cint of the amplifier 120 is 1 (pF), and the voltage Vdrive is 1 (V).
 本実施形態に係るタッチパネル装置1における、増幅器120から出力される出力信号OUTt、及び、信号処理部140から出力されるノイズ低減線形和信号を、図3に示す。図3は、本実施形態に係るタッチパネル装置1における、ある時刻における静電容量C1iの駆動回数t(回)(tは、出力信号OUTtにおける添え字「t」(すなわち、駆動部110による静電容量C1iの駆動回数)に相当)に対する信号特性を示すグラフである。 FIG. 3 shows the output signal OUTt output from the amplifier 120 and the noise-reduced linear sum signal output from the signal processing unit 140 in the touch panel device 1 according to the present embodiment. FIG. 3 shows the number of times t (times) of driving of the capacitance C1i at a certain time in the touch panel device 1 according to the present embodiment (where t is the subscript “t” in the output signal OUTt (that is, the electrostatic capacity of the driving unit 110) 6 is a graph showing signal characteristics with respect to the number of times of driving of the capacitor C1i).
 図3において、点線A1は、ある時刻における静電容量C1iの駆動回数tに対する増幅器120の出力信号OUTtの特性を示している。また、実線A2は、ある時刻における静電容量C1iの駆動回数tに対する信号処理部140のノイズ低減線形和信号OUTCiの特性を示している。 In FIG. 3, a dotted line A1 indicates the characteristic of the output signal OUTt of the amplifier 120 with respect to the number of times t of driving of the capacitance C1i at a certain time. A solid line A2 indicates the characteristic of the noise-reduced linear sum signal OUTCi of the signal processing unit 140 with respect to the number of driving times t of the capacitance C1i at a certain time.
 図3に示すように、増幅器120の出力信号OUTtはノイズを含んでおり、静電容量C1iを駆動する度に信号値が大きく変動している。これに対し、信号処理部140は、出力信号OUTtにノイズ低減処理を施すことにより、ノイズの低減されたノイズ低減線形和信号OUTCiを生成し、出力することができる。 As shown in FIG. 3, the output signal OUTt of the amplifier 120 includes noise, and the signal value fluctuates greatly every time the capacitance C1i is driven. In contrast, the signal processing unit 140 can generate and output a noise-reduced linear sum signal OUTCi with reduced noise by performing noise reduction processing on the output signal OUTt.
 また、実際の静電容量Cjiの値、出力信号OUTtと符号系列Djとの内積演算によって推定した静電容量Cjiの値、及び、ノイズ低減線形和信号OUTCiと符号系列Djとの内積演算によって推定した静電容量Cjiの値を、それぞれ図4に示す。図4は、本実施形態に係るタッチパネル装置1における静電容量Cjiの推定結果の特性を示すグラフである。 In addition, the value of the actual capacitance Cji, the value of the capacitance Cji estimated by the inner product operation of the output signal OUTt and the code sequence Dj, and the inner product operation of the noise reduction linear sum signal OUTCi and the code sequence Dj are estimated. The values of the capacitance Cji thus obtained are shown in FIG. FIG. 4 is a graph illustrating characteristics of the estimation result of the capacitance Cji in the touch panel device 1 according to the present embodiment.
 図4において、実線A3は、各ドライブラインDL1~DL5と1本のセンスラインSL1との間に形成されている静電容量C11~C15の、実際の値を示している。点線A4は、出力信号OUTtと符号系列Djとの内積演算によって推定した静電容量C11~C15の値を示している。また、一点鎖線A5は、ノイズ低減線形和信号OUTCiと符号系列Djとの内積演算によって推定した静電容量C11~C15の値を示している。 In FIG. 4, a solid line A3 indicates actual values of the capacitances C11 to C15 formed between the drive lines DL1 to DL5 and one sense line SL1. A dotted line A4 indicates the values of the capacitances C11 to C15 estimated by the inner product calculation of the output signal OUTt and the code sequence Dj. An alternate long and short dash line A5 indicates the values of the capacitances C11 to C15 estimated by the inner product calculation of the noise reduction linear sum signal OUTCi and the code sequence Dj.
 図4に示すように、出力信号OUTtと符号系列Djとの内積演算によって静電容量Cjiを推定した場合の推定結果は、 As shown in FIG. 4, the estimation result when the capacitance Cji is estimated by the inner product operation of the output signal OUTt and the code sequence Dj is as follows:
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
となる。また、ノイズ低減線形和信号OUTCiと符号系列Djとの内積演算により静電容量Cjiを推定した場合の推定結果は、 It becomes. The estimation result when the capacitance Cji is estimated by the inner product operation of the noise reduction linear sum signal OUTCi and the code sequence Dj is as follows:
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
となる。 It becomes.
 図4に示すように、本実施形態に係るタッチパネル装置1は、信号処理部140において出力信号OUTtのノイズ低減処理を行うことにより、実際の静電容量Cjiと、推定した静電容量Cjiとの誤差を低減することができる。したがって、本実施形態に係るタッチパネル装置1の備えるタッチパネルコントローラ10は、静電容量の推定をより正確に行うことができる。 As illustrated in FIG. 4, the touch panel device 1 according to the present embodiment performs noise reduction processing on the output signal OUTt in the signal processing unit 140, thereby obtaining an actual capacitance Cji and an estimated capacitance Cji. The error can be reduced. Therefore, the touch panel controller 10 included in the touch panel device 1 according to the present embodiment can estimate the capacitance more accurately.
 なお、本実施形態では、符号系列が直交系列である場合を例に挙げて説明したが、これに限定されるものではない。例えば、符号系列は、M系列、Gold系列、及び、嵩系列などであってもよい。 In this embodiment, the case where the code sequence is an orthogonal sequence has been described as an example. However, the present invention is not limited to this. For example, the code sequence may be an M sequence, a Gold sequence, a bulk sequence, or the like.
 <実施形態2>
 実施形態1では、駆動部110がN個のM次元ベクトルのうちの1個のM次元ベクトルにより、K回連続して静電容量Cjiを駆動する構成を例に挙げて説明したが、本発明はこれに限定されるものではない。
<Embodiment 2>
In the first embodiment, the driving unit 110 has been described by taking as an example a configuration in which the capacitance Cji is driven K times continuously by one M-dimensional vector out of N M-dimensional vectors. Is not limited to this.
 例えば、実施形態1では、K=8としたが、短い時間に集中してノイズが発生した場合には、増幅器120から出力される8個の出力信号OUTtの全てにノイズが混入し、信号処理部140におけるノイズ低減処理の効果が十分に得られない場合が考えられる。 For example, in the first embodiment, K = 8, but when noise is concentrated in a short time, noise is mixed in all eight output signals OUTt output from the amplifier 120, and signal processing is performed. The case where the effect of the noise reduction process in the part 140 is not sufficiently obtained can be considered.
 本実施形態に係るタッチパネル装置1における駆動部110は、連続する2個の符号系列Dj1、Dj2(つまり、N個のM次元ベクトルのうちの1個のM次元ベクトル、及び、他の1個のM次元ベクトル)を用いて、符号系列Dj1、Dj2の各々について、複数の出力信号OUTtを得る。 The drive unit 110 in the touch panel device 1 according to the present embodiment includes two consecutive code sequences Dj1 and Dj2 (that is, one M-dimensional vector out of N M-dimensional vectors and another one A plurality of output signals OUTt are obtained for each of the code sequences Dj1 and Dj2 using an (M-dimensional vector).
 ここでは、駆動部110によるタッチパネル20の駆動に応じて、符号系列Dj1によりK個の出力信号OUTtを得ると共に、符号系列Dj2によりK個の出力信号OUTtを得るとする。このとき、増幅器120の出力信号OUTtは、 Here, it is assumed that K output signals OUTt are obtained from the code sequence Dj1 and K output signals OUTt are obtained from the code sequence Dj2 in accordance with the driving of the touch panel 20 by the drive unit 110. At this time, the output signal OUTt of the amplifier 120 is
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
となる。つまり、本実施形態に係る増幅器120は、符号系列Dj1によるK個の出力信号OUTt(OUTt、OUTt+2、OUTt+4、…、OUTt+2K-2)と、符号系列Dj2によるK個の出力信号OUTt(OUTt+1、OUTt+3、…、OUTt+2K-1)とを、それぞれ出力する。 It becomes. That is, the amplifier 120 according to the present embodiment includes the K output signals OUTt (OUTt, OUTt + 2, OUTt + 4,..., OUTt + 2K−2) based on the code sequence Dj1, and the K output signals OUTt (OUTt + 1, OUTt + 3) based on the code sequence Dj2. ,..., OUTt + 2K−1) are output.
 このように、駆動部110が、静電容量Cjiを2個の符号系列Dj1及びDj2を交互に用いて駆動することにより、1個の符号系列Dj1での静電容量Cjiの駆動を非連続的に行うこととなる。これによって、信号処理部140がAD変換部130を介して出力信号OUTtを増幅器120から取得する期間がtからt+2K-1までとなり、1この符号系列Dj1のみにより静電容量Cjiを駆動する場合の期間(tからK-1まで)よりも長期間になる。 As described above, the driving unit 110 drives the electrostatic capacitance Cji with one code sequence Dj1 discontinuously by driving the electrostatic capacitance Cji alternately using the two code sequences Dj1 and Dj2. Will be done. As a result, the period during which the signal processing unit 140 acquires the output signal OUTt from the amplifier 120 via the AD conversion unit 130 is from t to t + 2K−1, and the capacitance Cji is driven by only one code sequence Dj1. It becomes longer than the period (from t to K-1).
 したがって、短い時間に集中してノイズが発生した場合にも、全ての出力信号OUTtにノイズが混入してしまうことを防ぐことができる。これにより、本実施形態に係るタッチパネル装置1は、短い時間に集中してノイズが発生した場合にも、信号処理部140における出力信号OUTtのノイズ低減処理を適切に行うことができる。これによって、本実施形態に係るタッチパネル装置1の備えるタッチパネルコントローラ10は、実際の静電容量Cjiと、推定した静電容量Cjiとの誤差を低減することがでる。また、タッチパネルコントローラ10は、静電容量の推定をより正確に行うことができる。 Therefore, even when noise is concentrated in a short time, it is possible to prevent noise from being mixed into all output signals OUTt. Thereby, the touch panel device 1 according to the present embodiment can appropriately perform the noise reduction processing of the output signal OUTt in the signal processing unit 140 even when noise is concentrated in a short time. Thereby, the touch panel controller 10 included in the touch panel device 1 according to the present embodiment can reduce an error between the actual electrostatic capacitance Cji and the estimated electrostatic capacitance Cji. The touch panel controller 10 can more accurately estimate the capacitance.
 なお、本実施形態では、駆動部110が静電容量Cjiを2個の符号系列Dj1、Dj2によって交互に駆動する場合を例に挙げて説明したが、これに限定されるものではない。例えば、駆動部110が静電容量Cjiを符号系列Dj1により所定の回数駆動した後に符号系列Dj2により所定の回数駆動し、これを交互に繰り返すような構成としてもよい。 In the present embodiment, the case where the driving unit 110 alternately drives the capacitance Cji with the two code sequences Dj1 and Dj2 has been described as an example. However, the present invention is not limited to this. For example, the driving unit 110 may drive the electrostatic capacitance Cji a predetermined number of times by the code sequence Dj1, and then drive the electrostatic capacitance Cji a predetermined number of times by the code sequence Dj2, and alternately repeat this.
 また、本実施形態では、連続する2個の符号系列Dj1及びDj2により静電容量Cjiを駆動する構成を例に挙げて説明したが、これに限定されるものではない。例えば、符号系列Dj1及びDj3のように、2個の非連続の符号系列を用いて静電容量Cjiを駆動してもよいし、例えば、符号系列Dj1、Dj2及びDj4のように、3個以上の符号系列を用いて静電容量Cjiを駆動してもよい。 In the present embodiment, the configuration in which the capacitance Cji is driven by two consecutive code sequences Dj1 and Dj2 has been described as an example. However, the present invention is not limited to this. For example, the capacitance Cji may be driven using two non-consecutive code sequences such as code sequences Dj1 and Dj3, or, for example, three or more code sequences Dj1, Dj2, and Dj4. The electrostatic capacitance Cji may be driven using the code sequence.
 また、本実施形態では、2個の符号系列Dj1及びDj2の各々により静電容量CjiをK回ずつ駆動する構成を例に挙げて説明したが、これに限定されるものではない。例えば、符号系列Dj1によりK回静電容量Cjiを駆動するまでに、少なくともK+A回静電容量Cjiの並列駆動を行い、そのうちA回(Aは2以上の整数)は符号系列Dj2により静電容量Cji駆動すればよい。 In the present embodiment, the configuration in which the capacitance Cji is driven K times by each of the two code sequences Dj1 and Dj2 has been described as an example. However, the present invention is not limited to this. For example, before the electrostatic capacitance Cji is driven K times by the code sequence Dj1, at least K + A electrostatic capacitances Cji are driven in parallel, of which A times (A is an integer of 2 or more) are electrostatic capacitances by the code sequence Dj2. What is necessary is just to drive Cji.
 <実施形態3>
 実施形態1では、信号処理部140が、増幅器120のK個の出力信号OUTtのメディアンを基準値としてノイズ低減処理を行う構成を例に挙げて説明したが、上述したように、K個の出力信号OUTtの算術平均を基準値としてもよい。
<Embodiment 3>
In the first embodiment, the configuration in which the signal processing unit 140 performs noise reduction processing using the median of the K output signals OUTt of the amplifier 120 as a reference value has been described as an example. However, as described above, K output The arithmetic average of the signal OUTt may be used as the reference value.
 駆動部110においてある1本のドライブラインDLjを駆動するための符号系列の値をDj1とし、増幅器120の出力信号OUTtをK回取得する(つまり、M個のM次元ベクトルのうちの1個のM次元ベクトルにより、静電容量C1i~CMiをK回駆動する)とする。 The value of the code sequence for driving one drive line DLj in the drive unit 110 is Dj1, and the output signal OUTt of the amplifier 120 is obtained K times (that is, one of M M-dimensional vectors). Capacitances C1i to CMi are driven K times by M-dimensional vectors).
 このとき、タッチパネル装置1が所定の時間毎に離散時間動作しているとすると、取得される増幅器120の出力信号OUTtは、実施形態1と同様に、 At this time, assuming that the touch panel device 1 operates for a predetermined time every predetermined time, the output signal OUTt of the obtained amplifier 120 is the same as in the first embodiment.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
となる。また、上記K個の出力信号OUTtの算術平均、すなわち、基準値は、 It becomes. The arithmetic average of the K output signals OUTt, that is, the reference value is
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
で与えられる。 Given in.
 さらに、ある出力信号OUTlが上記の基準値と入れ替わるとき、 Furthermore, when an output signal OUTl is replaced with the above reference value,
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
が成立する場合には、本実施形態に係る信号処理部140は、K個の出力信号OUTtの算術平均を基準値として、増幅器120の出力信号OUTtのノイズを低減することができる。 Is established, the signal processing unit 140 according to the present embodiment can reduce the noise of the output signal OUTt of the amplifier 120 using the arithmetic average of the K output signals OUTt as a reference value.
 これによって、本実施形態に係るタッチパネル装置1の備えるタッチパネルコントローラ10は、実際の静電容量Cjiと、推定した静電容量Cjiとの誤差を低減することができ、また、タッチパネルコントローラ10は、静電容量の推定をより正確に行うことができる。 Thereby, the touch panel controller 10 included in the touch panel device 1 according to the present embodiment can reduce an error between the actual capacitance Cji and the estimated capacitance Cji. The capacity can be estimated more accurately.
 <実施形態4>
 次に、実施形態1に係るタッチパネル装置1を備える電子機器の一例として、携帯電話機300について、図5を参照して説明する。図5は、本実施形態に係る携帯電話機300の要部構成を示すブロック図である。
<Embodiment 4>
Next, as an example of an electronic apparatus including the touch panel device 1 according to the first embodiment, a mobile phone 300 will be described with reference to FIG. FIG. 5 is a block diagram showing a main configuration of the mobile phone 300 according to the present embodiment.
 〔携帯電話機の構成〕
 本実施形態に係る携帯電話機300は、図5に示すように、タッチパネル装置1、CPU310、ROM311、RAM312、カメラ313、マイクロフォン314、スピーカ315、操作キー316、表示制御回路317、及び、表示パネル318を備えている。また、携帯電話機300の各構成要素は、相互にデータバスによって接続されている。
[Configuration of mobile phone]
As shown in FIG. 5, the mobile phone 300 according to the present embodiment includes a touch panel device 1, a CPU 310, a ROM 311, a RAM 312, a camera 313, a microphone 314, a speaker 315, an operation key 316, a display control circuit 317, and a display panel 318. It has. The components of the mobile phone 300 are connected to each other by a data bus.
 タッチパネル装置1は、タッチパネルコントローラ10、及び、タッチパネル20を備えている。なお、本実施形態に係る携帯電話機300の備えるタッチパネル装置1(タッチパネルコントローラ10、及び、タッチパネル20)は、実施形態1に係るタッチパネル装置1と同じであるため、ここでは説明を省略する。 The touch panel device 1 includes a touch panel controller 10 and a touch panel 20. Note that the touch panel device 1 (the touch panel controller 10 and the touch panel 20) included in the mobile phone 300 according to the present embodiment is the same as the touch panel device 1 according to the first embodiment, and thus description thereof is omitted here.
 CPU310は、携帯電話機300の動作を統括的に制御する。CPU310は、例えば、ROM311に格納されたプログラムを実行することによって、携帯電話機300の動作を制御する。 The CPU 310 comprehensively controls the operation of the mobile phone 300. For example, the CPU 310 controls the operation of the mobile phone 300 by executing a program stored in the ROM 311.
 ROM(Read Only Memory)311は、例えばEPROM(Erasable Programmable Read-Only Memory)など、CPU310によって実行されるプログラムなどの固定データが格納される、読み出し可能かつ書き込み不能なメモリである。 A ROM (Read Only Memory) 311 is a readable and non-writable memory that stores fixed data such as a program executed by the CPU 310 such as an EPROM (Erasable Programmable Read-Only Memory).
 RAM(Random Access Memory)312は、例えばフラッシュメモリなど、CPU310が演算のために参照するデータや、CPU310が演算によって生成したデータなどの可変データが格納される、読み出し可能かつ書き込み可能なメモリである。 A RAM (Random Access Memory) 312 is a readable and writable memory, such as a flash memory, in which variable data such as data referred to by the CPU 310 for calculation or data generated by the CPU 310 is stored. .
 操作キー316は、ユーザによる携帯電話機300への指示の入力を受ける。操作キー316を介して入力されたデータは、RAM312に揮発的に格納される。 The operation key 316 receives an instruction input from the user to the mobile phone 300. Data input via the operation key 316 is stored in the RAM 312 in a volatile manner.
 カメラ313は、操作キー316を介してユーザにより入力される撮影指示に基づき、被写体を撮影する。カメラ313によって撮影された被写体の画像データは、RAM312又は外部メモリ(たとえば、メモリカード)などに格納される。 The camera 313 shoots a subject based on a shooting instruction input by the user via the operation key 316. Image data of a subject photographed by the camera 313 is stored in the RAM 312 or an external memory (for example, a memory card).
 マイクロフォン314は、ユーザの音声の入力を受付ける。入力されたユーザの音声を示す音声データ(アナログデータ)は、携帯電話機300においてデジタルデータに変換され、他の携帯電話機(通信相手)に送られる。 The microphone 314 receives user's voice input. The input voice data (analog data) indicating the voice of the user is converted into digital data in the mobile phone 300 and sent to another mobile phone (communication partner).
 スピーカ315は、例えばRAM312などに格納されている音楽データが表す音声を出力する。 The speaker 315 outputs sound represented by music data stored in the RAM 312 or the like, for example.
 表示制御回路317は、操作キー316を介して入力されるユーザ指示に基づき、ROM311又はRAM312などに格納されている画像データの表す画像を表示するよう表示パネル318を駆動する。表示パネル318は、タッチパネル20に重ねて設けられていてもよいし、タッチパネル20を内蔵していてもよいし、その構成は特に限定されない。 The display control circuit 317 drives the display panel 318 to display an image represented by the image data stored in the ROM 311 or the RAM 312 based on a user instruction input via the operation key 316. The display panel 318 may be provided so as to overlap the touch panel 20, or may include the touch panel 20, and the configuration thereof is not particularly limited.
 また、携帯電話機300は、さらに、他の電子機器と有線接続するためのインターフェイス(IF)(不図示)を備えていてもよい。 Further, the mobile phone 300 may further include an interface (IF) (not shown) for wired connection with other electronic devices.
 本実施形態に係る携帯電話機300は、タッチパネル装置1を備えていることによって、静電容量の推定をより正確に行うことができるため、タッチパネルコントローラを良好に動作させることが可能となる。したがって、携帯電話機300は、ユーザによるタッチ操作をより正確に認識することができるため、ユーザが所望する処理をより正確に実行することができる。 Since the mobile phone 300 according to the present embodiment includes the touch panel device 1, it is possible to estimate the capacitance more accurately, and thus it is possible to operate the touch panel controller satisfactorily. Therefore, since the mobile phone 300 can recognize the touch operation by the user more accurately, the mobile phone 300 can more accurately execute the process desired by the user.
 〔まとめ〕
 本発明の態様1に係るタッチパネルコントローラ10は、上述のように、M本のドライブラインDLj(Mは2以上の整数)と1本のセンスラインSLiとの間にそれぞれ形成されるM個の静電容量C1i~CMiを、N個のM次元ベクトル(Nは整数、且つ、M<N)により並列駆動し、前記M個の静電容量C1i~CMiに蓄積された電荷に基づく線形和信号を前記センスラインSLiから出力させる駆動部110と、前記センスラインSLiから出力された線形和信号と前記N個のM次元ベクトルとの内積演算により、前記M個の静電容量C1i~CMiの値を推定する内積演算部150と、を備えたタッチパネルコントローラ10であって、前記駆動部110は、前記N個のM次元ベクトルのうちの1個のM次元ベクトルにより、前記静電容量C1i~CMiをK回(Kは2以上の整数)並列駆動して、前記センスラインSLiからK個の線形和信号を出力させ、前記K個の線形和信号から導出された基準値に基づいて、前記線形和信号に混入したノイズを低減したノイズ低減線形和信号を生成する信号処理部140をさらに備え、前記内積演算部150は、前記信号処理部140により生成されたノイズ低減線形和信号と前記N個のM次元ベクトルとの内積演算により、前記M個の静電容量C1i~CMiの値を推定する。
[Summary]
As described above, the touch panel controller 10 according to the first aspect of the present invention includes the M static lines formed between the M drive lines DLj (M is an integer of 2 or more) and one sense line SLi. The capacitances C1i to CMi are driven in parallel by N M-dimensional vectors (N is an integer and M <N), and a linear sum signal based on the charges accumulated in the M capacitances C1i to CMi is obtained. The values of the M capacitances C1i to CMi are calculated by an inner product calculation of the driving unit 110 that outputs the sense line SLi and the linear sum signal output from the sense line SLi and the N M-dimensional vectors. The touch panel controller 10 includes an inner product calculation unit 150 for estimation, wherein the driving unit 110 uses a single M-dimensional vector of the N M-dimensional vectors to calculate a previous value. Capacitances C1i to CMi are driven in parallel K times (K is an integer of 2 or more), K linear sum signals are output from the sense lines SLi, and a reference value derived from the K linear sum signals And a signal processing unit 140 that generates a noise-reduced linear sum signal in which noise mixed in the linear sum signal is reduced, and the inner product operation unit 150 includes a noise-reduced linearity generated by the signal processing unit 140. The values of the M electrostatic capacitances C1i to CMi are estimated by an inner product operation of the sum signal and the N M-dimensional vectors.
 上記の構成によれば、前記信号処理部は、前記駆動部により前記センスラインから出力された前記K個の線形和信号から基準値を導出し、当該基準値に基づいて前記線形和信号に混入したノイズを低減したノイズ低減線形和信号を生成する。また、前記内積演算部は、前記M個の静電容量の値を推定するに際し、前記N個のM次元ベクトルとの内積演算に、前記ノイズ低減線形和信号を用いる。 According to the above configuration, the signal processing unit derives a reference value from the K linear sum signals output from the sense line by the driving unit, and mixes in the linear sum signal based on the reference value. A noise-reduced linear sum signal in which the generated noise is reduced is generated. The inner product calculation unit uses the noise-reduced linear sum signal for inner product calculation with the N M-dimensional vectors when estimating the M capacitance values.
 このように、前記内積演算部は、線形和信号に混入したノイズの低減された前記ノイズ低減線形和信号を用いて前記静電容量を推定するため、実際の静電容量と、推定した静電容量との誤差を低減することができる。これによって、前記タッチパネルコントローラは、静電容量の推定をより正確に行うことができる。 In this way, the inner product calculation unit estimates the capacitance using the noise-reduced linear sum signal in which noise mixed in the linear sum signal is reduced. An error from the capacity can be reduced. Accordingly, the touch panel controller can more accurately estimate the capacitance.
 本発明の態様2に係るタッチパネルコントローラにおいて、前記態様1における前記駆動部は、前記N個のM次元ベクトルのうちの前記1個のM次元ベクトルにより、前記静電容量を連続してK回並列駆動してもよい。 In the touch panel controller according to aspect 2 of the present invention, the driving unit according to aspect 1 is configured such that the capacitance is continuously paralleled K times by the one M-dimensional vector of the N M-dimensional vectors. It may be driven.
 上記の構成によれば、前記駆動部は、前記センスラインから連続してK個の線形和信号を出力させる。これにより、前記内積演算部は、前記信号処理部において連続して生成されるK個のノイズ低減線形和信号と前記N個のM次元ベクトルとの内積演算により前記M個の静電容量の値を推定することができる。したがって、前記タッチパネルコントローラは、前記センスラインから連続して得られるK個の線形和信号に基づいて、静電容量の推定をより正確に行うことができる。 According to the above configuration, the driving unit outputs K linear sum signals continuously from the sense line. As a result, the inner product calculation unit calculates the value of the M electrostatic capacitances by calculating the inner product of the K noise-reduced linear sum signals continuously generated by the signal processing unit and the N M-dimensional vectors. Can be estimated. Therefore, the touch panel controller can more accurately estimate the capacitance based on the K linear sum signals continuously obtained from the sense lines.
 本発明の態様3に係るタッチパネルコントローラにおいて、前記態様1における前記駆動部は、前記N個のM次元ベクトルのうちの1個のM次元ベクトルにより前記静電容量を並列駆動してK個の線形和信号を得るまでに、少なくともK+A回前記静電容量の並列駆動を行い、そのうちA回(Aは2以上の整数)は、前記N個のM次元ベクトルのうちの他のM次元ベクトルにより、前記静電容量を駆動してもよい。 In the touch panel controller according to aspect 3 of the present invention, the drive unit according to aspect 1 may drive K capacitances in parallel by one M-dimensional vector out of the N M-dimensional vectors, so that K linear Before obtaining the sum signal, the capacitances are driven in parallel at least K + A times, of which A times (A is an integer of 2 or more) is determined by another M-dimensional vector among the N M-dimensional vectors. The capacitance may be driven.
 上記の構成によれば、前記駆動部は、前記線形和信号に短期間に集中してノイズが混入する場合であっても、長期間にわたって前記静電容量を駆動する。これにより、前記駆動部は、短期間に得る前記線形和信号の多くにノイズが混入する場合であっても、ノイズの混入しない線形和信号を出力させることができる。 According to the above configuration, the driving unit drives the capacitance for a long period of time even when noise is mixed in the linear sum signal in a short period of time. As a result, the drive unit can output a linear sum signal that does not contain noise even when noise is mixed in most of the linear sum signals that are obtained in a short period of time.
 したがって、前記タッチパネルコントローラは、短時間に集中して発生するノイズを取り除き、静電容量の推定をより正確に行うことができる。 Therefore, the touch panel controller can remove noise that is concentrated in a short time and estimate the capacitance more accurately.
 本発明の態様4に係るタッチパネルコントローラにおいて、前記態様1から3における前記基準値は、前記K個の線形和信号のメディアンによって導出される値であってもよい。 In the touch panel controller according to aspect 4 of the present invention, the reference value in the aspects 1 to 3 may be a value derived by a median of the K linear sum signals.
 上記の構成によれば、前記信号処理部は、前記基準値として前記K個の線形和信号のメディアンによって導出される値を用いる。これによって、前記信号処理部は、前記K個の線形和信号のうち極端に大きなノイズの混入した線形和信号に影響を受けることなくノイズ低減線形和信号を生成することができる。 According to the above configuration, the signal processing unit uses a value derived by a median of the K linear sum signals as the reference value. Accordingly, the signal processing unit can generate a noise-reduced linear sum signal without being affected by a linear sum signal mixed with extremely large noise among the K linear sum signals.
 本発明の態様4に係る集積回路は、前記態様1から3におけるタッチパネルコントローラを集積している。 The integrated circuit according to aspect 4 of the present invention integrates the touch panel controller according to aspects 1 to 3.
 上記の構成によれば、上記タッチパネルコントローラを集積回路に集積しているため、上記タッチパネルコントローラを実装するためのスペースを極小化することができる。 According to the above configuration, since the touch panel controller is integrated in an integrated circuit, a space for mounting the touch panel controller can be minimized.
 本発明の態様5に係るタッチパネル装置は、前記態様1から3におけるタッチパネルコントローラと、前記タッチパネルコントローラにより制御されるタッチパネルと、を備えている。 A touch panel device according to aspect 5 of the present invention includes the touch panel controller according to aspects 1 to 3 and a touch panel controlled by the touch panel controller.
 本発明の態様6に係る電子機器は、前記態様1から3におけるタッチパネルコントローラと、前記タッチパネルコントローラにより制御されるタッチパネルと、を備えている。 An electronic device according to aspect 6 of the present invention includes the touch panel controller according to aspects 1 to 3 and a touch panel controlled by the touch panel controller.
 なお、ここで開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 In addition, it should be thought that embodiment disclosed here is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明は、タッチパネルコントローラを備えた電子機器、例えば、タッチパネル装置、スマートフォン、電子黒板、及び、タッチパネル式のパーソナルコンピュータなどに好適に適用することができる。 The present invention can be suitably applied to an electronic device including a touch panel controller, such as a touch panel device, a smartphone, an electronic blackboard, and a touch panel personal computer.
 1     タッチパネル装置
 10    タッチパネルコントローラ
 20    タッチパネル
 110   駆動部
 120   増幅器
 130   AD変換部
 140   信号処理部
 150   内積演算部
 300   携帯電話機(電子機器)
DESCRIPTION OF SYMBOLS 1 Touch panel apparatus 10 Touch panel controller 20 Touch panel 110 Drive part 120 Amplifier 130 AD conversion part 140 Signal processing part 150 Inner product calculation part 300 Mobile phone (electronic device)

Claims (7)

  1.  M本のドライブライン(Mは2以上の整数)と1本のセンスラインとの間にそれぞれ形成されるM個の静電容量を、N個のM次元ベクトル(Nは整数、且つ、M<N)により並列駆動し、前記M個の静電容量に蓄積された電荷に基づく線形和信号を前記センスラインから出力させる駆動部と、
     前記センスラインから出力された線形和信号と前記N個のM次元ベクトルとの内積演算により、前記M個の静電容量の値を推定する内積演算部と、を備えたタッチパネルコントローラであって、
     前記駆動部は、前記N個のM次元ベクトルのうちの1個のM次元ベクトルにより、前記静電容量をK回(Kは2以上の整数)並列駆動して、前記センスラインからK個の線形和信号を出力させ、
     前記K個の線形和信号から導出された基準値に基づいて、前記線形和信号に混入したノイズを低減したノイズ低減線形和信号を生成する信号処理部をさらに備え、
     前記内積演算部は、前記信号処理部により生成されたノイズ低減線形和信号と前記N個のM次元ベクトルとの内積演算により、前記M個の静電容量の値を推定する、
    ことを特徴とするタッチパネルコントローラ。
    M capacitances respectively formed between M drive lines (M is an integer of 2 or more) and one sense line are converted into N M-dimensional vectors (N is an integer, and M < N) driving in parallel, and driving the linear sum signal based on the charges accumulated in the M capacitances from the sense line;
    A touch panel controller comprising: an inner product operation unit configured to estimate the value of the M capacitances by an inner product operation of the linear sum signal output from the sense line and the N M-dimensional vectors,
    The driving unit drives the capacitance in parallel K times (K is an integer equal to or greater than 2) by one M-dimensional vector among the N M-dimensional vectors, and outputs K capacitances from the sense line. Output a linear sum signal,
    A signal processing unit that generates a noise-reduced linear sum signal in which noise mixed in the linear sum signal is reduced based on a reference value derived from the K linear sum signals;
    The inner product calculation unit estimates the value of the M capacitances by an inner product calculation of the noise-reduced linear sum signal generated by the signal processing unit and the N M-dimensional vectors.
    A touch panel controller characterized by that.
  2.  前記駆動部は、前記N個のM次元ベクトルのうちの前記1個のM次元ベクトルにより、前記静電容量を連続してK回並列駆動する、
    ことを特徴とする請求項1に記載のタッチパネルコントローラ。
    The drive unit continuously drives the capacitance in parallel K times by the one M-dimensional vector of the N M-dimensional vectors;
    The touch panel controller according to claim 1.
  3.  前記駆動部は、前記N個のM次元ベクトルのうちの1個のM次元ベクトルにより前記静電容量を並列駆動してK個の線形和信号を得るまでに、少なくともK+A回前記静電容量の並列駆動を行い、そのうちA回(Aは2以上の整数)は、前記N個のM次元ベクトルのうちの他のM次元ベクトルにより、前記静電容量を駆動する、
    ことを特徴とする請求項1に記載のタッチパネルコントローラ。
    The driving unit drives the capacitance in parallel by one M-dimensional vector of the N M-dimensional vectors to obtain K linear sum signals at least K + A times before the capacitance is obtained. In parallel drive, A times (A is an integer of 2 or more) drives the capacitance by another M-dimensional vector of the N M-dimensional vectors.
    The touch panel controller according to claim 1.
  4.  前記基準値は、前記K個の線形和信号のメディアンによって導出される値である、
    ことを特徴とする請求項1から3の何れか1項に記載のタッチパネルコントローラ。
    The reference value is a value derived by a median of the K linear sum signals.
    The touch panel controller according to any one of claims 1 to 3, wherein the touch panel controller is provided.
  5.  請求項1から4の何れか1項に記載のタッチパネルコントローラを集積している、
    ことを特徴とする集積回路。
    The touch panel controller according to any one of claims 1 to 4 is integrated.
    An integrated circuit characterized by that.
  6.  請求項1から4の何れか1項に記載のタッチパネルコントローラと、
     前記タッチパネルコントローラにより制御されるタッチパネルと、を備える、
    ことを特徴とするタッチパネル装置。
    The touch panel controller according to any one of claims 1 to 4,
    A touch panel controlled by the touch panel controller.
    A touch panel device characterized by that.
  7.  請求項1から4の何れか1項に記載のタッチパネルコントローラと、
     前記タッチパネルコントローラにより制御されるタッチパネルと、を備える、
    ことを特徴とする電子機器。
     
    The touch panel controller according to any one of claims 1 to 4,
    A touch panel controlled by the touch panel controller.
    An electronic device characterized by that.
PCT/JP2013/085158 2013-02-25 2013-12-27 Touch panel controller, integrated circuit, touch panel device, and electronic apparatus WO2014129091A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013034999 2013-02-25
JP2013-034999 2013-02-25

Publications (1)

Publication Number Publication Date
WO2014129091A1 true WO2014129091A1 (en) 2014-08-28

Family

ID=51390902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085158 WO2014129091A1 (en) 2013-02-25 2013-12-27 Touch panel controller, integrated circuit, touch panel device, and electronic apparatus

Country Status (1)

Country Link
WO (1) WO2014129091A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016062597A (en) * 2014-09-19 2016-04-25 株式会社 ハイディープ smartphone

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118957A (en) * 2010-11-12 2012-06-21 Sharp Corp Linear element column value estimation method, capacitance detection method, integrated circuit, touch sensor system, and electronic equipment
JP2012247870A (en) * 2011-05-25 2012-12-13 Sharp Corp Capacitance estimation method, integrated circuit, and electronic apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118957A (en) * 2010-11-12 2012-06-21 Sharp Corp Linear element column value estimation method, capacitance detection method, integrated circuit, touch sensor system, and electronic equipment
JP2012247870A (en) * 2011-05-25 2012-12-13 Sharp Corp Capacitance estimation method, integrated circuit, and electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016062597A (en) * 2014-09-19 2016-04-25 株式会社 ハイディープ smartphone

Similar Documents

Publication Publication Date Title
JP5231605B2 (en) Touch panel controller and electronic device using the same
TWI476650B (en) Linear system coefficient estimating method, linear device column value estimating method, capacitance detecting method, integrated circuit, touch sensor system, and electronic device
JP5740534B2 (en) Signal processing system, touch panel controller, and touch panel system and electronic device using the same
JP5341224B2 (en) Touch panel controller, integrated circuit, touch panel system, and electronic device
JP5079903B1 (en) Capacitance estimation method, integrated circuit, and electronic device
WO2013105584A1 (en) Linear system coefficient estimation method, integrated circuit employing same, touch panel system, and electronic apparatus
WO2013001954A1 (en) Linear device value estimating method, capacitance detection method, integrated circuit, touch sensor system, and electronic device
JP5989906B2 (en) Touch panel controller, integrated circuit, and electronic device
JP5394540B2 (en) Touch panel controller, integrated circuit, touch panel device, and electronic device.
JP5989937B2 (en) Signal processing system, touch panel system, and electronic device
JP5969127B2 (en) Touch panel controller and electronic device
WO2014203598A1 (en) Touch panel controller, integrated circuit, touch panel device, and electronic apparatus
JP6271732B2 (en) Capacitance value distribution detection circuit, touch panel system, and electronic device
WO2014129091A1 (en) Touch panel controller, integrated circuit, touch panel device, and electronic apparatus
JP2013149223A (en) Linear system coefficient estimation method and integrated circuit using the same, touch panel device and electronic equipment
JP2013008316A (en) Linear system coefficient estimation method, integrated circuit, and electronic equipment
JP5449461B2 (en) Touch panel controller, integrated circuit using the same, touch panel device, and electronic device
WO2014038519A1 (en) Touch panel controller, integrated circuit including same, touch panel device, and electronic device
JP2015118553A (en) Touch panel controller, touch panel device, and electronic apparatus
WO2014208174A1 (en) Touch panel controller, touch panel system, and electronic device
JP5399538B2 (en) Touch panel controller, integrated circuit using the same, touch panel device, and electronic device
JP2013127680A (en) Linear system coefficient estimating method, integrated circuit, touch panel device, and electronic device
JP5670586B2 (en) Linear element value estimation method, capacitance detection method, integrated circuit, touch sensor system, electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP