WO2014128994A1 - 永久磁石型同期電動機 - Google Patents

永久磁石型同期電動機 Download PDF

Info

Publication number
WO2014128994A1
WO2014128994A1 PCT/JP2013/071958 JP2013071958W WO2014128994A1 WO 2014128994 A1 WO2014128994 A1 WO 2014128994A1 JP 2013071958 W JP2013071958 W JP 2013071958W WO 2014128994 A1 WO2014128994 A1 WO 2014128994A1
Authority
WO
WIPO (PCT)
Prior art keywords
teeth
permanent magnet
radial
axial
rotor
Prior art date
Application number
PCT/JP2013/071958
Other languages
English (en)
French (fr)
Inventor
成田 憲治
Original Assignee
Narita Kenji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Narita Kenji filed Critical Narita Kenji
Publication of WO2014128994A1 publication Critical patent/WO2014128994A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos

Definitions

  • the present invention relates to an inner rotor type permanent magnet synchronous motor having an armature as a stator and a field as a rotor, and more particularly to a permanent magnet type synchronous motor having a larger torque density and output density.
  • the permanent magnet is changed from a ferrite magnet to a rare earth magnet such as a neodymium magnet.
  • the field magnet has an IPM (Interior Permanent Magnet) structure and reluctance torque is used in combination.
  • IPM Interior Permanent Magnet
  • Increase the air gap area by, for example, doubling the air gap between the radial type motor and the axial type motor.
  • Patent Document 1 the magnetization direction of a field permanent magnet is multipolarized according to the direction of motion.
  • (1) to (4) have the following problems. That is, (1) rare earth elements are used for rare earth magnets, but rare earth elements are expensive because they have a small reserve. (2) The reluctance torque contributes only 10% to the magnet torque, and a significant power up cannot be expected. (3) The structure is complicated and it is not an effective method for increasing the air gap area. (4) A large torque at a low speed can be expected to some extent due to the multipolarization, but the expansion of the air gap area is not considered.
  • the force (torque) of the motor is an attractive force-repulsive force (Maxwell stress) generated by the interaction between the DC magnetic field generated by the field and the AC magnetic field generated by the armature through an air gap. It is proportional to the sum of the movement direction components. That is, motor force (torque) ⁇ [size of AC magnetic flux of armature] ⁇ [size of DC magnetic flux of field] It is represented by
  • an object of the present invention is to provide a permanent magnet type synchronous motor having a larger torque density and output density.
  • the present invention has several features described below. That is, in an inner rotor type permanent magnet type synchronous motor in which a rotor made of a field having a permanent magnet is arranged inside a stator made of an annular armature, the rotor is a quadrangular and circumferentially magnetized plate
  • the permanent magnets are arranged at a predetermined interval so that the magnetization direction faces the rotation direction, and a field tooth made of a ferromagnetic material is sandwiched between the adjacent permanent magnets, and the field teeth Is formed so that the thickness in the circumferential direction is farther away from the center, the polarity of the permanent magnet is magnetized so that the adjacent magnets are opposite to each other, so that the adjacent field teeth become different polarities
  • a rotor is formed by forming a field having an even number of poles, and connecting the field composed of the field teeth and the permanent magnet to a rotating shaft via a nonmagnetic support member at the innermost diameter portion.
  • the stator includes a radial tooth portion disposed to face the first magnetic pole surface in the radial direction of the rotor with a predetermined air gap, and a predetermined air gap to the second magnetic pole surface in the axial direction of the rotor.
  • the axial teeth portion is arranged in a U-shaped cross section so as to sandwich the rotor from both ends of the radial teeth portion.
  • the radial teeth portion and the two axial teeth portions are separated and independent, and the number of teeth and slots is the same, and the center position of each tooth is relative to the rotation angle.
  • the winding method is either concentrated winding or distributed winding, the phase of the multiphase AC current flowing through the winding is the same, and the same rotating magnetic field is applied both spatially and temporally. It is characterized by being formed.
  • the radial teeth portion and the axial teeth portion are integrally formed, and the teeth at the same position in the rotation angle have a three-dimensional slot from the radial teeth portion to the axial teeth portion.
  • the three-dimensional concentrated winding is provided in the slot.
  • the radial teeth portion and the axial teeth portion are integrally formed, and the radial teeth portion and the axial teeth portion are respectively provided with teeth, and the slot and the yoke are the axial teeth.
  • the teeth of the radial teeth portion and the axial teeth portion of the radial teeth portion are transferred to the radial teeth portion by passing a multiphase alternating current through the concentrated winding wound around the slot of the radial teeth portion. This is characterized in that a rotating magnetic field is generated in the air gap between the teeth and a torque is generated.
  • stator is characterized by being divided into at least two or more along the rotational direction of the rotor.
  • the stator has a radial teeth portion disposed to face the first magnetic pole surface in the radial direction of the rotor with a predetermined air gap, and a predetermined value with respect to the second magnetic pole surface in the axial direction of the rotor.
  • the radial teeth of the rotor are arranged in a U-shaped cross section with the axial teeth portions sandwiching the rotor from both ends of the radial teeth portions.
  • a permanent magnet type synchronous motor using both the gap and the axial air gap is obtained.
  • the radial teeth portion is formed in an annular shape so as to face the first magnetic pole surface, and the opposing surface has a plurality of first teeth members facing the first magnetic pole surface, Since the first tooth member is provided with the first slot member around which the coil is wound, a magnetic driving force can be obtained between the first magnetic pole surface of the rotor and the radial teeth portion.
  • the axial teeth portion is formed in an annular shape so as to face the second end surface, and has a plurality of second teeth members opposed to the second magnetic pole surface on the facing surface.
  • the two tooth members are formed in a fan shape whose width gradually increases from the center toward the outer side in the radial direction, and the second slot member around which the coil is wound is provided, so that the second magnetic pole surface of the rotor is provided.
  • a magnetic driving force can be obtained between the magnetic teeth portion and the axial teeth portion.
  • the radial teeth portion and the axial teeth portion are integrally formed in the stator, and a coil that integrally excites the first magnetic pole surface to the second magnetic pole surface is wound around the inner peripheral surface of the stator.
  • a coil that integrally excites the first magnetic pole surface to the second magnetic pole surface is wound around the inner peripheral surface of the stator.
  • the stator is divided into at least two or more along the axial direction and / or the radial direction of the rotor, so that a predetermined air gap is secured by attaching the rotor so as to be sandwiched between the divided stators.
  • it can be assembled with high accuracy.
  • the coil is wound around the winding part by either concentrated winding or distributed winding, and the coil is connected so as to be a multiphase AC winding.
  • the winding method can be changed accordingly.
  • FIG. 1 is a cross-sectional view of a main part of a permanent magnet type synchronous motor according to a first embodiment of the present invention.
  • this permanent magnet type synchronous motor 1 (hereinafter simply referred to as “motor 1”) includes a cylindrical rotor 2 and a stator 3 disposed so as to cover the rotor 2. It is housed in a cup-shaped casing 4.
  • the casing 4 is disposed so that the bearing portions 41 and 41 that support the rotating shaft 21 of the rotor 2 are coaxial in the center in the axial direction. Moreover, the casing 4 is divided into two along the axial direction. In the present invention, specific materials and shapes of the casing 4 and the bearing portions 41 and 41 are arbitrary matters.
  • the rotor 2 includes a cylindrical rotor support portion 22 into which the output shaft 21 is press-fitted at the center, a plurality of field teeth 23 supported by the rotor support portion 22, and each field tooth 23. And a plurality of permanent magnets 24 arranged so as to be sandwiched between them.
  • the rotor support portion 22 is formed of a non-magnetic molded product, and has a cylindrical support portion main body 221 that is coaxially formed around the output shaft 21 and a radial direction from the outer peripheral surface of the support portion main body 221. It is formed in the shape of a gear provided with protruding protrusions 222.
  • the field teeth 23 are formed of a ferromagnetic molded product, and are formed in a fan shape from the center in the radial direction toward the outer peripheral direction. Each field tooth 23 is fixed so as to be sandwiched between the respective convex portions 222 provided on the rotor support portion 22.
  • casting, resin molding, shrink fitting, and welding can be considered as a method for fixing the field teeth 23, but other methods may be used for fixing.
  • the slots 231 into which the permanent magnets 24 are inserted are formed by fixing the sector-shaped field teeth 23 to the rotor support portions 22.
  • the slot 231 is formed with an equal width from the center toward the outer periphery, and is fixed so that the plate-like permanent magnet 24 is inserted therein.
  • the magnetization direction of the plate-like permanent magnet 24 is the thickness direction, that is, the rotation direction (circumferential direction), and the polarity is magnetized so that the adjacent permanent magnets 24 are opposite to each other. And thereby, the adjacent field teeth 23 have different polarities, and a field having an even number of poles can be formed.
  • the permanent magnet 24 is a ferrite magnet or a neodymium magnet, but other permanent magnets may be used.
  • the stator 3 includes a radial tooth portion 31 that faces the first magnetic pole surface 2a of the rotor 2 (the vertical surface in FIG. 1) with a predetermined air gap, and the second magnetic pole surface 2b of the rotor 2 (in the horizontal direction in FIG. 1).
  • Two axial teeth portions 32 that face each other with a predetermined air gap, and are arranged in a U-shape (gate shape) so as to sandwich the rotor 2 therebetween.
  • the radial teeth portion 31 includes an annular yoke 311 concentrically arranged with respect to the outer peripheral surface of the rotor 2, and a plurality of (this) protruding from the inner peripheral surface of the annular yoke 311 toward the radial gap surface 3 a of the rotor 3.
  • the teeth portions 312a to 312i are erected so that one end thereof is orthogonal to the inner peripheral surface of the annular yoke 311 and a slot portion around which the coil C is wound is formed.
  • the teeth portions 312a to 312i are made of a laminate in which a single magnetic steel sheet is punched and laminated along the axial direction of the output shaft 21, but in addition to this, a sintered magnetic core, a dust core, or the like is used. May be used.
  • Each axial teeth portion 32 is formed in a flat donut shape disposed opposite to the second magnetic pole surfaces 2b, 2b. Since both the axial teeth portions 32 have the same shape, only one of them will be described.
  • the axial teeth portion 32 is made of a magnetic product and is formed in a flat donut shape having an opening 33 for allowing the rotary shaft 21 to escape in the center.
  • the axial teeth portion 32 has a yoke portion 321 on the side opposite to the second magnetic pole surface 2b (the lower surface side in FIG. 4B), and on the second magnetic pole surface 2b side (the upper surface side in FIG. 4B). A plurality (9 poles in this example) of teeth portions 322a to 322i facing the second magnetic pole surface 2b are formed.
  • slot members 323a to 323i around which the coil C is wound are formed on the axial gap surface 2b side (the upper surface side in FIG. 4B) of the axial teeth portion 32.
  • a plurality of slots (323 slots in this example) are formed radially from the center of the tooth surface along the radial direction of each of the slots 323a to 323i.
  • Each of the slots 323a to 323i is formed so that the opening width is narrow on the inlet side and widens in the depth direction.
  • the stator 3A is composed of an electromagnetic steel plate laminated iron core, a dust core, and a sintered core, and a radial teeth portion 31 and an axial teeth portion 32 are integrally formed.
  • the stator 3A when the radial teeth portion 31 and the axial teeth portion 32 are integrally formed, in order to hold the rotor 2 inside, the stator 3A must be divided into at least two or more. Therefore, in the second embodiment, the stator 3A includes teeth members 31a to 31c divided into three at intervals of 120 °.
  • a slot member 34 for accommodating the coil C is formed on the inner peripheral surfaces (surfaces facing the rotor 2) of the tooth members 31a to 31b.
  • the slot member 34 is formed as a pair of two poles for each of the tooth members 31a to 31b.
  • Each slot member 34 is composed of a groove formed in a continuous arch shape between each of the radial teeth portions 312a to 312i and the axial teeth portions 322a to 322i of the inner peripheral surfaces of the tooth members 31a to 31b.
  • the coil C is housed in the.
  • a three-dimensional concentrated winding capable of exciting the coil C1 of the radial teeth portion 31 and the coil C2 of the axial teeth portion 32 simultaneously can be applied.
  • This is one in which the three windings of the radial winding of each pole and the two axial windings (corresponding to P1 in FIG. 7) in the first embodiment can be replaced by one winding, and the efficiency due to the reduction of the winding resistance. It contributes to the improvement.
  • each of the tooth members 31a to 31c is made of an iron core material formed by compaction molding or sintering molding, but other molding methods may be used.
  • the stator 3B is provided with a three-dimensional concentrated winding only on the radial teeth 311a to 311i of the coil C, and the teeth members 31a to 31c on which the windings are provided are connected to the rotor 2. After being matched from the outer peripheral direction so as to wrap them, they are integrated by welding or the like, whereby the annular stator 3B is formed.
  • the basic structure of the stator 3B is a modification of the stator 3 of the first embodiment. That is, the two axial teeth portions 32, 32 of the second embodiment are left as they are, the yoke and the slot of the axial teeth portion 32 are moved to the radial teeth portion 31, and are concentrated on the yoke and the slot of the radial teeth portion 31. It is a thing.
  • the windings are concentrated windings for each of the divided stator teeth, and the assembly can be performed by the same method as in the second embodiment.
  • the effect of the third embodiment is that the stator teeth can be manufactured by a laminated method of electromagnetic steel plates, and the windings can be reduced in cost because the concentrated windings only need to be provided in one radial part, and the winding resistance can be reduced. Therefore, the primary copper loss is reduced and the motor efficiency is improved.
  • a coil C is wound around the electric motor 1 by distributed winding, and is connected so as to have a three-phase connection of UVV.
  • the U phase is the tooth portions 312a, 312d, 312g (322a, 322d, 322g).
  • the V phase is a tooth portion 312b, 312e, 312h (322b, 322e, 322h).
  • the W phase is a tooth portion 312c, 312f, 312i (322c, 322f, 322i).
  • concentrated winding and distributed winding may be selectively employed, and may be arbitrarily selected according to specifications such as the form of the stator core (armature core) and the assembly method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

 よりトルク密度・出力密度の大きい永久磁石型同期電動機を提供する。界磁の角型板状の永久磁石24の磁化方向を回転方向とし、複数の永久磁石24を円周方向に偶数個並べ、それらの間に強磁性体からなる扇型柱状の界磁ティース34を挟んでラジアル方向とアキシャル方向に同一極性の磁界を発生させ、それらの外側には適正エアギャップを保ちながら、ラジアル電機子31と二つのアキシャル電機子32,32を配置して、ラジアル・アキシャル複合型エアギャップを形成する。

Description

永久磁石型同期電動機
 本発明は、電機子をステータとし、界磁をロータとするインナーロータ型の永久磁石型同期電動機に関し、さらに詳しく言えば、トルク密度・出力密度のより大きい永久磁石型同期電動機に関する。
 永久磁石型同期電動機においては、トルク密度、出力密度の向上を目的として、以下の(1)~(4)に示す技術的試みが行われてきた。すなわち、(1)永久磁石をフェライト系磁石からネオジム磁石などの希土類系磁石に代える。(2)界磁をIPM(Interior Permanent Magnet)構造とし、リラクタンストルクを併用する。(3)ラジアル型モータ及びアキシャル型モータのエアギャップを二重にするなどしてエアギャップ面積を増やす。(4)例えば特許文献1に示すように、界磁の永久磁石の磁化方向を運動方向に合わせて多極化する。
 しかしながら、(1)~(4)には次のような課題がある。すなわち、(1)希土類系磁石には希土類元素が用いられるが、希土類系元素は埋蔵量が少ないため価格が高い。(2)リラクタンストルクはマグネットトルクに対して10数%の寄与に過ぎず、大幅なパワーアップは望めない。(3)構造が複雑であるとともに、エアギャップ面積を増やす効果的な方法ではない。(4)多極化によって低速での大トルクはある程度期待できるが、エアギャップ面積の拡大について考慮されていない。
 他方において、モータの力(トルク)は、界磁による直流磁界と電機子による交流磁界とが対向して形成されたエアギャップを介して相互に作用して発生する引力-斥力(マクスウェル応力)の運動方向成分の総和に比例する。すなわち、モータの力(トルク)∝〔電機子の交流磁束の大きさ〕×〔界磁の直流磁束の大きさ〕
で表される。
 いま、モータのサイズ、電気装荷、磁気装荷、及びエアギャップ長などを略一定と仮定すると、次の二つの式が成立する。すなわち、〔電機子の交流磁束の大きさ〕∝〔電機子と界磁とが対向するエアギャップ面積〕であり、〔界磁の直流磁束の大きさ〕∝〔電機子と界磁とが対向するエアギャップ面積〕である。したがって、モータのトルク密度や出力密度を大きくするためには、電機子と界磁とが対向するエアギャップの面積を大きくすることが望ましい。
特開2000-217286号公報
 そこで、本発明の課題は、トルク密度・出力密度のより大きい永久磁石型同期電動機を提供することにある。
 上述した課題を解決するため、本発明は以下に示すいくつかの特徴を備えている。すなわち、環状の電機子からなるステータの内部に、永久磁石を有する界磁からなるロータが配置されるインナーロータ型の永久磁石型同期電動機において、上記ロータは、四角形で円周方向に磁化した板状の上記永久磁石を磁化方向が回転方向を向くように所定の間隔をもって配置され、隣り合う上記永久磁石の間には、強磁性体からなる界磁ティースが挟持されており、上記界磁ティースは、円周方向の厚さが中心から遠ざかるほど厚く形成され、上記永久磁石の極性は、隣同士が逆向きになるように着磁することによって、隣り合う上記界磁ティースは異極となり、偶数極の極数を有する界磁を形成し、それらの上記界磁ティースと上記永久磁石とからなる界磁を最内径部において非磁性体の支持部材を介して回転軸に連結して回転子となし、上記ステータは、上記ロータのラジアル方向の第1磁極面に対して所定のエアギャップをもって対向配置されるラジアルティース部と、上記ロータのアキシャル方向の第2磁極面に対して所定のエアギャップをもって対向配置されるアキシャルティース部とを有し、上記ラジアルティース部の両端側から上記アキシャルティース部が上記ロータを挟むようにして断面コ字状に配置されていることを特徴としている。
 また、上記ステータにおいて、上記ラジアルティース部と、二つの上記アキシャルティース部は分離独立しており、それぞれのティース及びスロットの数は同数であり、それぞれの上記ティースの中心位置は、回転角に対して同じ位置に配置され、巻線方法も集中巻か分布巻のいずれかであり、巻線に流す多相交流電流の位相も同一であり、空間的にも時間的にも同一の回転磁界を形成するようにしたことを特徴としている。
 さらに、上記ステータにおいて、上記ラジアルティース部と上記アキシャルティース部は一体的に形成されており、回転角において同じ位置にあるティースには、三次元的にスロットが上記ラジアルティース部から上記アキシャルティース部にかけて連続的に形成されており、そのスロット内に三次元的集中巻巻線が施されていることを特徴としている。
 また、上記ステータにおいて、上記ラジアルティース部と上記アキシャルティース部は一体的に形成されており、ラジアルティース部とアキシャルティース部とには、それぞれティースが設けられており、スロットとヨークは上記アキシャルティース部から上記ラジアルティース部へと移設した構造とし、上記ラジアルティース部の上記スロットに巻かれた集中巻巻線に多相交流電流を流すことによって、上記ラジアルティース部の上記ティースと上記アキシャルティース部の上記ティースとの間のエアギャップにおいて回転磁界をつくりトルクを発生するようにしたことを特徴としている。
 さらには、上記ステータは、上記ロータの回転方向に沿って少なくとも2以上に分割されていることを特徴としている。
 これによれば、上記ステータは、上記ロータのラジアル方向の第1磁極面に対して所定のエアギャップをもって対向配置されるラジアルティース部と、上記ロータのアキシャル方向の第2磁極面に対して所定のエアギャップをもって対向配置されるアキシャルティース部とを有し、上記ラジアルティース部の両端側から上記アキシャルティース部が上記ロータを挟むようにして断面コ字状に配置されていることにより、ロータのラジアルエアギャップとアキシャルエアギャップの両方を用いた永久磁石型同期電動機が得られる。
 また、上記ラジアルティース部は、上記第1磁極面に対向して環状に形成されており、その対向面には、上記第1磁極面に対向する複数の第1ティースメンバーを有し、上記各第1ティースメンバーには、コイルが巻回される第1スロットメンバーが設けられていることにより、ロータの第1磁極面とラジアルティース部との間で磁気的な駆動力を得ることができる。
 さらに、上記アキシャルティース部は、上記第2端面に対向して環状に形成されており、その対向面には、上記第2磁極面に対向する複数の第2ティースメンバーを有し、上記各第2ティースメンバーは、中心から半径方向の外側に向かって幅が漸次大きくなる扇状に形成されており、コイルが巻回される第2スロットメンバーが設けられていることにより、ロータの第2磁極面とアキシャルティース部との間で磁気的な駆動力を得ることができる。
 また、上記ステータは、上記ラジアルティース部および上記アキシャルティース部が一体成形されており、その内周面には、上記第1磁極面から上記第2磁極面にかけてを一体的に励磁するコイルが巻回されるスロットメンバーが形成されていることにより、第1磁極面から第2磁極面を一体的にコイルで覆うことにより、一次銅損が少なくなり、モータの効率改善に効果が期待できる。
 さらに、上記ステータは、上記ロータの軸線方向および/または半径方向に沿って少なくとも2以上に分割されていることにより、ロータを分割されたステータで挟み込むように取り付けることで、所定のエアギャップを確保しながら、精度よく組み立てることができる。
 また、上記巻線部には、集中巻か分布巻のいずれかの方法によって上記コイルが巻回されており、上記コイルが多相交流巻線となるように結線されていることにより、仕様に応じて巻線方法を変えることができる。
本発明の第1実施形態に係る永久磁石型同期電動機の要部断面図。 上記第1実施形態のロータの(a)正面図および(b)A-A線断面図。 上記第1実施形態のステータの(a)正面図および(b)B-B線断面図。 上記ステータのアキシャルティース部の(a)正面図および(b)底面図。 本発明の第2実施形態に係る永久磁石型同期電動機のステータの(a)正面図および(b)C-C線断面図。 本発明の第3実施形態に係る永久磁石型同期電動機のステータの(a)正面図および(b)D-D線断面図。 上記第1実施形態の結線状態を説明するための説明図。 上記第1実施形態の結線状態を説明するための説明図。
 次に、本発明の実施形態について図面を参照しながら説明するが、本発明はこれに限定されるものではない。図1に示すように、この永久磁石型同期電動機1(以下、単に電動機1とする)は、円筒状のロータ2と、同ロータ2を覆うように配置されるステータ3とを備え、それらがカップ型のケーシング4の中に収納されている。
 この例において、ケーシング4は、軸線方向の中央にロータ2の回転軸21を軸受する軸受部41,41が同軸的となるように配置されている。また、ケーシング4は、軸線方向に沿って2分割されている。本発明において、ケーシング4および軸受部41,41の具体的な材質や形状は任意的事項である。
 図2を参照して、ロータ2は、中心に出力軸21が圧入される円筒状のロータ支持部22と、同ロータ支持部22によって支持される複数の界磁ティース23と、各界磁ティース23の間に挟まれるようにして配置される複数の永久磁石24とを備えている。
 ロータ支持部22は、非磁性体の成形品からなり、出力軸21を中心に同軸的に形成された円筒状の支持部本体221と、同支持部本体221の外周面から半径方向に向かって突出した凸部222とを備えた歯車状に形成されている。
 界磁ティース23は、強磁性体の成形品からなり、半径方向の中心から外周方向に向かって扇状に形成されている。各界磁ティース23は、ロータ支持部22に設けられた各凸部222の間に挟まるように固定されている。界磁ティース23の固定方法は、例えば鋳造、樹脂成形、焼き嵌め、溶接などが考えられるが、その他の手法を用いて固定してもよい。
 この扇形の界磁ティース23をそれぞれロータ支持部22に固定することで、永久磁石24が差し込まれるスロット231が形成される。スロット231は、中心から外周に向かって等幅で形成されており、そこに板状の永久磁石24が差し込まれるようにして固定されている。
 図2に示すように、板状の永久磁石24の磁化方向は、厚さ方向すなわち回転方向(円周方向)とし、極性は隣同士の永久磁石24が逆向きになるように着磁するものとする。それによって、隣り合う界磁ティース23は異極となり、偶数極の極数を有する界磁を形成できる。
 この例において、永久磁石24は、フェライト磁石やネオジム磁石などが用いられているが、これ以外の永久磁石が用いられてもよい。
 次に、図1および図3を参照してステータ3について説明する。ステータ3は、ロータ2の第1磁極面2a(図1では上下方向の面)に所定のエアギャップをもって対向するラジアルティース部31と、ロータ2の第2磁極面2b(図1では左右方向の面)に所定のエアギャップをもって対向する二つのアキシャルティース部32とを有し、それらがロータ2を挟むようにコ字型(門型)に配置されている。
 ラジアルティース部31は、ロータ2の外周面に対して同心円状に配置される環状ヨーク311と、環状ヨーク311の内周面からロータ3のラジアルギャップ面3aに向けて突設された複数(この例では9極)のティース部312a~312iとを備えている。
 ティース部312a~312iは、一端が環状ヨーク311の内周面に対して直交するように立設され、周囲にコイルCが巻回されるスロット部が形成されている。この例において、ティース部312a~312iは、一枚の電磁鋼板を打ち抜いたものを出力軸21の軸線方向に沿って積層した積層体からなるが、これ以外に焼結磁心や圧粉磁心などが用いられてもよい。
 各アキシャルティース部32は、各第2磁極面2b,2bに対向配置される偏平なドーナツ状に形成されている。アキシャルティース部32はともに同一形状であるため、いずれか一方についてのみ説明する。
 図4を併せて参照して、アキシャルティース部32は、磁性体の成形品からなり、中央に回転軸21を逃がすための開口部33が設けられた扁平なドーナツ状に形成されている。
 アキシャルティース部32には、反第2磁極面2b側(図4(b)では下面側)にヨーク部321を有し、第2磁極面2b側(図4(b)では上面側)には、第2磁極面2bに対向する複数(この例では9極)のティース部322a~322iが形成されている。
 アキシャルティース部32のアキシャルギャップ面2b側(図4(b)では上面側)にはさらに、コイルCが巻回されるスロットメンバー323a~323iが形成されている。各スロット323a~323iは、ティース面の中心から半径方向に沿って放射状に複数(この例では9スロット)形成されている。各スロット323a~323iは、その開口幅が入口側が狭く、深さ方向に向かって広くなるように形成されている。
 次に、図5を参照して、本発明の第2実施形態に係る電動機のステータ3Aを説明する。なお、上述した第1実施形態と同一または同一と見なされる箇所には同じ参照符号を付した。このステータ3Aは、電磁鋼鈑積層鉄心、圧粉磁心、焼結磁心からなり、ラジアルティース部31とアキシャルティース部32とが一体成形されている。
 ところで、ラジアルティース部31とアキシャルティース部32とが一体成形されている場合、内部にロータ2を保持するためには、ステータ3Aが少なくとも2以上に分割されていなくてはならない。そこで、この第2実施形態において、ステータ3Aは、120°間隔で3分割されたティースメンバー31a~31cを備えている。
 各ティースメンバー31a~31bの内周面(ロータ2と対向する面)には、コイルCを収納するためのスロットメンバー34が形成されている。この例において、スロットメンバー34は、各ティースメンバー31a~31b毎に2極一組となって形成されている。
 各スロットメンバー34は、各ティースメンバー31a~31bの内周面のラジアル側の各ティース部312a~312iとアキシャル側のティース部322a~322iとにかけて連続したアーチ状に形成された溝からなり、そこにコイルCが収納されている。
 これによれば、スロットメンバー34に沿ってコイルCを収納することで、ラジアルティース部31のコイルC1と、アキシャルティース部32のコイルC2とを同時に励磁出来る三次元的集中巻を施すことができる。これは第1実施形態における毎極のラジアル巻線と二つのアキシャル巻線(図7のP1に相当)の三つの巻線を一つの巻線で代替出来るものであり巻線抵抗の減少による効率の向上に寄与する。
 次に、図6を参照して、本発明の第3実施形態に係る電動機のステータ3Bについて説明する。この第3実施形態のステータ3Bについても、各ティースメンバー31a~31cはともに鉄心材料を圧粉成形や焼結成形などによって形成したものからなるが、これ以外の成型方法であってもよい。
 この第3実施形態において、このステータ3Bには、コイルCはラジアルティース部311a~311iにのみ三次元的集中巻線が施されており、巻線を施した各ティースメンバー31a~31cをロータ2を包むようにして外周方向から合致させたのち、それらを溶接などによって一体化することで、環状のステータ3Bが形成される。
 このステータ3Bの基本的な構造は、上記第1実施形態のステータ3を変形したものである。すなわち第2実施形態の二つのアキシャルティース部32,32をそのまま残しておき、アキシャルティース部32のヨークとスロットとをラジアルティース部31に移動し、ラジアルティース部31のヨークとスロットに集中化させたものである。
 巻線は分割されたステータティース毎に集中巻巻線を施し、組立は第2の実施形態と同様の方法で組み立てることができる。
 第3の実施形態の効果は、ステータティースが電磁鋼鈑の積層方式で製作でき、かつ巻線もラジアル部一ヶ所に集中巻巻線を施せばよいので低コストとなり、巻線抵抗が低く出来るので一次銅損が小さくなりモータ効率も向上する。
 次に、図7および図8を参照して、本発明の電動機1のコイルCの結線手順の一例について説明する。この例において、電動機1には、コイルCが分布巻により巻回され、U-V-Wの3相結線となるように結線されている。
 この例において、U相はティース部312a,312d,312g(322a,322d,322g)である。V相はティース部312b,312e,312h(322b,322e,322h)である。W相はティース部312c,312f,312i(322c,322f,322i)である。
 コイルCの巻線方法は、集中巻と分布巻が選択的に採用されてよく、ステータコア(電機子鉄心)の形態や組立方法などの仕様に応じて任意に選択されてよい。
 1 永久磁石型同期電動機
 2 ロータ
 2a 第1磁極面
 2b,2b 第2磁極面
 21 出力軸
 3 ステータ
 31 ラジアルティース部
 32,32 アキシャルティース部
 

Claims (5)

  1.  環状の電機子からなるステータの内部に、永久磁石を有する界磁からなるロータが配置されるインナーロータ型の永久磁石型同期電動機において、
     上記ロータは、四角形で円周方向に磁化した板状の上記永久磁石を磁化方向が回転方向を向くように所定の間隔をもって配置され、隣り合う上記永久磁石の間には、強磁性体からなる界磁ティースが挟持されており、上記界磁ティースは、円周方向の厚さが中心から遠ざかるほど厚く形成され、上記永久磁石の極性は、隣同士が逆向きになるように着磁することによって、隣り合う上記界磁ティースは異極となり、偶数極の極数を有する界磁を形成し、それらの上記界磁ティースと上記永久磁石とからなる界磁を最内径部において非磁性体の支持部材を介して回転軸に連結して回転子となし、
     上記ステータは、上記ロータのラジアル方向の第1磁極面に対して所定のエアギャップをもって対向配置されるラジアルティース部と、上記ロータのアキシャル方向の第2磁極面に対して所定のエアギャップをもって対向配置されるアキシャルティース部とを有し、上記ラジアルティース部の両端側から上記アキシャルティース部が上記ロータを挟むようにして断面コ字状に配置されていることを特徴とする永久磁石型同期電動機。
  2.  上記ステータにおいて、上記ラジアルティース部と、二つの上記アキシャルティース部は分離独立しており、それぞれのティース及びスロットの数は同数であり、それぞれの上記ティースの中心位置は、回転角に対して同じ位置に配置され、巻線方法も集中巻か分布巻のいずれかであり、巻線に流す多相交流電流の位相も同一であり、空間的にも時間的にも同一の回転磁界を形成するようにしたことを特徴とする請求項1に記載の永久磁石型同期電動機。
  3.  上記ステータにおいて、上記ラジアルティース部と上記アキシャルティース部は一体的に形成されており、回転角において同じ位置にあるティースには、三次元的にスロットが上記ラジアルティース部から上記アキシャルティース部にかけて連続的に形成されており、そのスロット内に三次元的集中巻巻線が施されていることを特徴とする請求項1に記載の永久磁石型同期電動機。
  4.  上記ステータにおいて、上記ラジアルティース部と上記アキシャルティース部は一体的に形成されており、ラジアルティース部とアキシャルティース部とには、それぞれティースが設けられており、スロットとヨークは上記アキシャルティース部から上記ラジアルティース部へと移設した構造とし、上記ラジアルティース部の上記スロットに巻かれた集中巻巻線に多相交流電流を流すことによって、上記ラジアルティース部の上記ティースと上記アキシャルティース部の上記ティースとの間のエアギャップにおいて回転磁界をつくりトルクを発生するようにしたことを特徴とする請求項1に記載の永久磁石型同期電動機。
  5.  上記ステータは、上記ロータの回転方向に沿って少なくとも2以上に分割されていることを特徴とする請求項3ないし4のいずれか1項に記載の永久磁石型同期電動機。
PCT/JP2013/071958 2013-02-21 2013-08-15 永久磁石型同期電動機 WO2014128994A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013031704A JP2014165927A (ja) 2013-02-21 2013-02-21 永久磁石型同期電動機
JP2013-031704 2013-02-21

Publications (1)

Publication Number Publication Date
WO2014128994A1 true WO2014128994A1 (ja) 2014-08-28

Family

ID=51390812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071958 WO2014128994A1 (ja) 2013-02-21 2013-08-15 永久磁石型同期電動機

Country Status (2)

Country Link
JP (1) JP2014165927A (ja)
WO (1) WO2014128994A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790470A (zh) * 2016-04-20 2016-07-20 山东大学 一种双定子复合结构转子径轴向混合磁路永磁同步电机及方法
JP2016540484A (ja) * 2013-12-13 2016-12-22 ボリーメディア ホールディングス カンパニー リミテッドBolymedia Holdings Co. Ltd. 電磁モータ
JP2017143687A (ja) * 2016-02-12 2017-08-17 株式会社 成田 磁力回転装置
CN108246808A (zh) * 2018-01-31 2018-07-06 湖北环电磁装备工程技术有限公司 无框组合式永磁同步电机直驱的辊式楔横轧机
US20200177036A1 (en) * 2018-11-29 2020-06-04 Toshiba Lifestyle Products & Services Corporation Rotor magnet and method for manufacturing the same, and permanent magnet motor
WO2021143166A1 (zh) * 2020-01-13 2021-07-22 浙江盘毂动力科技有限公司 一种混合磁通复合结构盘式电机

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5851654B1 (ja) * 2014-11-27 2016-02-03 成田 憲治 同期電動機
CN104638780A (zh) * 2015-01-14 2015-05-20 海安联科汽车零部件有限公司 一种长短结构的磁瓦夹

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309763A (ja) * 1998-05-01 1999-11-09 Nisso Denki Kk 成形機
JP2001169530A (ja) * 1999-09-27 2001-06-22 Matsushita Electric Works Ltd 公転式アクチュエータ
JP2005528074A (ja) * 2002-05-24 2005-09-15 バージニア テック インテレクチュアル プロパティーズ インコーポレーテッド ラジアル−アキシャル磁束電気モータ、コアキシャル磁束電気モータおよびそのロータ
JP2006087190A (ja) * 2004-09-15 2006-03-30 Hitachi Industrial Equipment Systems Co Ltd 非円筒形状のギャップを有するモータ
JP2008259289A (ja) * 2007-04-04 2008-10-23 Honda Motor Co Ltd 電動機の制御装置
JP2009095151A (ja) * 2007-10-09 2009-04-30 Sumida Corporation 回転型電磁発電機
WO2010116921A1 (ja) * 2009-04-07 2010-10-14 公立大学法人大阪府立大学 磁気回路構造体
JP2012080692A (ja) * 2010-10-04 2012-04-19 Denso Corp マルチギャップ型回転電機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309763A (ja) * 1998-05-01 1999-11-09 Nisso Denki Kk 成形機
JP2001169530A (ja) * 1999-09-27 2001-06-22 Matsushita Electric Works Ltd 公転式アクチュエータ
JP2005528074A (ja) * 2002-05-24 2005-09-15 バージニア テック インテレクチュアル プロパティーズ インコーポレーテッド ラジアル−アキシャル磁束電気モータ、コアキシャル磁束電気モータおよびそのロータ
JP2006087190A (ja) * 2004-09-15 2006-03-30 Hitachi Industrial Equipment Systems Co Ltd 非円筒形状のギャップを有するモータ
JP2008259289A (ja) * 2007-04-04 2008-10-23 Honda Motor Co Ltd 電動機の制御装置
JP2009095151A (ja) * 2007-10-09 2009-04-30 Sumida Corporation 回転型電磁発電機
WO2010116921A1 (ja) * 2009-04-07 2010-10-14 公立大学法人大阪府立大学 磁気回路構造体
JP2012080692A (ja) * 2010-10-04 2012-04-19 Denso Corp マルチギャップ型回転電機

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016540484A (ja) * 2013-12-13 2016-12-22 ボリーメディア ホールディングス カンパニー リミテッドBolymedia Holdings Co. Ltd. 電磁モータ
JP2017143687A (ja) * 2016-02-12 2017-08-17 株式会社 成田 磁力回転装置
CN105790470A (zh) * 2016-04-20 2016-07-20 山东大学 一种双定子复合结构转子径轴向混合磁路永磁同步电机及方法
CN108246808A (zh) * 2018-01-31 2018-07-06 湖北环电磁装备工程技术有限公司 无框组合式永磁同步电机直驱的辊式楔横轧机
US20200177036A1 (en) * 2018-11-29 2020-06-04 Toshiba Lifestyle Products & Services Corporation Rotor magnet and method for manufacturing the same, and permanent magnet motor
WO2021143166A1 (zh) * 2020-01-13 2021-07-22 浙江盘毂动力科技有限公司 一种混合磁通复合结构盘式电机

Also Published As

Publication number Publication date
JP2014165927A (ja) 2014-09-08

Similar Documents

Publication Publication Date Title
WO2014128994A1 (ja) 永久磁石型同期電動機
US7535145B2 (en) Axial air gap-type electric motor
US7247967B2 (en) Electric motor having a stator
JP5318758B2 (ja) リングコイルモータ
JP5491484B2 (ja) スイッチドリラクタンスモータ
US7061152B2 (en) Rotor-stator structure for electrodynamic machines
US7638919B2 (en) Stator arrangement and rotor arrangement for a transverse flux machine
JP5347587B2 (ja) クローポール型モータ
EP2869433B1 (en) Axial flux permanent magnet electrical machine with magnetic flux concentration
WO2014188737A1 (ja) 永久磁石型同期電動機
JP2015510389A (ja) 電気機械用の固定子及び回転子
JP2010200518A (ja) 永久磁石回転機用回転盤及び永久磁石回転機の製造方法
US20160105088A1 (en) Dc-excited synchronous electric motor
JP2009136046A (ja) トロイダル巻式回転電機
EP2690753B1 (en) Electric motor
JP2014155415A (ja) 磁石埋込型ロータ及び磁石埋込型ロータの製造方法
JP2018082600A (ja) ダブルロータ型の回転電機
JP2013132124A (ja) 界磁子用コア
JP2008067561A (ja) 永久磁石形電動機
KR20150015607A (ko) 고정자 및 이를 구비한 스위치드 릴럭턴스 모터
JP2013106499A (ja) 回転電機および回転電機のロータ
JP2014050254A (ja) 励磁式回転電機
KR101918069B1 (ko) 영구자석 분할모듈을 포함하는 모터 및 이의 제조 방법
JP6950361B2 (ja) モータ
JP2014073011A (ja) 回転電機用ステータ及び回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875595

Country of ref document: EP

Kind code of ref document: A1