WO2014128748A1 - キャリブレーション装置、キャリブレーションプログラム、およびキャリブレーション方法 - Google Patents

キャリブレーション装置、キャリブレーションプログラム、およびキャリブレーション方法 Download PDF

Info

Publication number
WO2014128748A1
WO2014128748A1 PCT/JP2013/000908 JP2013000908W WO2014128748A1 WO 2014128748 A1 WO2014128748 A1 WO 2014128748A1 JP 2013000908 W JP2013000908 W JP 2013000908W WO 2014128748 A1 WO2014128748 A1 WO 2014128748A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
depth
calibration
stereoscopic image
area
Prior art date
Application number
PCT/JP2013/000908
Other languages
English (en)
French (fr)
Inventor
山本 慎也
Original Assignee
株式会社ブリリアントサービス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリリアントサービス filed Critical 株式会社ブリリアントサービス
Priority to US14/767,746 priority Critical patent/US9906778B2/en
Priority to JP2015501060A priority patent/JP6250024B2/ja
Priority to PCT/JP2013/000908 priority patent/WO2014128748A1/ja
Publication of WO2014128748A1 publication Critical patent/WO2014128748A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/327Calibration thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/246Calibration of cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/254Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/344Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0138Head-up displays characterised by optical features comprising image capture systems, e.g. camera
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0187Display position adjusting means not related to the information to be displayed slaved to motion of at least a part of the body of the user, e.g. head, eye

Definitions

  • the present invention relates to a calibration apparatus, a calibration program, and a calibration method. More specifically, the present invention relates to a calibration apparatus, a calibration program, and a calibration method related to stereoscopic image display.
  • Patent Document 1 discloses a computer graphics that displays a high-quality image on a screen at high speed, that is, a high-speed image generation and display method.
  • the high-speed image generation and display method described in Patent Literature 1 is a high-speed image generation and display method for projecting and displaying an object having a three-dimensional structure on a two-dimensional screen, and the constituent surface of the object is a region in the target coordinate system.
  • the size of the object is hierarchically described as at least one element, and is displayed in the target coordinate system from the origin or viewpoint of the display reference coordinate system when projecting the constituent plane of the target when viewed from an arbitrary viewpoint onto the two-dimensional screen.
  • the degree of hierarchy is set with the distance to an arbitrary point of the target being set as at least one parameter.
  • Patent Document 2 discloses a stereoscopic image generation method and a stereoscopic image generation apparatus that efficiently generate a stereoscopic video without burden on an observer.
  • object data to be planarly displayed among objects composed of polygons having three-dimensional coordinates is displayed in the standard camera coordinate system data with the reference camera as the origin.
  • the data of the object in the right-eye parallax camera coordinate system is rendered in the video memory as the image data for the right eye, and the data of the object in the reference camera coordinate system and the data of the object in the parallax camera coordinate system for the left eye
  • image data draw in video memory and combine right-eye image data and left-eye image data drawn in video memory Te, and displaying an image with mixed stereoscopic object in a plan view object in the stereoscopic display device.
  • Patent Document 3 discloses a method using face recognition and gesture / position recognition techniques.
  • the method described in Patent Document 3 is a method for applying an attribute indicating a user's temperament to a visual display, which includes a step of rendering the user's visual display and a step of receiving physical space data.
  • the data is representative of the user in physical space, the step of analyzing at least one detectable feature to infer the user's temperament, and an attribute indicative of the user's temperament Applying to the display.
  • Patent Document 4 discloses a system and method for supplying a multi-mode input to a space or gesture calculation system.
  • the system disclosed in Patent Literature 4 includes an input device and a detector that is coupled to a processor and detects the orientation of the input device, and the input device has a plurality of mode orientations corresponding to the orientation.
  • Patent Document 5 discloses a system, method, and computer-readable medium for manipulating virtual objects.
  • the method described in Patent Document 5 is a method for operating a virtual object in a virtual space, the step of determining at least one controller used by a user to operate the virtual object, and the controller as a cursor in the virtual space.
  • a method comprising: mapping; determining a controller input indicating that a user operates a virtual object with a cursor; and displaying an operation result.
  • Patent Document 6 In Japanese Patent Application Laid-Open No. 2012-106005 (Patent Document 6), an observer of an image display device obtains a feeling as if it can directly operate a stereoscopic image that does not actually exist.
  • An image display device, a game program, and a game control method are disclosed.
  • the image display device described in Patent Literature 6 includes an image display unit that displays a parallax image on a display screen, and a virtual spatial coordinate of a stereoscopic image that is recognized between the display screen and the observer by an observer of the parallax image.
  • An object of the present invention is to provide a calibration device, a calibration program, and a calibration method capable of adjusting and associating the relationship between the distance to a target object that is a real image and the appearance of a stereoscopic image that is a virtual image. There is.
  • a calibration device includes a display device capable of generating a stereoscopic image, A depth sensor that measures the distance to the object, and a stereoscopic image generated by the display device and an adjustment unit that adjusts the depth of the object detected by the depth sensor.
  • the calibration device includes a display device, a depth sensor, and an adjustment unit.
  • the display device can generate a stereoscopic image.
  • the depth sensor measures the distance to the object.
  • the adjustment unit adjusts the stereoscopic image generated by the display device and the depth of the object detected by the depth sensor.
  • the relationship between the distance to the object that is a real image and the appearance of a stereoscopic image that is a virtual image can be adjusted and associated.
  • the object that is a real image can be viewed as if it is in contact with a stereoscopic image that is a virtual image, or both images can be viewed as if they are at a certain distance.
  • calibration includes configuration and adjusting.
  • the depth refers to the distance from the depth sensor to the target object to be detected.
  • a calibration device is the calibration device according to one aspect, wherein the adjustment unit is generated by the visual recognition size and position of the shape determined by the object at the depth detected by the depth sensor, and the display device. Adjustment may be made so that the viewing size and position of the stereoscopic image correspond to each other.
  • the visual size of the stereoscopic image that is a virtual image can be adjusted according to the visual size in the space determined by the involvement of the target object that is a real image.
  • the object in the calibration device according to one aspect and the second aspect, may be a part of a human body.
  • a calibration device is the calibration device according to the third aspect, wherein a part of the human body may be a finger, a palm, a hand, or an arm.
  • a sensible approach using a finger, palm, hand, or arm is facilitated to a stereoscopic image that is a virtual image.
  • the calibration device is the calibration device according to any one of the fourth aspect to the fourth aspect, wherein the display device may be a head mounted display.
  • the calibration device is small and wearable, for example, like glasses. Moreover, it can make it portable and can adjust according to the person who wears a head mounted display when a shift
  • a calibration device is the calibration device according to the fourth or fifth invention, wherein the object is a finger, a palm or a hand, and the adjustment unit is connected to the object from the shoulder joint on the object side.
  • the adjustment unit is connected to the object from the shoulder joint on the object side.
  • a shared region shared by the stereoscopic region that can be generated as a stereoscopic image and the depth detection region of the depth sensor may be determined.
  • the shared area can be customized according to the difference in the user's physique.
  • a calibration device is the calibration device according to any one of the sixth aspect to the sixth aspect, wherein the depth sensor detects the depth of the target by detecting the distance to the target with infrared rays. It may be what you do.
  • the object can be detected quickly and accurately by infrared irradiation and reflection, the depth can be detected quickly and accurately.
  • a calibration program is detected by a display process that can generate a stereoscopic image, a depth sensor process that measures a distance to an object, and a stereoscopic image and a depth sensor process that are generated by the display process. And a position adjustment process for adjusting the depth of the object.
  • the calibration program according to the present invention includes display processing, depth sensor processing, and position adjustment processing.
  • the display process can generate a stereoscopic image.
  • the depth sensor process measures the distance to the object.
  • the position adjustment process adjusts the stereoscopic image generated by the display process and the depth of the object detected by the depth sensor process.
  • the relationship between the distance to the object that is a real image and the appearance of a stereoscopic image that is a virtual image can be adjusted and associated.
  • the object that is a real image can be viewed as if it is in contact with a stereoscopic image that is a virtual image, or both images can be viewed as if they are at a certain distance.
  • calibration includes configuration and adjusting.
  • the depth refers to the distance from the depth sensor to the target object to be detected.
  • a calibration program is the calibration program according to another aspect, wherein the position adjustment processing includes the visual size and position of the shape determined by the object at the depth detected by the depth sensor processing, and the display processing.
  • the viewing size and position of the stereoscopic image generated by the above may be adjusted to correspond to each other.
  • the visual size of the stereoscopic image that is a virtual image can be adjusted according to the visual size in the space determined by the involvement of the target object that is a real image.
  • a calibration program according to a tenth invention is the calibration program according to another aspect or the ninth invention, wherein the object is a finger, a palm, or a hand.
  • the position adjustment process is a shared area determination process. You may have.
  • the shared area determination process includes a stereoscopic area in which a stereoscopic image is generated by the display process and a depth detection area detected by the depth sensor process according to the length from the shoulder joint on the object side to the object. Decide the shared area to share.
  • the shared area can be customized according to the user's physique.
  • a calibration program according to an eleventh invention is the calibration program according to any of the tenth invention from another aspect, wherein the depth sensor process detects the depth of the object by detecting the distance to the object by infrared rays.
  • An infrared detection process for performing detection may be included.
  • the object can be detected quickly and accurately by infrared irradiation and reflection, the depth can be detected quickly and accurately.
  • a calibration method is detected by a display process capable of generating a stereoscopic image, a depth sensor process for measuring a distance to an object, a stereoscopic image generated by the display process, and a depth sensor process. And a position adjusting step for adjusting the depth of the object to be processed.
  • the calibration method according to the present invention includes a display process, a depth sensor process, and a position adjustment process.
  • the display process can generate a stereoscopic image.
  • the depth sensor process measures the distance to the object.
  • the position adjustment process adjusts the stereoscopic image generated by the display process and the depth of the object detected by the depth sensor process.
  • the relationship between the distance to the object that is a real image and the appearance of a stereoscopic image that is a virtual image can be adjusted and associated.
  • the object that is a real image can be viewed as if it is in contact with a stereoscopic image that is a virtual image, or both images can be viewed as if they are at a certain distance.
  • calibration includes configuration and adjusting.
  • the depth refers to the distance from the depth sensor to the target object to be detected.
  • a calibration method is the calibration method according to still another aspect, wherein the position adjustment step includes a visual size and position of the shape determined by the object at the depth detected by the depth sensor step, and a display. You may adjust so that the visual recognition size and position of the stereoscopic image produced
  • the visual size of the stereoscopic image that is a virtual image can be adjusted according to the visual size in the space determined by the involvement of the target object that is a real image.
  • the calibration method according to the fourteenth invention is the calibration method according to yet another aspect or the thirteenth invention, wherein the object is a finger, a palm, or a hand.
  • the position adjustment step is a shared region determination step. May be included.
  • the shared region determining step includes a stereoscopic region where a stereoscopic image is generated by the display step and a depth detection region detected by the depth sensor step according to the length from the shoulder joint on the target side to the target. Decide the shared area to share.
  • the shared area can be customized according to the user's physique.
  • a calibration method is the calibration method according to the fourteenth aspect of the present invention, wherein the depth sensor step detects the depth of the target by detecting the distance to the target using infrared rays. You may have the infrared detection process to perform.
  • the object can be detected quickly and accurately by infrared irradiation and reflection, the depth can be detected quickly and accurately.
  • a calibration device capable of adjusting and associating the relationship between the distance to a target object that is a real image and the appearance of a stereoscopic image that is a virtual image. be able to.
  • FIG. 1 is a schematic external perspective view showing an example of an eyeglass display device 100.
  • FIG. 3 is a schematic diagram illustrating an example of a configuration of a control unit 450 of the operation system 400.
  • FIG. 4 is a flowchart showing a flow of processing in the operation system 400. It is a schematic diagram which shows the concept according to the flowchart of FIG. 4 is a schematic perspective view for explaining a detection area of an infrared detection unit 410 and a virtual display area of a pair of transflective displays 220.
  • FIG. FIG. 7 is a top view of FIG. 6.
  • FIG. 7 is a side view of FIG. 6.
  • FIG. 4 is a schematic diagram illustrating an example of display on a transflective display 220 of the eyeglass display device 100.
  • FIG. It is a schematic diagram which shows an example (a) of the visual field of the transflective display 220, and an example (b) of a display of the translucent display 220.
  • gesture recognition It is a schematic diagram which shows an example of gesture recognition. It is a schematic diagram which shows the other example of gesture recognition. It is a schematic diagram which shows the other example of gesture recognition. It is a schematic diagram which shows the other example of gesture recognition. It is a schematic diagram which shows the other example of gesture recognition. It is a schematic diagram which shows the other example of gesture recognition. It is a schematic diagram which shows the other example of gesture recognition. It is a schematic diagram which shows the other example of gesture recognition. It is a schematic diagram which shows the other example of gesture recognition. It is a schematic diagram which shows the other example of gesture recognition.
  • the present invention is not limited to the eyeglass display device described below, but can be applied to other input / output devices, display devices, televisions, monitors, projectors, and the like.
  • FIG. 1 is a schematic external front view showing an example of the basic configuration of a spectacle display device 100 according to an embodiment
  • FIG. 2 is a schematic external perspective view showing an example of the spectacle display device 100.
  • the glasses display device 100 is a glasses-type display device. As will be described later, the eyeglass display device 100 is used by being worn on the user's face.
  • the eyeglass display device 100 mainly includes an eyeglass unit 200, a communication system 300, and an operation system 400.
  • the spectacle unit 200 includes a spectacle frame 210 and a pair of transflective displays 220.
  • the spectacle frame 210 mainly includes a rim unit 211 and a temple unit 212.
  • a pair of transflective displays 220 is supported by the rim unit 211 of the spectacle frame 210.
  • the pair of transflective displays 220 is provided on the rim unit 211 in the spectacle display device 100, but the present invention is not limited to this, and a normal sunglasses lens is provided on the rim unit 211 of the spectacle display device 100.
  • lenses such as an ultraviolet cut lens or a spectacle lens may be provided, and a single transflective display 220 or a pair of transflective displays 220 may be provided separately. Further, the transflective display 220 may be embedded in a part of the lenses.
  • the present embodiment is not limited to the eyeglass type, and can be used for a hat type or any other head mounted display device as long as it is a type that can be worn on the human body and disposed in the field of view of the wearer. .
  • the communication system 300 includes a battery unit 301, an antenna module 302, a camera unit 303, a speaker unit 304, a GPS (Global Positioning System) unit 307, a microphone unit 308, a SIM (Subscriber Identity Module Card) unit 309, and a main unit 310.
  • the camera unit may be provided with a CCD sensor.
  • the speaker unit 304 may be a normal earphone or a bone conduction earphone.
  • the SIM unit 309 includes an NFC (Near Field Communication) unit and other contact IC card units, and a non-contact IC card unit.
  • the communication system 300 includes at least one of the functions of a mobile phone, a smartphone, and a tablet terminal. Specifically, it includes a telephone function, an Internet function, a browser function, a mail function, an imaging function, and the like. Therefore, the user can use a call function similar to that of a mobile phone by using the eyeglass display device 100 with the communication device, the speaker, and the microphone. Further, since it is a glasses type, it is possible to make a call without using both hands.
  • the operation system 400 includes an infrared detection unit 410, a gyro sensor unit 420, an acceleration detection unit 430, and a control unit 450.
  • the infrared detection unit 410 mainly includes an infrared irradiation element 411 and an infrared detection camera 412.
  • FIG. 3 is a schematic diagram illustrating an example of the configuration of the control unit 450 of the operation system 400.
  • the control unit 450 includes an image sensor calculation unit 451, a depth map calculation unit 452, an image processing unit 453, an anatomical recognition unit 454, a gesture data recording unit 455, a gesture identification unit 456, calibration data. It includes a recording unit 457, a composite arithmetic unit 458, an application software unit 459, an event service unit 460, a calibration service unit 461, a display service unit 462, a graphic arithmetic unit 463, a display arithmetic unit 464, and a six-axis drive driver unit 465.
  • control unit 450 need not include all of the above, and may include one or more units as necessary.
  • the gesture data recording unit 455 and the calibration data recording unit 457 may be arranged on the cloud, and the synthesis operation unit 458 may not be provided.
  • FIG. 4 is a flowchart showing a flow of processing in the operation system 400
  • FIG. 5 is a schematic diagram showing a concept corresponding to the flowchart of FIG.
  • the target data is acquired from the infrared detection unit 410, and the depth calculation is performed by the depth map calculation unit 452 (step S1.
  • the outer shape image data is processed by the image processing unit 453. (Step S2).
  • the anatomical recognition unit 454 identifies anatomical features from the outline image data processed in step S2 based on the standard human body structure. Thereby, the outer shape is recognized (step S3).
  • the gesture identification unit 456 identifies the gesture based on the anatomical features obtained in step S3 (step S4).
  • the gesture identification unit 456 refers to the gesture data recorded in the gesture data recording unit 455 and identifies the gesture from the outer shape where the anatomical features are identified.
  • the gesture identification unit 456 refers to the gesture data from the gesture data recording unit 455.
  • the gesture identification unit 456 is not limited to referencing, and may refer to other arbitrary data without referring to it at all. It may be processed. As described above, the hand gesture is recognized as shown in FIG.
  • the application software unit 459 and the event service unit 460 perform a predetermined event according to the gesture determined by the gesture identification unit 456 (step S5).
  • the image by a photography application for example is displayed.
  • the image data from the camera unit 303 may be displayed on the screen.
  • the display service unit 462, the calibration service unit 461, the graphic operation unit 463, the display operation unit 464, and the composition operation unit 458 display an image on the translucent display 220 or a virtual display of the image (step).
  • S6 As a result, a hand skeleton indicating a gesture is displayed as shown in FIG. 5C, and as shown in FIG. 5D, the shape and size of the photograph are changed to the shape and size of the skeleton. An image synthesized to match is displayed.
  • the 6-axis drive driver unit 465 always detects signals from the gyro sensor unit 420 and the acceleration detection unit 430, and transmits the posture state to the display arithmetic unit 464.
  • the 6-axis drive driver unit 465 When the user wearing the glasses display device 100 tilts the glasses display device 100, the 6-axis drive driver unit 465 always receives signals from the gyro sensor unit 420 and the acceleration detection unit 430, and displays an image. Take control. In this control, the display of the image may be kept horizontal, or the display of the image may be adjusted according to the inclination.
  • FIG. 6 is a schematic perspective view for explaining a detection region of the infrared detection unit 410 and a virtual display region of the pair of transflective displays 220
  • FIG. 7 is a top view of FIG. 6
  • FIG. FIG. 7 is a side view of FIG. 6.
  • a three-dimensional orthogonal coordinate system including an x-axis, a y-axis, and a z-axis is defined.
  • the x-axis arrows in the following figures indicate the horizontal direction.
  • the y-axis arrow points in the vertical direction or the long axis direction of the user's body.
  • the z-axis arrow points in the depth direction.
  • the z-axis positive direction refers to the direction of greater depth.
  • the direction of each arrow is the same in other figures.
  • a three-dimensional space detection area (3D space) 4103 ⁇ / b> D that can be detected by the infrared detection unit 410 of the operation system 400 is provided.
  • the three-dimensional space detection area 4103D is formed of a conical or pyramidal three-dimensional space from the infrared detection unit 410.
  • the infrared detection unit 410 can detect the infrared rays emitted from the infrared irradiation element 411 by the infrared detection camera 412, and thus can recognize a gesture in the three-dimensional space detection region 4103D.
  • one infrared detection unit 410 is provided.
  • the present invention is not limited to this, and a plurality of infrared detection units 410 may be provided, or one infrared irradiation element 411 may be provided.
  • a plurality of detection cameras 412 may be provided.
  • the pair of transflective displays 220 displays to the user a virtual image display that is not a part of the glasses display device 100 that is actually provided, but is located away from the glasses display device 100.
  • the region 2203D is visually recognized as being virtually displayed with a depth.
  • the depth corresponds to the thickness in the depth direction (z-axis direction) of the virtual three-dimensional shape of the virtual image display area 2203D. Therefore, the depth is provided according to the thickness of the virtual three-dimensional shape in the depth direction (z-axis direction).
  • the user recognizes the right-eye image through the right-eye semi-transmissive display 220 in the three-dimensional space area 2203DR, and the left-eye image is The light is transmitted through the transflective display 220 on the left eye side and recognized by the three-dimensional space area 2203DL.
  • both recognized images are synthesized in the user's brain, and can be recognized as a virtual image in the virtual image display area 2203D.
  • the virtual image display area 2203D includes a frame sequential method, a polarization method, a linear polarization method, a circular polarization method, a top-and-bottom method, a side-by-side method, an anaglyph method, a lenticular method, and a parallax barrier method.
  • the liquid crystal parallax barrier method, the two-parallax method, and the multi-parallax method using three or more parallaxes are used for display.
  • the virtual image display area 2203D has a spatial area shared with the three-dimensional space detection area 4103D.
  • the virtual image display area 2203D since the virtual image display area 2203D exists inside the three-dimensional space detection area 4103D, the virtual image display area 2203D serves as a shared area.
  • the shape and size of the virtual image display area 2203D can be arbitrarily adjusted by the display method on the pair of transflective displays 220. Moreover, as shown in FIG. 8, although the case where the infrared detection unit 410 is arrange
  • FIGS. 6 to 8 are schematic diagrams illustrating other examples of the detection area and the virtual display area illustrated in FIGS. 6 to 8.
  • an input / output device 900 For example, as shown in FIGS. 9 to 11, other input / output devices, display devices, televisions, monitors, and the like may be used instead of the transflective display 220 of the eyeglass display device 100.
  • other input / output devices, display devices, televisions, monitors, and projectors are collectively referred to as an input / output device 900.
  • the virtual image display area 2203D is output from the input / output device 900 in the negative z-axis direction, and the infrared detection unit 410 disposed at a position facing the input / output device 900 in the z-axis direction outputs the z-axis.
  • a three-dimensional space detection region 4103D may be formed in the positive direction.
  • a virtual image display area 2203D by the input / output device 900 is generated as a space area shared with the three-dimensional space detection area 4103D.
  • a virtual image display area 2203D is output from the input / output device 900, and the infrared detection unit 410 is in the same direction as the input / output device 900 (all directions on the z-axis positive side with respect to the xy plane).
  • the three-dimensional space detection region 4103D may be formed. Even in this case, the virtual image display area 2203D by the input / output device 900 is generated as a space area shared with the three-dimensional space detection area 4103D.
  • the virtual image display area 2203 ⁇ / b> D may be output from the input / output device 900 in a vertically upward direction (y-axis positive direction). Also in FIG. 11, similarly to FIGS. 9 and 10, the virtual image display area 2203 ⁇ / b> D by the input / output device 900 is generated as a space area shared with the three-dimensional space detection area 4103 ⁇ / b> D.
  • the input / output device 900 is arranged above the three-dimensional space detection region 4103D (y-axis positive direction side), and the virtual image display region 2203D is vertically downward (y-axis negative direction). It may be output, may be output from the horizontal direction (x-axis direction), or may be output from the rear upper side (z-axis positive direction and y-axis positive direction) like a projector or a movie theater.
  • FIGS. 12 and 13 are schematic diagrams illustrating examples of the operation area and the gesture area in the detection area.
  • the user horizontally moves both hands around the shoulder joints of the right shoulder joint RP and the left shoulder joint LP, so that the area where both hands can move is surrounded by a dotted line.
  • the moving area L and the moving area R become the same.
  • the user vertically moves both hands around the shoulder joints of the right shoulder joint RP and the left shoulder joint LP, so that the area where both hands can move is surrounded by a dotted line.
  • the moving area L and the moving area R become the same.
  • the user has a spherical shape (having an arch-shaped curved surface convex in the depth direction) with both hands rotating around the right shoulder joint RP and the left shoulder joint LP, respectively. Can be moved.
  • the three-dimensional space detection area 4103D by the infrared detection unit 410 the area where the virtual image display area may exist (the virtual image display area 2203D is illustrated in FIG. 12), the arm movement area L, and the movement area R are combined.
  • a space area that overlaps with the selected area is set as the operation area 410c.
  • a portion other than the operation region 410c in the three-dimensional space detection region 4103D and a portion overlapping with the combined region of the arm movement region L and the movement region R is set as the gesture region 410g.
  • the operation region 410c has a three-dimensional shape in which the surface farthest in the depth direction is a curved surface curved in an arch shape convex in the depth direction (z-axis positive direction), whereas the virtual image display region 2203D has a depth of The surface farthest in the direction has a three-dimensional shape that is a plane.
  • the user feels uncomfortable in the operation.
  • adjustment is performed by a calibration process. Details of the calibration process will be described later.
  • FIG. 14 is a flowchart for explaining the calibration process.
  • a calibration process is performed to facilitate the operation in the virtual image display area 2203D by a recognition process described later.
  • the finger length, hand length, and arm length that are different for each user are also adjusted.
  • the user wears the eyeglass display device 100 and extends both arms to the maximum.
  • the infrared detection unit 410 recognizes the maximum area of the operation area 410c (step S11). That is, since the length of the finger, the length of the hand, and the length of the arm, which are different for each user, are different depending on the user, the operation area 410c is adjusted.
  • the display position of the virtual image display area 2203D is determined (step S12). That is, if the virtual image display area 2203D is arranged outside the operation area 410c, the operation by the user becomes impossible, so the virtual image display area 2203D is arranged inside the operation area 410c.
  • the maximum area of the gesture area 410g is set in a position that does not overlap the display position of the virtual image display area 2203D within the three-dimensional space detection area 4103D of the infrared detection unit 410 of the eyeglass display device 100 (step S13).
  • the gesture region 410g is preferably arranged so as not to overlap the virtual image display region 2203D and has a thickness in the depth direction (z-axis positive direction).
  • the operation area 410c, the virtual image display area 2203D, and the gesture area 410g are set by the above method.
  • step) S14 When it is determined that the user's finger, hand, or arm exists outside the virtual image display area 2203D in the operation area 410c, rounding is performed so that the user's finger, hand, or arm exists inside the virtual image display area 2203D (step) S14).
  • both hands remain in the virtual image display area 2203D. Without any deviation in the depth direction (z-axis positive direction). Further, at the end of the virtually displayed image, it is not determined that both hands are present in the virtual image display area 2203D unless both arms are extended to the maximum. Therefore, if the signal from the infrared detection unit 410 is used without processing, even if the user moves away from the virtual image display area 2203D, it is difficult for the user to experience such a state.
  • the signal from the infrared detection unit 410 is processed so as to correct the hand protruding outside from the virtual image display area 2203D within the virtual image display area 2203D. To do. As a result, the user can operate from the center to the end of the flat virtual image display area 2203D having a depth with both arms extended to the maximum or slightly bent.
  • the virtual image display area 2203D is made up of a three-dimensional space area whose plane farthest in the depth direction is a plane, but is not limited to this, and is the plane area farthest in the depth direction. It is good also as consisting of the three-dimensional space area
  • the transflective display 220 displays a rectangular image in the virtual image display area 2203D. For example, as shown in FIG. 5B, a rectangular image is displayed (step S15). Subsequently, display is performed when the periphery of the image is surrounded by a finger on the transflective display 220 (step S16).
  • a finger-shaped image may be displayed lightly in the vicinity of the image, or an instruction may be transmitted from the speaker to the user by voice instead of being displayed on the transflective display 220.
  • the user places his / her finger on the portion where the image can be seen as shown in FIG. Then, the correlation between the display area of the virtual image display area 2203D and the infrared detection unit 410 is automatically adjusted (step S17).
  • a rectangle is formed with a finger, and is matched with the rectangle thus determined and the rectangle of the outer edge of the image.
  • the rectangular viewing size and position determined by the finger are matched with the rectangular viewing size and position of the outer edge of the image.
  • the method of determining the shape with the finger is not limited to this, and any other method such as a method of tracing the outer edge of the displayed image with a finger, a method of pointing a plurality of points on the outer edge of the displayed image with a finger, etc. It may be. Moreover, you may perform these methods about the image of several sizes.
  • FIG. 15 is a schematic diagram illustrating an example of finger recognition.
  • 15A is an enlarged view of the vicinity of the tip of the finger
  • FIG. 15B is an enlarged view of the vicinity of the base of the finger.
  • FIG. 16 is a flowchart illustrating an example of finger recognition processing.
  • the device is initialized (step S21).
  • the infrared ray irradiated from the infrared irradiation element 411 and reflected by the hand is detected by the infrared detection camera 412 (step S22).
  • the image data is replaced with a distance in units of pixels by the infrared detection unit 410 (step S23).
  • the brightness of infrared rays is inversely proportional to the cube of the distance.
  • a depth map is created (step S24).
  • an appropriate threshold value is provided for the created depth map.
  • the image data is binarized (step S25), that is, noise in the depth map is removed.
  • a polygon having about 100 vertices is created from the binarized image data (step S26).
  • a low-pass filter (LPF) so the vertex becomes smooth, by creating a new polygon having more vertexes p n, it extracts the outline OF hand shown in FIG. 15 (step S27).
  • the number of vertices extracted to create a polygon from the binarized data in step S26 is about 100.
  • the number of vertices is not limited to this, and 1000 or any other arbitrary number is used. It may be a number.
  • step S28 From the set of vertices p n of new polygons created in step S27, using Convex Hull, it extracts the hull (step S28). Thereafter, a shared vertex p 0 between the new polygon created in step S27 and the convex hull created in step S28 is extracted (step S29).
  • the shared vertex p 0 itself extracted in this way can be used as the finger tip point. Further, another point calculated based on the position of the vertex p 0 may be used as the tip point of the finger. For example, it is also possible to calculate the center of the inscribed circle of the contour OF as the tip points P0 at the vertex p 0 as shown in FIG. 15 (A).
  • a vector of the reference line segment PP 1 passing through the pair of left and right vertices p 1 adjacent to the vertex p 0 is calculated.
  • the side pp 2 connecting the vertex p 1 and the adjacent vertex p 2 is selected, and its vector is calculated.
  • the vertex p n constituting the outer OF was selected, and its vector is calculated.
  • Examined the reference line segment PP 1 direction by the processing direction and step S30 of each side determines that the sides pp k comprising parallel close to the reference line segment PP 1 is present at the position of the crotch of the finger.
  • the root point P1 of the finger is calculated (step S30).
  • a finger skeleton is obtained by connecting the finger tip point P0 and the finger root point P1 with a straight line (step S31).
  • the extension direction of the finger can be recognized.
  • skeletons for all fingers are obtained. Thereby, the hand pose can be recognized. That is, it is possible to recognize which of the thumb, the index finger, the middle finger, the ring finger, and the little finger is spread and which finger is gripped.
  • a difference in hand pose is detected in comparison with the image data of several frames performed immediately before (step S32). That is, the hand movement can be recognized by comparing with the image data of the last several frames.
  • the recognized hand shape is delivered to the event service unit 460 as gesture data (step S33).
  • step S34 the application software unit 459 performs a behavior corresponding to the event.
  • the display service unit 462 requests drawing in the three-dimensional space (step S35).
  • the graphic operation unit 463 refers to the calibration data recording unit 457 using the calibration service unit 461, and corrects the display (step S36).
  • display is performed on the transflective display 220 by the display arithmetic unit 464 (step S37).
  • the root point of the finger is detected by the process of step S30 and the process of step S31, but the root point detection method is not limited to this.
  • the length of the reference line segment PP 1 that connects a pair of adjacent vertices p 1 on one side and the other side of the vertex p 0 is calculated.
  • the length of a line connecting between the pair of vertices p 2 at the one side and the other side is calculated.
  • the length of the line segment connecting the pair of vertices on the one side and the other side is calculated in the order from the vertex located closer to the vertex p 0 to the vertex located further away.
  • Such line segments are approximately parallel to each other without intersecting within the outer shape OF.
  • the root point can be determined by detecting the line segment that does not exceed the predetermined amount and the farthest from the apex p 0 and extracts one point on the detected line segment. .
  • FIG. 17 is a schematic diagram illustrating an example of palm recognition.
  • the maximum inscribed circle C inscribed in the outer shape OF of the image data is extracted.
  • the position of the maximum inscribed circle C can be recognized as the palm position.
  • FIG. 18 is a schematic diagram showing an example of thumb recognition.
  • the thumb has characteristics different from the other four fingers of the index finger, the middle finger, the ring finger, and the little finger.
  • ⁇ 1 involving the thumb tends to be the largest.
  • ⁇ 11 involving the thumb tends to be the largest.
  • the thumb is determined based on such a tendency. As a result, it is possible to determine whether it is the right hand or the left hand, or the front or back of the palm.
  • arm recognition Next, arm recognition will be described. In the present embodiment, arm recognition is performed after any of a finger, palm, and thumb is recognized. Note that the arm recognition may be performed before recognizing any one of the finger, the palm, and the thumb, or at least one of them.
  • the polygon is extracted in a larger area than the hand-shaped polygon of the image data.
  • the process of steps S21 to S27 is performed in a range of 5 cm to 100 cm in length, and more preferably in a range of 10 cm to 40 cm to extract the outer shape.
  • a rectangular frame circumscribing the extracted outer shape is selected.
  • the square frame is a parallelogram or a rectangle.
  • the extension direction of the arm can be recognized from the extension direction of the long side, and the direction of the arm can be determined from the direction of the long side. I can do it.
  • the movement of the arm may be detected in comparison with the image data of the previous few frames.
  • the finger, palm, thumb, and arm are detected from the two-dimensional image.
  • the present invention is not limited to the above, and the infrared detection unit 410 may be further added, and only the infrared detection camera 412 is used. May be added to recognize a three-dimensional image from a two-dimensional image. As a result, the recognition accuracy can be further increased.
  • FIG. 19 is a schematic diagram illustrating an example of display on the transflective display 220 of the eyeglass display device 100.
  • an advertisement 221 is displayed on a part of the transflective display 220 of the glasses display device 100, a map 222 is displayed on a part of the display, and the other part is a half of the glasses display device 100.
  • a landscape 223 is visually recognized through the transmissive display 220, and a weather forecast 224 and a time 225 are also displayed.
  • FIG. 20A illustrates an example of the field of view of the translucent display 220
  • FIG. 20B illustrates an example of the display of the translucent display 220.
  • the display that can be viewed by the eyeglass display device 100 is composed of a plurality of displays 701 to 707.
  • a plurality of displays are segments forming a part of a continuous image in which all of them are integrated. By switching the visible portion of the continuous image, a switching display is performed in which a plurality of displays are smoothly transitioned without being interrupted.
  • displays 703, 702, 701, 704, and 705 are provided in the vertical direction, and displays 706 and 707 are provided on the left and right with the display 701 as the center.
  • the displays 701 to 707 can be freely deleted or changed by the user, and other displays can be added.
  • the displays 701 to 707 are seamless continuous images, but the display to be switched may be an independent non-continuous image.
  • the display 701 is displayed when the posture of the eyeglass display device 100 is horizontal, that is, when the user wears the eyeglass display device 100 and faces horizontally.
  • a display 702 is displayed. That is, the direction in which the user faces is recognized based on a signal from at least one of the gyro sensor unit 420 and the acceleration detection unit 430 in the eyeglass display device 100.
  • the display 702 may display a screen of a face recognition application, for example.
  • a display 703 is displayed.
  • a weather forecast may be displayed on the display 703.
  • other sky information may be displayed on the display 703.
  • an image of a constellation may be displayed depending on the time zone.
  • a display 704 for example, a mail screen
  • Display 705 for example, a map
  • a display 706 for example, an Internet browser
  • a display 707 for example, a call screen
  • the display 701 to the display 707 are switched based on a signal from at least one of the gyro sensor unit 420 and the acceleration detection unit 430.
  • the present invention is not limited to this. Switching may be performed by palm and arm recognition.
  • the gyro sensor unit is a condition for switching at least one of the display 701 to the display 702, the display 701 to the display 704, the display 701 to the display 707, and the display 701 to the display 706.
  • the level of the signal from at least one of 420 and the acceleration detection unit 430 may be set higher. Thereby, it is possible to prevent the display 701 from being switched to another display in a short time during walking. Moreover, when turning around urgently, a setting that is not particularly switched may be provided.
  • the sky information display 703 and the map information display 705 may be panoramic displays. In this case, the displays 703 and 705 may be scrolled in accordance with the movement in the left-right direction.
  • FIG. 21 is a schematic diagram illustrating an example of a predetermined event occurrence
  • FIG. 22 is a schematic diagram illustrating another example of the event occurrence of FIG. 21,
  • FIG. 23 is a schematic diagram illustrating an example of another event occurrence.
  • the shape of the hand H1 detected by the infrared detection unit 410 is displayed on the virtual image. Further, when the user's hand is away from the operation area 410c, a shadow H2 having the shape of the hand H1 is displayed as an example of the event. Thereby, the user can easily recognize that the hand is present in the gesture region 410g.
  • the shape of the hand H1 detected by the infrared detection unit 410 is displayed in the virtual image, and a shadow H3 that is darker than the shadow H2 has a small area around the shape of the hand H1. Is displayed. Therefore, the user can easily recognize that the hand is closer to the operation area 410c than in the case of FIG. Further, when the hand is in the operation area 410c, the shadows H2 and H3 are not displayed.
  • the user does not need to search the operation area 410c by trial and error or groping. That is, the distance to the operation area 410c can be easily recognized based on the density of the shadow and how the hand shape deviates from the shadow.
  • the circle display H4 may be performed on the fingertip.
  • the present invention is not limited to this, and a ripple is generated in the display when it is within the operation area 410c.
  • the vibration generation device may be provided in the eyeglass display device 100 to generate vibration, sound may be generated, or the display may be changed depending on at least one of the display blinking mode and the lighting illuminance. Good.
  • the distance to the operation area 410c may be represented by a blinking interval, and the distance to the operation area 410c may be represented by lighting illuminance.
  • lighting in darker colors red, black, purple, etc.
  • lighting in lighter colors blue, yellow, pink, etc.
  • Other human senses typically visual, auditory and tactile) ) May be triggered by any event.
  • the virtual image display can be operated.
  • the virtual image display can be enlarged or reduced, the display can be scrolled, or a point can be selected.
  • additional display may be performed by touching the display of the advertisement 221.
  • the advertisement 221 displays information such as merchandise and services of the store.
  • more detailed information regarding the store may be additionally displayed.
  • the advertisement 221 may be an image of the store itself taken by the camera unit 303, or automatically starts store recognition based on image data of the store by the camera unit 303.
  • the store recognition application It may be recognition result information displayed on the screen.
  • Display in parody mode In addition, as shown in FIG. 25, when a logo mark of one company (XX company) is displayed on the transflective display 220, a competition or non-competition can be achieved by touching the logo mark on the screen. Information related to other companies ( ⁇ company) can be displayed. In this case, for example, a logo of the other company may be displayed as a parody mode.
  • a menu screen V1 is displayed between the thumb and index finger. Also good.
  • a predetermined image V2 may be displayed between the index finger and the middle finger.
  • the face recognition application when the hand H1 is lightly opened and moved in the direction of the arrow by greeting, the face recognition application is automatically activated. Face recognition is automatically started based on the face data of the other person acquired by the camera unit 303, and information such as name, company name, job title, date and place of the last meeting is displayed on the face recognition application screen V3. . Further, a flag may be set each time the same person is recognized by the recognition of the face recognition application, and the number of flags may be displayed on the face recognition application screen V3. In this case, the background and color of the face recognition application screen V3 may be varied depending on the number of flags.
  • the SNS (SOCIAL NETWORKING SERVICE) application can be automatically started and the SNS application screen V5 can be displayed.
  • the kanji application is activated and the index finger of the hand H1 is recognized to display an additional brush image at the position of the index finger. .
  • the sword application is activated, and a sword image is additionally displayed at the position of the hand on the sword, and the virtual image display screen V7 is cut. it can.
  • the calibration service unit 461 adjusts the stereoscopic image and the depth of the hand H1 detected by the infrared detection unit 410 depth sensor.
  • the relationship between the distance to the hand H1 that is a real image and the appearance of the stereoscopic image that is a virtual image can be adjusted and associated.
  • the hand H1 that is a real image can be viewed as if it is in contact with a stereoscopic image that is a virtual image, or both images can be viewed as if they are at a certain distance.
  • the eyeglass display device 100 can adjust the visual size of the stereoscopic image that is a virtual image according to the visual size in the space that is determined by the involvement of the hand H1 that is a real image.
  • the hand H1 is a part of the human body, a sensible approach using a human finger, palm, hand, or arm is easy for a stereoscopic image that is a virtual image.
  • the eyeglass display device 100 is a head-mounted display device, the eyeglass display device 100 is small and can be mounted. Moreover, it can make it portable and can adjust according to the person who wears a head mounted display when a shift
  • the eyeglass display device 100 is a virtual image that can be generated as a stereoscopic image by the calibration service unit 461 according to the length from the shoulder joint RP or LP on the hand H1 side as the target to the hand H1.
  • a shared area shared by the display area 2203D and the three-dimensional space detection area 4103D may be determined. In this case, the shared area can be customized according to the difference in the user's physique.
  • the eyeglass display device 100 uses the infrared detection unit 410 as a depth sensor, it can detect a target object quickly and accurately by irradiation and reflection of infrared rays, and can detect the depth quickly and accurately.
  • the eyeglass display device 100 corresponds to a “calibration device”
  • the transflective display 220 corresponds to a “display device”
  • the infrared detection unit 410 corresponds to a “depth sensor”
  • the hand H1 is “target”.
  • the calibration service unit 461 corresponds to the “adjustment unit”
  • the right shoulder joint RP and / or the left shoulder joint LP corresponds to the “shoulder joint”
  • the virtual image display area 2203D corresponds to the “stereoscopic area”.
  • the three-dimensional space detection area 4103D corresponds to the “depth detection area”
  • the shared area (matching the virtual image display area 2203D) corresponds to the “shared area”.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • User Interface Of Digital Computer (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

実像である対象物までの距離と、虚像である立体視像の見え方との関係を調整し、関連付けることができるキャリブレーション装置、キャリブレーションプログラムおよびキャリブレーション方法を提供する。本発明におけるキャリブレーション装置は、立体視像を生成可能な表示装置と、対象物までの距離を測定する深度センサと、表示装置により生成される立体視像および深度センサにより検知される対象物の深度を調整する調整部と、を含む。 

Description

キャリブレーション装置、キャリブレーションプログラム、およびキャリブレーション方法
 本発明は、キャリブレーション装置、キャリブレーションプログラムおよびキャリブレーション方法に関する。より具体的には、本発明は、立体視像表示が関連するキャリブレーション装置、キャリブレーションプログラムおよびキャリブレーション方法に関する。
 日本国特公平8-31140号公報(特許文献1)には、高速で臨場感のある画像をスクリーン上に表示するようなコンピュータグラフィックス、すなわち高速画像生成表示方法が開示されている。
 特許文献1に記載の高速画像生成表示方法においては、立体構造をもつ対象を2次元画面に投影して表示する高速画像生成表示方法であって、対象の構成面は、対象座標系において、領域の大きさを少なくとも1つの要素として階層的に記述され、任意の視点から見た時の該対象の構成面を2次元画面へ投影するに際して、表示基準座標系原点または視点から対象座標系で表される該対象の任意の点までの距離を少なくとも1つのパラメータとして階層度を設定することを特徴とする。
 日本国特開2004-126902号公報(特許文献2)には、観測者に負担のない立体視映像を効率よく生成する立体視画像生成方法および立体視画像生成装置が開示されている。
 特許文献2に記載の立体視画像生成方法は、三次元座標を有するポリゴンで構成されるオブジェクトのうち、平面視表示させるオブジェクトデータを基準カメラを原点とする基準カメラ座標系データに、立体視表示させるオブジェクトのデータを所定の視差角を有する右眼用及び左眼用視差カメラをそれぞれ原点とする右眼用及び左眼用視差カメラ座標系データに変換し、基準カメラ座標系のオブジェクトのデータと、右眼用視差カメラ座標系のオブジェクトのデータを右眼用画像データとして、ビデオメモリに描画し、基準カメラ座標系のオブジェクトのデータと、左眼用視差カメラ座標系のオブジェクトのデータを左眼用画像データとして、ビデオメモリに描画し、ビデオメモリに描画された右眼用画像データと左眼用画像データを合成して、立体視オブジェクトと平面視オブジェクトの混在する画像を立体視表示装置に表示することを特徴とする。
 日本国特表2012-533120号公報(特許文献3)には、顔認識及びジェスチャ/体位認識技法を使用する方法が開示されている。
 特許文献3に記載の方法は、ユーザの気質を示す属性を視覚表示に適用するための方法であって、ユーザの視覚表示をレンダリングするステップと、物理的な空間のデータを受信するステップであって、データが、物理的な空間内のユーザを代表しているものと、ユーザの気質を推論するために、少なくとも1つの検出可能な特徴を解析するステップと、ユーザの気質を示す属性を視覚表示に適用するステップと、を含む。
 日本国特表2012-528405号公報(特許文献4)においては、空間またはジェスチャ計算システムにマルチモード入力を供給するシステムおよび方法が開示されている。
 特許文献4に記載のシステムは、入力デバイスと、プロセッサに結合され、入力デバイスの方位を検出する検出器と、を備えているシステムであって、入力デバイスが、方位に対応する複数のモード方位を有し、複数のモード方位が、ジェスチャ制御システムの複数の入力モードに対応し、検出器が、ジェスチャ制御システムに結合され、方位に応答して、複数の入力モードからの入力モードの選択を自動的に制御する。
 日本国特表2012-521039号公報(特許文献5)においては、仮想オブジェクトを操作するためのシステム、方法及びコンピューター読み取り可能な媒体が開示されている。特許文献5に記載の方法は、仮想空間において仮想オブジェクトを操作する方法であって、仮想オブジェクトを操作するためにユーザが利用する少なくとも1つのコントローラーを決定するステップと、コントローラーを仮想空間におけるカーソルにマッピングするステップと、ユーザがカーソルによって仮想オブジェクトを操作することを示すコントローラー入力を決定するステップと、操作の結果を表示するステップとを含む方法。
 日本国特開2012-106005号公報(特許文献6)においては、画像表示装置の観察者が、実際には存在しない立体像に対してあたかも直接的に操作を行えるかのような感覚を得ることができる画像表示装置、ゲームプログラム、ゲーム制御方法が開示されている。特許文献6に記載の画像表示装置は、表示画面に視差画像を表示する画像表示手段と、視差画像の観察者によって表示画面と観察者との間に認識される立体像の仮想的な空間座標を算出する第1座標算出手段と、観察者の操作対象である操作体の空間座標を算出する第2座標算出手段と、第1座標算出手段によって算出された立体像の少なくとも1点の空間座標と、第2座標算出手段によって算出された操作体の少なくとも1点の空間座標との間の距離が所定の閾値以下になったときに、視差画像、または視差画像以外の表示画面上の画像の少なくとも一方の変化を伴う所定のイベントを発生させるイベント発生手段と、を備える。
日本国特公平8-31140号公報 日本国特開2004-126902号公報 日本国特表2012-533120号公報 日本国特表2012-528405号公報 日本国特表2012-521039号公報 日本国特開2012-106005号公報
 本発明の目的は、実像である対象物までの距離と、虚像である立体視像の見え方との関係を調整し、関連付けることができるキャリブレーション装置、キャリブレーションプログラムおよびキャリブレーション方法を提供することにある。
(1)
 一局面に従うキャリブレーション装置は、立体視像を生成可能な表示装置と、
 対象物までの距離を測定する深度センサと、表示装置により生成される立体視像および深度センサにより検知される対象物の深度を調整する調整部と、を含むものである。
 本発明にかかるキャリブレーション装置においては、表示装置と、深度センサと、調整部とを含む。表示装置は、立体視像を生成可能である。深度センサは、対象までの距離を測定する。調整部は、表示装置により生成される立体視像と、深度センサにより検知される対象物の深度とを調整する。
 この場合、実像である対象物までの距離と、虚像である立体視像の見え方との関係を調整し、関連付けることができる。
 たとえば、当該調整により実像である対象物が、虚像である立体視像にあたかも接触しているように視認させることもでき、両像が一定の距離を介しているように視認させることもできる。
 なお、キャリブレーションには、コンフィグレーション、アジャスティングが含まれる。
 また、深度とは、深度センサから検知対象となる対象物までの距離をいう。
(2)
 第2の発明にかかるキャリブレーション装置は、一局面に従うキャリブレーション装置において、調整部は、深度センサにより検知された深度において対象物により定められた形状の視認サイズおよび位置と、表示装置により生成された立体視像の視認サイズおよび位置とが対応するよう調整してもよい。
 この場合、実像である対象物の関与により定められる空間内の視認サイズに応じて、虚像である立体視像の視認サイズを調整することができる。
(3)
 第3の発明にかかるキャリブレーション装置は、一局面および第2の発明にかかるキャリブレーション装置において、対象物は、人体の一部であってもよい。
 この場合、虚像である立体視像に人体によって体感的にアプローチすることができる。
(4)
 第4の発明にかかるキャリブレーション装置は、第3の発明にかかるキャリブレーション装置において、人体の一部が、指、掌、手または腕であってもよい。
 この場合、虚像である立体視像へ、指、掌、手または腕を用いて体感的なアプローチが容易となる。
(5)
 第5の発明にかかるキャリブレーション装置は、一局面から第4の発明のいずれかにかかるキャリブレーション装置において、表示装置は、ヘッドマウントディスプレイであってもよい。
 この場合、キャリブレーション装置が、例えば眼鏡のように小型かつ装着可能な態様となる。また、携帯可能にすることができ、表示にずれが生じた場合、または、ヘッドマウントディスプレイを装着する人に応じて調整することができる。さらに、小型化により汎用性および利便性を高めることができる。
(6)
 第6の発明にかかるキャリブレーション装置は、第4または第5の発明にかかるキャリブレーション装置において、対象物が指、掌または手であり、調整部は、対象物の側の肩関節から対象物までの長さに応じて、立体視像として生成可能な立体視領域と深度センサの深度検知領域とが共有する共有領域を決定してもよい。
 この場合、ユーザの体格の違いに応じて共有領域をカスタマイズすることができる。
(7)
 第7の発明にかかるキャリブレーション装置は、一局面から第6の発明のいずれかにかかるキャリブレーション装置において、深度センサは、赤外線により対象物までの距離を検知することによって対象物の深度検出を行なうものであってもよい。
 この場合、赤外線の照射および反射により迅速かつ正確に対象物を検知できるので、迅速かつ正確に深度を検知することができる。
(8)
 他の局面に従うキャリブレーションプログラムは、立体視像を生成可能な表示処理と、対象物までの距離を測定する深度センサ処理と、表示処理により生成される立体視像および深度センサ処理により検知される対象物の深度を調整する位置調整処理と、を含むものである。
 本発明にかかるキャリブレーションプログラムは、表示処理と、深度センサ処理と、位置調整処理とを含む。表示処理は、立体視像を生成可能である。深度センサ処理は、対象物までの距離を測定する。位置調整処理は、表示処理により生成される立体視像と、深度センサ処理により検知される対象物の深度とを調整する。
 この場合、実像である対象物までの距離と、虚像である立体視像の見え方との関係を調整し、関連付けることができる。
 たとえば、当該調整により実像である対象物が、虚像である立体視像にあたかも接触しているように視認させることもでき、両像が一定の距離を介しているように視認させることもできる。
 なお、キャリブレーションには、コンフィグレーション、アジャスティングが含まれる。
 また、深度とは、深度センサから検知対象となる対象物までの距離をいう。
(9)
 第9の発明にかかるキャリブレーションプログラムは、他の局面に従うキャリブレーションプログラムにおいて、位置調整処理は、深度センサ処理により検知された深度において対象物により定められた形状の視認サイズおよび位置と、表示処理により生成された立体視像の視認サイズおよび位置とが対応するよう調整してもよい。
 この場合、実像である対象物の関与により定められる空間内の視認サイズに応じて、虚像である立体視像の視認サイズを調整することができる。
(10)
 第10の発明にかかるキャリブレーションプログラムは、他の局面または第9の発明にかかるキャリブレーションプログラムにおいて、対象物が指、掌または手であり、この場合、位置調整処理は、共有領域決定処理を有してよい。共有領域決定処理は、対象物の側の肩関節から対象物までの長さに応じて、表示処理により立体視像が生成される立体視領域と深度センサ処理により検知される深度検知領域とが共有する共有領域を決定する。
 この場合、ユーザの体格に応じて共有領域をカスタマイズすることができる。
(11)
 第11の発明にかかるキャリブレーションプログラムは、他の局面から第10の発明のいずれかにかかるキャリブレーションプログラムにおいて、深度センサ処理は、赤外線により対象物までの距離を検知することによって対象物の深度検知を行なう赤外線検知処理を含んでよい。
 この場合、赤外線の照射および反射により迅速かつ正確に対象物を検知できるので、迅速かつ正確に深度を検知することができる。
(12)
 さらに他の局面に従うキャリブレーション方法は、立体視像を生成可能な表示工程と、対象物までの距離を測定する深度センサ工程と、表示工程により生成される立体視像と、深度センサ工程により検知される対象物の深度とを調整する位置調整工程と、を含むものである。
 本発明にかかるキャリブレーション方法は、表示工程と、深度センサ工程と、位置調整工程とを含む。表示工程は、立体視像を生成可能である。深度センサ工程は、対象物までの距離を測定する。位置調整工程は、表示工程により生成される立体視像と、深度センサ工程により検知される対象物の深度とを調整する。
 この場合、実像である対象物までの距離と、虚像である立体視像の見え方との関係を調整し、関連付けることができる。
 たとえば、当該調整により実像である対象物が、虚像である立体視像にあたかも接触しているように視認させることもでき、両像が一定の距離を介しているように視認させることもできる。
 なお、キャリブレーションには、コンフィグレーション、アジャスティングが含まれる。
 また、深度とは、深度センサから検知対象となる対象物までの距離をいう。
(13)
 第13の発明にかかるキャリブレーション方法は、さらに他の局面に従うキャリブレーション方法において、位置調整工程は、深度センサ工程により検知された深度において対象物により定められた形状の視認サイズおよび位置と、表示工程により生成された立体視像の視認サイズおよび位置とが対応するよう調整してもよい。
 この場合、実像である対象物の関与により定められる空間内の視認サイズに応じて、虚像である立体視像の視認サイズを調整することができる。
(14)
 第14の発明にかかるキャリブレーション方法は、さらに他の局面または第13の発明にかかるキャリブレーション方法において、対象物が指、掌または手であり、この場合、位置調整工程は、共有領域決定工程を有してよい。共有領域決定工程は、対象物の側の肩関節から対象物までの長さに応じて、表示工程により立体視像が生成される立体視領域と深度センサ工程により検知される深度検知領域とが共有する共有領域を決定する。
 この場合、ユーザの体格に応じて共有領域をカスタマイズすることができる。
(15)
 第15の発明にかかるキャリブレーション方法は、さらに他の局面から第14の発明にかかるキャリブレーション方法において、深度センサ工程は、赤外線により対象物までの距離を検知することによって対象物の深度検知を行なう赤外線検知工程を有してよい。
 この場合、赤外線の照射および反射により迅速かつ正確に対象物を検知できるので、迅速かつ正確に深度を検知することができる。
 本発明によれば、実像である対象物までの距離と、虚像である立体視像の見え方との関係を調整し、関連付けることができるキャリブレーション装置、キャリブレーションプログラムおよびキャリブレーション方法を提供することができる。
一実施の形態にかかる眼鏡表示装置100の基本構成の一例を示す模式的外観正面図である。 眼鏡表示装置100の一例を示す模式的外観斜視図である 操作システム400の制御ユニット450の構成の一例を示す模式図である。 操作システム400における処理の流れを示すフローチャートである。 図4のフローチャートに応じた概念を示す模式図である。 赤外線検知ユニット410の検知領域と、一対の半透過ディスプレイ220の仮想表示領域とを説明するための模式的斜視図である。 図6の上面図である。 図6の側面図である。 検知領域と仮想表示領域との他の例を示す模式図である。 検知領域と仮想表示領域との他の例を示す模式図である。 検知領域と仮想表示領域との他の例を示す模式図である。 検知領域における操作領域とジェスチャ領域との一例を示す模式図である。 検知領域における操作領域とジェスチャ領域との一例を示す模式図である。 キャリブレーション処理の説明を行なうためのフローチャートである。 指認識の一例を示す模式図である。 指認識の処理の一例を示すフローチャートである。 掌認識の一例を示す模式図である。 親指認識の一例を示す模式図である。 眼鏡表示装置100の半透過ディスプレイ220の表示の一例を示す模式図である。 半透過ディスプレイ220の視野の一例(a)、および半透明ディスプレイ220の表示の一例(b)を示す模式図である。 イベント発生の一例を示す模式図である。 イベント発生の他の例を示す模式図である。 イベント発生の他の例を示す模式図である。 眼鏡表示装置の操作の一例を示す模式図である。 眼鏡表示装置の操作の他の一例を示す模式図である。 ジェスチャ認識の一例を示す模式図である。 ジェスチャ認識の他の例を示す模式図である。 ジェスチャ認識の他の例を示す模式図である。 ジェスチャ認識の他の例を示す模式図である。 ジェスチャ認識の他の例を示す模式図である。 ジェスチャ認識の他の例を示す模式図である。 ジェスチャ認識の他の例を示す模式図である。 ジェスチャ認識の他の例を示す模式図である。
 100 眼鏡表示装置
 220 半透過ディスプレイ
 221 広告
 2203D 仮想イメージ表示領域(共有領域)
 300 通信システム
 303 カメラユニット
 410 赤外線検知ユニット
 410c 操作領域
 420 ジャイロセンサユニット
 430 加速度検知ユニット
 4103D 三次元空間検知領域
 450 制御ユニット
 454 解剖学的認識ユニット
 456 ジェスチャ識別ユニット
 460 イベントサービスユニット
 461 キャリブレーションサービスユニット
 701,~,707 表示
 900 入出力装置
 H1 手
 H2,H3 陰影
 RP 右肩関節
 LP 左肩関節
 OF 外形
 p,p,p 頂点
 PP 基準線分
 pp 辺
 pp 辺
 P0 先端点
 P1 根元点
 C 最大内接円
 V3 顔認識アプリ画面
 V5 SNSアプリ画面
 
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
 また、本発明は、以下に説明する眼鏡表示装置に限定されるものではなく、他の入出力装置、表示装置、テレビジョン、モニタ、プロジェクタ等にも適用することができる。
(眼鏡表示装置の構成概略)
 図1は、一実施の形態にかかる眼鏡表示装置100の基本構成の一例を示す模式的外観正面図であり、図2は、眼鏡表示装置100の一例を示す模式的外観斜視図である。
 図1または図2に示すように、眼鏡表示装置100は、眼鏡型の表示装置である。当該眼鏡表示装置100は、後述するように、ユーザの顔に装着して使用される。
 図1および図2に示すように、眼鏡表示装置100は、主に、眼鏡ユニット200、通信システム300および操作システム400からなる。
(眼鏡ユニット200)
 図1および図2に示すように、眼鏡ユニット200は、眼鏡フレーム210および一対の半透過ディスプレイ220からなる。眼鏡フレーム210は、主にリムユニット211、テンプルユニット212を含む。
 眼鏡フレーム210のリムユニット211により一対の半透過ディスプレイ220が支持される。
 本実施の形態においては、眼鏡表示装置100には、リムユニット211に一対の半透過ディスプレイ220を設けることとしているが、これに限定されず、眼鏡表示装置100のリムユニット211に通常のサングラスレンズ、紫外線カットレンズ、または眼鏡レンズなどのレンズ類を設け、別に1個の半透過ディスプレイ220または一対の半透過ディスプレイ220を設けてもよい。
 また、当該レンズ類の一部に、半透過ディスプレイ220を埋め込んで設けてもよい。
 さらに、本実施の形態は、眼鏡タイプに限定するものではなく、人体に装着し、装着者の視野に配設できるタイプであれば、帽子タイプその他任意のヘッドマウントディスプレイ装置に使用することができる。
(通信システム300)
 次に、通信システム300について説明を行なう。
 通信システム300は、バッテリーユニット301、アンテナモジュール302、カメラユニット303、スピーカユニット304、GPS(Global Positioning System)ユニット307、マイクユニット308、SIM(Subscriber Identity Module Card)ユニット309およびメインユニット310を含む。
 なお、カメラユニットにはCCDセンサが備えられてよい。スピーカユニット304は、ノーマルイヤホンであってもよいし、骨伝導イヤホンであってもよい。SIMユニット309には、NFC(Near Field Communication:近距離無線通信)ユニットおよび他の接触式ICカードユニット、ならびに非接触式ICカードユニットを含む。
 以上のように、本実施の形態にかかる通信システム300は、少なくとも携帯電話、スマートフォンおよびタブレット端末のいずれかの機能を含むものである。具体的には、電話機能、インターネット機能、ブラウザ機能、メール機能、および撮像機能等を含むものである。
 したがって、ユーザは、眼鏡表示装置100を用いて、通信装置、スピーカおよびマイクにより、携帯電話と同様の通話機能を使用することができる。また、眼鏡型であるので、両手を利用せず、通話を行なうことができる。
(操作システム400)
 続いて、操作システム400は、赤外線検知ユニット410、ジャイロセンサユニット420、加速度検知ユニット430および制御ユニット450からなる。赤外線検知ユニット410は、主に赤外線照射素子411および赤外線検知カメラ412からなる。
 続いて、操作システム400の構成、処理の流れおよび概念について説明を行なう。図3は、操作システム400の制御ユニット450の構成の一例を示す模式図である。
 図3に示すように、制御ユニット450は、イメージセンサ演算ユニット451、デプスマップ演算ユニット452、イメージ処理ユニット453、解剖学的認識ユニット454、ジェスチャデータ記録ユニット455、ジェスチャ識別ユニット456、キャリブレーションデータ記録ユニット457、合成演算ユニット458、アプリケーションソフトユニット459、イベントサービスユニット460、キャリブレーションサービスユニット461、表示サービスユニット462、グラフィック演算ユニット463、ディスプレイ演算ユニット464、および6軸駆動ドライバユニット465を含む。
 なお、制御ユニット450は、上記の全てを含む必要はなく、適宜必要な1または複数のユニットを含んでもよい。たとえば、ジェスチャデータ記録ユニット455およびキャリブレーションデータ記録ユニット457は、クラウド上に配置してもよく、合成演算ユニット458を特に設けなくてもよい。
 次に、図4は、操作システム400における処理の流れを示すフローチャートであり、図5は図4のフローチャートに応じた概念を示す模式図である。
 まず、図4に示すように、赤外線検知ユニット410から対象のデータを取得し、デプスマップ演算ユニット452により深さ演算を行なう(ステップS1。次に、イメージ処理ユニット453により外形イメージデータを処理する(ステップS2)。
 次いで、解剖学的認識ユニット454により、標準的な人体の構造に基づき、ステップS2において処理された外形イメージデータから、解剖学的特徴を識別する。これにより、外形が認識される(ステップS3)。
 さらに、ジェスチャ識別ユニット456により、ステップS3で得た解剖学的特徴に基づいてジェスチャを識別する(ステップS4)。
 ジェスチャ識別ユニット456は、ジェスチャデータ記録ユニット455に記録されたジェスチャデータを参照し、解剖学的特徴が識別された外形からジェスチャの識別を行なう。なお、ジェスチャ識別ユニット456は、ジェスチャデータ記録ユニット455からのジェスチャデータを参照することとしているが、参照することに限定されず、他の任意のデータを参照してもよく、全く参照することなく処理してもよい。
 以上により、図5(a)に示すように、手のジェスチャを認識する。
 続いて、アプリケーションソフトユニット459およびイベントサービスユニット460は、ジェスチャ識別ユニット456により判定されたジェスチャに応じて所定のイベントを実施する(ステップS5)。
 これによって、図5(b)に示すように、たとえば写真アプリによる画像が表示される。この際、当該画面には、カメラユニット303からの撮像データが表示されてよい。
 最後に、表示サービスユニット462、キャリブレーションサービスユニット461、グラフィック演算ユニット463、ディスプレイ演算ユニット464および合成演算ユニット458により、半透過ディスプレイ220に、イメージの表示、またはイメージの仮想表示が行なわれる(ステップS6)これによって、図5(c)に示すようにジェスチャを示す手のスケルトンの表示が行われ、図5(d)に示すように、当該スケルトンの形状および大きさに写真の形状および大きさが合致するように合成されたイメージが表示される。
 なお、6軸駆動ドライバユニット465は、常にジャイロセンサユニット420、加速度検知ユニット430からの信号を検知し、ディスプレイ演算ユニット464に姿勢状況を伝達する。
 眼鏡表示装置100を装着したユーザが眼鏡表示装置100を傾斜させた場合には、6軸駆動ドライバユニット465は、常にジャイロセンサユニット420、加速度検知ユニット430からの信号を受信し、イメージの表示の制御を行なう。当該制御においては、イメージの表示を水平に維持させてもよいし、イメージの表示を傾斜にあわせて調整してもよい。
(検知領域と仮想表示領域との一例)
 次に、操作システム400の赤外線検知ユニット410の検知領域と、一対の半透過ディスプレイ220の仮想表示領域との関係について説明を行なう。
 図6は、赤外線検知ユニット410の検知領域と、一対の半透過ディスプレイ220の仮想表示領域とを説明するための模式的斜視図であり、図7は図6の上面図であり、図8は、図6の側面図である。
 以下において、説明の便宜上、図6に示すように、x軸、y軸およびz軸からなる三次元直交座標系が定義される。以下の図におけるx軸の矢印は、水平方向を指す。y軸の矢印は、鉛直方向またはユーザの体の長軸方向を指す。z軸の矢印は、深度方向を指す。z軸正方向は、より大きい深度の方向を指す。それぞれの矢印の向きは、他の図においても同じである。
 図6から図8に示すように、操作システム400の赤外線検知ユニット410により検知可能な三次元空間検知領域(3Dスペース)4103Dを有する。
 三次元空間検知領域4103Dは、赤外線検知ユニット410からの円錐状または角錐状の三次元空間からなる。
 すなわち、赤外線検知ユニット410は、赤外線照射素子411から、照射された赤外線を、赤外線検知カメラ412により検知できるので、三次元空間検知領域4103D内のジェスチャを認識することができる。
 また、本実施の形態においては、赤外線検知ユニット410を1個設けることとしているが、これに限定されず、赤外線検知ユニット410を複数個設けてもよいし、赤外線照射素子411を1個、赤外線検知カメラ412を複数個設けてもよい。
 続いて、図6から図8に示すように一対の半透過ディスプレイ220は、ユーザに、実際に設けられた眼鏡表示装置100の部分ではなく、眼鏡表示装置100から離れた場所となる仮想イメージ表示領域2203Dに、奥行きを持って仮想表示されたものとして視認させる。当該奥行きは、仮想イメージ表示領域2203Dが有する仮想立体形状の深度方向(z軸方向)の厚みに対応する。したがって、当該仮想立体形状の深度方向(z軸方向)の厚みに応じて奥行きが設けられる。
 すなわち、実際には眼鏡表示装置100の半透過ディスプレイ220に表示されるものの、ユーザは、右目のイメージは右目側の半透過ディスプレイ220を透過し三次元空間領域2203DRで認識し、左目のイメージは左目側の半透過ディスプレイ220を透過し三次元空間領域2203DLで認識する。その結果、認識された両イメージがユーザの脳内で合成されることにより、仮想イメージ表示領域2203Dで仮想イメージとして認識することができる。
 また、仮想イメージ表示領域2203Dは、フレーム・シーケンシャル方式、偏光方式、直線偏光方式、円偏光方式、トップ・アンド・ボトム方式、サイド・バイ・サイド方式、アナグリフ方式、レンチキュラ方式、パララックス・バリア方式、液晶パララックス・バリア方式、2視差方式および3視差以上を利用する多視差方式のいずれかを利用して表示されたものである。
 また、本実施の形態においては、仮想イメージ表示領域2203Dは、三次元空間検知領域4103Dと共有する空間領域を有する。特に、図6および図7に示すように、三次元空間検知領域4103Dの内部に、仮想イメージ表示領域2203Dが存在するため、仮想イメージ表示領域2203Dが共有領域となる。
 なお、仮想イメージ表示領域2203Dの形状およびサイズについては、一対の半透過ディスプレイ220への表示方法により任意に調整することができる。
 また、図8に示すように、一対の半透過ディスプレイ220よりも赤外線検知ユニット410が上方(y軸正方向)に配設されている場合について説明しているが、鉛直方向(y軸方向)に対して、赤外線検知ユニット410の配設位置が半透過ディスプレイ220よりも下方(y軸負方向)または半透過ディスプレイ220と同位置であっても、同様に、仮想イメージ表示領域2203Dは、三次元空間検知領域4103Dと共有する空間領域を有する。
(検知領域と仮想表示領域との他の例)
 続いて、図9から図11は、図6から図8において示した検知領域と仮想表示領域との他の例を示す模式図である。
 例えば、図9から図11に示すように、眼鏡表示装置100の半透過ディスプレイ220の代わりに、他の入出力装置、表示装置、テレビジョン、モニタ等を用いてもよい。以下、他の入出力装置、表示装置、テレビジョン、モニタ、プロジェクタを総称して入出力装置900と略記する。
 図9に示すように、入出力装置900からz軸負方向に仮想イメージ表示領域2203Dが出力され、入出力装置900にz軸方向で対向する位置に配設された赤外線検知ユニット410からz軸正方向に三次元空間検知領域4103Dが形成されてもよい。
 この場合、入出力装置900による仮想イメージ表示領域2203Dが、三次元空間検知領域4103Dと共有の空間領域として生じる。
 また、図10に示すように、入出力装置900から仮想イメージ表示領域2203Dが出力され、入出力装置900と同方向(xy平面を基準としていずれもz軸正側の方向)に赤外線検知ユニット410の三次元空間検知領域4103Dが形成されてもよい。
 この場合でも、入出力装置900による仮想イメージ表示領域2203Dが、三次元空間検知領域4103Dと共有の空間領域として生じる。
 次に、図11に示すように、入出力装置900から鉛直上方向(y軸正方向)に仮想イメージ表示領域2203Dが出力されてもよい。図11においても、図9、図10と同様に、入出力装置900による仮想イメージ表示領域2203Dが、三次元空間検知領域4103Dと共有の空間領域として生じる。
 また、図示していないが、入出力装置900を三次元空間検知領域4103Dより上方側(y軸正方向の側)に配置し、鉛直下方向(y軸負方向)に仮想イメージ表示領域2203Dが出力されてもよく、水平方向(x軸方向)から出力されてもよく、プロジェクタまたは映画館のように、後上方(z軸正方向かつy軸正方向)から出力されてもよい。
(操作領域とジェスチャ領域)
 続いて、検知領域における操作領域とジェスチャ領域とについて説明する。図12および図13は、検知領域における操作領域と、ジェスチャ領域との一例を示す模式図である。
 まず、図12に示すように、一般的に、ユーザは、右肩関節RPおよび左肩関節LPの両肩関節を回転中心として両手を水平移動させるため、両手の移動できる領域は、点線で囲まれた移動領域Lおよび移動領域Rとなる。
 また、図13に示すように、一般的に、ユーザは、右肩関節RPおよび左肩関節LPの両肩関節を回転中心として両手を鉛直移動させるため、両手の移動できる領域は、点線で囲まれた移動領域Lおよび移動領域Rとなる。
 すなわち、図12および図13に示すように、ユーザは、両手を右肩関節RPおよび左肩関節LPをそれぞれ回転中心とした欠球状(深度方向に凸のアーチ状曲面を有する)の立体空間内で移動させることができる。
 次に、赤外線検知ユニット410による三次元空間検知領域4103Dと、仮想イメージ表示領域が存在しうる領域(図12では仮想イメージ表示領域2203Dを例示)と、腕の移動領域Lおよび移動領域Rを合わせた領域との全てが重なる空間領域を、操作領域410cとして設定する。
 また、三次元空間検知領域4103D内における操作領域410c以外の部分で、かつ腕の移動領域Lおよび移動領域Rを合わせた領域と重なる部分をジェスチャ領域410gとして設定する。
 ここで、操作領域410cが、深度方向に最も遠い面が深度方向(z軸正方向)に凸のアーチ状に湾曲した曲面である立体形状を有することに対し、仮想イメージ表示領域2203Dは、深度方向に最も遠い面が平面である立体形状を有する。このように両領域の間で当該面の形状が異なることに起因し、ユーザは、当該操作において体感的に違和感を覚える。当該違和感を取り除くためにキャリブレーション処理で調整を行なう。また、キャリブレーション処理の詳細については、後述する。
(キャリブレーションの説明)
 次いで、キャリブレーション処理について説明を行なう。図14は、キャリブレーション処理の説明を行なうためのフローチャートである。
 図12および図13に示したように、ユーザが仮想イメージ表示領域2203Dに沿って手を動かそうとすると、補助のない平面に沿って動作させる必要がある。したがって、後述する認識処理により仮想イメージ表示領域2203Dにおいて、操作をし易くするためにキャリブレーション処理を行なう。
 また、キャリブレーション処理には、ユーザの個々で異なる指の長さ、手の長さ、腕の長さの調整も行なう。
 以下、図14を用いて説明を行なう。まず、ユーザが、眼鏡表示装置100を装着し、両腕を最大限に伸張する。その結果、赤外線検知ユニット410が、操作領域410cの最大領域を認識する(ステップS11)。
 すなわち、ユーザによりユーザの個々で異なる指の長さ、手の長さ、腕の長さが異なるので、操作領域410cの調整を行なうものである。
 次に、眼鏡表示装置100においては、仮想イメージ表示領域2203Dの表示位置を決定する(ステップS12)。すなわち、仮想イメージ表示領域2203Dを操作領域410cの外側に配置するとユーザによる操作が不可能となるため、操作領域410cの内部に配置する。
 続いて、眼鏡表示装置100の赤外線検知ユニット410の三次元空間検知領域4103D内で、かつ仮想イメージ表示領域2203Dの表示位置と重ならない位置に、ジェスチャ領域410gの最大領域を設定する(ステップS13)。
 なお、ジェスチャ領域410gは、仮想イメージ表示領域2203Dと重ならないように配置しかつ深さ方向(z軸正方向)に厚みを持たせることが好ましい。
 本実施の形態においては、以上の手法により、操作領域410c、仮想イメージ表示領域2203D、ジェスチャ領域410gが設定される。
 続いて、操作領域410c内における仮想イメージ表示領域2203Dのキャリブレーションについて説明する。
 操作領域410c内の仮想イメージ表示領域2203Dの外部周囲にユーザの指、手、または腕が存在すると判定された場合に、あたかも仮想イメージ表示領域2203Dの内部に存在するように、丸め込みを行なう(ステップS14)。
 図12および図13に示すように、半透過ディスプレイ220により仮想表示されたイメージの中央部近辺では、両腕を最大限に伸ばした状態にすると、両手先が仮想イメージ表示領域2203D内に留まることなく深さ方向(z軸正方向)の外部へ外れてしまう。また、仮想表示されたイメージの端部においては、両腕を最大限に伸ばさない限り、両手先が仮想イメージ表示領域2203D内に存在すると判定されない。
 そのため、赤外線検知ユニット410からの信号を無処理のまま使用すると、ユーザは、手先が仮想イメージ表示領域2203Dから外れたとしても、そのような状態であることを体感しにくい。
 したがって、本実施の形態におけるステップS14の処理においては、仮想イメージ表示領域2203Dから外部へ突き出た手先が、仮想イメージ表示領域2203D内にあるものとして補正すべく、赤外線検知ユニット410からの信号を処理する。
 その結果、ユーザは、両腕を最大限に伸ばした状態、または少し曲げた状態で、奥行きのある平面状の仮想イメージ表示領域2203D内の中央部から端部まで操作することができる。
 なお、本実施の形態においては、仮想イメージ表示領域2203Dを、深度方向に最も遠い面が平面である三次元空間領域からなることとしているが、これに限定されず、深度方向に最も遠い面領域L,Rの深度方向に最も遠い面に沿った形状の曲面である三次元空間領域からなることとしてもよい。その結果、ユーザは、両腕を最大限に伸ばした状態、または少し曲げた状態で、奥行きのある平面状の仮想イメージ表示領域2203D内の中央部から端部まで操作することができる。
 さらに、半透過ディスプレイ220は、仮想イメージ表示領域2203Dに矩形状の像を表示させる。例えば、図5(b)に示したように、矩形状の像を表示させる(ステップS15)。
 続いて、半透過ディスプレイ220に、像の周囲を指で囲んでくださいと、表示を行なう(ステップS16)。ここで、像の近傍に指の形の像を薄く表示してもよいし、半透過ディスプレイ220に表示を行なう代わりにスピーカから音声により指示をユーザに伝えてもよい。
 ユーザは、指示に従い図5(d)に示すように、指を像の見える部分にあわせる。そして、仮想イメージ表示領域2203Dの表示領域と、赤外線検知ユニット410との相関関係が自動調整される(ステップS17)。
 なお、上記においては、指で矩形を形作り、そのように定められた矩形と、像の外縁の矩形にあわせる。このことによって、指により定められた矩形の視認サイズおよび位置と像の外縁の矩形の視認サイズ及び位置とを合わせることとした。しかしながら、指によって形状を定める手法はこれに限定されず、表示された像の外縁を指でなぞる手法、表示された像の外縁上の複数の点を指で指し示す手法等、他の任意の手法であってもよい。また、これらの手法を複数のサイズの像について行ってもよい。
 なお、上記のキャリブレーション処理の説明においては、眼鏡表示装置100の場合についてのみ説明を行ったが、入出力装置900の場合には、ステップS11の処理において、像を表示させ、ステップS17の処理の当該像と赤外線検知ユニット410との相関関係を調整してもよい。
(指、掌、腕認識)
 次いで、指認識について説明を行い、その後掌認識、腕認識の順で説明を行なう。図15は、指認識の一例を示す模式図である。図15において、(A)は指の先端付近の拡大図であり、(B)は指の根元付近の拡大図である。図16は、指認識の処理の一例を示すフローチャートである。
 図16に示すように、本実施の形態においては、デバイスの初期化を行なう(ステップS21)。次に、赤外線照射素子411から照射され、手に反射した赤外線が、赤外線検知カメラ412により検出される(ステップS22)。
 次に、赤外線検知ユニット410により画像データをピクセル単位で距離に置き換える(ステップS23)。この場合、赤外線の明るさは、距離の三乗に反比例する。これを利用し、デプスマップを作成する(ステップS24)。
 次いで、作成したデプスマップに適切な閾値を設ける。そして、画像データを二値化する(ステップS25)すなわち、デプスマップのノイズを除去する。
 続いて、二値化した画像データから約100個の頂点を持つポリゴンを作成する(ステップS26)。そして、頂点が滑らかになるようにローパスフィルタ(LPF)により、より多くの頂点pを有する新たな多角形を作成することによって、図15に示す手の外形OFを抽出する(ステップS27)。
 なお、本実施の形態においては、ステップS26において二値化したデータからポリゴンを作成するために抽出する頂点の数を約100個としているが、これに限定されず、1000個、その他の任意の個数であってもよい。
 ステップS27で作成した新たな多角形の頂点pの集合から、Convex Hullを用いて、凸包を抽出する(ステップS28)。
 その後、ステップS27で作成された新たな多角形と、ステップS28で作成された凸包との共有の頂点pを抽出する(ステップS29)。このように抽出された共有の頂点p自体を指の先端点として用いることができる。
 さらに、頂点pの位置に基づいて算出される他の点を指の先端点として用いてもよい。例えば、図15(A)に示すように頂点pにおける外形OFの内接円の中心を先端点P0として算出することもできる。
 そして、図15に示すように、頂点pに隣接する左右一対の頂点pを通る基準線分PPのベクトルを算出する。その後、頂点pと、隣接する頂点pとを結ぶ辺ppを選択し、そのベクトルを算出する。同様に、外形OFを構成する頂点pを用い、辺のベクトルを求める処理を外形OFの外周に沿って繰り返す。各辺の向きとステップS30の処理による基準線分PPの向きとを調べ、基準線分PPと平行に近くなる辺ppが指の股の位置に存在すると判定する。そして、辺ppの位置に基づき、指の根元点P1を算出する(ステップS30)。指の先端点P0と指の根元点P1とを直線で結ぶことで、指のスケルトンが得られる(ステップS31)。指のスケルトンを得ることで、指の延在方向を認識することができる。
 全ての指について同様の処理を行なうことで、全ての指のスケルトンを得る。これにより、手のポーズを認識することができる。すなわち、親指、人差し指、中指、薬指、小指のいずれの指が広げられ、いずれの指が握られているかを認識することができる。
 続いて、直前に実施した数フレームの画像データと比較して、手のポーズの違いを検知する(ステップS32)。すなわち、直前の数フレームの画像データと比較することにより、手の動きを認識することができる。
 次いで、認識した手の形状を、ジェスチャデータとしてイベントサービスユニット460へイベント配送する(ステップS33)。
 次いで、アプリケーションソフトユニット459によりイベントに応じた振る舞いを実施する(ステップS34)。
 続いて、表示サービスユニット462により、三次元空間に描画を要求する(ステップS35)。
 グラフィック演算ユニット463は、キャリブレーションサービスユニット461を用いてキャリブレーションデータ記録ユニット457を参照し、表示の補正を行なう(ステップS36)。
 最後に、ディスプレイ演算ユニット464により半透過ディスプレイ220に表示を行なう(ステップS37)。
 なお、本実施の形態においては、ステップS30の処理およびステップS31の処理により指の根元点を検出したが、根元点の検出方法はこれに限定されない。例えば、まず、頂点pの一方の側と他方の側において隣接する一対の頂点pを結ぶ基準線分PPの長さを算出する。次に、当該一方の側と他方の側における一対の頂点p間を結ぶ線分の長さを算出する。同様に、当該一方の側と他方の側における一対の頂点間を結ぶ線分の長さを、頂点pにより近い位置にある頂点からより遠い位置にある頂点への順で算出していく。このような線分は、外形OF内で交わることなく、互いにおおよそ平行となる。当該線分の両端の頂点が指の部分にある場合は、線分の長さは指の幅に相当するため、その変化量は小さい。一方、線分の両端の頂点の少なくともいずれかが指の股の部分に達した場合は、当該長さの変化量が大きくなる。したがって、当該長さの変化量が所定量を超えずかつ頂点pから最も遠い線分を検知し、検知された線分上の1点を抽出することによって、根元点を決定することができる。
(掌認識)
 次いで、図17は、掌認識の一例を示す模式図である。
 図17に示すように、指認識を実施した後、画像データの外形OFに内接する最大内接円Cを抽出する。当該最大内接円Cの位置が、掌の位置として認識できる。
 次いで、図18は、親指認識の一例を示す模式図である。
 図18に示すように、親指は、人差し指、中指、薬指、および小指の他の4指とは異なる特徴を有する。例えば、掌の位置を示す最大内接円Cの中心と各指の根元点P1とを結ぶ直線が相互になす角度θ1,θ2,θ3,θ4のうち、親指が関与するθ1が最も大きい傾向にある。また、各指の先端点P0と各指の根元点P1とを結んだ直線が相互になす角度θ11,θ12,θ13,θ14のうち、親指が関与するθ11が最も大きい傾向にある。このような傾向に基づき親指の判定を行なう。その結果、右手か左手か、または掌の表か裏かを判定することができる。
(腕認識)
 次いで、腕認識について説明を行なう。本実施の形態において、腕認識は、指、掌および親指のいずれかを認識した後に実施する。なお、腕認識は、指、掌および親指のいずれかを認識する前、またはそれらの少なくともいずれかと同時に実施してもよい。
 本実施の形態においては、画像データの手の形のポリゴンよりも大きな領域でポリゴンを抽出する。例えば、長さ5cm以上100cm以下の範囲、より好ましくは、10cm以上40cm以下の範囲で、ステップS21からS27の処理を実施し、外形を抽出する。
 その後、抽出した外形に外接する四角枠を選定する。本実施の形態においては、当該四角枠は、平行四辺形または長方形からなる。
 この場合、平行四辺形または長方形は、対向する長辺を有するので、長辺の延在方向から腕の延在方向を認識することができ、長辺の向きから腕の向きを判定することが出来る。なお、ステップS32の処理と同様に、直前の数フレームの画像データと比較して、腕の動きを検知させてもよい。
 なお、上記の説明においては、2次元像から指、掌、親指、腕を検出することとしているが、上記に限定されず、赤外線検知ユニット410をさらに増設してもよく、赤外線検知カメラ412のみをさらに増設し、2次元像から、3次元像を認識させてもよい。その結果、さらに認識確度を高めることができる。
(半透過ディスプレイの表示例)
 次に、図19は、眼鏡表示装置100の半透過ディスプレイ220の表示の一例を示す模式図である。
 図19に示すように、眼鏡表示装置100の半透過ディスプレイ220には、一部には広告221が表示され、さらに一部には地図222が表示され、その他には、眼鏡表示装置100の半透過ディスプレイ220を透過して風景223が視認され、その他に天気予報224および時刻225が表示される。
(視野の説明)
 次に、眼鏡表示装置100の半透過ディスプレイ220に表示される表示の一例について説明を行なう。図20(a)は、半透過ディスプレイ220の視野の一例、図20(b)は、半透明ディスプレイ220の表示の一例を説明する図である。
 図20に示すように、本実施の形態においては、眼鏡表示装置100が視認させることができる表示は、複数の表示701,~,707から構成される。複数の表示は、それら全てが一体化した連続像の一部をなすセグメントである。連続像のうち視認部分を遷移させることにより、複数の表示を途切れさせることなくスムーズに遷移させる切換え表示を行なう。
 図20に示すように、縦方向に表示703、702、701、704、705の表示が設けられており、表示701を中央として、左右に表示706,707が設けられる。なお、当然のことながら、当該表示701,~,707は、ユーザによって自由に削除または変更することができ、さらに他の表示を追加することもできる。
 なお、本実施の形態においては、表示701,~,707はシームレスに連続した画像であるが、切換えされるべき表示は、それぞれが独立した非連続の像であってもよい。
 具体的には、眼鏡表示装置100の姿勢が水平方向である場合、すなわち、ユーザが眼鏡表示装置100を装着し、水平前方を向いた場合、表示701が表示される。
 続いて、ユーザが眼鏡表示装置100を装着し、水平面(すなわち水平方向に平行の面)を基準として30度程度斜め上方を向いた場合、表示702が表示される。すなわち、眼鏡表示装置100におけるジャイロセンサユニット420および加速度検知ユニット430の少なくとも一方からの信号に基づいて、ユーザの向く方向を認識する。なお、表示702は、例えば顔認識アプリの画面が表示されてよい。
 さらに、水平面を基準として45度程度斜め上方を向いた場合、表示703が表示される。表示703には天気予報が示されてよい。また、表示703にはその他の天空情報が表示されてもよく、時間帯によっては、例えば星座の像を表示させてもよい。
 同様に、ユーザが眼鏡表示装置100を装着し、水平面を基準として30度程度斜め下方を向いた場合、表示704(例えば、メール画面)が表示され、水平面を基準として45度程度斜め下方を向いた場合、表示705(例えば、地図)が表示され、鉛直面を基準として30度程度右方を向いた場合、表示706(例えば、インターネットブラウザ)が表示され、鉛直面を基準として30度程度左方を向いた場合、表示707(例えば、通話画面)が表示される。
 また、表示701乃至表示707の切換えは、上記の説明においては、ジャイロセンサユニット420および加速度検知ユニット430の少なくとも一方からの信号に基づいて行なうこととしているが、これに限定されず、上述した指、掌、腕認識により切換えを行なってもよい。
 さらに、ユーザが歩行する場合、表示701から表示702へ、表示701から表示704へ、表示701から表示707へ、および表示701から表示706への少なくともいずれかの切換えを行なう条件として、ジャイロセンサユニット420および加速度検知ユニット430の少なくとも一方からの信号のレベルを高めに設定してもよい。それにより、歩行時に短時間で表示701から他の表示に切り替わることを防止できる。また、緊急に振り向く場合には、特に切換えない設定を設けてもよい。
 一方、天空情報の表示703および地図情報の表示705はパノラマ表示であってよく、この場合、左右方向の動きに伴ってそれら表示703,705をスクロールさせてよい。
(イベント発生)
 続いて、指、掌、手、腕が操作領域410cに存在する場合と、ジェスチャ領域410gに存在する場合との違いをユーザが認識し易いように、所定のイベントを発生させる。以下、所定のイベントについて説明を行なう。図21は、所定のイベント発生の一例を示す模式図であり、図22は、図21のイベント発生の他の例を示す模式図であり、図23は、他のイベント発生の一例を示す模式図である。
 まず、図21に示すように、仮想イメージには、赤外線検知ユニット410により検知された手H1の形状が表示される。さらに、ユーザの手が操作領域410cから離れている場合には、イベントの一例として、手H1の形状の陰影H2を表示する。
 これにより、ユーザは、ジェスチャ領域410gに手が存在することを容易に認識できる。
 続いて、図22に示すように、仮想イメージには、赤外線検知ユニット410により検知された手H1の形状が表示され、陰影H2よりも濃い陰影H3が、手H1の形状の周囲に小さな面積で表示される。したがって、ユーザは、図21の場合よりも手が操作領域410cに近づいたことを容易に認識することができる。さらに、手が操作領域410c内にある場合には、陰影H2、H3は、表示されない。
 その結果、ユーザは、試行錯誤または手探りで操作領域410cを探す必要がなくなる。すなわち、操作領域410cまでの距離を陰影の濃度、手の形状と陰影とのずれ方により容易に認識することができる。
 また、図23に示すように、手が操作領域410c内にある場合に、指先に円表示H4を行なってもよい。
 なお、上記の実施の形態においては、陰影H2、H3、円表示H4が表示されるイベント発生態様について説明したが、これに限定されず、操作領域410c内にある場合に、表示に波紋を発生させてもよく、眼鏡表示装置100に振動発生装置を設けて振動を発生させてもよく、音を発生させてもよく、表示の点滅態様および点灯照度の少なくともいずれかによって表示を変化させてもよい。例えば、操作領域410cまでの距離を点滅間隔により表してもよく、操作領域410cまでの距離を点灯照度により表してもよい。例えば、操作領域410cから離れるほど点滅間隔を長く、近づくほど点滅間隔を短くする、または、操作領域410cから離れるほど点灯照度を低く、近づくほど点灯照度を高くする、または、操作領域410cから離れるほどより濃い色による点灯(赤、黒、紫など)を行い、近づくほどより淡い色による点灯(青、黄、ピンクなど)を行なうなど、その他、人間の感覚(視覚、聴覚および触覚に代表される)に訴える任意のイベントを発生させてもよい。
(眼鏡表示装置の操作)
 以上の指、掌、腕認識およびイベント発生を伴う眼鏡表示装置100の使用態様について説明する。
 まず、ユーザが操作領域410c内に手を入れることにより、手の認識が行なわれ、仮想イメージ表示を操作することができる。例えば、仮想イメージ表示を拡大させたり、縮小させたり、表示をスクロールさせたり、ポイントを選択したりすることができる。
 例えば、図24に示すように、広告221の表示をタッチすることで、追加表示を行なってもよい。
 例えば、広告221には、店舗の、商品、サービス等の情報が表示されている。ユーザがその広告221をタッチした場合、当該店舗に関するさらに詳しい情報を追加表示させてもよい。たとえば、飲食店の場合には、当該飲食店の代表メニュ、ユーザからの評価、価格帯等を表示させてもよい。
 なお、広告221は、店舗をカメラユニット303で撮影された像そのものであってもよいし、カメラユニット303による当該店舗の撮像データに基づいて店舗認識を自動で開始し、その結果、店舗認識アプリ画面に表示された認識結果情報であってもよい。
(パロディモードによる表示)
 また、図25に示すように、半透過ディスプレイ220に一の企業(○○社)のロゴマークが表示されている際に、画面中のロゴマークにタッチ等行なうことで、競合又は非競合の他の企業(△△社)に関連する情報を表示させることができる。この場合、例えばパロディモードとして、当該他の企業のロゴを表示させてもよい。
(ジェスチャ認識による表示)
 また、ユーザがジェスチャ領域410g内で所定の手のポーズを作ることにより、予め設定された動作が実施される。図26から図33は、ジェスチャ認識の例を示す模式図である。
 例えば、図26に示すように、ユーザが握った手H1の親指と人差し指を90度に開いて伸ばしたL字サインを作った場合、親指と人差し指との間に、メニュ画面V1が表示されてもよい。
 また、図27に示すように、握った手H1の人差し指と中指とを延ばし広げた、いわゆるピースサインの場合には、人差し指と中指との間に、所定の画像V2を表示させてもよい。
 また、図28に示すように、挨拶行為により、手H1を軽く開いて矢印方向に移動させた場合には、顔認識のアプリを自動的に起動させる。カメラユニット303で取得した相手の人物の顔データに基づいて顔認識を自動で開始し、顔認識アプリ画面V3に、氏名、企業名、役職、最後に会った日時および場所等の情報を表示させる。さらに顔認識アプリの認識による同一人物に会うたびにフラグを立て、フラグの数を顔認識アプリ画面V3に表示させてもよい。この場合、フラグの数によって、顔認識アプリ画面V3の背景および色等を異ならせてもよい。
 さらに、図29に示すように、握った手H1の親指と小指を広げた、いわゆるアロハサインを作り、矢印方向にゆすった場合には、電話のアプリが自動的に起動し、連絡帳のデータV4が表示される。ユーザは、電話のアプリを操作して、所定の相手に電話をかけることができる。
 また、図30に示すように、手H1の指でアルファベットのSの文字を描くことにより、SNS(SOCIAL NETWORKING SERVICE)アプリを自動的に起動させ、SNSアプリ画面V5を表示させることができる。
 さらに、図31に示すように、漢字アプリを起動させ、手H1の人差し指を認識させることにより人差し指の位置に筆の画像をさらに追加表示させ、漢字の練習アプリ画面V6に漢字を書いて練習できる。
 また、図32に示すように、手H1を手刀の形状にした場合、刀アプリを起動させ、手刀上の手の位置に刀の画像をさらに追加表示させ、仮想イメージ表示画面V7を切ることができる。
 また、図33に示すように、両手H1の指で、四角を形成した場合、カメラアプリが自動起動され、カメラアプリ画面V8中で、形成した四角から抽出される撮像用フレーム内の風景等を撮像してもよい。
 以上のように、本発明にかかる眼鏡表示装置100は、キャリブレーションサービスユニット461が、立体視像と、赤外線検知ユニット410深度センサにより検知される手H1の深度とを調整する。
 この場合、実像である手H1までの距離と、虚像である立体視像の見え方との関係を調整し、関連付けることができる。たとえば、当該調整により実像である手H1が、虚像である立体視像にあたかも接触しているように視認させることもでき、両像が一定の距離を介しているように視認させることもできる。
 また、眼鏡表示装置100は、実像である手H1の関与により定められる空間内の視認サイズに応じて、虚像である立体視像の視認サイズを調整することができる。
 また、手H1が人体の一部であるため、虚像である立体視像に、人体の指、掌、手または腕を用いて体感的なアプローチが容易となる。
 また、眼鏡表示装置100はヘッドマウントディスプレイ装置であるため、小型かつ装着可能な態様となる。また、携帯可能にすることができ、表示にずれが生じた場合、または、ヘッドマウントディスプレイを装着する人に応じて調整することができる。さらに、小型化により汎用性および利便性を高めることができる。
 また、眼鏡表示装置100は、キャリブレーションサービスユニット461が、対象物となる手H1の側の肩関節RPまたはLPから当該手H1までの長さに応じて、立体視像として生成可能な仮想イメージ表示領域2203Dと三次元空間検知領域4103Dとが共有する共有領域を決定してもよい。
 この場合、ユーザの体格の違いに応じて共有領域をカスタマイズすることができる。
 また、眼鏡表示装置100は、深度センサとして赤外線検知ユニット410を用いるため、赤外線の照射および反射により迅速かつ正確に対象物を検知でき、迅速かつ正確に深度を検知することができる。
 本発明においては、眼鏡表示装置100が「キャリブレーション装置」に相当し、半透過ディスプレイ220が「表示装置」に相当し、赤外線検知ユニット410が「深度センサ」に相当し、手H1が「対象物」に相当し、キャリブレーションサービスユニット461が「調整部」に相当し、右肩関節RPおよび/または左肩関節LPが「肩関節」に相当し、仮想イメージ表示領域2203Dが「立体視領域」に相当し、三次元空間検知領域4103Dが「深度検知領域」に相当し、共有領域(仮想イメージ表示領域2203Dと一致)が「共有領域」に相当する。
 本発明の好ましい一実施の形態は上記の通りであるが、本発明はそれだけに制限されない。本発明の精神と範囲から逸脱することのない様々な実施形態が他になされることは理解されよう。さらに、本実施形態において、本発明の構成による作用および効果を述べているが、これら作用および効果は、一例であり、本発明を限定するものではない。
 
 

Claims (15)

  1.  立体視像を生成可能な表示装置と、
     対象物までの距離を測定する深度センサと、
     前記表示装置により生成される立体視像および前記深度センサにより検知される対象物の深度を調整する調整部と、を含む、キャリブレーション装置。
  2.  前記調整部は、前記深度センサにより検知された深度において前記対象物により定められた形状の視認サイズおよび位置と、前記表示装置により生成された立体視像の視認サイズおよび位置とが対応するよう調整する、請求項1に記載のキャリブレーション装置。
  3.  前記対象物は、人体の一部である、請求項1または2に記載のキャリブレーション装置。
  4.  前記人体の一部が、指、掌、手または腕である、請求項3に記載のキャリブレーション装置。
  5.  前記表示装置がヘッドマウントディスプレイである、請求項1から4のいずれか1項に記載のキャリブレーション装置。
  6.  前記対象物が指、掌または手であり、
     前記調整部は、前記対象物の側の肩関節から前記対象物までの長さに応じて、前記立体視像として生成可能な立体視領域と前記深度センサの深度検知領域とが共有する共有領域を決定する、請求項4または5に記載のキャリブレーション装置。
  7.  前記深度センサは、赤外線により対象物までの距離を検知することによって前記対象物の深度検知を行なう、請求項1から6のいずれか1項に記載のキャリブレーション装置。
  8.  立体視像を生成可能な表示処理と、
     対象物までの距離を測定する深度センサ処理と、
     前記表示処理により生成される立体視像および前記深度センサ処理により検知される対象物の深度を調整する位置調整処理と、を含む、キャリブレーションプログラム。
  9.  前記位置調整処理は、前記深度センサ処理により検知された深度において前記対象物により定められた形状の視認サイズおよび位置と、前記表示処理により生成された立体視像の視認サイズおよび位置とが対応するよう調整する、請求項8に記載のキャリブレーションプログラム。
  10.  前記対象物が指、掌または手であり、
     前記位置調整処理は、前記対象物の側の肩関節から前記対象物までの長さに応じて、前記表示処理により前記立体視像が生成される立体視領域と前記深度センサ処理により検知される深度検知領域とが共有する共有領域を決定する共有領域決定処理を有する、請求項8または9に記載のキャリブレーションプログラム。
  11.  前記深度センサ処理は、赤外線により対象物までの距離を検知することによって前記対象物の深度検知を行なう赤外線検知処理を含む、請求項8から10のいずれか1項に記載のキャリブレーションプログラム。
  12.  立体視像を生成可能な表示工程と、
     対象物までの距離を測定する深度センサ工程と、
     前記表示工程により生成される立体視像と、前記深度センサ工程により検知される対象物の深度とを調整する位置調整工程と、を含む、キャリブレーション方法。
  13.  前記位置調整工程は、前記深度センサ工程により検知された深度において前記対象物により定められた形状の視認サイズおよび位置と、前記表示工程により生成された立体視像の視認サイズおよび位置とが対応するよう調整する、請求項12に記載のキャリブレーション方法。
  14.  前記対象物が指、掌または手であり、
     前記位置調整工程は、前記対象物の側の肩関節から前記対象物までの長さに応じて、前記表示工程により前記立体視像が生成される立体視領域と前記深度センサ工程により検知される深度検知領域とが共有する共有領域を決定する共有領域決定工程を有する、請求項12または13に記載のキャリブレーション方法。
  15.  前記深度センサ工程は、赤外線により対象物までの距離を検知することによって前記対象物の深度検知を行なう赤外線検知工程を含む、請求項12から14のいずれか1項に記載のキャリブレーション方法。
PCT/JP2013/000908 2013-02-19 2013-02-19 キャリブレーション装置、キャリブレーションプログラム、およびキャリブレーション方法 WO2014128748A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/767,746 US9906778B2 (en) 2013-02-19 2013-02-19 Calibration device, calibration program, and calibration method
JP2015501060A JP6250024B2 (ja) 2013-02-19 2013-02-19 キャリブレーション装置、キャリブレーションプログラム、およびキャリブレーション方法
PCT/JP2013/000908 WO2014128748A1 (ja) 2013-02-19 2013-02-19 キャリブレーション装置、キャリブレーションプログラム、およびキャリブレーション方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/000908 WO2014128748A1 (ja) 2013-02-19 2013-02-19 キャリブレーション装置、キャリブレーションプログラム、およびキャリブレーション方法

Publications (1)

Publication Number Publication Date
WO2014128748A1 true WO2014128748A1 (ja) 2014-08-28

Family

ID=51390596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000908 WO2014128748A1 (ja) 2013-02-19 2013-02-19 キャリブレーション装置、キャリブレーションプログラム、およびキャリブレーション方法

Country Status (3)

Country Link
US (1) US9906778B2 (ja)
JP (1) JP6250024B2 (ja)
WO (1) WO2014128748A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133541A (ja) * 2015-01-16 2016-07-25 株式会社ブリリアントサービス 電子眼鏡および電子眼鏡の制御方法
JP2017111722A (ja) * 2015-12-18 2017-06-22 株式会社ブリリアントサービス ヘッドマウントディスプレイ、ヘッドマウントディスプレイの表示方法、およびヘッドマウントディスプレイのプログラム
JP2018173987A (ja) * 2018-07-04 2018-11-08 株式会社ニコン 検出装置、電子機器、検出方法およびプログラム
WO2021261463A1 (ja) * 2020-06-24 2021-12-30 株式会社電通 プログラム、ヘッドマウントディスプレイ及び情報処理装置
US11227441B2 (en) 2019-07-04 2022-01-18 Scopis Gmbh Technique for calibrating a registration of an augmented reality device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6195893B2 (ja) * 2013-02-19 2017-09-13 ミラマ サービス インク 形状認識装置、形状認識プログラム、および形状認識方法
CN107589827B (zh) * 2016-07-07 2021-07-02 深圳市掌网科技股份有限公司 一种可识别手势的虚拟现实头盔及其手势识别方法
KR102028376B1 (ko) * 2018-01-05 2019-10-04 동국대학교 산학협력단 번들 조정 알고리즘을 이용한 립모션과 hmd 사이의 캘리브레이션 방법 및 장치
JP7098365B2 (ja) * 2018-03-15 2022-07-11 キヤノン株式会社 画像処理装置、画像処理方法およびプログラム
US20230186434A1 (en) * 2021-12-09 2023-06-15 Unity Technologies Sf Defocus operations for a virtual display with focus and defocus determined based on camera settings

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264892A (ja) * 2003-01-31 2004-09-24 Olympus Corp 運動検出装置及び通信装置
JP2007034628A (ja) * 2005-07-26 2007-02-08 Canon Inc 画像処理方法及び装置
JP2010146481A (ja) * 2008-12-22 2010-07-01 Brother Ind Ltd ヘッドマウントディスプレイ
JP2011081480A (ja) * 2009-10-05 2011-04-21 Seiko Epson Corp 画像入力システム
JP2011128220A (ja) * 2009-12-15 2011-06-30 Toshiba Corp 情報提示装置、情報提示方法及びプログラム
JP2012252415A (ja) * 2011-05-31 2012-12-20 Toshiba Corp 情報処理装置及びキャリブレーション方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831140A (ja) 1994-07-15 1996-02-02 Victor Co Of Japan Ltd テープリール
JP4228646B2 (ja) 2002-10-02 2009-02-25 株式会社セガ 立体視画像生成方法および立体視画像生成装置
WO2010071860A2 (en) * 2008-12-18 2010-06-24 3Dfusion Corporation System and method for adaptive scalable dynamic conversion, quality and processing optimization, enhancement, correction, mastering, and other advantageous processing of three dimensional media content
US20120105439A1 (en) * 2008-12-18 2012-05-03 3D Fusion Inc. System and Method For Adaptive Scalable Dynamic Conversion, Quality and Processing Optimization, Enhancement, Correction, Mastering, And Other Advantageous Processing of Three Dimensional Media Content
US9256282B2 (en) 2009-03-20 2016-02-09 Microsoft Technology Licensing, Llc Virtual object manipulation
CN102460510B (zh) 2009-05-27 2016-04-20 奥布隆工业有限公司 用于与空间操作系统一起使用的空间多模式控制设备
US8390680B2 (en) 2009-07-09 2013-03-05 Microsoft Corporation Visual representation expression based on player expression
JP4900741B2 (ja) * 2010-01-29 2012-03-21 島根県 画像認識装置および操作判定方法並びにプログラム
US9122053B2 (en) * 2010-10-15 2015-09-01 Microsoft Technology Licensing, Llc Realistic occlusion for a head mounted augmented reality display
US8570320B2 (en) * 2011-01-31 2013-10-29 Microsoft Corporation Using a three-dimensional environment model in gameplay
US9286711B2 (en) * 2011-09-30 2016-03-15 Microsoft Technology Licensing, Llc Representing a location at a previous time period using an augmented reality display
JP2012106005A (ja) 2012-01-25 2012-06-07 Konami Digital Entertainment Co Ltd 画像表示装置、ゲームプログラム、ゲーム制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264892A (ja) * 2003-01-31 2004-09-24 Olympus Corp 運動検出装置及び通信装置
JP2007034628A (ja) * 2005-07-26 2007-02-08 Canon Inc 画像処理方法及び装置
JP2010146481A (ja) * 2008-12-22 2010-07-01 Brother Ind Ltd ヘッドマウントディスプレイ
JP2011081480A (ja) * 2009-10-05 2011-04-21 Seiko Epson Corp 画像入力システム
JP2011128220A (ja) * 2009-12-15 2011-06-30 Toshiba Corp 情報提示装置、情報提示方法及びプログラム
JP2012252415A (ja) * 2011-05-31 2012-12-20 Toshiba Corp 情報処理装置及びキャリブレーション方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133541A (ja) * 2015-01-16 2016-07-25 株式会社ブリリアントサービス 電子眼鏡および電子眼鏡の制御方法
JP2017111722A (ja) * 2015-12-18 2017-06-22 株式会社ブリリアントサービス ヘッドマウントディスプレイ、ヘッドマウントディスプレイの表示方法、およびヘッドマウントディスプレイのプログラム
JP2018173987A (ja) * 2018-07-04 2018-11-08 株式会社ニコン 検出装置、電子機器、検出方法およびプログラム
US11227441B2 (en) 2019-07-04 2022-01-18 Scopis Gmbh Technique for calibrating a registration of an augmented reality device
WO2021261463A1 (ja) * 2020-06-24 2021-12-30 株式会社電通 プログラム、ヘッドマウントディスプレイ及び情報処理装置
JP2022006502A (ja) * 2020-06-24 2022-01-13 株式会社電通 プログラム、ヘッドマウントディスプレイ及び情報処理装置
JP7057393B2 (ja) 2020-06-24 2022-04-19 株式会社電通 プログラム、ヘッドマウントディスプレイ及び情報処理装置

Also Published As

Publication number Publication date
JP6250024B2 (ja) 2017-12-20
US9906778B2 (en) 2018-02-27
JPWO2014128748A1 (ja) 2017-02-02
US20150381973A1 (en) 2015-12-31

Similar Documents

Publication Publication Date Title
JP6195893B2 (ja) 形状認識装置、形状認識プログラム、および形状認識方法
JP6177872B2 (ja) 入出力装置、入出力プログラム、および入出力方法
JP6333801B2 (ja) 表示制御装置、表示制御プログラム、および表示制御方法
JP6250024B2 (ja) キャリブレーション装置、キャリブレーションプログラム、およびキャリブレーション方法
WO2014128751A1 (ja) ヘッドマウントディスプレイ装置、ヘッドマウントディスプレイ用プログラム、およびヘッドマウントディスプレイ方法
JP6250025B2 (ja) 入出力装置、入出力プログラム、および入出力方法
JP6446465B2 (ja) 入出力装置、入出力プログラム、および入出力方法
JP6479835B2 (ja) 入出力装置、入出力プログラム、および入出力方法
JP2017111537A (ja) ヘッドマウントディスプレイおよびヘッドマウントディスプレイのプログラム
JP6479836B2 (ja) 入出力装置、入出力プログラム、および入出力方法
JP2017111724A (ja) 配管用ヘッドマウントディスプレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875622

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501060

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14767746

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875622

Country of ref document: EP

Kind code of ref document: A1