WO2014126252A1 - Laminated glass and attachment structure having same attached thereto - Google Patents
Laminated glass and attachment structure having same attached thereto Download PDFInfo
- Publication number
- WO2014126252A1 WO2014126252A1 PCT/JP2014/053699 JP2014053699W WO2014126252A1 WO 2014126252 A1 WO2014126252 A1 WO 2014126252A1 JP 2014053699 W JP2014053699 W JP 2014053699W WO 2014126252 A1 WO2014126252 A1 WO 2014126252A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass plate
- glass
- thickness
- laminated glass
- laminated
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10761—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10009—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
- B32B17/10036—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10559—Shape of the cross-section
- B32B17/10568—Shape of the cross-section varying in thickness
Definitions
- the present invention relates to a laminated glass used for a windshield of an automobile and a mounting structure to which the glass is mounted.
- Patent Document 1 describes that the sound insulation performance is affected by the surface density. That is, in order to improve the sound insulation performance, it is necessary to increase the thickness of the glass. On the other hand, from the viewpoint of improving the fuel efficiency of automobiles, the glass is required to be lighter. For this reason, it is desirable that the glass has a smaller thickness. Therefore, conventionally, in order to satisfy these two contradictory performances, a laminated glass having a sum of the thicknesses of the glass on the vehicle outside and the vehicle inside of about 4 mm is used.
- This invention was made in order to solve the said problem, and it aims at providing the laminated structure which can maintain a sound-insulation property by further weight reduction, and the attachment structure to which this was attached.
- the laminated glass according to the present invention includes a first glass plate, a second glass disposed opposite to the first glass plate, and an intermediate film sandwiched between the first glass and the second glass.
- the sum of the thickness of the first glass plate and the thickness of the second glass plate is 2.4 to 3.8 mm, and the Young's modulus of the intermediate film is 100 to 1000 MPa at a frequency of 100 Hz and a temperature of 20 ° C. .
- the sum of the thickness of the first glass plate and the thickness of the second glass plate can be 2.6 to 3.4 mm.
- the thickness of the first glass plate can be made larger than the thickness of the second glass plate.
- the thickness of the first glass plate can be 1.8 to 5.0 mm.
- the thickness of the second glass plate can be 0.6 to 5.0 mm.
- the tan ⁇ of the intermediate film can be 0.1 to 3.0 at a frequency of 100 Hz and a temperature of 20 ° C.
- the thickness of the interlayer film can be set to 0.5 to 5.0 mm.
- the laminated glass attachment structure according to the present invention includes any one of the laminated glasses described above and an attachment portion for attaching the laminated glass to a vertical attachment angle of 45 degrees or less.
- an attachment structure is, for example, an automobile or a building, and the attachment portion is a frame or the like for attaching laminated glass.
- a laminated glass can be attached with a well-known method with respect to an attaching part.
- FIG. 1 It is sectional drawing which shows one Embodiment of the laminated glass which concerns on this invention. It is the front view (a) and sectional view (b) which show the amount of doubles of a curved laminated glass. It is a graph which shows the relationship between the general frequency and sound transmission loss of a curved glass plate and a planar glass plate. It is a schematic plan view which shows the measurement position of the thickness of a laminated glass. It is a graph which shows the relationship between the frequency and sound transmission loss in the conventional laminated glass. It is a graph which shows the relationship between the frequency and sound transmission loss in the conventional laminated glass. It is a graph which shows the result of the simulation regarding a Young's modulus and the total thickness of a glass plate.
- FIG. 1 is a cross-sectional view of a laminated glass according to the present embodiment.
- the laminated glass according to this embodiment includes an outer glass plate (first glass plate) 1, an inner glass plate (second glass plate) 2, and an intermediate film 3 sandwiched between these glass plates.
- the outer glass 1 is a glass plate disposed on the side susceptible to disturbance
- the inner glass 2 is a glass plate disposed on the opposite side. Therefore, for example, when this laminated glass is used as a glass of an automobile, the glass plate on the outside of the vehicle becomes an outer glass plate, and when used as a building material, the side facing outward becomes an outer glass plate. However, depending on the disturbance that can be received, the arrangement may be opposite.
- each member will be described.
- Outer glass plate and inner glass plate As the outer glass plate 1 and the inner glass plate 2, known glass plates can be used, and they can be formed of heat ray absorbing glass, general clear glass, green glass, or UV green glass. However, when this laminated glass is used for an automobile window, it is necessary to realize a visible light transmittance in accordance with the safety standard of the country where the automobile is used. For example, the required solar radiation absorption rate can be secured by the outer glass plate 1, and the visible light transmittance can be adjusted by the inner glass plate 2 so as to satisfy the safety standard. Below, an example of a composition of clear glass and an example of a composition of heat ray absorption glass are shown.
- the composition of the heat-absorbing glass for example, based on the composition of the clear glass, the proportion of the total iron oxide in terms of Fe 2 O 3 (T-Fe 2 O 3) and 0.4 to 1.3 wt%, CeO
- the ratio of 2 is 0 to 2% by mass
- the ratio of TiO 2 is 0 to 0.5% by mass
- the glass skeleton components (mainly SiO 2 and Al 2 O 3 ) are T-Fe 2 O 3 , CeO.
- the composition can be reduced by an increase of 2 and TiO 2 .
- the total thickness of the outer glass plate and the inner glass plate that achieves both weight reduction and sound insulation is about 4.0 mm.
- the purpose is to reduce the weight.
- the total thickness of the outer glass plate 1 and the inner glass plate 2 is preferably 2.4 to 3.8 mm, more preferably 2.6 to 3.4 mm, and 2.7 to 3.2 mm. It is particularly preferred that
- the thickness of each glass plate is not particularly limited, For example, the thickness of the outer glass plate 1 and the inner glass plate 2 can be determined as follows.
- the outer glass plate 1 mainly needs durability and impact resistance against external obstacles. For example, when this laminated glass is used as a windshield of an automobile, the outer glass plate 1 has impact resistance performance against flying objects such as pebbles. is necessary.
- the thickness of the outer glass plate 1 is preferably 1.8 mm or more, 1.9 mm or more, 2.0 mm or more, 2.1 mm or more, or 2.2 mm or more.
- the upper limit of the thickness of the outer glass is preferably 5.0 mm or less, 4.0 mm or less, 3.1 mm or less, 2.5 mm or less, 2.4 mm or less. Among them, it is preferably larger than 2.1 mm and 2.5 mm or less, particularly preferably 2.2 mm or more and 2.4 mm or less. Which thickness is adopted can be determined according to the application of the glass.
- the inner glass plate 2 is preferably made thinner than the outer glass plate 1 in order to reduce the weight of the laminated glass.
- the thickness of the inner glass plate 2 is preferably in the order of 0.6 mm or more, 0.8 mm or more, 1.0 mm or more, and 1.3 mm or more.
- the upper limit of the thickness of the inner glass plate 2 is 5.0 mm or less, 4.0 mm or less, 3.1 mm or less, 2.5 m or less, 2.0 mm or less, 1.6 mm or less, 1.4 mm or less, 1.3 mm.
- Which thickness is used for the inner glass plate 2 can also be determined according to the purpose of the glass.
- the shape of the outer glass plate 1 and the inner glass plate 2 according to the present embodiment may be either a planar shape or a curved shape.
- the sound transmission loss (STL) of the glass described later is lower in the curved shape, the curved glass particularly requires an acoustic measure.
- the reason why the STL value is lower in the curved shape than in the planar shape is that the curved shape is more influenced by resonance.
- the double amount is an amount indicating the bending of the glass plate. For example, when a straight line L connecting the center of the upper side and the center of the lower side is set as shown in FIG. The largest distance between the two is defined as a double amount D.
- FIG. 3 is a graph showing a relationship between a general frequency and sound transmission loss of a curved glass plate and a planar glass plate.
- the curved glass plate has no significant difference in sound transmission loss in the range of 30 to 38 mm in the amount of doubling, but compared with the planar glass plate, it transmits sound in a frequency band of 4000 Hz or less. It can be seen that the loss is decreasing. Therefore, when producing a curved glass plate, the amount of double is better, but for example, when the amount of double exceeds 30 mm, the Young's modulus of the core layer of the intermediate film is set to 18 MPa (frequency) as will be described later. 100 Hz, temperature 20 ° C.) or less.
- a method for measuring the thickness when the glass plate is curved will be described.
- the measuring instrument is not particularly limited, and for example, a thickness gauge such as SM-112 manufactured by Teclock Co., Ltd. can be used.
- SM-112 manufactured by Teclock Co., Ltd.
- Teclock Co., Ltd. Teclock Co., Ltd.
- it is arranged so that the curved surface of the glass plate is placed on a flat surface, and the end of the glass plate is sandwiched by the thickness gauge and measured. Even when the glass plate is flat, it can be measured in the same manner as when the glass plate is curved.
- the frequency of sounds that are easy for humans to hear is generally said to be 2000 to 5000 Hz.
- laminated glass having a thickness of about 4.0 mm is also known to have a reduced sound insulation performance in the frequency range of 2000 to 5000 Hz due to the coincidence effect.
- FIG. 5 is a graph showing the result of simulating the relationship between the frequency and sound transmission loss (SLT) in laminated glass with the outer glass plate and the inner glass plate having a thickness of 2.0 mm. According to this graph, it can be seen that the sound transmission loss is reduced in the frequency range of 2000 to 5000 Hz that is easy for humans to hear.
- SLT frequency and sound transmission loss
- FIG. 6 is a graph showing the relationship between the frequency and sound transmission loss (STL) of a laminated glass using an interlayer film having a relatively low Young's modulus.
- STL sound transmission loss
- FIG. 7 shows a third laminated glass STL in which the outer glass plate and the inner glass plate are both 2 mm and the outer glass plate are 2 mm when the intermediate film 3 having a Young's modulus of 100 MPa is used at a frequency of 100 Hz and a temperature of 20 ° C.
- the inner glass plate is a graph showing the STL of the fourth laminated glass having a thickness of 1.0 mm. According to the figure, although the thickness of the inner glass plate 2 is reduced to 1.0 mm as in the case of the fourth laminated glass, the coincidence frequency shifts to the high frequency side as compared with the third laminated glass having a large total thickness. It has been found that in the above frequency region, sound transmission loss hardly decreases, but rather an improved region is generated, and sound insulation performance is improved.
- the total thickness of the laminated glass and the thicknesses of the glass plates 1 and 2 are specified as described above, and the intermediate film 3 can be selected based on the Young's modulus. Specifically, it is preferably 100 to 1000 MPa, more preferably 200 to 1000 MPa at a frequency of 100 Hz and a temperature of 20 degrees. Furthermore, 400 to 1000 MPa is preferable. As will be described later, if the Young's modulus is too small, the coincidence frequency does not increase in the above-described frequency region. On the other hand, if the Young's modulus is too large, the impact resistance performance decreases, which is not preferable.
- frequency dispersion measurement can be performed with a strain amount of 0.05% using a solid viscoelasticity measuring device DMA-50 manufactured by Metravib.
- the Young's modulus is a value measured by the above method. However, when the Young's modulus is 200 MPa or less, an actual measurement value is used. When the Young's modulus is greater than 200 MPa, a calculated value based on the actual measurement value is used. The calculated value is based on a master curve calculated by using the WLF method from the actually measured value.
- the tan ⁇ of the intermediate film is preferably 0.1 to 3.0, more preferably 0.1 to 1.0, and more preferably 0.2 to 0.4 at a frequency of 100 Hz and a temperature of 20 ° C. It is particularly preferred that When tan ⁇ is in the above range, sound is easily absorbed, and sound insulation performance is improved. However, if tan ⁇ becomes too large, the intermediate film 3 becomes too soft and difficult to handle. On the other hand, if the thickness is too small, the intermediate film 3 becomes too hard, and the impact resistance performance is deteriorated.
- the material constituting the intermediate film 3 is not particularly limited, but it is necessary that the material has at least a Young's modulus in the above range.
- it can be composed of polyvinyl butyral resin (PVB).
- PVB polyvinyl butyral resin
- Polyvinyl butyral resin is preferable because it is excellent in adhesiveness and penetration resistance with each glass plate.
- the hardness of the polyvinyl acetal resin is controlled by (a) the degree of polymerization of the starting polyvinyl alcohol, (b) the degree of acetalization, (c) the type of plasticizer, (d) the addition ratio of the plasticizer, etc. Can do. Therefore, a hard polyvinyl butyral resin can be produced by appropriately adjusting at least one selected from these conditions. Furthermore, the hardness of the polyvinyl acetal resin can also be controlled by the type of aldehyde used for acetalization, coacetalization with a plurality of aldehydes or pure acetalization with a single aldehyde.
- the polyvinyl acetal resin obtained by using an aldehyde having a large number of carbon atoms tends to be softer.
- predetermined Young's modulus it is not limited to the said resin etc., Other additives can also be mix
- the intermediate film 3 is preferably, for example, 0.5 to 5.0 mm, and more preferably 0.6 to 3.0 mm.
- the intermediate film 3 can be formed of a single layer, but can also be configured by stacking layers made of the same material. When layers of the same material are stacked, a film may be sandwiched between the layers. In this case, the thickness of the intermediate film refers to the sum of the layers of the intermediate film excluding the film.
- the thickness of the intermediate film 3 does not have to be constant over the entire surface, and may be a wedge shape for laminated glass used for a head-up display, for example. In this case, the thickness of the intermediate film 3 is measured at the thinnest portion, that is, the lowermost side portion of the laminated glass.
- the intermediate film 3 is wedge-shaped, the outer glass plate and the inner glass plate are not arranged in parallel, but such an arrangement is also included in the “opposing arrangement” between the outer glass plate and the inner glass plate in the present invention. . That is, the “opposing arrangement” of the present invention includes an arrangement of the outer glass plate 1 and the inner glass plate 2 when the intermediate film 3 whose thickness is widened at a change rate of 3 mm or less per 1 m, for example.
- the manufacturing method of the laminated glass which concerns on this embodiment is not specifically limited, The manufacturing method of a conventionally well-known laminated glass is employable.
- the intermediate film 3 is sandwiched between the outer glass plate 1 and the inner glass plate 2, placed in a rubber bag, and pre-bonded at about 70 to 110 ° C. while sucking under reduced pressure.
- Other pre-adhesion methods are possible.
- the intermediate film 3 is sandwiched between the outer glass plate 1 and the inner glass plate 2 and heated at 45 to 65 ° C. in an oven. Subsequently, this laminated glass is pressed by a roll at 0.45 to 0.55 MPa.
- the laminated glass is again heated at 80 to 105 ° C. in an oven and then pressed again with a roll at 0.45 to 0.55 MPa.
- preliminary adhesion is completed.
- the pre-bonded laminated glass is subjected to main bonding by an autoclave at 8 to 15 atm and 100 to 150 ° C. Specifically, the main bonding can be performed under the conditions of 14 atm and 145 ° C. Thus, the laminated glass according to the present embodiment is manufactured.
- Laminated glass mounting structure The laminated glass mentioned above can be attached to attachment structures, such as a car and a building, for example. At this time, the laminated glass is attached to the attachment structure via the attachment portion.
- the attachment portion corresponds to, for example, a frame such as a urethane frame for attachment to an automobile, an adhesive, a clamp, or the like.
- pins 50 are attached to both ends of the laminated glass 10, and an adhesive 60 is applied to the automobile frame 70 to be attached. .
- a through hole 80 into which a pin is inserted is formed in the frame. And the laminated glass 10 is attached to the flame
- the pin 50 is inserted into the through hole 80 and the laminated glass 10 is temporarily fixed to the frame 70. At this time, since a step is formed in the pin 50, the pin 50 is inserted only halfway through the through-hole 80, whereby a gap is generated between the frame 70 and the laminated glass 10. And since the adhesive material 60 mentioned above is apply
- the attachment angle of the laminated glass 10 is preferably 45 degrees or less from the vertical N as shown in FIG.
- the Young's modulus of the intermediate film 3 is 100 to 1000 MPa at a frequency of 100 Hz and a temperature of 20 ° C.
- the total thickness is reduced even if the total thickness of the outer glass plate 1 and the inner glass plate 2 is reduced.
- sound transmission loss in the frequency region of 2000 to 5000 Hz can be improved.
- each laminated glass includes an outer glass plate, an inner glass plate, and an intermediate film sandwiched between them.
- the thickness of the interlayer film was 0.76 mm
- the frequency was 100 Hz
- the Young's modulus at a temperature of 20 ° C. was 100 MPa.
- the above laminated glasses were arranged at an angle of 60 degrees from the vertical, and granite having an average particle size of about 10 mm was collided with each laminated glass at a speed of 64 km / h. Thirty granites collided with each laminated glass, and the occurrence rate of cracks was calculated. The result is as shown in FIG. As shown in the figure, in the laminated glasses 1 to 5 having an outer glass plate thickness of 2.1 mm, the occurrence rate of cracks was 5% or less regardless of the thickness of the inner glass plate. On the other hand, in the laminated glasses 6 and 7 having a thickness of the outer glass plate of 1.8 mm or less, the occurrence rate of cracks was 8% regardless of the thickness of the inner glass. Therefore, from the viewpoint of impact resistance against flying objects, the thickness of the outer glass plate is preferably larger than 1.8 mm as described above. More preferably, it is 2.0 mm or more.
- the laminated glass which concerns on an Example and a comparative example was prepared as follows, changing the thickness of each glass plate, and the Young's modulus of an intermediate film.
- Each glass plate was formed of the above-described clear glass.
- the thickness of the interlayer film was 0.76 mm.
- the thickness of the interlayer film is measured at a frequency of 100 Hz and a temperature of 20 ° C. This condition is the same in the following description.
- the sound transmission loss was evaluated by simulation for the above examples and comparative examples.
- the simulation conditions are as follows.
- the simulation was performed using acoustic analysis software (ACTRAN, manufactured by Free Field technology).
- ACTRAN acoustic analysis software
- the sound transmission loss (transmitted sound pressure level / incident sound pressure level) of the laminated glass can be calculated by solving the following wave equation using the finite element method.
- Model setting The laminated glass model used in this simulation is shown in FIG.
- a laminated glass is defined in which an outer glass plate, an intermediate film, an inner glass plate, and a urethane frame are laminated in this order from the sound source side.
- the reason why the urethane frame is added to the model is that there is a considerable influence on the calculation result of sound transmission loss due to the presence or absence of the urethane frame, and between the laminated glass and the vehicle windshield. This is because it is generally considered that a urethane frame is used and bonded.
- Input condition 1 (dimensions, etc.)
- the size of the glass plate 800 ⁇ 500 mm, is smaller than the size used in an actual vehicle.
- the STL value tends to deteriorate. This is because the larger the size, the larger the constrained portion and the greater the amplitude.
- the tendency of the relative value for each frequency described above is the same.
- Random diffused sound waves are sound waves that are transmitted with sound waves of a predetermined frequency with respect to the outer glass plate at angles of incidence in all directions, assuming a sound source in a reverberation chamber that measures sound transmission loss. It has become.
- the laminated glass which concerns on an Example and a comparative example was prepared as follows. Here, the thickness of the inner glass plate was changed, and the sound transmission loss was calculated by the simulation method. The thickness of the interlayer film was 0.76 mm, and all the Young's moduli were 100 MPa.
Landscapes
- Joining Of Glass To Other Materials (AREA)
Abstract
[Problem] To provide: a laminated glass capable of maintaining sound-proofing properties even when being more lightweight; and an attachment structure having same attached thereto. [Solution] This laminated glass comprises a first glass plate, a second glass plate arranged facing the first glass plate, and an intermediate film interposed between the first glass plate and the second glass plate. The sum of the thicknesses of the first glass plate and the second glass plate is 2.4-3.8 mm. The Young's modulus of the intermediate film is 100-1,000 MPa, at a frequency of 100 Hz and a temperature of 20°C.
Description
本発明は、自動車のウインドシールドなどに用いられる合わせガラス及びこれが取り付けられた取付構造体に関する。
The present invention relates to a laminated glass used for a windshield of an automobile and a mounting structure to which the glass is mounted.
自動車用のガラスは、自動車のエンジン音や走行中に発生する音を遮断すべく遮音性能が求められる。この点について、例えば、特許文献1には、遮音性能は面密度に影響を受ける旨記載されている。つまり、遮音性能を向上させるためには、ガラスの厚みを大きくする必要がある。その一方で、自動車の燃費性向上の観点から、ガラスには軽量化が求められ、そのためにガラスの厚みは小さい方が望ましい。そこで、従来は、これら相反する2つの性能を満足させるため、車外側と車内側のガラスの厚みの和が4mm前後の合わせガラスが使用されている。
Automotive glass is required to have sound insulation performance in order to block automobile engine noise and noise generated during driving. In this regard, for example, Patent Document 1 describes that the sound insulation performance is affected by the surface density. That is, in order to improve the sound insulation performance, it is necessary to increase the thickness of the glass. On the other hand, from the viewpoint of improving the fuel efficiency of automobiles, the glass is required to be lighter. For this reason, it is desirable that the glass has a smaller thickness. Therefore, conventionally, in order to satisfy these two contradictory performances, a laminated glass having a sum of the thicknesses of the glass on the vehicle outside and the vehicle inside of about 4 mm is used.
ところで、近年のエコの観点から、ガラスの軽量化の要請はさらに強くなっているが、軽量化をさらに進めると遮音性能が低下することになるため、軽量化と遮音性向上の両方を兼ね備えた合わせガラスには未だ改良の余地があった。なお、このような問題は、自動車のガラスのみならず、軽量化と遮音性が要求される合わせガラス全般に起こり得る問題である。
By the way, from the ecological point of view in recent years, the demand for reducing the weight of glass has become stronger. Laminated glass still had room for improvement. Such a problem is a problem that can occur not only in automobile glass but also in laminated glass that requires weight reduction and sound insulation.
本発明は、上記問題を解決するためになされたものであり、さらなる軽量化によっても遮音性を維持することができる合せガラス、及びこれが取り付けられた取付構造体を提供することを目的とする。
This invention was made in order to solve the said problem, and it aims at providing the laminated structure which can maintain a sound-insulation property by further weight reduction, and the attachment structure to which this was attached.
本発明に係る合わせガラスは、第1ガラス板と、前記第1ガラス板と対向配置される第2ガラスと、前記第1ガラスと第2ガラスとの間に挟持される中間膜と、を備え、前記第1ガラス板の厚みと前記第2ガラス板の厚みの和が2.4~3.8mmであり、前記中間膜のヤング率は、周波数100Hz,温度20℃において、100~1000MPaである。
The laminated glass according to the present invention includes a first glass plate, a second glass disposed opposite to the first glass plate, and an intermediate film sandwiched between the first glass and the second glass. The sum of the thickness of the first glass plate and the thickness of the second glass plate is 2.4 to 3.8 mm, and the Young's modulus of the intermediate film is 100 to 1000 MPa at a frequency of 100 Hz and a temperature of 20 ° C. .
上記合わせガラスにおいては、前記第1ガラス板の厚みと前記第2ガラス板の厚みの和を2.6~3.4mmとすることができる。
In the laminated glass, the sum of the thickness of the first glass plate and the thickness of the second glass plate can be 2.6 to 3.4 mm.
上記合わせガラスにおいては、前記第1ガラス板の厚みを、前記第2ガラス板の厚みよりも大きくすることができる。
In the laminated glass, the thickness of the first glass plate can be made larger than the thickness of the second glass plate.
このとき、前記第1ガラス板の厚みを1.8~5.0mmとすることができる。また、前記第2ガラス板の厚みを0.6~5.0mmとすることができる。
At this time, the thickness of the first glass plate can be 1.8 to 5.0 mm. The thickness of the second glass plate can be 0.6 to 5.0 mm.
上記合わせガラスにおいては、周波数100Hz,温度20℃において、前記中間膜のtanδを、0.1~3.0とすることができる。
In the above laminated glass, the tan δ of the intermediate film can be 0.1 to 3.0 at a frequency of 100 Hz and a temperature of 20 ° C.
上記合わせガラスにおいては、前記中間膜の厚みを、0.5~5.0mmとすることができる。
In the laminated glass, the thickness of the interlayer film can be set to 0.5 to 5.0 mm.
また、本発明に係る合わせガラスの取付構造体は、上述したいずれかの合わせガラスと、当該合わせガラスを、垂直からの取付け角度が45度以下に取り付ける取付部と、を備えている。このような取付構造体は、例えば、自動車、建築物などであり、取付部とは合わせガラスを取り付けるフレームなどである。また、取付部に対し、合わせガラスは公知の方法で取り付けることができる。
Moreover, the laminated glass attachment structure according to the present invention includes any one of the laminated glasses described above and an attachment portion for attaching the laminated glass to a vertical attachment angle of 45 degrees or less. Such an attachment structure is, for example, an automobile or a building, and the attachment portion is a frame or the like for attaching laminated glass. Moreover, a laminated glass can be attached with a well-known method with respect to an attaching part.
本発明によれば、さらなる軽量化によっても遮音性を維持することができる。
According to the present invention, it is possible to maintain sound insulation even by further weight reduction.
1 外側ガラス板(第1ガラス板)
2 内側ガラス板(第2ガラス板)
3 中間膜 1 Outer glass plate (first glass plate)
2 Inner glass plate (second glass plate)
3 interlayer film
2 内側ガラス板(第2ガラス板)
3 中間膜 1 Outer glass plate (first glass plate)
2 Inner glass plate (second glass plate)
3 interlayer film
以下、本発明に係る合わせガラスの一実施形態について、図面を参照しつつ説明する。図1は、本実施形態に係る合わせガラスの断面図である。同図に示すように、本実施形態に係る合わせガラスは、外側ガラス板(第1ガラス板)1、内側ガラス板(第2ガラス板)2、及びこれらのガラス板の間に挟持される中間膜3で構成されている。外側ガラス1とは、外乱を受けやすい側に配置されるガラス板であり、内側ガラス2は、その反対側に配置されるガラス板である。したがって、例えば、この合わせガラスを自動車のガラスとして用いる場合には、車外側のガラス板が外側ガラス板になり、建築材として用いる場合には、屋外を向く側が外側ガラス板になる。但し、受け得る外乱によっては、これとは反対の配置になることもある。以下、各部材について説明する。
Hereinafter, an embodiment of a laminated glass according to the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a laminated glass according to the present embodiment. As shown in the figure, the laminated glass according to this embodiment includes an outer glass plate (first glass plate) 1, an inner glass plate (second glass plate) 2, and an intermediate film 3 sandwiched between these glass plates. It consists of The outer glass 1 is a glass plate disposed on the side susceptible to disturbance, and the inner glass 2 is a glass plate disposed on the opposite side. Therefore, for example, when this laminated glass is used as a glass of an automobile, the glass plate on the outside of the vehicle becomes an outer glass plate, and when used as a building material, the side facing outward becomes an outer glass plate. However, depending on the disturbance that can be received, the arrangement may be opposite. Hereinafter, each member will be described.
<1.外側ガラス板及び内側ガラス板>
外側ガラス板1及び内側ガラス板2は、公知のガラス板を用いることができ、熱線吸収ガラス、あるいは一般的なクリアガラスやグリーンガラス、またはUVグリーンガラスで形成することもできる。但し、この合わせガラスを自動車の窓に用いる場合には、自動車が使用される国の安全規格に沿った可視光線透過率を実現する必要がある。例えば、外側ガラス板1により必要な日射吸収率を確保し、内側ガラス板2により可視光線透過率が安全規格を満たすように調整することができる。以下に、クリアガラスの組成の一例と、熱線吸収ガラスの組成の一例を示す。 <1. Outer glass plate and inner glass plate>
As theouter glass plate 1 and the inner glass plate 2, known glass plates can be used, and they can be formed of heat ray absorbing glass, general clear glass, green glass, or UV green glass. However, when this laminated glass is used for an automobile window, it is necessary to realize a visible light transmittance in accordance with the safety standard of the country where the automobile is used. For example, the required solar radiation absorption rate can be secured by the outer glass plate 1, and the visible light transmittance can be adjusted by the inner glass plate 2 so as to satisfy the safety standard. Below, an example of a composition of clear glass and an example of a composition of heat ray absorption glass are shown.
外側ガラス板1及び内側ガラス板2は、公知のガラス板を用いることができ、熱線吸収ガラス、あるいは一般的なクリアガラスやグリーンガラス、またはUVグリーンガラスで形成することもできる。但し、この合わせガラスを自動車の窓に用いる場合には、自動車が使用される国の安全規格に沿った可視光線透過率を実現する必要がある。例えば、外側ガラス板1により必要な日射吸収率を確保し、内側ガラス板2により可視光線透過率が安全規格を満たすように調整することができる。以下に、クリアガラスの組成の一例と、熱線吸収ガラスの組成の一例を示す。 <1. Outer glass plate and inner glass plate>
As the
(クリアガラス)
SiO2:70~73質量%
Al2O3:0.6~2.4質量%
CaO:7~12質量%
MgO:1.0~4.5質量%
R2O:13~15質量%(Rはアルカリ金属)
Fe2O3に換算した全酸化鉄(T-Fe2O3):0.08~0.14質量% (Clear glass)
SiO 2 : 70 to 73% by mass
Al 2 O 3 : 0.6 to 2.4% by mass
CaO: 7 to 12% by mass
MgO: 1.0 to 4.5% by mass
R 2 O: 13 to 15% by mass (R is an alkali metal)
Total iron oxide converted to Fe 2 O 3 (T-Fe 2 O 3 ): 0.08 to 0.14% by mass
SiO2:70~73質量%
Al2O3:0.6~2.4質量%
CaO:7~12質量%
MgO:1.0~4.5質量%
R2O:13~15質量%(Rはアルカリ金属)
Fe2O3に換算した全酸化鉄(T-Fe2O3):0.08~0.14質量% (Clear glass)
SiO 2 : 70 to 73% by mass
Al 2 O 3 : 0.6 to 2.4% by mass
CaO: 7 to 12% by mass
MgO: 1.0 to 4.5% by mass
R 2 O: 13 to 15% by mass (R is an alkali metal)
Total iron oxide converted to Fe 2 O 3 (T-Fe 2 O 3 ): 0.08 to 0.14% by mass
(熱線吸収ガラス)
熱線吸収ガラスの組成は、例えば、クリアガラスの組成を基準として、Fe2O3に換算した全酸化鉄(T-Fe2O3)の比率を0.4~1.3質量%とし、CeO2の比率を0~2質量%とし、TiO2の比率を0~0.5質量%とし、ガラスの骨格成分(主に、SiO2やAl2O3)をT-Fe2O3、CeO2およびTiO2の増加分だけ減じた組成とすることができる。 (Heat ray absorbing glass)
The composition of the heat-absorbing glass, for example, based on the composition of the clear glass, the proportion of the total iron oxide in terms of Fe 2 O 3 (T-Fe 2 O 3) and 0.4 to 1.3 wt%, CeO The ratio of 2 is 0 to 2% by mass, the ratio of TiO 2 is 0 to 0.5% by mass, and the glass skeleton components (mainly SiO 2 and Al 2 O 3 ) are T-Fe 2 O 3 , CeO. The composition can be reduced by an increase of 2 and TiO 2 .
熱線吸収ガラスの組成は、例えば、クリアガラスの組成を基準として、Fe2O3に換算した全酸化鉄(T-Fe2O3)の比率を0.4~1.3質量%とし、CeO2の比率を0~2質量%とし、TiO2の比率を0~0.5質量%とし、ガラスの骨格成分(主に、SiO2やAl2O3)をT-Fe2O3、CeO2およびTiO2の増加分だけ減じた組成とすることができる。 (Heat ray absorbing glass)
The composition of the heat-absorbing glass, for example, based on the composition of the clear glass, the proportion of the total iron oxide in terms of Fe 2 O 3 (T-Fe 2 O 3) and 0.4 to 1.3 wt%, CeO The ratio of 2 is 0 to 2% by mass, the ratio of TiO 2 is 0 to 0.5% by mass, and the glass skeleton components (mainly SiO 2 and Al 2 O 3 ) are T-Fe 2 O 3 , CeO. The composition can be reduced by an increase of 2 and TiO 2 .
一般的には、軽量化と遮音性を両立する外側ガラス板と内側ガラス板の厚みの合計は4.0mm程度であるところ、本実施形態に係る合わせガラスにおいては、軽量化を目的としているため、外側ガラス板1と内側ガラス板2の厚みの合計は、2.4~3.8mmであることが好ましく、2.6~3.4mmであることがさらに好ましく、2.7~3.2mmであることが特に好ましい。このように、軽量化のためには、外側ガラス板1と内側ガラス板2との合計の厚みを小さくすることが必要であるので、各ガラス板のそれぞれの厚みは、特には限定されないが、例えば、以下のように、外側ガラス板1と内側ガラス板2の厚みを決定することができる。
In general, the total thickness of the outer glass plate and the inner glass plate that achieves both weight reduction and sound insulation is about 4.0 mm. However, in the laminated glass according to the present embodiment, the purpose is to reduce the weight. The total thickness of the outer glass plate 1 and the inner glass plate 2 is preferably 2.4 to 3.8 mm, more preferably 2.6 to 3.4 mm, and 2.7 to 3.2 mm. It is particularly preferred that Thus, since it is necessary to reduce the total thickness of the outer glass plate 1 and the inner glass plate 2 for weight reduction, the thickness of each glass plate is not particularly limited, For example, the thickness of the outer glass plate 1 and the inner glass plate 2 can be determined as follows.
外側ガラス板1は、主として、外部からの障害に対する耐久性、耐衝撃性が必要であり、例えば、この合わせガラスを自動車のウインドシールドとして用いる場合には、小石などの飛来物に対する耐衝撃性能が必要である。他方、厚いほど重量が増し好ましくない。この観点から、外側ガラス板1の厚みは1.8mm以上、1.9mm以上、2.0mm以上、2.1mm以上、2.2mm以上の順で好ましい。一方、外側ガラスの厚みの上限は、5.0mm以下、4.0mm以下、3.1mm以下、2.5mm以下、2.4mm以下の順で好ましい。この中で、2.1mmより大きく2.5mm以下、特に、2.2mm以上2.4mm以下が好ましい。何れの厚みを採用するかは、ガラスの用途に応じて決定することができる。
The outer glass plate 1 mainly needs durability and impact resistance against external obstacles. For example, when this laminated glass is used as a windshield of an automobile, the outer glass plate 1 has impact resistance performance against flying objects such as pebbles. is necessary. On the other hand, as the thickness increases, the weight increases. From this viewpoint, the thickness of the outer glass plate 1 is preferably 1.8 mm or more, 1.9 mm or more, 2.0 mm or more, 2.1 mm or more, or 2.2 mm or more. On the other hand, the upper limit of the thickness of the outer glass is preferably 5.0 mm or less, 4.0 mm or less, 3.1 mm or less, 2.5 mm or less, 2.4 mm or less. Among them, it is preferably larger than 2.1 mm and 2.5 mm or less, particularly preferably 2.2 mm or more and 2.4 mm or less. Which thickness is adopted can be determined according to the application of the glass.
上記のように外側ガラス板1の厚みを規定する場合、内側ガラス板2は、合わせガラスの軽量化のため、外側ガラス板1よりも厚みを小さくすることが好ましい。具体的には、ガラスの強度を考慮すると、内側ガラス板2の厚みは、0.6mm以上、0.8mm以上、1.0mm以上、1.3mm以上の順で好ましい。一方、内側ガラス板2の厚みの上限は、5.0mm以下、4.0mm以下、3.1mm以下、2.5m以下、2.0mm以下、1.6mm以下、1.4mm以下、1.3mm以下、1.1mm未満の順で好ましい。この中で、例えば、0.6mm以上1.1mm未満、または2.1mmより大きく2.5mm以下、特に、2.2mm以上2.4mm以下が好ましい。内側ガラス板2についても、何れの厚みを採用するかは、ガラスの用途に応じて決定することができる。
When the thickness of the outer glass plate 1 is defined as described above, the inner glass plate 2 is preferably made thinner than the outer glass plate 1 in order to reduce the weight of the laminated glass. Specifically, considering the strength of the glass, the thickness of the inner glass plate 2 is preferably in the order of 0.6 mm or more, 0.8 mm or more, 1.0 mm or more, and 1.3 mm or more. On the other hand, the upper limit of the thickness of the inner glass plate 2 is 5.0 mm or less, 4.0 mm or less, 3.1 mm or less, 2.5 m or less, 2.0 mm or less, 1.6 mm or less, 1.4 mm or less, 1.3 mm. Hereinafter, it is preferable in the order of less than 1.1 mm. Among these, for example, 0.6 mm or more and less than 1.1 mm, or greater than 2.1 mm and 2.5 mm or less, and particularly preferably 2.2 mm or more and 2.4 mm or less. Which thickness is used for the inner glass plate 2 can also be determined according to the purpose of the glass.
また、本実施形態に係る外側ガラス板1及び内側ガラス板2の形状は、平面形状及び湾曲形状のいずれであってもよい。しかしながら、後述するガラスの音響透過損失(STL)は湾曲形状の方が低下するため、湾曲形状ガラスは特に音響対策が必要である。湾曲形状の方が平面形状よりSTL値が低下するのは湾曲形状の方が共振による影響が大きいためと考えられる。
Further, the shape of the outer glass plate 1 and the inner glass plate 2 according to the present embodiment may be either a planar shape or a curved shape. However, since the sound transmission loss (STL) of the glass described later is lower in the curved shape, the curved glass particularly requires an acoustic measure. The reason why the STL value is lower in the curved shape than in the planar shape is that the curved shape is more influenced by resonance.
さらに、ガラスが湾曲形状である場合には、ダブリ量が大きくなると遮音性能が低下するとされている。ダブリ量とは、ガラス板の曲げを示す量であり、例えば、図2に示すように、ガラス板の上辺の中央と下辺の中央とを結ぶ直線Lを設定したとき、この直線Lとガラス板との距離のうち最も大きいものをダブリ量Dと定義する。
Furthermore, when the glass has a curved shape, the sound insulation performance decreases as the amount of double increases. The double amount is an amount indicating the bending of the glass plate. For example, when a straight line L connecting the center of the upper side and the center of the lower side is set as shown in FIG. The largest distance between the two is defined as a double amount D.
図3は、湾曲形状のガラス板と、平面形状のガラス板の、一般的な周波数と音響透過損失の関係を示すグラフである。図3によれば、湾曲形状のガラス板は、ダブリ量が30~38mmの範囲では、音響透過損失に大きな差はないが、平面形状のガラス板と比べると、4000Hz以下の周波数帯域で音響透過損失が低下していることが分かる。したがって、湾曲形状のガラス板を作製する場合、ダブリ量は小さい方がよいが、例えば、ダブリ量が30mmを超える場合には、後述するように、中間膜のコア層のヤング率を18MPa(周波数100Hz,温度20℃)以下とすることが好ましい。
FIG. 3 is a graph showing a relationship between a general frequency and sound transmission loss of a curved glass plate and a planar glass plate. According to FIG. 3, the curved glass plate has no significant difference in sound transmission loss in the range of 30 to 38 mm in the amount of doubling, but compared with the planar glass plate, it transmits sound in a frequency band of 4000 Hz or less. It can be seen that the loss is decreasing. Therefore, when producing a curved glass plate, the amount of double is better, but for example, when the amount of double exceeds 30 mm, the Young's modulus of the core layer of the intermediate film is set to 18 MPa (frequency) as will be described later. 100 Hz, temperature 20 ° C.) or less.
ここで、ガラス板が湾曲している場合の厚みの測定方法の一例について説明する。まず、測定位置については、図4に示すように、ガラス板の左右方向の中央を上下方向に延びる中央線S上の上下2箇所である。測定機器は、特には限定されないが、例えば、株式会社テクロック製のSM-112のようなシックネスゲージを用いることができる。測定時には、平らな面にガラス板の湾曲面が載るように配置し、上記シックネスゲージでガラス板の端部を挟持して測定する。なお、ガラス板が平坦な場合でも、湾曲している場合と同様に測定することができる。
Here, an example of a method for measuring the thickness when the glass plate is curved will be described. First, about a measurement position, as shown in FIG. 4, it is two places up and down on the center line S extended in the up-down direction at the center of the left-right direction of a glass plate. The measuring instrument is not particularly limited, and for example, a thickness gauge such as SM-112 manufactured by Teclock Co., Ltd. can be used. At the time of measurement, it is arranged so that the curved surface of the glass plate is placed on a flat surface, and the end of the glass plate is sandwiched by the thickness gauge and measured. Even when the glass plate is flat, it can be measured in the same manner as when the glass plate is curved.
<2.中間膜>
上記のように、外側ガラス板1と内側ガラス板2の合計厚みを小さくすると、一般的には遮音性が低下するという問題が懸念されるが、この点について、本発明者は、以下のように検討した。 <2. Interlayer>
As described above, when the total thickness of theouter glass plate 1 and the inner glass plate 2 is reduced, there is a general concern that the sound insulation performance is lowered. In this regard, the present inventor is as follows. It was examined.
上記のように、外側ガラス板1と内側ガラス板2の合計厚みを小さくすると、一般的には遮音性が低下するという問題が懸念されるが、この点について、本発明者は、以下のように検討した。 <2. Interlayer>
As described above, when the total thickness of the
まず、人間が聞き取りやすい音の周波数は、一般的に2000~5000Hzといわれている。また、一般的に、4.0mm程度の厚みの合わせガラスは、コインシデンス効果により、この2000~5000Hzの周波数領域で遮音性能が低下することも知られている。図5は、外側ガラス板と内側ガラス板の厚みがそれぞれ2.0mmの合わせガラスにおける周波数と音響透過損失(SLT)との関係をシミュレーションした結果を示すグラフである。このグラフによれば、人間が聞き取りやすい2000~5000Hzの周波数領域で音響透過損失が低下していることが分かる。
First, the frequency of sounds that are easy for humans to hear is generally said to be 2000 to 5000 Hz. In general, laminated glass having a thickness of about 4.0 mm is also known to have a reduced sound insulation performance in the frequency range of 2000 to 5000 Hz due to the coincidence effect. FIG. 5 is a graph showing the result of simulating the relationship between the frequency and sound transmission loss (SLT) in laminated glass with the outer glass plate and the inner glass plate having a thickness of 2.0 mm. According to this graph, it can be seen that the sound transmission loss is reduced in the frequency range of 2000 to 5000 Hz that is easy for humans to hear.
この点についてさらに検討すると、一般的に、ガラスは、厚みが小さくなると、以下の数1などに示されるように、コインシデンス周波数が高周波数側にシフトすることが知られている。
When this point is further examined, it is generally known that when the thickness of the glass is reduced, the coincidence frequency is shifted to the high frequency side as shown in the following equation (1).
図6は、一般的なヤング率の比較的低い中間膜を使用した合わせガラスの周波数と音響透過損失(STL)との関係を示すグラフである。同図に示すように、外側ガラス板及び内側ガラス板がともに2mmの第1合わせガラスのSTLと、外側ガラス板が2mm、内側ガラス板が1.5mmの第2合わせガラスのSTLとを比較すると、総厚の小さい第2合わせガラスのコインシデンス周波数は、第1合わせガラスよりも高周波数側にシフトしていることが分かる。さらに、総厚を小さくすることで、面密度が低下していることから、STLも低下している。
FIG. 6 is a graph showing the relationship between the frequency and sound transmission loss (STL) of a laminated glass using an interlayer film having a relatively low Young's modulus. As shown in the figure, when comparing the STL of the first laminated glass whose outer glass plate and the inner glass plate are both 2 mm and the STL of the second laminated glass whose outer glass plate is 2 mm and whose inner glass plate is 1.5 mm, It can be seen that the coincidence frequency of the second laminated glass having a small total thickness is shifted to a higher frequency side than the first laminated glass. Furthermore, since the surface density is reduced by reducing the total thickness, the STL is also reduced.
しかしながら、本発明者は、周波数100Hz,温度20℃において、ヤング率が100MPa以上の中間膜3を用いると、ガラス板の総厚を小さくしても、上述した2000~5000Hzの周波数領域において、音響透過損失が総厚の大きい合わせガラスよりも向上することを見出した。図7は、周波数100Hz,温度20℃において、ヤング率が100MPaの中間膜3を用いたときの、外側ガラス板及び内側ガラス板がともに2mmの第3合わせガラスのSTLと、外側ガラス板が2mm、内側ガラス板が1.0mmの第4合わせガラスのSTLを示すグラフである。同図によれば、第4合わせガラスのように内側ガラス板2の厚みを1.0mmまで小さくしても、総厚の大きい第3合わせガラスと比べ、コインシデンス周波数が高周波数側にシフトするものの、上記周波数領域では、音響透過損失はほとんど低下せず、むしろ向上する領域が生じ、遮音性能が向上することを見出した。
However, when the inventor uses the intermediate film 3 having a Young's modulus of 100 MPa or more at a frequency of 100 Hz and a temperature of 20 ° C., the present inventor can reduce the acoustic wave in the frequency range of 2000 to 5000 Hz described above even if the total thickness of the glass plate is reduced. It has been found that the transmission loss is improved over the laminated glass having a large total thickness. FIG. 7 shows a third laminated glass STL in which the outer glass plate and the inner glass plate are both 2 mm and the outer glass plate are 2 mm when the intermediate film 3 having a Young's modulus of 100 MPa is used at a frequency of 100 Hz and a temperature of 20 ° C. The inner glass plate is a graph showing the STL of the fourth laminated glass having a thickness of 1.0 mm. According to the figure, although the thickness of the inner glass plate 2 is reduced to 1.0 mm as in the case of the fourth laminated glass, the coincidence frequency shifts to the high frequency side as compared with the third laminated glass having a large total thickness. It has been found that in the above frequency region, sound transmission loss hardly decreases, but rather an improved region is generated, and sound insulation performance is improved.
以上のような観点から、合わせガラスの総厚及び各ガラス板1、2の厚みを上述したように規定するとともに、中間膜3は、ヤング率を基準として選択することができる。具体的には、周波数100Hz,温度20度において、100~1000MPaであることが好ましく、200~1000MPaであることがさらに好ましい。更には、400~1000MPaが好ましい。後述のように、ヤング率が小さすぎると上述した周波数領域においてコインシデンス周波数が上昇する現象がおきないためであり、他方、大きすぎると耐衝撃性能が低下するため好ましくない。測定方法としては、例えば、Metravib社製固体粘弾性測定装置DMA 50を用い、ひずみ量0.05%にて周波数分散測定を行うことができる。以下、本明細書においては、特に断りのない限り、ヤング率は上記方法での測定値とする。但し、ヤング率が200MPa以下の場合の測定は実測値を用いるが、200MPaより大きい場合には実測値に基づく算出値を用いる。この算出値とは、実測値からWLF法を用いることで算出されるマスターカーブに基づくものである。
From the above viewpoint, the total thickness of the laminated glass and the thicknesses of the glass plates 1 and 2 are specified as described above, and the intermediate film 3 can be selected based on the Young's modulus. Specifically, it is preferably 100 to 1000 MPa, more preferably 200 to 1000 MPa at a frequency of 100 Hz and a temperature of 20 degrees. Furthermore, 400 to 1000 MPa is preferable. As will be described later, if the Young's modulus is too small, the coincidence frequency does not increase in the above-described frequency region. On the other hand, if the Young's modulus is too large, the impact resistance performance decreases, which is not preferable. As a measuring method, for example, frequency dispersion measurement can be performed with a strain amount of 0.05% using a solid viscoelasticity measuring device DMA-50 manufactured by Metravib. Hereinafter, unless otherwise specified, in this specification, the Young's modulus is a value measured by the above method. However, when the Young's modulus is 200 MPa or less, an actual measurement value is used. When the Young's modulus is greater than 200 MPa, a calculated value based on the actual measurement value is used. The calculated value is based on a master curve calculated by using the WLF method from the actually measured value.
また、中間膜のtanδは、周波数100Hz,温度20℃において、0.1~3.0であることが好ましく、0.1~1.0であることがさらに好ましく、0.2~0.4であることが特に好ましい。tanδが上記範囲にあると、音を吸収しやすくなり、遮音性能が向上する。しかし、tanδが大きくなりすぎると、中間膜3が柔らかくなりすぎ、取り扱いが困難になるため、好ましくない。逆に小さくなりすぎると、中間膜3が硬くなりすぎて、耐衝撃性能が低下するため、好ましくない。
The tan δ of the intermediate film is preferably 0.1 to 3.0, more preferably 0.1 to 1.0, and more preferably 0.2 to 0.4 at a frequency of 100 Hz and a temperature of 20 ° C. It is particularly preferred that When tan δ is in the above range, sound is easily absorbed, and sound insulation performance is improved. However, if tan δ becomes too large, the intermediate film 3 becomes too soft and difficult to handle. On the other hand, if the thickness is too small, the intermediate film 3 becomes too hard, and the impact resistance performance is deteriorated.
中間膜3を構成する材料は、特には限定されないが、少なくともヤング率が上記のような範囲とすることができる材料であることが必要である。例えば、ポリビニルブチラール樹脂(PVB)によって構成することができる。ポリビニルブチラール樹脂は、各ガラス板との接着性や耐貫通性に優れるので好ましい。
The material constituting the intermediate film 3 is not particularly limited, but it is necessary that the material has at least a Young's modulus in the above range. For example, it can be composed of polyvinyl butyral resin (PVB). Polyvinyl butyral resin is preferable because it is excellent in adhesiveness and penetration resistance with each glass plate.
一般に、ポリビニルアセタール樹脂の硬度は、(a)出発物質であるポリビニルアルコールの重合度、(b)アセタール化度、(c)可塑剤の種類、(d)可塑剤の添加割合などにより制御することができる。したがって、それらの条件から選ばれる少なくとも1つを適切に調整することにより、硬質なポリビニルブチラール樹脂を作成することができる。さらに、アセタール化に用いるアルデヒドの種類、複数種類のアルデヒドによる共アセタール化か単種のアルデヒドによる純アセタール化かによっても、ポリビニルアセタール樹脂の硬度を制御することができる。一概には言えないが、炭素数の多いアルデヒドを用いて得られるポリビニルアセタール樹脂ほど、軟質となる傾向がある。なお、所定のヤング率が得られる場合は、上記樹脂等に限定されることはなく、必要に応じて他の添加剤を配合することもできる。
In general, the hardness of the polyvinyl acetal resin is controlled by (a) the degree of polymerization of the starting polyvinyl alcohol, (b) the degree of acetalization, (c) the type of plasticizer, (d) the addition ratio of the plasticizer, etc. Can do. Therefore, a hard polyvinyl butyral resin can be produced by appropriately adjusting at least one selected from these conditions. Furthermore, the hardness of the polyvinyl acetal resin can also be controlled by the type of aldehyde used for acetalization, coacetalization with a plurality of aldehydes or pure acetalization with a single aldehyde. Although it cannot generally be said, the polyvinyl acetal resin obtained by using an aldehyde having a large number of carbon atoms tends to be softer. In addition, when predetermined Young's modulus is obtained, it is not limited to the said resin etc., Other additives can also be mix | blended as needed.
また、中間膜3は、例えば、0.5~5.0mmであることが好ましく、0.6~3.0mmであることがさらに好ましい。中間膜3が小さくなりすぎると、遮音性能が低下したり、あるいは耐貫通性能が低下するおそれがあることによる。他方、大きくなりすぎるとコストアップにつながり好ましくない。なお、中間膜3は、一枚の層で形成することもできるが、同じ材料からなる層を積層することで構成することもできる。同じ材料の層を積層する場合には、層の間にフィルムを挟んでもよい。この場合、中間膜の厚みは、フィルムを除いた中間膜の層の和を言う。
Further, the intermediate film 3 is preferably, for example, 0.5 to 5.0 mm, and more preferably 0.6 to 3.0 mm. When the intermediate film 3 becomes too small, the sound insulation performance may be lowered, or the penetration resistance may be lowered. On the other hand, if it becomes too large, it leads to an increase in cost, which is not preferable. The intermediate film 3 can be formed of a single layer, but can also be configured by stacking layers made of the same material. When layers of the same material are stacked, a film may be sandwiched between the layers. In this case, the thickness of the intermediate film refers to the sum of the layers of the intermediate film excluding the film.
なお、中間膜3の厚みは全面に亘って一定である必要はなく、例えば、ヘッドアップディスプレイに用いられる合わせガラス用に楔形にすることもできる。この場合、中間膜3の厚みは、最も厚みの薄い箇所、つまり合わせガラスの最下辺部を測定する。中間膜3が楔形の場合、外側ガラス板及び内側ガラス板は、平行に配置されないが、このような配置も本発明における外側ガラス板と内側ガラス板との「対向配置」に含まれるものとする。すなわち、本発明の「対向配置」は、例えば、1m当たり3mm以下の変化率で厚みが広くなる中間膜3を使用した時の外側ガラス板1と内側ガラス板2の配置を含む。
Note that the thickness of the intermediate film 3 does not have to be constant over the entire surface, and may be a wedge shape for laminated glass used for a head-up display, for example. In this case, the thickness of the intermediate film 3 is measured at the thinnest portion, that is, the lowermost side portion of the laminated glass. When the intermediate film 3 is wedge-shaped, the outer glass plate and the inner glass plate are not arranged in parallel, but such an arrangement is also included in the “opposing arrangement” between the outer glass plate and the inner glass plate in the present invention. . That is, the “opposing arrangement” of the present invention includes an arrangement of the outer glass plate 1 and the inner glass plate 2 when the intermediate film 3 whose thickness is widened at a change rate of 3 mm or less per 1 m, for example.
<3.合わせガラスの製造方法>
本実施形態に係る合わせガラスの製造方法は、特に限定されず、従来公知の合わせガラスの製造方法を採用することができる。例えば、まず、中間膜3を外側ガラス板1及び内側ガラス板2の間に挟み、これをゴムバッグに入れ、減圧吸引しながら約70~110℃で予備接着する。予備接着の方法は、これ以外でも可能である。例えば、中間膜3を外側ガラス板1及び内側ガラス板2の間に挟み、オーブンにより45~65℃で加熱する。続いて、この合わせガラスを0.45~0.55MPaでロールにより押圧する。次に、この合わせガラスを、再度オーブンにより80~105℃で加熱した後、0.45~0.55MPaでロールにより再度押圧する。こうして、予備接着が完了する。 <3. Manufacturing method of laminated glass>
The manufacturing method of the laminated glass which concerns on this embodiment is not specifically limited, The manufacturing method of a conventionally well-known laminated glass is employable. For example, first, theintermediate film 3 is sandwiched between the outer glass plate 1 and the inner glass plate 2, placed in a rubber bag, and pre-bonded at about 70 to 110 ° C. while sucking under reduced pressure. Other pre-adhesion methods are possible. For example, the intermediate film 3 is sandwiched between the outer glass plate 1 and the inner glass plate 2 and heated at 45 to 65 ° C. in an oven. Subsequently, this laminated glass is pressed by a roll at 0.45 to 0.55 MPa. Next, the laminated glass is again heated at 80 to 105 ° C. in an oven and then pressed again with a roll at 0.45 to 0.55 MPa. Thus, preliminary adhesion is completed.
本実施形態に係る合わせガラスの製造方法は、特に限定されず、従来公知の合わせガラスの製造方法を採用することができる。例えば、まず、中間膜3を外側ガラス板1及び内側ガラス板2の間に挟み、これをゴムバッグに入れ、減圧吸引しながら約70~110℃で予備接着する。予備接着の方法は、これ以外でも可能である。例えば、中間膜3を外側ガラス板1及び内側ガラス板2の間に挟み、オーブンにより45~65℃で加熱する。続いて、この合わせガラスを0.45~0.55MPaでロールにより押圧する。次に、この合わせガラスを、再度オーブンにより80~105℃で加熱した後、0.45~0.55MPaでロールにより再度押圧する。こうして、予備接着が完了する。 <3. Manufacturing method of laminated glass>
The manufacturing method of the laminated glass which concerns on this embodiment is not specifically limited, The manufacturing method of a conventionally well-known laminated glass is employable. For example, first, the
次に、本接着を行う。予備接着がなされた合わせガラスを、オートクレーブにより、8~15気圧で、100~150℃によって、本接着を行う。具体的には、14気圧で145℃の条件で本接着を行うことができる。こうして、本実施形態に係る合わせガラスが製造される。
Next, this bonding is performed. The pre-bonded laminated glass is subjected to main bonding by an autoclave at 8 to 15 atm and 100 to 150 ° C. Specifically, the main bonding can be performed under the conditions of 14 atm and 145 ° C. Thus, the laminated glass according to the present embodiment is manufactured.
<4.合わせガラスの取付構造>
上述した合わせガラスは、例えば、自動車、建築物などの取付構造体に取付けることができる。このとき、合わせガラスは、取付部を介して取付構造物に取付けられる。取付部とは、例えば、自動車に取付けるためのウレタン枠などのフレーム、接着材、クランプなどが該当する。自動車への取付の一例を挙げると、図8(a)に示すように、まず、合わせガラス10の両端にピン50を取付けておき、取付対象となる自動車のフレーム70に接着材60を塗布する。フレームには、ピンが挿入される貫通孔80が形成されている。そして、図8(b)に示すように、合わせガラス10をフレーム70に取付ける。まず、ピン50を貫通孔80に挿入し、合わせガラス10をフレーム70に対して仮止めする。このとき、ピン50には段差が形成されているため、ピン50は貫通孔80の途中までしか挿入されず、これにより、フレーム70と合わせガラス10との間に隙間が生じる。そして、この隙間には上述した接着材60が塗布されているため、時間の経過とともに接着材60を介して合わせガラス10とフレーム70が固定される。 <4. Laminated glass mounting structure>
The laminated glass mentioned above can be attached to attachment structures, such as a car and a building, for example. At this time, the laminated glass is attached to the attachment structure via the attachment portion. The attachment portion corresponds to, for example, a frame such as a urethane frame for attachment to an automobile, an adhesive, a clamp, or the like. As an example of attachment to an automobile, as shown in FIG. 8A, first, pins 50 are attached to both ends of thelaminated glass 10, and an adhesive 60 is applied to the automobile frame 70 to be attached. . A through hole 80 into which a pin is inserted is formed in the frame. And the laminated glass 10 is attached to the flame | frame 70 as shown in FIG.8 (b). First, the pin 50 is inserted into the through hole 80 and the laminated glass 10 is temporarily fixed to the frame 70. At this time, since a step is formed in the pin 50, the pin 50 is inserted only halfway through the through-hole 80, whereby a gap is generated between the frame 70 and the laminated glass 10. And since the adhesive material 60 mentioned above is apply | coated to this clearance gap, the laminated glass 10 and the flame | frame 70 are fixed via the adhesive material 60 with progress of time.
上述した合わせガラスは、例えば、自動車、建築物などの取付構造体に取付けることができる。このとき、合わせガラスは、取付部を介して取付構造物に取付けられる。取付部とは、例えば、自動車に取付けるためのウレタン枠などのフレーム、接着材、クランプなどが該当する。自動車への取付の一例を挙げると、図8(a)に示すように、まず、合わせガラス10の両端にピン50を取付けておき、取付対象となる自動車のフレーム70に接着材60を塗布する。フレームには、ピンが挿入される貫通孔80が形成されている。そして、図8(b)に示すように、合わせガラス10をフレーム70に取付ける。まず、ピン50を貫通孔80に挿入し、合わせガラス10をフレーム70に対して仮止めする。このとき、ピン50には段差が形成されているため、ピン50は貫通孔80の途中までしか挿入されず、これにより、フレーム70と合わせガラス10との間に隙間が生じる。そして、この隙間には上述した接着材60が塗布されているため、時間の経過とともに接着材60を介して合わせガラス10とフレーム70が固定される。 <4. Laminated glass mounting structure>
The laminated glass mentioned above can be attached to attachment structures, such as a car and a building, for example. At this time, the laminated glass is attached to the attachment structure via the attachment portion. The attachment portion corresponds to, for example, a frame such as a urethane frame for attachment to an automobile, an adhesive, a clamp, or the like. As an example of attachment to an automobile, as shown in FIG. 8A, first, pins 50 are attached to both ends of the
このような合わせガラスの取付構造体への取付において、合わせガラス10の取付角度はθは、図8(c)に示すように、垂直Nから45度以下にすることが好ましい。
In the attachment of the laminated glass to the attachment structure, the attachment angle of the laminated glass 10 is preferably 45 degrees or less from the vertical N as shown in FIG.
<5.特徴>
本実施形態によれば、周波数100Hz,温度20℃において、中間膜3のヤング率を100~1000MPaとしているため、外側ガラス板1と内側ガラス板2の総厚を小さくしても、総厚が大きい合わせガラスに比べ、2000~5000Hzの周波数領域での音響透過損失を向上させることができる。これにより、合わせガラスの軽量化が可能となるとともに、懸念される遮音性能については、人間が聞き取りやすい周波数領域において低下するのが防止される。 <5. Features>
According to this embodiment, since the Young's modulus of theintermediate film 3 is 100 to 1000 MPa at a frequency of 100 Hz and a temperature of 20 ° C., the total thickness is reduced even if the total thickness of the outer glass plate 1 and the inner glass plate 2 is reduced. Compared with a large laminated glass, sound transmission loss in the frequency region of 2000 to 5000 Hz can be improved. As a result, it is possible to reduce the weight of the laminated glass, and it is possible to prevent the sound insulation performance that is a concern from being lowered in a frequency range that is easy for humans to hear.
本実施形態によれば、周波数100Hz,温度20℃において、中間膜3のヤング率を100~1000MPaとしているため、外側ガラス板1と内側ガラス板2の総厚を小さくしても、総厚が大きい合わせガラスに比べ、2000~5000Hzの周波数領域での音響透過損失を向上させることができる。これにより、合わせガラスの軽量化が可能となるとともに、懸念される遮音性能については、人間が聞き取りやすい周波数領域において低下するのが防止される。 <5. Features>
According to this embodiment, since the Young's modulus of the
以下、本発明の実施例について説明する。但し、本発明は以下の実施例に限定されない。
Hereinafter, examples of the present invention will be described. However, the present invention is not limited to the following examples.
<1.外側ガラス板の厚みの評価>
まず、外側ガラス板の厚みの評価を行った。ここでは、以下に示す7つの合わせガラスを準備した。各合わせガラスは、外側ガラス板、内側ガラス板、及びこれらに挟持される中間膜で構成されている。中間膜の厚みは0.76mm、周波数100Hz,温度20℃におけるヤング率は100MPaとした。
<1. Evaluation of thickness of outer glass plate>
First, the thickness of the outer glass plate was evaluated. Here, the following seven laminated glasses were prepared. Each laminated glass includes an outer glass plate, an inner glass plate, and an intermediate film sandwiched between them. The thickness of the interlayer film was 0.76 mm, the frequency was 100 Hz, and the Young's modulus at a temperature of 20 ° C. was 100 MPa.
まず、外側ガラス板の厚みの評価を行った。ここでは、以下に示す7つの合わせガラスを準備した。各合わせガラスは、外側ガラス板、内側ガラス板、及びこれらに挟持される中間膜で構成されている。中間膜の厚みは0.76mm、周波数100Hz,温度20℃におけるヤング率は100MPaとした。
First, the thickness of the outer glass plate was evaluated. Here, the following seven laminated glasses were prepared. Each laminated glass includes an outer glass plate, an inner glass plate, and an intermediate film sandwiched between them. The thickness of the interlayer film was 0.76 mm, the frequency was 100 Hz, and the Young's modulus at a temperature of 20 ° C. was 100 MPa.
上記各合わせガラスを垂直から60度の角度をなすように配置し、平均粒径が約10mmの花崗岩を時速64kmで各合わせガラスに衝突させた。各合わせガラスには、それぞれ30個の花崗岩を衝突させ、亀裂の発生率を算出した。結果は、図9の通りである。同図に示すように、外側ガラス板の厚さが2.1mmである合わせガラス1~5は、内側ガラス板の厚さに関わらず、亀裂の発生率が5%以下であった。一方、外側ガラス板の厚みが1.8mm以下である合わせガラス6,7は、内側ガラスの厚さにかかわらず、亀裂の発生率が8%となった。したがって、飛来物に対する耐衝撃性の観点から、外側ガラス板の厚さは、上記のように、1.8mmより大きいことが好ましい。更に好ましくは2.0mm以上である。
The above laminated glasses were arranged at an angle of 60 degrees from the vertical, and granite having an average particle size of about 10 mm was collided with each laminated glass at a speed of 64 km / h. Thirty granites collided with each laminated glass, and the occurrence rate of cracks was calculated. The result is as shown in FIG. As shown in the figure, in the laminated glasses 1 to 5 having an outer glass plate thickness of 2.1 mm, the occurrence rate of cracks was 5% or less regardless of the thickness of the inner glass plate. On the other hand, in the laminated glasses 6 and 7 having a thickness of the outer glass plate of 1.8 mm or less, the occurrence rate of cracks was 8% regardless of the thickness of the inner glass. Therefore, from the viewpoint of impact resistance against flying objects, the thickness of the outer glass plate is preferably larger than 1.8 mm as described above. More preferably, it is 2.0 mm or more.
<2.中間膜のヤング率に関する評価>
以下の通り、各ガラス板の厚みと中間膜のヤング率を変化させ、実施例及び比較例に係る合わせガラスを準備した。各ガラス板は、上述したクリアガラスで形成した。中間膜の厚みは0.76mmとした。また、中間膜の厚みは、周波数100Hz,温度20℃で測定している。この条件は、以下の説明ですべて同じである。
<2. Evaluation of Young's modulus of interlayer film>
The laminated glass which concerns on an Example and a comparative example was prepared as follows, changing the thickness of each glass plate, and the Young's modulus of an intermediate film. Each glass plate was formed of the above-described clear glass. The thickness of the interlayer film was 0.76 mm. The thickness of the interlayer film is measured at a frequency of 100 Hz and a temperature of 20 ° C. This condition is the same in the following description.
以下の通り、各ガラス板の厚みと中間膜のヤング率を変化させ、実施例及び比較例に係る合わせガラスを準備した。各ガラス板は、上述したクリアガラスで形成した。中間膜の厚みは0.76mmとした。また、中間膜の厚みは、周波数100Hz,温度20℃で測定している。この条件は、以下の説明ですべて同じである。
The laminated glass which concerns on an Example and a comparative example was prepared as follows, changing the thickness of each glass plate, and the Young's modulus of an intermediate film. Each glass plate was formed of the above-described clear glass. The thickness of the interlayer film was 0.76 mm. The thickness of the interlayer film is measured at a frequency of 100 Hz and a temperature of 20 ° C. This condition is the same in the following description.
上記実施例及び比較例について、音響透過損失をシミュレーションにより、評価した。シミュレーション条件は、以下の通りである。
The sound transmission loss was evaluated by simulation for the above examples and comparative examples. The simulation conditions are as follows.
まず、シミュレーションは、音響解析ソフト(ACTRAN、Free Field technology社製)を用いて行った。このソフトでは、有限要素法を用いて次の波動方程式を解くことにより、合わせガラスの音響透過損失(透過音圧レベル/入射音圧レベル)を算出することができる。
First, the simulation was performed using acoustic analysis software (ACTRAN, manufactured by Free Field technology). In this software, the sound transmission loss (transmitted sound pressure level / incident sound pressure level) of the laminated glass can be calculated by solving the following wave equation using the finite element method.
次に、算出条件について説明する。
(1) モデルの設定
本シミュレーションで用いた合わせガラスのモデルを図10に示す。このモデルでは、音の発生源側から外側ガラス板、中間膜、内側ガラス板、ウレタン枠の順で積層した合わせガラスを規定している。ここで、ウレタン枠をモデルに追加しているのは、ウレタン枠の有無により音響透過損失の算出結果に少なからず影響があると考えられる点、及び、合わせガラスと車両のウインドシールドの間にはウレタン枠が用いられて接着していることが一般的である点を考慮したためである。
(2) 入力条件1(寸法等)
Next, calculation conditions will be described.
(1) Model setting The laminated glass model used in this simulation is shown in FIG. In this model, a laminated glass is defined in which an outer glass plate, an intermediate film, an inner glass plate, and a urethane frame are laminated in this order from the sound source side. Here, the reason why the urethane frame is added to the model is that there is a considerable influence on the calculation result of sound transmission loss due to the presence or absence of the urethane frame, and between the laminated glass and the vehicle windshield. This is because it is generally considered that a urethane frame is used and bonded.
(2) Input condition 1 (dimensions, etc.)
(1) モデルの設定
本シミュレーションで用いた合わせガラスのモデルを図10に示す。このモデルでは、音の発生源側から外側ガラス板、中間膜、内側ガラス板、ウレタン枠の順で積層した合わせガラスを規定している。ここで、ウレタン枠をモデルに追加しているのは、ウレタン枠の有無により音響透過損失の算出結果に少なからず影響があると考えられる点、及び、合わせガラスと車両のウインドシールドの間にはウレタン枠が用いられて接着していることが一般的である点を考慮したためである。
(2) 入力条件1(寸法等)
(1) Model setting The laminated glass model used in this simulation is shown in FIG. In this model, a laminated glass is defined in which an outer glass plate, an intermediate film, an inner glass plate, and a urethane frame are laminated in this order from the sound source side. Here, the reason why the urethane frame is added to the model is that there is a considerable influence on the calculation result of sound transmission loss due to the presence or absence of the urethane frame, and between the laminated glass and the vehicle windshield. This is because it is generally considered that a urethane frame is used and bonded.
(2) Input condition 1 (dimensions, etc.)
なお、ガラス板の寸法である800×500mmは、実際の車両で用いられるサイズよりも小さい。ガラスサイズが大きくなるとSTL値は悪くなる傾向にあるが、これは、サイズが大きいほど拘束箇所が大きくなり、それにともない振幅が大きくなるからである。但し、ガラスサイズが異なっても、上述した周波数毎の相対的値の傾向は同じである。
Note that the size of the glass plate, 800 × 500 mm, is smaller than the size used in an actual vehicle. As the glass size increases, the STL value tends to deteriorate. This is because the larger the size, the larger the constrained portion and the greater the amplitude. However, even if the glass size is different, the tendency of the relative value for each frequency described above is the same.
また、ランダム拡散音波とは、所定の周波数の音波が外側ガラス板に対してあらゆる方向の入射角をもって伝番していく音波であり、音響透過損失を測定する残響室での音源を想定したものとなっている。
(3) 入力条件2(物性値)
[中間膜のヤング率及び損失係数について]
主な周波数毎に異なった値を用いた。これは、中間膜は粘弾性体のため、粘性効果によりヤング率は周波数依存性が強いためである。なお、温度依存性も大きいが、今回は温度一定(20℃)を想定した物性値を用いた。
なお、以上のシミュレーション方法は、以下の3,4項においても同じである。
Random diffused sound waves are sound waves that are transmitted with sound waves of a predetermined frequency with respect to the outer glass plate at angles of incidence in all directions, assuming a sound source in a reverberation chamber that measures sound transmission loss. It has become.
(3) Input condition 2 (property value)
[About Young's modulus and loss factor of interlayer film]
Different values were used for each main frequency. This is because the interlayer is a viscoelastic body, and the Young's modulus is strongly frequency dependent due to the viscous effect. In addition, although the temperature dependence is large, the physical property value which assumed temperature constant (20 degreeC) was used this time.
The above simulation method is the same in the following items 3 and 4.
(3) 入力条件2(物性値)
主な周波数毎に異なった値を用いた。これは、中間膜は粘弾性体のため、粘性効果によりヤング率は周波数依存性が強いためである。なお、温度依存性も大きいが、今回は温度一定(20℃)を想定した物性値を用いた。
(3) Input condition 2 (property value)
Different values were used for each main frequency. This is because the interlayer is a viscoelastic body, and the Young's modulus is strongly frequency dependent due to the viscous effect. In addition, although the temperature dependence is large, the physical property value which assumed temperature constant (20 degreeC) was used this time.
結果は、図11~図15のグラフに示すとおりである。図11~図13によれば、内側ガラス板の厚みが小さくても実施例1~3は、比較例3~5に比べ、それぞれ人間に聞き取りやすい2000~5000Hzの周波数域での遮音性能が高くなる領域が表れている。また、図14及び図15に示すように、比較例1,2のように内側ガラス板の厚みを小さくすれば、比較例6,7と比べ、音響透過損失が高くなる領域が生じるが、その領域は、5000Hz以上の領域であり、人間が聞き取りやすい周波数域からは外れていることが分かる。これは、中間膜のヤング率が100MPaよりも小さいことに起因すると考えられる。したがって、ガラス板の総厚を小さくしても、中間膜のヤング率が100MPa以上であれば、人間に聞き取りやすい2000~5000Hzの周波数域での遮音性能が高くなる領域が表れることが分かった。
The results are as shown in the graphs of FIGS. According to FIGS. 11 to 13, even if the thickness of the inner glass plate is small, Examples 1 to 3 have higher sound insulation performance in the frequency range of 2000 to 5000 Hz, which is easier for humans to hear than Comparative Examples 3 to 5, respectively. An area that appears. Further, as shown in FIGS. 14 and 15, if the thickness of the inner glass plate is reduced as in Comparative Examples 1 and 2, a region where the sound transmission loss is higher than that in Comparative Examples 6 and 7 is generated. It can be seen that the region is a region of 5000 Hz or more and is out of the frequency range that is easy for humans to hear. This is considered due to the fact that the Young's modulus of the interlayer film is smaller than 100 MPa. Therefore, it was found that even if the total thickness of the glass plate is reduced, if the Young's modulus of the interlayer film is 100 MPa or more, a region where the sound insulation performance is enhanced in the frequency range of 2000 to 5000 Hz, which is easy for humans to hear, appears.
<3.ガラス板の総厚に関する評価>
以下の通り、実施例及び比較例に係る合わせガラスを準備した。ここでは、内側ガラス板の厚みを変化させ、音響透過損失を上記シミュレーション方法により算出した。中間膜の厚みは0.76mm、ヤング率はすべて100MPaとした。
<3. Evaluation on total thickness of glass plate>
The laminated glass which concerns on an Example and a comparative example was prepared as follows. Here, the thickness of the inner glass plate was changed, and the sound transmission loss was calculated by the simulation method. The thickness of the interlayer film was 0.76 mm, and all the Young's moduli were 100 MPa.
以下の通り、実施例及び比較例に係る合わせガラスを準備した。ここでは、内側ガラス板の厚みを変化させ、音響透過損失を上記シミュレーション方法により算出した。中間膜の厚みは0.76mm、ヤング率はすべて100MPaとした。
The laminated glass which concerns on an Example and a comparative example was prepared as follows. Here, the thickness of the inner glass plate was changed, and the sound transmission loss was calculated by the simulation method. The thickness of the interlayer film was 0.76 mm, and all the Young's moduli were 100 MPa.
結果は、図16のグラフに示すとおりである。この結果によれば、実施例4~11は、比較例8の総厚が4.0mmの合わせガラスよりも、ガラス板の総厚が小さいにも関わらず、2000~5000Hzの周波数域の中で音響透過損失が高い領域が表れている。この結果は、実施例10のように、両ガラス板の厚みが同じである場合でも同様であった。したがって、ガラス板の総厚を3.8mm以下にすると、一般的な4.0mmの合わせガラスと比べ、人間に聞き取りやすい2000~5000Hzの周波数領域での遮音性能が高くなる領域が表れることが分かった。すなわち、ガラス板の総厚が小さくなっても、全体として遮音性能が低下しないことが分かった。
The results are as shown in the graph of FIG. According to this result, in Examples 4 to 11, the total thickness of the glass plate was smaller than that of the laminated glass of Comparative Example 8 having a total thickness of 4.0 mm, but in the frequency range of 2000 to 5000 Hz. A region with high sound transmission loss appears. This result was the same even when the thickness of both glass plates was the same as in Example 10. Therefore, it can be seen that when the total thickness of the glass plate is 3.8 mm or less, an area where the sound insulation performance is enhanced in a frequency range of 2000 to 5000 Hz, which is easy for humans to hear, appears compared to a general laminated glass of 4.0 mm. It was. That is, it was found that the sound insulation performance as a whole does not deteriorate even when the total thickness of the glass plate is reduced.
<4.合わせガラスの取付角度に関する評価>
続いて、音の入射角を変化させたシミュレーションにより、合わせガラスの取付角度について評価を行った。ここでは、垂直からの角度を0~75度に変化させて音響透過損失を算出した。各ガラス板は、上述したクリアガラスで形成した。また、中間膜の厚みは0.76mmとし、ヤング率は100MPaとした。また、外側ガラス板及び内側ガラス板の厚みは、それぞれ、2.0mm、1.0mmとした。
<4. Evaluation of the mounting angle of laminated glass>
Subsequently, the mounting angle of the laminated glass was evaluated by a simulation in which the incident angle of sound was changed. Here, the sound transmission loss was calculated by changing the angle from the vertical to 0 to 75 degrees. Each glass plate was formed of the above-described clear glass. The thickness of the interlayer film was 0.76 mm, and the Young's modulus was 100 MPa. Moreover, the thickness of the outer side glass plate and the inner side glass plate was 2.0 mm and 1.0 mm, respectively.
続いて、音の入射角を変化させたシミュレーションにより、合わせガラスの取付角度について評価を行った。ここでは、垂直からの角度を0~75度に変化させて音響透過損失を算出した。各ガラス板は、上述したクリアガラスで形成した。また、中間膜の厚みは0.76mmとし、ヤング率は100MPaとした。また、外側ガラス板及び内側ガラス板の厚みは、それぞれ、2.0mm、1.0mmとした。
Subsequently, the mounting angle of the laminated glass was evaluated by a simulation in which the incident angle of sound was changed. Here, the sound transmission loss was calculated by changing the angle from the vertical to 0 to 75 degrees. Each glass plate was formed of the above-described clear glass. The thickness of the interlayer film was 0.76 mm, and the Young's modulus was 100 MPa. Moreover, the thickness of the outer side glass plate and the inner side glass plate was 2.0 mm and 1.0 mm, respectively.
上記実施例及び比較例について、音響透過損失を上記シミュレーション方法により、評価した。但し、入力条件として合わせガラスの取付角度を追加してシミュレーションを行った。結果は、図17に示すとおりである。同図によれば、取付角度が60度を超えると、3000Hz付近の周波数で、音響透過損失が急激に低下していることが分かる。したがって、人間に聞き取りやすい2000~5000Hzの周波数領域での遮音性能を高くするためには、合わせガラスの垂直からの取付角度を45度以下とすることが好ましいことが分かった。また、60度以下であれば、遮音性能を高めることができ、場合によっては、75度以下とすることで、遮音性能を高めることができる。
For the above examples and comparative examples, sound transmission loss was evaluated by the above simulation method. However, a simulation was performed by adding a laminated glass mounting angle as an input condition. The results are as shown in FIG. According to the figure, it can be seen that when the mounting angle exceeds 60 degrees, the sound transmission loss sharply decreases at a frequency near 3000 Hz. Therefore, it has been found that in order to increase the sound insulation performance in the frequency range of 2000 to 5000 Hz that is easy for humans to hear, it is preferable that the mounting angle of the laminated glass from the vertical is 45 degrees or less. Moreover, if it is 60 degrees or less, sound insulation performance can be improved, and sound insulation performance can be improved by setting it as 75 degrees or less depending on the case.
Claims (7)
- 第1ガラス板と、
前記第1ガラス板と対向配置される第2ガラス板と、
前記第1ガラス板と第2ガラス板との間に挟持される中間膜と、
を備え、
前記第1ガラス板の厚みと前記第2ガラス板の厚みの和が2.4~3.8mmであり、
前記中間膜のヤング率は、周波数100Hz,温度20℃において、100~1000MPaである、合わせガラス。 A first glass plate;
A second glass plate disposed opposite to the first glass plate;
An intermediate film sandwiched between the first glass plate and the second glass plate;
With
The sum of the thickness of the first glass plate and the thickness of the second glass plate is 2.4 to 3.8 mm,
The laminated glass has a Young's modulus of 100 to 1000 MPa at a frequency of 100 Hz and a temperature of 20 ° C. - 前記第1ガラス板の厚みと前記第2ガラスの厚みの和が2.6~3.4mmである、請求項1に記載の合わせガラス。 The laminated glass according to claim 1, wherein the sum of the thickness of the first glass plate and the thickness of the second glass is 2.6 to 3.4 mm.
- 前記第1ガラス板の厚みが、前記第2ガラス板の厚みよりも大きい、請求項1または2に記載の合わせガラス。 The laminated glass according to claim 1 or 2, wherein the thickness of the first glass plate is larger than the thickness of the second glass plate.
- 前記第1ガラス板の厚みが1.8mm~5.0mmである、請求項3に記載の合わせガラス。 The laminated glass according to claim 3, wherein the thickness of the first glass plate is 1.8 mm to 5.0 mm.
- 前記第2ガラス板の厚みが0.6~5.0mmである、請求項3または4に記載の合わせガラス。 The laminated glass according to claim 3 or 4, wherein the thickness of the second glass plate is 0.6 to 5.0 mm.
- 前記中間膜の厚みが、0.5mm~5.0mmである、請求項1から5のいずれかに記載の合わせガラス。 The laminated glass according to any one of claims 1 to 5, wherein the interlayer film has a thickness of 0.5 mm to 5.0 mm.
- 請求項1から6のいずれかに記載の合わせガラスと、
前記合わせガラスを、垂直からの取付け角度が45度以下に取り付ける取付部と、を備えている、合わせガラスの取付構造体。 The laminated glass according to any one of claims 1 to 6,
An attachment structure for laminated glass, comprising: an attachment portion for attaching the laminated glass to a vertical attachment angle of 45 degrees or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014554649A JP5706054B2 (en) | 2013-02-18 | 2014-02-18 | Laminated glass and mounting structure to which the glass is mounted |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013029509 | 2013-02-18 | ||
JP2013-029509 | 2013-02-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014126252A1 true WO2014126252A1 (en) | 2014-08-21 |
Family
ID=51354250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/053699 WO2014126252A1 (en) | 2013-02-18 | 2014-02-18 | Laminated glass and attachment structure having same attached thereto |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP5706054B2 (en) |
WO (1) | WO2014126252A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3261836A1 (en) * | 2015-02-26 | 2018-01-03 | Corning Incorporated | Thin laminate structures with enhanced acoustic performance |
US10450215B2 (en) | 2017-02-20 | 2019-10-22 | Corning Incorporated | Shaped glass laminates and methods for forming the same |
EP3670466A4 (en) * | 2017-10-06 | 2020-10-21 | Central Glass Company, Limited | Laminated glass for automobile, and method for manufacturing same |
US11236003B2 (en) | 2017-10-18 | 2022-02-01 | Corning Incorporated | Methods for controlling separation between glasses during co-sagging to reduce final shape mismatch therebetween |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108290787B (en) * | 2015-12-04 | 2021-08-24 | Agc株式会社 | Laminated glass for automobile |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002514533A (en) * | 1998-05-14 | 2002-05-21 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Glass laminate for hazard-resistant window equipment |
JP2002326847A (en) * | 2001-03-01 | 2002-11-12 | Asahi Glass Co Ltd | Laminated glass |
JP2008513342A (en) * | 2004-09-20 | 2008-05-01 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Glass laminate for reducing sound transmission |
JP2012519646A (en) * | 2009-03-06 | 2012-08-30 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Lightweight glass laminate |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4339745B2 (en) * | 2003-08-22 | 2009-10-07 | 積水化学工業株式会社 | Laminated glass and interlayer film for laminated glass |
JP2007070200A (en) * | 2005-09-09 | 2007-03-22 | Asahi Glass Co Ltd | Laminated glass |
FR2936511B1 (en) * | 2008-10-01 | 2011-06-24 | Saint Gobain | METHOD FOR MANUFACTURING LAMINATED GLAZING |
JP5258542B2 (en) * | 2008-12-24 | 2013-08-07 | 積水化学工業株式会社 | Laminated glass interlayer film and laminated glass |
TWI547369B (en) * | 2011-05-27 | 2016-09-01 | 康寧公司 | Glass-plastic laminate device, processing line and methods therefor |
-
2014
- 2014-02-18 JP JP2014554649A patent/JP5706054B2/en active Active
- 2014-02-18 WO PCT/JP2014/053699 patent/WO2014126252A1/en active Application Filing
-
2015
- 2015-02-25 JP JP2015035930A patent/JP6223375B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002514533A (en) * | 1998-05-14 | 2002-05-21 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Glass laminate for hazard-resistant window equipment |
JP2002326847A (en) * | 2001-03-01 | 2002-11-12 | Asahi Glass Co Ltd | Laminated glass |
JP2008513342A (en) * | 2004-09-20 | 2008-05-01 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Glass laminate for reducing sound transmission |
JP2012519646A (en) * | 2009-03-06 | 2012-08-30 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Lightweight glass laminate |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3261836A1 (en) * | 2015-02-26 | 2018-01-03 | Corning Incorporated | Thin laminate structures with enhanced acoustic performance |
US10450215B2 (en) | 2017-02-20 | 2019-10-22 | Corning Incorporated | Shaped glass laminates and methods for forming the same |
US10773988B2 (en) | 2017-02-20 | 2020-09-15 | Corning Incorporated | Shaped glass laminates |
US10954154B2 (en) | 2017-02-20 | 2021-03-23 | Corning Incorporated | Shaped glass laminates and methods for forming the same |
US11465927B2 (en) | 2017-02-20 | 2022-10-11 | Corning Incorporated | Shaped glass laminates |
US11987516B2 (en) | 2017-02-20 | 2024-05-21 | Corning Incorporated | Shaped glass laminates |
EP3670466A4 (en) * | 2017-10-06 | 2020-10-21 | Central Glass Company, Limited | Laminated glass for automobile, and method for manufacturing same |
US11236003B2 (en) | 2017-10-18 | 2022-02-01 | Corning Incorporated | Methods for controlling separation between glasses during co-sagging to reduce final shape mismatch therebetween |
Also Published As
Publication number | Publication date |
---|---|
JP5706054B2 (en) | 2015-04-22 |
JP2015120639A (en) | 2015-07-02 |
JPWO2014126252A1 (en) | 2017-02-02 |
JP6223375B2 (en) | 2017-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6629809B2 (en) | Laminated glass mounting structure | |
WO2016024625A1 (en) | Laminated glass | |
JP6223375B2 (en) | Laminated glass and mounting structure to which the glass is mounted | |
JP4331846B2 (en) | Laminated glass interlayer film and laminated glass | |
US20190210328A1 (en) | Visco-elastic plastic spacer for vibro-acoustic damping and glazing comprising such a spacer | |
JP6392166B2 (en) | Laminated glass | |
JP6267007B2 (en) | Laminated glass | |
US11130316B2 (en) | Laminated glass | |
JP6193777B2 (en) | Laminated glass and mounting structure to which the glass is mounted | |
KR19980042703A (en) | Stacked pane assembly that provides acoustic protection for vehicles | |
JP2000272936A (en) | Interlayer for laminated glass, and laminated glass | |
JPWO2017221930A1 (en) | Laminated glass | |
JP2001106556A (en) | Intermediate film for sandwich glass and sandwich glass | |
JP6295104B2 (en) | Laminated glass and mounting structure to which the glass is mounted | |
JP6267006B2 (en) | Laminated glass | |
JP6178738B2 (en) | Laminated glass and mounting structure to which the glass is mounted | |
JP6295096B2 (en) | Laminated glass | |
JP2015168598A (en) | laminated glass | |
JP6267008B2 (en) | Laminated glass | |
JP2015168599A (en) | Glass laminate production method and glass laminate | |
JP2001206741A (en) | Intermediate film for sandwich glass, sandwich glass and method for manufacturing sandwich glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14751014 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014554649 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14751014 Country of ref document: EP Kind code of ref document: A1 |