WO2014126215A1 - Graft copolymer, thermoplastic resin composition, and moulded article of said resin composition - Google Patents

Graft copolymer, thermoplastic resin composition, and moulded article of said resin composition Download PDF

Info

Publication number
WO2014126215A1
WO2014126215A1 PCT/JP2014/053518 JP2014053518W WO2014126215A1 WO 2014126215 A1 WO2014126215 A1 WO 2014126215A1 JP 2014053518 W JP2014053518 W JP 2014053518W WO 2014126215 A1 WO2014126215 A1 WO 2014126215A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
copolymer
olefin copolymer
mass
resin composition
Prior art date
Application number
PCT/JP2014/053518
Other languages
French (fr)
Japanese (ja)
Inventor
幸作 垰
梨沙 仁位
吉昭 篠原
長谷 信隆
Original Assignee
ユーエムジー・エービーエス株式会社
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013028360A external-priority patent/JP6086747B2/en
Priority claimed from JP2013028361A external-priority patent/JP6086748B2/en
Priority claimed from JP2014018864A external-priority patent/JP6395280B2/en
Priority claimed from JP2014018865A external-priority patent/JP6393947B2/en
Priority to PL14751507T priority Critical patent/PL2957580T3/en
Priority to MX2015010432A priority patent/MX2015010432A/en
Priority to US14/765,667 priority patent/US9657169B2/en
Priority to CA2897935A priority patent/CA2897935C/en
Priority to CN201480009002.5A priority patent/CN105008420B/en
Application filed by ユーエムジー・エービーエス株式会社, 三菱レイヨン株式会社 filed Critical ユーエムジー・エービーエス株式会社
Priority to EP14751507.6A priority patent/EP2957580B8/en
Priority to ES14751507T priority patent/ES2746798T3/en
Publication of WO2014126215A1 publication Critical patent/WO2014126215A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/22Mixtures comprising a continuous polymer matrix in which are dispersed crosslinked particles of another polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Definitions

  • the present invention relates to a thermoplastic resin composition and a molded product thereof.
  • the present application was filed on February 15, 2013 in Japanese Patent Application No. 2013-028360 filed in Japan, February 15, 2013, Japanese Patent Application No. 2013-028361 filed in Japan, on February 15, 2013.
  • Japanese Patent Application No. 2013-028362 filed in Japan Japanese Patent Application No. 2013-028130 filed in Japan on February 15, 2013, Japanese Patent Application No. 2014-2014 filed in Japan on February 3, 2014
  • the priority is claimed based on Japanese Patent Application No. 2014-018865 filed in Japan on February 3, 2014, and the contents thereof are incorporated herein.
  • Vehicle exterior parts such as door mirrors, pillars, bumpers, front grills, cowls and the like have high impact resistance and good appearance, so the materials include ABS resin, ASA resin, polymethyl methacrylate, High appearance quality was obtained by coating a molded article of thermoplastic resin such as polycarbonate.
  • a coloring agent may be blended in advance with a thermoplastic resin, and the coating treatment of the molded product may be omitted.
  • coating treatment is omitted, high weather resistance is required for thermoplastic resins, so ethylene / propylene / non-conjugated diene copolymer, acrylic ester rubber, hydrogenated butadiene rubber with good weather resistance as rubber AES resin, ASA resin and the like having good weather resistance using hydrogenated rubber such as silicone rubber and the like are used.
  • the surface of the molded product is reduced by reducing the amount of rubber to harden the molded product surface (see Patent Document 1) or by adding a lubricant such as silicone oil or olefin wax. (See Patent Document 2), adding a layered clay mineral intercalated with an organic compound to a rubber-modified thermoplastic resin (see Patent Document 3), or a specific range of acrylics in ABS resin, etc.
  • Patent Document 4 A method of blending a specific amount of a methyl methacrylate-methyl acrylate copolymer containing methyl acid (see Patent Document 4) has been proposed.
  • thermoplastic resins are also required to have excellent fluidity during molding, but the techniques described in the above-mentioned patent documents are not always satisfactory.
  • Improving the impact resistance of the molded product not only expands the applications of the molded product, but also makes it extremely useful for industrial applications, such as enabling the molded product to be made thinner and larger. . Therefore, various techniques have been proposed so far for improving the impact resistance of the molded product. Among these methods, by using a resin material in which a rubber polymer and a hard resin are combined, a method for improving the impact resistance of a molded product while maintaining the characteristics derived from the hard resin has already been industrialized. .
  • Such resin materials include acrylonitrile-butadiene-styrene (ABS) resin, acrylonitrile-styrene-acrylic acid ester (ASA) resin, acrylonitrile-ethylene / propylene / non-conjugated diene copolymer-styrene (AES) resin, or Examples thereof include a thermoplastic resin composition obtained by further adding these to a hard resin.
  • ABS acrylonitrile-butadiene-styrene
  • ASA acrylonitrile-styrene-acrylic acid ester
  • AES non-conjugated diene copolymer-styrene
  • a coating product is applied to the molded product obtained from these resin materials to obtain a high appearance quality.
  • the painting process has problems such as a large environmental load, complicated processes, and a high defect rate.
  • a coloring agent may be blended in advance with the resin material, and the coating treatment of the molded product may be omitted.
  • coating treatment is omitted, high weather resistance is required for the molded product. Therefore, resin materials that can obtain molded products with good weather resistance, such as ethylene / propylene / non-conjugated diene as a rubbery polymer.
  • AES resin, ASA resin, or the like using a polymer, acrylic ester rubber, hydrogenated rubber (hydrogenated butadiene rubber or the like), silicone rubber or the like is used.
  • thermoplastic resin composition a thermoplastic resin composition that uses a resin material that can obtain a molded product with good weather resistance and that does not require a coating process is used during manufacturing of the molded product, during processing of the molded product, while the molded product is used for a long time, etc.
  • the surface of the molded product is damaged, the designability is remarkably lowered. Therefore, improvement of scratch resistance is desired depending on the application of the molded product.
  • a rubbery material comprising a graft copolymer obtained by polymerizing a vinyl monomer mixture containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of a rubber polymer, and a hard resin.
  • the surface of the molded product is hardened using a thermoplastic resin composition having a low polymer ratio (see Patent Document 1).
  • a lubricant polyolefin wax, silicone oil
  • Etc. is used to improve the slipperiness of the surface of the molded product (see Patent Document 2).
  • a thermoplastic resin composition containing a mineral is used (see Patent Document 3).
  • thermoplastic resin composition comprising a copolymer obtained by polymerizing a vinyl-based monomer mixture containing styrene and a copolymer obtained by copolymerizing methyl methacrylate and methyl acrylate in a specific ratio (See Patent Document 4).
  • thermoplastic resin composition (1) When the thermoplastic resin composition (1) is used, the hardness of the surface of the molded product is increased, so that the scratch resistance against scratches is improved, but the ratio of the rubbery polymer is decreased, so that Impact strength decreases. Therefore, there is a limit to satisfy both the impact resistance and the scratch resistance of the molded product.
  • thermoplastic resin composition (2) Although the slipperiness of the surface of the molded product is improved, the improvement of scratch resistance is insufficient. Further, since the lubricant bleeds out on the surface of the molded product, the glossiness and color developability may be impaired.
  • the compatibility between the graft copolymer and the layered clay mineral intercalated with an organic compound is often insufficient.
  • the appearance of the molded product may be poor (such as a decrease in glossiness or color developability) or impact resistance may be reduced.
  • the thermoplastic resin composition When the thermoplastic resin composition is used, the scratch resistance of the molded product against scratches is improved, but the scratch resistance of the molded product against scratches is insufficient.
  • the thermoplastic resin composition is also required to have excellent fluidity at the time of molding, but the fluidity of the thermoplastic resin composition (1) to (4) is not always satisfactory.
  • thermoplastic resin compositions capable of obtaining molded articles having improved impact resistance while retaining the properties derived from the hard resin.
  • a thermoplastic resin composition in which an AES resin is added to a hard resin and the ratio of the rubbery polymer is lowered to harden the surface of the molded product Patent Document 1.
  • a thermoplastic resin composition obtained by adding an AES resin to a methacrylic ester resin which is a hard resin Patent Document 5
  • a thermoplastic resin composition in which an AES resin is added to a maleimide copolymer that is a hard resin Patent Document 6
  • a thermoplastic resin composition obtained by adding an AES resin and an ASA resin to a methacrylic ester resin which is a hard resin Patent Document 7).
  • thermoplastic resin composition (1) When the thermoplastic resin composition (1) is used, the hardness of the surface of the molded product is increased, so that the scratch resistance against scratches is improved, but the ratio of the rubbery polymer is decreased, so that Impact strength decreases. Therefore, there is a limit to satisfy both the impact resistance and the scratch resistance of the molded product.
  • thermoplastic resin compositions of (2) and (3) it is necessary to add a large amount of AES resin in order to improve the impact resistance of the molded product.
  • the derived surface hardness (scratch resistance) and the heat resistance derived from the maleimide copolymer are significantly reduced.
  • thermoplastic resin composition (4) AES resin and ASA resin are added in order to suppress a decrease in color developability of the molded product, but the impact resistance of the molded product is higher than when only the AES resin is added. Is inferior.
  • Rubber reinforced resin materials represented by ABS resin are widely used in various fields such as OA equipment, automobiles, general merchandise, etc. as a resin material with excellent balance of impact resistance, mechanical properties and fluidity during molding. It is used.
  • ABS resin is an amorphous (non-crystalline) resin
  • the friction coefficient (dynamic friction coefficient, fluctuation width of the dynamic friction coefficient) of the molded product is larger than that of the crystalline resins such as polyethylene, polypropylene, and polyacetal. Therefore, there is a problem that a stick-slip phenomenon occurs in the switch portion of the OA device, the fitting portion of the car audio, and the like due to the vibration of the device, the vibration at the start of the vehicle and the traveling, and the like, and a squeak noise is generated.
  • thermoplastic resin composition has been proposed as a rubber-reinforced resin material capable of obtaining a molded product having a small friction coefficient (dynamic friction coefficient, fluctuation width of the dynamic friction coefficient).
  • a thermoplastic resin composition obtained by adding polyorganosiloxane as a lubricant to a rubber-reinforced styrene resin Patent Document 8
  • a thermoplastic resin composition obtained by adding a silicone resin having a specific viscosity as a lubricant to rubber-reinforced acrylonitrile-styrene resin containing ABS resin and AES resin Patent Document 9).
  • thermoplastic resin composition in which polytetrafluoroethylene, low molecular weight oxidized polyethylene, or ultrahigh molecular weight polyethylene is added as a lubricant to a rubber-reinforced styrene resin, an olefin resin, and a styrene-butadiene-styrene block copolymer ( Patent Document 10).
  • the lubricant added to the thermoplastic resin composition bleeds out to the surface of the molded product, thereby improving the lubricity of the molded product. Reduce the friction coefficient.
  • the bleed-out lubricant deteriorates the surface appearance of the molded product, and there is a problem that the lubricity decreases with time due to the gradual loss of the lubricated lubricant.
  • the first aspect of the present invention is a material for a thermoplastic resin composition that is excellent in impact resistance and scratch resistance, can provide a molded article excellent in glossiness and color developability, and has good fluidity.
  • An object of the present invention is to provide a suitable graft copolymer.
  • the second aspect of the present invention is a thermoplastic resin composition having good fluidity, excellent impact resistance and scratch resistance of the resulting molded article, and excellent gloss and color development, and impact resistance.
  • the object is to provide a molded article having excellent scratch resistance, gloss and color development.
  • the third aspect of the present invention is a thermoplastic resin composition having good flowability and excellent scratch resistance, glossiness, color development, and impact resistance of the resulting molded article, and scratch resistance, glossiness,
  • An object is to provide a molded article having excellent color developability and impact resistance.
  • the fourth aspect of the present invention is a thermoplastic resin composition having good flowability and excellent scratch resistance, color developability and impact resistance of the obtained molded article, and scratch resistance, color developability and impact resistance. It aims at providing the molded product which is excellent in.
  • the fifth aspect of the present invention is a thermoplastic resin composition having good flowability and excellent scratch resistance, color development, impact resistance and lubricity of the obtained molded article, and scratch resistance, color development,
  • the object is to provide a molded article excellent in impact resistance and lubricity.
  • the first aspect of the present invention includes the following aspects.
  • the weight average molecular weight (Mw) is 17 ⁇ 10 4 to 35 ⁇ 10 4
  • the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is In the presence of the ethylene / ⁇ -olefin copolymer (A) 1 to 3 or the crosslinked ethylene / ⁇ -olefin copolymer (C) obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A), A graft copolymer (D) obtained by polymerizing a vinyl monomer mixture (m1) containing an aromatic vinyl compound and a vinyl cyanide compound.
  • Graft content of the crosslinked ethylene / ⁇ -olefin copolymer (C) is 35 to 75% by mass based on the total mass of the crosslinked ethylene / ⁇ -olefin copolymer (C) Copolymer.
  • the ethylene unit content of the ethylene / ⁇ -olefin copolymer (A) is 45 to 65 based on the total mass of the structural units constituting the ethylene / ⁇ -olefin copolymer (A).
  • thermoplastic resin composition in the second aspect of the present invention includes the following aspects.
  • a thermoplastic resin composition comprising the graft copolymer (D) according to any one of [1] to [5] and a hard component (J).
  • the hard component (J) is a styrene copolymer (H).
  • thermoplastic resin composition according to the third aspect of the present invention includes the following aspects.
  • a thermoplastic resin composition comprising an ester resin (G).
  • thermoplastic resin composition according to the fourth aspect of the present invention includes the following aspects. [9] An aromatic vinyl compound and cyanide in the presence of the graft copolymer (D) according to any one of [1] to [5]; and a crosslinked acrylate rubber polymer (E).
  • a graft copolymer (F) obtained by polymerizing a vinyl monomer mixture (m2) containing a vinyl chloride compound; and a vinyl monomer mixture (m3) containing a methacrylate ester
  • the volume average particle diameter of (C) is 0.2 ⁇ m to 0.6 ⁇ m; the crosslinked acrylic acid ester rubber-like polymer (E) contained in the graft copolymer (F) in the thermoplastic resin composition
  • Volume average particle diameter is 0.0 ⁇ m to 0.18 ⁇ m; total of ethylene / ⁇ -olefin copolymer (A), crosslinked ethylene / ⁇ -olefin copolymer (C) and crosslinked acrylic ester rubbery polymer (E) (100 mass) %)
  • the thermoplastic resin composition according to the fifth aspect of the present invention includes the following aspects.
  • [10] In the presence of the graft copolymer (D) according to any one of [1] to [5] and a composite rubber-like polymer (L) containing polyorganosiloxane (La), A graft copolymer (M) obtained by polymerizing the monomer mixture (m5); a methacrylate ester resin (G) obtained by polymerizing a vinyl monomer mixture (m3) containing a methacrylate ester
  • the volume average particle size of the composite rubber-like polymer (L) contained in the graft copolymer (M) in the thermoplastic resin composition is 0.05 ⁇ m to 0 ⁇ m.
  • thermoplastic resin composition in which the proportion of the ⁇ -olefin copolymer (C) is 15 to 85% by mass and the proportion of the composite rubbery polymer (L) is 85 to 15% by mass.
  • the graft copolymer (M) is a unit derived from polyorganosiloxane (La) and (meth) acrylic acid ester, a unit derived from a crosslinking agent, or a unit derived from a graft crossing agent.
  • L1 composite rubber-like polymer having one or both
  • the thermoplastic resin composition according to [10] which is obtained by polymerization of
  • the molded article according to the sixth aspect of the present invention includes the following aspects. [12] A molded article formed from the thermoplastic resin composition according to any one of [6] to [11].
  • the graft copolymer according to the first aspect of the present invention has excellent impact resistance and scratch resistance, can give a molded article excellent in glossiness and color developability, and has good fluidity. It is suitable as a material for the resin composition.
  • thermoplastic resin composition according to the second aspect of the present invention has good fluidity. Moreover, according to the thermoplastic resin composition in the second aspect of the present invention, a molded product having excellent impact resistance and scratch resistance, and excellent glossiness and color developability can be obtained. The molded article using the thermoplastic resin composition according to the second aspect of the present invention is excellent in scratch resistance, gloss, color development, and impact resistance.
  • thermoplastic resin composition according to the third aspect of the present invention has good fluidity. Moreover, according to the thermoplastic resin composition in the third aspect of the present invention, a molded article excellent in scratch resistance, gloss, color development and impact resistance can be obtained. The molded article using the thermoplastic resin composition according to the third aspect of the present invention is excellent in scratch resistance, gloss, color development and impact resistance.
  • thermoplastic resin composition according to the fourth aspect of the present invention has good fluidity.
  • thermoplastic resin composition of the fourth aspect of the present invention a molded article having excellent scratch resistance, color developability and impact resistance can be obtained.
  • the molded article using the thermoplastic resin composition according to the fourth aspect of the present invention is excellent in scratch resistance, color development and impact resistance.
  • thermoplastic resin composition according to the fifth aspect of the present invention has good fluidity. Moreover, according to the thermoplastic resin composition in the fifth aspect of the present invention, a molded article having excellent scratch resistance, color development, impact resistance and lubricity can be obtained. The molded article using the thermoplastic resin composition according to the fifth aspect of the present invention is excellent in scratch resistance, color development, impact resistance and lubricity.
  • “Unit” and “structural unit” mean a monomer unit (monomer unit) constituting a polymer compound (resin, polymer, copolymer).
  • (Meth) acrylic acid means acrylic acid or methacrylic acid.
  • “Molded product” means a product formed by molding a thermoplastic resin composition.
  • Sctch resistance refers to the resistance to scratches (scratch resistance) caused by scratching the surface of a molded article with a hard, pointed object such as a nail, and work gloves, gauze, cloth, etc.
  • Lightness (L * ) means a lightness value (L * ) among color values in the L * a * b * color system adopted in JIS Z 8729.
  • the “SCE method” means a method of measuring a color by using a spectrocolorimeter in accordance with JIS Z 8722 and removing specularly reflected light with an optical trap.
  • the graft copolymer (D) in the first embodiment of the present invention is an ethylene / ⁇ -olefin copolymer (A) or a crosslinked ethylene / ⁇ -olefin obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A).
  • the vinyl monomer mixture (m1) is polymerized in the presence of the copolymer (C).
  • the ethylene / ⁇ -olefin copolymer (A) is subjected to a crosslinking treatment means not only the case where the ethylene / ⁇ -olefin copolymer (A) is crosslinked alone, but also the ethylene / ⁇ -olefin copolymer (A).
  • a crosslinking treatment a mixture of the olefin copolymer (A) and the acid-modified olefin polymer (K) described later is subjected to a crosslinking treatment, or when the ethylene / ⁇ -olefin copolymer (A) or the mixture is mixed with an aqueous olefin resin dispersion ( Including the case of crosslinking treatment after B).
  • crosslinking treatment means that polymer chains are linked within a molecule and / or between molecules.
  • the crosslinked ethylene / ⁇ -olefin copolymer (C) was obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A) alone and the acid-modified olefin polymer (K) alone. It may be a mixture with things.
  • thermoplastic resin composition (I) in the second aspect of the present invention includes the graft copolymer (D) in the first aspect of the present invention, the hard component (J) described later, and It contains.
  • the “molded product” is formed by molding the thermoplastic resin composition (I).
  • ⁇ Ethylene / ⁇ -olefin copolymer (A)> it is important to use the ethylene / ⁇ -olefin copolymer (A) so that the molded article exhibits excellent impact resistance.
  • the ethylene / ⁇ -olefin copolymer (A) is a copolymer comprising ethylene units and ⁇ -olefin units, obtained by copolymerizing ethylene and ⁇ -olefins by a known polymerization method. Does not contain non-conjugated diene units such as ethylidene-2-norbornene. For example, when an ethylene / propylene / non-conjugated diene copolymer is used instead of the ethylene / ⁇ -olefin copolymer (A), the impact resistance of the molded article is lowered.
  • ⁇ -olefin those having 3 or more carbon atoms are preferable, and specifically, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene. , 1-icosene, 1-docosene and the like.
  • ⁇ -olefins having 3 to 20 carbon atoms are preferable, and propylene is particularly preferable.
  • the ethylene / ⁇ -olefin copolymer (A) is an ethylene / propylene copolymer in which the ⁇ -olefin is propylene, the impact resistance and color developability of the molded product are particularly excellent.
  • the ethylene unit content of the ethylene / ⁇ -olefin copolymer (A) is 45 to 45% when the total of all the structural units constituting the ethylene / ⁇ -olefin copolymer (A) is 100% by mass. It is preferably 65% by mass, and more preferably 50 to 60% by mass. When the ethylene unit content is within the above range, the balance of scratch resistance and impact resistance of the molded product is excellent. Particularly when the ethylene unit content is 50 to 60% by mass, the scratch resistance and impact resistance of the molded product are further improved.
  • the “ethylene unit content” means the total mass of monomers used in the synthesis of the ethylene / ⁇ -olefin copolymer (A) (that is, constituting the ethylene / ⁇ -olefin copolymer (A)).
  • the total mass of the monomer corresponding to the structural unit to be calculated) can be calculated from the mass of the monomer corresponding to the ethylene unit.
  • the mass average molecular weight (Mw), and the mass is a cross-linked ethylene.
  • Mw / Mn specific molecular weight distribution
  • C cross-linked structure of the ⁇ -olefin copolymer
  • the mass average molecular weight (Mw) of the ethylene / ⁇ -olefin copolymer (A) is 17 ⁇ 10 4 to 35 ⁇ 10 4 , preferably 26 ⁇ 10 4 to 32 ⁇ 10 4 .
  • Mw mass average molecular weight
  • the scratch resistance and impact resistance of the molded product are inferior.
  • the mass average molecular weight (Mw) is larger than 35 ⁇ 10 4 , the fluidity of the thermoplastic resin composition (I) and the gloss of the molded product are inferior.
  • the mass average molecular weight (Mw) is in the range of 26 ⁇ 10 4 to 32 ⁇ 10 4 , the fluidity of the thermoplastic resin composition (I) and the scratch resistance, impact resistance, and gloss of the molded product Is particularly excellent.
  • the molecular weight distribution (Mw / Mn) represented by the ratio between the mass average molecular weight (Mw) and the number average molecular weight (Mn) of the ethylene / ⁇ -olefin copolymer (A) is 1 to 3, and 1.9 to 2.5 is preferred.
  • Mw / Mn molecular weight distribution
  • the molecular weight distribution (Mw / Mn) is larger than 3, the molded article has poor scratch resistance and impact resistance.
  • the molecular weight distribution (Mw / Mn) is 1.9 to 2.5, the fluidity of the thermoplastic resin composition (I), the scratch resistance and the impact resistance of the molded product are particularly excellent.
  • the mass average molecular weight (Mw) and number average molecular weight (Mn) of the ethylene / ⁇ -olefin copolymer (A) are values measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
  • the ethylene / ⁇ -olefin copolymer (A) used in the present invention is not limited in its production method, but is usually produced using a metallocene catalyst or a Ziegler-Natta catalyst. .
  • the metallocene catalyst examples include a combination of an organic compound having a cyclopentadienyl skeleton with a transition metal such as zirconium, titanium, or hafnium, a metallocene complex in which a halogen atom or the like is coordinated, and an organoaluminum compound or an organoboron compound. It is done.
  • the Ziegler-Natta catalyst include a catalyst in which a transition metal halide such as titanium, vanadium, zirconium, and hafnium is combined with an organoaluminum compound or an organoboron compound.
  • Examples of the polymerization method for polymerizing the ethylene / ⁇ -olefin copolymer (A) include a method of copolymerizing ethylene and an ⁇ -olefin in a solution in the presence of the above catalyst.
  • a hydrocarbon solvent such as benzene, toluene, xylene, pentane, hexane, heptane, octane is usually used. These hydrocarbon solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • a raw material ⁇ -olefin may be used as a solvent.
  • the ethylene / ⁇ -olefin copolymer By changing the supply conditions of ethylene and ⁇ -olefin, the type and amount of molecular weight regulators such as hydrogen, the type and amount of catalyst, the reaction temperature and pressure, etc., the ethylene / ⁇ -olefin copolymer
  • the ethylene unit content, mass average molecular weight (Mw), and molecular weight distribution (Mw / Mn) of (A) can be adjusted.
  • the ethylene / ⁇ -olefin copolymer (A) is represented by ⁇ ethylene / ⁇ -olefin copolymer (A)> in “thermoplastic resin composition (I)” described later. Copolymers similar to those mentioned can also be used.
  • the crosslinked ethylene / ⁇ -olefin copolymer (C) includes those obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A), and the ethylene / ⁇ -olefin copolymer (A) and A mixture with the acid-modified olefin polymer (K) may be cross-linked, or the ethylene / ⁇ -olefin copolymer (A) may be cross-linked alone and the acid-modified olefin polymer (K) alone. It may also be a mixture with a cross-linked product.
  • the acid-modified olefin polymer (K) is obtained by modifying an olefin polymer such as polyethylene or polypropylene having a mass average molecular weight of 1,000 to 5,000 with a compound having a functional group such as an unsaturated carboxylic acid compound.
  • a compound having a functional group such as an unsaturated carboxylic acid compound.
  • modification means that a compound having a functional group in a molecular chain or at a molecular end is bound.
  • the unsaturated carboxylic acid compound include acrylic acid, maleic acid, itaconic acid, maleic anhydride, itaconic anhydride and maleic acid monoamide.
  • crosslinked ethylene / ⁇ -olefin copolymer (C) is a product obtained by crosslinking a mixture of the ethylene / ⁇ -olefin copolymer (A) and the acid-modified olefin polymer (K)
  • a monomer mixture can be polymerized stably.
  • a vinyl monomer mixture is polymerized by an emulsion polymerization method, the emulsion stability can be increased.
  • the ratio of the acid-modified olefin polymer (K) in the ethylene / ⁇ -olefin copolymer (A) is preferably 1 to 40 parts by mass with respect to 100 parts by mass.
  • the ratio of the acid-modified olefin polymer (K) is within the above range, the balance between the scratch resistance and impact resistance of the molded product is more excellent.
  • the timing of mixing the acid-modified olefin polymer (K) is not particularly limited, and the ethylene / ⁇ -olefin copolymer (A) and the acid-modified olefin polymer (K) may be mixed and then crosslinked. Then, the ethylene / ⁇ -olefin copolymer (A) and the acid-modified olefin polymer (K) may be individually crosslinked and then mixed.
  • the mixing method of the ethylene / ⁇ -olefin copolymer (A) and the acid-modified olefin polymer (K) is not particularly limited as long as it can be uniformly dispersed. A kneading method is preferred.
  • the crosslinked ethylene / ⁇ -olefin copolymer (C) may be obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A), or the ethylene / ⁇ -olefin copolymer.
  • a mixture of (A) and the acid-modified olefin polymer (K) may be subjected to a crosslinking treatment after making the aqueous olefin resin dispersion (B).
  • the method for preparing the aqueous dispersion of the olefin resin (B) is not limited.
  • the ethylene / ⁇ -olefin copolymer (A) or the like by a known melt-kneading means such as a kneader, a Banbury mixer, a multi-screw extruder, or the like.
  • the ⁇ -olefin copolymer (A) or the mixture is dissolved in a hydrocarbon solvent such as pentane, hexane, heptane, benzene, toluene, xylene together with an emulsifier, added to an aqueous medium and emulsified, and then sufficiently stirred.
  • a method of distilling off the hydrocarbon solvent is preferred.
  • the emulsifier that can be used in the preparation of the aqueous dispersion of the olefin resin (B) may be any conventionally used emulsifier such as a long-chain alkyl carboxylate, a sulfosuccinic acid alkyl ester salt, and an alkylbenzene sulfonate. And the like.
  • the amount of emulsifier used can suppress thermal coloring of the thermoplastic resin composition (I), and the particle size of the aqueous olefin resin dispersion (B) can be easily controlled. Therefore, when potassium oleate is used as the emulsifier Is preferably 1 to 8 parts by mass with respect to 100 parts by mass of the ethylene / ⁇ -olefin copolymer (A).
  • the volume average particle diameter of the aqueous olefin resin dispersion (B) is preferably 0.2 to 0.5 ⁇ m because the physical property balance of the molded product is excellent. When the volume average particle diameter is within the above range, the impact resistance of the molded product is further improved.
  • the type or amount of the emulsifier, the type or content when the acid-modified olefin polymer (K) is used in combination shear applied during kneading. The method of adjusting force, temperature conditions, etc. is mentioned.
  • the volume average particle diameter is a value measured by a laser diffraction / light scattering method.
  • the crosslinked ethylene / ⁇ -olefin copolymer (C) can be obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A). Specifically, a method in which the ethylene / ⁇ -olefin copolymer (A) is crosslinked alone; a mixture of the ethylene / ⁇ -olefin copolymer (A) and the acid-modified olefin polymer (K) is crosslinked.
  • a known crosslinking treatment method such as a crosslinking treatment method using an organic peroxide or a crosslinking treatment using ionizing radiation can be used.
  • a crosslinking treatment using an organic peroxide is preferable, and the organic peroxide of the aqueous olefin resin dispersion (B) is preferable.
  • the crosslinking treatment using is particularly preferred.
  • the gel content can be easily adjusted by adjusting the amount of the organic peroxide added, the heating temperature, the heating time, and the like.
  • the volume average particle size of the aqueous dispersion of the crosslinked ethylene / ⁇ -olefin copolymer (C) obtained by crosslinking the aqueous dispersion of the olefin resin (B) with an organic peroxide is the olefin resin aqueous dispersion (B). There is no change with respect to the volume average particle diameter.
  • organic peroxide examples include organic peroxides such as peroxyester compounds, peroxyketal compounds, and dialkyl peroxide compounds.
  • peroxyester compounds include ⁇ , ⁇ ′-bis (neodecanoylperoxy) diisopropylbenzene, cumylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecano 1-cyclohexyl-1-methylethylperoxyneodecanoate, t-hexylperoxyneodecanoate, t-butylperoxyneodecanoate, t-hexylperoxypivalate, t-butylperoxy Pivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hex
  • peroxyketal compound examples include 1,1-bis (t-hexylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis.
  • dialkyl peroxide compounds include ⁇ , ⁇ ′-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane. , T-butylcumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3, and the like.
  • organic peroxides may be used alone or in combination of two or more.
  • dialkyl peroxide compounds such as dicumyl peroxide, t-butyl cumyl peroxide, and di-t-butyl peroxide are particularly preferable from the viewpoint of the uniformity of the crosslinked structure.
  • the standard of the amount of t-butylcumyl peroxide used is 100 parts by mass of the ethylene / ⁇ -olefin copolymer (A) or the ethylene / ⁇ -olefin copolymer (A) and the acid-modified olefin polymer (K). It is usually in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass in total.
  • a polyfunctional compound may be added in order to adjust the gel content of the crosslinked ethylene / ⁇ -olefin copolymer (C).
  • the polyfunctional compound include divinylbenzene, allyl methacrylate, ethylene glycol dimethacrylate, 1,3-butylene dimethacrylate, tetraethylene glycol diacrylate, triallyl cyanurate, triallyl isocyanurate, pentaerythritol tetraacrylate and the like. It is done.
  • These polyfunctional compounds may be used individually by 1 type, and may use 2 or more types together. Of the above polyfunctional compounds, divinylbenzene is preferred.
  • the amount of divinylbenzene used is 100 parts by mass of ethylene / ⁇ -olefin copolymer (A) or 100 parts by mass of ethylene / ⁇ -olefin copolymer (A) and acid-modified olefin polymer (K). On the other hand, it is usually in the range of 0 to 10 parts by mass.
  • the crosslinking treatment time is preferably 1 hour to 12 hours, more preferably 2 hours to 8 hours.
  • the crosslinking treatment temperature is preferably 60 ° C. to 150 ° C., more preferably 100 ° C. to 140 ° C.
  • the gel content of the crosslinked ethylene / ⁇ -olefin copolymer (C) may be within a specific range in order that the molded product exhibits excellent scratch resistance, impact resistance, and color developability. is important.
  • the gel content of the crosslinked ethylene / ⁇ -olefin copolymer (C) is determined based on the total mass of the crosslinked ethylene / ⁇ -olefin copolymer (C) from the viewpoint of the balance between scratch resistance and impact resistance of the molded product. On the other hand, it is 35 to 75% by mass, preferably 40 to 70% by mass, and more preferably 45 to 65% by mass. In particular, if the gel content of the crosslinked ethylene / ⁇ -olefin copolymer (C) is 35% by mass or more, the color developability of the molded product is improved.
  • the gel content of the crosslinked ethylene / ⁇ -olefin copolymer (C) can be measured as follows. First, 0.5 g of the cross-linked ethylene / ⁇ -olefin copolymer (C) was collected and used as a coagulated powder sample [D1]. The coagulated powder sample [D1] is immersed in 200 mL of 110 ° C. toluene for 5 hours, then filtered through a 200 mesh wire net, the residue is dried, and the mass of the dried product [D2] is measured. The gel content is calculated from (1).
  • the crosslinked ethylene / ⁇ -olefin copolymer (C) is obtained in the form of an aqueous dispersion or solvent dispersion
  • the aqueous or solvent dispersion of the crosslinked ethylene / ⁇ -olefin copolymer (C) is diluted.
  • 0.5 g of the sample coagulated with sulfuric acid, washed with water and dried is taken as a coagulated powder sample [D1].
  • the vinyl monomer mixture (m1) is an aromatic vinyl compound (hereinafter also referred to as “aromatic vinyl monomer”) and vinyl cyanide. It is a mixture containing a compound (hereinafter also referred to as “vinyl cyanide monomer”) as an essential component and another vinyl monomer copolymerizable therewith as an optional component.
  • aromatic vinyl monomer examples include styrene, ⁇ -methylstyrene, vinyltoluene, o-ethylstyrene, and o-, p-dichlorostyrene. These aromatic vinyl monomers may be used alone or in combination of two or more. Of the above aromatic vinyl monomers, styrene and ⁇ -methylstyrene are preferred.
  • vinyl cyanide monomer examples include acrylonitrile and methacrylonitrile. These vinyl cyanide monomers may be used alone or in combination of two or more. Among the above vinyl cyanide monomers, acrylonitrile is preferable.
  • Examples of other vinyl monomers include acrylic monomers and maleimide monomers.
  • acrylic monomers include alkyl acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate, and methacrylates such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate.
  • examples include acid alkyl esters. Among these, butyl acrylate or methyl methacrylate is preferably used.
  • maleimide monomers include maleimide, N-methylmaleimide, N-butylmaleimide, N-phenylmaleimide, N- (2-methylphenyl) maleimide, N- (4-hydroxyphenyl) maleimide, N-cyclohexylmaleimide N-substituted maleimide monomers such as Among these, N-phenylmaleimide and N-cyclohexylmaleimide are preferable.
  • the composition of the vinyl monomer mixture (m1) is the fluidity of the thermoplastic resin composition (I), the impact resistance of the molded product, and the thermal stability. 60% to 82% by mass of the aromatic vinyl monomer and 18% to 40% of the vinyl cyanide monomer based on the total mass of the vinyl monomer mixture (m1). % By mass, other vinyl monomers from 0 to 22% by mass (however, the total of aromatic vinyl monomers, vinyl cyanide monomers and other vinyl monomers is 100% by mass) Preferably there is.
  • the vinyl monomer mixture (m1) is represented by ⁇ vinyl monomer mixture (m1)> in the “thermoplastic resin composition (I)”. Monomer mixtures similar to those mentioned can also be used.
  • the graft copolymer (D) is present in the presence of an ethylene / ⁇ -olefin copolymer (A) or a crosslinked ethylene / ⁇ -olefin copolymer (C). It is obtained by polymerizing the vinyl monomer mixture (m1) under the following conditions.
  • the polymerization method known polymerization methods such as emulsion polymerization, solution polymerization, suspension polymerization, bulk polymerization and the like can be adopted, but emulsion polymerization is particularly preferable.
  • the graft copolymer (D) is produced by emulsion polymerization, the molded article is excellent in scratch resistance and gloss.
  • the graft copolymer (D) is an ethylene / ⁇ -olefin copolymer (A) or a crosslinked ethylene / ⁇ -olefin copolymer (C) 55.
  • Vinyl monomer mixture (m1) 25 to 45% by mass (provided that ethylene / ⁇ -olefin copolymer (A) or crosslinked ethylene / ⁇ -olefin copolymer (C))
  • the vinyl monomer mixture (m1) are preferably 100% by mass).
  • the flowability of the thermoplastic resin composition (I) is 55 to 75% by mass, the flowability of the thermoplastic resin composition (I), The balance of physical properties of slidability, impact resistance and gloss is further improved.
  • the graft ratio of the graft copolymer (D) is determined by the flowability of the thermoplastic resin composition (I), the impact resistance of the molded article, the color developability, From the viewpoint of further improving the balance of gloss, 25 to 60% by mass is preferable.
  • the graft ratio of the graft copolymer (D) can be measured as follows. 1 g of the graft copolymer (D) is added to 80 mL of acetone and heated to reflux at 65 to 70 ° C. for 3 hours. The resulting suspension acetone solution is centrifuged at 14,000 rpm for 30 minutes in a centrifuge. Then, a precipitation component (acetone insoluble component) and an acetone solution (acetone soluble component) are collected. And the precipitation component (acetone insoluble component) is dried, the mass (Y (g)) is measured, and a graft ratio is computed by following formula (2).
  • Y is the mass (g) of the acetone-insoluble component of the graft copolymer (D)
  • X is the total mass (g) of the graft copolymer (D) used to determine Y
  • the rubber fraction is the content ratio of the graft copolymer (D) in terms of solid content of the ethylene / ⁇ -olefin copolymer (A) or the crosslinked ethylene / ⁇ -olefin copolymer (C).
  • Graft ratio (mass%) ⁇ (Y ⁇ X ⁇ rubber fraction) / X ⁇ rubber fraction ⁇ ⁇ 100 (2)
  • a method for producing the graft copolymer (D) by emulsion polymerization for example, an organic peroxide is mixed into the vinyl monomer mixture (m1), and then the vinyl monomer mixture (m1) is ethylene.
  • a method of continuously adding an aqueous dispersion of an ⁇ -olefin copolymer (A) that is, an aqueous dispersion of an olefin resin (B)) or an aqueous dispersion of a crosslinked ethylene / ⁇ -olefin copolymer (C) Is mentioned.
  • the ethylene / ⁇ -olefin copolymer (A) or the aqueous dispersion of the crosslinked ethylene / ⁇ -olefin copolymer (C) the ethylene / ⁇ -olefin copolymer (A) or the crosslinked ethylene / ⁇
  • the concentration of the olefin copolymer (C) is preferably 15 to 65% by mass, more preferably 25 to 55% by mass.
  • the reaction time is preferably 2 hours to 5 hours, more preferably 2.5 hours to 4.5 hours.
  • the reaction temperature is preferably 50 ° C. to 120 ° C., more preferably 60 ° C. to 95 ° C.
  • the organic peroxide is preferably used as a redox initiator that combines an organic peroxide, a transition metal, and a reducing agent. Moreover, you may use a chain transfer agent, an emulsifier, etc. according to a condition in superposition
  • redox initiator a combination of an organic peroxide and a ferrous sulfate-chelating agent-reducing agent is preferable.
  • organic peroxide include cumene hydroperoxide, diisopropylbenzene hydroperoxide, t-butyl hydroperoxide, and the like.
  • More preferred redox initiators are those comprising cumene hydroperoxide, ferrous sulfate, sodium pyrophosphate, and dextrose.
  • chain transfer agents As chain transfer agents, mercaptans (octyl mercaptan, n-, t-dodecyl mercaptan, n-hexadecyl mercaptan, n-, t-tetradecyl mercaptan, etc.), allyl sulfonic acid, methallyl sulfonic acid and sodas thereof Examples include allyl compounds such as salts, and ⁇ -methylstyrene dimer. Among these, mercaptans are preferable. Moreover, these chain transfer agents may be used individually by 1 type, and may use 2 or more types together. The method for adding the chain transfer agent may be any of batch, split, and continuous. Moreover, the addition amount of the chain transfer agent is preferably 2.0 parts by mass or less with respect to 100 parts by mass of the vinyl monomer mixture (m1).
  • Examples of the emulsifier include anionic surfactants, nonionic surfactants, and amphoteric surfactants.
  • examples of the anionic surfactants include higher alcohol sulfates, alkylbenzene sulfonates, fatty acid sulfonates, phosphate salts, fatty acid salts, and amino acid derivative salts.
  • examples of nonionic surfactants include ordinary polyethylene glycol alkyl ester types, alkyl ether types, and alkyl phenyl ether types.
  • amphoteric surfactant examples include those having a carboxylate salt, sulfate ester salt, sulfonate salt, phosphate ester salt and the like in the anion portion and amine salts and quaternary ammonium salts in the cation portion.
  • the addition amount of the emulsifier is preferably 10 parts by mass or less with respect to 100 parts by mass of the vinyl monomer mixture (m1).
  • the graft copolymer (D) thus obtained is in a state dispersed in water.
  • a precipitant is added to the aqueous dispersion, and after heating and stirring, the precipitant is separated. And a precipitation method of washing, dehydrating, and drying.
  • the precipitating agent in the precipitation method include aqueous solutions of sulfuric acid, acetic acid, calcium chloride, magnesium sulfate and the like, and these may be used alone or in combination of two or more.
  • the graft copolymer (D) may be a copolymer similar to that described in the ⁇ graft copolymer (D)> in the “thermoplastic resin composition (I)”. Can be used.
  • the graft copolymer (D) in the first embodiment of the present invention described above is a specific vinyl monomer in the presence of a crosslinked ethylene / ⁇ -olefin copolymer (C) having a specific crosslinked structure. Since the mixture (m1) is polymerized, it is possible to obtain a molded article having excellent scratch resistance, impact resistance, glossiness, and color developability, and a thermoplastic resin composition (I ) Is suitable as a material.
  • thermoplastic resin composition (I) contains the graft copolymer (D) and the hard component (J) in the first aspect of the present invention described above.
  • a hard component (J) A styrene-type copolymer (H), a polycarbonate, methacrylic ester resin (G) (for example, polymethyl methacrylate), polybutylene terephthalate, polyethylene terephthalate, polyvinyl chloride
  • examples include methyl methacrylate / styrene copolymer, methyl methacrylate / styrene / N-phenylmaleimide copolymer, modified polyphenylene ether, and polyamide.
  • thermoplastic resin composition (I) of the second aspect contains the respective components contained in the thermoplastic resin composition (I) of the third aspect, the fourth aspect, and the fourth aspect. Also good.
  • the styrene copolymer (H) contains an aromatic vinyl monomer as an essential component, and a mixture containing a vinyl cyanide monomer and other vinyl monomers copolymerizable therewith as optional components. It is a copolymer consisting of.
  • Specific examples of the aromatic vinyl monomer, vinyl cyanide monomer and other vinyl monomers include the aromatic vinyl monomers exemplified above in the description of the vinyl monomer mixture (m1). Examples thereof include a monomer, a vinyl cyanide monomer, and other vinyl monomers.
  • a monomer mixture containing at least an aromatic vinyl compound and a vinyl cyanide compound exemplified in the vinyl monomer mixture (m4) described later can be used.
  • the composition of the styrenic copolymer (H) is not particularly limited, but is 25 to 100% by mass of an aromatic vinyl monomer, 0 to 40% by mass of a vinyl cyanide monomer, and these monomers. Copolymers obtained by polymerizing 0 to 65% by weight of other vinyl monomers copolymerizable with the polymer (however, aromatic vinyl monomers, vinyl cyanide monomers, other vinyl monomers The total of the masses is 100% by mass).
  • styrene copolymer (H) For the production of the styrene copolymer (H), a polymerization method such as emulsion polymerization or suspension polymerization is employed.
  • emulsion polymerization When the styrene copolymer (H) is produced by emulsion polymerization, each monomer, emulsifier, polymerization initiator and chain transfer agent are charged in the reactor in the presence of water, heated to polymerize, and after polymerization.
  • the styrene copolymer (H) is recovered from the aqueous dispersion containing the styrene copolymer (H) by a precipitation method.
  • emulsifiers for emulsion polymerization such as potassium rosinate and sodium alkylbenzenesulfonate can be used as the emulsifier.
  • organic and inorganic peroxide initiators can be used as the polymerization initiator, and mercaptans, ⁇ -methylstyrene dimers, terpenes, and the like can be used as the chain transfer agent.
  • the precipitation method a method similar to that used when recovering the graft copolymer (D) from the aqueous dispersion obtained after the graft polymerization can be employed.
  • each monomer, suspending agent, suspending aid, polymerization initiator and chain transfer agent are charged into the reactor and heated to polymerize.
  • the obtained slurry is dehydrated and dried to recover the styrene copolymer.
  • the suspending agent tricalcium phosphite, polyvinyl alcohol or the like can be used, and as the suspending aid, sodium alkylbenzene sulfonate or the like can be used.
  • organic peroxides can be used as the polymerization initiator, and mercaptans, ⁇ -methylstyrene dimer, terpenes, and the like can be used as the chain transfer agent.
  • Examples of the polycarbonate include those obtained by reacting one or more bisphenols with phosgene or a carbonic acid diester.
  • Examples of bisphenols include hydroquinone, 4,4-dihydroxyphenyl, bis- (4-hydroxyphenyl) -alkane, bis- (4-hydroxyphenyl) -cycloalkane, bis- (4-hydroxyphenyl) -sulfide, Examples include bis- (4-hydroxyphenyl) -ether, bis- (4-hydroxyphenyl) -ketone, bis- (4-hydroxyphenyl) -sulfone, or alkyl-substituted, aryl-substituted, and halogen-substituted products thereof. It is done.
  • 2,2-bis- (4-hydroxyphenyl) propane a so-called bisphenol A-based polycarbonate using bisphenol A as a raw material is preferable because it can be easily obtained. These may be used alone or in combination of two or more.
  • the thermoplastic resin composition (I) in the third aspect of the present invention contains a graft copolymer (D) and a methacrylic ester resin (G).
  • the thermoplastic resin composition (I) in the fourth aspect of the present invention includes a graft copolymer (D), a graft copolymer (F), and a methacrylic ester resin (G).
  • the thermoplastic resin composition in the fifth aspect of the present invention comprises (I), a graft copolymer (D), a graft copolymer (M), and a methacrylic ester resin (G).
  • thermoplastic resin composition (I) in the third aspect, the fourth aspect, and the fifth aspect of the present invention is a styrenic copolymer within the range that does not impair the effects of the present invention.
  • H other thermoplastic resins, and various additives may be included.
  • the graft copolymer (D) in the third aspect, the fourth aspect, and the fifth aspect is the following ( ⁇ ) or ( ⁇ ).
  • ( ⁇ ) include the following.
  • ( ⁇ 1) A product obtained by polymerizing the vinyl monomer mixture (m1) in a solution containing the ethylene / ⁇ -olefin copolymer (A).
  • ( ⁇ 2) A product obtained by polymerizing a vinyl monomer mixture (m1) in an aqueous olefin resin dispersion (B) containing an ethylene / ⁇ -olefin copolymer (A).
  • ( ⁇ ) include the following.
  • ( ⁇ 1) A product obtained by polymerizing the vinyl monomer mixture (m1) in a solution containing the crosslinked ethylene / ⁇ -olefin copolymer (C).
  • ( ⁇ 2) A product obtained by polymerizing the vinyl monomer mixture (m1) in an aqueous dispersion containing the crosslinked ethylene / ⁇ -olefin copolymer (C).
  • the graft copolymer (F) is the following ( ⁇ ).
  • ( ⁇ ) A product obtained by polymerizing the vinyl monomer mixture (m2) in the presence of the crosslinked acrylic ester rubber-like polymer (E).
  • the methacrylic ester resin (G) is the following ( ⁇ ).
  • ( ⁇ ) A product obtained by polymerizing the vinyl monomer mixture (m3).
  • the styrene copolymer (H) is the following ( ⁇ ).
  • ( ⁇ ) A product obtained by polymerizing a vinyl monomer mixture (m4).
  • the graft copolymer (M) is the following ( ⁇ ).
  • Each component ((A) to (H), (K), (L), (L1), (La), (Lb), (M), (m1) to (m5), etc.) will be described below.
  • ⁇ Ethylene / ⁇ -olefin copolymer (A)> it is important to use the ethylene / ⁇ -olefin copolymer (A) so that the molded article exhibits excellent impact resistance.
  • the ethylene / ⁇ -olefin copolymer (A) comprises an ethylene unit and an ⁇ -olefin unit obtained by copolymerizing ethylene and an ⁇ -olefin having 3 or more carbon atoms by a known polymerization method. It is a copolymer.
  • ⁇ -olefin examples include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-icosene, 1-docosene, etc. From the viewpoint of impact resistance, ⁇ -olefins having 3 to 20 carbon atoms are preferred, and propylene is particularly preferred.
  • the ethylene unit content of the ethylene / ⁇ -olefin copolymer (A) is 45 to 45% when the total of all the structural units constituting the ethylene / ⁇ -olefin copolymer (A) is 100% by mass. 65% by mass is preferable, and 50 to 60% by mass is more preferable.
  • the ethylene unit content is within the above range, the balance of scratch resistance and impact resistance of the molded product is further improved. In particular, when the ethylene unit content is 50 to 60% by mass, the scratch resistance and impact resistance of the molded product are further improved.
  • the “ethylene unit content” means the total mass of monomers used in the synthesis of the ethylene / ⁇ -olefin copolymer (A) (that is, constituting the ethylene / ⁇ -olefin copolymer (A)).
  • the total mass of the monomer corresponding to the structural unit to be calculated) can be calculated from the mass of the monomer corresponding to the ethylene unit.
  • the flowability of the thermoplastic resin composition (I) is improved, and the molded article exhibits excellent scratch resistance, gloss, color development, impact resistance and lubricity, so that the mass average molecular weight is improved.
  • Mw ethylene / ⁇ -olefin copolymer
  • A ethylene / ⁇ -olefin copolymer having a molecular weight distribution (Mw / Mn) represented by a ratio of mass average molecular weight (Mw) to number average molecular weight (Mn) in a specific range. It is important to use.
  • the mass average molecular weight (Mw) of the ethylene / ⁇ -olefin copolymer (A) is 17 ⁇ 10 4 to 35 ⁇ 10 4 , preferably 26 ⁇ 10 4 to 32 ⁇ 10 4 .
  • Mw mass average molecular weight
  • the scratch resistance, impact resistance, and lubricity of the molded product are inferior.
  • the mass average molecular weight (Mw) is larger than 35 ⁇ 10 4 , the fluidity of the thermoplastic resin composition (I) and the glossiness, color development, and lubricity of the molded product are inferior.
  • the mass average molecular weight (Mw) is 26 ⁇ 10 4 to 32 ⁇ 10 4 , the fluidity of the thermoplastic resin composition (I) and the scratch resistance, impact resistance, gloss, and lubricity of the molded product Is even better.
  • the molecular weight distribution (Mw / Mn) of the ethylene / ⁇ -olefin copolymer (A) is 1 to 3, and preferably 1.9 to 2.5.
  • the molecular weight distribution (Mw / Mn) is larger than 3, the molded article is inferior in scratch resistance, impact resistance, and lubricity.
  • the molecular weight distribution (Mw / Mn) is 1.9 to 2.5, the fluidity of the thermoplastic resin composition (I), the scratch resistance and the impact resistance of the molded product are further improved.
  • the mass average molecular weight (Mw) and number average molecular weight (Mn) of the ethylene / ⁇ -olefin copolymer (A) are values measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
  • the method for producing the ethylene / ⁇ -olefin copolymer (A) is not limited.
  • the ethylene / ⁇ -olefin copolymer (A) is usually produced by polymerizing ethylene and an ⁇ -olefin using a metallocene catalyst or a Ziegler-Natta catalyst.
  • a metallocene catalyst a catalyst obtained by combining an organic compound having a cyclopentadienyl skeleton with a transition metal (zirconium, titanium, hafnium, etc.), a metallocene complex coordinated with a halogen atom, etc., and an organoaluminum compound, organoboron compound, etc.
  • a transition metal zirconium, titanium, hafnium, etc.
  • a metallocene complex coordinated with a halogen atom, etc. and an organoaluminum compound, organoboron compound, etc.
  • organoaluminum compound organoboron compound, etc.
  • Examples of the polymerization method include a method of copolymerizing ethylene and ⁇ -olefin in a solvent in the presence of the catalyst.
  • the solvent include hydrocarbon solvents (benzene, toluene, xylene, pentane, hexane, heptane, octane, etc.).
  • a hydrocarbon solvent may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • a raw material ⁇ -olefin may be used as a solvent.
  • Ethylene / ⁇ -olefin copolymer (A) by changing reaction conditions such as supply amount of ethylene, ⁇ -olefin, type and amount of molecular weight regulator such as hydrogen, type and amount of catalyst, reaction temperature, pressure, etc. ) Ethylene unit content, mass average molecular weight (Mw) and molecular weight distribution (Mw / Mn) can be adjusted.
  • reaction conditions such as supply amount of ethylene, ⁇ -olefin, type and amount of molecular weight regulator such as hydrogen, type and amount of catalyst, reaction temperature, pressure, etc.
  • ⁇ Olefin resin aqueous dispersion (B)> The aqueous olefin resin dispersion (B) is obtained by dispersing the ethylene / ⁇ -olefin copolymer (A) in an aqueous medium.
  • the method for preparing the aqueous olefin resin dispersion (B) is not limited.
  • the ethylene / ⁇ -olefin copolymer (A) is melt-kneaded by a known melt-kneading means (kneader, Banbury mixer, multi-screw extruder, etc.) and dispersed by applying mechanical shearing force.
  • the ethylene / ⁇ -olefin copolymer (A) is dissolved in a hydrocarbon solvent (pentane, hexane, heptane, benzene, toluene, xylene, etc.) together with the emulsifier, and added to the aqueous medium. After adding and emulsifying, there may be mentioned a method of sufficiently stirring and distilling off the hydrocarbon solvent.
  • an emulsifier, an acid-modified olefin polymer (K), and the like may be added as other components.
  • the emulsifier examples include known ones, and examples thereof include long-chain alkyl carboxylates, sulfosuccinic acid alkyl ester salts, and alkylbenzene sulfonates.
  • the added amount of the emulsifier can suppress thermal coloring of the resulting thermoplastic resin composition (I) and can easily control the particle size of the aqueous olefin resin dispersion (B).
  • the amount of the ethylene / ⁇ -olefin copolymer (A) is preferably 1 to 8 parts by mass with respect to 100 parts by mass.
  • an olefin polymer having a mass average molecular weight of 1,000 to 5,000 was modified with a compound having a functional group (such as an unsaturated carboxylic acid compound). Things.
  • the unsaturated carboxylic acid compound include acrylic acid, maleic acid, itaconic acid, maleic anhydride, itaconic anhydride, maleic acid monoamide, and the like.
  • the addition amount of the acid-modified olefin polymer (K) is preferably 1 to 40 parts by mass with respect to 100 parts by mass of the ethylene / ⁇ -olefin copolymer (A). When the addition amount of the acid-modified olefin polymer (K) is within the above range, the balance between the scratch resistance and impact resistance of the molded product is further improved.
  • the method for adding the acid-modified olefin polymer (K) is not limited.
  • the ethylene / ⁇ -olefin copolymer (A) and the acid-modified olefin polymer (K) may be mixed and then subjected to crosslinking treatment, or the ethylene / ⁇ -olefin copolymer (A) and the acid-modified olefin polymer may be polymerized.
  • the union (K) may be mixed after the crosslinking treatment.
  • the mixing method of the ethylene / ⁇ -olefin copolymer (A) and the acid-modified olefin polymer (K) is not limited. Examples of the mixing method include a melt kneading method using a kneader, a Banbury mixer, a multi-screw extruder and the like.
  • the volume average particle diameter of the ethylene / ⁇ -olefin copolymer (A) in the aqueous olefin resin dispersion (B) is preferably 0.2 to 0.6 ⁇ m from the viewpoint of excellent physical property balance of the molded product. More preferably, it is 3 to 0.5 ⁇ m. When the volume average particle diameter is within the above range, the impact resistance, color developability and lubricity of the molded product are further improved.
  • the method for controlling the volume average particle diameter of the ethylene / ⁇ -olefin copolymer (A) in the aqueous olefin resin dispersion (B) includes the type or amount of emulsifier, the type of acid-modified olefin polymer (K).
  • the volume average particle diameter of the ethylene / ⁇ -olefin copolymer (A) or the crosslinked ethylene / ⁇ -olefin copolymer (C) dispersed in the aqueous dispersion is the same as that of the thermoplastic resin composition (I). It has been confirmed by image processing of an electron micrograph that the volume average particle diameter of the ⁇ -olefin copolymer (A) and the crosslinked ethylene / ⁇ -olefin copolymer (C) is shown.
  • the crosslinked ethylene / ⁇ -olefin copolymer (C) is obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A). It is preferable that
  • the crosslinked ethylene / ⁇ -olefin copolymer in order for the molded product to exhibit excellent scratch resistance, impact resistance, and color developability, the crosslinked ethylene / ⁇ -olefin copolymer is used.
  • the gel content of the coalesced (C) is preferably in a specific range.
  • the gel content of the crosslinked ethylene / ⁇ -olefin copolymer (C) is determined depending on the scratch resistance, impact resistance, and coloring of the molded product.
  • the crosslinked ethylene / ⁇ -olefin copolymer (C). is preferably 35 to 75% by mass, more preferably 40 to 70% by mass, and particularly preferably 45 to 65% by mass with respect to the total mass of the crosslinked ethylene / ⁇ -olefin copolymer (C). preferable.
  • the crosslinking treatment of the ethylene / ⁇ -olefin copolymer (A) is performed by a known method.
  • a crosslinking treatment method (a) a method of carrying out a crosslinking treatment by adding an organic peroxide and, if necessary, a polyfunctional compound to the ethylene / ⁇ -olefin copolymer (A); ) A method of performing a crosslinking treatment with ionizing radiation, and the like, and the method (a) is preferable from the viewpoint of impact resistance and color developability of the molded product.
  • the method (a) includes an ethylene / ⁇ -olefin copolymer (A) or an aqueous olefin resin dispersion (B), an organic peroxide, and, if necessary, a polyfunctional compound.
  • the method of adding and heating is mentioned.
  • the gel content of the crosslinked ethylene / ⁇ -olefin copolymer (C) can be adjusted by adjusting the addition amount of organic peroxide and polyfunctional compound, heating temperature, heating time, and the like.
  • the heating temperature varies depending on the type of organic peroxide.
  • the heating temperature is preferably ⁇ 5 ° C. to + 30 ° C., which is the 10-hour half-life temperature of the organic peroxide.
  • the heating time is preferably 3 to 15 hours.
  • the organic peroxide is for forming a crosslinked structure in the ethylene / ⁇ -olefin copolymer (A).
  • examples of the organic peroxide include a peroxy ester compound, a peroxy ketal compound, a dialkyl peroxide compound, and the like.
  • An organic peroxide may be used individually by 1 type, and may be used in combination of 2 or more type.
  • peroxyester compound examples include ⁇ , ⁇ ′-bis (neodecanoylperoxy) diisopropylbenzene, cumylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1 -Cyclohexyl-1-methylethylperoxyneodecanoate, t-hexylperoxyneodecanoate, t-butylperoxyneodecanoate, t-hexylperoxypivalate, t-butylperoxypivalate, 1,1, 3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethyl Hexanoate, t-hexylperoxy
  • peroxyketal compound examples include 1,1-bis (t-hexylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis (t- Butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) cyclododecane, 2,2-bis (t-butylperoxy) Examples include butane, n-butyl 4,4-bis (t-butylperoxy) valerate, 2,2-bis (4,4-di-t-butylperoxycyclohexyl) propane, and the like.
  • dialkyl peroxide compound examples include ⁇ , ⁇ ′-bis (t-butyl peroxide) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, and t-butyl.
  • examples include cumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3.
  • Organic peroxides include dialkyls such as dicumyl peroxide, t-butylcumyl peroxide, and di-t-butyl peroxide because the gel content of the crosslinked ethylene / ⁇ -olefin copolymer (C) can be easily adjusted. Peroxide compounds are particularly preferred.
  • the amount of the organic peroxide added is that the gel content of the cross-linked ethylene / ⁇ -olefin copolymer (C) can be easily adjusted to a range of 35 to 75% by mass, so that the ethylene / ⁇ -olefin copolymer (A ) 0.1 to 5 parts by mass is preferable with respect to 100 parts by mass.
  • the polyfunctional compound is used in combination with an organic peroxide as necessary in order to adjust the gel content of the crosslinked ethylene / ⁇ -olefin copolymer (C).
  • examples of the polyfunctional compound include divinylbenzene, allyl methacrylate, ethylene glycol dimethacrylate, 1,3-butylene dimethacrylate, tetraethylene glycol diacrylate, triallyl cyanurate, triallyl isocyanurate, pentaerythritol tetraacrylate, and the like. From the viewpoint of easily adjusting the gel content, divinylbenzene is preferred.
  • a polyfunctional compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the addition amount of the polyfunctional compound is such that the gel content of the crosslinked ethylene / ⁇ -olefin copolymer (C) can be easily adjusted to 35 to 75% by mass, so that the ethylene / ⁇ -olefin copolymer (A) 100 is added. 10 parts by mass or less is preferable with respect to parts by mass.
  • the volume average particle diameter of the crosslinked ethylene / ⁇ -olefin copolymer (C) in the aqueous dispersion is 0.2 to 0.6 ⁇ m, and 0.3 to 0.5 ⁇ m in view of excellent physical properties of the molded product. Is preferred. When the volume average particle diameter is in the above range, the molded article is excellent in impact resistance, color developability and lubricity.
  • volume average of crosslinked ethylene / ⁇ -olefin copolymer (C) in aqueous dispersion of crosslinked ethylene / ⁇ -olefin copolymer (C) obtained by crosslinking olefin resin aqueous dispersion (B) with organic peroxide The particle diameter does not change with respect to the volume average particle diameter of the ethylene / ⁇ -olefin copolymer (A) in the aqueous olefin resin dispersion (B).
  • the vinyl monomer mixture (m1) is a monomer mixture containing at least an aromatic vinyl compound and a vinyl cyanide compound.
  • aromatic vinyl compound examples include styrene, ⁇ -methyl styrene, o-, m- or p-methyl styrene, vinyl xylene, pt-butyl styrene, ethyl styrene, and the like. Styrene and ⁇ -methylstyrene are preferred from the viewpoint of the fluidity of I), the color developability of the molded product, and the impact resistance.
  • An aromatic vinyl compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the aromatic vinyl compound is preferably 65 to 82% by mass, more preferably 73 to 80% by mass, and further preferably 75 to 80% by mass in 100% by mass of the vinyl monomer mixture (m1).
  • the content of the aromatic vinyl compound is within the above range, the color developability and impact resistance of the molded product are further improved.
  • the vinyl cyanide compound examples include acrylonitrile and methacrylonitrile.
  • a vinyl cyanide compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the vinyl cyanide compound is preferably 18 to 35% by mass in 100% by mass of the vinyl monomer mixture (m1), It is more preferably 20 to 27% by mass, and further preferably 20 to 25% by mass. When the content of the vinyl cyanide compound is within the above range, the color developability and impact resistance of the molded product are further improved.
  • the vinyl monomer mixture (m1) may contain, in addition to the aromatic vinyl compound and the vinyl cyanide compound, other monomers copolymerizable therewith within a range not impairing the effects of the present invention.
  • Other monomers include acrylic acid esters (methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, etc.), methacrylic acid esters (methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, etc.) ), Maleimide compounds (N-cyclohexylmaleimide, N-phenylmaleimide, etc.) and the like.
  • Another monomer may be used individually by 1 type and may be used in combination of 2 or more type.
  • the graft copolymer (D) is an ethylene / ⁇ -olefin copolymer (A) or a crosslinked ethylene / ⁇ -olefin copolymer. It can be obtained by polymerizing the vinyl monomer mixture (m1) in the presence of (C).
  • the graft copolymer (D) can sufficiently secure a molecular chain (graft component) contributing to elastic deformation, the ethylene / ⁇ -olefin copolymer contained in the graft copolymer (D) under shear stress (A) Deformation of the particles or crosslinked ethylene / ⁇ -olefin copolymer (C) particles is suppressed. Therefore, by blending the graft copolymer (D), the molded product can exhibit excellent impact resistance and scratch resistance.
  • graft component graft component
  • A Deformation of the particles or crosslinked ethylene / ⁇ -olefin copolymer (C) particles is suppressed. Therefore, by blending the graft copolymer (D), the molded product can exhibit excellent impact resistance and scratch resistance.
  • the graft copolymer (D) is an ethylene / ⁇ -olefin copolymer (A) or a crosslinked ethylene / ⁇ -olefin copolymer.
  • C In the presence of 50 to 80% by mass, vinyl monomer mixture (m1) 20 to 50% by mass (provided that ethylene / ⁇ -olefin copolymer (A) or crosslinked ethylene / ⁇ -olefin copolymer) What was obtained by superposing
  • the ethylene / ⁇ -olefin copolymer (A) or the crosslinked ethylene / ⁇ -olefin copolymer (C) is 50 to 80% by mass, the fluidity of the thermoplastic resin composition (I), The balance of physical properties of impact resistance, gloss and color development is further improved. Further, in the presence of 55 to 75% by mass of the ethylene / ⁇ -olefin copolymer (A) or crosslinked ethylene / ⁇ -olefin copolymer (C), the vinyl monomer mixture (m1) is 25 to 45% by mass.
  • the total of the ethylene / ⁇ -olefin copolymer (A) or the crosslinked ethylene / ⁇ -olefin copolymer (C) and the vinyl monomer mixture (m1) is 100% by mass. More preferred.
  • the graft ratio of the graft copolymer (D) is determined by the flowability of the thermoplastic resin composition (I) and the impact resistance of the molded product. From the viewpoint of the balance between color development and gloss, it is preferably 20 to 100% by mass.
  • polymerization method examples include known polymerization methods (emulsion polymerization method, solution polymerization method, suspension polymerization method, bulk polymerization method, etc.), and emulsion polymerization method from the point that the scratch resistance and gloss of the molded product are further improved. Is particularly preferred.
  • a method for producing the graft copolymer (D) by the emulsion polymerization method for example, an organic peroxide is mixed into the vinyl monomer mixture (m1), and then the vinyl monomer mixture (m1) is converted into an olefin.
  • examples thereof include a method of continuously adding the aqueous resin dispersion (B) or the aqueous dispersion of the crosslinked ethylene / ⁇ -olefin copolymer (C).
  • ethylene / ⁇ -olefin copolymer (A) or crosslinked ethylene / ⁇ -olefin copolymer (C ) Is preferably 15 to 65% by mass, more preferably 25 to 55% by mass.
  • the reaction time is preferably 2 hours to 5 hours, more preferably 2.5 hours to 4.5 hours.
  • the reaction temperature is preferably 50 ° C to 100 ° C, more preferably 60 ° C to 90 ° C.
  • the organic peroxide is preferably used as a redox initiator that combines an organic peroxide, a transition metal, and a reducing agent.
  • a chain transfer agent, an emulsifier or the like may be used depending on the situation.
  • Redox initiator does not require high polymerization reaction conditions, avoids deterioration of ethylene / ⁇ -olefin copolymer (A) or crosslinked ethylene / ⁇ -olefin copolymer (C), etc.
  • a combination of an organic peroxide and a ferrous sulfate-chelating agent-reducing agent is preferable from the viewpoint of avoiding a decrease in impact resistance of the product.
  • the organic peroxide include cumene hydroperoxide, diisopropylbenzene hydroperoxide, t-butyl hydroperoxide and the like.
  • the redox initiator is more preferably composed of cumene hydroperoxide, ferrous sulfate, sodium pyrophosphate, and dextrose.
  • Chain transfer agents include mercaptans (octyl mercaptan, n- or t-dodecyl mercaptan, n-hexadecyl mercaptan, n- or t-tetradecyl mercaptan, etc.), allyl compounds (allyl sulfonic acid, methallyl sulfonic acid, these Sodium salts, etc.), ⁇ -methylstyrene dimers, etc., and mercaptans are preferred from the viewpoint of easy adjustment of the molecular weight.
  • a chain transfer agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the method for adding the chain transfer agent may be any of batch, split, and continuous.
  • the addition amount of the chain transfer agent is preferably 2.0 parts by mass or less with respect to 100 parts by mass of the vinyl monomer mixture (m1).
  • Examples of the emulsifier include anionic surfactants, nonionic surfactants, and amphoteric surfactants.
  • examples of the anionic surfactants include higher alcohol sulfates, alkylbenzene sulfonates, fatty acid sulfonates, phosphate salts, fatty acid salts, and amino acid derivative salts.
  • examples of nonionic surfactants include ordinary polyethylene glycol alkyl ester types, alkyl ether types, and alkyl phenyl ether types.
  • amphoteric surfactant examples include those having a carboxylate salt, sulfate ester salt, sulfonate salt, phosphate ester salt and the like in the anion portion and amine salts and quaternary ammonium salts in the cation portion.
  • the addition amount of the emulsifier is preferably 10 parts by mass or less with respect to 100 parts by mass of the vinyl monomer mixture (m1).
  • the graft copolymer (D) obtained by the emulsion polymerization method is in a state of being dispersed in water.
  • a precipitation agent is added to the aqueous dispersion, heated and stirred, and then the precipitation agent is separated. And a precipitation method in which the precipitated graft copolymer (D) is washed with water, dehydrated and dried.
  • the precipitating agent include aqueous solutions of sulfuric acid, acetic acid, calcium chloride, magnesium sulfate, and the like.
  • a precipitation agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • An antioxidant may be added to the aqueous dispersion containing the graft copolymer (D) as necessary.
  • the cross-linked acrylic ester rubbery polymer (E) is a copolymer having a unit derived from a (meth) acrylic ester, a unit derived from a cross-linking agent, a unit derived from a graft crossing agent, or both. It is a coalescence.
  • the aqueous dispersion of the crosslinked acrylic ester rubber-like polymer (E) may contain an aqueous dispersion of other rubber components such as polybutadiene.
  • (meth) acrylic acid esters examples include (meth) acrylic acid alkyl esters having an alkyl group having 1 to 12 carbon atoms, and acrylic acid esters having an aromatic hydrocarbon group (phenyl group, benzyl group, etc.). From the viewpoint of impact resistance of the molded product, n-butyl acrylate, 2-ethylhexyl acrylate, and ethyl acrylate are preferred.
  • One (meth) acrylic acid ester may be used alone, or two or more may be used in combination.
  • Crosslinking agents and graft crossing agents improve the color developability of the molded article.
  • the crosslinking agent include dimethacrylate compounds, and specific examples include ethylene glycol dimethacrylate, propylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate, and the like.
  • the graft crossing agent include allyl compounds, specifically, allyl methacrylate, triallyl cyanurate, triallyl isocyanurate, and the like.
  • the total of the units derived from the cross-linking agent and the graft cross-linking agent is excellent in the color development of the molded product, and less coagulum (coagulum) during the production of the graft copolymer (F).
  • coagulum coagulum
  • the units (100% by mass) constituting the acid ester rubbery polymer (E) 0.1 to 5% by mass is preferable, 0.2 to 3% by mass is more preferable, and 0.5 to 2%. More preferred is mass%.
  • the sum of the units derived from the crosslinking agent and the unit derived from the graft crossing agent means the total mass of monomers used in the synthesis of the crosslinked acrylic acid ester rubbery polymer (E) (that is, The total mass of monomers corresponding to the structural units constituting the crosslinked acrylic ester rubber-like polymer (E)) can be calculated from the mass of the crosslinking agent and the graft crossing agent.
  • the method for producing the crosslinked acrylic ester rubber-like polymer (E) is not particularly limited.
  • Examples of the method for producing the crosslinked acrylic ester rubbery polymer (E) include emulsion polymerization of a monomer mixture containing (meth) acrylic ester and either or both of a crosslinking agent and a graft crossing agent. To obtain an aqueous dispersion of the crosslinked acrylic ester rubbery polymer (E); an aqueous dispersion of the crosslinked acrylic ester rubbery polymer (E) and an aqueous dispersion of another rubber component.
  • a method of heteroaggregation or co-hypertrophy a monomer mixture constituting the other in the presence of either an aqueous dispersion of a crosslinked acrylic ester-based rubbery polymer (E) or an aqueous dispersion of another rubber component;
  • Examples include a method of polymerizing and compositing.
  • emulsifier used in the emulsion polymerization include sodium or potassium salts of fatty acids (oleic acid, stearic acid, myristic acid, stearic acid, palmitic acid, etc.), sodium lauryl sulfate, sodium N-lauroyl sarcosinate, alkenyl succinic acid Examples include dipotassium, sodium alkyldiphenyl ether disulfonate, and the like, and acid-type emulsifiers or salts thereof having two or more functional groups in one molecule from the viewpoint of further suppressing gas generation during molding of the thermoplastic resin composition (I) Is preferred.
  • fatty acids oleic acid, stearic acid, myristic acid, stearic acid, palmitic acid, etc.
  • sodium lauryl sulfate sodium N-lauroyl sarcosinate
  • alkenyl succinic acid Examples include dipotassium, sodium alkyldiphenyl ether disulfonate
  • dipotassium alkenyl succinate and sodium alkyldiphenyl ether disulfonate are preferable, and sulfuric acid is added to the crosslinked acrylic ester rubber polymer from an aqueous dispersion.
  • dipotassium alkenyl succinate is more preferable.
  • dipotassium alkenyl succinate include dipotassium octadecenyl succinate, dipotassium heptadecenyl succinate, and dipotassium hexadecenyl succinate.
  • An emulsifier may be used individually by 1 type and may be used in combination of 2 or more type.
  • the vinyl monomer mixture (m2) is a monomer mixture containing at least an aromatic vinyl compound and a vinyl cyanide compound.
  • aromatic vinyl compound examples include styrene, ⁇ -methyl styrene, o-, m- or p-methyl styrene, vinyl xylene, pt-butyl styrene, ethyl styrene, and the like. Styrene and ⁇ -methylstyrene are preferred from the viewpoint of the fluidity of I), the color developability of the molded product, and the impact resistance.
  • An aromatic vinyl compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the aromatic vinyl compound is preferably 65 to 82% by mass, more preferably 73 to 80% by mass, and further preferably 75 to 80% by mass in 100% by mass of the vinyl monomer mixture (m2).
  • the content of the aromatic vinyl compound is within the above range, the color developability and impact resistance of the molded product are further improved.
  • Examples of the vinyl cyanide compound include acrylonitrile and methacrylonitrile.
  • a vinyl cyanide compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the vinyl cyanide compound is preferably 18 to 35% by mass, more preferably 20 to 27% by mass, and further preferably 20 to 25% by mass in 100% by mass of the vinyl monomer mixture (m2). When the content of the vinyl cyanide compound is within the above range, the color developability and impact resistance of the molded product are further improved.
  • the vinyl monomer mixture (m2) may contain, in addition to the aromatic vinyl compound and the vinyl cyanide compound, other monomers copolymerizable therewith within a range not impairing the effects of the present invention.
  • Other monomers include, for example, methacrylic acid esters (methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-methacrylic acid t- Butyl, amyl methacrylate, isoamyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, decyl methacrylate, lauryl methacrylate, cyclohexyl methacrylate, pentyl methacrylate, phenyl methacrylate, etc.), maleimide compounds (N-methyl) Maleimide, N-e
  • the graft copolymer (F) can be obtained by polymerizing the vinyl monomer (m2) in the presence of the cross-linked acrylic ester rubber-like polymer (E).
  • the graft copolymer (F) is a vinyl monomer mixture (m2) 20 to 80% by mass (provided that the crosslinked acrylic polymer (E) is 20 to 80% by mass in the presence of the crosslinked acrylic ester rubbery polymer (E)).
  • the polymer obtained by polymerizing the acid ester rubber polymer (E) and the vinyl monomer mixture (m2) is preferably 100% by mass), and is preferably a crosslinked acrylate rubber polymer (E And more preferably obtained by polymerizing 25 to 75% by mass of the vinyl monomer mixture (m2) in the presence of 25 to 75% by mass, and the crosslinked acrylic ester rubbery polymer (E) 30.
  • the graft copolymer (F) is produced, for example, by emulsion polymerization. That is, adding a vinyl monomer mixture (m2) to an aqueous dispersion of a crosslinked acrylic ester rubber-like polymer (E) and radically polymerizing the vinyl monomer mixture (m2) in the presence of an emulsifier. Manufactured by. At this time, various known chain transfer agents may be added in order to control the graft ratio and the molecular weight of the graft component.
  • radical polymerization initiators examples include peroxides, azo-based initiators, redox-based initiators in which an oxidizing agent and a reducing agent are combined, and redox-based initiators from the point that the graft polymerization reaction can be easily controlled.
  • a sulfoxylate-based initiator in which ferrous sulfate-ethylenediaminetetraacetic acid disodium salt-longalite-hydroperoxide is combined is particularly preferable.
  • the emulsifier used in the case of manufacture of a crosslinked acrylate-type rubber-like polymer (E) is mentioned.
  • the emulsifier contained in the aqueous dispersion of the crosslinked acrylic acid ester rubber polymer (E) is used as it is, and it is not necessary to add an emulsifier at the time of graft polymerization. May be added.
  • the aqueous dispersion is poured into hot water in which a coagulant is dissolved, and coagulated in a slurry state.
  • the coagulant examples include inorganic acids (sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, etc.), metal salts (calcium chloride, calcium acetate, aluminum sulfate, etc.) and the like.
  • the coagulant is selected according to the emulsifier used in the polymerization. That is, when only a sodium or potassium salt of a carboxylic acid such as a sodium or potassium salt of a fatty acid or a sodium or potassium salt of rosin acid is used as an emulsifier, any coagulant may be used.
  • an emulsifier exhibiting a stable emulsifying power even in an acidic region such as sodium dodecylbenzenesulfonate is included as an emulsifier, it is necessary to use a metal salt.
  • the slurry is examples include a method of dehydrating with a centrifugal dehydrator or a press dehydrator and further drying with an air flow dryer or the like, and (ii) a method of simultaneously performing dehydration and drying with a press dehydrator or an extruder.
  • the graft copolymer (F) is obtained in the form of powder or particles.
  • the polyorganosiloxane (La) is preferably a polyorganosiloxane (La) having a vinyl polymerizable functional group from the viewpoint of impact resistance of the molded product, and is based on the total of the structural units constituting the polyorganosiloxane (La).
  • a silicon atom having 0.3 to 3 mol% of units derived from siloxane having a vinyl polymerizable functional group and 97 to 99.7 mol% of units derived from dimethylsiloxane has 3 or more siloxane bonds.
  • Polyorganosiloxane (La) that is 1 mol% or less with respect to all silicon atoms in polydimethylsiloxane (La) is more preferable.
  • dimethylsiloxane examples include dimethylsiloxane-based cyclic bodies having 3 or more members, and those having 3 to 7 members are preferable. Specific examples include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane. Dimethylsiloxane may be used alone or in combination of two or more.
  • the siloxane having a vinyl polymerizable functional group only needs to have a vinyl polymerizable functional group and can be bonded to dimethylsiloxane via a siloxane bond.
  • an alkoxysilane compound having a vinyl polymerizable functional group is preferable from the viewpoint of reactivity with dimethylsiloxane.
  • methacryloyloxysiloxane ( ⁇ -methacryloyloxyethyldimethoxymethylsilane, ⁇ -methacryloyloxypropyldimethoxymethylsilane, ⁇ -methacryloyloxypropylmethoxydimethylsilane, ⁇ -methacryloyloxypropyltrimethoxysilane, ⁇ -methacryloyloxypropyl) Ethoxydiethylsilane, ⁇ -methacryloyloxypropyldiethoxymethylsilane, ⁇ -methacryloyloxybutyldiethoxymethylsilane, etc.), vinyl siloxane (tetramethyltetravinylcyclotetrasiloxane etc.), p-vinylphenyldimethoxymethylsilane, mercaptosiloxane ( ⁇ -mercaptopropyldimethoxymethylsilane, ⁇ -mercaptopropyld
  • the polyorganosiloxane (La) may have a unit derived from a siloxane-based crosslinking agent as necessary.
  • siloxane crosslinking agent include trifunctional or tetrafunctional silane crosslinking agents such as trimethoxymethylsilane, triethoxyphenylsilane, tetramethoxysilane, tetraethoxysilane, and tetrabutoxysilane.
  • Polyorganosiloxane (La) can be produced as follows. If necessary, a siloxane-based crosslinking agent is added to a siloxane mixture composed of dimethylsiloxane and a siloxane having a vinyl polymerizable functional group, and emulsified with an emulsifier and water to obtain an aqueous siloxane mixture dispersion.
  • the aqueous dispersion of the siloxane mixture is atomized using a homomixer that atomizes by a shearing force by high-speed rotation, a homogenizer that atomizes by a jet output from a high-pressure generator, or the like.
  • a high-pressure emulsifier such as a homogenizer because the particle size distribution of the polyorganosiloxane (La) becomes small.
  • the finely divided siloxane mixture aqueous dispersion is added to an acid aqueous solution containing an acid catalyst and polymerized at a high temperature.
  • the reaction liquid is cooled and the polymerization is stopped by neutralizing with an alkaline substance (sodium hydroxide, potassium hydroxide, sodium carbonate, etc.) to obtain an aqueous dispersion of polyorganosiloxane (La).
  • an anionic emulsifier is preferable.
  • the anionic emulsifier include sodium alkylbenzene sulfonate, sodium lauryl sulfonate, sodium polyoxyethylene nonylphenyl ether sulfate, and the like, which makes it easy to control the volume average particle diameter of polyorganosiloxane (La). Therefore, sulfonic acid-based emulsifiers (sodium alkylbenzene sulfonate, sodium lauryl sulfonate, etc.) are preferable.
  • the amount of the emulsifier used is about 0.05 to 20 parts by mass with respect to 100 parts by mass (as solid content) of the siloxane mixture.
  • the acid catalyst examples include sulfonic acids (aliphatic sulfonic acid, aliphatic substituted benzenesulfonic acid, aliphatic substituted naphthalenesulfonic acid, etc.), mineral acids (sulfuric acid, hydrochloric acid, nitric acid, etc.), and polyorganosiloxane (La).
  • sulfonic acids aliphatic sulfonic acid, aliphatic substituted benzenesulfonic acid, aliphatic substituted naphthalenesulfonic acid, etc.
  • mineral acids sulfuric acid, hydrochloric acid, nitric acid, etc.
  • La polyorganosiloxane
  • Aliphatic substituted benzenesulfonic acid is preferred, and n-dodecylbenzenesulfonic acid is particularly preferred from the viewpoint of excellent stabilization of the aqueous dispersion.
  • an acid catalyst may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the volume average particle diameter of the polyorganosiloxane (La) in the aqueous dispersion is such that the color developability of the molded product is excellent, the viscosity of the aqueous dispersion during the production of the polyorganosiloxane (La), and the coagulum (coagulum). ) Is preferably from 0.01 to 0.09 ⁇ m, more preferably from 0.02 to 0.08 ⁇ m from the viewpoint of preventing the occurrence.
  • a method for controlling the volume average particle diameter of the polyorganosiloxane (La) in the aqueous dispersion for example, a method described in JP-A-5-279434 can be employed.
  • the poly (meth) acrylic acid ester (Lb) is a copolymer having a unit derived from a (meth) acrylic acid ester and either a unit derived from a crosslinking agent or a unit derived from a graft crossing agent or both. It is.
  • (meth) acrylic acid esters examples include (meth) acrylic acid alkyl esters having an alkyl group having 1 to 12 carbon atoms, and acrylic acid esters having an aromatic hydrocarbon group (phenyl group, benzyl group, etc.). From the viewpoint of impact resistance of the molded product, n-butyl acrylate, 2-ethylhexyl acrylate, and ethyl acrylate are preferred.
  • One (meth) acrylic acid ester may be used alone, or two or more may be used in combination.
  • Crosslinking agents and graft crossing agents improve the color developability of the molded article.
  • the crosslinking agent include dimethacrylate compounds, and specific examples include ethylene glycol dimethacrylate, propylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate, and the like.
  • the graft crossing agent include allyl compounds, specifically, allyl methacrylate, triallyl cyanurate, triallyl isocyanurate, and the like.
  • the total of the unit derived from the crosslinking agent and the unit derived from the graft crossing agent is excellent in the color developability of the molded product, and the coagulum during production of the graft copolymer (M) is reduced.
  • the units (100% by mass) constituting the (meth) acrylate (Lb) 0.1 to 5% by mass is preferable, 0.2 to 3% by mass is more preferable, and 0.5 to 2% by mass Is more preferable.
  • the “unit derived from the crosslinking agent and the unit derived from the graft crossing agent” means the total mass of the monomers used in the synthesis of the poly (meth) acrylic acid ester (Lb) (ie, poly (meth) acryl It can be calculated from the mass of the crosslinking agent and the graft crossing agent relative to the total mass of the monomer corresponding to the structural unit constituting the acid ester (Lb).
  • the poly (meth) acrylic acid ester (Lb) can be produced as follows.
  • the production method of the poly (meth) acrylate ester (Lb) is not particularly limited.
  • a monomer mixture containing (meth) acrylate ester and one or both of a crosslinking agent and a graft crossing agent is used.
  • the method of obtaining the aqueous dispersion of poly (meth) acrylic acid ester (Lb) by emulsion polymerization is mentioned.
  • emulsifier used in the emulsion polymerization include sodium or potassium salts of fatty acids (oleic acid, stearic acid, myristic acid, stearic acid, palmitic acid, etc.), sodium lauryl sulfate, sodium N-lauroyl sarcosinate, alkenyl succinic acid Examples include dipotassium, sodium alkyldiphenyl ether disulfonate, and the like, and acid-type emulsifiers or salts thereof having two or more functional groups in one molecule from the viewpoint of further suppressing gas generation during molding of the thermoplastic resin composition (I) Is preferred.
  • fatty acids oleic acid, stearic acid, myristic acid, stearic acid, palmitic acid, etc.
  • sodium lauryl sulfate sodium N-lauroyl sarcosinate
  • alkenyl succinic acid Examples include dipotassium, sodium alkyldiphenyl ether disulfonate
  • the acid-type emulsifier having two functional groups in one molecule or a salt thereof is preferably dipotassium alkenyl succinate or sodium alkyldiphenyl ether disulfonate.
  • dipotassium alkenyl succinate is more preferable.
  • Specific examples of dipotassium alkenyl succinate include dipotassium octadecenyl succinate, dipotassium heptadecenyl succinate, and dipotassium hexadecenyl succinate.
  • An emulsifier may be used individually by 1 type and may be used in combination of 2 or more type.
  • the composite rubber-like polymer (L) contains polyorganosiloxane (La).
  • the rubber-like polymer (L) includes a rubber-like polymer composed only of polyorganosiloxane (La), and a composite rubber-like polymer composed of a polymer other than polyorganosiloxane (La) and polyorganosiloxane (La).
  • the rubber-like polymer (L) is a composite rubber-like polymer (L1) composed of a polyorganosiloxane (La) and a poly (meth) acrylic acid ester (Lb) from the viewpoint that the effects of the present invention are sufficiently obtained. It is preferable.
  • the content of the polyorganosiloxane (La) in the rubbery polymer (L) is preferably 1 to 99% by mass, more preferably 2 to 80% by mass with respect to the total mass of the rubbery polymer (L). More preferably, it is 3 to 50% by mass.
  • the content of the polyorganosiloxane (La) is within the above range, the impact resistance and color developability of the molded product are further improved.
  • the content of the polyorganosiloxane (La) in the composite rubbery polymer (L1) is preferably 1 to 99% by mass, more preferably 2 to 80% by mass with respect to the total mass of the composite rubbery polymer (L1). Preferably, 3 to 50% by mass is more preferable.
  • the content of the polyorganosiloxane (La) is within the above range, the impact resistance and color developability of the molded product are further improved.
  • the production method of the composite rubbery polymer (L1) is not particularly limited.
  • a method for producing the composite rubber-like polymer (L1) for example, an aqueous dispersion of polyorganosiloxane (La) and an aqueous dispersion of poly (meth) acrylic acid ester (Lb) separately produced are heteroaggregated or Method of co-hypertrophy; Method of forming the other polymer in one of an aqueous dispersion of polyorganosiloxane (La) or an aqueous dispersion of poly (meth) acrylic acid ester (Lb) and combining them In the aqueous dispersion of polyorganosiloxane (La), either (meth) acrylic acid ester and either crosslinking agent or graft crossing agent A method of emulsion polymerization of a monomer mixture containing one or both is preferred.
  • emulsifier used in the emulsion polymerization include sodium or potassium salts of fatty acids (oleic acid, stearic acid, myristic acid, stearic acid, palmitic acid, etc.), sodium lauryl sulfate, sodium N-lauroyl sarcosinate, alkenyl succinic acid Examples include dipotassium, sodium alkyldiphenyl ether disulfonate, and the like, and acid-type emulsifiers or salts thereof having two or more functional groups in one molecule from the viewpoint of further suppressing gas generation during molding of the thermoplastic resin composition (I) Is preferred.
  • fatty acids oleic acid, stearic acid, myristic acid, stearic acid, palmitic acid, etc.
  • sodium lauryl sulfate sodium N-lauroyl sarcosinate
  • alkenyl succinic acid Examples include dipotassium, sodium alkyldiphenyl ether disulfonate
  • the acid-type emulsifier having two functional groups in one molecule or a salt thereof is preferably dipotassium alkenyl succinate or sodium alkyldiphenyl ether disulfonate.
  • dipotassium alkenyl succinate is more preferable.
  • Specific examples of dipotassium alkenyl succinate include dipotassium octadecenyl succinate, dipotassium heptadecenyl succinate, and dipotassium hexadecenyl succinate.
  • An emulsifier may be used individually by 1 type and may be used in combination of 2 or more type.
  • the volume average particle diameter of the composite rubber-like polymer (L) and the composite rubber-like polymer (L1) in the aqueous dispersion is 0.05 to 0.18 ⁇ m from the viewpoint of excellent physical properties of the molded product. A thickness of 07 to 0.15 ⁇ m is preferable.
  • the volume average particle diameter is smaller than 0.05 ⁇ m, the impact resistance and lubricity of the molded product are inferior.
  • the volume average particle diameter is larger than 0.18 ⁇ m, the impact resistance, color developability and lubricity of the molded product are inferior.
  • Examples of the method for controlling the volume average particle diameter of the composite rubber-like polymer (L) and the composite rubber-like polymer (L1) in the aqueous dispersion include a method for adjusting the type or amount of the emulsifier.
  • the vinyl monomer mixture (m5) is a monomer component containing an arbitrary vinyl monomer.
  • vinyl monomers include aromatic vinyl compounds, vinyl cyanide compounds, and other monomers copolymerizable therewith.
  • the vinyl monomer component (m5) is preferably a monomer mixture containing at least an aromatic vinyl compound and a vinyl cyanide compound from the viewpoint that the effects of the present invention are sufficiently obtained.
  • aromatic vinyl compound examples include styrene, ⁇ -methyl styrene, o-, m- or p-methyl styrene, vinyl xylene, pt-butyl styrene, ethyl styrene, and the like. Styrene and ⁇ -methylstyrene are preferred from the viewpoint of the fluidity of I), the color developability of the molded product, and the impact resistance.
  • An aromatic vinyl compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the aromatic vinyl compound is preferably 65 to 82% by mass, more preferably 73 to 80% by mass, and further preferably 75 to 80% by mass in 100% by mass of the vinyl monomer mixture (m5).
  • the content of the aromatic vinyl compound is within the above range, the color developability and impact resistance of the molded product are further improved.
  • Examples of the vinyl cyanide compound include acrylonitrile and methacrylonitrile.
  • a vinyl cyanide compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the vinyl cyanide compound is preferably 18 to 35% by mass, more preferably 20 to 27% by mass, and further preferably 20 to 25% by mass in 100% by mass of the vinyl monomer mixture (m5). When the content of the vinyl cyanide compound is within the above range, the color developability and impact resistance of the molded product are further improved.
  • the vinyl-based monomer mixture (m5) containing an aromatic vinyl compound and a vinyl cyanide compound includes, in addition to the aromatic vinyl compound and the vinyl cyanide compound, other monomers copolymerizable therewith. You may include in the range which does not impair the effect of.
  • Other monomers include, for example, methacrylic acid esters (methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-methacrylic acid t- Butyl, amyl methacrylate, isoamyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, decyl methacrylate, lauryl methacrylate, cyclohexyl methacrylate, pentyl methacrylate, phenyl methacrylate, etc.), maleimide compounds (N-methyl) Maleimide, N-ethylmaleimide, Nn-propylmaleimide, Ni-propylmaleimide, Nn-butylmaleimide, Ni-butylmaleimide, N-tert-butylmale
  • the graft copolymer (M) is obtained by polymerizing the vinyl monomer (m5) in the presence of the composite rubber-like polymer (L).
  • the graft copolymer (M) is 20 to 80% by mass of the vinyl monomer mixture (m5) in the presence of 20 to 80% by mass of the composite rubbery polymer (L).
  • L) and a vinyl monomer mixture (m5) are preferably obtained by polymerizing 100% by mass), and in the presence of 25 to 75% by mass of the composite rubber-like polymer (L), vinyl More preferred is a polymer obtained by polymerizing 25 to 75% by mass of the monomeric monomer mixture (m5).
  • a vinyl monomer mixture ( m5) What is obtained by polymerizing 30 to 70% by mass is more preferable.
  • the graft copolymer (M) is produced, for example, by a radical polymerization initiator and emulsion polymerization. That is, it is produced by adding a vinyl monomer mixture (m5) to an aqueous dispersion of a composite rubber-like polymer (L) and radically polymerizing the vinyl monomer mixture (m5) in the presence of an emulsifier. . At this time, various known chain transfer agents may be added in order to control the graft ratio and the molecular weight of the graft component.
  • radical polymerization initiators examples include peroxides, azo-based initiators, redox-based initiators in which an oxidizing agent and a reducing agent are combined, and redox-based initiators from the point that the graft polymerization reaction can be easily controlled.
  • a sulfoxylate-based initiator in which ferrous sulfate-ethylenediaminetetraacetic acid disodium salt-longalite-hydroperoxide is combined is particularly preferable.
  • the emulsifier used in the case of manufacture of a composite rubber-like polymer (L) is mentioned.
  • the emulsifier contained in the aqueous dispersion of the composite rubber polymer (L) is used as it is, and it is not necessary to add an emulsifier at the time of graft polymerization, or an emulsifier may be added at the time of graft polymerization as necessary. Good.
  • the aqueous dispersion is poured into hot water in which a coagulant is dissolved, and coagulated in a slurry state.
  • the coagulant examples include inorganic acids (sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, etc.), metal salts (calcium chloride, calcium acetate, aluminum sulfate, etc.) and the like.
  • the coagulant is selected according to the emulsifier used in the polymerization. That is, when only a sodium or potassium salt of a carboxylic acid such as a sodium or potassium salt of a fatty acid or a sodium or potassium salt of rosin acid is used as an emulsifier, any coagulant may be used.
  • an emulsifier exhibiting a stable emulsifying power even in an acidic region such as sodium dodecylbenzenesulfonate is included as an emulsifier, it is necessary to use a metal salt.
  • the slurry is examples include a method of dehydrating with a centrifugal dehydrator or a press dehydrator and further drying with an airflow dryer or the like, and (ii) a method of simultaneously performing dehydration and drying with a press dehydrator or an extruder.
  • the graft copolymer (M) is obtained in the form of powder or particles.
  • the vinyl monomer mixture (m3) contains at least a methacrylic acid ester as an essential component, and is a maleimide compound, an aromatic vinyl compound, an acrylic acid ester, and other vinyl monomers copolymerizable with the methacrylic acid ester. Is a monomer mixture containing as an optional component.
  • the content of the methacrylic acid ester is preferably 50 to 100% by mass in 100% by mass of the vinyl monomer mixture (m3) from the viewpoint of scratch resistance and color developability of the molded product. If the content of the methacrylic acid ester is in the range of 50 to 94% by mass, the content of the maleimide compound is 5 to 49% by mass, and the content of the aromatic vinyl compound is 1 to 45% by mass, Scratch resistance, color development, impact resistance, and heat resistance are even better.
  • methacrylic acid ester examples include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, amyl methacrylate, Examples include isoamyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, decyl methacrylate, lauryl methacrylate, cyclohexyl methacrylate, penzyl methacrylate, phenyl methacrylate, and the like. From the viewpoint of superiority, at least one of methyl methacrylate and ethyl methacrylate is preferable.
  • a methacrylic acid ester may be used individually by 1 type, and may be used in combination of 2 or more type.
  • maleimide compounds include N-alkylmaleimide (N-methylmaleimide, N-ethylmaleimide, Nn-propylmaleimide, Ni-propylmaleimide, Nn-butylmaleimide, Ni-butylmaleimide). Nt-butylmaleimide), N-cycloalkylmaleimide (N-cyclohexylmaleimide, etc.), N-arylmaleimide (N-phenylmaleimide, N-alkyl-substituted phenylmaleimide, N-chlorophenylmaleimide, etc.), etc.
  • N-arylmaleimide is preferred, and N-phenylmaleimide is particularly preferred from the viewpoint that the heat resistance and impact resistance of the molded product are further improved.
  • a maleimide type compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • aromatic vinyl compound examples include styrene, ⁇ -methyl styrene, o-, m- or p-methyl styrene, vinyl xylene, pt-butyl styrene, ethyl styrene, and the like. Styrene and ⁇ -methylstyrene are preferred from the viewpoint of further excellent impact resistance.
  • An aromatic vinyl compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • acrylate ester examples include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate and the like, and methyl acrylate is preferable from the viewpoint of further improving the heat resistance and impact resistance of the molded product.
  • acrylic acid ester may be used alone, or two or more kinds may be used in combination.
  • vinyl monomers examples include vinyl cyanide compounds (acrylonitrile, methacrylonitrile, etc.).
  • Another vinyl-type monomer may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the methacrylic ester resin (G) can be obtained by polymerizing the vinyl monomer mixture (m3).
  • the polymerization method is not limited. Examples of the polymerization method include known polymerization methods (emulsion polymerization method, suspension polymerization method, solution polymerization method, etc.).
  • a methacrylate ester resin (G) by an emulsion polymerization method for example, in the presence of water, a vinyl monomer mixture (m3), an emulsifier, a polymerization initiator, and a chain transfer agent are charged in a reactor, A method of heating and polymerizing and recovering the methacrylic ester resin (G) from the aqueous dispersion containing the methacrylic ester resin (G) by a precipitation method is mentioned.
  • the emulsifier include usual emulsion polymerization emulsifiers (potassium rosinate, sodium alkylbenzenesulfonate, etc.).
  • polymerization initiator examples include organic and inorganic peroxide initiators.
  • chain transfer agent examples include mercaptans, ⁇ -methylstyrene dimer, terpenes and the like.
  • precipitation method a method similar to that used when recovering the graft copolymer (D) from the aqueous dispersion can be employed.
  • Examples of the method for producing a methacrylate ester resin (G) by suspension polymerization include, for example, a vinyl monomer mixture (m3), a suspending agent, a suspending aid, a polymerization initiator, and a chain transfer agent in a reactor. And then polymerizing by heating, and dehydrating and drying the slurry to recover the methacrylic ester resin (G).
  • Examples of the suspending agent include tricalcium phosphite and polyvinyl alcohol.
  • Examples of the suspension aid include sodium alkylbenzene sulfonate.
  • Examples of the polymerization initiator include organic peroxides.
  • Examples of the chain transfer agent include mercaptans, ⁇ -methylstyrene dimer, terpenes and the like.
  • a methacrylic ester resin (G) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the vinyl monomer mixture (m4) is a monomer mixture containing at least an aromatic vinyl compound and a vinyl cyanide compound.
  • aromatic vinyl compound examples include styrene, ⁇ -methyl styrene, o-, m- or p-methyl styrene, vinyl xylene, pt-butyl styrene, ethyl styrene, and the like. Styrene and ⁇ -methylstyrene are preferred from the viewpoint of the fluidity of I), the color developability of the molded product, and the impact resistance.
  • An aromatic vinyl compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the aromatic vinyl compound is preferably 15 to 95% by mass in 100% by mass of the vinyl monomer mixture (m4). When the content of the aromatic vinyl compound is within the above range, the impact resistance of the molded product is further improved.
  • Examples of the vinyl cyanide compound include acrylonitrile and methacrylonitrile.
  • a vinyl cyanide compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the vinyl cyanide compound is preferably 5 to 85% by mass in 100% by mass of the vinyl monomer mixture (m4). When the content of the vinyl cyanide compound is within the above range, the impact resistance of the molded product is further improved.
  • the vinyl monomer mixture (m4) may contain a methacrylic acid ester and a maleimide compound as necessary.
  • examples of the methacrylic acid ester and the maleimide compound include those exemplified in the vinyl monomer mixture (m3).
  • the styrene copolymer (H) is obtained by polymerizing a vinyl monomer mixture (m4) containing an aromatic vinyl compound and a vinyl cyanide compound.
  • the polymerization method is not limited.
  • Examples of the polymerization method include known polymerization methods (emulsion polymerization method, suspension polymerization method, bulk polymerization method, solution polymerization method, etc.). From the viewpoint of heat resistance of the molded product, suspension polymerization method and bulk polymerization method are available. preferable.
  • thermoplastic resins include, for example, polycarbonate, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyvinyl chloride, polystyrene, polyacetal, modified polyphenylene ether (modified PPE), ethylene-vinyl acetate copolymer, poly Examples include arylate, liquid crystal polyester, polyethylene, polypropylene, fluororesin, and polyamide (nylon).
  • additives examples include antioxidants, lubricants, processing aids, pigments, fillers, silicone oils, paraffin oils, and the like.
  • the content of the graft copolymer (D) is such that the graft copolymer (D), the methacrylate ester resin (G), and the styrene copolymer
  • the total content is preferably 10 to 30% by mass, more preferably 15 to 25% by mass, based on 100% by mass with the combined (H). If the content of the graft copolymer (D) is within the above range, physical properties such as fluidity of the thermoplastic resin composition (I), scratch resistance, impact resistance, color development, and heat resistance of the molded product. Excellent balance.
  • the content of the methacrylic ester resin (G) is such that the graft copolymer (D), the methacrylic ester resin (G), and the styrene copolymer 30 to 90% by mass is preferable among 100% by mass in total with the combined (H), and 35 to 85% by mass is more preferable. If the content of the methacrylic ester resin (G) is within the above range, the physical properties of the thermoplastic resin composition (I) such as fluidity, scratch resistance, impact resistance, color development, and heat resistance of the molded product. Excellent balance.
  • the content of the styrene copolymer (H) is such that the graft copolymer (D), the methacrylate ester resin (G), and the styrene copolymer. It is preferably 0 to 40% by mass in 100% by mass with respect to the polymer (H), and 1 to 40% by mass from the viewpoint of fluidity of the thermoplastic resin composition (I), impact resistance of the molded product, and heat resistance. Is more preferable.
  • the proportion of the ethylene / ⁇ -olefin copolymer (A) or the crosslinked ethylene / ⁇ -olefin copolymer (C) is ethylene / ⁇ -olefin. 15 to 85% by mass of the total (100% by mass) of the olefin copolymer (A), the crosslinked ethylene / ⁇ -olefin copolymer (C) and the crosslinked acrylic acid ester rubbery polymer (E) 30 to 70% by mass is preferable.
  • the proportion of the crosslinked acrylic ester rubber-like polymer (E) is such that the ethylene / ⁇ -olefin copolymer (A), the crosslinked ethylene / ⁇ -Of the total (100% by mass) of the olefin copolymer (C) and the crosslinked acrylic acid ester-based rubbery polymer (E), it is 85 to 15% by mass, preferably 30 to 70% by mass.
  • thermoplastic resin composition (I) of the fourth aspect of the present invention the ratio of the ethylene / ⁇ -olefin copolymer (A) or the crosslinked ethylene / ⁇ -olefin copolymer (C) and the crosslinked acrylic ester system
  • the ratio of the rubber-like polymer (E) is within the above range, impact resistance can be expressed with a small rubber content, and further, scratch resistance and color developability are excellent.
  • thermoplastic resin composition (I) of the fourth aspect of the present invention an ethylene / ⁇ -olefin copolymer (A), a crosslinked ethylene / ⁇ -olefin copolymer (C), and a crosslinked acrylic ester rubber
  • the total content (rubber content) of the polymer (E) is preferably 5 to 30% by mass and more preferably 10 to 25% by mass in 100% by mass of the thermoplastic resin composition (I).
  • the rubber content is within the above range, the fluidity of the thermoplastic resin composition (I), the impact strength of the molded product, the scratch resistance, and the color developability are further improved.
  • the total content of the graft copolymer (D) and the graft copolymer (F) is as follows.
  • the total content of the polymer (F), the methacrylic ester resin (G) and the styrene copolymer (H) is preferably 5 to 40% by mass, more preferably 10 to 30% by mass. If the total content of the graft copolymer (D) and the graft copolymer (F) is within the above range, the fluidity of the thermoplastic resin composition (I), the scratch resistance of the molded product, and the impact resistance Excellent balance of physical properties such as property, color development and heat resistance.
  • the content of the methacrylic ester resin (G) is as follows: graft copolymer (D), graft copolymer (F), methacrylic ester resin Of the total 100% by mass of (G) and the styrene copolymer (H), 95 to 60% by mass is preferable, and 90 to 70% by mass is more preferable. If the content of the methacrylic ester resin (G) is within the above range, the properties of the thermoplastic resin composition (I) such as fluidity, scratch resistance, impact resistance, color development, and heat resistance of the molded product. Excellent balance.
  • the content of the styrenic copolymer (H) is as follows: graft copolymer (D), graft copolymer (F), methacrylate ester
  • the content is preferably 0 to 40% by mass in 100% by mass of the resin (G) and the styrene-based copolymer (H), and the fluidity of the thermoplastic resin composition (I), the impact resistance of the molded product, and the heat resistance Therefore, 1 to 40% by mass is more preferable.
  • the volume average particle diameter of the crosslinked ethylene / ⁇ -olefin copolymer (C) is 0.2 to 0.6 ⁇ m, preferably 0.3 to 0.5 ⁇ m.
  • the volume average particle diameter is smaller than 0.2 ⁇ m, the impact resistance of the molded product is inferior.
  • the volume average particle diameter is larger than 0.6 ⁇ m, the impact resistance and color developability of the molded product are inferior.
  • volume average particle diameter of the ethylene / ⁇ -olefin copolymer (A) or the crosslinked ethylene / ⁇ -olefin copolymer (C) is 0.3 ⁇ m to 0.5 ⁇ m, the impact resistance and color developability of the molded product Is even better.
  • the volume average particle diameter of the ethylene / ⁇ -olefin copolymer (A) or the crosslinked ethylene / ⁇ -olefin copolymer (C) dispersed in the aqueous dispersion is as it is in the thermoplastic resin composition (I).
  • the fact that the volume average particle diameter of the ethylene / ⁇ -olefin copolymer (A) and the crosslinked ethylene / ⁇ -olefin copolymer (C) is confirmed by image processing of electron micrographs.
  • thermoplastic resin composition (I) of the fourth aspect of the present invention the crosslinked acrylic ester rubber-like polymer (E) contained in the graft copolymer (F) in the thermoplastic resin composition (I).
  • the volume average particle diameter of is 0.05 to 0.18 ⁇ m, preferably 0.07 to 0.15 ⁇ m.
  • the volume average particle diameter is smaller than 0.05 ⁇ m, the impact resistance of the molded product is inferior.
  • the volume average particle diameter is larger than 0.18 ⁇ m, the impact resistance and color developability of the molded product are inferior.
  • the volume average particle diameter of the crosslinked acrylate rubber polymer (E) dispersed in the aqueous dispersion is the same as that of the crosslinked acrylate rubber polymer (E) in the thermoplastic resin composition (I). It is confirmed by image processing of an electron micrograph that the volume average particle diameter is shown.
  • the ratio of the ethylene / ⁇ -olefin copolymer (A) or the crosslinked ethylene / ⁇ -olefin copolymer (C) is ethylene / ⁇ -olefin.
  • the total (100% by mass) of the olefin copolymer (A), the crosslinked ethylene / ⁇ -olefin copolymer (C) and the composite rubber-like polymer (L) 15 to 85% by mass, 30 to 70% Mass% is preferred.
  • the proportion of the composite rubber-like polymer (L) is such that the ethylene / ⁇ -olefin copolymer (A), the crosslinked ethylene / ⁇ -olefin copolymer Of the total (100% by mass) of the combined polymer (C) and the composite rubber-like polymer (L), it is 85 to 15% by mass, preferably 30 to 70% by mass.
  • the ratio of the ethylene / ⁇ -olefin copolymer (A) or the crosslinked ethylene / ⁇ -olefin copolymer (C) in the thermoplastic resin composition (I) of the fifth aspect of the present invention and the composite rubber-like polymer When the ratio of (L) is within the above range, impact resistance can be exhibited with a small rubber content, and further, scratch resistance, color developability, and lubricity are excellent.
  • thermoplastic resin composition of the fifth aspect of the present invention the total of the ethylene / ⁇ -olefin copolymer (A), the crosslinked ethylene / ⁇ -olefin copolymer (C) and the composite rubber-like polymer (L)
  • the content (rubber content) is preferably 5 to 30% by mass, more preferably 10 to 25% by mass in 100% by mass of the thermoplastic resin composition (I).
  • the fluidity of the thermoplastic resin composition (I) the impact strength of the molded product, the lubricity, the scratch resistance, and the color developability are further improved.
  • the total content of the graft copolymer (D) and the graft copolymer (M) is as follows.
  • the total amount of the polymer (M), the methacrylic ester resin (G) and the styrene copolymer (H) is preferably 5 to 40% by mass, more preferably 10 to 30% by mass. If the total content of the graft copolymer (D) and the graft copolymer (M) is within the above range, the fluidity of the thermoplastic resin composition (I), the scratch resistance of the molded product, and the impact resistance Excellent balance of physical properties such as property, color developability, lubricity and heat resistance.
  • the content of the methacrylic ester resin (G) is as follows: graft copolymer (D), graft copolymer (M), methacrylic ester resin Of the total 100% by mass of (G) and the styrene copolymer (H), 95 to 60% by mass is preferable, and 90 to 70% by mass is more preferable. If the content of the methacrylic ester resin (G) is within the above range, the flowability of the thermoplastic resin composition (I), scratch resistance, impact resistance, color development, lubricity, and heat resistance of the molded product. Excellent physical property balance.
  • the content of the styrene copolymer (H) is as follows: graft copolymer (D), graft copolymer (M), methacrylate ester
  • the content is preferably 0 to 40% by mass in 100% by mass of the resin (G) and the styrene-based copolymer (H), and the fluidity of the thermoplastic resin composition (I), the impact resistance of the molded product, and the heat resistance Therefore, 1 to 40% by mass is more preferable.
  • the volume average particle diameter of the crosslinked ethylene / ⁇ -olefin copolymer (C) is 0.2 to 0.6 ⁇ m, preferably 0.3 to 0.5 ⁇ m.
  • the volume average particle diameter is smaller than 0.2 ⁇ m, the impact resistance and lubricity of the molded product are inferior.
  • the volume average particle diameter is larger than 0.6 ⁇ m, the impact resistance, color developability and lubricity of the molded product are inferior.
  • volume average particle diameter of the ethylene / ⁇ -olefin copolymer (A) or the crosslinked ethylene / ⁇ -olefin copolymer (C) is 0.3 ⁇ m to 0.5 ⁇ m, the impact resistance and color developability of the molded product Is even better.
  • the volume average particle diameter of the ethylene / ⁇ -olefin copolymer (A) or the crosslinked ethylene / ⁇ -olefin copolymer (C) dispersed in the aqueous dispersion is as it is in the thermoplastic resin composition (I).
  • the fact that the volume average particle diameter of the ethylene / ⁇ -olefin copolymer (A) and the crosslinked ethylene / ⁇ -olefin copolymer (C) is confirmed by image processing of electron micrographs.
  • volume average particles of composite rubber-like polymer (L) contained in graft copolymer (M) in thermoplastic resin composition (I) in thermoplastic resin composition (I) of the fifth aspect of the present invention The diameter is 0.05 to 0.18 ⁇ m, preferably 0.07 to 0.15 ⁇ m. When the volume average particle diameter is smaller than 0.05 ⁇ m, the impact resistance and lubricity of the molded product are inferior. When the volume average particle diameter is larger than 0.18 ⁇ m, the impact resistance, color developability and lubricity of the molded product are inferior.
  • the volume average particle diameter of the composite rubber-like polymer (L) dispersed in the aqueous dispersion indicates the volume average particle diameter of the composite rubber-like polymer (L) in the thermoplastic resin composition (I) as it is. Is confirmed by image processing of electron micrographs.
  • thermoplastic resin composition (I) of the second aspect is obtained by mixing the graft copolymer (D) in the first aspect of the present invention and the hard component (J) described above. Specifically, it is easily produced by mixing the graft copolymer (D) and the hard component (J) with various additives as required. Moreover, you may pelletize with an extruder, a Banbury mixer, a kneading roll etc. as needed.
  • graft copolymer (D) contained in a thermoplastic resin composition (I)
  • content of the graft copolymer (D) contained in a thermoplastic resin composition (I) With respect to a total of 100 mass parts of a graft copolymer (D) and a hard component (J), It is preferable to adjust the content of the graft copolymer (D) to be 0.1 to 99 parts by mass.
  • thermoplastic resin composition (I) according to the third aspect of the present invention comprises a graft copolymer (D), a methacrylic ester resin (G), and a styrene copolymer (H) as required. It can be obtained by mixing thermoplastic resin, various additives and the like. You may pelletize with an extruder, a Banbury mixer, a kneading roll, etc.
  • thermoplastic resin composition (I) in the fourth aspect of the present invention comprises a graft copolymer (D), a graft copolymer (F), a methacrylic ester resin (G), and a styrenic copolymer (H). Is obtained by mixing.
  • thermoplastic resin composition (I) in the fifth aspect of the present invention comprises a graft copolymer (D), a graft copolymer (M), a methacrylic ester resin (G), and a styrenic copolymer (H). Is obtained by mixing.
  • thermoplastic resin composition (I) according to the second aspect of the present invention contains the graft copolymer (D) according to the first aspect of the present invention and thus has excellent fluidity and scratch resistance.
  • a molded product excellent in stickiness, impact resistance, glossiness, and color development can be obtained.
  • the ethylene / ⁇ -olefin having a mass average molecular weight (Mw) and a molecular weight distribution (Mw / Mn) within specific ranges.
  • the vinyl monomer mixture (m1) is polymerized in the presence of the copolymer (A) or the crosslinked ethylene / ⁇ -olefin copolymer (C) obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A).
  • the resulting graft copolymer (D) and methacrylic ester resin (G) have good fluidity and are excellent in scratch resistance, gloss, color development, and impact resistance. Goods can be obtained. Moreover, even if heat resistance is imparted to the molded article, impact resistance is not impaired.
  • thermoplastic resin composition (I) according to the fourth aspect of the present invention described above, the ethylene / ⁇ -olefin having a mass average molecular weight (Mw) and a molecular weight distribution (Mw / Mn) within specific ranges.
  • the vinyl monomer mixture (m1) is polymerized in the presence of the copolymer (A) or the crosslinked ethylene / ⁇ -olefin copolymer (C) obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A).
  • thermoplastic resin composition (I) according to the fifth aspect of the present invention described above, the ethylene / ⁇ -olefin having a mass average molecular weight (Mw) and a molecular weight distribution (Mw / Mn) within specific ranges.
  • the vinyl monomer mixture (m1) is polymerized in the presence of the copolymer (A) or the crosslinked ethylene / ⁇ -olefin copolymer (C) obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A).
  • the rubber-like polymer (L) has a specific volume average particle size; the ethylene / ⁇ -olefin copolymer (A) or the crosslinked ethylene / ⁇ -olefin copolymer (A) in the thermoplastic resin composition (I) ( Since C) and the composite rubber-like polymer (L) are in a specific ratio, it is possible to obtain a molded article having good flowability and excellent scratch resistance, color development, impact resistance, and
  • the molded article of the present invention is obtained by molding the thermoplastic resin composition (I) of the second aspect, third aspect, fourth aspect or fifth aspect of the present invention by a known molding method. It is done. Examples of the molding method include injection molding, press molding, extrusion molding, vacuum molding, and blow molding. Applications of molded products include vehicle interior parts, vehicle exterior parts, office equipment, home appliances, building materials, and the like.
  • thermoplastic resin composition (I) of the present invention since the thermoplastic resin composition (I) of the present invention is used, scratch resistance, gloss, color development, impact resistance, lubrication Excellent in properties. Moreover, in the third aspect of the present invention, if a methacrylic ester resin (G) having a specific copolymer composition or a styrene copolymer (H) is used, the heat resistance is excellent. . Further, in the fourth aspect of the present invention, if a methacrylic ester resin (G) having a specific copolymer composition or a styrene copolymer (H) is used, the heat resistance is also excellent. .
  • a methacrylic ester resin (G) having a specific copolymer composition or a styrene copolymer (H) is used, the heat resistance is excellent.
  • Such molded products can be applied to uses such as vehicle interior parts, vehicle exterior parts, office equipment, home appliances, and building materials.
  • the graft copolymer (D) in the first embodiment of the present invention has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2.
  • Mw mass average molecular weight
  • Mw / Mn molecular weight distribution
  • a graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing a vinyl compound and a vinyl cyanide compound is preferred.
  • the graft copolymer (D) in the first embodiment of the present invention has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2.
  • Mw mass average molecular weight
  • Mw / Mn molecular weight distribution
  • the graft copolymer (D) in the first embodiment of the present invention has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2.
  • Mw mass average molecular weight
  • Mw / Mn molecular weight distribution
  • the ethylene / ⁇ -olefin copolymer (A) is preferably an ethylene / propylene copolymer in an amount of 45 to 65% by mass based on the total mass of (C).
  • the graft copolymer (D) in the first embodiment of the present invention has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2.
  • Mw mass average molecular weight
  • Mw / Mn molecular weight distribution
  • the ethylene / ⁇ -olefin copolymer (A) is an ethylene / propylene copolymer, and the ethylene / ⁇ -olefin copolymer is 45 to 65% by mass with respect to the total mass of (C).
  • the graft copolymer (D) in the first embodiment of the present invention has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2.
  • Mw mass average molecular weight
  • Mw / Mn molecular weight distribution
  • the ethylene / ⁇ -olefin copolymer (A) is an ethylene / propylene copolymer, and the ethylene / ⁇ -olefin copolymer is 45 to 65% by mass based on the total mass of the polymer (C).
  • the ethylene unit content is preferably 45 to 65% by mass with respect to the total mass of the constituent units constituting the ethylene / ⁇ -olefin copolymer (A).
  • thermoplastic resin composition (I) according to the second aspect of the present invention includes a graft copolymer (D) and a styrene-based copolymer (H), and the graft copolymer (D) has a mass.
  • the thermoplastic resin composition (I) includes a graft copolymer (D) and a styrene-based copolymer (H), and the graft copolymer (D) has a mass.
  • a graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of the crosslinked ethylene / ⁇ -olefin copolymer (C).
  • the gel content of the crosslinked ethylene / ⁇ -olefin copolymer (C) is 45 to 65% by mass based on the total mass of the crosslinked ethylene / ⁇ -olefin copolymer (C). preferable.
  • the thermoplastic resin composition (I) includes a graft copolymer (D) and a styrene-based copolymer (H), and the graft copolymer (D) has a mass.
  • the gel content of the crosslinked ethylene / ⁇ -olefin copolymer (C) is 45 to 65% by mass with respect to the total mass of the crosslinked ethylene / ⁇ -olefin copolymer (C),
  • the ethylene / ⁇ -olefin copolymer (A) It is preferred but an ethylene-propylene copolymer.
  • the thermoplastic resin composition (I) includes a graft copolymer (D) and a styrene-based copolymer (H), and the graft copolymer (D) has a mass.
  • the gel content of the crosslinked ethylene / ⁇ -olefin copolymer (C) is 45 to 65% by mass with respect to the total mass of the crosslinked ethylene / ⁇ -olefin copolymer (C),
  • the ethylene / ⁇ -olefin copolymer (A Is an ethylene / propylene copolymer, and the content of ethylene units in the ethylene / ⁇ -olefin copolymer (A) is the total of the structural units constituting the ethylene / ⁇ -olefin copolymer (A). It is preferably 45 to 65% by mass relative to the mass.
  • thermoplastic resin composition (I) according to the second aspect of the present invention includes a graft copolymer (D) and a styrene-based copolymer (H), and the graft copolymer (D) has a mass.
  • the gel content of the crosslinked ethylene / ⁇ -olefin copolymer (C) is 45 to 65% by mass with respect to the total mass of the crosslinked ethylene / ⁇ -olefin copolymer (C).
  • the ethylene / ⁇ -olefin copolymer A) is an ethylene / propylene copolymer, and the ethylene / ⁇ -olefin copolymer (A) has a content of ethylene units constituting the ethylene / ⁇ -olefin copolymer (A).
  • the total mass is preferably 45 to 65% by mass.
  • the thermoplastic resin composition (I) in the third aspect of the present invention is a methacrylic acid obtained by polymerizing a graft copolymer (D) and a vinyl monomer mixture (m3) containing a methacrylic acid ester.
  • the graft copolymer (D) has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to In the presence of the ethylene / ⁇ -olefin copolymer (A) 2.5 or a crosslinked ethylene / ⁇ -olefin copolymer (C) obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A), A graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing an aromatic vinyl compound and a vinyl cyanide compound is preferred.
  • the thermoplastic resin composition (I) in the third aspect of the present invention is a methacrylic acid obtained by polymerizing a graft copolymer (D) and a vinyl monomer mixture (m3) containing a methacrylic acid ester.
  • the graft copolymer (D) has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2.5, a vinyl containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of a crosslinked ethylene / ⁇ -olefin copolymer (C) obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A) A graft copolymer obtained by polymerizing the monomer mixture (m1), wherein the crosslinked ethylene / ⁇ -olefin copolymer (C) has a gel content of the crosslinked ethylene / ⁇ -olefin
  • the thermoplastic resin composition (I) in the third aspect of the present invention is a methacrylic acid obtained by polymerizing a graft copolymer (D) and a vinyl monomer mixture (m3) containing a methacrylic acid ester.
  • the graft copolymer (D) has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2.5, a vinyl containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of a crosslinked ethylene / ⁇ -olefin copolymer (C) obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A) A graft copolymer obtained by polymerizing the monomer mixture (m1), wherein the crosslinked ethylene / ⁇ -olefin copolymer (C) has a gel content of the crosslinked ethylene / ⁇ -olefin
  • the thermoplastic resin composition (I) in the third aspect of the present invention is a methacrylic acid obtained by polymerizing a graft copolymer (D) and a vinyl monomer mixture (m3) containing a methacrylic acid ester.
  • the graft copolymer (D) has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2.5, a vinyl containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of a crosslinked ethylene / ⁇ -olefin copolymer (C) obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A) A graft copolymer obtained by polymerizing the monomer mixture (m1), wherein the crosslinked ethylene / ⁇ -olefin copolymer (C) has a gel content of the crosslinked ethylene / ⁇ -olefin
  • the ethylene / ⁇ -olefin copolymer (A) is an ethylene / propylene copolymer, and the ethylene / ⁇ -olefin copolymer (A) has an ethylene content of 45 to 65% by mass.
  • the unit content is preferably 45 to 65% by mass with respect to the total mass of the constituent units constituting the ethylene / ⁇ -olefin copolymer (A).
  • the thermoplastic resin composition (I) in the third aspect of the present invention is a methacrylic acid obtained by polymerizing a graft copolymer (D) and a vinyl monomer mixture (m3) containing a methacrylic ester.
  • the graft copolymer (D) has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2.5, a vinyl containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of a crosslinked ethylene / ⁇ -olefin copolymer (C) obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A) A graft copolymer obtained by emulsion polymerization of a monomer mixture (m1), wherein the crosslinked ethylene / ⁇ -olefin copolymer (C) has a gel content of the crosslinked ethylene / ⁇
  • the ethylene / ⁇ -olefin copolymer (A) is an ethylene / propylene copolymer, and the ethylene / ⁇ -olefin copolymer (A) is 45 to 65% by mass with respect to the total mass.
  • the ethylene unit content is preferably 45 to 65% by mass based on the total mass of the constituent units constituting the ethylene / ⁇ -olefin copolymer (A).
  • the thermoplastic resin composition (I) in the third aspect of the present invention is a methacrylic acid obtained by polymerizing a graft copolymer (D) and a vinyl monomer mixture (m3) containing a methacrylic acid ester.
  • the graft copolymer (D) has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to In the presence of the ethylene / ⁇ -olefin copolymer (A) 2.5 or a crosslinked ethylene / ⁇ -olefin copolymer (C) obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A), A graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing an aromatic vinyl compound and a vinyl cyanide compound.
  • methacryl Acid ester In 100% by mass of the vinyl monomer mixture (m3), methacryl Acid ester It is preferable that the content of is from 50 to 94% by mass, the content of the maleimide compound is from 5 to 49% by mass, and the content of the aromatic vinyl compound is from 1 to 45% by mass.
  • thermoplastic resin composition (I) in the third aspect of the present invention is a methacrylic acid obtained by polymerizing a graft copolymer (D) and a vinyl monomer mixture (m3) containing a methacrylic acid ester.
  • (D) is an ethylene / ⁇ -olefin copolymer having a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2.5 ( A) or a vinyl-based monomer containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of a crosslinked ethylene / ⁇ -olefin copolymer (C) obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A).
  • Mw mass average molecular weight
  • Mn molecular weight distribution
  • the content of the vinyl cyanide compound is preferably 5 to 85% by mass.
  • the thermoplastic resin composition (I) according to the fourth aspect of the present invention comprises an aromatic vinyl compound and cyanide in the presence of the graft copolymer (D) and the crosslinked acrylate rubber polymer (E). It is obtained by polymerizing a graft copolymer (F) obtained by polymerizing a vinyl monomer mixture (m2) containing a vinyl chloride compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester.
  • the graft copolymer (D) has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution (Mw / Mn) of 1.
  • the thermoplastic resin composition (I) according to the fourth aspect of the present invention comprises an aromatic vinyl compound and cyanide in the presence of the graft copolymer (D) and the crosslinked acrylate rubber polymer (E). It is obtained by polymerizing a graft copolymer (F) obtained by polymerizing a vinyl monomer mixture (m2) containing a vinyl chloride compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester.
  • the graft copolymer (D) has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution (Mw / Mn) of 1.
  • the thermoplastic resin composition (I) according to the fourth aspect of the present invention comprises an aromatic vinyl compound and cyanide in the presence of the graft copolymer (D) and the crosslinked acrylate rubber polymer (E). It is obtained by polymerizing a graft copolymer (F) obtained by polymerizing a vinyl monomer mixture (m2) containing a vinyl chloride compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester.
  • the graft copolymer (D) has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution (Mw / Mn) of 1.
  • the ethylene / ⁇ -olefin copolymer (A) is preferably an ethylene / propylene copolymer in an amount of 45 to 65% by mass based on the total mass of the polymer (C).
  • the thermoplastic resin composition (I) according to the fourth aspect of the present invention comprises an aromatic vinyl compound and cyanide in the presence of the graft copolymer (D) and the crosslinked acrylate rubber polymer (E). It is obtained by polymerizing a graft copolymer (F) obtained by polymerizing a vinyl monomer mixture (m2) containing a vinyl chloride compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester.
  • the graft copolymer (D) has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution (Mw / Mn) of 1.
  • the ethylene unit content of the copolymer (C) is preferably 45 to 65% by mass.
  • the thermoplastic resin composition (I) according to the fourth aspect of the present invention comprises an aromatic vinyl compound and cyanide in the presence of the graft copolymer (D) and the crosslinked acrylate rubber polymer (E). It is obtained by polymerizing a graft copolymer (F) obtained by polymerizing a vinyl monomer mixture (m2) containing a vinyl chloride compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester.
  • the graft copolymer (D) has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution (Mw / Mn) of 1.
  • the ethylene / ⁇ -olefin copolymer (A) is an ethylene / propylene copolymer
  • the ethylene unit content of the polymer (A) is preferably 45 to 65% by mass based on the total mass of the constituent units constituting the ethylene / ⁇ -olefin copolymer (A).
  • the thermoplastic resin composition (I) according to the fourth aspect of the present invention comprises an aromatic vinyl compound and cyanide in the presence of the graft copolymer (D) and the crosslinked acrylate rubber polymer (E). It is obtained by polymerizing a graft copolymer (F) obtained by polymerizing a vinyl monomer mixture (m2) containing a vinyl chloride compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester.
  • the graft copolymer (D) has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution (Mw / Mn) of 1.
  • the thermoplastic resin composition (I) according to the fourth aspect of the present invention comprises an aromatic vinyl compound and cyanide in the presence of the graft copolymer (D) and the crosslinked acrylate rubber polymer (E). It is obtained by polymerizing a graft copolymer (F) obtained by polymerizing a vinyl monomer mixture (m2) containing a vinyl chloride compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester.
  • the graft copolymer (D) has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution (Mw / Mn) of 1.
  • the content of the maleimide compound is 50 to 94% by mass
  • the content of the maleimide compound is 5 to 49% by mass
  • the content of the aromatic vinyl compound is 1 to 45% by mass.
  • thermoplastic resin composition (I) according to the fourth aspect of the present invention comprises an aromatic vinyl compound and cyanide in the presence of the graft copolymer (D) and the crosslinked acrylate rubber polymer (E). It is obtained by polymerizing a graft copolymer (F) obtained by polymerizing a vinyl monomer mixture (m2) containing a vinyl chloride compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester.
  • the copolymer (D) is an ethylene / ⁇ -olefin copolymer having a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2.5.
  • Polymer (A) Is a vinyl monomer containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of the crosslinked ethylene / ⁇ -olefin copolymer (C) obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A).
  • the content of the vinyl chloride compound is 18 to 35% by mass
  • the content of the methacrylic acid ester is 50 to 94% by mass
  • the content of the maleimide compound is 100% by mass of the vinyl monomer mixture (m3).
  • the content of the aromatic vinyl compound is 5 to 49% by mass, the content of the aromatic vinyl compound is 1 to 45% by mass, and the content of the aromatic vinyl compound is 15 to 95% in 100% by mass of the vinyl monomer mixture (m4).
  • An amount%, a content of the vinyl cyanide compound is preferably 5 to 85 mass%.
  • thermoplastic resin composition (I) includes a graft copolymer (D), a polyorganosiloxane (La), a unit derived from a (meth) acrylic acid ester, and a crosslinking agent.
  • a composite rubber-like polymer (L1) comprising a poly (meth) acrylate (Lb) having either one or both of a unit derived from or a unit derived from a graft crossing agent, an aromatic vinyl compound and Obtained by polymerizing a graft copolymer (M) obtained by polymerizing a vinyl monomer mixture (m5) containing a vinyl cyanide compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester.
  • the graft copolymer (D) has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution ( Mw / Mn) 1.9 to 2.5 ethylene / ⁇ -olefin copolymer (A) or cross-linked ethylene / ⁇ -olefin copolymer obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A)
  • a graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of the compound (C) is preferable.
  • thermoplastic resin composition (I) includes a graft copolymer (D), a polyorganosiloxane (La), a unit derived from a (meth) acrylic acid ester, and a crosslinking agent.
  • a composite rubber-like polymer (L1) comprising a poly (meth) acrylate (Lb) having either one or both of a unit derived from or a unit derived from a graft crossing agent, an aromatic vinyl compound and Obtained by polymerizing a graft copolymer (M) obtained by polymerizing a vinyl monomer mixture (m5) containing a vinyl cyanide compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester.
  • the graft copolymer (D) has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution ( In the presence of the crosslinked ethylene / ⁇ -olefin copolymer (C) obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A) having an Mw / Mn) of 1.9 to 2.5, aromatic vinyl is used.
  • thermoplastic resin composition (I) includes a graft copolymer (D), a polyorganosiloxane (La), a unit derived from a (meth) acrylic acid ester, and a crosslinking agent.
  • a composite rubber-like polymer (L1) comprising a poly (meth) acrylate (Lb) having either one or both of a unit derived from or a unit derived from a graft crossing agent, an aromatic vinyl compound and Obtained by polymerizing a graft copolymer (M) obtained by polymerizing a vinyl monomer mixture (m5) containing a vinyl cyanide compound and a vinyl monomer mixture (m5) containing a methacrylic acid ester.
  • the graft copolymer (D) has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution ( In the presence of the crosslinked ethylene / ⁇ -olefin copolymer (C) obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A) having an Mw / Mn) of 1.9 to 2.5, aromatic vinyl is used.
  • thermoplastic resin composition (I) includes a graft copolymer (D), a polyorganosiloxane (La), a unit derived from a (meth) acrylic acid ester, and a crosslinking agent.
  • a composite rubber-like polymer (L1) comprising a poly (meth) acrylate (Lb) having either one or both of a unit derived from or a unit derived from a graft crossing agent, an aromatic vinyl compound and Obtained by polymerizing a graft copolymer (M) obtained by polymerizing a vinyl monomer mixture (m5) containing a vinyl cyanide compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester.
  • the graft copolymer (D) has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution ( In the presence of the crosslinked ethylene / ⁇ -olefin copolymer (C) obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A) having an Mw / Mn) of 1.9 to 2.5, aromatic vinyl is used.
  • thermoplastic resin composition (I) includes a graft copolymer (D), a polyorganosiloxane (La), a unit derived from a (meth) acrylic acid ester, and a crosslinking agent.
  • a composite rubber-like polymer (L1) comprising a poly (meth) acrylate (Lb) having either one or both of a unit derived from or a unit derived from a graft crossing agent, an aromatic vinyl compound and Obtained by polymerizing a graft copolymer (M) obtained by polymerizing a vinyl monomer mixture (m5) containing a vinyl cyanide compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester.
  • the graft copolymer (D) has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution ( Aromatic vinyl in the presence of a crosslinked ethylene / ⁇ -olefin copolymer (C) obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A) having a Mw / Mn) of 1.9 to 2.5
  • thermoplastic resin composition (I) includes a graft copolymer (D), a polyorganosiloxane (La), a unit derived from a (meth) acrylic acid ester, and a crosslinking agent.
  • a composite rubber-like polymer (L1) comprising a poly (meth) acrylate (Lb) having either one or both of a unit derived from or a unit derived from a graft crossing agent, an aromatic vinyl compound and Obtained by polymerizing a graft copolymer (M) obtained by polymerizing a vinyl monomer mixture (m5) containing a vinyl cyanide compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester.
  • the graft copolymer (D) has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution ( Methyleneethylene / ⁇ -olefin copolymer (A) having a Mw / Mn) of 1.9 to 2.5 or a crosslinked ethylene / ⁇ -olefin copolymer obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A).
  • the volume average particle diameter of L1) is preferably 0.05 to 0.18 ⁇ m.
  • thermoplastic resin composition (I) includes a graft copolymer (D), a polyorganosiloxane (La), a unit derived from a (meth) acrylic acid ester, and a crosslinking agent.
  • a composite rubber-like polymer (L1) comprising a poly (meth) acrylate (Lb) having either one or both of a unit derived from or a unit derived from a graft crossing agent, an aromatic vinyl compound and Obtained by polymerizing a graft copolymer (M) obtained by polymerizing a vinyl monomer mixture (m5) containing a vinyl cyanide compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester.
  • the graft copolymer (D) has a mass average molecular weight (Mw) of 26 ⁇ 10 4 to 32 ⁇ 10 4 and a molecular weight distribution ( Methyleneethylene / ⁇ -olefin copolymer (A) having a Mw / Mn) of 1.9 to 2.5 or a crosslinked ethylene / ⁇ -olefin copolymer obtained by crosslinking the ethylene / ⁇ -olefin copolymer (A).
  • thermoplastic resin composition (I) includes a graft copolymer (D), a polyorganosiloxane (La), a unit derived from a (meth) acrylic acid ester, and a crosslinking agent.
  • a composite rubber-like polymer (L1) comprising a poly (meth) acrylate (Lb) having either one or both of a unit derived from or a unit derived from a graft crossing agent, an aromatic vinyl compound and Obtained by polymerizing a graft copolymer (M) obtained by polymerizing a vinyl monomer mixture (m5) containing a vinyl cyanide compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester.
  • the graft copolymer (D) is the weight average molecular weight (Mw) was 26 ⁇ 10 4 ⁇ 32 ⁇ 10 4, a molecular weight distribution (Mw / Mn) of 1.9 to
  • Mw weight average molecular weight
  • a graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing an aromatic vinyl compound and a vinyl cyanide compound, and the volume average particle diameter of the composite rubber-like polymer (L1) is: 0.05 to 0.18 ⁇ m, in 100% by mass of the vinyl monomer mixture (m3)
  • volume average particle diameter (MV) of the aqueous olefin resin dispersion (C) was measured using Microtrac (manufactured by Nikkiso Co., Ltd., “Nanotrack 150”) using pure water as a measurement solvent.
  • Gel content rate (mass%) dry substance amount [D2] (g) / coagulated powder sample mass [D1] (g) ⁇ 100 (1)
  • Y is the mass (g) of the acetone-insoluble component of the graft copolymer (D)
  • X is the total mass (g) of the graft copolymer (D) used to determine Y
  • the rubber fraction is the content ratio of the graft copolymer (D) in terms of solid content of the ethylene / ⁇ -olefin copolymer (A) or the crosslinked ethylene / ⁇ -olefin copolymer (C).
  • Graft ratio (mass%) ⁇ (Y ⁇ X ⁇ rubber fraction) / X ⁇ rubber fraction ⁇ ⁇ 100 (2)
  • thermoplastic resin composition (2) To 100 parts of the total amount of the graft copolymer (D) and the hard component (J), 0.8 parts of carbon black is added and mixed, and a twin screw extruder with a 30 mm ⁇ vacuum vent (Ikegai, “ PCM30 ”) was melt kneaded at a cylinder temperature of 200 to 260 ° C. and a vacuum of 93.325 kPa to obtain a thermoplastic resin composition (2). About the obtained thermoplastic resin composition (2), pelletization was performed using the pelletizer ("SH type pelletizer" by Soken Co., Ltd.).
  • thermoplastic resin composition (1) was measured in accordance with ISO 1133 standard. In addition, MVR becomes a standard of the fluidity
  • thermoplastic resin composition (1) obtained by melt-kneading are subjected to conditions of cylinder temperature 200 to 260 ° C. and mold temperature 60 ° C. using an injection molding machine (“TOSHIKI MACHINE Co., Ltd.,“ IS55FP-1.5A ”). Then, a molded product having a length of 80 mm, a width of 10 cm, and a thickness of 4 mm was molded and used as a molded product for measuring flexural modulus and a molded product for Charpy impact test (molded product (Ma1)).
  • ⁇ Injection molding 2> The pellets of the thermoplastic resin composition (2) obtained by melt-kneading are subjected to conditions of cylinder temperature 200 to 260 ° C. and mold temperature 60 ° C. using an injection molding machine (“TOSHIKI MACHINE Co., Ltd.,“ IS55FP-1.5A ”). Then, a black colored flat plate (molded product (Ma2)) having a length of 10 cm, a width of 10 cm, and a thickness of 2 mm was formed. The molded product (Ma2) was used as a molded product for evaluating glossiness, a molded product for evaluating color development, and a molded product for evaluating scratch resistance.
  • a rod-like jig 10 having a tip portion 11 formed in a substantially hemispherical shape was prepared, and the tip portion 11 was covered with a laminated sheet 12 in which eight sheets of gauze were stacked.
  • the tip portion 11 covered with the laminated sheet 12 is brought into contact with the surface of the molded product (Ma2) 13 so that the rod-shaped jig 10 is at a right angle, and the tip portion 11 is brought into contact with the surface of the molded product (Ma2) 13.
  • the applied load was 1 kg.
  • the molded product (Ma2) 13 having a scratched surface is referred to as “molded product (Mc2)”.
  • the lightness L * of the surface of the molded product (Mc2) was measured by the SCE method using a spectrocolorimeter. The L * measured in this way is referred to as “L * (mc)”.
  • ⁇ (A) component ethylene / ⁇ -olefin copolymer (A) or an alternative thereof> (Preparation of ethylene / propylene copolymer (A-1A)) After sufficiently substituting the stainless polymerization tank equipped with a 20 L stirrer with nitrogen, 10 L of dehydrated and purified hexane was added, and ethyl aluminum sesquichloride (Al (C 2 H 5 ) 1.5 ⁇ Cl prepared to 8.0 mmol / L was obtained .
  • ethylene was supplied in an amount of 2000 L / h, propylene in an amount of 1000 L / h, and hydrogen in an amount of 8 L / h using a bubbling tube, and a polymerization reaction was performed at 35 ° C.
  • a polymerization reaction was performed under the above conditions to obtain a polymerization solution containing an ethylene / propylene copolymer (A-1A).
  • the obtained polymerization solution was deashed with hydrochloric acid, poured into methanol for precipitation, and then dried to obtain an ethylene / propylene copolymer (A-1A).
  • Table 1A shows the properties of the ethylene / propylene copolymer (A-1A).
  • triphenylcarbenium (tetrakispentafluorophenyl) borate prepared in advance was converted to boron in an amount of 0.16 mM, [dimethyl (t-butylamide) (tetramethyl- ⁇ 5 -cyclopentadienyl) silane]
  • Polymerization was initiated by injecting 30 mL of a toluene solution containing titanium chloride in an amount of 0.0004 mM with nitrogen. Thereafter, the temperature was adjusted to 40 ° C. for 5 minutes, and ethylene was supplied so that the pressure became 0.6 MPa [gage].
  • polymerization was initiated by injecting 1 mmol of triisobutylaluminum and 5 mL of the catalyst solution prepared above with ethylene. Thereafter, by continuously supplying only ethylene, the total pressure was kept at 0.39 MPa [gage], and polymerization was carried out at 80 ° C. for 1 hour. A polymerization reaction was performed under the above conditions to obtain a polymerization solution containing an ethylene / 1-octene copolymer. The obtained polymerization solution was deashed with hydrochloric acid, poured into methanol for precipitation, and then dried to obtain an ethylene / 1-octene copolymer (A-17A). The properties of the obtained polymer are shown in Table 3A.
  • ethylene / propylene copolymers (A-18A) to (A-23A) are the same as ethylene / propylene copolymers (A-1A) except that the supply amounts of ethylene, propylene, and hydrogen are changed. -23A) was obtained. The properties of the obtained polymer are shown in Table 2A.
  • ⁇ Olefin resin aqueous dispersion (B)> Preparation of aqueous olefin resin dispersion (B-1A) 100 parts of ethylene / propylene copolymer (A-1A) and maleic anhydride-modified polyethylene (Mitsui Chemicals, "Mitsui High Wax 2203A", as the acid-modified olefin polymer (K), mass average molecular weight: 2,700, Acid value: 30 mg / g) 15 parts of (K-1A) and 3 parts of potassium oleate as an anionic emulsifier were mixed.
  • the mixture was heated to 220 ° C. and melt kneaded, and the resulting melt kneaded product was extruded.
  • the melt-kneaded product was continuously supplied to a cooling device attached to the tip of the extruder and cooled to 90 ° C.
  • the taken-out solid was poured into warm water at 80 ° C. and continuously dispersed to obtain an aqueous olefin resin dispersion (B-1A) having a volume average particle size of 0.38 ⁇ m.
  • ⁇ Crosslinked ethylene / ⁇ -olefin copolymer (C)> (Preparation of crosslinked olefin resin (C-1A)) To 100 parts of the solid content of the crosslinked olefin resin aqueous dispersion (B-1A), 0.5 part of t-butylcumyl peroxide as an organic peroxide and 1 part of divinylbenzene as a polyfunctional compound are added, By reacting at 130 ° C. for 5 hours, an aqueous dispersion of a crosslinked ethylene / ⁇ -olefin copolymer (C-1A) was prepared. The gel content of the crosslinked ethylene / ⁇ -olefin copolymer (C-1A) was measured and found to be 51%.
  • ⁇ Graft Copolymer (D)> Preparation of Graft Copolymer (D-1A)
  • D-1A Graft Copolymer (Preparation of Graft Copolymer (D-1A)
  • a stainless polymerization tank equipped with a stirrer 180 parts of ion-exchanged water, 60 parts of an aqueous dispersion of a crosslinked ethylene / ⁇ -olefin copolymer (C-1A) in terms of solid content, 0.006 parts of ferrous sulfate, pyrophosphoric acid 0.3 parts of sodium and 0.35 parts of dextrose were charged and the temperature was set to 80 ° C.
  • graft copolymers (F-2A) to (F-31A) Preparation of graft copolymers (F-2A) to (F-31A)
  • a graft copolymer (D-2A) was prepared in the same manner as the graft copolymer (D-1A) except that the type of the crosslinked ethylene / ⁇ -olefin copolymer (C) was changed.
  • C crosslinked ethylene / ⁇ -olefin copolymer
  • Tables 11A to 14A show the measurement results of the graft ratios of the respective graft copolymers (D-2) to (D-31).
  • the internal temperature was lowered to 70 ° C., and 26.3 parts of styrene, 13.7 parts of acrylonitrile, 0.24 parts of tert-dodecyl mercaptan, and 0.22 parts of tert-butylperoxyisopropyl monocarbonate were added.
  • the internal temperature is cooled to 100 ° C., 0.2 part of octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenol) -propionate is added, and the reaction mixture is taken out and steam distilled.
  • Polycarbonate (J-3A) Polycarbonate (“Iupilon S-3000F” manufactured by Mitsubishi Engineering Plastics) was used as the polycarbonate (J-3A).
  • thermoplastic resin composition (1A) was prepared by melt kneading at a cylinder temperature of 220 ° C. and a vacuum of 93.325 kPa with a twin screw extruder (“Ikegai Co., Ltd.,“ PCM30 ”). The result of having measured MVR of the obtained thermoplastic resin composition (1A) is shown in Table 15A.
  • thermoplastic resin composition (2A) was prepared by melt kneading at a cylinder temperature of 220 ° C. and a vacuum of 93.325 kPa using a twin-screw extruder with a vacuum vent (“PCM30” manufactured by Ikegai Co., Ltd.).
  • thermoplastic resin compositions (1A) and (2A) were each pelletized, various molded products were molded, the flexural modulus was measured, and the impact resistance, glossiness, color developability, and scratch resistance were evaluated. .
  • the results are shown in Table 15A.
  • Examples 2A to 26A The thermoplastic resin compositions (1A) and (2A) were prepared in the same manner as in Example 1A except that the type of the graft copolymer (D) was changed as shown in Tables 15A to 17A, and MVR was measured. . In addition, various molded products were molded using the obtained thermoplastic resin compositions (1A) and (2A), the flexural modulus was measured, and the impact resistance, glossiness, color development, and scratch resistance were evaluated. . These results are shown in Tables 15A-17A.
  • Examples 27A-29A As shown in Table 17A, the thermoplastic resin composition (as in Example 1A) was changed except that the type of hard component (J) and the number of parts added were changed and the conditions of melt kneading were changed to 250 ° C. and 93.325 kPa. 1A) and (2A) were prepared, and MVR was measured. In addition, various molded products were molded using the obtained thermoplastic resin compositions (1A) and (2A), the flexural modulus was measured, and the impact resistance, glossiness, color development, and scratch resistance were evaluated. . These results are shown in Table 17A.
  • thermoplastic resin compositions (1A) and (2A) were prepared in the same manner as in Example 1A, except that the type of the graft copolymer (D) was changed as shown in Table 18A, and MVR was measured.
  • various molded products were molded using the obtained thermoplastic resin compositions (1A) and (2A), the flexural modulus was measured, and the impact resistance, glossiness, color development, and scratch resistance were evaluated. . These results are shown in Table 18A.
  • thermoplastic resin compositions obtained in the respective examples were excellent in fluidity.
  • the molded articles obtained in each Example were excellent in impact resistance, glossiness, color development, and scratch resistance. Therefore, if the graft copolymer (D) in the first aspect of the present invention is used, the thermoplastic resin composition having good fluidity, and excellent in impact resistance and scratch resistance, glossiness and color development are also obtained.
  • An excellent molded product can be obtained and applied to applications such as vehicle interior parts, vehicle exterior parts, office equipment, home appliances, and building materials.
  • the molded article had low impact resistance and scratch resistance.
  • the fluidity of the thermoplastic resin composition was remarkably lowered, and the gloss of the molded product was low.
  • Mw / Mn molecular weight distribution
  • Comparative Example 4A using the graft copolymer (D-15A) prepared using ethylene / propylene / non-conjugated diene copolymer (A-15A) as the component (A) the impact resistance of the molded product was low. It was.
  • Graft copolymer (D-24A) prepared using crosslinked ethylene / ⁇ -olefin copolymer (C-24A) having a gel content of less than 35% by mass as crosslinked ethylene / ⁇ -olefin copolymer (C) In Comparative Example 5A using No., the impact resistance, color developability and scratch resistance of the molded product were low. Graft copolymer (D-31A) prepared by using crosslinked ethylene / ⁇ -olefin copolymer (C-31A) having a gel content of more than 75% by mass as crosslinked ethylene / ⁇ -olefin copolymer (C) In Comparative Example 6A using No., the impact resistance and scratch resistance of the molded product were low.
  • volume average particle diameter was measured using a microtrack (“Nanotrack 150” manufactured by Nikkiso Co., Ltd.) using pure water as a measurement solvent.
  • the volume of the ethylene / ⁇ -olefin copolymer (A) dispersed in the aqueous olefin resin dispersion (B) and the volume of the crosslinked ethylene / ⁇ -olefin copolymer (C) dispersed in the aqueous dispersion are as follows.
  • the average particle diameter shows the volume average particle diameter of the ethylene / ⁇ -olefin copolymer (A) or the crosslinked ethylene / ⁇ -olefin copolymer (C) in the thermoplastic resin composition as it is. Confirmed by image analysis.
  • Graft copolymer (D), methacrylic ester resin (G), and other components as required are mixed in the formulations shown in Tables 22B to 31B, and a twin screw extruder with a 30 mm ⁇ vacuum vent (“PCM30 manufactured by Ikegai Co., Ltd.) )) was melt kneaded at a cylinder temperature of 200 to 260 ° C. and a vacuum of 93.325 kPa to obtain a thermoplastic resin composition.
  • pelletization was performed using a pelletizer (“SH type pelletizer” manufactured by Souken Co., Ltd.).
  • thermoplastic resin composition obtained by melt kneading are subjected to bending elasticity with an injection molding machine (“IS55FP-1.5A” manufactured by Toshiba Machine Co., Ltd.) under conditions of a cylinder temperature of 200 to 260 ° C. and a mold temperature of 60 ° C. Test pieces for rate and Charpy impact tests were obtained, 2 mm thick flat plates (10 cm ⁇ 10 cm).
  • Charpy impact test> The test piece was subjected to a Charpy impact test (notched) at 23 ° C. in accordance with ISO 179 standard, and the Charpy impact strength was measured.
  • molded product (Ma) the lightness L * was measured by a SCE method using a spectrocolorimeter (“CM-3500d” manufactured by Konica Minolta Optips). The L * measured in this way is referred to as “L * (ma)”. The lower L * , the more black and the better the color developability.
  • a rod-like jig 10 having a tip portion 11 formed in a hemispherical shape was prepared, and the tip portion 11 was covered with a laminated sheet 12 in which eight sheets of gauze were stacked.
  • the tip part 11 covered with the laminated sheet 12 is brought into contact with the surface of the molded product (Ma) 13 so that the rod-shaped jig 10 is at a right angle, and the tip part 11 is brought into contact with the surface of the molded product (Ma) 13.
  • ⁇ Each component> the following ethylene / ⁇ -olefin copolymer (A), olefin resin aqueous dispersion (B), crosslinked ethylene / ⁇ -olefin copolymer (C), graft copolymer (D), methacryl An acid ester resin (G) and a styrene copolymer (H) were used.
  • ethylene was supplied in an amount of 2000 L / h
  • propylene was supplied in an amount of 1000 L / h
  • hydrogen was supplied in an amount of 8 L / h
  • a polymerization reaction was performed at 35 ° C.
  • a polymerization reaction was performed under the above conditions to obtain a polymerization solution containing an ethylene / propylene copolymer (A-1B).
  • the obtained polymerization solution was deashed with hydrochloric acid, poured into methanol for precipitation, and then dried to obtain an ethylene / propylene copolymer (A-1B).
  • Table 1 shows the properties of the ethylene / propylene copolymer (A-1B).
  • Triphenylcarbenium (tetrakispentafluorophenyl) borate prepared in advance was 0.16 mM in terms of boron, and [dimethyl (t-butylamide) (tetramethyl- ⁇ 5-cyclopentadienyl) silane] titanium chloride was changed to 0.
  • Polymerization was initiated by injecting 30 mL of a toluene solution containing 0004 mM with nitrogen. Thereafter, the temperature was adjusted to 40 ° C. for 5 minutes, and ethylene was supplied so that the pressure became 0.6 MPa [gage].
  • ethylene / propylene copolymer (A-10B) 20 parts of ethylene / propylene copolymer (A-1B) and 80 parts of ethylene / propylene copolymer (A-9B) are mixed and a twin screw extruder with a 30 mm ⁇ vacuum vent (“PCM30” manufactured by Ikekai Co., Ltd.) The mixture was melt-kneaded at 200 ° C. and 93.325 kPa vacuum to prepare an ethylene / propylene copolymer (A-10B).
  • Table 4B shows the properties of the ethylene / propylene copolymer (A-10B) polymer.
  • ⁇ Olefin resin aqueous dispersion (B)> Preparation of aqueous dispersion of olefin resin (B-1B) 100 parts of an ethylene / propylene copolymer (A-1B) and maleic anhydride-modified polyethylene (“Mitsui Chemicals,“ Mitsui High Wax 2203A ”) as the acid-modified olefin polymer, mass average molecular weight: 2,700, acid value: 30 mg / g) 20 parts and 4 parts of potassium oleate as an anionic emulsifier were mixed.
  • aqueous olefin resin dispersions (B-2B) to (B-20B) As shown in Table 2B, the olefin resin was the same as the aqueous olefin resin dispersion (B-1B) except that (A-1B) was changed to (A-2B) to (A-20B) as the component A. Aqueous dispersions (B-2B) to (B-20B) were obtained. Tables 5B to 7B show the volume average particle diameters of the ethylene / ⁇ -olefin copolymers (A) dispersed in the respective olefin resin aqueous dispersions (B-1B) to (B-20B).
  • ⁇ Graft copolymer (D)> Preparation of graft copolymer (D-1B)
  • An aqueous olefin resin dispersion (B-1B) 70 parts as a solid content of ethylene / propylene copolymer (A-1B)
  • A-1B ethylene / propylene copolymer
  • B-1B aqueous olefin resin dispersion
  • Ion-exchanged water was added to the solution so that the solid concentration was 30%, and 0.006 part of ferrous sulfate, 0.3 part of sodium pyrophosphate and 0.35 part of fructose were added, and the temperature was set to 80 ° C.
  • ⁇ Methacrylate ester resin (G)> (Preparation of methacrylic ester resin (G-1B))
  • a stainless steel polymerization tank equipped with a stirrer 150 parts of ion exchange water, 99 parts of methyl methacrylate, 1 part of methyl acrylate, 0.2 part of 2,2′-azobis (isobutyronitrile), 0.25 part of n-octyl mercaptan , 0.47 part of calcium hydroxyapatite and 0.003 part of potassium alkenyl succinate were charged.
  • the internal temperature of the polymerization tank was set to 75 ° C. for 3 hours, and the temperature was raised to 90 ° C. for 1 hour.
  • the contents were extracted, washed with a centrifugal dehydrator, and dried to obtain a powdery methacrylic ester resin (G-1B).
  • the monomers are shown in Table 19B.
  • Example 1B 24 parts of graft copolymer (D-1B) and 76 parts of methacrylic ester resin (G-1B) were mixed, and 240 ° C., 93 ° C. using a 30 mm ⁇ twin-screw extruder with a vacuum vent (“Ikegai Co., Ltd.,“ PCM30 ”)
  • a thermoplastic resin composition was prepared by melt kneading in a vacuum of 325 kPa.
  • the MVR of the thermoplastic resin composition is shown in Table 22B.
  • the thermoplastic resin composition was pelletized, various molded products were molded, the flexural modulus was measured, and the impact resistance, heat resistance, glossiness, color development, scratch resistance, and scratch resistance were evaluated. The results are shown in Table 22B.
  • thermoplastic resin composition was prepared and MVR was measured in the same manner as in Example 1B except that the type of graft copolymer (D) was changed as shown in Tables 22B to 27B.
  • the thermoplastic resin composition was pelletized, various molded products were molded, the flexural modulus was measured, and the impact resistance, heat resistance, glossiness, color development, scratch resistance, and scratch resistance were evaluated. The results are shown in Tables 22B to 27B.
  • Examples 34B to 56B As shown in Tables 28B to 31B, the types and amounts of the graft copolymer (D), the methacrylic ester resin (G), and the styrene copolymer (H) were changed, and the melt kneading conditions were 250 ° C., 93 A thermoplastic resin composition was prepared and MVR was measured in the same manner as in Example 1B except that the pressure was changed to .325 kPa. The thermoplastic resin composition was pelletized, various molded products were molded, the flexural modulus was measured, and the impact resistance, heat resistance, glossiness, color development, scratch resistance, and scratch resistance were evaluated. The results are shown in Tables 28B to 31B.
  • thermoplastic resin composition was prepared and MVR was measured in the same manner as in Example 1B, except that the type of the graft copolymer (D) was changed as shown in Table 32B.
  • the thermoplastic resin composition was pelletized, various molded products were molded, the flexural modulus was measured, and the impact resistance, heat resistance, glossiness, color development, scratch resistance, and scratch resistance were evaluated. The results are shown in Table 32B.
  • thermoplastic resin compositions of Examples 1B to 56B were excellent in fluidity.
  • the molded products obtained in Examples 1B to 56B were excellent in impact resistance, heat resistance, gloss, color development, scratch resistance, and scratch resistance. Therefore, the thermoplastic resin composition according to the third aspect of the present invention has excellent fluidity, and when the thermoplastic resin composition according to the third aspect of the present invention is used, impact resistance, glossiness, color developability. It can be seen that a molded article excellent in scratch resistance and scratch resistance is obtained, and can be applied to uses such as vehicle interior parts, vehicle exterior parts, office equipment, home appliances, and building materials.
  • Comparative Example 2B using an ethylene / propylene copolymer (A-8B) having a mass average molecular weight (Mw) exceeding 35 ⁇ 10 4 as the ethylene / ⁇ -olefin copolymer (A) is a thermoplastic resin composition. The fluidity was significantly reduced and the gloss of the molded product was low.
  • Comparative Example 4B using a crosslinked ethylene / ⁇ -olefin copolymer (C-2B) obtained by crosslinking an ethylene / propylene copolymer (A-2B) as the crosslinked ethylene / ⁇ -olefin copolymer (C) is: The impact resistance and scratch resistance of the molded product were low.
  • Comparative Example 5B using a crosslinked ethylene / ⁇ -olefin copolymer (C-5B) obtained by crosslinking an ethylene / propylene copolymer (A-8B) as the crosslinked ethylene / ⁇ -olefin copolymer (C) is: The fluidity of the thermoplastic resin composition was remarkably lowered, and the gloss of the molded product was low.
  • Comparative Example 6B using a crosslinked ethylene / ⁇ -olefin copolymer (C-8B) obtained by crosslinking the ethylene / propylene copolymer (A-11B) as the crosslinked ethylene / ⁇ -olefin copolymer (C) is: The impact resistance and scratch resistance of the molded product were low.
  • volume average particle diameter was measured using a microtrack (“Nanotrack 150” manufactured by Nikkiso Co., Ltd.) using pure water as a measurement solvent.
  • the volume average particle diameter of the crosslinked acrylic ester rubber-like polymer (E) dispersed in the aqueous dispersion is the same as that of the ethylene / ⁇ -olefin copolymer (A) or the crosslinked ethylene / polymer in the thermoplastic resin composition. It has been confirmed by electron microscope image analysis that the volume average particle diameters of the ⁇ -olefin copolymer (C) and the crosslinked acrylate rubber polymer (E) are shown.
  • thermoplastic resin composition was obtained by melt kneading in a shaft extruder (“PCM30” manufactured by Ikegai Co., Ltd.) at a cylinder temperature of 200 to 260 ° C. and a vacuum of 93.325 kPa. Moreover, after melt-kneading as needed, pelletization was performed using a pelletizer (“SH type pelletizer” manufactured by Souken Co., Ltd.).
  • ⁇ Injection molding 4> The pellets of the thermoplastic resin composition obtained by melt kneading are subjected to Charpy impact using an injection molding machine (“IS55FP-1.5A” manufactured by Toshiba Machine Co., Ltd.) at a cylinder temperature of 200 to 260 ° C. and a mold temperature of 60 ° C. A test specimen for test, a 2 mm-thick flat plate (10 cm ⁇ 10 cm) was obtained.
  • ⁇ Each component> the following ethylene / ⁇ -olefin copolymer (A), olefin resin aqueous dispersion (B), crosslinked ethylene / ⁇ -olefin copolymer (C), graft copolymer (D), crosslinked An acrylic ester rubbery polymer (E), a graft copolymer (F), a methacrylic ester resin (G), and a styrene copolymer (H) were used.
  • Hexane was continuously fed in an amount of 5 L / h.
  • the polymerization liquid was continuously extracted so that the polymerization liquid in the polymerization tank was always 10 L.
  • ethylene was supplied in an amount of 2000 L / h
  • propylene was supplied in an amount of 1000 L / h
  • hydrogen was supplied in an amount of 8 L / h
  • a polymerization reaction was performed at 35 ° C.
  • a polymerization reaction was performed under the above conditions to obtain a polymerization solution containing an ethylene / propylene copolymer (A-1C).
  • the obtained polymerization solution was deashed with hydrochloric acid, poured into methanol for precipitation, and then dried to obtain an ethylene / propylene copolymer (A-1C).
  • Table 1 shows the properties of the ethylene / propylene copolymer (A-1C) polymer.
  • Triphenylcarbenium (tetrakispentafluorophenyl) borate prepared in advance was 0.16 mM in terms of boron, and [dimethyl (t-butylamide) (tetramethyl- ⁇ 5-cyclopentadienyl) silane] titanium chloride was changed to 0.
  • Polymerization was initiated by injecting 30 mL of a toluene solution containing 0004 mM with nitrogen. Thereafter, the temperature was adjusted to 40 ° C. for 5 minutes, and ethylene was supplied so that the pressure became 0.6 MPa [gage].
  • ethylene / propylene copolymer (A-7C) 20 parts of ethylene / propylene copolymer (A-1C) and 80 parts of ethylene / propylene copolymer (A-6C) are mixed, and a twin screw extruder with a 30 mm ⁇ vacuum vent (“PCM30” manufactured by Ikegai Co., Ltd.) The mixture was melt kneaded at 200 ° C. and 93.325 kPa vacuum to prepare an ethylene / propylene copolymer (A-7C).
  • Table 2C shows the properties of the ethylene / propylene copolymer (A-7C) polymer.
  • ethylene / propylene copolymer (A-10C) 20 parts of ethylene / propylene copolymer (A-1C) and 80 parts of ethylene / propylene copolymer (A-11C) are mixed and a twin screw extruder with a 30 mm ⁇ vacuum vent (“PCM30” manufactured by Ikekai Co., Ltd.) Was melt-kneaded at 200 ° C. and 93.325 kPa vacuum to prepare an ethylene / propylene copolymer (A-10C). Properties of the ethylene / propylene copolymer (A-10C) polymer are shown in Table 2C.
  • ⁇ Olefin resin aqueous dispersion (B)> Preparation of aqueous dispersion of olefin resin (B-1C) 100 parts of ethylene / propylene copolymer (A-1C) and maleic anhydride-modified polyethylene (Mitsui Chemicals, “Mitsui High Wax 2203A”) as an acid-modified olefin polymer, weight average molecular weight: 2,700, acid value: 30 mg / g) 20 parts and 5 parts of potassium oleate as an anionic emulsifier were mixed.
  • the solid discharged from the tip of the twin screw extruder is poured into warm water at 80 ° C., continuously dispersed, diluted to a solid content concentration of about 40% by mass, and an aqueous olefin resin dispersion (B -1C) was obtained.
  • Table 4C shows the volume average particle diameter of the ethylene / ⁇ -olefin copolymer (A) dispersed in the aqueous olefin resin dispersion (B-1C).
  • aqueous olefin resin dispersions (B-12C) to (B-17C)
  • the aqueous olefin resin dispersion was the same as the aqueous olefin resin dispersion (B-1C) except that the number of added parts of potassium hydroxide during emulsification and the number of added parts of ion exchange water were changed.
  • (B-12C) to (B-17C) were obtained.
  • Table 5C shows the volume average particle diameter of the ethylene / ⁇ -olefin copolymer (A) dispersed in each of the aqueous olefin resin dispersions (B-12C) to (B-17C).
  • ⁇ Graft copolymer (D)> Preparation of graft copolymer (D-1C)
  • An aqueous olefin resin dispersion (B-1C) 70 parts as solid content of ethylene / propylene copolymer (A-1C)
  • A-1C ethylene / propylene copolymer
  • B-1C aqueous olefin resin dispersion
  • Ion-exchanged water was added to the solution so that the solid concentration was 30%, and 0.006 part of ferrous sulfate, 0.3 part of sodium pyrophosphate and 0.35 part of fructose were added, and the temperature was set to 80 ° C.
  • graft copolymers (D-33C) and (D-34C) Preparation of graft copolymers (D-33C) and (D-34C)
  • the graft copolymers (D-33C) and (D-34C) were the same as the graft copolymer (D-1C) except that the type of the aqueous olefin resin dispersion (B) was changed.
  • the graft ratios of the graft copolymers (D-33C) and (D-34C) are shown in Table 18C.
  • ⁇ Graft Copolymer (F)> (Preparation of Graft Copolymer (F-1C)) 0.97 part of dipotassium alkenyl succinate, 175 parts of ion-exchanged water, 50 parts of n-butyl acrylate, 0.16 part of allyl methacrylate, 0.08 part of 1,3-butylene glycol dimethacrylate, and t-butyl hydroperoxide 0.1 part of the mixture was charged to the reactor. By passing a nitrogen stream through the reactor, the inside of the reactor was purged with nitrogen, and the temperature was raised to 60 ° C.
  • an aqueous solution consisting of 0.00015 part of ferrous sulfate, 0.00045 part of ethylenediaminetetraacetic acid disodium salt, 0.24 part of Rongalite, and 5 parts of ion-exchanged water was added. Polymerization was started and the internal temperature was raised to 75 ° C. Further, this state was maintained for 1 hour to obtain an aqueous dispersion of a crosslinked acrylic ester rubber-like polymer (E-1C). The volume average particle diameter of the crosslinked acrylate rubber polymer (E-1C) dispersed in the aqueous dispersion was 0.082 ⁇ m.
  • graft copolymer (F-2C) 1.2 parts of dipotassium alkenyl succinate, 175 parts of ion exchange water, 50 parts of n-butyl acrylate, 0.16 part of allyl methacrylate, 0.08 part of 1,3-butylene glycol dimethacrylate, and t-butyl hydroperoxide 0.1 part of the mixture was charged to the reactor. By passing a nitrogen stream through the reactor, the inside of the reactor was purged with nitrogen, and the temperature was raised to 60 ° C.
  • an aqueous solution consisting of 0.00015 part of ferrous sulfate, 0.00045 part of ethylenediaminetetraacetic acid disodium salt, 0.24 part of Rongalite, and 5 parts of ion-exchanged water was added. Polymerization was started and the internal temperature was raised to 75 ° C. Furthermore, this state was maintained for 1 hour to obtain an aqueous dispersion of a cross-linked acrylic acid ester rubbery polymer (E-2C). The volume average particle diameter of the crosslinked acrylic ester rubber-like polymer (E-2C) dispersed in the aqueous dispersion was 0.037 ⁇ m.
  • an aqueous solution consisting of 0.00015 part of ferrous sulfate, 0.00045 part of ethylenediaminetetraacetic acid disodium salt, 0.24 part of Rongalite, and 5 parts of ion-exchanged water was added. Polymerization was started and the internal temperature was raised to 75 ° C. Further, this state was maintained for 1 hour to obtain an aqueous dispersion of a cross-linked acrylic ester rubbery polymer (E-3C). The volume average particle diameter of the crosslinked acrylate rubber polymer (E-3C) dispersed in the aqueous dispersion was 0.050 ⁇ m.
  • an aqueous solution consisting of 0.00015 part of ferrous sulfate, 0.00045 part of ethylenediaminetetraacetic acid disodium salt, 0.24 part of Rongalite, and 5 parts of ion-exchanged water was added. Polymerization was started and the internal temperature was raised to 75 ° C. Furthermore, this state was maintained for 1 hour to obtain an aqueous dispersion of a cross-linked acrylic acid ester rubbery polymer (E-4C). The volume average particle diameter of the crosslinked acrylate rubber polymer (E-4C) dispersed in the aqueous dispersion was 0.18 ⁇ m.
  • an aqueous solution consisting of 0.00015 part of ferrous sulfate, 0.00045 part of ethylenediaminetetraacetic acid disodium salt, 0.24 part of Rongalite, and 5 parts of ion-exchanged water was added. Polymerization was started and the internal temperature was raised to 75 ° C. Further, this state was maintained for 1 hour to obtain an aqueous dispersion of a crosslinked acrylic ester rubber-like polymer (E-5C). The volume average particle diameter of the crosslinked acrylic ester rubber-like polymer (E-5C) dispersed in the aqueous dispersion was 0.24 ⁇ m.
  • Example 1C 10 parts of graft copolymer (D-1C), 14 parts of graft copolymer (F-1C) and 76 parts of methacrylic ester resin (G-1C) were mixed and a twin screw extruder with a 30 mm ⁇ vacuum vent (Ikekai A thermoplastic resin composition was prepared by melt-kneading at 240 ° C. and 93.325 kPa vacuum using a “PCM30” manufactured by the company. The MVR of the thermoplastic resin composition is shown in Table 15C. The thermoplastic resin composition was pelletized and various molded products were molded, and impact resistance, color development, scratch resistance, scratch resistance, and heat resistance were evaluated. The results are shown in Table 24C.
  • thermoplastic resin composition was prepared and MVR was measured in the same manner as in Example 1C, except that the formulation shown in Tables 24C to 32C was changed.
  • the thermoplastic resin composition was pelletized and various molded products were molded, and impact resistance, color development, scratch resistance, scratch resistance, and heat resistance were evaluated. The results are shown in Tables 24C to 32C.
  • thermoplastic resin composition was prepared and MVR was measured in the same manner as in Example 1C, except that the formulation shown in Table 33C to Table 35C was changed.
  • the thermoplastic resin composition was pelletized and various molded products were molded, and impact resistance, color development, scratch resistance, scratch resistance, and heat resistance were evaluated. The results are shown in Table 33C to Table 35C.
  • thermoplastic resin compositions of Examples 1C to 72C were excellent in fluidity.
  • the molded products obtained in Examples 1C to 72C were excellent in impact resistance, heat resistance, color development, scratch resistance, and scratch resistance. Therefore, the thermoplastic resin composition according to the fourth aspect of the present invention has excellent fluidity, and when the thermoplastic resin composition according to the fourth aspect of the present invention is used, impact resistance, color developability, and scratch resistance are improved. It can be seen that a molded article having excellent scratch resistance and scratch resistance can be obtained and can be applied to uses such as vehicle interior parts, vehicle exterior parts, office equipment, home appliances, and building materials.
  • volume average particle diameter (MV) was measured using a microtrack (“Nanotrack 150” manufactured by Nikkiso Co., Ltd.) using pure water as a measurement solvent.
  • the volume average particle diameter of the composite rubber-like polymer (L) dispersed in the aqueous dispersion is the same as that of the ethylene / ⁇ -olefin copolymer (A) or the crosslinked ethylene / ⁇ -olefin copolymer in the thermoplastic resin composition. It has been confirmed by image analysis with an electron microscope that the volume average particle diameter of the polymer (C) and the composite rubber-like polymer (L) is shown.
  • Graft copolymer (D), graft copolymer (M), methacrylic ester resin (G), and other components as necessary are mixed in the formulations shown in Tables 24D to 35D, and a vacuum vent with 30 mm ⁇ 2
  • a thermoplastic resin composition was obtained by melt kneading in a shaft extruder (“PCM30” manufactured by Ikegai Co., Ltd.) at a cylinder temperature of 200 to 260 ° C. and a vacuum of 93.325 kPa.
  • pelletization was performed using a pelletizer (“SH type pelletizer” manufactured by Souken Co., Ltd.).
  • ⁇ Injection molding 5> The pellets of the thermoplastic resin composition obtained by melt kneading are subjected to Charpy impact using an injection molding machine (“IS55FP-1.5A” manufactured by Toshiba Machine Co., Ltd.) at a cylinder temperature of 200 to 260 ° C. and a mold temperature of 60 ° C. A test specimen for test, a 2 mm-thick flat plate (10 cm ⁇ 10 cm) was obtained. Further, a test piece for evaluating the lubricity was obtained with an injection molding machine (“SG150-SYCAPM IV” manufactured by Sumitomo Heavy Industries, Ltd.) under conditions of a cylinder temperature of 200 to 260 ° C. and a mold temperature of 60 ° C.
  • an injection molding machine (“SG150-SYCAPM IV” manufactured by Sumitomo Heavy Industries, Ltd.
  • a small squeak noise is generated when the load is 1 kg, but not when the load is 500 g.
  • A small squeak noise is produced at both loads of 500 g and 1 kg.
  • X A squeak noise is generated at any load of 500 g and 1 kg.
  • ⁇ Each component> the following ethylene / ⁇ -olefin copolymer (A), olefin resin aqueous dispersion (B), crosslinked ethylene / ⁇ -olefin copolymer (C), graft copolymer (D), Organosiloxane (La), composite rubber-like polymer (L), graft copolymer (M), methacrylic ester resin (G), and styrene copolymer (H) were used.
  • A ethylene / ⁇ -olefin copolymer
  • B olefin resin aqueous dispersion
  • C crosslinked ethylene / ⁇ -olefin copolymer
  • D graft copolymer
  • La Organosiloxane
  • L composite rubber-like polymer
  • M methacrylic ester resin
  • G methacrylic ester resin
  • H styrene copolymer
  • ethylene was supplied in an amount of 2000 L / h
  • propylene was supplied in an amount of 1000 L / h
  • hydrogen was supplied in an amount of 8 L / h
  • a polymerization reaction was performed at 35 ° C.
  • a polymerization reaction was performed under the above conditions to obtain a polymerization solution containing an ethylene / propylene copolymer (A-1D).
  • the obtained polymerization solution was deashed with hydrochloric acid, poured into methanol for precipitation, and then dried to obtain an ethylene / propylene copolymer (A-1D).
  • the properties of the ethylene / propylene copolymer (A-1D) polymer are shown in Table 1D.
  • Triphenylcarbenium (tetrakispentafluorophenyl) borate prepared in advance was 0.16 mM in terms of boron, and [dimethyl (t-butylamide) (tetramethyl- ⁇ 5-cyclopentadienyl) silane] titanium chloride was changed to 0.
  • Polymerization was initiated by injecting 30 mL of a toluene solution containing 0004 mM with nitrogen. Thereafter, the temperature was adjusted to 40 ° C. for 5 minutes, and ethylene was supplied so that the pressure became 0.6 MPa [gage].
  • ethylene / propylene copolymer (A-7D) 20 parts of ethylene / propylene copolymer (A-1D) and 80 parts of ethylene / propylene copolymer (A-6D) are mixed and a twin screw extruder with a 30 mm ⁇ vacuum vent (“PCM30” manufactured by Ikegai Co., Ltd.) The mixture was melt-kneaded at 200 ° C. and 93.325 kPa vacuum to prepare an ethylene / propylene copolymer (A-7D). Properties of the ethylene / propylene copolymer (A-7D) polymer are shown in Table 2D.
  • ethylene / propylene copolymer (A-10D) 20 parts of ethylene / propylene copolymer (A-1D) and 80 parts of ethylene / propylene copolymer (A-11D) are mixed and a twin screw extruder with a 30 mm ⁇ vacuum vent (“Ikegai Co., Ltd.,“ PCM30 ”) The mixture was melt-kneaded at 200 ° C. and 93.325 kPa vacuum to prepare an ethylene / propylene copolymer (A-10D).
  • Table 2D shows the properties of the ethylene / propylene copolymer (A-10D) polymer.
  • ⁇ Olefin resin aqueous dispersion (B)> Preparation of aqueous dispersion of olefin resin (B-1D) 100 parts of ethylene / propylene copolymer (A-1D) and maleic anhydride-modified polyethylene (“Mitsui Chemicals,“ Mitsui High Wax 2203A ”) as the acid-modified olefin polymer, mass average molecular weight: 2,700, acid value: 30 mg / g) 20 parts and 5 parts of potassium oleate as an anionic emulsifier were mixed.
  • the solid discharged from the tip of the twin screw extruder is poured into warm water at 80 ° C., continuously dispersed, diluted to a solid content concentration of about 40% by mass, and an aqueous olefin resin dispersion (B -1D) was obtained.
  • Table 4D shows the volume average particle size of the ethylene / ⁇ -olefin copolymer (A) dispersed in the aqueous olefin resin dispersion (B-1D).
  • aqueous olefin resin dispersions (B-12D) to (B-17D)
  • the aqueous olefin resin dispersion was the same as the aqueous olefin resin dispersion (B-1D) except that the number of added parts of potassium hydroxide and the number of added parts of ion exchange water during emulsification were changed.
  • (B-12D) to (B-17D) were obtained.
  • Table 5D shows the volume average particle diameter of the ethylene / ⁇ -olefin copolymer (A) dispersed in each of the aqueous olefin resin dispersions (B-12D) to (B-17D).
  • ⁇ Graft copolymer (D)> Preparation of graft copolymer (D-1D)
  • An aqueous olefin resin dispersion (B-1D) 70 parts as solid content of ethylene / propylene copolymer (A-1D)
  • A-1D ethylene / propylene copolymer
  • B-1D aqueous olefin resin dispersion
  • Ion-exchanged water was added to the solution so that the solid concentration was 30%, and 0.006 part of ferrous sulfate, 0.3 part of sodium pyrophosphate and 0.35 part of fructose were added, and the temperature was set to 80 ° C.
  • graft copolymer (D-33D), (D-34D) Preparation of graft copolymer (D-33D), (D-34D)
  • the graft copolymers (D-33D), (D-34D) were the same as the graft copolymers (D-1D) except that the type of the aqueous olefin resin dispersion (B) was changed.
  • the graft ratios of the graft copolymers (D-33D) and (D-34D) are shown in Table 18D.
  • ⁇ Graft copolymer (M)> Preparation of polyorganosiloxane (La-1D) 96 parts of octamethyltetracyclosiloxane, 2 parts of ⁇ -methacryloxypropyldimethoxymethylsilane and 2 parts of ethyl orthosilicate were mixed to obtain 100 parts of a siloxane mixture. To this was added 300 parts of ion-exchanged water in which 0.67 parts of sodium dodecylbenzenesulfonate was dissolved, and the mixture was stirred at 10000 rpm for 2 minutes with a homomixer. An aqueous organosiloxane dispersion was obtained.
  • the reaction solution was allowed to stand at room temperature for 48 hours and then neutralized with an aqueous sodium hydroxide solution to obtain an aqueous dispersion of polyorganosiloxane (La-1D).
  • a part of the polyorganosiloxane (La-1D) aqueous dispersion was dried at 170 ° C. for 30 minutes to obtain a solid content concentration of 17.3%.
  • the volume average particle diameter of polyorganosiloxane (La-1D) dispersed in the aqueous dispersion was 0.05 ⁇ m.
  • the reaction solution was allowed to stand at room temperature for 48 hours and then neutralized with an aqueous sodium hydroxide solution to obtain an aqueous dispersion of polyorganosiloxane (La-2D).
  • a part of the aqueous polyorganosiloxane (La-2D) dispersion was dried at 170 ° C. for 30 minutes and the solid content concentration was determined to be 17.3%.
  • the volume average particle diameter of the polyorganosiloxane (La-2D) dispersed in the aqueous dispersion was 0.03 ⁇ m.
  • the atmosphere was purged with nitrogen by passing a nitrogen stream through the reactor, and the temperature was raised to 60 ° C.
  • 0.0001 part of ferrous sulfate, 0.0003 part of ethylenediaminetetraacetic acid disodium salt and 0.24 part of Rongalite were dissolved in 10 parts of ion-exchanged water.
  • An aqueous solution was added to initiate radical polymerization.
  • the liquid temperature rose to 78 ° C. by polymerization of the (meth) acrylic acid ester component.
  • a mixture of 7.4 parts of acrylonitrile, 22.2 parts of styrene and 0.1 part of t-butyl hydroperoxide was added dropwise over about 40 minutes for polymerization. After the completion of dropping, the mixture was held for 1 hour and then cooled to obtain an aqueous dispersion of a graft copolymer (M-1D).
  • 150 parts of an aqueous solution in which calcium acetate was dissolved at a rate of 5% was heated to 60 ° C. and stirred. 100 parts of an aqueous dispersion of the graft copolymer (M-1) was gradually dropped into the aqueous calcium acetate solution to solidify. The obtained coagulum was separated, washed, and dried to obtain a dry powder of the graft copolymer (M-1D).
  • the atmosphere was purged with nitrogen by passing a nitrogen stream through the reactor, and the temperature was raised to 60 ° C.
  • 0.0001 part of ferrous sulfate, 0.0003 part of ethylenediaminetetraacetic acid disodium salt and 0.24 part of Rongalite were dissolved in 10 parts of ion-exchanged water.
  • An aqueous solution was added to initiate radical polymerization.
  • the liquid temperature rose to 78 ° C. by polymerization of the (meth) acrylic acid ester component. This state was maintained for 1 hour to complete the polymerization of the (meth) acrylic acid ester component to obtain an aqueous dispersion of a composite rubber-like polymer (L1-2D).
  • the volume average particle diameter of the composite rubber-like polymer (L1-2D) dispersed in the aqueous dispersion was 0.037 ⁇ m.
  • a mixture of 7.4 parts of acrylonitrile, 22.2 parts of styrene and 0.1 part of t-butyl hydroperoxide was added dropwise over about 40 minutes for polymerization. After the completion of dropping, the mixture was kept for 1 hour and then cooled to obtain an aqueous dispersion of a graft copolymer (M-2D).
  • 150 parts of an aqueous solution in which calcium acetate was dissolved at a rate of 5% was heated to 60 ° C. and stirred. 100 parts of an aqueous dispersion of the graft copolymer (M-2D) was gradually dropped into the aqueous calcium acetate solution to solidify. The obtained coagulated product was separated, washed, and dried to obtain a dry powder of the graft copolymer (M-2D).
  • the atmosphere was purged with nitrogen by passing a nitrogen stream through the reactor, and the temperature was raised to 60 ° C.
  • 0.0001 part of ferrous sulfate, 0.0003 part of ethylenediaminetetraacetic acid disodium salt and 0.24 part of Rongalite were dissolved in 10 parts of ion-exchanged water.
  • An aqueous solution was added to initiate radical polymerization.
  • the liquid temperature rose to 78 ° C. by polymerization of the (meth) acrylic acid ester component. This state was maintained for 1 hour to complete the polymerization of the (meth) acrylic acid ester component to obtain an aqueous dispersion of a composite rubber-like polymer (L1-3D).
  • the volume average particle diameter of the composite rubber-like polymer (L1-3D) dispersed in the aqueous dispersion was 0.05 ⁇ m.
  • a mixture of 7.4 parts of acrylonitrile, 22.2 parts of styrene and 0.1 part of t-butyl hydroperoxide was added dropwise over about 40 minutes for polymerization. After the completion of dropping, the mixture was kept for 1 hour and then cooled to obtain an aqueous dispersion of a graft copolymer (M-3D).
  • 150 parts of an aqueous solution in which calcium acetate was dissolved at a rate of 5% was heated to 60 ° C. and stirred. 100 parts of an aqueous dispersion of the graft copolymer (M-3D) was gradually dropped into the aqueous calcium acetate solution to solidify. The obtained coagulated product was separated, washed, and dried to obtain a dry powder of the graft copolymer (M-3D).
  • the atmosphere was purged with nitrogen by passing a nitrogen stream through the reactor, and the temperature was raised to 60 ° C.
  • 0.0001 part of ferrous sulfate, 0.0003 part of ethylenediaminetetraacetic acid disodium salt and 0.24 part of Rongalite were dissolved in 10 parts of ion-exchanged water.
  • An aqueous solution was added to initiate radical polymerization.
  • the liquid temperature rose to 78 ° C. by polymerization of the (meth) acrylic acid ester component. This state was maintained for 1 hour to complete the polymerization of the (meth) acrylic acid ester component to obtain an aqueous dispersion of a composite rubber-like polymer (L1-4D).
  • the volume average particle diameter of the composite rubber-like polymer (L1-4D) dispersed in the aqueous dispersion was 0.18 ⁇ m.
  • a mixture of 7.4 parts of acrylonitrile, 22.2 parts of styrene and 0.1 part of t-butyl hydroperoxide was added dropwise over about 40 minutes for polymerization. After the completion of dropping, the mixture was kept for 1 hour and then cooled to obtain an aqueous dispersion of a graft copolymer (M-4D).
  • 150 parts of an aqueous solution in which calcium acetate was dissolved at a rate of 5% was heated to 60 ° C. and stirred. 100 parts of an aqueous dispersion of the graft copolymer (M-4D) was gradually dropped into the calcium acetate aqueous solution to be solidified. The obtained coagulated product was separated, washed, and dried to obtain a dry powder of the graft copolymer (M-4D).
  • the atmosphere was purged with nitrogen by passing a nitrogen stream through the reactor, and the temperature was raised to 60 ° C.
  • 0.0001 part of ferrous sulfate, 0.0003 part of ethylenediaminetetraacetic acid disodium salt and 0.24 part of Rongalite were dissolved in 10 parts of ion-exchanged water.
  • An aqueous solution was added to initiate radical polymerization.
  • the liquid temperature rose to 78 ° C. by polymerization of the (meth) acrylic acid ester component. This state was maintained for 1 hour to complete the polymerization of the (meth) acrylic acid ester component to obtain an aqueous dispersion of a composite rubber-like polymer (L1-5D).
  • the volume average particle diameter of the composite rubber-like polymer (L1-5D) dispersed in the aqueous dispersion was 0.24 ⁇ m.
  • a mixture of 7.4 parts of acrylonitrile, 22.2 parts of styrene and 0.1 part of t-butyl hydroperoxide was added dropwise over about 40 minutes for polymerization. After the completion of dropping, the mixture was kept for 1 hour and then cooled to obtain an aqueous dispersion of a graft copolymer (M-5D).
  • 150 parts of an aqueous solution in which calcium acetate was dissolved at a rate of 5% was heated to 60 ° C. and stirred. 100 parts of an aqueous dispersion of the graft copolymer (M-5D) was gradually dropped into the calcium acetate aqueous solution to solidify. The obtained coagulated product was separated, washed, and dried to obtain a dry powder of graft copolymer (M-5D).
  • Example 1D 10 parts of graft copolymer (D-1D), 14 parts of graft copolymer (M-1D) and 76 parts of methacrylic ester resin (G-1D) were mixed and a twin screw extruder equipped with a 30 mm ⁇ vacuum vent (Ikekai A thermoplastic resin composition was prepared by melt-kneading at 240 ° C. and 93.325 kPa vacuum using a “PCM30” manufactured by the company. The MVR of the thermoplastic resin composition is shown in Table 24D. The thermoplastic resin composition was pelletized, and various molded articles were molded, and impact resistance, color development, scratch resistance, scratch resistance, heat resistance, and lubricity (squeak noise) were evaluated. The results are shown in Table 24D.
  • thermoplastic resin composition was prepared and MVR was measured in the same manner as in Example 1D, except that the formulation shown in Tables 24D to 32D was changed.
  • the thermoplastic resin composition was pelletized, and various molded articles were molded, and impact resistance, color development, scratch resistance, scratch resistance, heat resistance, and lubricity (squeak noise) were evaluated. The results are shown in Tables 24D to 32D.
  • thermoplastic resin composition was prepared and MVR was measured in the same manner as in Example 1D, except that the formulation shown in Table 33D to Table 35D was changed.
  • the thermoplastic resin composition was pelletized, and various molded articles were molded, and impact resistance, color development, scratch resistance, scratch resistance, heat resistance, and lubricity (squeak noise) were evaluated. The results are shown in Table 33D to Table 35D.
  • thermoplastic resin compositions of Examples 1D to 88D were excellent in fluidity.
  • the molded products obtained in Examples 1D to 88D were excellent in lubricity (squeaking noise), impact resistance, heat resistance, color development, scratch resistance, and scratch resistance. Therefore, the thermoplastic resin composition according to the fifth aspect of the present invention has excellent fluidity.
  • lubricity saliva resistance
  • impact resistance heat resistance
  • color development color development
  • scratch resistance scratch resistance
  • scratch resistance scratch resistance
  • thermoplastic resin composition of the present invention is useful as vehicle interior parts, vehicle exterior parts, office equipment, home appliances, building materials, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

This graft copolymer is obtained by polymerizing a vinyl monomer mixture (m1) including an aromatic vinyl compound and a vinyl cyanide compound, in the presence of: an ethylene/α-olefin copolymer (A) which has a mass average molecular weight (Mw) in the range of 17×104 to 35×104, and a molecular weight distribution (Mw/Mn) in the range of 1-3; or a crosslinked ethylene/α-olefin copolymer (C) obtained by crosslinking the ethylene/α-olefin copolymer (A).

Description

グラフト共重合体、熱可塑性樹脂組成物およびその成形品Graft copolymer, thermoplastic resin composition and molded article thereof
 本発明は、熱可塑性樹脂組成物およびその成形品に関する。
 本願は、2013年2月15日に、日本に出願された特願2013-028360号、2013年2月15日に、日本に出願された特願2013-028361号、2013年2月15日に、日本に出願された特願2013-028362号、2013年2月15日に、日本に出願された特願2013-028130号、2014年2月3日に、日本に出願された特願2014-018864号、および2014年2月3日に、日本に出願された特願2014-018865号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a thermoplastic resin composition and a molded product thereof.
The present application was filed on February 15, 2013 in Japanese Patent Application No. 2013-028360 filed in Japan, February 15, 2013, Japanese Patent Application No. 2013-028361 filed in Japan, on February 15, 2013. Japanese Patent Application No. 2013-028362 filed in Japan, Japanese Patent Application No. 2013-028130 filed in Japan on February 15, 2013, Japanese Patent Application No. 2014-2014 filed in Japan on February 3, 2014 The priority is claimed based on Japanese Patent Application No. 2014-018865 filed in Japan on February 3, 2014, and the contents thereof are incorporated herein.
 車輌外装部品、例えば、ドアミラー、ピラー、バンパー、フロントグリル、カウル類等においては、高い耐衝撃性と良好な外観を有することから、その材料には、ABS樹脂やASA樹脂、ポリメタクリル酸メチル、ポリカーボネート等の熱可塑性樹脂の成形品に塗装処理をして高い外観品質を得ていた。 Vehicle exterior parts such as door mirrors, pillars, bumpers, front grills, cowls and the like have high impact resistance and good appearance, so the materials include ABS resin, ASA resin, polymethyl methacrylate, High appearance quality was obtained by coating a molded article of thermoplastic resin such as polycarbonate.
 近年、環境への負荷が大きいこと、工程が煩雑であること、不良率が高いことから、あらかじめ熱可塑性樹脂に着色剤を配合して成形品の塗装処理を省略することがある。
塗装処理を省略する場合、熱可塑性樹脂に高い耐候性が要求されることから、ゴムとして耐候性の良好なエチレン・プロピレン・非共役ジエン共重合体、アクリル酸エステル系ゴム、水素添加ブタジエン系ゴムなどの水素添加系ゴム、シリコーン系ゴムなどを用いた耐候性の良好なAES樹脂、ASA樹脂などが使用されている。
In recent years, since the burden on the environment is large, the process is complicated, and the defect rate is high, a coloring agent may be blended in advance with a thermoplastic resin, and the coating treatment of the molded product may be omitted.
When coating treatment is omitted, high weather resistance is required for thermoplastic resins, so ethylene / propylene / non-conjugated diene copolymer, acrylic ester rubber, hydrogenated butadiene rubber with good weather resistance as rubber AES resin, ASA resin and the like having good weather resistance using hydrogenated rubber such as silicone rubber and the like are used.
 しかし、成形品の製造または加工時や長期にわたって使用する間に、成形品の表面に傷が付いた場合には意匠性を著しく低下させるので、用途によっては耐傷付き性の改良が望まれている。
 そこで、成形品の耐傷付き性を向上させるために、ゴム量を下げて成形品表面を硬くしたり(特許文献1参照)、シリコーンオイル、オレフィンワックス等の潤滑剤を添加することにより成形品表面の滑り性を向上させたり(特許文献2参照)、ゴム変性熱可塑性樹脂に有機化合物をインターカレートした層状粘土鉱物を添加したり(特許文献3参照)、ABS樹脂等に特定の範囲のアクリル酸メチルを含むメタクリル酸メチル-アクリル酸メチル共重合体を特定量配合したり(特許文献4参照)する方法が提案されている。
However, if the surface of the molded product is damaged during the manufacturing or processing of the molded product or for a long period of time, the design properties are significantly reduced. Therefore, improvement in scratch resistance is desired depending on the application. .
Therefore, in order to improve the scratch resistance of the molded product, the surface of the molded product is reduced by reducing the amount of rubber to harden the molded product surface (see Patent Document 1) or by adding a lubricant such as silicone oil or olefin wax. (See Patent Document 2), adding a layered clay mineral intercalated with an organic compound to a rubber-modified thermoplastic resin (see Patent Document 3), or a specific range of acrylics in ABS resin, etc. A method of blending a specific amount of a methyl methacrylate-methyl acrylate copolymer containing methyl acid (see Patent Document 4) has been proposed.
 しかしながら、特許文献1に記載のようにゴム量を下げる方法では、成形品の表面硬度が上がるために引っ掻き傷に対する耐傷付き性は改良されるが、衝撃強度が低下するため、耐衝撃性と耐傷付き性を両立させるには限界がある。
 特許文献2に記載のようにシリコーンオイル、オレフィンワックス等の潤滑剤を添加する方法では、成形品表面の滑り性は向上するものの、耐傷付き性の改良は不十分である。
また、シリコーンオイル等の添加剤が成形品表面にブリードアウトするため、光沢性や発色性が損なわれることがある。
 特許文献3に記載のように特殊な添加剤を熱可塑性樹脂に添加する方法では、熱可塑性樹脂との相溶性が不十分となる場合が多く、光沢性や発色性が低下するなどの外観不良や、耐衝撃性の低下が起こることがある。
 特許文献4に記載のように特殊な樹脂をABS樹脂等に配合する方法では、爪などの硬いもので成形品表面を引っ掻いたときに生じる傷に対する耐傷付き性の改良効果はあるが、軍手、ガーゼ、布などの柔らかいもので成形品表面を擦ったときに生じる傷に対する耐傷付き性は不十分である。
 また、熱可塑性樹脂には、成形時の流動性に優れることも求められるが、上記特許文献記載の技術では必ずしも満足できない。
However, in the method of reducing the amount of rubber as described in Patent Document 1, the surface hardness of the molded product is increased, so that the scratch resistance against scratches is improved, but the impact strength is reduced, so that the impact resistance and scratch resistance are reduced. There is a limit to achieving compatibility.
As described in Patent Document 2, the method of adding a lubricant such as silicone oil or olefin wax improves the slipperiness of the surface of the molded article, but is insufficient in improving the scratch resistance.
Moreover, since additives such as silicone oil bleed out on the surface of the molded product, glossiness and color developability may be impaired.
In the method of adding a special additive to the thermoplastic resin as described in Patent Document 3, the compatibility with the thermoplastic resin is often insufficient, and the appearance is poor such as a decrease in glossiness and color developability. In addition, the impact resistance may decrease.
In the method of blending a special resin with ABS resin or the like as described in Patent Document 4, there is an effect of improving the scratch resistance against scratches caused when a molded article surface is scratched with a hard object such as a nail. The scratch resistance against scratches generated when the surface of a molded product is rubbed with a soft material such as gauze or cloth is insufficient.
In addition, thermoplastic resins are also required to have excellent fluidity during molding, but the techniques described in the above-mentioned patent documents are not always satisfactory.
 成形品の耐衝撃性を向上させることによって、成形品の用途が拡大するだけでなく、成形品の薄肉化や大型化への対応が可能になるなど、工業的な有用性が非常に高くなる。そのため、成形品の耐衝撃性の向上については、これまでに様々な手法が提案されている。
 これら手法のうち、ゴム質重合体と硬質樹脂とを組み合わせた樹脂材料を用いることによって、硬質樹脂に由来する特性を保持しつつ、成形品の耐衝撃性を高める手法は、すでに工業化されている。このような樹脂材料としては、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、アクリロニトリル-スチレン-アクリル酸エステル(ASA)樹脂、アクリロニトリル-エチレン・プロピレン・非共役ジエン共重合体-スチレン(AES)樹脂、またはこれらをさらに硬質樹脂に添加した熱可塑性樹脂組成物等が挙げられる。
Improving the impact resistance of the molded product not only expands the applications of the molded product, but also makes it extremely useful for industrial applications, such as enabling the molded product to be made thinner and larger. . Therefore, various techniques have been proposed so far for improving the impact resistance of the molded product.
Among these methods, by using a resin material in which a rubber polymer and a hard resin are combined, a method for improving the impact resistance of a molded product while maintaining the characteristics derived from the hard resin has already been industrialized. . Examples of such resin materials include acrylonitrile-butadiene-styrene (ABS) resin, acrylonitrile-styrene-acrylic acid ester (ASA) resin, acrylonitrile-ethylene / propylene / non-conjugated diene copolymer-styrene (AES) resin, or Examples thereof include a thermoplastic resin composition obtained by further adding these to a hard resin.
 また、成形品に高い意匠性が求められる場合には、これら樹脂材料から得られる成形品に塗装処理を行い、高い外観品質を得ている。しかし、塗装処理には、環境への負荷が大きい、工程が煩雑である、不良率が高い等の問題がある。そのため、樹脂材料に着色剤をあらかじめ配合して、成形品の塗装処理を省略することがある。塗装処理を省略する場合、成形品に高い耐候性が要求されることから、耐候性の良好な成形品を得ることができる樹脂材料、例えば、ゴム質重合体としてエチレン・プロピレン・非共役ジエン共重合体、アクリル酸エステル系ゴム、水素添加系ゴム(水素添加ブタジエン系ゴム等)、シリコーン系ゴム等を用いたAES樹脂、ASA樹脂等が用いられる。 In addition, when a high design property is required for a molded product, a coating product is applied to the molded product obtained from these resin materials to obtain a high appearance quality. However, the painting process has problems such as a large environmental load, complicated processes, and a high defect rate. For this reason, a coloring agent may be blended in advance with the resin material, and the coating treatment of the molded product may be omitted. When coating treatment is omitted, high weather resistance is required for the molded product. Therefore, resin materials that can obtain molded products with good weather resistance, such as ethylene / propylene / non-conjugated diene as a rubbery polymer. AES resin, ASA resin, or the like using a polymer, acrylic ester rubber, hydrogenated rubber (hydrogenated butadiene rubber or the like), silicone rubber or the like is used.
 しかし、耐候性の良好な成形品を得ることができる樹脂材料を用い、かつ塗装処理を省略した成形品は、成形品の製造時、成形品の加工時、成形品を長期にわたって使用する間等に成形品の表面に傷が付いた場合、意匠性が著しく低下する。そのため、成形品の用途によっては、耐傷付き性の改良が望まれている。そこで、成形品の耐傷付き性を向上させるために、下記の熱可塑性樹脂組成物を用いることが提案されている。 However, a molded product that uses a resin material that can obtain a molded product with good weather resistance and that does not require a coating process is used during manufacturing of the molded product, during processing of the molded product, while the molded product is used for a long time, etc. When the surface of the molded product is damaged, the designability is remarkably lowered. Therefore, improvement of scratch resistance is desired depending on the application of the molded product. Then, in order to improve the scratch resistance of a molded article, it has been proposed to use the following thermoplastic resin composition.
 (1)ゴム質重合体の存在下に芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物を重合して得られたグラフト共重合体と、硬質樹脂とを含み、かつゴム質重合体の割合を低くした熱可塑性樹脂組成物を用いて、成形品の表面を硬くする(特許文献1参照)。
 (2)ゴム質重合体の存在下に芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物を重合して得られたグラフト共重合体に、潤滑剤(ポリオレフィン系ワックス、シリコーンオイル等)を配合した熱可塑性樹脂組成物を用いて、成形品の表面の滑り性を向上させる(特許文献2参照)。
 (3)ゴム質重合体の存在下に芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物を重合して得られたグラフト共重合体に、有機化合物をインターカレートした層状粘土鉱物を添加した熱可塑性樹脂組成物を用いる(特許文献3参照)。
 (4)ゴム質重合体の存在下に芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物を重合して得られたグラフト共重合体と、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物を重合して得られた共重合体と、メタクリル酸メチルおよびアクリル酸メチルを共重合して得られた共重合体とを特定の割合で含む熱可塑性樹脂組成物を用いる(特許文献4参照)。
(1) A rubbery material comprising a graft copolymer obtained by polymerizing a vinyl monomer mixture containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of a rubber polymer, and a hard resin. The surface of the molded product is hardened using a thermoplastic resin composition having a low polymer ratio (see Patent Document 1).
(2) A lubricant (polyolefin wax, silicone oil) is added to a graft copolymer obtained by polymerizing a vinyl monomer mixture containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of a rubber polymer. Etc.) is used to improve the slipperiness of the surface of the molded product (see Patent Document 2).
(3) A layered clay obtained by intercalating an organic compound with a graft copolymer obtained by polymerizing a vinyl monomer mixture containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of a rubbery polymer. A thermoplastic resin composition containing a mineral is used (see Patent Document 3).
(4) A graft copolymer obtained by polymerizing a vinyl monomer mixture containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of a rubbery polymer, and an aromatic vinyl compound and a vinyl cyanide compound A thermoplastic resin composition comprising a copolymer obtained by polymerizing a vinyl-based monomer mixture containing styrene and a copolymer obtained by copolymerizing methyl methacrylate and methyl acrylate in a specific ratio (See Patent Document 4).
 (1)の熱可塑性樹脂組成物を用いた場合、成形品の表面の硬度が上がるために引っ掻き傷に対する耐傷付き性は改良されるものの、ゴム質重合体の割合が低くなるために成形品の衝撃強度が低下する。そのため、成形品の耐衝撃性と耐傷付き性とを両立させるには限界がある。
 (2)の熱可塑性樹脂組成物を用いた場合、成形品の表面の滑り性は向上するものの、耐傷付き性の改良は不十分である。また、潤滑剤が成形品の表面にブリードアウトするため、光沢性や発色性が損なわれることがある。
 (3)の熱可塑性樹脂組成物においては、グラフト共重合体と、有機化合物をインターカレートした層状粘土鉱物との相溶性が不十分となる場合が多い。そのため、成形品の外観不良(光沢性や発色性が低下する等)や耐衝撃性の低下が起こることがある。
 (4)熱可塑性樹脂組成物を用いた場合、引っ掻き傷に対する成形品の耐傷付き性は改良されるものの、擦り傷に対するに対する成形品の耐傷付き性は不十分である。
 また、熱可塑性樹脂組成物には、成形時の流動性に優れることも求められるが、(1)~(4)の熱可塑性樹脂組成物の流動性は、必ずしも満足できるものではない。
When the thermoplastic resin composition (1) is used, the hardness of the surface of the molded product is increased, so that the scratch resistance against scratches is improved, but the ratio of the rubbery polymer is decreased, so that Impact strength decreases. Therefore, there is a limit to satisfy both the impact resistance and the scratch resistance of the molded product.
When the thermoplastic resin composition (2) is used, although the slipperiness of the surface of the molded product is improved, the improvement of scratch resistance is insufficient. Further, since the lubricant bleeds out on the surface of the molded product, the glossiness and color developability may be impaired.
In the thermoplastic resin composition of (3), the compatibility between the graft copolymer and the layered clay mineral intercalated with an organic compound is often insufficient. As a result, the appearance of the molded product may be poor (such as a decrease in glossiness or color developability) or impact resistance may be reduced.
(4) When the thermoplastic resin composition is used, the scratch resistance of the molded product against scratches is improved, but the scratch resistance of the molded product against scratches is insufficient.
The thermoplastic resin composition is also required to have excellent fluidity at the time of molding, but the fluidity of the thermoplastic resin composition (1) to (4) is not always satisfactory.
 硬質樹脂に由来する特性を保持しつつ、耐衝撃性が向上した成形品を得ることができる熱可塑性樹脂組成物としては、例えば、下記の熱可塑性樹脂組成物が知られている。
 (1)硬質樹脂にAES樹脂を添加し、ゴム質重合体の割合を低くして成形品の表面を硬くした熱可塑性樹脂組成物(特許文献1)。
 (2)硬質樹脂であるメタクリル酸エステル樹脂に、AES樹脂を添加した熱可塑性樹脂組成物(特許文献5)。
(3)硬質樹脂であるマレイミド系共重合体に、AES樹脂を添加した熱可塑性樹脂組成物(特許文献6)。
 (4)硬質樹脂であるメタクリル酸エステル樹脂に、AES樹脂およびASA樹脂を添加した熱可塑性樹脂組成物(特許文献7)。
For example, the following thermoplastic resin compositions are known as thermoplastic resin compositions capable of obtaining molded articles having improved impact resistance while retaining the properties derived from the hard resin.
(1) A thermoplastic resin composition in which an AES resin is added to a hard resin and the ratio of the rubbery polymer is lowered to harden the surface of the molded product (Patent Document 1).
(2) A thermoplastic resin composition obtained by adding an AES resin to a methacrylic ester resin which is a hard resin (Patent Document 5).
(3) A thermoplastic resin composition in which an AES resin is added to a maleimide copolymer that is a hard resin (Patent Document 6).
(4) A thermoplastic resin composition obtained by adding an AES resin and an ASA resin to a methacrylic ester resin which is a hard resin (Patent Document 7).
 (1)の熱可塑性樹脂組成物を用いた場合、成形品の表面の硬度が上がるために引っ掻き傷に対する耐傷付き性は改良されるものの、ゴム質重合体の割合が低くなるために成形品の衝撃強度が低下する。
そのため、成形品の耐衝撃性と耐傷付き性とを両立させるには限界がある。
 (2)、(3)の熱可塑性樹脂組成物では、成形品の耐衝撃性を向上させるためにAES樹脂を多量に添加する必要があるため、得られる成形品においては、メタクリル酸エステル樹脂に由来する表面硬度(耐傷付き性)やマレイミド系共重合体に由来する耐熱性が著しく低下する。
また、成形品の耐衝撃性を向上させるために比較的粒子径の大きいAES樹脂を添加する必要があるため、得られる成形品においては、硬質樹脂に由来する発色性が低下する。
 (4)の熱可塑性樹脂組成物では、成形品の発色性の低下を抑えるためにAES樹脂およびASA樹脂を添加しているが、AES樹脂のみを添加したときに比べて成形品の耐衝撃性が劣る。
When the thermoplastic resin composition (1) is used, the hardness of the surface of the molded product is increased, so that the scratch resistance against scratches is improved, but the ratio of the rubbery polymer is decreased, so that Impact strength decreases.
Therefore, there is a limit to satisfy both the impact resistance and the scratch resistance of the molded product.
In the thermoplastic resin compositions of (2) and (3), it is necessary to add a large amount of AES resin in order to improve the impact resistance of the molded product. The derived surface hardness (scratch resistance) and the heat resistance derived from the maleimide copolymer are significantly reduced.
In addition, since it is necessary to add an AES resin having a relatively large particle size in order to improve the impact resistance of the molded product, the color developability derived from the hard resin is reduced in the obtained molded product.
In the thermoplastic resin composition (4), AES resin and ASA resin are added in order to suppress a decrease in color developability of the molded product, but the impact resistance of the molded product is higher than when only the AES resin is added. Is inferior.
 ABS樹脂に代表されるゴム強化樹脂材料は、成形品の耐衝撃性、機械的性質、および成形時の流動性のバランスに優れた樹脂材料として、OA機器、自動車、雑貨等の各種分野で幅広く用いられている。
しかし、ABS樹脂は非結晶(非晶)性樹脂であるため、結晶性樹脂であるポリエチレン、ポリプロピレン、ポリアセタール等に比べて成形品の摩擦係数(動摩擦係数、動摩擦係数の振れ幅)が大きい。
そのため、機器の振動、自動車の発進時や走行時の振動等によって、OA機器のスイッチ部分、カーオディオの嵌合部分等においてスティックスリップ現象が生じ、きしみ音が発生する問題がある。
Rubber reinforced resin materials represented by ABS resin are widely used in various fields such as OA equipment, automobiles, general merchandise, etc. as a resin material with excellent balance of impact resistance, mechanical properties and fluidity during molding. It is used.
However, since the ABS resin is an amorphous (non-crystalline) resin, the friction coefficient (dynamic friction coefficient, fluctuation width of the dynamic friction coefficient) of the molded product is larger than that of the crystalline resins such as polyethylene, polypropylene, and polyacetal.
Therefore, there is a problem that a stick-slip phenomenon occurs in the switch portion of the OA device, the fitting portion of the car audio, and the like due to the vibration of the device, the vibration at the start of the vehicle and the traveling, and the like, and a squeak noise is generated.
 摩擦係数(動摩擦係数、動摩擦係数の振れ幅)の小さい成形品を得ることができるゴム強化樹脂材料としては、例えば、下記の熱可塑性樹脂組成物が提案されている。
 (5)ゴム強化スチレン樹脂に、潤滑剤としてポリオルガノシロキサンを添加した熱可塑性樹脂組成物(特許文献8)。
 (6)ABS樹脂およびAES樹脂を含むゴム強化アクリロニトリル-スチレン樹脂に、潤滑剤として特定粘度のシリコーン樹脂を添加した熱可塑性樹脂組成物(特許文献9)。
 (7)ゴム強化スチレン樹脂、オレフィン系樹脂およびスチレン-ブタジエン-スチレンブロック共重合体に、潤滑剤としてポリテトラフルオロエチレン、低分子量酸化ポリエチレン、または超高分子量ポリエチレンを添加した熱可塑性樹脂組成物(特許文献10)。
For example, the following thermoplastic resin composition has been proposed as a rubber-reinforced resin material capable of obtaining a molded product having a small friction coefficient (dynamic friction coefficient, fluctuation width of the dynamic friction coefficient).
(5) A thermoplastic resin composition obtained by adding polyorganosiloxane as a lubricant to a rubber-reinforced styrene resin (Patent Document 8).
(6) A thermoplastic resin composition obtained by adding a silicone resin having a specific viscosity as a lubricant to rubber-reinforced acrylonitrile-styrene resin containing ABS resin and AES resin (Patent Document 9).
(7) A thermoplastic resin composition in which polytetrafluoroethylene, low molecular weight oxidized polyethylene, or ultrahigh molecular weight polyethylene is added as a lubricant to a rubber-reinforced styrene resin, an olefin resin, and a styrene-butadiene-styrene block copolymer ( Patent Document 10).
 (5)~(7)の熱可塑性樹脂組成物からなる成形品においては、熱可塑性樹脂組成物に添加された潤滑剤が成形品の表面にブリードアウトすることによって、成形品の潤滑性を高め、摩擦係数を小さくする。
しかし、ブリードアウトした潤滑剤が成形品の表面外観を悪化させたり、ブーリドアウトした潤滑剤が徐々に失われることで潤滑性が時間経過とともに低下したりする問題がある。
In the molded product comprising the thermoplastic resin composition of (5) to (7), the lubricant added to the thermoplastic resin composition bleeds out to the surface of the molded product, thereby improving the lubricity of the molded product. Reduce the friction coefficient.
However, the bleed-out lubricant deteriorates the surface appearance of the molded product, and there is a problem that the lubricity decreases with time due to the gradual loss of the lubricated lubricant.
特開平11-001600号公報JP-A-11-001600 特開2000-119477号公報JP 2000-119477 A 特開2003-277570号公報JP 2003-277570 A 特開2008-291158号公報JP 2008-291158 A 特開2005-132970号公報JP 2005-132970 A 特開2004-352842号公報JP 2004-352842 A 特開2004-346187号公報JP 2004-346187 A 日本国特許第2688619号公報Japanese Patent No. 2688619 特開2011-174029号公報JP 2011-174029 A 特開2011-168186号公報JP2011-168186A
 本発明の第一の態様は、耐衝撃性、耐傷付き性に優れ、光沢性、発色性にも優れた成形品を得ることができ、かつ、流動性が良好な熱可塑性樹脂組成物の材料として好適なグラフト共重合体を提供することを目的とする。 The first aspect of the present invention is a material for a thermoplastic resin composition that is excellent in impact resistance and scratch resistance, can provide a molded article excellent in glossiness and color developability, and has good fluidity. An object of the present invention is to provide a suitable graft copolymer.
本発明の第二の態様は、流動性が良好であり、得られる成形品の耐衝撃性、耐傷付き性に優れ、光沢性、発色性にも優れる熱可塑性樹脂組成物、および耐衝撃性、耐傷付き性に優れ、光沢性、発色性にも優れる成形品を提供することを目的とする。 The second aspect of the present invention is a thermoplastic resin composition having good fluidity, excellent impact resistance and scratch resistance of the resulting molded article, and excellent gloss and color development, and impact resistance. The object is to provide a molded article having excellent scratch resistance, gloss and color development.
 本発明の第三の態様は、流動性が良好であり、得られる成形品の耐傷付き性、光沢性、発色性、耐衝撃性に優れる熱可塑性樹脂組成物、および耐傷付き性、光沢性、発色性、耐衝撃性に優れる成形品を提供することを目的とする。 The third aspect of the present invention is a thermoplastic resin composition having good flowability and excellent scratch resistance, glossiness, color development, and impact resistance of the resulting molded article, and scratch resistance, glossiness, An object is to provide a molded article having excellent color developability and impact resistance.
 本発明の第四の態様は、流動性が良好であり、得られる成形品の耐傷付き性、発色性、耐衝撃性に優れる熱可塑性樹脂組成物、および耐傷付き性、発色性、耐衝撃性に優れる成形品を提供することを目的とする。 The fourth aspect of the present invention is a thermoplastic resin composition having good flowability and excellent scratch resistance, color developability and impact resistance of the obtained molded article, and scratch resistance, color developability and impact resistance. It aims at providing the molded product which is excellent in.
 本発明の第五の態様は、流動性が良好であり、得られる成形品の耐傷付き性、発色性、耐衝撃性、潤滑性に優れる熱可塑性樹脂組成物、および耐傷付き性、発色性、耐衝撃性、潤滑性に優れる成形品を提供することを目的とする。 The fifth aspect of the present invention is a thermoplastic resin composition having good flowability and excellent scratch resistance, color development, impact resistance and lubricity of the obtained molded article, and scratch resistance, color development, The object is to provide a molded article excellent in impact resistance and lubricity.
 本発明の第一の態様は、以下の態様を包含する。
[1] 質量平均分子量(Mw)が17×10~35×10であり、質量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)が1~3であるエチレン・α-オレフィン共重合体(A)または前記エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体(D)。
[2] 前記架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が、前記架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、35~75質量%である、グラフト共重合体。
[3] 前記エチレン・α-オレフィン共重合体(A)がエチレン・プロピレン共重合体である、[1]または[2]に記載のグラフト共重合体。
[4] 前記エチレン・α-オレフィン共重合体(A)のエチレン単位の含有率が、前記エチレン・α-オレフィン共重合体(A)を構成する構成単位の総質量に対して、45~65質量%である、[1]~[3]のいずれか一項に記載のグラフト共重合体。
[5] 前記重合が乳化重合である、[1]~[4]のいずれか一項に記載のグラフト共重合体。
The first aspect of the present invention includes the following aspects.
[1] The weight average molecular weight (Mw) is 17 × 10 4 to 35 × 10 4 , and the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is In the presence of the ethylene / α-olefin copolymer (A) 1 to 3 or the crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A), A graft copolymer (D) obtained by polymerizing a vinyl monomer mixture (m1) containing an aromatic vinyl compound and a vinyl cyanide compound.
[2] Graft content of the crosslinked ethylene / α-olefin copolymer (C) is 35 to 75% by mass based on the total mass of the crosslinked ethylene / α-olefin copolymer (C) Copolymer.
[3] The graft copolymer according to [1] or [2], wherein the ethylene / α-olefin copolymer (A) is an ethylene / propylene copolymer.
[4] The ethylene unit content of the ethylene / α-olefin copolymer (A) is 45 to 65 based on the total mass of the structural units constituting the ethylene / α-olefin copolymer (A). The graft copolymer according to any one of [1] to [3], wherein the graft copolymer is% by mass.
[5] The graft copolymer according to any one of [1] to [4], wherein the polymerization is emulsion polymerization.
本発明の第二の態様における熱可塑性樹脂組成物は、以下の態様を包含する。
[6][1]~[5]のいずれか一項に記載のグラフト共重合体(D)と、硬質成分(J)とを含む、熱可塑性樹脂組成物。
[7]前記硬質成分(J)が、スチレン系共重合体(H)である、[6]に記載の熱可塑性樹脂組成物。
The thermoplastic resin composition in the second aspect of the present invention includes the following aspects.
[6] A thermoplastic resin composition comprising the graft copolymer (D) according to any one of [1] to [5] and a hard component (J).
[7] The thermoplastic resin composition according to [6], wherein the hard component (J) is a styrene copolymer (H).
 本発明の第三の態様における熱可塑性樹脂組成物は、以下の態様を包含する。
[8][1]~[5]のいずれか一項に記載のグラフト共重合体(D)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)とを含む、熱可塑性樹脂組成物。
The thermoplastic resin composition according to the third aspect of the present invention includes the following aspects.
[8] Methacrylic acid obtained by polymerizing the graft copolymer (D) according to any one of [1] to [5] and a vinyl monomer mixture (m3) containing a methacrylic ester. A thermoplastic resin composition comprising an ester resin (G).
 本発明の第四の態様における熱可塑性樹脂組成物は、以下の態様を包含する。
[9][1]~[5]のいずれか一項に記載のグラフト共重合体(D)と;架橋アクリル酸エステル系ゴム状重合体(E)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m2)を重合して得られたグラフト共重合体(F)と;メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)とを含み;熱可塑性樹脂組成物中のグラフト共重合体(D)に含まれるエチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の体積平均粒子径が、0.2μm~0.6μmであり;熱可塑性樹脂組成物中のグラフト共重合体(F)に含まれる架橋アクリル酸エステル系ゴム状重合体(E)の体積平均粒子径が、0.05μm~0.18μmであり;エチレン・α-オレフィン共重合体(A)、架橋エチレン・α-オレフィン共重合体(C)および架橋アクリル酸エステル系ゴム状重合体(E)の合計(100質量%)のうち、エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の割合が、15~85質量%であり、架橋アクリル酸エステル系ゴム状重合体(E)の割合が、85~15質量%である、熱可塑性樹脂組成物。
The thermoplastic resin composition according to the fourth aspect of the present invention includes the following aspects.
[9] An aromatic vinyl compound and cyanide in the presence of the graft copolymer (D) according to any one of [1] to [5]; and a crosslinked acrylate rubber polymer (E). Obtained by polymerizing a graft copolymer (F) obtained by polymerizing a vinyl monomer mixture (m2) containing a vinyl chloride compound; and a vinyl monomer mixture (m3) containing a methacrylate ester An ethylene / α-olefin copolymer (A) or a crosslinked ethylene / α-olefin copolymer contained in the graft copolymer (D) in the thermoplastic resin composition The volume average particle diameter of (C) is 0.2 μm to 0.6 μm; the crosslinked acrylic acid ester rubber-like polymer (E) contained in the graft copolymer (F) in the thermoplastic resin composition Volume average particle diameter is 0.0 μm to 0.18 μm; total of ethylene / α-olefin copolymer (A), crosslinked ethylene / α-olefin copolymer (C) and crosslinked acrylic ester rubbery polymer (E) (100 mass) %) Of the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C) is 15 to 85% by mass, and the crosslinked acrylate rubber polymer A thermoplastic resin composition having a ratio of (E) of 85 to 15% by mass.
 本発明の第五の態様における熱可塑性樹脂組成物は、以下の態様を包含する。
[10][1]~[5]のいずれか一項に記載のグラフト共重合体(D)と;ポリオルガノシロキサン(La)を含む複合ゴム状重合体(L)の存在下に、ビニル系単量体混合物(m5)を重合して得られたグラフト共重合体(M)と;メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)とを含み;熱可塑性樹脂組成物中のグラフト共重合体(D)に含まれるエチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の体積平均粒子径が、0.2μm~0.6μmであり;熱可塑性樹脂組成物中のグラフト共重合体(M)に含まれる複合ゴム状重合体(L)の体積平均粒子径が、0.05μm~0.18μmであり;エチレン・α-オレフィン共重合体(A)、架橋エチレン・α-オレフィン共重合体(C)および複合ゴム状重合体(L)の合計(100質量%)のうち、エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の割合が、15~85質量%であり、複合ゴム状重合体(L)の割合が、85~15質量%である熱可塑性樹脂組成物。
[11]前記グラフト共重合体(M)が、ポリオルガノシロキサン(La)、および(メタ)アクリル酸エステルに由来する単位と、架橋剤に由来する単位又はグラフト交叉剤に由来する単位のいずれか一方または両方と有するポリ(メタ)アクリル酸エステル(Lb)からなる複合ゴム状重合体(L1)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体成分(m5)を重合して得られたものである、[10]に記載の熱可塑性樹脂組成物。
The thermoplastic resin composition according to the fifth aspect of the present invention includes the following aspects.
[10] In the presence of the graft copolymer (D) according to any one of [1] to [5] and a composite rubber-like polymer (L) containing polyorganosiloxane (La), A graft copolymer (M) obtained by polymerizing the monomer mixture (m5); a methacrylate ester resin (G) obtained by polymerizing a vinyl monomer mixture (m3) containing a methacrylate ester The volume average particle of the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C) contained in the graft copolymer (D) in the thermoplastic resin composition The volume average particle size of the composite rubber-like polymer (L) contained in the graft copolymer (M) in the thermoplastic resin composition is 0.05 μm to 0 μm. 18μm; both ethylene and α-olefin Of the total (100% by mass) of the polymer (A), the crosslinked ethylene / α-olefin copolymer (C) and the composite rubbery polymer (L), the ethylene / α-olefin copolymer (A) or the crosslinked ethylene A thermoplastic resin composition in which the proportion of the α-olefin copolymer (C) is 15 to 85% by mass and the proportion of the composite rubbery polymer (L) is 85 to 15% by mass.
[11] The graft copolymer (M) is a unit derived from polyorganosiloxane (La) and (meth) acrylic acid ester, a unit derived from a crosslinking agent, or a unit derived from a graft crossing agent. A vinyl monomer component (m5) containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of a composite rubber-like polymer (L1) comprising a poly (meth) acrylic acid ester (Lb) having one or both The thermoplastic resin composition according to [10], which is obtained by polymerization of
本発明の第六の態様における成形品は、以下の態様を包含する。
[12][6]~[11]のいずれか一項に記載の熱可塑性樹脂組成物から形成された成形品。
The molded article according to the sixth aspect of the present invention includes the following aspects.
[12] A molded article formed from the thermoplastic resin composition according to any one of [6] to [11].
 本発明の第一の態様におけるグラフト共重合体は、耐衝撃性、耐傷付き性に優れ、光沢性、発色性にも優れた成形品を得ることができ、かつ、流動性が良好な熱可塑性樹脂組成物の材料として好適である。 The graft copolymer according to the first aspect of the present invention has excellent impact resistance and scratch resistance, can give a molded article excellent in glossiness and color developability, and has good fluidity. It is suitable as a material for the resin composition.
 本発明の第二の態様における熱可塑性樹脂組成物は、流動性が良好である。
また、本発明の第二の態様における熱可塑性樹脂組成物によれば、耐衝撃性、耐傷付き性に優れ、光沢性、発色性にも優れた成形品を得ることができる。
本発明の第二の態様における熱可塑性樹脂組成物を用いた成形品は、耐傷付き性、光沢性、発色性、耐衝撃性に優れる。
The thermoplastic resin composition according to the second aspect of the present invention has good fluidity.
Moreover, according to the thermoplastic resin composition in the second aspect of the present invention, a molded product having excellent impact resistance and scratch resistance, and excellent glossiness and color developability can be obtained.
The molded article using the thermoplastic resin composition according to the second aspect of the present invention is excellent in scratch resistance, gloss, color development, and impact resistance.
 本発明の第三の態様における熱可塑性樹脂組成物は、流動性が良好である。
また、本発明の第三の態様における熱可塑性樹脂組成物によれば、耐傷付き性、光沢性、発色性、耐衝撃性に優れる成形品を得ることができる。
 本発明の第三の態様における熱可塑性樹脂組成物を用いた成形品は、耐傷付き性、光沢性、発色性、耐衝撃性に優れる。
The thermoplastic resin composition according to the third aspect of the present invention has good fluidity.
Moreover, according to the thermoplastic resin composition in the third aspect of the present invention, a molded article excellent in scratch resistance, gloss, color development and impact resistance can be obtained.
The molded article using the thermoplastic resin composition according to the third aspect of the present invention is excellent in scratch resistance, gloss, color development and impact resistance.
 本発明の第四の態様における熱可塑性樹脂組成物は、流動性が良好である。また、本発明の第四の態様における熱可塑性樹脂組成物によれば、耐傷付き性、発色性、耐衝撃性に優れる成形品を得ることができる。
 本発明の第四の態様における熱可塑性樹脂組成物を用いた成形品は、耐傷付き性、発色性、耐衝撃性に優れる。
The thermoplastic resin composition according to the fourth aspect of the present invention has good fluidity. In addition, according to the thermoplastic resin composition of the fourth aspect of the present invention, a molded article having excellent scratch resistance, color developability and impact resistance can be obtained.
The molded article using the thermoplastic resin composition according to the fourth aspect of the present invention is excellent in scratch resistance, color development and impact resistance.
 本発明の第五の態様における熱可塑性樹脂組成物は、流動性が良好である。
また、本発明の第五の態様における熱可塑性樹脂組成物によれば、耐傷付き性、発色性、耐衝撃性、潤滑性に優れる成形品を得ることができる。
本発明の第五の態様における熱可塑性樹脂組成物を用いた成形品は、耐傷付き性、発色性、耐衝撃性、潤滑性に優れる。
The thermoplastic resin composition according to the fifth aspect of the present invention has good fluidity.
Moreover, according to the thermoplastic resin composition in the fifth aspect of the present invention, a molded article having excellent scratch resistance, color development, impact resistance and lubricity can be obtained.
The molded article using the thermoplastic resin composition according to the fifth aspect of the present invention is excellent in scratch resistance, color development, impact resistance and lubricity.
ガーゼ磨耗による耐擦り傷性試験を説明する概略図である。It is the schematic explaining the abrasion-resistance test by gauze wear. 潤滑性の評価方法を説明する概略図である。It is the schematic explaining the evaluation method of lubricity.
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
「単位」及び「構成単位」とは、高分子化合物(樹脂、重合体、共重合体)を構成するモノマー単位(単量体単位)を意味する。
 「(メタ)アクリル酸」とは、アクリル酸またはメタクリル酸を意味する。
 「成形品」とは、熱可塑性樹脂組成物を成形してなるものを意味する。
 「耐傷付き性」とは、爪等の硬く尖ったもので成形品の表面を引っ掻いたときに生じる傷(引っ掻き傷)に対する傷付きにくさ(耐引っ掻き傷性)および軍手、ガーゼ、布等の柔らかいもので成形品の表面を擦ったときに生じる傷(擦り傷)に対する傷付きにくさ(耐擦り傷性)の両方を意味する。
 「明度(L)」とは、JIS Z 8729において採用されているL表色系における色彩値のうちの明度の値(L)を意味する。
 「SCE方式」とは、JIS Z 8722に準拠した分光測色計を用い、光トラップによって正反射光を除去して色を測る方法を意味する。
The following definitions of terms apply throughout this specification and the claims.
“Unit” and “structural unit” mean a monomer unit (monomer unit) constituting a polymer compound (resin, polymer, copolymer).
“(Meth) acrylic acid” means acrylic acid or methacrylic acid.
“Molded product” means a product formed by molding a thermoplastic resin composition.
“Scratch resistance” refers to the resistance to scratches (scratch resistance) caused by scratching the surface of a molded article with a hard, pointed object such as a nail, and work gloves, gauze, cloth, etc. It means both scratch resistance (scratch resistance) against scratches (scratches) that occur when the surface of a molded product is rubbed with a soft material.
“Lightness (L * )” means a lightness value (L * ) among color values in the L * a * b * color system adopted in JIS Z 8729.
The “SCE method” means a method of measuring a color by using a spectrocolorimeter in accordance with JIS Z 8722 and removing specularly reflected light with an optical trap.
 以下、本発明を詳細に説明する。
「グラフト共重合体(D)」
 本発明の第一の態様におけるグラフト共重合体(D)は、エチレン・α-オレフィン共重合体(A)またはエチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下で、ビニル系単量体混合物(m1)を重合したものである。
 本発明において、「エチレン・α-オレフィン共重合体(A)を架橋処理した」とは、エチレン・α-オレフィン共重合体(A)を単独で架橋処理する場合はもちろんのこと、エチレン・α-オレフィン共重合体(A)と後述する酸変性オレフィン重合体(K)との混合物を架橋処理する場合や、エチレン・α-オレフィン共重合体(A)または前記混合物をオレフィン樹脂水性分散体(B)とした後に架橋処理する場合も含む。
 本願明細書において、「架橋処理」とは、高分子鎖を分子内及び/または分子間で連結させることを意味する。
また、架橋エチレン・α-オレフィン共重合体(C)は、エチレン・α-オレフィン共重合体(A)を単独で架橋処理したものと、酸変性オレフィン重合体(K)を単独で架橋処理したものとの混合物であってもよい。
Hereinafter, the present invention will be described in detail.
“Graft Copolymer (D)”
The graft copolymer (D) in the first embodiment of the present invention is an ethylene / α-olefin copolymer (A) or a crosslinked ethylene / α-olefin obtained by crosslinking the ethylene / α-olefin copolymer (A). The vinyl monomer mixture (m1) is polymerized in the presence of the copolymer (C).
In the present invention, “the ethylene / α-olefin copolymer (A) is subjected to a crosslinking treatment” means not only the case where the ethylene / α-olefin copolymer (A) is crosslinked alone, but also the ethylene / α-olefin copolymer (A). -When a mixture of the olefin copolymer (A) and the acid-modified olefin polymer (K) described later is subjected to a crosslinking treatment, or when the ethylene / α-olefin copolymer (A) or the mixture is mixed with an aqueous olefin resin dispersion ( Including the case of crosslinking treatment after B).
In the present specification, “crosslinking treatment” means that polymer chains are linked within a molecule and / or between molecules.
The crosslinked ethylene / α-olefin copolymer (C) was obtained by crosslinking the ethylene / α-olefin copolymer (A) alone and the acid-modified olefin polymer (K) alone. It may be a mixture with things.
 以下、本発明の第一の態様におけるグラフト共重合体(D)を構成する各成分について説明する。
なお、以下において、本発明の第二の態様における「熱可塑性樹脂組成物(I)」は、本発明の第一の態様におけるグラフト共重合体(D)と、後述する硬質成分(J)とを含有するものである。
また、「成形品」とは、熱可塑性樹脂組成物(I)を成形してなるものである。
Hereafter, each component which comprises the graft copolymer (D) in the 1st aspect of this invention is demonstrated.
In the following, the “thermoplastic resin composition (I)” in the second aspect of the present invention includes the graft copolymer (D) in the first aspect of the present invention, the hard component (J) described later, and It contains.
The “molded product” is formed by molding the thermoplastic resin composition (I).
<エチレン・α-オレフィン共重合体(A)>
 本発明においては、成形品が優れた耐衝撃性を発現するために、エチレン・α-オレフィン共重合体(A)を用いることが重要である。
 エチレン・α-オレフィン共重合体(A)は、エチレンとα-オレフィンを公知の重合方法により共重合することにより得られる、エチレン単位とα-オレフィン単位とからなる共重合体であり、5-エチリデン-2-ノルボルネンなどからなる非共役ジエン単位を含まない。
 例えば、エチレン・α-オレフィン共重合体(A)の代わりに、エチレン・プロピレン・非共役ジエン共重合体を用いた場合には、成形品の耐衝撃性が低下する。
<Ethylene / α-olefin copolymer (A)>
In the present invention, it is important to use the ethylene / α-olefin copolymer (A) so that the molded article exhibits excellent impact resistance.
The ethylene / α-olefin copolymer (A) is a copolymer comprising ethylene units and α-olefin units, obtained by copolymerizing ethylene and α-olefins by a known polymerization method. Does not contain non-conjugated diene units such as ethylidene-2-norbornene.
For example, when an ethylene / propylene / non-conjugated diene copolymer is used instead of the ethylene / α-olefin copolymer (A), the impact resistance of the molded article is lowered.
 α-オレフィンとしては、炭素数が3以上のものが好ましく、具体的には、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-ウンデセン、1-イコセン、1-ドコセン等が挙げられる。これらの中でも炭素数が3~20のα-オレフィンが好ましく、プロピレンが特に好ましい。
 エチレン・α-オレフィン共重合体(A)として、α-オレフィンがプロピレンであるエチレン・プロピレン共重合体を用いた場合には、成形品の耐衝撃性、発色性が特に優れる。
As the α-olefin, those having 3 or more carbon atoms are preferable, and specifically, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene. , 1-icosene, 1-docosene and the like. Among these, α-olefins having 3 to 20 carbon atoms are preferable, and propylene is particularly preferable.
When the ethylene / α-olefin copolymer (A) is an ethylene / propylene copolymer in which the α-olefin is propylene, the impact resistance and color developability of the molded product are particularly excellent.
 エチレン・α-オレフィン共重合体(A)のエチレン単位の含有率は、エチレン・α-オレフィン共重合体(A)を構成する全ての構成単位の合計を100質量%としたときに、45~65質量%であることが好ましく、50~60質量%であることがより好ましい。
 エチレン単位の含有率が上記範囲内であれば、成形品の耐傷付き性、耐衝撃性のバランスが優れる。特に、エチレン単位の含有率が50~60質量%であると、成形品の耐傷付き性、耐衝撃性がより向上する。
ここで「エチレン単位の含有率」とは、エチレン・α-オレフィン共重合体(A)の合成において使用する単量体の総質量(即ち、エチレン・α-オレフィン共重合体(A)を構成する構成単位に対応する単量体の総質量)に対する、エチレン単位に対応する単量体の質量から算出することができる。
The ethylene unit content of the ethylene / α-olefin copolymer (A) is 45 to 45% when the total of all the structural units constituting the ethylene / α-olefin copolymer (A) is 100% by mass. It is preferably 65% by mass, and more preferably 50 to 60% by mass.
When the ethylene unit content is within the above range, the balance of scratch resistance and impact resistance of the molded product is excellent. Particularly when the ethylene unit content is 50 to 60% by mass, the scratch resistance and impact resistance of the molded product are further improved.
Here, the “ethylene unit content” means the total mass of monomers used in the synthesis of the ethylene / α-olefin copolymer (A) (that is, constituting the ethylene / α-olefin copolymer (A)). The total mass of the monomer corresponding to the structural unit to be calculated) can be calculated from the mass of the monomer corresponding to the ethylene unit.
 本発明においては、熱可塑性樹脂組成物(I)の流動性が向上し、成形品が優れた耐傷付き性、光沢性および耐衝撃性を発現するために、質量平均分子量(Mw)、および質量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)が特定の範囲にあるエチレン・α-オレフィン共重合体(A)を用いることが、架橋エチレン・α-オレフィン共重合体(C)の架橋構造の制御の観点から重要である。 In the present invention, in order to improve the fluidity of the thermoplastic resin composition (I) and to exhibit excellent scratch resistance, glossiness and impact resistance of the molded article, the mass average molecular weight (Mw), and the mass The use of an ethylene / α-olefin copolymer (A) having a specific molecular weight distribution (Mw / Mn) represented by the ratio of the average molecular weight (Mw) to the number average molecular weight (Mn) is a cross-linked ethylene. -It is important from the viewpoint of controlling the cross-linked structure of the α-olefin copolymer (C).
 エチレン・α-オレフィン共重合体(A)の質量平均分子量(Mw)は17×10~35×10であり、26×10~32×10が好ましい。
 質量平均分子量(Mw)が17×10よりも小さい場合には、成形品の耐傷付き性、耐衝撃性が劣る。一方、質量平均分子量(Mw)が35×10よりも大きい場合には、熱可塑性樹脂組成物(I)の流動性および成形品の光沢性が劣る。質量平均分子量(Mw)が26×10~32×10の範囲内にある場合には、熱可塑性樹脂組成物(I)の流動性および成形品の耐傷付き性、耐衝撃性、光沢性が特に優れる。
The mass average molecular weight (Mw) of the ethylene / α-olefin copolymer (A) is 17 × 10 4 to 35 × 10 4 , preferably 26 × 10 4 to 32 × 10 4 .
When the mass average molecular weight (Mw) is smaller than 17 × 10 4 , the scratch resistance and impact resistance of the molded product are inferior. On the other hand, when the mass average molecular weight (Mw) is larger than 35 × 10 4 , the fluidity of the thermoplastic resin composition (I) and the gloss of the molded product are inferior. When the mass average molecular weight (Mw) is in the range of 26 × 10 4 to 32 × 10 4 , the fluidity of the thermoplastic resin composition (I) and the scratch resistance, impact resistance, and gloss of the molded product Is particularly excellent.
 エチレン・α-オレフィン共重合体(A)の質量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は1~3であり、1.9~2.5が好ましい。
 分子量分布(Mw/Mn)が3よりも大きい場合には、成形品の耐傷付き性および耐衝撃性が劣る。分子量分布(Mw/Mn)が1.9~2.5の場合には、熱可塑性樹脂組成物(I)の流動性および成形品の耐傷付き性、耐衝撃性が特に優れる。
The molecular weight distribution (Mw / Mn) represented by the ratio between the mass average molecular weight (Mw) and the number average molecular weight (Mn) of the ethylene / α-olefin copolymer (A) is 1 to 3, and 1.9 to 2.5 is preferred.
When the molecular weight distribution (Mw / Mn) is larger than 3, the molded article has poor scratch resistance and impact resistance. When the molecular weight distribution (Mw / Mn) is 1.9 to 2.5, the fluidity of the thermoplastic resin composition (I), the scratch resistance and the impact resistance of the molded product are particularly excellent.
 エチレン・α-オレフィン共重合体(A)の質量平均分子量(Mw)および数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定し、標準ポリスチレンで換算した値である。 The mass average molecular weight (Mw) and number average molecular weight (Mn) of the ethylene / α-olefin copolymer (A) are values measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
 本発明で用いられるエチレン・α-オレフィン共重合体(A)は、その製造方法が限定されるものではないが、通常、メタロセン触媒、またはチーグラー・ナッタ触媒を用いて製造されたものが使用さる。 The ethylene / α-olefin copolymer (A) used in the present invention is not limited in its production method, but is usually produced using a metallocene catalyst or a Ziegler-Natta catalyst. .
 メタロセン触媒としては、ジルコニウム、チタン、ハフニウムなどの遷移金属にシクロペンタジエニル骨格を有する有機化合物、ハロゲン原子などが配位したメタロセン錯体と、有機アルミニウム化合物、有機ホウ素化合物などを組み合わせた触媒が挙げられる。
 チーグラー・ナッタ触媒としては、チタン、バナジウム、ジルコニウム、ハフニウムなどの遷移金属のハロゲン化物と有機アルミニウム化合物、有機ホウ素化合物などを組み合わせた触媒が挙げられる。
Examples of the metallocene catalyst include a combination of an organic compound having a cyclopentadienyl skeleton with a transition metal such as zirconium, titanium, or hafnium, a metallocene complex in which a halogen atom or the like is coordinated, and an organoaluminum compound or an organoboron compound. It is done.
Examples of the Ziegler-Natta catalyst include a catalyst in which a transition metal halide such as titanium, vanadium, zirconium, and hafnium is combined with an organoaluminum compound or an organoboron compound.
 エチレン・α-オレフィン共重合体(A)を重合する際の重合方法としては、例えば上記の触媒の存在下に、エチレンとα-オレフィンとを溶液中で共重合させる方法が挙げられる。この際、通常、ベンゼン、トルエン、キシレン、ペンタン、ヘキサン、ヘプタン、オクタンなどの炭化水素溶媒が用いられる。これらの炭化水素溶媒は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。また、原料のα-オレフィンを溶媒として用いてもよい。
 なお、エチレンやα-オレフィンの供給量、水素などの分子量調節剤の種類や量、触媒の種類や量、反応温度や圧力などの反応条件を変更することにより、エチレン・α-オレフィン共重合体(A)のエチレン単位の含有率、質量平均分子量(Mw)および分子量分布(Mw/Mn)を調整することができる。
本発明の第一の態様において、エチレン・α-オレフィン共重合体(A)としては、後述の「熱可塑性樹脂組成物(I)」において<エチレン・α-オレフィン共重合体(A)>で述べるものと同様の共重合体も使用することができる。
Examples of the polymerization method for polymerizing the ethylene / α-olefin copolymer (A) include a method of copolymerizing ethylene and an α-olefin in a solution in the presence of the above catalyst. In this case, a hydrocarbon solvent such as benzene, toluene, xylene, pentane, hexane, heptane, octane is usually used. These hydrocarbon solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them. In addition, a raw material α-olefin may be used as a solvent.
By changing the supply conditions of ethylene and α-olefin, the type and amount of molecular weight regulators such as hydrogen, the type and amount of catalyst, the reaction temperature and pressure, etc., the ethylene / α-olefin copolymer The ethylene unit content, mass average molecular weight (Mw), and molecular weight distribution (Mw / Mn) of (A) can be adjusted.
In the first embodiment of the present invention, the ethylene / α-olefin copolymer (A) is represented by <ethylene / α-olefin copolymer (A)> in “thermoplastic resin composition (I)” described later. Copolymers similar to those mentioned can also be used.
<酸変性オレフィン重合体(K)>
 上述したように、架橋エチレン・α-オレフィン共重合体(C)は、エチレン・α-オレフィン共重合体(A)を架橋処理したものを含み、エチレン・α-オレフィン共重合体(A)と酸変性オレフィン重合体(K)との混合物を架橋処理したものでもよいし、エチレン・α-オレフィン共重合体(A)を単独で架橋処理したものと、酸変性オレフィン重合体(K)を単独で架橋処理したものとの混合物であってもよい。
<Acid-modified olefin polymer (K)>
As described above, the crosslinked ethylene / α-olefin copolymer (C) includes those obtained by crosslinking the ethylene / α-olefin copolymer (A), and the ethylene / α-olefin copolymer (A) and A mixture with the acid-modified olefin polymer (K) may be cross-linked, or the ethylene / α-olefin copolymer (A) may be cross-linked alone and the acid-modified olefin polymer (K) alone. It may also be a mixture with a cross-linked product.
 酸変性オレフィン重合体(K)としては、質量平均分子量が1,000~5,000のポリエチレン、ポリプロピレンなどのオレフィン重合体を、不飽和カルボン酸化合物などの官能基を有する化合物で変性したものが挙げられる。
本明細書において「変性」とは、分子鎖中や分子末端に官能基を有する化合物を結合させることを意味する。
 不飽和カルボン酸化合物としては、例えばアクリル酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸およびマレイン酸モノアミドが挙げられる。
 架橋エチレン・α-オレフィン共重合体(C)が、エチレン・α-オレフィン共重合体(A)と酸変性オレフィン重合体(K)との混合物を架橋処理したものである場合、後述するビニル系単量体混合物を安定して重合できる。特に乳化重合法によりビニル系単量体混合物を重合する場合、乳化安定性を高くできる。
The acid-modified olefin polymer (K) is obtained by modifying an olefin polymer such as polyethylene or polypropylene having a mass average molecular weight of 1,000 to 5,000 with a compound having a functional group such as an unsaturated carboxylic acid compound. Can be mentioned.
In this specification, “modification” means that a compound having a functional group in a molecular chain or at a molecular end is bound.
Examples of the unsaturated carboxylic acid compound include acrylic acid, maleic acid, itaconic acid, maleic anhydride, itaconic anhydride and maleic acid monoamide.
When the crosslinked ethylene / α-olefin copolymer (C) is a product obtained by crosslinking a mixture of the ethylene / α-olefin copolymer (A) and the acid-modified olefin polymer (K), A monomer mixture can be polymerized stably. In particular, when a vinyl monomer mixture is polymerized by an emulsion polymerization method, the emulsion stability can be increased.
 架橋エチレン・α-オレフィン共重合体(C)が酸変性オレフィン重合体(K)を含む場合、中の酸変性オレフィン重合体(K)の割合は、エチレン・α-オレフィン共重合体(A)100質量部に対して、1~40質量部が好ましい。酸変性オレフィン重合体(K)の割合が上記範囲内であれば、成形品の耐傷付き性と耐衝撃性のバランスがより優れる。 When the crosslinked ethylene / α-olefin copolymer (C) contains the acid-modified olefin polymer (K), the ratio of the acid-modified olefin polymer (K) in the ethylene / α-olefin copolymer (A) The amount is preferably 1 to 40 parts by mass with respect to 100 parts by mass. When the ratio of the acid-modified olefin polymer (K) is within the above range, the balance between the scratch resistance and impact resistance of the molded product is more excellent.
 酸変性オレフィン重合体(K)の混合のタイミングは特に制限されず、エチレン・α-オレフィン共重合体(A)と酸変性オレフィン重合体(K)とを混合した後に架橋処理をしてもよいし、エチレン・α-オレフィン共重合体(A)と酸変性オレフィン重合体(K)をそれぞれ単独で架橋処理した後に、これらを混合してもよい。
 エチレン・α-オレフィン共重合体(A)と酸変性オレフィン重合体(K)との混合方法としては、均一に分散できれば特に制限されないが、ニーダー、バンバリーミキサー、多軸スクリュー押出機などでの溶融混練法が好ましい。
The timing of mixing the acid-modified olefin polymer (K) is not particularly limited, and the ethylene / α-olefin copolymer (A) and the acid-modified olefin polymer (K) may be mixed and then crosslinked. Then, the ethylene / α-olefin copolymer (A) and the acid-modified olefin polymer (K) may be individually crosslinked and then mixed.
The mixing method of the ethylene / α-olefin copolymer (A) and the acid-modified olefin polymer (K) is not particularly limited as long as it can be uniformly dispersed. A kneading method is preferred.
<オレフィン樹脂水性分散体(B)>
オレフィン樹脂水性分散体(B)は、エチレン・α-オレフィン共重合体(A)を水性媒体に分散させたものである。
 上述したように、架橋エチレン・α-オレフィン共重合体(C)は、エチレン・α-オレフィン共重合体(A)を架橋処理したものであってもよく、またはエチレン・α-オレフィン共重合体(A)と酸変性オレフィン重合体(K)との混合物をオレフィン樹脂水性分散体(B)とした後に架橋処理したものでもよい。
<Olefin resin aqueous dispersion (B)>
The aqueous olefin resin dispersion (B) is obtained by dispersing the ethylene / α-olefin copolymer (A) in an aqueous medium.
As described above, the crosslinked ethylene / α-olefin copolymer (C) may be obtained by crosslinking the ethylene / α-olefin copolymer (A), or the ethylene / α-olefin copolymer. A mixture of (A) and the acid-modified olefin polymer (K) may be subjected to a crosslinking treatment after making the aqueous olefin resin dispersion (B).
 オレフィン樹脂水性分散体(B)を調製する方法としては限定されないが、例えばニーダー、バンバリーミキサー、多軸スクリュー押出機などの公知の溶融混練手段でエチレン・α-オレフィン共重合体(A)、またはエチレン・α-オレフィン共重合体(A)と酸変性オレフィン重合体(K)との混合物を溶融混練し、機械的剪断力を与えて分散させ、乳化剤を含む水性媒体に添加する方法;エチレン・α-オレフィン共重合体(A)または前記混合物をペンタン、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレンなどの炭化水素溶媒に乳化剤とともに溶解し、水性媒体に添加して乳化させた後、十分に攪拌し、炭化水素溶媒を留去する方法などが好ましい。 The method for preparing the aqueous dispersion of the olefin resin (B) is not limited. For example, the ethylene / α-olefin copolymer (A) or the like by a known melt-kneading means such as a kneader, a Banbury mixer, a multi-screw extruder, or the like. A method in which a mixture of an ethylene / α-olefin copolymer (A) and an acid-modified olefin polymer (K) is melt-kneaded, dispersed by applying mechanical shearing force, and added to an aqueous medium containing an emulsifier; The α-olefin copolymer (A) or the mixture is dissolved in a hydrocarbon solvent such as pentane, hexane, heptane, benzene, toluene, xylene together with an emulsifier, added to an aqueous medium and emulsified, and then sufficiently stirred. A method of distilling off the hydrocarbon solvent is preferred.
 オレフィン樹脂水性分散体(B)の調製の際に用いることができる乳化剤としては、通常に用いられるものであればよく、例えば、長鎖アルキルカルボン酸塩、スルホコハク酸アルキルエステル塩、アルキルベンゼンスルホン酸塩等の公知のものが挙げられる。
 また、乳化剤の使用量は、熱可塑性樹脂組成物(I)の熱着色を抑制でき、オレフィン樹脂水性分散体(B)の粒子径制御が容易であることから、乳化剤としてオレイン酸カリウムを用いる場合にはエチレン・α-オレフィン共重合体(A)100質量部に対して1~8質量部が好ましい。
The emulsifier that can be used in the preparation of the aqueous dispersion of the olefin resin (B) may be any conventionally used emulsifier such as a long-chain alkyl carboxylate, a sulfosuccinic acid alkyl ester salt, and an alkylbenzene sulfonate. And the like.
In addition, the amount of emulsifier used can suppress thermal coloring of the thermoplastic resin composition (I), and the particle size of the aqueous olefin resin dispersion (B) can be easily controlled. Therefore, when potassium oleate is used as the emulsifier Is preferably 1 to 8 parts by mass with respect to 100 parts by mass of the ethylene / α-olefin copolymer (A).
 オレフィン樹脂水性分散体(B)の体積平均粒子径は、成形品の物性バランスが優れることから、0.2~0.5μmであることが好ましい。
 体積平均粒子径が上記範囲内であれば、成形品の耐衝撃性がより向上する。
 オレフィン樹脂水性分散体(B)の体積平均粒子径を制御する方法としては、乳化剤の種類または使用量、酸変性オレフィン重合体(K)を併用する場合はその種類または含有量、混練時に加える剪断力、温度条件等を調整する方法が挙げられる。
The volume average particle diameter of the aqueous olefin resin dispersion (B) is preferably 0.2 to 0.5 μm because the physical property balance of the molded product is excellent.
When the volume average particle diameter is within the above range, the impact resistance of the molded product is further improved.
As a method for controlling the volume average particle diameter of the aqueous olefin resin dispersion (B), the type or amount of the emulsifier, the type or content when the acid-modified olefin polymer (K) is used in combination, shear applied during kneading. The method of adjusting force, temperature conditions, etc. is mentioned.
 本願明細書において、体積平均粒子径は、レーザ回折・光散乱法により測定した値である。 In the present specification, the volume average particle diameter is a value measured by a laser diffraction / light scattering method.
<架橋エチレン・α-オレフィン共重合体(C)>
 架橋エチレン・α-オレフィン共重合体(C)は、エチレン・α-オレフィン共重合体(A)を架橋処理することにより得られる。具体的には、エチレン・α-オレフィン共重合体(A)を単独で架橋処理する方法;エチレン・α-オレフィン共重合体(A)と酸変性オレフィン重合体(K)との混合物を架橋処理する方法;エチレン・α-オレフィン共重合体(A)と酸変性オレフィン重合体(K)とをそれぞれ単独で架橋処理した後に、これらを混合する方法;エチレン・α-オレフィン共重合体(A)、またはエチレン・α-オレフィン共重合体(A)と酸変性オレフィン重合体(K)との混合物をオレフィン樹脂水性分散体(B)とした後に架橋処理する方法などにより得られる。
<Crosslinked ethylene / α-olefin copolymer (C)>
The crosslinked ethylene / α-olefin copolymer (C) can be obtained by crosslinking the ethylene / α-olefin copolymer (A). Specifically, a method in which the ethylene / α-olefin copolymer (A) is crosslinked alone; a mixture of the ethylene / α-olefin copolymer (A) and the acid-modified olefin polymer (K) is crosslinked. A method in which the ethylene / α-olefin copolymer (A) and the acid-modified olefin polymer (K) are each subjected to crosslinking treatment alone and then mixed; ethylene / α-olefin copolymer (A) Alternatively, it may be obtained by a method in which a mixture of an ethylene / α-olefin copolymer (A) and an acid-modified olefin polymer (K) is made into an olefin resin aqueous dispersion (B) and then subjected to a crosslinking treatment.
 架橋処理の方法としては、有機過酸化物による架橋処理法、電離性放射線による架橋処理など、公知の架橋処理の方法を使用できる。中でも、架橋エチレン・α-オレフィン共重合体(C)の架橋構造の均一性の観点から、有機過酸化物を用いての架橋処理が好ましく、オレフィン樹脂水性分散体(B)の有機過酸化物を用いての架橋処理が特に好ましい。
 有機過酸化物による架橋処理では有機過酸化物の添加量、加熱温度、加熱時間などを調節することによりゲル含有率を容易に調整することができる。
 なお、オレフィン樹脂水性分散体(B)を有機過酸化物により架橋処理した架橋エチレン・α-オレフィン共重合体(C)の水性分散体の体積平均粒子径は、オレフィン樹脂水性分散体(B)の体積平均粒子径に対して変化はない。
As a crosslinking treatment method, a known crosslinking treatment method such as a crosslinking treatment method using an organic peroxide or a crosslinking treatment using ionizing radiation can be used. Among these, from the viewpoint of the uniformity of the crosslinked structure of the crosslinked ethylene / α-olefin copolymer (C), a crosslinking treatment using an organic peroxide is preferable, and the organic peroxide of the aqueous olefin resin dispersion (B) is preferable. The crosslinking treatment using is particularly preferred.
In the crosslinking treatment with an organic peroxide, the gel content can be easily adjusted by adjusting the amount of the organic peroxide added, the heating temperature, the heating time, and the like.
The volume average particle size of the aqueous dispersion of the crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the aqueous dispersion of the olefin resin (B) with an organic peroxide is the olefin resin aqueous dispersion (B). There is no change with respect to the volume average particle diameter.
 架橋処理に使用できる有機過酸化物としては、パーオキシエステル化合物、パーオキシケタール化合物、ジアルキルパーオキサイド化合物などの有機過酸化物が挙げられる。
 パーオキシエステル化合物の具体例としては、α,α’-ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ2-ヘキシルヘキサノエート、t-ブチルパーオキシ2-ヘキシルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイックアシッド、t-ブチルパーオキシ3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ビス(m-トルオイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテートト、t-ブチルパーオキシ-m-トルオイルベンゾエート、t-ブチルパーオキシベンゾエート、ビス(t-ブチルパーオキシ)イソフタレートなどが挙げられる。
Examples of the organic peroxide that can be used for the crosslinking treatment include organic peroxides such as peroxyester compounds, peroxyketal compounds, and dialkyl peroxide compounds.
Specific examples of peroxyester compounds include α, α′-bis (neodecanoylperoxy) diisopropylbenzene, cumylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecano 1-cyclohexyl-1-methylethylperoxyneodecanoate, t-hexylperoxyneodecanoate, t-butylperoxyneodecanoate, t-hexylperoxypivalate, t-butylperoxy Pivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane, 1-cyclohexyl- 1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2-hexyl Xanoate, t-butylperoxy 2-hexylhexanoate, t-butylperoxyisobutyrate, t-hexylperoxyisopropyl monocarbonate, t-butylperoxymaleic acid, t-butylperoxy3,5 5-trimethylhexanoate, t-butylperoxylaurate, 2,5-dimethyl-2,5-bis (m-toluoylperoxy) hexane, t-butylperoxyisopropyl monocarbonate, t-butylperoxy 2-ethylhexyl monocarbonate, t-hexylperoxybenzoate, 2,5-dimethyl-2,5-bis (benzoylperoxy) hexane, t-butylperoxyacetate, t-butylperoxy-m-toluoylbenzoate , T-Butylperoxybenzoe And bis (t-butylperoxy) isophthalate.
 パーオキシケタール化合物の具体例としては、1,1-ビス(t-ヘキシルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、2,2-ビス(t-ブチルパーオキシ)ブタン、n-ブチル4,4-ビス(t-ブチルパーオキシ)バレレート、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパンなどが挙げられる。 Specific examples of the peroxyketal compound include 1,1-bis (t-hexylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis. (T-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) cyclododecane, 2,2-bis (T-butylperoxy) butane, n-butyl 4,4-bis (t-butylperoxy) valerate, 2,2-bis (4,4-di-t-butylperoxycyclohexyl) propane .
 ジアルキルパーオキサイド化合物の具体例としては、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3などが挙げられる。 Specific examples of dialkyl peroxide compounds include α, α′-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane. , T-butylcumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3, and the like.
 これら有機過酸化物は、1種を単独で用いてもよいし、2種類以上を併用してもよい。
 上記の有機過酸化物の中でも、ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイドなどのジアルキルパーオキサイド化合物が、架橋構造の均一性の観点から特に好ましい。t-ブチルクミルパーオキサイドの使用量の目安は、エチレン・α-オレフィン共重合体(A)100質量部、またはエチレン・α-オレフィン共重合体(A)と酸変性オレフィン重合体(K)の合計100質量部に対して、通常0.1~10質量部の範囲である。
These organic peroxides may be used alone or in combination of two or more.
Among the above organic peroxides, dialkyl peroxide compounds such as dicumyl peroxide, t-butyl cumyl peroxide, and di-t-butyl peroxide are particularly preferable from the viewpoint of the uniformity of the crosslinked structure. The standard of the amount of t-butylcumyl peroxide used is 100 parts by mass of the ethylene / α-olefin copolymer (A) or the ethylene / α-olefin copolymer (A) and the acid-modified olefin polymer (K). It is usually in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass in total.
 また、架橋処理の際には、架橋エチレン・α-オレフィン共重合体(C)のゲル含有率を調整するために、多官能性化合物を添加してもよい。
 多官能性化合物としては、例えばジビニルベンゼン、アリルメタクリレート、エチレングリコールジメタクリレート、1,3-ブチレンジメタクリレート、テトラエチレングリコールジアクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ペンタエリスリトールテトラアクリレート等が挙げられる。
 これら多官能性化合物は、1種を単独で用いてもよいし、2種類以上を併用してもよい。
 上記の多官能性化合物の中でも、ジビニルベンゼンが好ましい。ジビニルベンゼンの使用量の目安は、エチレン・α-オレフィン共重合体(A)100質量部、またはエチレン・α-オレフィン共重合体(A)と酸変性オレフィン重合体(K)の合計100質量部に対して、通常0~10質量部の範囲である。
In the crosslinking treatment, a polyfunctional compound may be added in order to adjust the gel content of the crosslinked ethylene / α-olefin copolymer (C).
Examples of the polyfunctional compound include divinylbenzene, allyl methacrylate, ethylene glycol dimethacrylate, 1,3-butylene dimethacrylate, tetraethylene glycol diacrylate, triallyl cyanurate, triallyl isocyanurate, pentaerythritol tetraacrylate and the like. It is done.
These polyfunctional compounds may be used individually by 1 type, and may use 2 or more types together.
Of the above polyfunctional compounds, divinylbenzene is preferred. The amount of divinylbenzene used is 100 parts by mass of ethylene / α-olefin copolymer (A) or 100 parts by mass of ethylene / α-olefin copolymer (A) and acid-modified olefin polymer (K). On the other hand, it is usually in the range of 0 to 10 parts by mass.
架橋処理の時間は、1時間~12時間が好ましく、2時間~8時間がより好ましい。
架橋処理の温度は、60℃~150℃が好ましく、100℃~140℃がより好ましい。
The crosslinking treatment time is preferably 1 hour to 12 hours, more preferably 2 hours to 8 hours.
The crosslinking treatment temperature is preferably 60 ° C. to 150 ° C., more preferably 100 ° C. to 140 ° C.
 本発明においては、成形品が優れた耐傷付き性、耐衝撃性、発色性を発現するために、架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が特定の範囲にあることが重要である。
 架橋エチレン・α-オレフィン共重合体(C)のゲル含有率は、成形品の耐傷付き性と耐衝撃性とのバランスの観点から、架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、35~75質量%であり、40~70質量%が好ましく、45~65質量%がより好ましい。特に、架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が35質量%以上であれば、成形品の発色性も向上する。
In the present invention, the gel content of the crosslinked ethylene / α-olefin copolymer (C) may be within a specific range in order that the molded product exhibits excellent scratch resistance, impact resistance, and color developability. is important.
The gel content of the crosslinked ethylene / α-olefin copolymer (C) is determined based on the total mass of the crosslinked ethylene / α-olefin copolymer (C) from the viewpoint of the balance between scratch resistance and impact resistance of the molded product. On the other hand, it is 35 to 75% by mass, preferably 40 to 70% by mass, and more preferably 45 to 65% by mass. In particular, if the gel content of the crosslinked ethylene / α-olefin copolymer (C) is 35% by mass or more, the color developability of the molded product is improved.
 架橋エチレン・α-オレフィン共重合体(C)のゲル含有率は、以下のようにして測定できる。
 まず、架橋エチレン・α-オレフィン共重合体(C)を0.5g採取し、これを凝固粉試料[D1]とする。
 凝固粉試料[D1]を、200mL、110℃のトルエン中に5時間浸漬し、次いで、200メッシュ金網にて濾過し、残渣を乾燥し、その乾燥物[D2]の質量を測定し、下記式(1)によりゲル含有率を算出する。なお、架橋エチレン・α-オレフィン共重合体(C)が水性分散体または溶媒分散体の状態で得られる場合は、架橋エチレン・α-オレフィン共重合体(C)の水性または溶媒分散体を希硫酸にて凝固させ、水洗乾燥させたものを0.5g採取し、これを凝固粉試料[D1]とする。
 ゲル含有率(質量%)=乾燥物質量[D2](g)/凝固粉試料質量[D1](g)×100 ・・・(1)
本発明の第一の態様において、架橋エチレン・α-オレフィン共重合体(C)としては、後述の「熱可塑性樹脂組成物(I)」において<架橋エチレン・α-オレフィン共重合体(C)>で述べたものと同様の共重合体も使用することができる。
The gel content of the crosslinked ethylene / α-olefin copolymer (C) can be measured as follows.
First, 0.5 g of the cross-linked ethylene / α-olefin copolymer (C) was collected and used as a coagulated powder sample [D1].
The coagulated powder sample [D1] is immersed in 200 mL of 110 ° C. toluene for 5 hours, then filtered through a 200 mesh wire net, the residue is dried, and the mass of the dried product [D2] is measured. The gel content is calculated from (1). When the crosslinked ethylene / α-olefin copolymer (C) is obtained in the form of an aqueous dispersion or solvent dispersion, the aqueous or solvent dispersion of the crosslinked ethylene / α-olefin copolymer (C) is diluted. 0.5 g of the sample coagulated with sulfuric acid, washed with water and dried is taken as a coagulated powder sample [D1].
Gel content rate (mass%) = dry substance amount [D2] (g) / coagulated powder sample mass [D1] (g) × 100 (1)
In the first embodiment of the present invention, as the crosslinked ethylene / α-olefin copolymer (C), a “crosslinked ethylene / α-olefin copolymer (C)” described later in “thermoplastic resin composition (I)” is used. Copolymers similar to those described in> can also be used.
<ビニル系単量体混合物(m1)>
 本発明の第一の態様、及び第二の態様において、ビニル系単量体混合物(m1)は、芳香族ビニル化合物(以下、「芳香族ビニル系単量体」ともいう。)およびシアン化ビニル化合物(以下、「シアン化ビニル系単量体」ともいう。)を必須成分として含み、これらと共重合可能な他のビニル系単量体を任意成分として含む混合物である。
<Vinyl monomer mixture (m1)>
In the first and second aspects of the present invention, the vinyl monomer mixture (m1) is an aromatic vinyl compound (hereinafter also referred to as “aromatic vinyl monomer”) and vinyl cyanide. It is a mixture containing a compound (hereinafter also referred to as “vinyl cyanide monomer”) as an essential component and another vinyl monomer copolymerizable therewith as an optional component.
 芳香族ビニル系単量体としては、スチレン、α-メチルスチレン、ビニルトルエン、o-エチルスチレン、およびo-,p-ジクロロスチレン等が挙げられる。
 これら芳香族ビニル系単量体は、1種を単独で用いてもよいし、2種類以上を併用してもよい。
 上記の芳香族ビニル系単量体の中でも、スチレン、α-メチルスチレンが好ましい。
Examples of the aromatic vinyl monomer include styrene, α-methylstyrene, vinyltoluene, o-ethylstyrene, and o-, p-dichlorostyrene.
These aromatic vinyl monomers may be used alone or in combination of two or more.
Of the above aromatic vinyl monomers, styrene and α-methylstyrene are preferred.
 シアン化ビニル系単量体としては、アクリロニトリル、メタクリロニトリル等が挙げられる。
 これらシアン化ビニル系単量体は、1種を単独で用いてもよいし、2種類以上を併用してもよい。
 上記のシアン化ビニル系単量体の中でも、アクリロニトリルが好ましい。
Examples of the vinyl cyanide monomer include acrylonitrile and methacrylonitrile.
These vinyl cyanide monomers may be used alone or in combination of two or more.
Among the above vinyl cyanide monomers, acrylonitrile is preferable.
 他のビニル系単量体の例としては、アクリル系単量体およびマレイミド系単量体が挙げられる。
 アクリル系単量体としては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸プロピルおよびアクリル酸ブチルなどのアクリル酸アルキルエステルや、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピルおよびメタクリル酸ブチルなどのメタクリル酸アルキルエステル等が挙げられる。これらの中でも、アクリル酸ブチルまたはメタクリル酸メチルが好ましく用いられる。
 マレイミド系単量体としては、例えばマレイミド、N-メチルマレイミド、N-ブチルマレイミド、N-フェニルマレイミド、N-(2-メチルフェニル)マレイミド、N-(4-ヒドロキシフェニル)マレイミド、N-シクロヘキシルマレイミドなどのN-置換マレイミド系単量体等が挙げられる。これらの中でも、N-フェニルマレイミド、N-シクロヘキシルマレイミドが好ましい。
Examples of other vinyl monomers include acrylic monomers and maleimide monomers.
Examples of acrylic monomers include alkyl acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate, and methacrylates such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate. Examples include acid alkyl esters. Among these, butyl acrylate or methyl methacrylate is preferably used.
Examples of maleimide monomers include maleimide, N-methylmaleimide, N-butylmaleimide, N-phenylmaleimide, N- (2-methylphenyl) maleimide, N- (4-hydroxyphenyl) maleimide, N-cyclohexylmaleimide N-substituted maleimide monomers such as Among these, N-phenylmaleimide and N-cyclohexylmaleimide are preferable.
 本発明の第一の態様、及び第二の態様において、ビニル系単量体混合物(m1)の組成は、熱可塑性樹脂組成物(I)の流動性や、成形品の耐衝撃性、熱安定性などの物性バランスに優れることから、ビニル系単量体混合物(m1)の総質量に対し、芳香族ビニル系単量体が60~82質量%、シアン化ビニル系単量体が18~40質量%、他のビニル系単量体が0~22質量%(ただし、芳香族ビニル系単量体、シアン化ビニル系単量体、他のビニル系単量体の合計が100質量%)であることが好ましい。
本発明の第一の態様、及び第二の態様において、ビニル系単量体混合物(m1)としては、「熱可塑性樹脂組成物(I)」において<ビニル系単量体混合物(m1)>で述べたものと同様の単量体混合物も使用することができる。
In the first aspect and the second aspect of the present invention, the composition of the vinyl monomer mixture (m1) is the fluidity of the thermoplastic resin composition (I), the impact resistance of the molded product, and the thermal stability. 60% to 82% by mass of the aromatic vinyl monomer and 18% to 40% of the vinyl cyanide monomer based on the total mass of the vinyl monomer mixture (m1). % By mass, other vinyl monomers from 0 to 22% by mass (however, the total of aromatic vinyl monomers, vinyl cyanide monomers and other vinyl monomers is 100% by mass) Preferably there is.
In the first aspect and the second aspect of the present invention, the vinyl monomer mixture (m1) is represented by <vinyl monomer mixture (m1)> in the “thermoplastic resin composition (I)”. Monomer mixtures similar to those mentioned can also be used.
<グラフト共重合体(D)>
 本発明の第一の態様、及び第二の態様において、グラフト共重合体(D)は、エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の存在下でビニル系単量体混合物(m1)を重合することにより得られる。
 重合方法としては乳化重合、溶液重合、懸濁重合、塊状重合など公知の重合方法が採用できるが、乳化重合が特に好ましい。乳化重合によりグラフト共重合体(D)を製造した場合には、成形品の耐傷付き性、光沢性が優れる。
<Graft copolymer (D)>
In the first embodiment and the second embodiment of the present invention, the graft copolymer (D) is present in the presence of an ethylene / α-olefin copolymer (A) or a crosslinked ethylene / α-olefin copolymer (C). It is obtained by polymerizing the vinyl monomer mixture (m1) under the following conditions.
As the polymerization method, known polymerization methods such as emulsion polymerization, solution polymerization, suspension polymerization, bulk polymerization and the like can be adopted, but emulsion polymerization is particularly preferable. When the graft copolymer (D) is produced by emulsion polymerization, the molded article is excellent in scratch resistance and gloss.
 本発明の第一の態様、及び第二の態様において、グラフト共重合体(D)は、、エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)55~75質量%の存在下で、ビニル系単量体混合物(m1)25~45質量%(ただし、エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)とビニル系単量体混合物(m1)との合計が100質量%)を重合することが好ましい。エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)が55~75質量%であれば、熱可塑性樹脂組成物(I)の流動性や、成形品の摺動性、耐衝撃性、光沢性の物性バランスがより向上する。 In the first and second aspects of the present invention, the graft copolymer (D) is an ethylene / α-olefin copolymer (A) or a crosslinked ethylene / α-olefin copolymer (C) 55. Vinyl monomer mixture (m1) 25 to 45% by mass (provided that ethylene / α-olefin copolymer (A) or crosslinked ethylene / α-olefin copolymer (C)) And the vinyl monomer mixture (m1) are preferably 100% by mass). If the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C) is 55 to 75% by mass, the flowability of the thermoplastic resin composition (I), The balance of physical properties of slidability, impact resistance and gloss is further improved.
 本発明の第一の態様、及び第二の態様において、グラフト共重合体(D)のグラフト率は、熱可塑性樹脂組成物(I)の流動性、および成形品の耐衝撃性、発色性、光沢性のバランスがより向上する観点から25~60質量%が好ましい。 In the first aspect and the second aspect of the present invention, the graft ratio of the graft copolymer (D) is determined by the flowability of the thermoplastic resin composition (I), the impact resistance of the molded article, the color developability, From the viewpoint of further improving the balance of gloss, 25 to 60% by mass is preferable.
 本明細書において、グラフト共重合体(D)のグラフト率は、以下のようにして測定できる。
 グラフト共重合体(D)1gを80mLのアセトンに添加し、65~70℃ にて3時間加熱還流し、得られた懸濁アセトン溶液を遠心分離機にて14,000rpm、30分間遠心分離して、沈殿成分(アセトン不溶成分)とアセトン溶液(アセトン可溶成分)を分取する。そして、沈殿成分(アセトン不溶成分)を乾燥させてその質量(Y(g))を測定し、下記式(2)によりグラフト率を算出する。なお、式(2)におけるYは、グラフト共重合体(D)のアセトン不溶成分の質量(g)、XはYを求める際に使用したグラフト共重合体(D)の全質量(g)、ゴム分率はグラフト共重合体(D)のエチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の固形分換算での含有割合である。
 グラフト率(質量%)={(Y-X×ゴム分率)/X×ゴム分率}×100 ・・・(2)
In this specification, the graft ratio of the graft copolymer (D) can be measured as follows.
1 g of the graft copolymer (D) is added to 80 mL of acetone and heated to reflux at 65 to 70 ° C. for 3 hours. The resulting suspension acetone solution is centrifuged at 14,000 rpm for 30 minutes in a centrifuge. Then, a precipitation component (acetone insoluble component) and an acetone solution (acetone soluble component) are collected. And the precipitation component (acetone insoluble component) is dried, the mass (Y (g)) is measured, and a graft ratio is computed by following formula (2). In Formula (2), Y is the mass (g) of the acetone-insoluble component of the graft copolymer (D), X is the total mass (g) of the graft copolymer (D) used to determine Y, The rubber fraction is the content ratio of the graft copolymer (D) in terms of solid content of the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C).
Graft ratio (mass%) = {(Y−X × rubber fraction) / X × rubber fraction} × 100 (2)
 乳化重合によりグラフト共重合体(D)を製造する方法としては、例えば、ビニル系単量体混合物(m1)に有機過酸化物を混合した上で、ビニル系単量体混合物(m1)をエチレン・α-オレフィン共重合体(A)の水性分散体(即ち、オレフィン樹脂水性分散体(B))または架橋エチレン・α-オレフィン共重合体(C)の水性分散体に連続的に添加する方法が挙げられる。
エチレン・α-オレフィン共重合体(A)の水性分散体または架橋エチレン・α-オレフィン共重合体(C)の水性分散体において、エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の濃度は15~65質量%が好ましく、25~55質量%がより好ましい。
反応時間は、2時間~5時間が好ましく、2.5時間~4.5時間がより好ましい。
反応温度は、50℃~120℃が好ましく、60℃~95℃がより好ましい。
有機過酸化物は、有機過酸化物と遷移金属と還元剤とを組み合わせたレドックス系開始剤として用いるのが好ましい。
 また、重合の際に、連鎖移動剤、乳化剤等を状況に応じて用いてもよい。
 なお、グラフト共重合体(D)に必要に応じて酸化防止剤を添加してもよい。
As a method for producing the graft copolymer (D) by emulsion polymerization, for example, an organic peroxide is mixed into the vinyl monomer mixture (m1), and then the vinyl monomer mixture (m1) is ethylene. A method of continuously adding an aqueous dispersion of an α-olefin copolymer (A) (that is, an aqueous dispersion of an olefin resin (B)) or an aqueous dispersion of a crosslinked ethylene / α-olefin copolymer (C) Is mentioned.
In the aqueous dispersion of the ethylene / α-olefin copolymer (A) or the aqueous dispersion of the crosslinked ethylene / α-olefin copolymer (C), the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α The concentration of the olefin copolymer (C) is preferably 15 to 65% by mass, more preferably 25 to 55% by mass.
The reaction time is preferably 2 hours to 5 hours, more preferably 2.5 hours to 4.5 hours.
The reaction temperature is preferably 50 ° C. to 120 ° C., more preferably 60 ° C. to 95 ° C.
The organic peroxide is preferably used as a redox initiator that combines an organic peroxide, a transition metal, and a reducing agent.
Moreover, you may use a chain transfer agent, an emulsifier, etc. according to a condition in superposition | polymerization.
In addition, you may add antioxidant to a graft copolymer (D) as needed.
 レドックス系開始剤としては、有機過酸化物と硫酸第一鉄-キレート剤-還元剤とを組み合わされたものが好ましい。
 有機過酸化物としては、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等が挙げられる。
 より好ましいレドックス系開始剤としては、クメンハイドロパーオキサイドと、硫酸第一鉄と、ピロリン酸ナトリウムと、デキストロースとからなるものである。
As the redox initiator, a combination of an organic peroxide and a ferrous sulfate-chelating agent-reducing agent is preferable.
Examples of the organic peroxide include cumene hydroperoxide, diisopropylbenzene hydroperoxide, t-butyl hydroperoxide, and the like.
More preferred redox initiators are those comprising cumene hydroperoxide, ferrous sulfate, sodium pyrophosphate, and dextrose.
 連鎖移動剤としては、メルカプタン類(オクチルメルカプタン、n-,t-ドデシルメルカプタン、n-ヘキサデシルメルカプタン、n-,t-テトラデシルメルカプタン等)、アリルスルフォン酸、メタアリルスルフォン酸およびこれ等のソーダー塩等のアリル化合物、α-メチルスチレンダイマー等が挙げられ、これらの中でもメルカプタン類が好ましい。また、これらの連鎖移動剤は、1種を単独で用いてもよいし、2種類以上を併用してもよい。
 連鎖移動剤の添加方法は、一括、分割、連続のいずれでもよい。
 また、連鎖移動剤の添加量は、ビニル系単量体混合物(m1)100質量部に対し、2.0質量部以下が好ましい。
As chain transfer agents, mercaptans (octyl mercaptan, n-, t-dodecyl mercaptan, n-hexadecyl mercaptan, n-, t-tetradecyl mercaptan, etc.), allyl sulfonic acid, methallyl sulfonic acid and sodas thereof Examples include allyl compounds such as salts, and α-methylstyrene dimer. Among these, mercaptans are preferable. Moreover, these chain transfer agents may be used individually by 1 type, and may use 2 or more types together.
The method for adding the chain transfer agent may be any of batch, split, and continuous.
Moreover, the addition amount of the chain transfer agent is preferably 2.0 parts by mass or less with respect to 100 parts by mass of the vinyl monomer mixture (m1).
 乳化剤としては、アニオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤等が挙げられる。
 アニオン性界面活性剤としては、高級アルコールの硫酸エステル、アルキルベンゼンスルホン酸塩、脂肪酸スルホン酸塩、リン酸系塩、脂肪酸塩、アミノ酸誘導体塩等が挙げられる。
 ノニオン性界面活性剤としては、通常のポリエチレングリコールのアルキルエステル型、アルキルエーテル型、アルキルフェニルエーテル型等が挙げられる。
 両性界面活性剤としては、アニオン部にカルボン酸塩、硫酸エステル塩、スルホン酸塩、リン酸エステル塩等を有し、カチオン部にアミン塩、第4級アンモニウム塩等を有するものが挙げられる。
 乳化剤の添加量は、ビニル系単量体混合物(m1)100質量部に対し、10質量部以下が好ましい。
Examples of the emulsifier include anionic surfactants, nonionic surfactants, and amphoteric surfactants.
Examples of the anionic surfactants include higher alcohol sulfates, alkylbenzene sulfonates, fatty acid sulfonates, phosphate salts, fatty acid salts, and amino acid derivative salts.
Examples of nonionic surfactants include ordinary polyethylene glycol alkyl ester types, alkyl ether types, and alkyl phenyl ether types.
Examples of the amphoteric surfactant include those having a carboxylate salt, sulfate ester salt, sulfonate salt, phosphate ester salt and the like in the anion portion and amine salts and quaternary ammonium salts in the cation portion.
The addition amount of the emulsifier is preferably 10 parts by mass or less with respect to 100 parts by mass of the vinyl monomer mixture (m1).
 このようにして得られるグラフト共重合体(D)は、水中に分散した状態である。グラフト共重合体(D)を含有する水性分散体からグラフト共重合体(F)を回収する方法としては、例えば水性分散体に析出剤を添加し、加熱、攪拌した後、析出剤を分離し、これを水洗、脱水、乾燥する析出法が挙げられる。
 析出法における析出剤としては、例えば硫酸、酢酸、塩化カルシウムまたは硫酸マグネシウム等の水溶液が挙げられ、これらは1種を単独で用いてもよいし、2種類以上を併用してもよい。
本発明の第一の態様において、グラフト共重合体(D)としては、「熱可塑性樹脂組成物(I)」において<グラフト共重合体(D)>で述べたものと同様の共重合体も使用することができる。
The graft copolymer (D) thus obtained is in a state dispersed in water. As a method for recovering the graft copolymer (F) from the aqueous dispersion containing the graft copolymer (D), for example, a precipitant is added to the aqueous dispersion, and after heating and stirring, the precipitant is separated. And a precipitation method of washing, dehydrating, and drying.
Examples of the precipitating agent in the precipitation method include aqueous solutions of sulfuric acid, acetic acid, calcium chloride, magnesium sulfate and the like, and these may be used alone or in combination of two or more.
In the first aspect of the present invention, the graft copolymer (D) may be a copolymer similar to that described in the <graft copolymer (D)> in the “thermoplastic resin composition (I)”. Can be used.
 以上説明した本発明の第一の態様におけるグラフト共重合体(D)は、特定の架橋構造をもつ架橋エチレン・α-オレフィン共重合体(C)の存在下で、特定のビニル系単量体混合物(m1)を重合したものであるため、耐傷付き性、耐衝撃性、光沢性、発色性に優れた成形品を得ることができ、かつ、流動性が良好な熱可塑性樹脂組成物(I)の材料として好適である。 The graft copolymer (D) in the first embodiment of the present invention described above is a specific vinyl monomer in the presence of a crosslinked ethylene / α-olefin copolymer (C) having a specific crosslinked structure. Since the mixture (m1) is polymerized, it is possible to obtain a molded article having excellent scratch resistance, impact resistance, glossiness, and color developability, and a thermoplastic resin composition (I ) Is suitable as a material.
「熱可塑性樹脂組成物(I)」
 本発明の第二の態様における熱可塑性樹脂組成物(I)は、上述した本発明の第一の態様におけるグラフト共重合体(D)と、硬質成分(J)とを含有する。
 硬質成分(J)としては特に制限されないが、スチレン系共重合体(H)、ポリカーボネート、メタクリル酸エステル樹脂(G)(例えば、ポリメタクリル酸メチル)、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリ塩化ビニル、メタクリル酸メチル・スチレン共重合体、メタクリル酸メチル・スチレン・N-フェニルマレイミド共重合体、変性ポリフェニレンエーテル、ポリアミドなどが挙げられる。これらの中でも、スチレン系共重合体、ポリカーボネートが好ましい。
 これら硬質成分(J)は、1種を単独で用いてもよいし、2種類以上を併用してもよい。
第二の態様の熱可塑性樹脂組成物(I)としては、第三の態様、第四の態様、および第四の態様の熱可塑性樹脂組成物(I)に含まれる各成分を含有していてもよい。
"Thermoplastic resin composition (I)"
The thermoplastic resin composition (I) in the second aspect of the present invention contains the graft copolymer (D) and the hard component (J) in the first aspect of the present invention described above.
Although it does not restrict | limit especially as a hard component (J), A styrene-type copolymer (H), a polycarbonate, methacrylic ester resin (G) (for example, polymethyl methacrylate), polybutylene terephthalate, polyethylene terephthalate, polyvinyl chloride, Examples include methyl methacrylate / styrene copolymer, methyl methacrylate / styrene / N-phenylmaleimide copolymer, modified polyphenylene ether, and polyamide. Among these, styrene copolymers and polycarbonate are preferable.
These hard components (J) may be used individually by 1 type, and may use 2 or more types together.
The thermoplastic resin composition (I) of the second aspect contains the respective components contained in the thermoplastic resin composition (I) of the third aspect, the fourth aspect, and the fourth aspect. Also good.
 スチレン系共重合体(H)は、芳香族ビニル系単量体を必須成分として含み、シアン化ビニル系単量体およびこれらと共重合可能な他のビニル系単量体を任意成分として含む混合物からなる共重合体である。
 芳香族ビニル系単量体、シアン化ビニル系単量体、他のビニル系単量体の具体例としては、ビニル系単量体混合物(m1)の説明において先に例示した芳香族ビニル系単量体、シアン化ビニル系単量体、他のビニル系単量体が挙げられる。
 あるいは、後述のビニル系単量体混合物(m4)に例示した少なくとも芳香族ビニル化合物およびシアン化ビニル化合物を含む単量体混合物が挙げられる。
The styrene copolymer (H) contains an aromatic vinyl monomer as an essential component, and a mixture containing a vinyl cyanide monomer and other vinyl monomers copolymerizable therewith as optional components. It is a copolymer consisting of.
Specific examples of the aromatic vinyl monomer, vinyl cyanide monomer and other vinyl monomers include the aromatic vinyl monomers exemplified above in the description of the vinyl monomer mixture (m1). Examples thereof include a monomer, a vinyl cyanide monomer, and other vinyl monomers.
Alternatively, a monomer mixture containing at least an aromatic vinyl compound and a vinyl cyanide compound exemplified in the vinyl monomer mixture (m4) described later can be used.
 スチレン系共重合体(H)の組成には特に制限はないが、芳香族ビニル系単量体25~100質量%、シアン化ビニル系単量体0~40質量%、およびこれらの単量体と共重合可能な他のビニル系単量体0~65質量%を重合させて得られる共重合体(ただし、芳香族ビニル系単量体、シアン化ビニル系単量体、他のビニル系単量体の合計が100質量%)が挙げられる。 The composition of the styrenic copolymer (H) is not particularly limited, but is 25 to 100% by mass of an aromatic vinyl monomer, 0 to 40% by mass of a vinyl cyanide monomer, and these monomers. Copolymers obtained by polymerizing 0 to 65% by weight of other vinyl monomers copolymerizable with the polymer (however, aromatic vinyl monomers, vinyl cyanide monomers, other vinyl monomers The total of the masses is 100% by mass).
 スチレン系共重合体(H)の製造には、乳化重合や懸濁重合等の重合法が採用される。
 スチレン系共重合体(H)を乳化重合で製造する場合、反応器内に水存在下、各単量体と乳化剤と重合開始剤と連鎖移動剤とを仕込み、加熱して重合し、重合後に得られたスチレン系共重合体(H)を含む水性分散体から析出法によりスチレン系共重合体(H)を回収する。
 ここで、乳化剤としては、ロジン酸カリウムおよびアルキルベンゼンスルホン酸ナトリウム等の一般的な乳化重合用乳化剤を用いることができる。また、重合開始剤としては、有機、無機の過酸化物系開始剤を用いることができ、連鎖移動剤としては、メルカプタン類、α-メチルスチレンダイマー、テルペン類等を用いることができる。
 析出法としては、グラフト重合後に得られる水性分散体からグラフト共重合体(D)を回収するときと同様の方法を採用できる。
For the production of the styrene copolymer (H), a polymerization method such as emulsion polymerization or suspension polymerization is employed.
When the styrene copolymer (H) is produced by emulsion polymerization, each monomer, emulsifier, polymerization initiator and chain transfer agent are charged in the reactor in the presence of water, heated to polymerize, and after polymerization. The styrene copolymer (H) is recovered from the aqueous dispersion containing the styrene copolymer (H) by a precipitation method.
Here, general emulsifiers for emulsion polymerization such as potassium rosinate and sodium alkylbenzenesulfonate can be used as the emulsifier. Further, organic and inorganic peroxide initiators can be used as the polymerization initiator, and mercaptans, α-methylstyrene dimers, terpenes, and the like can be used as the chain transfer agent.
As the precipitation method, a method similar to that used when recovering the graft copolymer (D) from the aqueous dispersion obtained after the graft polymerization can be employed.
 スチレン系共重合体(H)を懸濁重合で製造する場合、反応器内に各単量体と懸濁剤と懸濁助剤と重合開始剤と連鎖移動剤とを仕込み、加熱して重合し、得られたスラリーを脱水、乾燥してスチレン系共重合体を回収する。
 ここで、懸濁剤としては、トリカルシウムフォスファイト、ポリビニルアルコール等を用いることができ、懸濁助剤としては、アルキルベンゼンスルホン酸ナトリウム等が用いることができる。また、重合開始剤としては、有機パーオキサイド類を用いることができ、連鎖移動剤としては、メルカプタン類、α-メチルスチレンダイマー、テルペン類等を用いることができる。
When the styrene copolymer (H) is produced by suspension polymerization, each monomer, suspending agent, suspending aid, polymerization initiator and chain transfer agent are charged into the reactor and heated to polymerize. The obtained slurry is dehydrated and dried to recover the styrene copolymer.
Here, as the suspending agent, tricalcium phosphite, polyvinyl alcohol or the like can be used, and as the suspending aid, sodium alkylbenzene sulfonate or the like can be used. In addition, organic peroxides can be used as the polymerization initiator, and mercaptans, α-methylstyrene dimer, terpenes, and the like can be used as the chain transfer agent.
 ポリカーボネートとしては、例えば、1種以上のビスフェノール類と、ホスゲンまたは炭酸ジエステルとの反応によって得られるものが挙げられる。
 ビスフェノール類としては、例えば、ハイドロキノン、4,4-ジヒドロキシフェニル、ビス-(4-ヒドロキシフェニル)-アルカン、ビス-(4-ヒドロキシフェニル)-シクロアルカン、ビス-(4-ヒドロキシフェニル)-スルフィド、ビス-(4-ヒドロキシフェニル)-エーテル、ビス-(4-ヒドロキシフェニル)-ケトン、ビス-(4-ヒドロキシフェニル)-スルホン、あるいはこれらのアルキル置換体、アリール置換体、ハロゲン置換体等が挙げられる。これらの中でも、2,2-ビス-(4-ヒドロキシフェニル)プロパン、いわゆるビスフェノールAを原料としたビスフェノールA系ポリカーボネートが容易に入手できるという点から、好ましい。これらは1種を単独で用いてもよいし、2種類以上を併用してもよい。
Examples of the polycarbonate include those obtained by reacting one or more bisphenols with phosgene or a carbonic acid diester.
Examples of bisphenols include hydroquinone, 4,4-dihydroxyphenyl, bis- (4-hydroxyphenyl) -alkane, bis- (4-hydroxyphenyl) -cycloalkane, bis- (4-hydroxyphenyl) -sulfide, Examples include bis- (4-hydroxyphenyl) -ether, bis- (4-hydroxyphenyl) -ketone, bis- (4-hydroxyphenyl) -sulfone, or alkyl-substituted, aryl-substituted, and halogen-substituted products thereof. It is done. Among these, 2,2-bis- (4-hydroxyphenyl) propane, a so-called bisphenol A-based polycarbonate using bisphenol A as a raw material is preferable because it can be easily obtained. These may be used alone or in combination of two or more.
 本発明の第三の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)とメタクリル酸エステル樹脂(G)とを含む。
本発明の第四の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)とグラフト共重合体(F)とメタクリル酸エステル樹脂(G)とを含む。
 本発明の第五の態様における熱可塑性樹脂組成物は(I)、グラフト共重合体(D)とグラフト共重合体(M)とメタクリル酸エステル樹脂(G)とを含む。
本発明の第三の態様、第四の態様、および第五の態様における熱可塑性樹脂組成物(I)は、本発明の効果を損なわない範囲内で、必要に応じて、スチレン系共重合体(H)、他の熱可塑性樹脂、各種添加剤を含んでいてもよい。
The thermoplastic resin composition (I) in the third aspect of the present invention contains a graft copolymer (D) and a methacrylic ester resin (G).
The thermoplastic resin composition (I) in the fourth aspect of the present invention includes a graft copolymer (D), a graft copolymer (F), and a methacrylic ester resin (G).
The thermoplastic resin composition in the fifth aspect of the present invention comprises (I), a graft copolymer (D), a graft copolymer (M), and a methacrylic ester resin (G).
The thermoplastic resin composition (I) in the third aspect, the fourth aspect, and the fifth aspect of the present invention is a styrenic copolymer within the range that does not impair the effects of the present invention. (H), other thermoplastic resins, and various additives may be included.
 第三の態様、第四の態様、および第五の態様におけるグラフト共重合体(D)は、下記(α)または(β)である。
 (α)エチレン・α-オレフィン共重合体(A)の存在下にビニル系単量体混合物(m1)を重合して得られたもの。
 (β)架橋エチレン・α-オレフィン共重合体(C)の存在下にビニル系単量体混合物(m1)を重合して得られたもの。
The graft copolymer (D) in the third aspect, the fourth aspect, and the fifth aspect is the following (α) or (β).
(Α) A product obtained by polymerizing the vinyl monomer mixture (m1) in the presence of the ethylene / α-olefin copolymer (A).
(Β) A product obtained by polymerizing the vinyl monomer mixture (m1) in the presence of the crosslinked ethylene / α-olefin copolymer (C).
 前記(α)としては、具体的には下記のものが挙げられる。
 (α1)エチレン・α-オレフィン共重合体(A)を含む溶液中にてビニル系単量体混合物(m1)を重合して得られたもの。
 (α2)エチレン・α-オレフィン共重合体(A)を含むオレフィン樹脂水性分散体(B)中にてビニル系単量体混合物(m1)を重合して得られたもの。
Specific examples of (α) include the following.
(Α1) A product obtained by polymerizing the vinyl monomer mixture (m1) in a solution containing the ethylene / α-olefin copolymer (A).
(Α2) A product obtained by polymerizing a vinyl monomer mixture (m1) in an aqueous olefin resin dispersion (B) containing an ethylene / α-olefin copolymer (A).
 前記(β)としては、具体的には下記のものが挙げられる。
 (β1)架橋エチレン・α-オレフィン共重合体(C)を含む溶液中にてビニル系単量体混合物(m1)を重合して得られたもの。
 (β2)架橋エチレン・α-オレフィン共重合体(C)を含む水性分散体中にてビニル系単量体混合物(m1)を重合して得られたもの。
Specific examples of (β) include the following.
(Β1) A product obtained by polymerizing the vinyl monomer mixture (m1) in a solution containing the crosslinked ethylene / α-olefin copolymer (C).
(Β2) A product obtained by polymerizing the vinyl monomer mixture (m1) in an aqueous dispersion containing the crosslinked ethylene / α-olefin copolymer (C).
 グラフト共重合体(F)は、下記(γ)である。
 (γ)架橋アクリル酸エステル系ゴム状重合体(E)の存在下にビニル系単量体混合物(m2)を重合して得られたもの。
The graft copolymer (F) is the following (γ).
(Γ) A product obtained by polymerizing the vinyl monomer mixture (m2) in the presence of the crosslinked acrylic ester rubber-like polymer (E).
 メタクリル酸エステル樹脂(G)は、下記(δ)である。
 (δ)ビニル系単量体混合物(m3)を重合して得られたもの。
The methacrylic ester resin (G) is the following (δ).
(Δ) A product obtained by polymerizing the vinyl monomer mixture (m3).
 スチレン系共重合体(H)は、下記(ε)である。
 (ε)ビニル系単量体混合物(m4)を重合して得られたもの。
The styrene copolymer (H) is the following (ε).
(Ε) A product obtained by polymerizing a vinyl monomer mixture (m4).
 グラフト共重合体(M)は、下記(ζ)である。
 (ζ)ポリオルガノシロキサン(La)を含むゴム状重合体(L)(好ましくは、ポリオルガノシロキサン(La)およびポリ(メタ)アクリル酸エステル(Lb)からなる複合ゴム状重合体(L1))の存在下にビニル系単量体混合物(m5)を重合して得られたもの。
 以下、各成分((A)~(H)、(K)、(L)、(L1)、(La)、(Lb)、(M)、(m1)~(m5)等)について説明する。
The graft copolymer (M) is the following (ζ).
(Ζ) Rubber-like polymer (L) containing polyorganosiloxane (La) (preferably, composite rubber-like polymer (L1) comprising polyorganosiloxane (La) and poly (meth) acrylic acid ester (Lb)) Obtained by polymerizing a vinyl monomer mixture (m5) in the presence of.
Each component ((A) to (H), (K), (L), (L1), (La), (Lb), (M), (m1) to (m5), etc.) will be described below.
 <エチレン・α-オレフィン共重合体(A)>
 本発明においては、成形品が優れた耐衝撃性を発現するために、エチレン・α-オレフィン共重合体(A)を用いることが重要である。
 エチレン・α-オレフィン共重合体(A)は、エチレンと炭素数が3以上のα-オレフィンとを公知の重合方法によって共重合することによって得られた、エチレン単位とα-オレフィン単位とからなる共重合体である。
<Ethylene / α-olefin copolymer (A)>
In the present invention, it is important to use the ethylene / α-olefin copolymer (A) so that the molded article exhibits excellent impact resistance.
The ethylene / α-olefin copolymer (A) comprises an ethylene unit and an α-olefin unit obtained by copolymerizing ethylene and an α-olefin having 3 or more carbon atoms by a known polymerization method. It is a copolymer.
 α-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-ウンデセン、1-イコセン、1-ドコセン等が挙げられ、成形品の耐衝撃性の点から、炭素数が3~20のα-オレフィンが好ましく、プロピレンが特に好ましい。 Examples of the α-olefin include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-icosene, 1-docosene, etc. From the viewpoint of impact resistance, α-olefins having 3 to 20 carbon atoms are preferred, and propylene is particularly preferred.
 エチレン・α-オレフィン共重合体(A)のエチレン単位の含有率は、エチレン・α-オレフィン共重合体(A)を構成する全ての構成単位の合計を100質量%としたときに、45~65質量%が好ましく、50~60質量%がより好ましい。エチレン単位の含有率が前記範囲内であれば、成形品の耐擦り傷性、耐衝撃性のバランスがさらに優れる。特に、エチレン単位の含有率が50~60質量%であれば、成形品の耐擦り傷性、耐衝撃性がさらに向上する。
ここで「エチレン単位の含有率」とは、エチレン・α-オレフィン共重合体(A)の合成において使用する単量体の総質量(即ち、エチレン・α-オレフィン共重合体(A)を構成する構成単位に対応する単量体の総質量)に対する、エチレン単位に対応する単量体の質量から算出することができる。   
The ethylene unit content of the ethylene / α-olefin copolymer (A) is 45 to 45% when the total of all the structural units constituting the ethylene / α-olefin copolymer (A) is 100% by mass. 65% by mass is preferable, and 50 to 60% by mass is more preferable. When the ethylene unit content is within the above range, the balance of scratch resistance and impact resistance of the molded product is further improved. In particular, when the ethylene unit content is 50 to 60% by mass, the scratch resistance and impact resistance of the molded product are further improved.
Here, the “ethylene unit content” means the total mass of monomers used in the synthesis of the ethylene / α-olefin copolymer (A) (that is, constituting the ethylene / α-olefin copolymer (A)). The total mass of the monomer corresponding to the structural unit to be calculated) can be calculated from the mass of the monomer corresponding to the ethylene unit.
 本発明においては、熱可塑性樹脂組成物(I)の流動性が向上し、成形品が優れた耐擦り傷性、光沢性、発色性、耐衝撃性および潤滑性を発現するために、質量平均分子量(Mw)、および質量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)が特定の範囲にあるエチレン・α-オレフィン共重合体(A)を用いることが重要である。 In the present invention, the flowability of the thermoplastic resin composition (I) is improved, and the molded article exhibits excellent scratch resistance, gloss, color development, impact resistance and lubricity, so that the mass average molecular weight is improved. (Mw), and an ethylene / α-olefin copolymer (A) having a molecular weight distribution (Mw / Mn) represented by a ratio of mass average molecular weight (Mw) to number average molecular weight (Mn) in a specific range. It is important to use.
 エチレン・α-オレフィン共重合体(A)の質量平均分子量(Mw)は、17×10~35×10であり、26×10~32×10が好ましい。質量平均分子量(Mw)が17×10よりも小さい場合には、成形品の耐擦り傷性、耐衝撃性、潤滑性が劣る。一方、質量平均分子量(Mw)が35×10よりも大きい場合には、熱可塑性樹脂組成物(I)の流動性および成形品の光沢性、発色性、潤滑性が劣る。質量平均分子量(Mw)が26×10~32×10であれば、、熱可塑性樹脂組成物(I)の流動性および成形品の耐擦り傷性、耐衝撃性、光沢性、および潤滑性がさらに優れる。 The mass average molecular weight (Mw) of the ethylene / α-olefin copolymer (A) is 17 × 10 4 to 35 × 10 4 , preferably 26 × 10 4 to 32 × 10 4 . When the mass average molecular weight (Mw) is smaller than 17 × 10 4 , the scratch resistance, impact resistance, and lubricity of the molded product are inferior. On the other hand, when the mass average molecular weight (Mw) is larger than 35 × 10 4 , the fluidity of the thermoplastic resin composition (I) and the glossiness, color development, and lubricity of the molded product are inferior. When the mass average molecular weight (Mw) is 26 × 10 4 to 32 × 10 4 , the fluidity of the thermoplastic resin composition (I) and the scratch resistance, impact resistance, gloss, and lubricity of the molded product Is even better.
 エチレン・α-オレフィン共重合体(A)の分子量分布(Mw/Mn)は、1~3であり、1.9~2.5が好ましい。分子量分布(Mw/Mn)が3よりも大きい場合には、成形品の耐擦り傷性、耐衝撃性、および潤滑性が劣る。分子量分布(Mw/Mn)が1.9~2.5であれば、熱可塑性樹脂組成物(I)の流動性および成形品の耐擦り傷性、耐衝撃性がさらに優れる。 The molecular weight distribution (Mw / Mn) of the ethylene / α-olefin copolymer (A) is 1 to 3, and preferably 1.9 to 2.5. When the molecular weight distribution (Mw / Mn) is larger than 3, the molded article is inferior in scratch resistance, impact resistance, and lubricity. When the molecular weight distribution (Mw / Mn) is 1.9 to 2.5, the fluidity of the thermoplastic resin composition (I), the scratch resistance and the impact resistance of the molded product are further improved.
 エチレン・α-オレフィン共重合体(A)の質量平均分子量(Mw)および数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定し、標準ポリスチレンで換算した値である。 The mass average molecular weight (Mw) and number average molecular weight (Mn) of the ethylene / α-olefin copolymer (A) are values measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
 エチレン・α-オレフィン共重合体(A)の製造方法は、限定されない。エチレン・α-オレフィン共重合体(A)は、通常、メタロセン触媒またはチーグラー・ナッタ触媒を用いてエチレンとα-オレフィンとを重合することによって製造される。 The method for producing the ethylene / α-olefin copolymer (A) is not limited. The ethylene / α-olefin copolymer (A) is usually produced by polymerizing ethylene and an α-olefin using a metallocene catalyst or a Ziegler-Natta catalyst.
 メタロセン触媒としては、遷移金属(ジルコニウム、チタン、ハフニウム等)にシクロペンタジエニル骨格を有する有機化合物、ハロゲン原子等が配位したメタロセン錯体と、有機アルミニウム化合物、有機ホウ素化合物等とを組み合わせた触媒が挙げられる。
 チーグラー・ナッタ触媒としては、遷移金属(チタン、バナジウム、ジルコニウム、ハフニウム等)のハロゲン化物と有機アルミニウム化合物、有機ホウ素化合物等とを組み合わせた触媒が挙げられる。
As a metallocene catalyst, a catalyst obtained by combining an organic compound having a cyclopentadienyl skeleton with a transition metal (zirconium, titanium, hafnium, etc.), a metallocene complex coordinated with a halogen atom, etc., and an organoaluminum compound, organoboron compound, etc. Is mentioned.
Examples of the Ziegler-Natta catalyst include a catalyst obtained by combining a halide of a transition metal (titanium, vanadium, zirconium, hafnium, etc.) with an organoaluminum compound, an organoboron compound, or the like.
 重合方法としては、前記触媒の存在下に、エチレンとα-オレフィンとを溶媒中で共重合させる方法が挙げられる。溶媒としては、炭化水素溶媒(ベンゼン、トルエン、キシレン、ペンタン、ヘキサン、ヘプタン、オクタン等)が挙げられる。炭化水素溶媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。また、原料のα-オレフィンを溶媒として用いてもよい。 Examples of the polymerization method include a method of copolymerizing ethylene and α-olefin in a solvent in the presence of the catalyst. Examples of the solvent include hydrocarbon solvents (benzene, toluene, xylene, pentane, hexane, heptane, octane, etc.). A hydrocarbon solvent may be used individually by 1 type, and 2 or more types may be mixed and used for it. In addition, a raw material α-olefin may be used as a solvent.
 エチレン、α-オレフィンの供給量、水素等の分子量調節剤の種類や量、触媒の種類や量、反応温度、圧力等の反応条件を変更することによって、エチレン・α-オレフィン共重合体(A)のエチレン単位の含有率、質量平均分子量(Mw)および分子量分布(Mw/Mn)を調整することができる。 Ethylene / α-olefin copolymer (A) by changing reaction conditions such as supply amount of ethylene, α-olefin, type and amount of molecular weight regulator such as hydrogen, type and amount of catalyst, reaction temperature, pressure, etc. ) Ethylene unit content, mass average molecular weight (Mw) and molecular weight distribution (Mw / Mn) can be adjusted.
 <オレフィン樹脂水性分散体(B)>
 オレフィン樹脂水性分散体(B)は、エチレン・α-オレフィン共重合体(A)を水性媒体に分散させたものである。
<Olefin resin aqueous dispersion (B)>
The aqueous olefin resin dispersion (B) is obtained by dispersing the ethylene / α-olefin copolymer (A) in an aqueous medium.
 オレフィン樹脂水性分散体(B)の調製方法は、限定されない。調製方法としては、例えば、公知の溶融混練手段(ニーダー、バンバリーミキサー、多軸スクリュー押出機等)でエチレン・α-オレフィン共重合体(A)を溶融混練し、機械的せん断力を与えて分散させ、乳化剤を含む水性媒体に添加する方法;エチレン・α-オレフィン共重合体(A)を炭化水素溶媒(ペンタン、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン等)に乳化剤とともに溶解し、水性媒体に添加して乳化させた後、十分に撹拌し、炭化水素溶媒を留去する方法等が挙げられる。オレフィン樹脂水性分散体(B)の調製の際に、その他の成分として乳化剤、酸変性オレフィン重合体(K)等を添加してもよい。 The method for preparing the aqueous olefin resin dispersion (B) is not limited. As a preparation method, for example, the ethylene / α-olefin copolymer (A) is melt-kneaded by a known melt-kneading means (kneader, Banbury mixer, multi-screw extruder, etc.) and dispersed by applying mechanical shearing force. The ethylene / α-olefin copolymer (A) is dissolved in a hydrocarbon solvent (pentane, hexane, heptane, benzene, toluene, xylene, etc.) together with the emulsifier, and added to the aqueous medium. After adding and emulsifying, there may be mentioned a method of sufficiently stirring and distilling off the hydrocarbon solvent. In preparing the aqueous olefin resin dispersion (B), an emulsifier, an acid-modified olefin polymer (K), and the like may be added as other components.
 乳化剤としては、公知のものが挙げられ、例えば、長鎖アルキルカルボン酸塩、スルホコハク酸アルキルエステル塩、アルキルベンゼンスルホン酸塩等が挙げられる。
 乳化剤の添加量は、得られる熱可塑性樹脂組成物(I)の熱着色を抑制でき、オレフィン樹脂水性分散体(B)の粒子径制御が容易である点から、乳化剤としてオレイン酸カリウムを用いる場合、エチレン・α-オレフィン共重合体(A)100質量部に対して1~8質量部が好ましい。
Examples of the emulsifier include known ones, and examples thereof include long-chain alkyl carboxylates, sulfosuccinic acid alkyl ester salts, and alkylbenzene sulfonates.
In the case of using potassium oleate as an emulsifier, the added amount of the emulsifier can suppress thermal coloring of the resulting thermoplastic resin composition (I) and can easily control the particle size of the aqueous olefin resin dispersion (B). The amount of the ethylene / α-olefin copolymer (A) is preferably 1 to 8 parts by mass with respect to 100 parts by mass.
 酸変性オレフィン重合体(K)としては、質量平均分子量が1,000~5,000のオレフィン重合体(ポリエチレン、ポリプロピレン等)を、官能基を有する化合物(不飽和カルボン酸化合物等)で変性したものが挙げられる。不飽和カルボン酸化合物としては、例えば、アクリル酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸、マレイン酸モノアミド等が挙げられる。
 酸変性オレフィン重合体(K)の添加量は、エチレン・α-オレフィン共重合体(A)100質量部に対して、1~40質量部が好ましい。酸変性オレフィン重合体(K)の添加量が前記範囲内であれば、成形品の耐傷付き性と耐衝撃性のバランスがさらに優れる。
As the acid-modified olefin polymer (K), an olefin polymer having a mass average molecular weight of 1,000 to 5,000 (polyethylene, polypropylene, etc.) was modified with a compound having a functional group (such as an unsaturated carboxylic acid compound). Things. Examples of the unsaturated carboxylic acid compound include acrylic acid, maleic acid, itaconic acid, maleic anhydride, itaconic anhydride, maleic acid monoamide, and the like.
The addition amount of the acid-modified olefin polymer (K) is preferably 1 to 40 parts by mass with respect to 100 parts by mass of the ethylene / α-olefin copolymer (A). When the addition amount of the acid-modified olefin polymer (K) is within the above range, the balance between the scratch resistance and impact resistance of the molded product is further improved.
 酸変性オレフィン重合体(K)の添加方法は、限定されない。エチレン・α-オレフィン共重合体(A)と酸変性オレフィン重合体(K)とを混合した後に架橋処理をしてもよいし、エチレン・α-オレフィン共重合体(A)と酸変性オレフィン重合体(K)とをそれぞれ架橋処理した後に混合してもよい。
 エチレン・α-オレフィン共重合体(A)と酸変性オレフィン重合体(K)との混合方法は、限定されない。混合方法としては、ニーダー、バンバリーミキサー、多軸スクリュー押出機等を用いた溶融混練法等が挙げられる。
The method for adding the acid-modified olefin polymer (K) is not limited. The ethylene / α-olefin copolymer (A) and the acid-modified olefin polymer (K) may be mixed and then subjected to crosslinking treatment, or the ethylene / α-olefin copolymer (A) and the acid-modified olefin polymer may be polymerized. The union (K) may be mixed after the crosslinking treatment.
The mixing method of the ethylene / α-olefin copolymer (A) and the acid-modified olefin polymer (K) is not limited. Examples of the mixing method include a melt kneading method using a kneader, a Banbury mixer, a multi-screw extruder and the like.
 オレフィン樹脂水性分散体(B)中のエチレン・α-オレフィン共重合体(A)の体積平均粒子径は、成形品の物性バランスが優れる点から、0.2~0.6μmが好ましく、0.3~0.5μmがより好ましい。体積平均粒子径が前記範囲内であれば、成形品の耐衝撃性、発色性、潤滑性がさらに向上する。
 オレフィン樹脂水性分散体(B)中のエチレン・α-オレフィン共重合体(A)の体積平均粒子径を制御する方法としては、乳化剤の種類または使用量、酸変性オレフィン重合体(K)の種類または含有量、混練時に加えるせん断力、温度条件等を調整する方法が挙げられる。
 水性分散体に分散しているエチレン・α-オレフィン共重合体(A)や架橋エチレン・α-オレフィン共重合体(C)の体積平均粒子径が、そのまま熱可塑性樹脂組成物(I)のエチレン・α-オレフィン共重合体(A)や架橋エチレン・α-オレフィン共重合体(C)の体積平均粒子径を示すことは、電子顕微鏡写真の画像処理によって確認している。
The volume average particle diameter of the ethylene / α-olefin copolymer (A) in the aqueous olefin resin dispersion (B) is preferably 0.2 to 0.6 μm from the viewpoint of excellent physical property balance of the molded product. More preferably, it is 3 to 0.5 μm. When the volume average particle diameter is within the above range, the impact resistance, color developability and lubricity of the molded product are further improved.
The method for controlling the volume average particle diameter of the ethylene / α-olefin copolymer (A) in the aqueous olefin resin dispersion (B) includes the type or amount of emulsifier, the type of acid-modified olefin polymer (K). Or the method of adjusting content, the shear force added at the time of kneading | mixing, temperature conditions, etc. is mentioned.
The volume average particle diameter of the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C) dispersed in the aqueous dispersion is the same as that of the thermoplastic resin composition (I). It has been confirmed by image processing of an electron micrograph that the volume average particle diameter of the α-olefin copolymer (A) and the crosslinked ethylene / α-olefin copolymer (C) is shown.
 <架橋エチレン・α-オレフィン共重合体(C)>
 本発明の第三の態様、第四の態様、および第五の態様において、架橋エチレン・α-オレフィン共重合体(C)は、エチレン・α-オレフィン共重合体(A)を架橋処理したものであることが好ましい。
<Crosslinked ethylene / α-olefin copolymer (C)>
In the third, fourth and fifth aspects of the present invention, the crosslinked ethylene / α-olefin copolymer (C) is obtained by crosslinking the ethylene / α-olefin copolymer (A). It is preferable that
 本発明の第三の態様、第四の態様、および第五の態様においては、成形品が優れた耐擦り傷性、耐衝撃性、発色性を発現するために、架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が特定の範囲にあることが好ましい。
 本発明の第三の態様、第四の態様、および第五の態様において、架橋エチレン・α-オレフィン共重合体(C)のゲル含有率は、成形品の耐擦り傷性、耐衝撃性、発色性とのバランスの点から、架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、35~75質量%が好ましく、40~70質量%がより好ましく、45~65質量%が特に好ましい。
In the third aspect, the fourth aspect, and the fifth aspect of the present invention, in order for the molded product to exhibit excellent scratch resistance, impact resistance, and color developability, the crosslinked ethylene / α-olefin copolymer is used. The gel content of the coalesced (C) is preferably in a specific range.
In the third aspect, the fourth aspect, and the fifth aspect of the present invention, the gel content of the crosslinked ethylene / α-olefin copolymer (C) is determined depending on the scratch resistance, impact resistance, and coloring of the molded product. From the viewpoint of balance with the properties, it is preferably 35 to 75% by mass, more preferably 40 to 70% by mass, and particularly preferably 45 to 65% by mass with respect to the total mass of the crosslinked ethylene / α-olefin copolymer (C). preferable.
 エチレン・α-オレフィン共重合体(A)の架橋処理は、公知の方法によって行う。架橋処理の方法としては、(a)エチレン・α-オレフィン共重合体(A)に、有機過酸化物と、必要に応じて多官能性化合物とを添加して架橋処理を行う方法;(b)電離性放射線によって架橋処理を行う方法等が挙げられ、成形品の耐衝撃性、発色性の点から、(a)の方法が好ましい。 The crosslinking treatment of the ethylene / α-olefin copolymer (A) is performed by a known method. As a crosslinking treatment method, (a) a method of carrying out a crosslinking treatment by adding an organic peroxide and, if necessary, a polyfunctional compound to the ethylene / α-olefin copolymer (A); ) A method of performing a crosslinking treatment with ionizing radiation, and the like, and the method (a) is preferable from the viewpoint of impact resistance and color developability of the molded product.
 (a)の方法としては、具体的には、エチレン・α-オレフィン共重合体(A)またはオレフィン樹脂水性分散体(B)に、有機過酸化物と、必要に応じて多官能性化合物とを添加し、加熱する方法等が挙げられる。
 有機過酸化物および多官能性化合物の添加量、加熱温度、加熱時間等を調整することによって、架橋エチレン・α-オレフィン共重合体(C)のゲル含有率を調整できる。
 加熱温度は、有機過酸化物の種類によって異なる。加熱温度は、有機過酸化物の10時間半減期温度の-5℃~+30℃が好ましい。
 加熱時間は、3~15時間が好ましい。
Specifically, the method (a) includes an ethylene / α-olefin copolymer (A) or an aqueous olefin resin dispersion (B), an organic peroxide, and, if necessary, a polyfunctional compound. The method of adding and heating is mentioned.
The gel content of the crosslinked ethylene / α-olefin copolymer (C) can be adjusted by adjusting the addition amount of organic peroxide and polyfunctional compound, heating temperature, heating time, and the like.
The heating temperature varies depending on the type of organic peroxide. The heating temperature is preferably −5 ° C. to + 30 ° C., which is the 10-hour half-life temperature of the organic peroxide.
The heating time is preferably 3 to 15 hours.
 有機過酸化物は、エチレン・α-オレフィン共重合体(A)に架橋構造を形成させるためのものである。有機過酸化物としては、例えば、ペルオキシエステル化合物、ペルオキシケタール化合物、ジアルキルペルオキシド化合物等が挙げられる。有機過酸化物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The organic peroxide is for forming a crosslinked structure in the ethylene / α-olefin copolymer (A). Examples of the organic peroxide include a peroxy ester compound, a peroxy ketal compound, a dialkyl peroxide compound, and the like. An organic peroxide may be used individually by 1 type, and may be used in combination of 2 or more type.
 ペルオキシエステル化合物の具体例としては、α,α’-ビス(ネオデカノイルペルオキシ)ジイソプロピルベンゼン、クミルペルオキシネオデカノエート、1,1,3,3-テトラメチルブチルペルオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルペルオキシネオデカノエート、t-ヘキシルペルオキシネオデカノエート、t-ブチルペルオキシネオデカノエート、t-ヘキシルペルオキシピバレイト、t-ブチルペルオキシピバレート、1,1,3,3-テトラメチルブチルペルオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルペルオキシ)ヘキサン、1-シクロヘキシル-1-メチルエチルペルオキシ-2-エチルヘキサノエート、t-ヘキシルペルオキシ2-ヘキシルヘキサノエート、t-ブチルペルオキシ2-ヘキシルヘキサノエート、t-ブチルペルオキシイソブチレート、t-ヘキシルペルオキシイソプロピルモノカーボネート、t-ブチルペルオキシマレイックアシッド、t-ブチルペルオキシ3,5,5-トリメチルヘキサノエート、t-ブチルペルオキシラウレート、2,5-ジメチル-2,5-ビス(m-トルオイルペルオキシ)ヘキサン、t-ブチルペルオキシイソプロピルモノカーボネート、t-ブチルペルオキシ2-エチルヘキシルモノカーボネート、t-ヘキシルペルオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルペルオキシ)ヘキサン、t-ブチルペルオキシアセテート、t-ブチルペルオキシ-m-トルオイルベンゾエート、t-ブチルペルオキシベンゾエート、ビス(t-ブチルペルオキシ)イソフタレート等が挙げられる。 Specific examples of the peroxyester compound include α, α′-bis (neodecanoylperoxy) diisopropylbenzene, cumylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1 -Cyclohexyl-1-methylethylperoxyneodecanoate, t-hexylperoxyneodecanoate, t-butylperoxyneodecanoate, t-hexylperoxypivalate, t-butylperoxypivalate, 1,1, 3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethyl Hexanoate, t-hexylperoxy 2-hexyl Ruhexanoate, t-butylperoxy 2-hexylhexanoate, t-butylperoxyisobutyrate, t-hexylperoxyisopropyl monocarbonate, t-butylperoxymaleic acid, t-butylperoxy 3,5,5-trimethylhexano Ate, t-butylperoxylaurate, 2,5-dimethyl-2,5-bis (m-toluoylperoxy) hexane, t-butylperoxyisopropyl monocarbonate, t-butylperoxy 2-ethylhexyl monocarbonate, t-hexyl Peroxybenzoate, 2,5-dimethyl-2,5-bis (benzoylperoxy) hexane, t-butylperoxyacetate, t-butylperoxy-m-toluoylbenzoate, t-butylperoxybenzo Chromatography, bis (t-butylperoxy) isophthalate.
 ペルオキシケタール化合物の具体例としては、1,1-ビス(t-ヘキシルペルオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルペルオキシ)シクロヘキサン、1,1-ビス(t-ブチルペルオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルペルオキシ)シクロヘキサン、1,1-ビス(t-ブチルペルオキシ)シクロドデカン、2,2-ビス(t-ブチルペルオキシ)ブタン、n-ブチル4,4-ビス(t-ブチルペルオキシ)バレレート、2,2-ビス(4,4-ジ-t-ブチルペルオキシシクロヘキシル)プロパン等が挙げられる。 Specific examples of the peroxyketal compound include 1,1-bis (t-hexylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis (t- Butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) cyclododecane, 2,2-bis (t-butylperoxy) Examples include butane, n-butyl 4,4-bis (t-butylperoxy) valerate, 2,2-bis (4,4-di-t-butylperoxycyclohexyl) propane, and the like.
 ジアルキルペルオキシド化合物の具体例としては、α,α’-ビス(t-ブチルペルオキシド)ジイソプロピルベンゼン、ジクミルペルオキシド、2,5-ジメチル-2,5-ビス(t-ブチルペルオキシ)ヘキサン、t-ブチルクミルペルオキシド、ジ-t-ブチルペルオキシド、2,5-ジメチル-2,5-ビス(t-ブチルペルオキシ)ヘキシン-3等が挙げられる。 Specific examples of the dialkyl peroxide compound include α, α′-bis (t-butyl peroxide) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, and t-butyl. Examples include cumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3.
 有機過酸化物としては、架橋エチレン・α-オレフィン共重合体(C)のゲル含有率を調整しやすい点から、ジクミルペルオキシド、t-ブチルクミルペルオキシド、ジ-t-ブチルペルオキシド等のジアルキルペルオキシド化合物が特に好ましい。 Organic peroxides include dialkyls such as dicumyl peroxide, t-butylcumyl peroxide, and di-t-butyl peroxide because the gel content of the crosslinked ethylene / α-olefin copolymer (C) can be easily adjusted. Peroxide compounds are particularly preferred.
 有機過酸化物の添加量は、架橋エチレン・α-オレフィン共重合体(C)のゲル含有率を35~75質量%の範囲に調整しやすい点から、エチレン・α-オレフィン共重合体(A)100質量部に対して0.1~5質量部が好ましい。 The amount of the organic peroxide added is that the gel content of the cross-linked ethylene / α-olefin copolymer (C) can be easily adjusted to a range of 35 to 75% by mass, so that the ethylene / α-olefin copolymer (A ) 0.1 to 5 parts by mass is preferable with respect to 100 parts by mass.
 多官能性化合物は、架橋エチレン・α-オレフィン共重合体(C)のゲル含有率を調整するために、必要に応じて有機過酸化物と併用されるものである。多官能性化合物としては、ジビニルベンゼン、アリルメタクリレート、エチレングリコールジメタクリレート、1,3-ブチレンジメタクリレート、テトラエチレングリコールジアクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ペンタエリスリトールテトラアクリレート等が挙げられ、ゲル含有率を調整しやすい点から、ジビニルベンゼンが好ましい。多官能性化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The polyfunctional compound is used in combination with an organic peroxide as necessary in order to adjust the gel content of the crosslinked ethylene / α-olefin copolymer (C). Examples of the polyfunctional compound include divinylbenzene, allyl methacrylate, ethylene glycol dimethacrylate, 1,3-butylene dimethacrylate, tetraethylene glycol diacrylate, triallyl cyanurate, triallyl isocyanurate, pentaerythritol tetraacrylate, and the like. From the viewpoint of easily adjusting the gel content, divinylbenzene is preferred. A polyfunctional compound may be used individually by 1 type, and may be used in combination of 2 or more type.
 多官能性化合物の添加量は、架橋エチレン・α-オレフィン共重合体(C)のゲル含有率を35~75質量%に調整しやすい点から、エチレン・α-オレフィン共重合体(A)100質量部に対して10質量部以下が好ましい。 The addition amount of the polyfunctional compound is such that the gel content of the crosslinked ethylene / α-olefin copolymer (C) can be easily adjusted to 35 to 75% by mass, so that the ethylene / α-olefin copolymer (A) 100 is added. 10 parts by mass or less is preferable with respect to parts by mass.
 水性分散体中の架橋エチレン・α-オレフィン共重合体(C)の体積平均粒子径は、成形品の物性が優れる点から、0.2~0.6μmであり、0.3~0.5μmが好ましい。
体積平均粒子径が前記範囲内であれば、成形品の耐衝撃性、発色性、潤滑性に優れる。
The volume average particle diameter of the crosslinked ethylene / α-olefin copolymer (C) in the aqueous dispersion is 0.2 to 0.6 μm, and 0.3 to 0.5 μm in view of excellent physical properties of the molded product. Is preferred.
When the volume average particle diameter is in the above range, the molded article is excellent in impact resistance, color developability and lubricity.
 オレフィン樹脂水性分散体(B)を有機過酸化物によって架橋処理した架橋エチレン・α-オレフィン共重合体(C)の水性分散体中の架橋エチレン・α-オレフィン共重合体(C)の体積平均粒子径は、オレフィン樹脂水性分散体(B)中のエチレン・α-オレフィン共重合体(A)の体積平均粒子径に対して変化はない。 Volume average of crosslinked ethylene / α-olefin copolymer (C) in aqueous dispersion of crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking olefin resin aqueous dispersion (B) with organic peroxide The particle diameter does not change with respect to the volume average particle diameter of the ethylene / α-olefin copolymer (A) in the aqueous olefin resin dispersion (B).
 <ビニル系単量体混合物(m1)>
 本発明の第三の態様、第四の態様、及び第五の態様において、ビニル系単量体混合物(m1)は、少なくとも芳香族ビニル化合物およびシアン化ビニル化合物を含む単量体混合物である。
<Vinyl monomer mixture (m1)>
In the third aspect, the fourth aspect, and the fifth aspect of the present invention, the vinyl monomer mixture (m1) is a monomer mixture containing at least an aromatic vinyl compound and a vinyl cyanide compound.
 芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、o-,m-またはp-メチルスチレン、ビニルキシレン、p-t-ブチルスチレン、エチルスチレン等が挙げられ、熱可塑性樹脂組成物(I)の流動性、成形品の発色性、耐衝撃性の点から、スチレン、α-メチルスチレンが好ましい。芳香族ビニル化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 芳香族ビニル化合物の含有率は、ビニル系単量体混合物(m1)100質量%中65~82質量%が好ましく、73~80質量%がより好ましく、75~80質量%がさらに好ましい。芳香族ビニル化合物の含有率が前記範囲内であれば、成形品の発色性、耐衝撃性がさらに優れる。
Examples of the aromatic vinyl compound include styrene, α-methyl styrene, o-, m- or p-methyl styrene, vinyl xylene, pt-butyl styrene, ethyl styrene, and the like. Styrene and α-methylstyrene are preferred from the viewpoint of the fluidity of I), the color developability of the molded product, and the impact resistance. An aromatic vinyl compound may be used individually by 1 type, and may be used in combination of 2 or more type.
The content of the aromatic vinyl compound is preferably 65 to 82% by mass, more preferably 73 to 80% by mass, and further preferably 75 to 80% by mass in 100% by mass of the vinyl monomer mixture (m1). When the content of the aromatic vinyl compound is within the above range, the color developability and impact resistance of the molded product are further improved.
 シアン化ビニル化合物としては、例えば、アクリロニトリル、メタクリロニトリル等が挙げられる。シアン化ビニル化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の第三の態様、第四の態様、及び第五の態様において、シアン化ビニル化合物の含有率は、ビニル系単量体混合物(m1)100質量%中18~35質量%が好ましく、20~27質量%がより好ましく、20~25質量%がさらに好ましい。シアン化ビニル化合物の含有率が前記範囲内であれば、成形品の発色性、耐衝撃性がさらに優れる。
Examples of the vinyl cyanide compound include acrylonitrile and methacrylonitrile. A vinyl cyanide compound may be used individually by 1 type, and may be used in combination of 2 or more type.
In the third aspect, the fourth aspect, and the fifth aspect of the present invention, the content of the vinyl cyanide compound is preferably 18 to 35% by mass in 100% by mass of the vinyl monomer mixture (m1), It is more preferably 20 to 27% by mass, and further preferably 20 to 25% by mass. When the content of the vinyl cyanide compound is within the above range, the color developability and impact resistance of the molded product are further improved.
 ビニル系単量体混合物(m1)は、芳香族ビニル化合物およびシアン化ビニル化合物の他に、これらと共重合可能な他の単量体を、本発明の効果を損なわない範囲で含んでもよい。
 他の単量体としては、アクリル酸エステル(アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル等)、メタクリル酸エステル(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル等)、マレイミド系化合物(N-シクロヘキシルマレイミド、N-フェニルマレイミド等)等が挙げられる。
 他の単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The vinyl monomer mixture (m1) may contain, in addition to the aromatic vinyl compound and the vinyl cyanide compound, other monomers copolymerizable therewith within a range not impairing the effects of the present invention.
Other monomers include acrylic acid esters (methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, etc.), methacrylic acid esters (methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, etc.) ), Maleimide compounds (N-cyclohexylmaleimide, N-phenylmaleimide, etc.) and the like.
Another monomer may be used individually by 1 type and may be used in combination of 2 or more type.
 <グラフト共重合体(D)>
 本発明の第三の態様、第四の態様、及び第五の態様において、グラフト共重合体(D)は、エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の存在下にビニル系単量体混合物(m1)を重合することによって得られる。
<Graft copolymer (D)>
In the third aspect, the fourth aspect, and the fifth aspect of the present invention, the graft copolymer (D) is an ethylene / α-olefin copolymer (A) or a crosslinked ethylene / α-olefin copolymer. It can be obtained by polymerizing the vinyl monomer mixture (m1) in the presence of (C).
 グラフト共重合体(D)は、弾性変形に寄与する分子鎖(グラフト成分)を十分に確保できることから、せん断応力下でのグラフト共重合体(D)に含まれるエチレン・α-オレフィン共重合体(A)粒子または架橋エチレン・α-オレフィン共重合体(C)粒子の変形が抑制される。そのため、グラフト共重合体(D)を配合することによって、成形品は、優れた耐衝撃性、耐傷付き性を発現することができる。 Since the graft copolymer (D) can sufficiently secure a molecular chain (graft component) contributing to elastic deformation, the ethylene / α-olefin copolymer contained in the graft copolymer (D) under shear stress (A) Deformation of the particles or crosslinked ethylene / α-olefin copolymer (C) particles is suppressed. Therefore, by blending the graft copolymer (D), the molded product can exhibit excellent impact resistance and scratch resistance.
 本発明の第三の態様、第四の態様、及び第五の態様において、グラフト共重合体(D)は、エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)50~80質量%の存在下に、ビニル系単量体混合物(m1)20~50質量%(ただし、エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)とビニル系単量体混合物(m1)との合計は100質量%)を重合して得られたものが好ましい。エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)が50~80質量%であれば、熱可塑性樹脂組成物(I)の流動性や、成形品の耐衝撃性、光沢性、発色性の物性バランスがさらに向上する。また、エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)55~75質量%の存在下に、ビニル系単量体混合物(m1)25~45質量%(ただし、エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)とビニル系単量体混合物(m1)との合計は100質量%)を重合して得られたものがより好ましい。 In the third aspect, the fourth aspect, and the fifth aspect of the present invention, the graft copolymer (D) is an ethylene / α-olefin copolymer (A) or a crosslinked ethylene / α-olefin copolymer. (C) In the presence of 50 to 80% by mass, vinyl monomer mixture (m1) 20 to 50% by mass (provided that ethylene / α-olefin copolymer (A) or crosslinked ethylene / α-olefin copolymer) What was obtained by superposing | polymerizing a coalescence (C) and a vinyl-type monomer mixture (m1) is 100 mass%) is preferable. If the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C) is 50 to 80% by mass, the fluidity of the thermoplastic resin composition (I), The balance of physical properties of impact resistance, gloss and color development is further improved. Further, in the presence of 55 to 75% by mass of the ethylene / α-olefin copolymer (A) or crosslinked ethylene / α-olefin copolymer (C), the vinyl monomer mixture (m1) is 25 to 45% by mass. (However, the total of the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C) and the vinyl monomer mixture (m1) is 100% by mass). More preferred.
 本発明の第三の態様、第四の態様、及び第五の態様において、グラフト共重合体(D)のグラフト率は、熱可塑性樹脂組成物(I)の流動性および成形品の耐衝撃性、発色性、光沢性のバランスの点から、20~100質量%が好ましい。 In the third aspect, the fourth aspect, and the fifth aspect of the present invention, the graft ratio of the graft copolymer (D) is determined by the flowability of the thermoplastic resin composition (I) and the impact resistance of the molded product. From the viewpoint of the balance between color development and gloss, it is preferably 20 to 100% by mass.
 重合方法としては、公知の重合方法(乳化重合法、溶液重合法、懸濁重合法、塊状重合法等)が挙げられ、成形品の耐擦り傷性、光沢性がさらに優れる点から、乳化重合法が特に好ましい。 Examples of the polymerization method include known polymerization methods (emulsion polymerization method, solution polymerization method, suspension polymerization method, bulk polymerization method, etc.), and emulsion polymerization method from the point that the scratch resistance and gloss of the molded product are further improved. Is particularly preferred.
 乳化重合法によるグラフト共重合体(D)の製造方法としては、例えば、ビニル系単量体混合物(m1)に有機過酸化物を混合した上で、ビニル系単量体混合物(m1)をオレフィン樹脂水性分散体(B)または架橋エチレン・α-オレフィン共重合体(C)の水性分散体に連続的に添加する方法が挙げられる。
オレフィン樹脂水性分散体(B)または架橋エチレン・α-オレフィン共重合体(C)の水性分散体において、エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の濃度は15~65質量%が好ましく、25~55質量%がより好ましい。
反応時間は、2時間~5時間が好ましく、2.5時間~4.5時間がより好ましい。
反応温度は、50℃~100℃が好ましく、60℃~90℃がより好ましい。
有機過酸化物は、有機過酸化物と遷移金属と還元剤とを組み合わせたレドックス系開始剤として用いるのが好ましい。重合の際に、連鎖移動剤、乳化剤等を状況に応じて用いてもよい。
As a method for producing the graft copolymer (D) by the emulsion polymerization method, for example, an organic peroxide is mixed into the vinyl monomer mixture (m1), and then the vinyl monomer mixture (m1) is converted into an olefin. Examples thereof include a method of continuously adding the aqueous resin dispersion (B) or the aqueous dispersion of the crosslinked ethylene / α-olefin copolymer (C).
In the aqueous dispersion of olefin resin aqueous dispersion (B) or crosslinked ethylene / α-olefin copolymer (C), ethylene / α-olefin copolymer (A) or crosslinked ethylene / α-olefin copolymer (C ) Is preferably 15 to 65% by mass, more preferably 25 to 55% by mass.
The reaction time is preferably 2 hours to 5 hours, more preferably 2.5 hours to 4.5 hours.
The reaction temperature is preferably 50 ° C to 100 ° C, more preferably 60 ° C to 90 ° C.
The organic peroxide is preferably used as a redox initiator that combines an organic peroxide, a transition metal, and a reducing agent. In the polymerization, a chain transfer agent, an emulsifier or the like may be used depending on the situation.
 レドックス系開始剤としては、重合反応条件を高温下にする必要がなく、エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の劣化等を避け、成形品の耐衝撃性の低下を回避できる点から、有機過酸化物と硫酸第一鉄-キレート剤-還元剤とを組み合わせたものが好ましい。
 有機過酸化物としては、クメンヒドロペルオキシド、ジイソプロピルベンゼンヒドロペルオキシド、t-ブチルヒドロペルオキシド等が挙げられる。
 レドックス系開始剤としては、クメンヒドロペルオキシドと、硫酸第一鉄と、ピロリン酸ナトリウムと、デキストロースとからなるものがより好ましい。
Redox initiator does not require high polymerization reaction conditions, avoids deterioration of ethylene / α-olefin copolymer (A) or crosslinked ethylene / α-olefin copolymer (C), etc. A combination of an organic peroxide and a ferrous sulfate-chelating agent-reducing agent is preferable from the viewpoint of avoiding a decrease in impact resistance of the product.
Examples of the organic peroxide include cumene hydroperoxide, diisopropylbenzene hydroperoxide, t-butyl hydroperoxide and the like.
The redox initiator is more preferably composed of cumene hydroperoxide, ferrous sulfate, sodium pyrophosphate, and dextrose.
 連鎖移動剤としては、メルカプタン類(オクチルメルカプタン、n-またはt-ドデシルメルカプタン、n-ヘキサデシルメルカプタン、n-またはt-テトラデシルメルカプタン等)、アリル化合物(アリルスルフォン酸、メタアリルスルフォン酸、これらのナトリウム塩等)、α-メチルスチレンダイマー等が挙げられ、分子量を調整することが容易な点から、メルカプタン類が好ましい。連鎖移動剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 連鎖移動剤の添加方法は、一括、分割、連続のいずれでもよい。
 連鎖移動剤の添加量は、ビニル系単量体混合物(m1)100質量部に対して2.0質量部以下が好ましい。
Chain transfer agents include mercaptans (octyl mercaptan, n- or t-dodecyl mercaptan, n-hexadecyl mercaptan, n- or t-tetradecyl mercaptan, etc.), allyl compounds (allyl sulfonic acid, methallyl sulfonic acid, these Sodium salts, etc.), α-methylstyrene dimers, etc., and mercaptans are preferred from the viewpoint of easy adjustment of the molecular weight. A chain transfer agent may be used individually by 1 type, and may be used in combination of 2 or more type.
The method for adding the chain transfer agent may be any of batch, split, and continuous.
The addition amount of the chain transfer agent is preferably 2.0 parts by mass or less with respect to 100 parts by mass of the vinyl monomer mixture (m1).
 乳化剤としては、アニオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤等が挙げられる。
 アニオン性界面活性剤としては、高級アルコールの硫酸エステル、アルキルベンゼンスルホン酸塩、脂肪酸スルホン酸塩、リン酸系塩、脂肪酸塩、アミノ酸誘導体塩等が挙げられる。
 ノニオン性界面活性剤としては、通常のポリエチレングリコールのアルキルエステル型、アルキルエーテル型、アルキルフェニルエーテル型等が挙げられる。
 両性界面活性剤としては、アニオン部にカルボン酸塩、硫酸エステル塩、スルホン酸塩、リン酸エステル塩等を有し、カチオン部にアミン塩、第4級アンモニウム塩等を有するものが挙げられる。
 乳化剤の添加量は、ビニル系単量体混合物(m1)100質量部に対して10質量部以下が好ましい。
Examples of the emulsifier include anionic surfactants, nonionic surfactants, and amphoteric surfactants.
Examples of the anionic surfactants include higher alcohol sulfates, alkylbenzene sulfonates, fatty acid sulfonates, phosphate salts, fatty acid salts, and amino acid derivative salts.
Examples of nonionic surfactants include ordinary polyethylene glycol alkyl ester types, alkyl ether types, and alkyl phenyl ether types.
Examples of the amphoteric surfactant include those having a carboxylate salt, sulfate ester salt, sulfonate salt, phosphate ester salt and the like in the anion portion and amine salts and quaternary ammonium salts in the cation portion.
The addition amount of the emulsifier is preferably 10 parts by mass or less with respect to 100 parts by mass of the vinyl monomer mixture (m1).
 乳化重合法によって得られるグラフト共重合体(D)は、水中に分散した状態である。
 グラフト共重合体(D)を含む水性分散体からグラフト共重合体(D)を回収する方法としては、例えば、水性分散体に析出剤を添加し、加熱、撹拌した後、析出剤を分離し、析出したグラフト共重合体(D)を水洗、脱水、乾燥する析出法が挙げられる。
 析出剤としては、例えば、硫酸、酢酸、塩化カルシウム、硫酸マグネシウム等の水溶液が挙げられる。析出剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 グラフト共重合体(D)を含む水性分散体に、必要に応じて酸化防止剤を添加してもよい。
The graft copolymer (D) obtained by the emulsion polymerization method is in a state of being dispersed in water.
As a method for recovering the graft copolymer (D) from the aqueous dispersion containing the graft copolymer (D), for example, a precipitation agent is added to the aqueous dispersion, heated and stirred, and then the precipitation agent is separated. And a precipitation method in which the precipitated graft copolymer (D) is washed with water, dehydrated and dried.
Examples of the precipitating agent include aqueous solutions of sulfuric acid, acetic acid, calcium chloride, magnesium sulfate, and the like. A precipitation agent may be used individually by 1 type, and may be used in combination of 2 or more type.
An antioxidant may be added to the aqueous dispersion containing the graft copolymer (D) as necessary.
 <架橋アクリル酸エステル系ゴム状重合体(E)>
 架橋アクリル酸エステル系ゴム状重合体(E)は、(メタ)アクリル酸エステルに由来する単位と、架橋剤に由来する単位またはグラフト交叉剤に由来する単位のいずれか一方または両方を有する共重合体である。
架橋アクリル酸エステル系ゴム状重合体(E)の水性分散体は、ポリブタジエン等の他のゴム成分の水性分散体を含んでもよい。
<Crosslinked acrylic ester-based rubbery polymer (E)>
The cross-linked acrylic ester rubbery polymer (E) is a copolymer having a unit derived from a (meth) acrylic ester, a unit derived from a cross-linking agent, a unit derived from a graft crossing agent, or both. It is a coalescence.
The aqueous dispersion of the crosslinked acrylic ester rubber-like polymer (E) may contain an aqueous dispersion of other rubber components such as polybutadiene.
 (メタ)アクリル酸エステルとしては、アルキル基の炭素数が1~12である(メタ)アクリル酸アルキルエステル、芳香族炭化水素基(フェニル基、ベンジル基等)を有するアクリル酸エステル等が挙げられ、成形品の耐衝撃性の点から、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、アクリル酸エチルが好ましい。
(メタ)アクリル酸エステルは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of (meth) acrylic acid esters include (meth) acrylic acid alkyl esters having an alkyl group having 1 to 12 carbon atoms, and acrylic acid esters having an aromatic hydrocarbon group (phenyl group, benzyl group, etc.). From the viewpoint of impact resistance of the molded product, n-butyl acrylate, 2-ethylhexyl acrylate, and ethyl acrylate are preferred.
One (meth) acrylic acid ester may be used alone, or two or more may be used in combination.
 架橋剤およびグラフト交叉剤は、成形品の発色性を改善する。
 架橋剤としては、ジメタクリレート系化合物、具体例には、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、1,3-ブチレングリコールジメタクリレート、1,4-ブチレングリコールジメタクリレート等が挙げられる。
 グラフト交叉剤としては、アリル化合物、具体的には、メタクリル酸アリル、シアヌル酸トリアリル、イソシアヌル酸トリアリル等が挙げられる。
Crosslinking agents and graft crossing agents improve the color developability of the molded article.
Examples of the crosslinking agent include dimethacrylate compounds, and specific examples include ethylene glycol dimethacrylate, propylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate, and the like.
Examples of the graft crossing agent include allyl compounds, specifically, allyl methacrylate, triallyl cyanurate, triallyl isocyanurate, and the like.
 架橋剤に由来する単位およびグラフト交叉剤に由来する単位の合計は、成形品の発色性が優れ、グラフト共重合体(F)製造時の凝塊物(コアギュラム)が少なくなる点から、架橋アクリル酸エステル系ゴム状重合体(E)を構成するすべての単位(100質量%)のうち、0.1~5質量%が好ましく、0.2~3質量%がより好ましく、0.5~2質量%がさらに好ましい。
ここで「架橋剤に由来する単位およびグラフト交叉剤に由来する単位の合計」は」とは、架橋アクリル酸エステル系ゴム状重合体(E)の合成において使用する単量体の総質量(即ち、架橋アクリル酸エステル系ゴム状重合体(E)を構成する構成単位に対応する単量体の総質量)に対する、架橋剤およびグラフト交叉剤の質量から算出することができる。
The total of the units derived from the cross-linking agent and the graft cross-linking agent is excellent in the color development of the molded product, and less coagulum (coagulum) during the production of the graft copolymer (F). Of all the units (100% by mass) constituting the acid ester rubbery polymer (E), 0.1 to 5% by mass is preferable, 0.2 to 3% by mass is more preferable, and 0.5 to 2%. More preferred is mass%.
Here, “the sum of the units derived from the crosslinking agent and the unit derived from the graft crossing agent” means the total mass of monomers used in the synthesis of the crosslinked acrylic acid ester rubbery polymer (E) (that is, The total mass of monomers corresponding to the structural units constituting the crosslinked acrylic ester rubber-like polymer (E)) can be calculated from the mass of the crosslinking agent and the graft crossing agent.
 架橋アクリル酸エステル系ゴム状重合体(E)の製造方法は、特に制限されない。
架橋アクリル酸エステル系ゴム状重合体(E)の製造方法としては、例えば、(メタ)アクリル酸エステルと、架橋剤またはグラフト交叉剤のいずれか一方または両方とを含む単量体混合物を乳化重合して架橋アクリル酸エステル系ゴム状重合体(E)の水性分散体を得る方法;前記架橋アクリル酸エステル系ゴム状重合体(E)の水性分散体と他のゴム成分の水性分散体とをヘテロ凝集または共肥大化する方法;架橋アクリル酸エステル系ゴム状重合体(E)の水性分散体または他のゴム成分水性分散体のいずれか一方の存在下で他方を構成する単量体混合物を重合させて複合化させる方法等が挙げられる。
The method for producing the crosslinked acrylic ester rubber-like polymer (E) is not particularly limited.
Examples of the method for producing the crosslinked acrylic ester rubbery polymer (E) include emulsion polymerization of a monomer mixture containing (meth) acrylic ester and either or both of a crosslinking agent and a graft crossing agent. To obtain an aqueous dispersion of the crosslinked acrylic ester rubbery polymer (E); an aqueous dispersion of the crosslinked acrylic ester rubbery polymer (E) and an aqueous dispersion of another rubber component. A method of heteroaggregation or co-hypertrophy; a monomer mixture constituting the other in the presence of either an aqueous dispersion of a crosslinked acrylic ester-based rubbery polymer (E) or an aqueous dispersion of another rubber component; Examples include a method of polymerizing and compositing.
 乳化重合で用いる乳化剤の好ましい具体例としては、脂肪酸(オレイン酸、ステアリン酸、ミリスチン酸、ステアリン酸、パルミチン酸等)のナトリウムまたはカリウム塩、ラウリル硫酸ナトリウム、N-ラウロイルサルコシン酸ナトリウム、アルケニルコハク酸ジカリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム等が挙げられ、熱可塑性樹脂組成物(I)の成形時のガス発生をより抑制できる点から、一分子中に官能基を2つ以上有する酸型乳化剤またはその塩が好ましい。
一分子中に2つの官能基を有する酸型乳化剤またはその塩としては、アルケニルコハク酸ジカリウム、アルキルジフェニルエーテルジスルホン酸ナトリウムが好ましく、硫酸を添加して水性分散体から架橋アクリル酸エステル系ゴム状重合体(E)を凝固、回収することが容易になる点から、アルケニルコハク酸ジカリウムがより好ましい。
アルケニルコハク酸ジカリウムの具体的例としては、オクタデセニルコハク酸ジカリウム、ヘプタデセニルコハク酸ジカリウム、ヘキサデセニルコハク酸ジカリウム等が挙げられる。
乳化剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Preferable specific examples of the emulsifier used in the emulsion polymerization include sodium or potassium salts of fatty acids (oleic acid, stearic acid, myristic acid, stearic acid, palmitic acid, etc.), sodium lauryl sulfate, sodium N-lauroyl sarcosinate, alkenyl succinic acid Examples include dipotassium, sodium alkyldiphenyl ether disulfonate, and the like, and acid-type emulsifiers or salts thereof having two or more functional groups in one molecule from the viewpoint of further suppressing gas generation during molding of the thermoplastic resin composition (I) Is preferred.
As the acid-type emulsifier having two functional groups in one molecule or a salt thereof, dipotassium alkenyl succinate and sodium alkyldiphenyl ether disulfonate are preferable, and sulfuric acid is added to the crosslinked acrylic ester rubber polymer from an aqueous dispersion. In view of easy coagulation and recovery of (E), dipotassium alkenyl succinate is more preferable.
Specific examples of dipotassium alkenyl succinate include dipotassium octadecenyl succinate, dipotassium heptadecenyl succinate, and dipotassium hexadecenyl succinate.
An emulsifier may be used individually by 1 type and may be used in combination of 2 or more type.
 水性分散体中の架橋アクリル酸エステル系ゴム状重合体(E)の体積平均粒子径は、成形品の物性が優れる点から、0.05~0.18μmであり、0.07~0.15μmが好ましい。
体積平均粒子径が0.05μmよりも小さい場合、成形品の耐衝撃性が劣る。
体積平均粒子径が0.18μmよりも大きい場合、成形品の耐衝撃性、発色性が劣る。
 水性分散体中の架橋アクリル酸エステル系ゴム状重合体(E)の体積平均粒子径を制御する方法としては、乳化剤の種類または使用量を調整する方法等が挙げられる。
The volume average particle diameter of the crosslinked acrylic ester rubber-like polymer (E) in the aqueous dispersion is 0.05 to 0.18 μm and 0.07 to 0.15 μm from the viewpoint of excellent physical properties of the molded product. Is preferred.
When the volume average particle diameter is smaller than 0.05 μm, the impact resistance of the molded product is inferior.
When the volume average particle diameter is larger than 0.18 μm, the impact resistance and color developability of the molded product are inferior.
Examples of a method for controlling the volume average particle size of the crosslinked acrylic ester rubber-like polymer (E) in the aqueous dispersion include a method for adjusting the type or amount of the emulsifier.
 <ビニル系単量体混合物(m2)>
 ビニル系単量体混合物(m2)は、少なくとも芳香族ビニル化合物およびシアン化ビニル化合物を含む単量体混合物である。
<Vinyl monomer mixture (m2)>
The vinyl monomer mixture (m2) is a monomer mixture containing at least an aromatic vinyl compound and a vinyl cyanide compound.
 芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、o-,m-またはp-メチルスチレン、ビニルキシレン、p-t-ブチルスチレン、エチルスチレン等が挙げられ、熱可塑性樹脂組成物(I)の流動性、成形品の発色性、耐衝撃性の点から、スチレン、α-メチルスチレンが好ましい。
芳香族ビニル化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 芳香族ビニル化合物の含有率は、ビニル系単量体混合物(m2)100質量%中65~82質量%が好ましく、73~80質量%がより好ましく、75~80質量%がさらに好ましい。
芳香族ビニル化合物の含有率が前記範囲内であれば、成形品の発色性、耐衝撃性がさらに優れる。
Examples of the aromatic vinyl compound include styrene, α-methyl styrene, o-, m- or p-methyl styrene, vinyl xylene, pt-butyl styrene, ethyl styrene, and the like. Styrene and α-methylstyrene are preferred from the viewpoint of the fluidity of I), the color developability of the molded product, and the impact resistance.
An aromatic vinyl compound may be used individually by 1 type, and may be used in combination of 2 or more type.
The content of the aromatic vinyl compound is preferably 65 to 82% by mass, more preferably 73 to 80% by mass, and further preferably 75 to 80% by mass in 100% by mass of the vinyl monomer mixture (m2).
When the content of the aromatic vinyl compound is within the above range, the color developability and impact resistance of the molded product are further improved.
 シアン化ビニル化合物としては、例えば、アクリロニトリル、メタクリロニトリル等が挙げられる。
シアン化ビニル化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 シアン化ビニル化合物の含有率は、ビニル系単量体混合物(m2)100質量%中18~35質量%が好ましく、20~27質量%がより好ましく、20~25質量%がさらに好ましい。
シアン化ビニル化合物の含有率が前記範囲内であれば、成形品の発色性、耐衝撃性がさらに優れる。
Examples of the vinyl cyanide compound include acrylonitrile and methacrylonitrile.
A vinyl cyanide compound may be used individually by 1 type, and may be used in combination of 2 or more type.
The content of the vinyl cyanide compound is preferably 18 to 35% by mass, more preferably 20 to 27% by mass, and further preferably 20 to 25% by mass in 100% by mass of the vinyl monomer mixture (m2).
When the content of the vinyl cyanide compound is within the above range, the color developability and impact resistance of the molded product are further improved.
 ビニル系単量体混合物(m2)は、芳香族ビニル化合物およびシアン化ビニル化合物の他に、これらと共重合可能な他の単量体を、本発明の効果を損なわない範囲で含んでもよい。
 他の単量体としては、例えば、メタクリル酸エステル(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸アミル、メタクリル酸イソアミル、メタクリル酸オクチル、メタクリル酸-2-エチルヘキシル、メタクリル酸デシル、メタクリル酸ラウリル、メタクリル酸シクロヘキシル、メタクリル酸ペンジル、メタクリル酸フェニル等)、マレイミド系化合物(N-メチルマレイミド、N-エチルマレイミド、N-n-プロピルマレイミド、N-i-プロピルマレイミド、N-n-ブチルマレイミド、N-i-ブチルマレイミド、N-tert-ブチルマレイミド、N-シクロアルキルマレイミド(N-シクロヘキシルマレイミド等)、N-アリールマレイミド(N-フェニルマレイミド、N-アルキル置換フェニルマレイミド、N-クロロフェニルマレイミド等)、N-アラルキルマレイミド等)、アクリル酸エステル(アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル等)等が挙げられる。
他の単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The vinyl monomer mixture (m2) may contain, in addition to the aromatic vinyl compound and the vinyl cyanide compound, other monomers copolymerizable therewith within a range not impairing the effects of the present invention.
Other monomers include, for example, methacrylic acid esters (methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-methacrylic acid t- Butyl, amyl methacrylate, isoamyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, decyl methacrylate, lauryl methacrylate, cyclohexyl methacrylate, pentyl methacrylate, phenyl methacrylate, etc.), maleimide compounds (N-methyl) Maleimide, N-ethylmaleimide, Nn-propylmaleimide, Ni-propylmaleimide, Nn-butylmaleimide, Ni-butylmaleimide, N-tert-butylmaleimide, N-cycloalkylmaleimide ( -Cyclohexylmaleimide), N-arylmaleimide (N-phenylmaleimide, N-alkyl-substituted phenylmaleimide, N-chlorophenylmaleimide, etc.), N-aralkylmaleimide, etc.), acrylic acid ester (methyl acrylate, ethyl acrylate, acrylic) Propyl acid, butyl acrylate, etc.).
Another monomer may be used individually by 1 type and may be used in combination of 2 or more type.
 <グラフト共重合体(F)>
 グラフト共重合体(F)は、架橋アクリル酸エステル系ゴム状重合体(E)の存在下にビニル系単量体(m2)を重合することによって得られる。
<Graft copolymer (F)>
The graft copolymer (F) can be obtained by polymerizing the vinyl monomer (m2) in the presence of the cross-linked acrylic ester rubber-like polymer (E).
 グラフト共重合体(F)は、架橋アクリル酸エステル系ゴム状重合体(E)20~80質量%の存在下に、ビニル系単量体混合物(m2)20~80質量%(ただし、架橋アクリル酸エステル系ゴム状重合体(E)とビニル系単量体混合物(m2)との合計は100質量%)を重合して得られたものが好ましく、架橋アクリル酸エステル系ゴム状重合体(E)25~75質量%の存在下に、ビニル系単量体混合物(m2)25~75質量%を重合して得られたものがより好ましく、架橋アクリル酸エステル系ゴム状重合体(E)30~70質量%の存在下に、ビニル系単量体混合物(m2)30~70質量%を重合して得られたものがさらに好ましい。
架橋アクリル酸エステル系ゴム状重合体(E)の割合が前記範囲内であれば、グラフト共重合体(F)の生産性が良好であるとともに、成形品の発色性、耐衝撃性がさらに優れる。
The graft copolymer (F) is a vinyl monomer mixture (m2) 20 to 80% by mass (provided that the crosslinked acrylic polymer (E) is 20 to 80% by mass in the presence of the crosslinked acrylic ester rubbery polymer (E)). The polymer obtained by polymerizing the acid ester rubber polymer (E) and the vinyl monomer mixture (m2) is preferably 100% by mass), and is preferably a crosslinked acrylate rubber polymer (E And more preferably obtained by polymerizing 25 to 75% by mass of the vinyl monomer mixture (m2) in the presence of 25 to 75% by mass, and the crosslinked acrylic ester rubbery polymer (E) 30. What is obtained by polymerizing 30 to 70% by mass of the vinyl-based monomer mixture (m2) in the presence of to 70% by mass is more preferable.
When the ratio of the crosslinked acrylic acid ester-based rubbery polymer (E) is within the above range, the productivity of the graft copolymer (F) is good, and the color developability and impact resistance of the molded product are further improved. .
 グラフト共重合体(F)は、例えば、乳化重合により製造される。
すなわち、架橋アクリル酸エステル系ゴム状重合体(E)の水性分散体にビニル系単量体混合物(m2)を加え、乳化剤の存在下でビニル系単量体混合物(m2)をラジカル重合させることにより製造される。
この際、グラフト率およびグラフト成分の分子量を制御するため、各種公知の連鎖移動剤を添加してもよい。
The graft copolymer (F) is produced, for example, by emulsion polymerization.
That is, adding a vinyl monomer mixture (m2) to an aqueous dispersion of a crosslinked acrylic ester rubber-like polymer (E) and radically polymerizing the vinyl monomer mixture (m2) in the presence of an emulsifier. Manufactured by.
At this time, various known chain transfer agents may be added in order to control the graft ratio and the molecular weight of the graft component.
 ラジカル重合開始剤としては、過酸化物、アゾ系開始剤、酸化剤と還元剤とを組み合わせたレドックス系開始剤等が挙げられ、グラフト重合反応の制御を容易にできる点から、レドックス系開始剤が好ましく、硫酸第一鉄-エチレンジアミン四酢酸二ナトリウム塩-ロンガリット-ヒドロペルオキシドを組み合わせたスルホキシレート系開始剤が特に好ましい。 Examples of radical polymerization initiators include peroxides, azo-based initiators, redox-based initiators in which an oxidizing agent and a reducing agent are combined, and redox-based initiators from the point that the graft polymerization reaction can be easily controlled. A sulfoxylate-based initiator in which ferrous sulfate-ethylenediaminetetraacetic acid disodium salt-longalite-hydroperoxide is combined is particularly preferable.
 乳化剤としては、架橋アクリル酸エステル系ゴム状重合体(E)の製造の際に用いた乳化剤が挙げられる。
架橋アクリル酸エステル系ゴム状重合体(E)の水性分散体に含まれる乳化剤をそのまま用い、グラフト重合の際に乳化剤を追加しなくてもよいし、必要に応じてグラフト重合の際に乳化剤を追加してもよい。
As an emulsifier, the emulsifier used in the case of manufacture of a crosslinked acrylate-type rubber-like polymer (E) is mentioned.
The emulsifier contained in the aqueous dispersion of the crosslinked acrylic acid ester rubber polymer (E) is used as it is, and it is not necessary to add an emulsifier at the time of graft polymerization. May be added.
 グラフト共重合体(F)の水性分散体から、グラフト共重合体(F)を回収する方法としては、凝固剤を溶解させた熱水中に水性分散体を投入して、スラリー状態に凝析することによって回収する方法(湿式法);加熱雰囲気中にグラフト共重合体(F)の水性分散体を噴霧することによって、半直接的にグラフト共重合体(F)を回収する方法(スプレードライ法)等が挙げられる。 As a method for recovering the graft copolymer (F) from the aqueous dispersion of the graft copolymer (F), the aqueous dispersion is poured into hot water in which a coagulant is dissolved, and coagulated in a slurry state. A method of recovering the graft copolymer (F) by spraying an aqueous dispersion of the graft copolymer (F) in a heated atmosphere (spray drying) Law).
 凝固剤としては、無機酸(硫酸、塩酸、リン酸、硝酸等)、金属塩(塩化カルシウム、酢酸カルシウム、硫酸アルミニウム等)等が挙げられる。
凝固剤は、重合で用いた乳化剤に対応させて選定される。
すなわち、乳化剤として脂肪酸のナトリウムまたはカリウム塩、ロジン酸のナトリウムまたはカリウム塩等のカルボン酸のナトリウムまたはカリウム塩のみを用いた場合、どのような凝固剤を用いてもよい。
乳化剤としてドデシルベンゼンスルホン酸ナトリウム等の酸性領域でも安定な乳化力を示す乳化剤が含まれている場合、金属塩を用いる必要がある。
Examples of the coagulant include inorganic acids (sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, etc.), metal salts (calcium chloride, calcium acetate, aluminum sulfate, etc.) and the like.
The coagulant is selected according to the emulsifier used in the polymerization.
That is, when only a sodium or potassium salt of a carboxylic acid such as a sodium or potassium salt of a fatty acid or a sodium or potassium salt of rosin acid is used as an emulsifier, any coagulant may be used.
When an emulsifier exhibiting a stable emulsifying power even in an acidic region such as sodium dodecylbenzenesulfonate is included as an emulsifier, it is necessary to use a metal salt.
 スラリー状態のグラフト共重合体(F)から乾燥状態のグラフト共重合体(F)を得る方法としては、洗浄によって、スラリーに残存する乳化剤残渣を水中に溶出させた後に、(i)前記スラリーを遠心脱水機またはプレス脱水機で脱水し、さらに気流乾燥機等で乾燥する方法、(ii)圧搾脱水機、押出機等で脱水と乾燥とを同時に実施する方法等が挙げられる。
乾燥後には、グラフト共重合体(F)は、粉体または粒子状で得られる。
また、圧搾脱水機または押出機から排出されたグラフト共重合体(F)を直接、熱可塑性樹脂組成物(I)を製造する押出機または成形機に送ってもよい。
As a method of obtaining the dry graft copolymer (F) from the slurry graft copolymer (F), after the emulsifier residue remaining in the slurry is eluted in water by washing, (i) the slurry is Examples include a method of dehydrating with a centrifugal dehydrator or a press dehydrator and further drying with an air flow dryer or the like, and (ii) a method of simultaneously performing dehydration and drying with a press dehydrator or an extruder.
After drying, the graft copolymer (F) is obtained in the form of powder or particles.
Moreover, you may send the graft copolymer (F) discharged | emitted from the press dehydrator or the extruder directly to the extruder or molding machine which manufactures the thermoplastic resin composition (I).
 <ポリオルガノシロキサン(La)>
 ポリオルガノシロキサン(La)としては、成形品の耐衝撃性の点から、ビニル重合性官能基を有するポリオルガノシロキサン(La)が好ましく、ポリオルガノシロキサン(La)を構成する構成単位の合計に対し、ビニル重合性官能基を有するシロキサンに由来する単位0.3~3モル%と、ジメチルシロキサンに由来する単位97~99.7モル%とからなり、3個以上のシロキサン結合を有するケイ素原子がポリジメチルシロキサン(La)中の全ケイ素原子に対し1モル%以下であるポリオルガノシロキサン(La)がより好ましい。
<Polyorganosiloxane (La)>
The polyorganosiloxane (La) is preferably a polyorganosiloxane (La) having a vinyl polymerizable functional group from the viewpoint of impact resistance of the molded product, and is based on the total of the structural units constituting the polyorganosiloxane (La). A silicon atom having 0.3 to 3 mol% of units derived from siloxane having a vinyl polymerizable functional group and 97 to 99.7 mol% of units derived from dimethylsiloxane has 3 or more siloxane bonds. Polyorganosiloxane (La) that is 1 mol% or less with respect to all silicon atoms in polydimethylsiloxane (La) is more preferable.
 ジメチルシロキサンとしては、例えば、3員環以上のジメチルシロキサン系環状体が挙げられ、3員環~7員環のものが好ましい。
具体的には、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン等が挙げられる。
ジメチルシロキサンは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of dimethylsiloxane include dimethylsiloxane-based cyclic bodies having 3 or more members, and those having 3 to 7 members are preferable.
Specific examples include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane.
Dimethylsiloxane may be used alone or in combination of two or more.
 ビニル重合性官能基を有するシロキサンは、ビニル重合性官能基を有し、かつジメチルシロキサンとシロキサン結合を介して結合し得るものであればよい。
ビニル重合性官能基を有するシロキサンとしては、ジメチルシロキサンとの反応性の点から、ビニル重合性官能基を有するアルコキシシラン化合物が好ましい。
具体的には、メタクリロイルオキシシロキサン(β-メタクリロイルオキシエチルジメトキシメチルシラン、γ-メタクリロイルオキシプロピルジメトキシメチルシラン、γ-メタクリロイルオキシプロピルメトキシジメチルシラン、γ-メタクリロイルオキシプロピルトリメトキシシラン、γ-メタクリロイルオキシプロピルエトキシジエチルシラン、γ-メタクリロイルオキシプロピルジエトキシメチルシラン、δ-メタクリロイルオキシブチルジエトキシメチルシラン等)、ビニルシロキサン(テトラメチルテトラビニルシクロテトラシロキサン等)、p-ビニルフエニルジメトキシメチルシラン、メルカプトシロキサン(γ-メルカプトプロピルジメトキシメチルシラン、γ-メルカプトプロピルトリメトキシシラン等)が挙げられる。
ビニル重合性官能基を有するシロキサンは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The siloxane having a vinyl polymerizable functional group only needs to have a vinyl polymerizable functional group and can be bonded to dimethylsiloxane via a siloxane bond.
As the siloxane having a vinyl polymerizable functional group, an alkoxysilane compound having a vinyl polymerizable functional group is preferable from the viewpoint of reactivity with dimethylsiloxane.
Specifically, methacryloyloxysiloxane (β-methacryloyloxyethyldimethoxymethylsilane, γ-methacryloyloxypropyldimethoxymethylsilane, γ-methacryloyloxypropylmethoxydimethylsilane, γ-methacryloyloxypropyltrimethoxysilane, γ-methacryloyloxypropyl) Ethoxydiethylsilane, γ-methacryloyloxypropyldiethoxymethylsilane, δ-methacryloyloxybutyldiethoxymethylsilane, etc.), vinyl siloxane (tetramethyltetravinylcyclotetrasiloxane etc.), p-vinylphenyldimethoxymethylsilane, mercaptosiloxane (Γ-mercaptopropyldimethoxymethylsilane, γ-mercaptopropyltrimethoxysilane, etc.).
One type of siloxane having a vinyl polymerizable functional group may be used alone, or two or more types may be used in combination.
 ポリオルガノシロキサン(La)は、必要に応じて、シロキサン系架橋剤に由来する単位を有していてもよい。
シロキサン系架橋剤としては、3官能性または4官能性のシラン系架橋剤、例えば、トリメトキシメチルシラン、トリエトキシフェニルシラン、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン等が挙げられる。
The polyorganosiloxane (La) may have a unit derived from a siloxane-based crosslinking agent as necessary.
Examples of the siloxane crosslinking agent include trifunctional or tetrafunctional silane crosslinking agents such as trimethoxymethylsilane, triethoxyphenylsilane, tetramethoxysilane, tetraethoxysilane, and tetrabutoxysilane.
 ポリオルガノシロキサン(La)は、下記のようにして製造できる。
 ジメチルシロキサンとビニル重合性官能基を有するシロキサンとからなるシロキサン混合物に、必要に応じてシロキサン系架橋剤を添加し、乳化剤および水によって乳化させてシロキサン混合物水性分散体を得る。
高速回転による剪断力で微粒子化するホモミキサー、高圧発生機による噴出力で微粒子化するホモジナイザー等を用いて、シロキサン混合物水性分散体を微粒子化させる。
ホモジナイザー等の高圧乳化装置を用いると、ポリオルガノシロキサン(La)の粒子径の分布が小さくなるため好ましい。
微粒子化したシロキサン混合物水性分散体を、酸触媒を含む酸水溶液中に添加して高温下で重合させる。反応液を冷却し、アルカリ性物質(水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等)で中和することによって重合を停止させて、ポリオルガノシロキサン(La)の水性分散体を得る。
Polyorganosiloxane (La) can be produced as follows.
If necessary, a siloxane-based crosslinking agent is added to a siloxane mixture composed of dimethylsiloxane and a siloxane having a vinyl polymerizable functional group, and emulsified with an emulsifier and water to obtain an aqueous siloxane mixture dispersion.
The aqueous dispersion of the siloxane mixture is atomized using a homomixer that atomizes by a shearing force by high-speed rotation, a homogenizer that atomizes by a jet output from a high-pressure generator, or the like.
It is preferable to use a high-pressure emulsifier such as a homogenizer because the particle size distribution of the polyorganosiloxane (La) becomes small.
The finely divided siloxane mixture aqueous dispersion is added to an acid aqueous solution containing an acid catalyst and polymerized at a high temperature. The reaction liquid is cooled and the polymerization is stopped by neutralizing with an alkaline substance (sodium hydroxide, potassium hydroxide, sodium carbonate, etc.) to obtain an aqueous dispersion of polyorganosiloxane (La).
 乳化剤としては、アニオン系乳化剤が好ましい。
アニオン系乳化剤としては、例えば、アルキルベンゼンスルホン酸ナトリウム、ラウリルスルホン酸ナトリウム、ポリオキシエチレンノニルフェニルエーテル硫酸エステルナトリウム等が挙げられ、ポリオルガノシロキサン(La)の体積平均粒子径の制御が容易になる点から、スルホン酸系乳化剤(アルキルベンゼンスルホン酸ナトリウム、ラウリルスルホン酸ナトリウム等)が好ましい。
乳化剤の使用量は、シロキサン混合物100質量部(固形分として)に対して、0.05~20質量部程度である。
As the emulsifier, an anionic emulsifier is preferable.
Examples of the anionic emulsifier include sodium alkylbenzene sulfonate, sodium lauryl sulfonate, sodium polyoxyethylene nonylphenyl ether sulfate, and the like, which makes it easy to control the volume average particle diameter of polyorganosiloxane (La). Therefore, sulfonic acid-based emulsifiers (sodium alkylbenzene sulfonate, sodium lauryl sulfonate, etc.) are preferable.
The amount of the emulsifier used is about 0.05 to 20 parts by mass with respect to 100 parts by mass (as solid content) of the siloxane mixture.
 酸触媒としては、スルホン酸類(脂肪族スルホン酸、脂肪族置換ベンゼンスルホン酸、脂肪族置換ナフタレンスルホン酸等)、鉱酸類(硫酸、塩酸、硝酸等)が挙げられ、ポリオルガノシロキサン(La)の水性分散体の安定化作用に優れている点から、脂肪族置換ベンゼンスルホン酸が好ましく、n-ドデシルベンゼンスルホン酸が特に好ましい。
また、n-ドデシルベンゼンスルホン酸と鉱酸類(硫酸等)とを併用すると、ポリオルガノシロキサン(La)の水性分散体に用いた乳化剤が、成形品の発色性に影響を及ぼすことを極力抑えることができる。
酸触媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the acid catalyst include sulfonic acids (aliphatic sulfonic acid, aliphatic substituted benzenesulfonic acid, aliphatic substituted naphthalenesulfonic acid, etc.), mineral acids (sulfuric acid, hydrochloric acid, nitric acid, etc.), and polyorganosiloxane (La). Aliphatic substituted benzenesulfonic acid is preferred, and n-dodecylbenzenesulfonic acid is particularly preferred from the viewpoint of excellent stabilization of the aqueous dispersion.
In addition, when n-dodecylbenzene sulfonic acid and mineral acids (sulfuric acid, etc.) are used in combination, the emulsifier used in the aqueous dispersion of polyorganosiloxane (La) suppresses as much as possible the influence of color development on the molded product. Can do.
An acid catalyst may be used individually by 1 type, and may be used in combination of 2 or more type.
 水性分散体中のポリオルガノシロキサン(La)の体積平均粒子径は、成形品の発色性が優れる点、ポリオルガノシロキサン(La)を製造する際の水性分散体の粘度上昇や凝塊物(コアギュラム)発生を防止できる点から、0.01~0.09μmが好ましく、0.02~0.08μmがより好ましい。
 水性分散体中のポリオルガノシロキサン(La)の体積平均粒子径を制御する方法としては、例えば、特開平5-279434号公報に記載された方法を採用できる。
The volume average particle diameter of the polyorganosiloxane (La) in the aqueous dispersion is such that the color developability of the molded product is excellent, the viscosity of the aqueous dispersion during the production of the polyorganosiloxane (La), and the coagulum (coagulum). ) Is preferably from 0.01 to 0.09 μm, more preferably from 0.02 to 0.08 μm from the viewpoint of preventing the occurrence.
As a method for controlling the volume average particle diameter of the polyorganosiloxane (La) in the aqueous dispersion, for example, a method described in JP-A-5-279434 can be employed.
 <ポリ(メタ)アクリル酸エステル(Lb)>
 ポリ(メタ)アクリル酸エステル(Lb)は、(メタ)アクリル酸エステルに由来する単位と、架橋剤に由来する単位またはグラフト交叉剤に由来する単位のいずれか一方または両方とを有する共重合体である。
<Poly (meth) acrylic acid ester (Lb)>
The poly (meth) acrylic acid ester (Lb) is a copolymer having a unit derived from a (meth) acrylic acid ester and either a unit derived from a crosslinking agent or a unit derived from a graft crossing agent or both. It is.
 (メタ)アクリル酸エステルとしては、アルキル基の炭素数が1~12である(メタ)アクリル酸アルキルエステル、芳香族炭化水素基(フェニル基、ベンジル基等)を有するアクリル酸エステル等が挙げられ、成形品の耐衝撃性の点から、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、アクリル酸エチルが好ましい。
(メタ)アクリル酸エステルは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of (meth) acrylic acid esters include (meth) acrylic acid alkyl esters having an alkyl group having 1 to 12 carbon atoms, and acrylic acid esters having an aromatic hydrocarbon group (phenyl group, benzyl group, etc.). From the viewpoint of impact resistance of the molded product, n-butyl acrylate, 2-ethylhexyl acrylate, and ethyl acrylate are preferred.
One (meth) acrylic acid ester may be used alone, or two or more may be used in combination.
 架橋剤およびグラフト交叉剤は、成形品の発色性を改善する。
 架橋剤としては、ジメタクリレート系化合物、具体例には、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、1,3-ブチレングリコールジメタクリレート、1,4-ブチレングリコールジメタクリレート等が挙げられる。
 グラフト交叉剤としては、アリル化合物、具体的には、メタクリル酸アリル、シアヌル酸トリアリル、イソシアヌル酸トリアリル等が挙げられる。
Crosslinking agents and graft crossing agents improve the color developability of the molded article.
Examples of the crosslinking agent include dimethacrylate compounds, and specific examples include ethylene glycol dimethacrylate, propylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate, and the like.
Examples of the graft crossing agent include allyl compounds, specifically, allyl methacrylate, triallyl cyanurate, triallyl isocyanurate, and the like.
 架橋剤に由来する単位およびグラフト交叉剤に由来する単位の合計は、成形品の発色性が優れ、グラフト共重合体(M)製造時の凝塊物(コアギュラム)が少なくなる点から、ポリ(メタ)アクリル酸エステル(Lb)を構成するすべての単位(100質量%)のうち、0.1~5質量%が好ましく、0.2~3質量%がより好ましく、0.5~2質量%がさらに好ましい。
 ここで「架橋剤に由来する単位およびグラフト交叉剤に由来する単位」とは、ポリ(メタ)アクリル酸エステル(Lb)の合成において使用する単量体の総質量(即ち、ポリ(メタ)アクリル酸エステル(Lb)を構成する構成単位に対応する単量体の総質量)に対する、架橋剤およびグラフト交叉剤の質量から算出することができる。
The total of the unit derived from the crosslinking agent and the unit derived from the graft crossing agent is excellent in the color developability of the molded product, and the coagulum during production of the graft copolymer (M) is reduced. Of all the units (100% by mass) constituting the (meth) acrylate (Lb), 0.1 to 5% by mass is preferable, 0.2 to 3% by mass is more preferable, and 0.5 to 2% by mass Is more preferable.
Here, the “unit derived from the crosslinking agent and the unit derived from the graft crossing agent” means the total mass of the monomers used in the synthesis of the poly (meth) acrylic acid ester (Lb) (ie, poly (meth) acryl It can be calculated from the mass of the crosslinking agent and the graft crossing agent relative to the total mass of the monomer corresponding to the structural unit constituting the acid ester (Lb).
ポリ(メタ)アクリル酸エステル(Lb)は、下記のようにして製造することができる。
 ポリ(メタ)アクリル酸エステル(Lb)の製造方法は、特に制限されないが、例えば、(メタ)アクリル酸エステルと、架橋剤またはグラフト交叉剤のいずれか一方または両方とを含む単量体混合物を乳化重合してポリ(メタ)アクリル酸エステル(Lb)の水性分散体を得る方法が挙げられる。
 乳化重合で用いる乳化剤の好ましい具体例としては、脂肪酸(オレイン酸、ステアリン酸、ミリスチン酸、ステアリン酸、パルミチン酸等)のナトリウムまたはカリウム塩、ラウリル硫酸ナトリウム、N-ラウロイルサルコシン酸ナトリウム、アルケニルコハク酸ジカリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム等が挙げられ、熱可塑性樹脂組成物(I)の成形時のガス発生をより抑制できる点から、一分子中に官能基を2つ以上有する酸型乳化剤またはその塩が好ましい。
 一分子中に2つの官能基を有する酸型乳化剤またはその塩としては、アルケニルコハク酸ジカリウム、アルキルジフェニルエーテルジスルホン酸ナトリウムが好ましく、硫酸を添加して水性分散体から複合ゴム状重合体(L1)を凝固、回収することが容易になる点から、アルケニルコハク酸ジカリウムがより好ましい。
 アルケニルコハク酸ジカリウムの具体的例としては、オクタデセニルコハク酸ジカリウム、ヘプタデセニルコハク酸ジカリウム、ヘキサデセニルコハク酸ジカリウム等が挙げられる。
 乳化剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The poly (meth) acrylic acid ester (Lb) can be produced as follows.
The production method of the poly (meth) acrylate ester (Lb) is not particularly limited. For example, a monomer mixture containing (meth) acrylate ester and one or both of a crosslinking agent and a graft crossing agent is used. The method of obtaining the aqueous dispersion of poly (meth) acrylic acid ester (Lb) by emulsion polymerization is mentioned.
Preferable specific examples of the emulsifier used in the emulsion polymerization include sodium or potassium salts of fatty acids (oleic acid, stearic acid, myristic acid, stearic acid, palmitic acid, etc.), sodium lauryl sulfate, sodium N-lauroyl sarcosinate, alkenyl succinic acid Examples include dipotassium, sodium alkyldiphenyl ether disulfonate, and the like, and acid-type emulsifiers or salts thereof having two or more functional groups in one molecule from the viewpoint of further suppressing gas generation during molding of the thermoplastic resin composition (I) Is preferred.
The acid-type emulsifier having two functional groups in one molecule or a salt thereof is preferably dipotassium alkenyl succinate or sodium alkyldiphenyl ether disulfonate. In view of easy coagulation and recovery, dipotassium alkenyl succinate is more preferable.
Specific examples of dipotassium alkenyl succinate include dipotassium octadecenyl succinate, dipotassium heptadecenyl succinate, and dipotassium hexadecenyl succinate.
An emulsifier may be used individually by 1 type and may be used in combination of 2 or more type.
 <複合ゴム状重合体(L)>
 複合ゴム状重合体(L)は、ポリオルガノシロキサン(La)を含むものである。
 ゴム状重合体(L)としては、ポリオルガノシロキサン(La)のみからなるゴム状重合体、ポリオルガノシロキサン(La)およびポリオルガノシロキサン(La)以外の他の重合体からなる複合ゴム状重合体等が挙げられる。
 ゴム状重合体(L)は、本発明の効果が十分に得られる点から、ポリオルガノシロキサン(La)およびポリ(メタ)アクリル酸エステル(Lb)からなる複合ゴム状重合体(L1)であることが好ましい。
<Composite rubbery polymer (L)>
The composite rubber-like polymer (L) contains polyorganosiloxane (La).
The rubber-like polymer (L) includes a rubber-like polymer composed only of polyorganosiloxane (La), and a composite rubber-like polymer composed of a polymer other than polyorganosiloxane (La) and polyorganosiloxane (La). Etc.
The rubber-like polymer (L) is a composite rubber-like polymer (L1) composed of a polyorganosiloxane (La) and a poly (meth) acrylic acid ester (Lb) from the viewpoint that the effects of the present invention are sufficiently obtained. It is preferable.
ゴム状重合体(L)中のポリオルガノシロキサン(La)の含有率は、ゴム状重合体(L)の総質量に対し、1~99質量%が好ましく、2~80質量%がより好ましく、3~50質量%がさらに好ましい。
ポリオルガノシロキサン(La)の含有率が前記範囲内であれば、成形品の耐衝撃性や発色性がさらに優れる。
The content of the polyorganosiloxane (La) in the rubbery polymer (L) is preferably 1 to 99% by mass, more preferably 2 to 80% by mass with respect to the total mass of the rubbery polymer (L). More preferably, it is 3 to 50% by mass.
When the content of the polyorganosiloxane (La) is within the above range, the impact resistance and color developability of the molded product are further improved.
 複合ゴム状重合体(L1)中のポリオルガノシロキサン(La)の含有率は、複合ゴム状重合体(L1)の総質量に対し、1~99質量%が好ましく、2~80質量%がより好ましく、3~50質量%がさらに好ましい。
ポリオルガノシロキサン(La)の含有率が前記範囲内であれば、成形品の耐衝撃性や発色性がさらに優れる。
The content of the polyorganosiloxane (La) in the composite rubbery polymer (L1) is preferably 1 to 99% by mass, more preferably 2 to 80% by mass with respect to the total mass of the composite rubbery polymer (L1). Preferably, 3 to 50% by mass is more preferable.
When the content of the polyorganosiloxane (La) is within the above range, the impact resistance and color developability of the molded product are further improved.
 複合ゴム状重合体(L1)の製造方法は、特に制限されない。
複合ゴム状重合体(L1)の製造方法としては、例えば、別々に製造したポリオルガノシロキサン(La)の水性分散体とポリ(メタ)アクリル酸エステル(Lb)の水性分散体とをヘテロ凝集または共肥大化する方法;ポリオルガノシロキサン(La)の水性分散体またはポリ(メタ)アクリル酸エステル(Lb)の水性分散体のいずれか一方の中、他方の重合体を形成させて複合化させる方法等が挙げられ、成形品の耐衝撃性および発色性がさらに優れる点から、ポリオルガノシロキサン(La)の水性分散体中で、(メタ)アクリル酸エステルと、架橋剤またはグラフト交叉剤のいずれか一方または両方とを含む単量体混合物を乳化重合させる方法が好ましい。
The production method of the composite rubbery polymer (L1) is not particularly limited.
As a method for producing the composite rubber-like polymer (L1), for example, an aqueous dispersion of polyorganosiloxane (La) and an aqueous dispersion of poly (meth) acrylic acid ester (Lb) separately produced are heteroaggregated or Method of co-hypertrophy; Method of forming the other polymer in one of an aqueous dispersion of polyorganosiloxane (La) or an aqueous dispersion of poly (meth) acrylic acid ester (Lb) and combining them In the aqueous dispersion of polyorganosiloxane (La), either (meth) acrylic acid ester and either crosslinking agent or graft crossing agent A method of emulsion polymerization of a monomer mixture containing one or both is preferred.
 乳化重合で用いる乳化剤の好ましい具体例としては、脂肪酸(オレイン酸、ステアリン酸、ミリスチン酸、ステアリン酸、パルミチン酸等)のナトリウムまたはカリウム塩、ラウリル硫酸ナトリウム、N-ラウロイルサルコシン酸ナトリウム、アルケニルコハク酸ジカリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム等が挙げられ、熱可塑性樹脂組成物(I)の成形時のガス発生をより抑制できる点から、一分子中に官能基を2つ以上有する酸型乳化剤またはその塩が好ましい。
一分子中に2つの官能基を有する酸型乳化剤またはその塩としては、アルケニルコハク酸ジカリウム、アルキルジフェニルエーテルジスルホン酸ナトリウムが好ましく、硫酸を添加して水性分散体から複合ゴム状重合体(L1)を凝固、回収することが容易になる点から、アルケニルコハク酸ジカリウムがより好ましい。
アルケニルコハク酸ジカリウムの具体的例としては、オクタデセニルコハク酸ジカリウム、ヘプタデセニルコハク酸ジカリウム、ヘキサデセニルコハク酸ジカリウム等が挙げられる。
乳化剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Preferable specific examples of the emulsifier used in the emulsion polymerization include sodium or potassium salts of fatty acids (oleic acid, stearic acid, myristic acid, stearic acid, palmitic acid, etc.), sodium lauryl sulfate, sodium N-lauroyl sarcosinate, alkenyl succinic acid Examples include dipotassium, sodium alkyldiphenyl ether disulfonate, and the like, and acid-type emulsifiers or salts thereof having two or more functional groups in one molecule from the viewpoint of further suppressing gas generation during molding of the thermoplastic resin composition (I) Is preferred.
The acid-type emulsifier having two functional groups in one molecule or a salt thereof is preferably dipotassium alkenyl succinate or sodium alkyldiphenyl ether disulfonate. In view of easy coagulation and recovery, dipotassium alkenyl succinate is more preferable.
Specific examples of dipotassium alkenyl succinate include dipotassium octadecenyl succinate, dipotassium heptadecenyl succinate, and dipotassium hexadecenyl succinate.
An emulsifier may be used individually by 1 type and may be used in combination of 2 or more type.
 水性分散体中の複合ゴム状重合体(L)および複合ゴム状重合体(L1)の体積平均粒子径は、成形品の物性が優れる点から、0.05~0.18μmであり、0.07~0.15μmが好ましい。
体積平均粒子径が0.05μmよりも小さい場合、成形品の耐衝撃性、潤滑性が劣る。
体積平均粒子径が0.18μmよりも大きい場合、成形品の耐衝撃性、発色性、潤滑性が劣る。
 水性分散体中の複合ゴム状重合体(L)および複合ゴム状重合体(L1)の体積平均粒子径を制御する方法としては、乳化剤の種類または使用量を調整する方法等が挙げられる。
The volume average particle diameter of the composite rubber-like polymer (L) and the composite rubber-like polymer (L1) in the aqueous dispersion is 0.05 to 0.18 μm from the viewpoint of excellent physical properties of the molded product. A thickness of 07 to 0.15 μm is preferable.
When the volume average particle diameter is smaller than 0.05 μm, the impact resistance and lubricity of the molded product are inferior.
When the volume average particle diameter is larger than 0.18 μm, the impact resistance, color developability and lubricity of the molded product are inferior.
Examples of the method for controlling the volume average particle diameter of the composite rubber-like polymer (L) and the composite rubber-like polymer (L1) in the aqueous dispersion include a method for adjusting the type or amount of the emulsifier.
 <ビニル系単量体混合物(m5)>
 ビニル系単量体混合物(m5)は、任意のビニル系単量体を含む単量体成分である。ビニル系単量体としては、芳香族ビニル化合物、シアン化ビニル化合物、これらと共重合可能な他の単量体が挙げられる。
 ビニル系単量体成分(m5)は、本発明の効果が十分に得られる点から、少なくとも芳香族ビニル化合物およびシアン化ビニル化合物を含む単量体混合物であることが好ましい。
<Vinyl monomer mixture (m5)>
The vinyl monomer mixture (m5) is a monomer component containing an arbitrary vinyl monomer. Examples of vinyl monomers include aromatic vinyl compounds, vinyl cyanide compounds, and other monomers copolymerizable therewith.
The vinyl monomer component (m5) is preferably a monomer mixture containing at least an aromatic vinyl compound and a vinyl cyanide compound from the viewpoint that the effects of the present invention are sufficiently obtained.
 芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、o-,m-またはp-メチルスチレン、ビニルキシレン、p-t-ブチルスチレン、エチルスチレン等が挙げられ、熱可塑性樹脂組成物(I)の流動性、成形品の発色性、耐衝撃性の点から、スチレン、α-メチルスチレンが好ましい。
芳香族ビニル化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 芳香族ビニル化合物の含有率は、ビニル系単量体混合物(m5)100質量%中65~82質量%が好ましく、73~80質量%がより好ましく、75~80質量%がさらに好ましい。
芳香族ビニル化合物の含有率が前記範囲内であれば、成形品の発色性、耐衝撃性がさらに優れる。
Examples of the aromatic vinyl compound include styrene, α-methyl styrene, o-, m- or p-methyl styrene, vinyl xylene, pt-butyl styrene, ethyl styrene, and the like. Styrene and α-methylstyrene are preferred from the viewpoint of the fluidity of I), the color developability of the molded product, and the impact resistance.
An aromatic vinyl compound may be used individually by 1 type, and may be used in combination of 2 or more type.
The content of the aromatic vinyl compound is preferably 65 to 82% by mass, more preferably 73 to 80% by mass, and further preferably 75 to 80% by mass in 100% by mass of the vinyl monomer mixture (m5).
When the content of the aromatic vinyl compound is within the above range, the color developability and impact resistance of the molded product are further improved.
 シアン化ビニル化合物としては、例えば、アクリロニトリル、メタクリロニトリル等が挙げられる。
シアン化ビニル化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 シアン化ビニル化合物の含有率は、ビニル系単量体混合物(m5)100質量%中18~35質量%が好ましく、20~27質量%がより好ましく、20~25質量%がさらに好ましい。
シアン化ビニル化合物の含有率が前記範囲内であれば、成形品の発色性、耐衝撃性がさらに優れる。
Examples of the vinyl cyanide compound include acrylonitrile and methacrylonitrile.
A vinyl cyanide compound may be used individually by 1 type, and may be used in combination of 2 or more type.
The content of the vinyl cyanide compound is preferably 18 to 35% by mass, more preferably 20 to 27% by mass, and further preferably 20 to 25% by mass in 100% by mass of the vinyl monomer mixture (m5).
When the content of the vinyl cyanide compound is within the above range, the color developability and impact resistance of the molded product are further improved.
 芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m5)は、芳香族ビニル化合物およびシアン化ビニル化合物の他に、これらと共重合可能な他の単量体を、本発明の効果を損なわない範囲で含んでもよい。
 他の単量体としては、例えば、メタクリル酸エステル(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸アミル、メタクリル酸イソアミル、メタクリル酸オクチル、メタクリル酸-2-エチルヘキシル、メタクリル酸デシル、メタクリル酸ラウリル、メタクリル酸シクロヘキシル、メタクリル酸ペンジル、メタクリル酸フェニル等)、マレイミド系化合物(N-メチルマレイミド、N-エチルマレイミド、N-n-プロピルマレイミド、N-i-プロピルマレイミド、N-n-ブチルマレイミド、N-i-ブチルマレイミド、N-tert-ブチルマレイミド、N-シクロアルキルマレイミド(N-シクロヘキシルマレイミド等)、N-アリールマレイミド(N-フェニルマレイミド、N-アルキル置換フェニルマレイミド、N-クロロフェニルマレイミド等)、N-アラルキルマレイミド等)、アクリル酸エステル(アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル等)等が挙げられる。
他の単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The vinyl-based monomer mixture (m5) containing an aromatic vinyl compound and a vinyl cyanide compound includes, in addition to the aromatic vinyl compound and the vinyl cyanide compound, other monomers copolymerizable therewith. You may include in the range which does not impair the effect of.
Other monomers include, for example, methacrylic acid esters (methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-methacrylic acid t- Butyl, amyl methacrylate, isoamyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, decyl methacrylate, lauryl methacrylate, cyclohexyl methacrylate, pentyl methacrylate, phenyl methacrylate, etc.), maleimide compounds (N-methyl) Maleimide, N-ethylmaleimide, Nn-propylmaleimide, Ni-propylmaleimide, Nn-butylmaleimide, Ni-butylmaleimide, N-tert-butylmaleimide, N-cycloalkylmaleimide ( -Cyclohexylmaleimide), N-arylmaleimide (N-phenylmaleimide, N-alkyl-substituted phenylmaleimide, N-chlorophenylmaleimide, etc.), N-aralkylmaleimide, etc.), acrylic acid ester (methyl acrylate, ethyl acrylate, acrylic) Propyl acid, butyl acrylate, etc.).
Another monomer may be used individually by 1 type and may be used in combination of 2 or more type.
 <グラフト共重合体(M)>
 グラフト共重合体(M)は、複合ゴム状重合体(L)の存在下にビニル系単量体(m5)を重合することによって得られる。
<Graft copolymer (M)>
The graft copolymer (M) is obtained by polymerizing the vinyl monomer (m5) in the presence of the composite rubber-like polymer (L).
 グラフト共重合体(M)は、複合ゴム状重合体(L)20~80質量%の存在下に、ビニル系単量体混合物(m5)20~80質量%(ただし、複合ゴム状重合体(L)とビニル系単量体混合物(m5)との合計は100質量%)を重合して得られたものが好ましく、複合ゴム状重合体(L)25~75質量%の存在下に、ビニル系単量体混合物(m5)25~75質量%を重合して得られたものがより好ましく、複合ゴム状重合体(L)30~70質量%の存在下に、ビニル系単量体混合物(m5)30~70質量%を重合して得られたものがさらに好ましい。
複合ゴム状重合体(L)の割合が前記範囲内であれば、グラフト共重合体(M)の生産性が良好であるとともに、成形品の発色性、耐衝撃性がさらに優れる。
The graft copolymer (M) is 20 to 80% by mass of the vinyl monomer mixture (m5) in the presence of 20 to 80% by mass of the composite rubbery polymer (L). L) and a vinyl monomer mixture (m5) are preferably obtained by polymerizing 100% by mass), and in the presence of 25 to 75% by mass of the composite rubber-like polymer (L), vinyl More preferred is a polymer obtained by polymerizing 25 to 75% by mass of the monomeric monomer mixture (m5). In the presence of 30 to 70% by mass of the composite rubber-like polymer (L), a vinyl monomer mixture ( m5) What is obtained by polymerizing 30 to 70% by mass is more preferable.
When the ratio of the composite rubber-like polymer (L) is within the above range, the productivity of the graft copolymer (M) is good, and the color developability and impact resistance of the molded product are further improved.
 グラフト共重合体(M)は、例えば、ラジカル重合開始剤および乳化重合により製造される。
すなわち、複合ゴム状重合体(L)の水性分散体にビニル系単量体混合物(m5)を加え、乳化剤の存在下でビニル系単量体混合物(m5)をラジカル重合させることにより製造される。
この際、グラフト率およびグラフト成分の分子量を制御するため、各種公知の連鎖移動剤を添加してもよい。
The graft copolymer (M) is produced, for example, by a radical polymerization initiator and emulsion polymerization.
That is, it is produced by adding a vinyl monomer mixture (m5) to an aqueous dispersion of a composite rubber-like polymer (L) and radically polymerizing the vinyl monomer mixture (m5) in the presence of an emulsifier. .
At this time, various known chain transfer agents may be added in order to control the graft ratio and the molecular weight of the graft component.
 ラジカル重合開始剤としては、過酸化物、アゾ系開始剤、酸化剤と還元剤とを組み合わせたレドックス系開始剤等が挙げられ、グラフト重合反応の制御を容易にできる点から、レドックス系開始剤が好ましく、硫酸第一鉄-エチレンジアミン四酢酸二ナトリウム塩-ロンガリット-ヒドロペルオキシドを組み合わせたスルホキシレート系開始剤が特に好ましい。 Examples of radical polymerization initiators include peroxides, azo-based initiators, redox-based initiators in which an oxidizing agent and a reducing agent are combined, and redox-based initiators from the point that the graft polymerization reaction can be easily controlled. A sulfoxylate-based initiator in which ferrous sulfate-ethylenediaminetetraacetic acid disodium salt-longalite-hydroperoxide is combined is particularly preferable.
 乳化剤としては、複合ゴム状重合体(L)の製造の際に用いた乳化剤が挙げられる。
複合ゴム状重合体(L)の水性分散体に含まれる乳化剤をそのまま用い、グラフト重合の際に乳化剤を追加しなくてもよいし、必要に応じてグラフト重合の際に乳化剤を追加してもよい。
As an emulsifier, the emulsifier used in the case of manufacture of a composite rubber-like polymer (L) is mentioned.
The emulsifier contained in the aqueous dispersion of the composite rubber polymer (L) is used as it is, and it is not necessary to add an emulsifier at the time of graft polymerization, or an emulsifier may be added at the time of graft polymerization as necessary. Good.
 グラフト共重合体(M)の水性分散体から、グラフト共重合体(M)を回収する方法としては、凝固剤を溶解させた熱水中に水性分散体を投入して、スラリー状態に凝析することによって回収する方法(湿式法);加熱雰囲気中にグラフト共重合体(M)の水性分散体を噴霧することによって、半直接的にグラフト共重合体(M)を回収する方法(スプレードライ法)等が挙げられる。 As a method for recovering the graft copolymer (M) from the aqueous dispersion of the graft copolymer (M), the aqueous dispersion is poured into hot water in which a coagulant is dissolved, and coagulated in a slurry state. A method of recovering the graft copolymer (M) by spraying an aqueous dispersion of the graft copolymer (M) in a heated atmosphere (spray drying). Law).
 凝固剤としては、無機酸(硫酸、塩酸、リン酸、硝酸等)、金属塩(塩化カルシウム、酢酸カルシウム、硫酸アルミニウム等)等が挙げられる。
凝固剤は、重合で用いた乳化剤に対応させて選定される。
すなわち、乳化剤として脂肪酸のナトリウムまたはカリウム塩、ロジン酸のナトリウムまたはカリウム塩等のカルボン酸のナトリウムまたはカリウム塩のみを用いた場合、どのような凝固剤を用いてもよい。
乳化剤としてドデシルベンゼンスルホン酸ナトリウム等の酸性領域でも安定な乳化力を示す乳化剤が含まれている場合、金属塩を用いる必要がある。
Examples of the coagulant include inorganic acids (sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, etc.), metal salts (calcium chloride, calcium acetate, aluminum sulfate, etc.) and the like.
The coagulant is selected according to the emulsifier used in the polymerization.
That is, when only a sodium or potassium salt of a carboxylic acid such as a sodium or potassium salt of a fatty acid or a sodium or potassium salt of rosin acid is used as an emulsifier, any coagulant may be used.
When an emulsifier exhibiting a stable emulsifying power even in an acidic region such as sodium dodecylbenzenesulfonate is included as an emulsifier, it is necessary to use a metal salt.
 スラリー状態のグラフト共重合体(M)から乾燥状態のグラフト共重合体(M)を得る方法としては、洗浄によって、スラリーに残存する乳化剤残渣を水中に溶出させた後に、(i)前記スラリーを遠心脱水機またはプレス脱水機で脱水し、さらに気流乾燥機等で乾燥する方法、(ii)圧搾脱水機、押出機等で脱水と乾燥とを同時に実施する方法等が挙げられる。
乾燥後には、グラフト共重合体(M)は、粉体または粒子状で得られる。
また、圧搾脱水機または押出機から排出されたグラフト共重合体(M)を直接、熱可塑性樹脂組成物(I)を製造する押出機または成形機に送ってもよい。
As a method for obtaining a dry graft copolymer (M) from a slurry graft copolymer (M), after the emulsifier residue remaining in the slurry is eluted in water by washing, (i) the slurry is Examples include a method of dehydrating with a centrifugal dehydrator or a press dehydrator and further drying with an airflow dryer or the like, and (ii) a method of simultaneously performing dehydration and drying with a press dehydrator or an extruder.
After drying, the graft copolymer (M) is obtained in the form of powder or particles.
Moreover, you may send the graft copolymer (M) discharged | emitted from the press dehydrator or the extruder directly to the extruder or molding machine which manufactures the thermoplastic resin composition (I).
 <ビニル系単量体混合物(m3)>
 ビニル系単量体混合物(m3)は、少なくともメタクリル酸エステルを必須成分として含み、マレイミド系化合物、芳香族ビニル化合物、アクリル酸エステル、およびメタクリル酸エステルと共重合可能な他のビニル系単量体を任意成分として含む単量体混合物である。
<Vinyl monomer mixture (m3)>
The vinyl monomer mixture (m3) contains at least a methacrylic acid ester as an essential component, and is a maleimide compound, an aromatic vinyl compound, an acrylic acid ester, and other vinyl monomers copolymerizable with the methacrylic acid ester. Is a monomer mixture containing as an optional component.
 メタクリル酸エステルの含有率は、成形品の耐引っ掻き傷性、発色性の点から、ビニル系単量体混合物(m3)100質量%中50~100質量%が好ましい。
 メタクリル酸エステルの含有率が50~94質量%、マレイミド系化合物の含有率が5~49質量%、芳香族ビニル化合物の含有率が1~45質量%の範囲内であれば、成形品の耐引っ掻き傷性、発色性、耐衝撃性、耐熱性がさらに優れる。
The content of the methacrylic acid ester is preferably 50 to 100% by mass in 100% by mass of the vinyl monomer mixture (m3) from the viewpoint of scratch resistance and color developability of the molded product.
If the content of the methacrylic acid ester is in the range of 50 to 94% by mass, the content of the maleimide compound is 5 to 49% by mass, and the content of the aromatic vinyl compound is 1 to 45% by mass, Scratch resistance, color development, impact resistance, and heat resistance are even better.
 メタクリル酸エステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸アミル、メタクリル酸イソアミル、メタクリル酸オクチル、メタクリル酸-2-エチルヘキシル、メタクリル酸デシル、メタクリル酸ラウリル、メタクリル酸シクロヘキシル、メタクリル酸ペンジル、メタクリル酸フェニル等が挙げられ、成形品の耐熱性および耐衝撃性がさらに優れる点から、メタクリル酸メチルおよびメタクリル酸エチルの少なくとも1種が好ましい。メタクリル酸エステルは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the methacrylic acid ester include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, amyl methacrylate, Examples include isoamyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, decyl methacrylate, lauryl methacrylate, cyclohexyl methacrylate, penzyl methacrylate, phenyl methacrylate, and the like. From the viewpoint of superiority, at least one of methyl methacrylate and ethyl methacrylate is preferable. A methacrylic acid ester may be used individually by 1 type, and may be used in combination of 2 or more type.
 マレイミド系化合物としては、例えば、N-アルキルマレイミド(N-メチルマレイミド、N-エチルマレイミド、N-n-プロピルマレイミド、N-i-プロピルマレイミド、N-n-ブチルマレイミド、N-i-ブチルマレイミド、N-t-ブチルマレイミド等)、N-シクロアルキルマレイミド(N-シクロヘキシルマレイミド等)、N-アリールマレイミド(N-フェニルマレイミド、N-アルキル置換フェニルマレイミド、N-クロロフェニルマレイミド等)等が挙げられ、成形品の耐熱性および耐衝撃性がさらに優れる点から、N-アリールマレイミドが好ましく、N-フェニルマレイミドが特に好ましい。
 マレイミド系化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of maleimide compounds include N-alkylmaleimide (N-methylmaleimide, N-ethylmaleimide, Nn-propylmaleimide, Ni-propylmaleimide, Nn-butylmaleimide, Ni-butylmaleimide). Nt-butylmaleimide), N-cycloalkylmaleimide (N-cyclohexylmaleimide, etc.), N-arylmaleimide (N-phenylmaleimide, N-alkyl-substituted phenylmaleimide, N-chlorophenylmaleimide, etc.), etc. N-arylmaleimide is preferred, and N-phenylmaleimide is particularly preferred from the viewpoint that the heat resistance and impact resistance of the molded product are further improved.
A maleimide type compound may be used individually by 1 type, and may be used in combination of 2 or more type.
 芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、o-,m-またはp-メチルスチレン、ビニルキシレン、p-t-ブチルスチレン、エチルスチレン等が挙げられ、成形品の耐熱性および耐衝撃性がさらに優れる点から、スチレン、α-メチルスチレンが好ましい。芳香族ビニル化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the aromatic vinyl compound include styrene, α-methyl styrene, o-, m- or p-methyl styrene, vinyl xylene, pt-butyl styrene, ethyl styrene, and the like. Styrene and α-methylstyrene are preferred from the viewpoint of further excellent impact resistance. An aromatic vinyl compound may be used individually by 1 type, and may be used in combination of 2 or more type.
 アクリル酸エステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル等が挙げられ、成形品の耐熱性および耐衝撃性がさらに優れる点から、アクリル酸メチルが好ましい。アクリル酸エステルは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the acrylate ester include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate and the like, and methyl acrylate is preferable from the viewpoint of further improving the heat resistance and impact resistance of the molded product. One kind of acrylic acid ester may be used alone, or two or more kinds may be used in combination.
 他のビニル系単量体としては、例えば、シアン化ビニル化合物(アクリロニトリル、メタクリロニトリル等)等が挙げられる。他のビニル系単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of other vinyl monomers include vinyl cyanide compounds (acrylonitrile, methacrylonitrile, etc.). Another vinyl-type monomer may be used individually by 1 type, and may be used in combination of 2 or more type.
 <メタクリル酸エステル樹脂(G)>
 メタクリル酸エステル樹脂(G)は、ビニル系単量体混合物(m3)を重合することによって得られる。
 重合方法は、限定されない。重合方法としては、公知の重合方法(乳化重合法、懸濁重合法、溶液重合法等)が挙げられる。
<Methacrylate ester resin (G)>
The methacrylic ester resin (G) can be obtained by polymerizing the vinyl monomer mixture (m3).
The polymerization method is not limited. Examples of the polymerization method include known polymerization methods (emulsion polymerization method, suspension polymerization method, solution polymerization method, etc.).
 乳化重合法によるメタクリル酸エステル樹脂(G)の製造方法としては、例えば、反応器内に水存在下、ビニル系単量体混合物(m3)と乳化剤と重合開始剤と連鎖移動剤とを仕込み、加熱して重合し、メタクリル酸エステル樹脂(G)を含む水性分散体から析出法によってメタクリル酸エステル樹脂(G)を回収する方法が挙げられる。
 乳化剤としては、通常の乳化重合用乳化剤(ロジン酸カリウム、アルキルベンゼンスルホン酸ナトリウム等)が挙げられる。
 重合開始剤としては、有機、無機の過酸化物系開始剤が挙げられる。
 連鎖移動剤としては、メルカプタン類、α-メチルスチレンダイマー、テルペン類等が挙げられる。
 析出法としては、水性分散体からグラフト共重合体(D)を回収するときと同様の方法を採用できる。
As a method for producing a methacrylate ester resin (G) by an emulsion polymerization method, for example, in the presence of water, a vinyl monomer mixture (m3), an emulsifier, a polymerization initiator, and a chain transfer agent are charged in a reactor, A method of heating and polymerizing and recovering the methacrylic ester resin (G) from the aqueous dispersion containing the methacrylic ester resin (G) by a precipitation method is mentioned.
Examples of the emulsifier include usual emulsion polymerization emulsifiers (potassium rosinate, sodium alkylbenzenesulfonate, etc.).
Examples of the polymerization initiator include organic and inorganic peroxide initiators.
Examples of the chain transfer agent include mercaptans, α-methylstyrene dimer, terpenes and the like.
As the precipitation method, a method similar to that used when recovering the graft copolymer (D) from the aqueous dispersion can be employed.
 懸濁重合法によるメタクリル酸エステル樹脂(G)の製造方法としては、例えば、反応器内にビニル系単量体混合物(m3)と懸濁剤と懸濁助剤と重合開始剤と連鎖移動剤とを仕込み、加熱して重合し、スラリーを脱水、乾燥してメタクリル酸エステル樹脂(G)を回収する方法が挙げられる。
 懸濁剤としては、トリカルシウムフォスファイト、ポリビニルアルコール等が挙げられる。
 懸濁助剤としては、アルキルベンゼンスルホン酸ナトリウム等が挙げられる。
 重合開始剤としては、有機ペルオキシド類が挙げられる。
 連鎖移動剤としては、メルカプタン類、α-メチルスチレンダイマー、テルペン類等が挙げられる。
Examples of the method for producing a methacrylate ester resin (G) by suspension polymerization include, for example, a vinyl monomer mixture (m3), a suspending agent, a suspending aid, a polymerization initiator, and a chain transfer agent in a reactor. And then polymerizing by heating, and dehydrating and drying the slurry to recover the methacrylic ester resin (G).
Examples of the suspending agent include tricalcium phosphite and polyvinyl alcohol.
Examples of the suspension aid include sodium alkylbenzene sulfonate.
Examples of the polymerization initiator include organic peroxides.
Examples of the chain transfer agent include mercaptans, α-methylstyrene dimer, terpenes and the like.
 メタクリル酸エステル樹脂(G)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 A methacrylic ester resin (G) may be used individually by 1 type, and may be used in combination of 2 or more type.
 <ビニル系単量体混合物(m4)>
 ビニル系単量体混合物(m4)は、少なくとも芳香族ビニル化合物およびシアン化ビニル化合物を含む単量体混合物である。
<Vinyl monomer mixture (m4)>
The vinyl monomer mixture (m4) is a monomer mixture containing at least an aromatic vinyl compound and a vinyl cyanide compound.
 芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、o-,m-またはp-メチルスチレン、ビニルキシレン、p-t-ブチルスチレン、エチルスチレン等が挙げられ、熱可塑性樹脂組成物(I)の流動性、成形品の発色性、耐衝撃性の点から、スチレン、α-メチルスチレンが好ましい。芳香族ビニル化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 芳香族ビニル化合物の含有率は、ビニル系単量体混合物(m4)100質量%中15~95質量%が好ましい。芳香族ビニル化合物の含有率が前記範囲内であれば、成形品の耐衝撃性がさらに向上する。
Examples of the aromatic vinyl compound include styrene, α-methyl styrene, o-, m- or p-methyl styrene, vinyl xylene, pt-butyl styrene, ethyl styrene, and the like. Styrene and α-methylstyrene are preferred from the viewpoint of the fluidity of I), the color developability of the molded product, and the impact resistance. An aromatic vinyl compound may be used individually by 1 type, and may be used in combination of 2 or more type.
The content of the aromatic vinyl compound is preferably 15 to 95% by mass in 100% by mass of the vinyl monomer mixture (m4). When the content of the aromatic vinyl compound is within the above range, the impact resistance of the molded product is further improved.
 シアン化ビニル化合物としては、例えば、アクリロニトリル、メタクリロニトリル等が挙げられる。シアン化ビニル化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 シアン化ビニル化合物の含有率は、ビニル系単量体混合物(m4)100質量%中5~85質量%が好ましい。シアン化ビニル化合物の含有率が前記範囲内であれば、成形品の耐衝撃性がさらに向上する。
Examples of the vinyl cyanide compound include acrylonitrile and methacrylonitrile. A vinyl cyanide compound may be used individually by 1 type, and may be used in combination of 2 or more type.
The content of the vinyl cyanide compound is preferably 5 to 85% by mass in 100% by mass of the vinyl monomer mixture (m4). When the content of the vinyl cyanide compound is within the above range, the impact resistance of the molded product is further improved.
 ビニル系単量体混合物(m4)は、必要に応じて、メタクリル酸エステル、マレイミド系化合物を含んでいてもよい。
 メタクリル酸エステル、マレイミド系化合物としては、ビニル系単量体混合物(m3)において例示したものが挙げられる。
The vinyl monomer mixture (m4) may contain a methacrylic acid ester and a maleimide compound as necessary.
Examples of the methacrylic acid ester and the maleimide compound include those exemplified in the vinyl monomer mixture (m3).
 <スチレン系共重合体(H)>
 スチレン系共重合体(H)は、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m4)を重合して得られる。
<Styrene copolymer (H)>
The styrene copolymer (H) is obtained by polymerizing a vinyl monomer mixture (m4) containing an aromatic vinyl compound and a vinyl cyanide compound.
 重合方法は、限定されない。重合方法としては、公知の重合方法(乳化重合法、懸濁重合法、塊状重合法、溶液重合法等)が挙げられ、成形品の耐熱性の点から、懸濁重合法、塊状重合法が好ましい。 The polymerization method is not limited. Examples of the polymerization method include known polymerization methods (emulsion polymerization method, suspension polymerization method, bulk polymerization method, solution polymerization method, etc.). From the viewpoint of heat resistance of the molded product, suspension polymerization method and bulk polymerization method are available. preferable.
 <他の熱可塑性樹脂>
 他の熱可塑性樹脂としては、例えば、ポリカーボネート、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル、ポリスチレン、ポリアセタール、変性ポリフェニレンエーテル(変性PPE)、エチレン-酢酸ビニル共重合体、ポリアリレート、液晶ポリエステル、ポリエチレン、ポリプロピレン、フッ素樹脂、ポリアミド(ナイロン)等が挙げられる。
<Other thermoplastic resins>
Other thermoplastic resins include, for example, polycarbonate, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyvinyl chloride, polystyrene, polyacetal, modified polyphenylene ether (modified PPE), ethylene-vinyl acetate copolymer, poly Examples include arylate, liquid crystal polyester, polyethylene, polypropylene, fluororesin, and polyamide (nylon).
 <各種添加剤>
 各種添加剤としては、酸化防止剤、滑剤、加工助剤、顔料、充填剤、シリコーンオイル、パラフィンオイル等が挙げられる。
<Various additives>
Examples of various additives include antioxidants, lubricants, processing aids, pigments, fillers, silicone oils, paraffin oils, and the like.
 <各成分の含有量>
 本発明の第三の態様の熱可塑性樹脂組成物(I)において、グラフト共重合体(D)の含有量は、グラフト共重合体(D)とメタクリル酸エステル樹脂(G)とスチレン系共重合体(H)との合計100質量%中10~30質量%が好ましく、15~25質量%がより好ましい。グラフト共重合体(D)の含有量が前記範囲内であれば、熱可塑性樹脂組成物(I)の流動性、成形品の耐引っ掻き傷性、耐衝撃性、発色性、耐熱性等の物性バランスが優れる。
<Content of each component>
In the thermoplastic resin composition (I) of the third aspect of the present invention, the content of the graft copolymer (D) is such that the graft copolymer (D), the methacrylate ester resin (G), and the styrene copolymer The total content is preferably 10 to 30% by mass, more preferably 15 to 25% by mass, based on 100% by mass with the combined (H). If the content of the graft copolymer (D) is within the above range, physical properties such as fluidity of the thermoplastic resin composition (I), scratch resistance, impact resistance, color development, and heat resistance of the molded product. Excellent balance.
 本発明の第三の態様の熱可塑性樹脂組成物(I)において、メタクリル酸エステル樹脂(G)の含有量は、グラフト共重合体(D)とメタクリル酸エステル樹脂(G)とスチレン系共重合体(H)との合計100質量%中30~90質量%が好ましく、35~85質量%がより好ましい。メタクリル酸エステル樹脂(G)の含有量が前記範囲内であれば、熱可塑性樹脂組成物(I)の流動性、成形品の耐引っ掻き傷性、耐衝撃性、発色性、耐熱性等の物性バランスが優れる。 In the thermoplastic resin composition (I) of the third aspect of the present invention, the content of the methacrylic ester resin (G) is such that the graft copolymer (D), the methacrylic ester resin (G), and the styrene copolymer 30 to 90% by mass is preferable among 100% by mass in total with the combined (H), and 35 to 85% by mass is more preferable. If the content of the methacrylic ester resin (G) is within the above range, the physical properties of the thermoplastic resin composition (I) such as fluidity, scratch resistance, impact resistance, color development, and heat resistance of the molded product. Excellent balance.
 本発明の第三の態様の熱可塑性樹脂組成物(I)において、スチレン系共重合体(H)の含有量は、グラフト共重合体(D)とメタクリル酸エステル樹脂(G)とスチレン系共重合体(H)との合計100質量%中0~40質量%が好ましく、熱可塑性樹脂組成物(I)の流動性、成形品の耐衝撃性、耐熱性の点から、1~40質量%がより好ましい。 In the thermoplastic resin composition (I) of the third aspect of the present invention, the content of the styrene copolymer (H) is such that the graft copolymer (D), the methacrylate ester resin (G), and the styrene copolymer. It is preferably 0 to 40% by mass in 100% by mass with respect to the polymer (H), and 1 to 40% by mass from the viewpoint of fluidity of the thermoplastic resin composition (I), impact resistance of the molded product, and heat resistance. Is more preferable.
 <各成分の含有量>
 本発明の第四の態様の熱可塑性樹脂組成物(I)において、エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の割合は、エチレン・α-オレフィン共重合体(A)、架橋エチレン・α-オレフィン共重合体(C)および架橋アクリル酸エステル系ゴム状重合体(E)の合計(100質量%)のうち、15~85質量%であり、30~70質量%が好ましい。
 本発明の第四の態様の熱可塑性樹脂組成物(I)において、架橋アクリル酸エステル系ゴム状重合体(E)の割合は、エチレン・α-オレフィン共重合体(A)、架橋エチレン・α-オレフィン共重合体(C)および架橋アクリル酸エステル系ゴム状重合体(E)の合計(100質量%)のうち、85~15質量%であり、30~70質量%が好ましい。
 本発明の第四の態様の熱可塑性樹脂組成物(I)において、エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の割合および架橋アクリル酸エステル系ゴム状重合体(E)の割合が前記範囲内であれば、少ないゴム含有量で耐衝撃性を発現することができ、さらに、耐傷付き性、発色性にも優れる。
<Content of each component>
In the thermoplastic resin composition (I) of the fourth aspect of the present invention, the proportion of the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C) is ethylene / α-olefin. 15 to 85% by mass of the total (100% by mass) of the olefin copolymer (A), the crosslinked ethylene / α-olefin copolymer (C) and the crosslinked acrylic acid ester rubbery polymer (E) 30 to 70% by mass is preferable.
In the thermoplastic resin composition (I) of the fourth aspect of the present invention, the proportion of the crosslinked acrylic ester rubber-like polymer (E) is such that the ethylene / α-olefin copolymer (A), the crosslinked ethylene / α -Of the total (100% by mass) of the olefin copolymer (C) and the crosslinked acrylic acid ester-based rubbery polymer (E), it is 85 to 15% by mass, preferably 30 to 70% by mass.
In the thermoplastic resin composition (I) of the fourth aspect of the present invention, the ratio of the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C) and the crosslinked acrylic ester system When the ratio of the rubber-like polymer (E) is within the above range, impact resistance can be expressed with a small rubber content, and further, scratch resistance and color developability are excellent.
 本発明の第四の態様の熱可塑性樹脂組成物(I)において、エチレン・α-オレフィン共重合体(A)、架橋エチレン・α-オレフィン共重合体(C)および架橋アクリル酸エステル系ゴム状重合体(E)の合計の含有量(ゴム含有量)は、熱可塑性樹脂組成物(I)100質量%中5~30質量%が好ましく、10~25質量%がより好ましい。
ゴム含有量が前記範囲内であれば、熱可塑性樹脂組成物(I)の流動性、成形品の衝撃強度、耐傷付き性、発色性がさらに優れる。
In the thermoplastic resin composition (I) of the fourth aspect of the present invention, an ethylene / α-olefin copolymer (A), a crosslinked ethylene / α-olefin copolymer (C), and a crosslinked acrylic ester rubber The total content (rubber content) of the polymer (E) is preferably 5 to 30% by mass and more preferably 10 to 25% by mass in 100% by mass of the thermoplastic resin composition (I).
When the rubber content is within the above range, the fluidity of the thermoplastic resin composition (I), the impact strength of the molded product, the scratch resistance, and the color developability are further improved.
 本発明の第四の態様の熱可塑性樹脂組成物(I)において、グラフト共重合体(D)およびグラフト共重合体(F)の合計の含有量は、グラフト共重合体(D)、グラフト共重合体(F)、メタクリル酸エステル樹脂(G)およびスチレン系共重合体(H)の合計100質量%中5~40質量%が好ましく、10~30質量%がより好ましい。
グラフト共重合体(D)およびグラフト共重合体(F)の合計の含有量が前記範囲内であれば、熱可塑性樹脂組成物(I)の流動性、成形品の耐引っ掻き傷性、耐衝撃性、発色性、耐熱性等の物性バランスが優れる。
In the thermoplastic resin composition (I) of the fourth aspect of the present invention, the total content of the graft copolymer (D) and the graft copolymer (F) is as follows. The total content of the polymer (F), the methacrylic ester resin (G) and the styrene copolymer (H) is preferably 5 to 40% by mass, more preferably 10 to 30% by mass.
If the total content of the graft copolymer (D) and the graft copolymer (F) is within the above range, the fluidity of the thermoplastic resin composition (I), the scratch resistance of the molded product, and the impact resistance Excellent balance of physical properties such as property, color development and heat resistance.
 本発明の第四の態様の熱可塑性樹脂組成物(I)において、メタクリル酸エステル樹脂(G)の含有量は、グラフト共重合体(D)、グラフト共重合体(F)、メタクリル酸エステル樹脂(G)およびスチレン系共重合体(H)の合計100質量%中95~60質量%が好ましく、90~70質量%がより好ましい。
メタクリル酸エステル樹脂(G)の含有量が前記範囲内であれば、熱可塑性樹脂組成物(I)の流動性、成形品の耐引っ掻き傷性、耐衝撃性、発色性、耐熱性等の物性バランスが優れる。
In the thermoplastic resin composition (I) of the fourth aspect of the present invention, the content of the methacrylic ester resin (G) is as follows: graft copolymer (D), graft copolymer (F), methacrylic ester resin Of the total 100% by mass of (G) and the styrene copolymer (H), 95 to 60% by mass is preferable, and 90 to 70% by mass is more preferable.
If the content of the methacrylic ester resin (G) is within the above range, the properties of the thermoplastic resin composition (I) such as fluidity, scratch resistance, impact resistance, color development, and heat resistance of the molded product. Excellent balance.
 本発明の第四の態様の熱可塑性樹脂組成物(I)において、スチレン系共重合体(H)の含有量は、グラフト共重合体(D)、グラフト共重合体(F)、メタクリル酸エステル樹脂(G)およびスチレン系共重合体(H)の合計100質量%中0~40質量%が好ましく、熱可塑性樹脂組成物(I)の流動性、成形品の耐衝撃性、耐熱性の点から、1~40質量%がより好ましい。 In the thermoplastic resin composition (I) of the fourth aspect of the present invention, the content of the styrenic copolymer (H) is as follows: graft copolymer (D), graft copolymer (F), methacrylate ester The content is preferably 0 to 40% by mass in 100% by mass of the resin (G) and the styrene-based copolymer (H), and the fluidity of the thermoplastic resin composition (I), the impact resistance of the molded product, and the heat resistance Therefore, 1 to 40% by mass is more preferable.
 <体積平均粒子径>
 本発明の第四の態様の熱可塑性樹脂組成物(I)において、熱可塑性樹脂組成物(I)中のグラフト共重合体(D)に含まれるエチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の体積平均粒子径は、0.2~0.6μmであり、0.3~0.5μmが好ましい。
体積平均粒子径が0.2μmよりも小さい場合には、成形品の耐衝撃性が劣る。
体積平均粒子径が0.6μmよりも大きい場合には、成形品の耐衝撃性、発色性が劣る。
エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の体積平均粒子径が0.3μm~0.5μmであれば、成形品の耐衝撃性、発色性がさらに優れる。
 水性分散体に分散しているエチレン・α-オレフィン共重合体(A)や架橋エチレン・α-オレフィン共重合体(C)の体積平均粒子径が、そのまま熱可塑性樹脂組成物(I)中のエチレン・α-オレフィン共重合体(A)や架橋エチレン・α-オレフィン共重合体(C)の体積平均粒子径を示すことを、電子顕微鏡写真の画像処理によって確認している。
<Volume average particle diameter>
In the thermoplastic resin composition (I) of the fourth aspect of the present invention, the ethylene / α-olefin copolymer (A) contained in the graft copolymer (D) in the thermoplastic resin composition (I) or The volume average particle diameter of the crosslinked ethylene / α-olefin copolymer (C) is 0.2 to 0.6 μm, preferably 0.3 to 0.5 μm.
When the volume average particle diameter is smaller than 0.2 μm, the impact resistance of the molded product is inferior.
When the volume average particle diameter is larger than 0.6 μm, the impact resistance and color developability of the molded product are inferior.
If the volume average particle diameter of the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C) is 0.3 μm to 0.5 μm, the impact resistance and color developability of the molded product Is even better.
The volume average particle diameter of the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C) dispersed in the aqueous dispersion is as it is in the thermoplastic resin composition (I). The fact that the volume average particle diameter of the ethylene / α-olefin copolymer (A) and the crosslinked ethylene / α-olefin copolymer (C) is confirmed by image processing of electron micrographs.
 本発明の第四の態様の熱可塑性樹脂組成物(I)において、熱可塑性樹脂組成物(I)中のグラフト共重合体(F)に含まれる架橋アクリル酸エステル系ゴム状重合体(E)の体積平均粒子径は、0.05~0.18μmであり、0.07~0.15μmが好ましい。
体積平均粒子径が0.05μmよりも小さい場合、成形品の耐衝撃性が劣る。
体積平均粒子径が0.18μmよりも大きい場合、成形品の耐衝撃性、発色性が劣る。
 水性分散体に分散している架橋アクリル酸エステル系ゴム状重合体(E)の体積平均粒子径が、そのまま熱可塑性樹脂組成物(I)中の架橋アクリル酸エステル系ゴム状重合体(E)の体積平均粒子径を示すことを、電子顕微鏡写真の画像処理によって確認している。
In the thermoplastic resin composition (I) of the fourth aspect of the present invention, the crosslinked acrylic ester rubber-like polymer (E) contained in the graft copolymer (F) in the thermoplastic resin composition (I). The volume average particle diameter of is 0.05 to 0.18 μm, preferably 0.07 to 0.15 μm.
When the volume average particle diameter is smaller than 0.05 μm, the impact resistance of the molded product is inferior.
When the volume average particle diameter is larger than 0.18 μm, the impact resistance and color developability of the molded product are inferior.
The volume average particle diameter of the crosslinked acrylate rubber polymer (E) dispersed in the aqueous dispersion is the same as that of the crosslinked acrylate rubber polymer (E) in the thermoplastic resin composition (I). It is confirmed by image processing of an electron micrograph that the volume average particle diameter is shown.
 <各成分の含有量>
 本発明の第五の態様の熱可塑性樹脂組成物(I)において、エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の割合は、エチレン・α-オレフィン共重合体(A)、架橋エチレン・α-オレフィン共重合体(C)および複合ゴム状重合体(L)の合計(100質量%)のうち、15~85質量%であり、30~70質量%が好ましい。
 本発明の第五の態様の熱可塑性樹脂組成物(I)において、複合ゴム状重合体(L)の割合は、エチレン・α-オレフィン共重合体(A)、架橋エチレン・α-オレフィン共重合体(C)および複合ゴム状重合体(L)の合計(100質量%)のうち、85~15質量%であり、30~70質量%が好ましい。
 本発明の第五の態様の熱可塑性樹脂組成物(I)において、エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の割合および複合ゴム状重合体(L)の割合が前記範囲内であれば、少ないゴム含有量で耐衝撃性を発現することができ、さらに、耐傷付き性、発色性、潤滑性にも優れる。
<Content of each component>
In the thermoplastic resin composition (I) of the fifth aspect of the present invention, the ratio of the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C) is ethylene / α-olefin. Of the total (100% by mass) of the olefin copolymer (A), the crosslinked ethylene / α-olefin copolymer (C) and the composite rubber-like polymer (L), 15 to 85% by mass, 30 to 70% Mass% is preferred.
In the thermoplastic resin composition (I) of the fifth aspect of the present invention, the proportion of the composite rubber-like polymer (L) is such that the ethylene / α-olefin copolymer (A), the crosslinked ethylene / α-olefin copolymer Of the total (100% by mass) of the combined polymer (C) and the composite rubber-like polymer (L), it is 85 to 15% by mass, preferably 30 to 70% by mass.
The ratio of the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C) in the thermoplastic resin composition (I) of the fifth aspect of the present invention and the composite rubber-like polymer When the ratio of (L) is within the above range, impact resistance can be exhibited with a small rubber content, and further, scratch resistance, color developability, and lubricity are excellent.
 本発明の第五の態様の熱可塑性樹脂組成物において、エチレン・α-オレフィン共重合体(A)、架橋エチレン・α-オレフィン共重合体(C)および複合ゴム状重合体(L)の合計の含有量(ゴム含有量)は、熱可塑性樹脂組成物(I)100質量%中5~30質量%が好ましく、10~25質量%がより好ましい。
ゴム含有量が前記範囲内であれば、熱可塑性樹脂組成物(I)の流動性、成形品の衝撃強度、潤滑性、耐傷付き性、発色性がさらに優れる。
In the thermoplastic resin composition of the fifth aspect of the present invention, the total of the ethylene / α-olefin copolymer (A), the crosslinked ethylene / α-olefin copolymer (C) and the composite rubber-like polymer (L) The content (rubber content) is preferably 5 to 30% by mass, more preferably 10 to 25% by mass in 100% by mass of the thermoplastic resin composition (I).
When the rubber content is within the above range, the fluidity of the thermoplastic resin composition (I), the impact strength of the molded product, the lubricity, the scratch resistance, and the color developability are further improved.
 本発明の第五の態様の熱可塑性樹脂組成物(I)において、グラフト共重合体(D)およびグラフト共重合体(M)の合計の含有量は、グラフト共重合体(D)、グラフト共重合体(M)、メタクリル酸エステル樹脂(G)およびスチレン系共重合体(H)の合計100質量%中5~40質量%が好ましく、10~30質量%がより好ましい。
グラフト共重合体(D)およびグラフト共重合体(M)の合計の含有量が前記範囲内であれば、熱可塑性樹脂組成物(I)の流動性、成形品の耐引っ掻き傷性、耐衝撃性、発色性、潤滑性、耐熱性等の物性バランスが優れる。
In the thermoplastic resin composition (I) of the fifth aspect of the present invention, the total content of the graft copolymer (D) and the graft copolymer (M) is as follows. The total amount of the polymer (M), the methacrylic ester resin (G) and the styrene copolymer (H) is preferably 5 to 40% by mass, more preferably 10 to 30% by mass.
If the total content of the graft copolymer (D) and the graft copolymer (M) is within the above range, the fluidity of the thermoplastic resin composition (I), the scratch resistance of the molded product, and the impact resistance Excellent balance of physical properties such as property, color developability, lubricity and heat resistance.
 本発明の第五の態様の熱可塑性樹脂組成物(I)において、メタクリル酸エステル樹脂(G)の含有量は、グラフト共重合体(D)、グラフト共重合体(M)、メタクリル酸エステル樹脂(G)およびスチレン系共重合体(H)の合計100質量%中95~60質量%が好ましく、90~70質量%がより好ましい。
メタクリル酸エステル樹脂(G)の含有量が前記範囲内であれば、熱可塑性樹脂組成物(I)の流動性、成形品の耐引っ掻き傷性、耐衝撃性、発色性、潤滑性、耐熱性等の物性バランスが優れる。
In the thermoplastic resin composition (I) of the fifth aspect of the present invention, the content of the methacrylic ester resin (G) is as follows: graft copolymer (D), graft copolymer (M), methacrylic ester resin Of the total 100% by mass of (G) and the styrene copolymer (H), 95 to 60% by mass is preferable, and 90 to 70% by mass is more preferable.
If the content of the methacrylic ester resin (G) is within the above range, the flowability of the thermoplastic resin composition (I), scratch resistance, impact resistance, color development, lubricity, and heat resistance of the molded product. Excellent physical property balance.
 本発明の第五の態様の熱可塑性樹脂組成物(I)において、スチレン系共重合体(H)の含有量は、グラフト共重合体(D)、グラフト共重合体(M)、メタクリル酸エステル樹脂(G)およびスチレン系共重合体(H)の合計100質量%中0~40質量%が好ましく、熱可塑性樹脂組成物(I)の流動性、成形品の耐衝撃性、耐熱性の点から、1~40質量%がより好ましい。 In the thermoplastic resin composition (I) of the fifth aspect of the present invention, the content of the styrene copolymer (H) is as follows: graft copolymer (D), graft copolymer (M), methacrylate ester The content is preferably 0 to 40% by mass in 100% by mass of the resin (G) and the styrene-based copolymer (H), and the fluidity of the thermoplastic resin composition (I), the impact resistance of the molded product, and the heat resistance Therefore, 1 to 40% by mass is more preferable.
 <体積平均粒子径>
 本発明の第五の態様の熱可塑性樹脂組成物(I)において、熱可塑性樹脂組成物(I)中のグラフト共重合体(D)に含まれるエチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の体積平均粒子径は、0.2~0.6μmであり、0.3~0.5μmが好ましい。
体積平均粒子径が0.2μmよりも小さい場合には、成形品の耐衝撃性、潤滑性が劣る。
体積平均粒子径が0.6μmよりも大きい場合には、成形品の耐衝撃性、発色性、潤滑性が劣る。
エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の体積平均粒子径が0.3μm~0.5μmであれば、成形品の耐衝撃性、発色性がさらに優れる。 水性分散体に分散しているエチレン・α-オレフィン共重合体(A)や架橋エチレン・α-オレフィン共重合体(C)の体積平均粒子径が、そのまま熱可塑性樹脂組成物(I)中のエチレン・α-オレフィン共重合体(A)や架橋エチレン・α-オレフィン共重合体(C)の体積平均粒子径を示すことを、電子顕微鏡写真の画像処理によって確認している。
<Volume average particle diameter>
In the thermoplastic resin composition (I) of the fifth aspect of the present invention, the ethylene / α-olefin copolymer (A) contained in the graft copolymer (D) in the thermoplastic resin composition (I) or The volume average particle diameter of the crosslinked ethylene / α-olefin copolymer (C) is 0.2 to 0.6 μm, preferably 0.3 to 0.5 μm.
When the volume average particle diameter is smaller than 0.2 μm, the impact resistance and lubricity of the molded product are inferior.
When the volume average particle diameter is larger than 0.6 μm, the impact resistance, color developability and lubricity of the molded product are inferior.
If the volume average particle diameter of the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C) is 0.3 μm to 0.5 μm, the impact resistance and color developability of the molded product Is even better. The volume average particle diameter of the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C) dispersed in the aqueous dispersion is as it is in the thermoplastic resin composition (I). The fact that the volume average particle diameter of the ethylene / α-olefin copolymer (A) and the crosslinked ethylene / α-olefin copolymer (C) is confirmed by image processing of electron micrographs.
 本発明の第五の態様の熱可塑性樹脂組成物(I)において、熱可塑性樹脂組成物(I)中のグラフト共重合体(M)に含まれる複合ゴム状重合体(L)の体積平均粒子径は、0.05~0.18μmであり、0.07~0.15μmが好ましい。
体積平均粒子径が0.05μmよりも小さい場合、成形品の耐衝撃性、潤滑性が劣る。
体積平均粒子径が0.18μmよりも大きい場合、成形品の耐衝撃性、発色性、潤滑性が劣る。
 水性分散体に分散している複合ゴム状重合体(L)の体積平均粒子径が、そのまま熱可塑性樹脂組成物(I)中の複合ゴム状重合体(L)の体積平均粒子径を示すことを、電子顕微鏡写真の画像処理によって確認している。
Volume average particles of composite rubber-like polymer (L) contained in graft copolymer (M) in thermoplastic resin composition (I) in thermoplastic resin composition (I) of the fifth aspect of the present invention The diameter is 0.05 to 0.18 μm, preferably 0.07 to 0.15 μm.
When the volume average particle diameter is smaller than 0.05 μm, the impact resistance and lubricity of the molded product are inferior.
When the volume average particle diameter is larger than 0.18 μm, the impact resistance, color developability and lubricity of the molded product are inferior.
The volume average particle diameter of the composite rubber-like polymer (L) dispersed in the aqueous dispersion indicates the volume average particle diameter of the composite rubber-like polymer (L) in the thermoplastic resin composition (I) as it is. Is confirmed by image processing of electron micrographs.
 <熱可塑性樹脂組成物(I)の製造方法>
第二の態様の熱可塑性樹脂組成物(I)は、本発明の第一の態様におけるグラフト共重合体(D)と、上述した硬質成分(J)とを混合することで得られる。
 具体的には、グラフト共重合体(D)および硬質成分(J)と、必要に応じて各種添加剤を混合することで容易に製造される。
また、必要に応じて、例えば押出機、バンバリーミキサーまたは混練ロール等にてペレット化してもよい。
<Method for producing thermoplastic resin composition (I)>
The thermoplastic resin composition (I) of the second aspect is obtained by mixing the graft copolymer (D) in the first aspect of the present invention and the hard component (J) described above.
Specifically, it is easily produced by mixing the graft copolymer (D) and the hard component (J) with various additives as required.
Moreover, you may pelletize with an extruder, a Banbury mixer, a kneading roll etc. as needed.
 熱可塑性樹脂組成物(I)に含まれるグラフト共重合体(D)の含有量に関しては特に制限はないが、グラフト共重合体(D)と硬質成分(J)の合計100質量部に対し、グラフト共重合体(D)の含有量が0.1~99質量部になるよう調整するのが好ましい。 Although there is no restriction | limiting in particular regarding content of the graft copolymer (D) contained in a thermoplastic resin composition (I), With respect to a total of 100 mass parts of a graft copolymer (D) and a hard component (J), It is preferable to adjust the content of the graft copolymer (D) to be 0.1 to 99 parts by mass.
 本発明の第三の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)とメタクリル酸エステル樹脂(G)と、必要に応じてスチレン系共重合体(H)、他の熱可塑性樹脂、各種添加剤等とを混合することによって得られる。押出機、バンバリーミキサー、混練ロール等にてペレット化してもよい。 The thermoplastic resin composition (I) according to the third aspect of the present invention comprises a graft copolymer (D), a methacrylic ester resin (G), and a styrene copolymer (H) as required. It can be obtained by mixing thermoplastic resin, various additives and the like. You may pelletize with an extruder, a Banbury mixer, a kneading roll, etc.
 本発明の第四の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)とグラフト共重合体(F)とメタクリル酸エステル樹脂(G)とスチレン系共重合体(H)とを混合することにより得られる。 The thermoplastic resin composition (I) in the fourth aspect of the present invention comprises a graft copolymer (D), a graft copolymer (F), a methacrylic ester resin (G), and a styrenic copolymer (H). Is obtained by mixing.
 本発明の第五の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)とグラフト共重合体(M)とメタクリル酸エステル樹脂(G)とスチレン系共重合体(H)とを混合することにより得られる。 The thermoplastic resin composition (I) in the fifth aspect of the present invention comprises a graft copolymer (D), a graft copolymer (M), a methacrylic ester resin (G), and a styrenic copolymer (H). Is obtained by mixing.
 <作用効果>
 以上説明したように、本発明の第二の態様における熱可塑性樹脂組成物(I)は、本発明の第一の態様におけるグラフト共重合体(D)を含有するので流動性に優れるとともに、耐傷付き性、耐衝撃性、光沢性、発色性に優れた成形品を得ることができる。
<Effect>
As described above, the thermoplastic resin composition (I) according to the second aspect of the present invention contains the graft copolymer (D) according to the first aspect of the present invention and thus has excellent fluidity and scratch resistance. A molded product excellent in stickiness, impact resistance, glossiness, and color development can be obtained.
 以上説明した本発明の第三の態様における熱可塑性樹脂組成物(I)にあっては、質量平均分子量(Mw)および分子量分布(Mw/Mn)が特定の範囲内にあるエチレン・α-オレフィン共重合体(A)または前記エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下にビニル系単量体混合物(m1)を重合して得られたグラフト共重合体(D)とメタクリル酸エステル樹脂(G)とを含むため、流動性が良好であり、また、耐傷付き性、光沢性、発色性、耐衝撃性に優れる成形品を得ることができる。また、成形品に耐熱性を付与しても、耐衝撃性を損なうことがない。 In the thermoplastic resin composition (I) according to the third aspect of the present invention described above, the ethylene / α-olefin having a mass average molecular weight (Mw) and a molecular weight distribution (Mw / Mn) within specific ranges. The vinyl monomer mixture (m1) is polymerized in the presence of the copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A). The resulting graft copolymer (D) and methacrylic ester resin (G) have good fluidity and are excellent in scratch resistance, gloss, color development, and impact resistance. Goods can be obtained. Moreover, even if heat resistance is imparted to the molded article, impact resistance is not impaired.
以上説明した本発明の第四の態様における熱可塑性樹脂組成物(I)にあっては、質量平均分子量(Mw)および分子量分布(Mw/Mn)が特定の範囲内にあるエチレン・α-オレフィン共重合体(A)または前記エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下にビニル系単量体混合物(m1)を重合して得られたグラフト共重合体(D)と;架橋アクリル酸エステル系ゴム状重合体(E)の存在下にビニル系単量体混合物(m2)を重合して得られたグラフト共重合体(F)と;メタクリル酸エステル樹脂(G)とを含み;熱可塑性樹脂組成物(I)中のエチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)と架橋アクリル酸エステル系ゴム状重合体(E)とが特定の体積平均粒子径であり;熱可塑性樹脂組成物(I)中のエチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)と架橋アクリル酸エステル系ゴム状重合体(E)とが特定の割合であるため、流動性が良好であり、また、耐傷付き性、発色性、耐衝撃性に優れる成形品を得ることができる。
また、成形品に耐熱性を付与しても、耐衝撃性を損なうことがない。
In the thermoplastic resin composition (I) according to the fourth aspect of the present invention described above, the ethylene / α-olefin having a mass average molecular weight (Mw) and a molecular weight distribution (Mw / Mn) within specific ranges. The vinyl monomer mixture (m1) is polymerized in the presence of the copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A). Graft copolymer obtained by polymerizing the vinyl monomer mixture (m2) in the presence of the graft copolymer (D) obtained; and a crosslinked acrylic ester rubber-like polymer (E) And (E) a methacrylate ester resin (G); an ethylene / α-olefin copolymer (A) or a crosslinked ethylene / α-olefin copolymer (C) in the thermoplastic resin composition (I) And cross-linked acrylic ester Rubber-based polymer (E) has a specific volume average particle size; ethylene / α-olefin copolymer (A) or crosslinked ethylene / α-olefin copolymer in thermoplastic resin composition (I) Since the blend (C) and the cross-linked acrylic ester rubber polymer (E) are in a specific ratio, a molded product having good flowability and excellent scratch resistance, color development and impact resistance. Obtainable.
Moreover, even if heat resistance is imparted to the molded article, impact resistance is not impaired.
 以上説明した本発明の第五の態様における熱可塑性樹脂組成物(I)にあっては、質量平均分子量(Mw)および分子量分布(Mw/Mn)が特定の範囲内にあるエチレン・α-オレフィン共重合体(A)または前記エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下にビニル系単量体混合物(m1)を重合して得られたグラフト共重合体(D)と;ポリオルガノシロキサン(La)を含む複合ゴム状重合体(L)の存在下にビニル系単量体混合物(m5)を重合して得られたグラフト共重合体(M)と;メタクリル酸エステル樹脂(G)とを含み;熱可塑性樹脂組成物(I)中のエチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)と複合ゴム状重合体(L)とが特定の体積平均粒子径であり;熱可塑性樹脂組成物(I)中のエチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)と複合ゴム状重合体(L)とが特定の割合であるため、流動性が良好であり、また、耐傷付き性、発色性、耐衝撃性、潤滑性に優れる成形品を得ることができる。
また、成形品に耐熱性を付与しても、耐衝撃性を損なうことがない。
In the thermoplastic resin composition (I) according to the fifth aspect of the present invention described above, the ethylene / α-olefin having a mass average molecular weight (Mw) and a molecular weight distribution (Mw / Mn) within specific ranges. The vinyl monomer mixture (m1) is polymerized in the presence of the copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A). Obtained by polymerizing the vinyl-based monomer mixture (m5) in the presence of the graft copolymer (D) thus obtained; and the composite rubber-like polymer (L) containing the polyorganosiloxane (La). A graft copolymer (M); and a methacrylate ester resin (G); an ethylene / α-olefin copolymer (A) or a crosslinked ethylene / α-olefin copolymer in the thermoplastic resin composition (I) Combined (C) and composite The rubber-like polymer (L) has a specific volume average particle size; the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer (A) in the thermoplastic resin composition (I) ( Since C) and the composite rubber-like polymer (L) are in a specific ratio, it is possible to obtain a molded article having good flowability and excellent scratch resistance, color development, impact resistance, and lubricity. it can.
Moreover, even if heat resistance is imparted to the molded article, impact resistance is not impaired.
「成形品」
 本発明の成形品は、本発明の第二の態様、第三の態様、第四の態様、または第五の態様の熱可塑性樹脂組成物(I)を公知の成形方法によって成形加工して得られる。
 成形方法としては、例えば、射出成形法、プレス成形法、押出成形法、真空成形法、ブロー成形法等が挙げられる。
 成形品の用途としては、車輌内装部品、車輌外装部品、事務機器、家電、建材等が挙げられる。
"Molding"
The molded article of the present invention is obtained by molding the thermoplastic resin composition (I) of the second aspect, third aspect, fourth aspect or fifth aspect of the present invention by a known molding method. It is done.
Examples of the molding method include injection molding, press molding, extrusion molding, vacuum molding, and blow molding.
Applications of molded products include vehicle interior parts, vehicle exterior parts, office equipment, home appliances, building materials, and the like.
 以上説明した本発明の第六の態様における成形品にあっては、本発明の熱可塑性樹脂組成物(I)を用いているため、耐傷付き性、光沢性、発色性、耐衝撃性、潤滑性に優れる。また、本発明の第三の態様においては、メタクリル酸エステル樹脂(G)として特定の共重合組成のものを用いたり、スチレン系共重合体(H)を用いたりすれば、耐熱性にも優れる。また、本発明の第四の態様においては、メタクリル酸エステル樹脂(G)として特定の共重合組成のものを用いたり、スチレン系共重合体(H)を用いたりすれば、耐熱性にも優れる。また、本発明の第五の態様においては、メタクリル酸エステル樹脂(G)として特定の共重合組成のものを用いたり、スチレン系共重合体(H)を用いたりすれば、耐熱性にも優れる。
このような成形品は、車輌内装部品、車輌外装部品、事務機器、家電、建材などの用途に適用できる。
In the molded product according to the sixth aspect of the present invention described above, since the thermoplastic resin composition (I) of the present invention is used, scratch resistance, gloss, color development, impact resistance, lubrication Excellent in properties. Moreover, in the third aspect of the present invention, if a methacrylic ester resin (G) having a specific copolymer composition or a styrene copolymer (H) is used, the heat resistance is excellent. . Further, in the fourth aspect of the present invention, if a methacrylic ester resin (G) having a specific copolymer composition or a styrene copolymer (H) is used, the heat resistance is also excellent. . Further, in the fifth aspect of the present invention, if a methacrylic ester resin (G) having a specific copolymer composition or a styrene copolymer (H) is used, the heat resistance is excellent. .
Such molded products can be applied to uses such as vehicle interior parts, vehicle exterior parts, office equipment, home appliances, and building materials.
本発明の第一の態様におけるグラフト共重合体(D)は、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5であるエチレン・α-オレフィン共重合体(A)または前記エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であることが好ましい。 The graft copolymer (D) in the first embodiment of the present invention has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2. In the presence of the ethylene / α-olefin copolymer (A) 5 or the cross-linked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A). A graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing a vinyl compound and a vinyl cyanide compound is preferred.
本発明の第一の態様におけるグラフト共重合体(D)は、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5である、エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であって、前記架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が、前記架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、45~65質量%であることが好ましい。 The graft copolymer (D) in the first embodiment of the present invention has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2. In the presence of the crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A), a vinyl-based monomer containing an aromatic vinyl compound and a vinyl cyanide compound is used. A graft copolymer obtained by polymerizing a monomer mixture (m1), wherein the crosslinked ethylene / α-olefin copolymer (C) has a gel content of the crosslinked ethylene / α-olefin copolymer. It is preferably 45 to 65% by mass relative to the total mass of (C).
本発明の第一の態様におけるグラフト共重合体(D)は、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5である、エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であって、前記架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が、前記架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、45~65質量%であって、前記エチレン・α-オレフィン共重合体(A)がエチレン・プロピレン共重合体であることが好ましい。 The graft copolymer (D) in the first embodiment of the present invention has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2. In the presence of a crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A), a vinyl-based monomer containing an aromatic vinyl compound and a vinyl cyanide compound is prepared. A graft copolymer obtained by polymerizing a monomer mixture (m1), wherein the crosslinked ethylene / α-olefin copolymer (C) has a gel content of the crosslinked ethylene / α-olefin copolymer. The ethylene / α-olefin copolymer (A) is preferably an ethylene / propylene copolymer in an amount of 45 to 65% by mass based on the total mass of (C).
本発明の第一の態様におけるグラフト共重合体(D)は、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5である、エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であって、前記架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が、前記架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、45~65質量%であって、前記エチレン・α-オレフィン共重合体(A)がエチレン・プロピレン共重合体であって、前記エチレン・α-オレフィン共重合体(A)のエチレン単位の含有率が、前記エチレン・α-オレフィン共重合体(A)を構成する構成単位の総質量に対して、45~65質量%であることが好ましい。 The graft copolymer (D) in the first embodiment of the present invention has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2. In the presence of the crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A), a vinyl-based monomer containing an aromatic vinyl compound and a vinyl cyanide compound is used. A graft copolymer obtained by polymerizing a monomer mixture (m1), wherein the crosslinked ethylene / α-olefin copolymer (C) has a gel content of the crosslinked ethylene / α-olefin copolymer. The ethylene / α-olefin copolymer (A) is an ethylene / propylene copolymer, and the ethylene / α-olefin copolymer is 45 to 65% by mass with respect to the total mass of (C). (A) Ethylene The unit content is preferably 45 to 65% by mass with respect to the total mass of the constituent units constituting the ethylene / α-olefin copolymer (A).
本発明の第一の態様におけるグラフト共重合体(D)は、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5である、エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を乳化重合して得られたグラフト共重合体であって、前記架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が、前記架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、45~65質量%であって、前記前記エチレン・α-オレフィン共重合体(A)がエチレン・プロピレン共重合体であって、前記エチレン・α-オレフィン共重合体(A)のエチレン単位の含有率が、前記エチレン・α-オレフィン共重合体(A)を構成する構成単位の総質量に対して、45~65質量%であることが好ましい。 The graft copolymer (D) in the first embodiment of the present invention has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2. In the presence of the crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A), a vinyl-based monomer containing an aromatic vinyl compound and a vinyl cyanide compound is used. A graft copolymer obtained by emulsion polymerization of a monomer mixture (m1), wherein the crosslinked ethylene / α-olefin copolymer (C) has a gel content of the crosslinked ethylene / α-olefin copolymer The ethylene / α-olefin copolymer (A) is an ethylene / propylene copolymer, and the ethylene / α-olefin copolymer is 45 to 65% by mass based on the total mass of the polymer (C). Of the polymer (A) The ethylene unit content is preferably 45 to 65% by mass with respect to the total mass of the constituent units constituting the ethylene / α-olefin copolymer (A).
本発明の第二の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、スチレン系共重合体(H)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5であるエチレン・α-オレフィン共重合体(A)または前記エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であることが好ましい。 The thermoplastic resin composition (I) according to the second aspect of the present invention includes a graft copolymer (D) and a styrene-based copolymer (H), and the graft copolymer (D) has a mass. An ethylene / α-olefin copolymer (A) having an average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2.5 or the ethylene / Vinyl monomer mixture (m1) containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of a crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the α-olefin copolymer (A) A graft copolymer obtained by polymerizing is preferred.
本発明の第二の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、スチレン系共重合体(H)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5である、エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であって、前記架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が、前記架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、45~65質量%であることが好ましい。 The thermoplastic resin composition (I) according to the second aspect of the present invention includes a graft copolymer (D) and a styrene-based copolymer (H), and the graft copolymer (D) has a mass. Crosslinking the ethylene / α-olefin copolymer (A) having an average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2.5 A graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of the crosslinked ethylene / α-olefin copolymer (C). The gel content of the crosslinked ethylene / α-olefin copolymer (C) is 45 to 65% by mass based on the total mass of the crosslinked ethylene / α-olefin copolymer (C). preferable.
本発明の第二の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、スチレン系共重合体(H)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5である、エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であって、前記架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が、前記架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、45~65質量%であって、前記エチレン・α-オレフィン共重合体(A)がエチレン・プロピレン共重合体であることが好ましい。 The thermoplastic resin composition (I) according to the second aspect of the present invention includes a graft copolymer (D) and a styrene-based copolymer (H), and the graft copolymer (D) has a mass. Crosslinking the ethylene / α-olefin copolymer (A) having an average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2.5 A graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of the crosslinked ethylene / α-olefin copolymer (C). The gel content of the crosslinked ethylene / α-olefin copolymer (C) is 45 to 65% by mass with respect to the total mass of the crosslinked ethylene / α-olefin copolymer (C), The ethylene / α-olefin copolymer (A It is preferred but an ethylene-propylene copolymer.
本発明の第二の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、スチレン系共重合体(H)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5である、エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であって、前記架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が、前記架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、45~65質量%であって、前記エチレン・α-オレフィン共重合体(A)がエチレン・プロピレン共重合体であって、前記エチレン・α-オレフィン共重合体(A)のエチレン単位の含有率が、前記エチレン・α-オレフィン共重合体(A)を構成する構成単位の総質量に対して、45~65質量%であることが好ましい。 The thermoplastic resin composition (I) according to the second aspect of the present invention includes a graft copolymer (D) and a styrene-based copolymer (H), and the graft copolymer (D) has a mass. Crosslinking the ethylene / α-olefin copolymer (A) having an average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2.5 A graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of the crosslinked ethylene / α-olefin copolymer (C). The gel content of the crosslinked ethylene / α-olefin copolymer (C) is 45 to 65% by mass with respect to the total mass of the crosslinked ethylene / α-olefin copolymer (C), The ethylene / α-olefin copolymer (A Is an ethylene / propylene copolymer, and the content of ethylene units in the ethylene / α-olefin copolymer (A) is the total of the structural units constituting the ethylene / α-olefin copolymer (A). It is preferably 45 to 65% by mass relative to the mass.
本発明の第二の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、スチレン系共重合体(H)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5である、エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を乳化重合して得られたグラフト共重合体であって、前記架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が、前記架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、45~65質量%であって、前記エチレン・α-オレフィン共重合体(A)がエチレン・プロピレン共重合体であって、前記エチレン・α-オレフィン共重合体(A)のエチレン単位の含有率が、前記エチレン・α-オレフィン共重合体(A)を構成する構成単位の総質量に対して、45~65質量%であることが好ましい。 The thermoplastic resin composition (I) according to the second aspect of the present invention includes a graft copolymer (D) and a styrene-based copolymer (H), and the graft copolymer (D) has a mass. Crosslinking the ethylene / α-olefin copolymer (A) having an average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2.5 Graft copolymer obtained by emulsion polymerization of a vinyl monomer mixture (m1) containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of the crosslinked ethylene / α-olefin copolymer (C) The gel content of the crosslinked ethylene / α-olefin copolymer (C) is 45 to 65% by mass with respect to the total mass of the crosslinked ethylene / α-olefin copolymer (C). The ethylene / α-olefin copolymer A) is an ethylene / propylene copolymer, and the ethylene / α-olefin copolymer (A) has a content of ethylene units constituting the ethylene / α-olefin copolymer (A). The total mass is preferably 45 to 65% by mass.
本発明の第三の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5であるエチレン・α-オレフィン共重合体(A)または前記エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であることが好ましい。 The thermoplastic resin composition (I) in the third aspect of the present invention is a methacrylic acid obtained by polymerizing a graft copolymer (D) and a vinyl monomer mixture (m3) containing a methacrylic acid ester. The graft copolymer (D) has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to In the presence of the ethylene / α-olefin copolymer (A) 2.5 or a crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A), A graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing an aromatic vinyl compound and a vinyl cyanide compound is preferred.
本発明の第三の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5である、エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であって、前記架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が、前記架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、45~65質量%であることが好ましい。 The thermoplastic resin composition (I) in the third aspect of the present invention is a methacrylic acid obtained by polymerizing a graft copolymer (D) and a vinyl monomer mixture (m3) containing a methacrylic acid ester. The graft copolymer (D) has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2.5, a vinyl containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of a crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A) A graft copolymer obtained by polymerizing the monomer mixture (m1), wherein the crosslinked ethylene / α-olefin copolymer (C) has a gel content of the crosslinked ethylene / α-olefin copolymer. Total of polymer (C) With respect to the amount is preferably 45 to 65 mass%.
本発明の第三の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5である、エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であって、前記架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が、前記架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、45~65質量%であって、前記エチレン・α-オレフィン共重合体(A)がエチレン・プロピレン共重合体であることが好ましい。 The thermoplastic resin composition (I) in the third aspect of the present invention is a methacrylic acid obtained by polymerizing a graft copolymer (D) and a vinyl monomer mixture (m3) containing a methacrylic acid ester. The graft copolymer (D) has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2.5, a vinyl containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of a crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A) A graft copolymer obtained by polymerizing the monomer mixture (m1), wherein the crosslinked ethylene / α-olefin copolymer (C) has a gel content of the crosslinked ethylene / α-olefin copolymer. Total of polymer (C) With respect to the amount, a 45 to 65 wt%, it is preferable that the ethylene-alpha-olefin copolymer (A) is an ethylene-propylene copolymer.
本発明の第三の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5である、エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であって、前記架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が、前記架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、45~65質量%であって、前記エチレン・α-オレフィン共重合体(A)がエチレン・プロピレン共重合体であって、前記エチレン・α-オレフィン共重合体(A)のエチレン単位の含有率が、前記エチレン・α-オレフィン共重合体(A)を構成する構成単位の総質量に対して、45~65質量%であることが好ましい。 The thermoplastic resin composition (I) in the third aspect of the present invention is a methacrylic acid obtained by polymerizing a graft copolymer (D) and a vinyl monomer mixture (m3) containing a methacrylic acid ester. The graft copolymer (D) has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2.5, a vinyl containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of a crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A) A graft copolymer obtained by polymerizing the monomer mixture (m1), wherein the crosslinked ethylene / α-olefin copolymer (C) has a gel content of the crosslinked ethylene / α-olefin copolymer. Total of polymer (C) The ethylene / α-olefin copolymer (A) is an ethylene / propylene copolymer, and the ethylene / α-olefin copolymer (A) has an ethylene content of 45 to 65% by mass. The unit content is preferably 45 to 65% by mass with respect to the total mass of the constituent units constituting the ethylene / α-olefin copolymer (A).
本発明の第三の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5である、エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を乳化重合して得られたグラフト共重合体であって、前記架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が、前記架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、45~65質量%であって、前記エチレン・α-オレフィン共重合体(A)がエチレン・プロピレン共重合体であって、前記エチレン・α-オレフィン共重合体(A)のエチレン単位の含有率が、前記エチレン・α-オレフィン共重合体(A)を構成する構成単位の総質量に対して、45~65質量%であることが好ましい。 The thermoplastic resin composition (I) in the third aspect of the present invention is a methacrylic acid obtained by polymerizing a graft copolymer (D) and a vinyl monomer mixture (m3) containing a methacrylic ester. The graft copolymer (D) has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2.5, a vinyl containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of a crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A) A graft copolymer obtained by emulsion polymerization of a monomer mixture (m1), wherein the crosslinked ethylene / α-olefin copolymer (C) has a gel content of the crosslinked ethylene / α-olefin. Copolymer (C) The ethylene / α-olefin copolymer (A) is an ethylene / propylene copolymer, and the ethylene / α-olefin copolymer (A) is 45 to 65% by mass with respect to the total mass. The ethylene unit content is preferably 45 to 65% by mass based on the total mass of the constituent units constituting the ethylene / α-olefin copolymer (A).
本発明の第三の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5であるエチレン・α-オレフィン共重合体(A)または前記エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であり、前記ビニル系単量体混合物(m3)100質量%中、メタクリル酸エステルの含有率が50~94質量%、マレイミド系化合物の含有率が5~49質量%、芳香族ビニル化合物の含有率が1~45質量%であることが好ましい。 The thermoplastic resin composition (I) in the third aspect of the present invention is a methacrylic acid obtained by polymerizing a graft copolymer (D) and a vinyl monomer mixture (m3) containing a methacrylic acid ester. The graft copolymer (D) has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to In the presence of the ethylene / α-olefin copolymer (A) 2.5 or a crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A), A graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing an aromatic vinyl compound and a vinyl cyanide compound. In 100% by mass of the vinyl monomer mixture (m3), methacryl Acid ester It is preferable that the content of is from 50 to 94% by mass, the content of the maleimide compound is from 5 to 49% by mass, and the content of the aromatic vinyl compound is from 1 to 45% by mass.
本発明の第三の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)と、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m4)を重合して得られるスチレン系共重合体(H)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5であるエチレン・α-オレフィン共重合体(A)または前記エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であり、前記ビニル系単量体混合物(m3)100質量%中、メタクリル酸エステルの含有率が50~94質量%、マレイミド系化合物の含有率が5~49質量%、芳香族ビニル化合物の含有率が1~45質量%であり、前記ビニル系単量体混合物(m4)100質量%中、前記芳香族ビニル化合物の含有率が15~95質量%であり、前記シアン化ビニル化合物の含有率が5~85質量%であることが好ましい。 The thermoplastic resin composition (I) in the third aspect of the present invention is a methacrylic acid obtained by polymerizing a graft copolymer (D) and a vinyl monomer mixture (m3) containing a methacrylic acid ester. A graft copolymer comprising an ester resin (G) and a styrene copolymer (H) obtained by polymerizing a vinyl monomer mixture (m4) containing an aromatic vinyl compound and a vinyl cyanide compound. (D) is an ethylene / α-olefin copolymer having a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2.5 ( A) or a vinyl-based monomer containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of a crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A). Mass A graft copolymer obtained by polymerizing the mixture (m1), wherein 100% by mass of the vinyl monomer mixture (m3) has a methacrylic acid ester content of 50 to 94% by mass, The content is 5 to 49% by mass, the content of the aromatic vinyl compound is 1 to 45% by mass, and the content of the aromatic vinyl compound is 15% in 100% by mass of the vinyl monomer mixture (m4). The content of the vinyl cyanide compound is preferably 5 to 85% by mass.
本発明の第四の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、架橋アクリル酸エステル系ゴム状重合体(E)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m2)を重合して得られたグラフト共重合体(F)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5であるエチレン・α-オレフィン共重合体(A)または前記エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であることが好ましい。 The thermoplastic resin composition (I) according to the fourth aspect of the present invention comprises an aromatic vinyl compound and cyanide in the presence of the graft copolymer (D) and the crosslinked acrylate rubber polymer (E). It is obtained by polymerizing a graft copolymer (F) obtained by polymerizing a vinyl monomer mixture (m2) containing a vinyl chloride compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester. The graft copolymer (D) has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1. The presence of a 9 to 2.5 ethylene / α-olefin copolymer (A) or a crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A) Under the aromatic vinyl A graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing a compound and a vinyl cyanide compound is preferred.
本発明の第四の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、架橋アクリル酸エステル系ゴム状重合体(E)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m2)を重合して得られたグラフト共重合体(F)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5である、エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であって、前記架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が、前記架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、45~65質量%であることが好ましい。 The thermoplastic resin composition (I) according to the fourth aspect of the present invention comprises an aromatic vinyl compound and cyanide in the presence of the graft copolymer (D) and the crosslinked acrylate rubber polymer (E). It is obtained by polymerizing a graft copolymer (F) obtained by polymerizing a vinyl monomer mixture (m2) containing a vinyl chloride compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester. The graft copolymer (D) has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1. Aromatic vinyl compound and vinyl cyanide compound in the presence of a crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A), which is .9 to 2.5 Including vinyl A graft copolymer obtained by polymerizing the monomer mixture (m1), wherein the crosslinked ethylene / α-olefin copolymer (C) has a gel content of the crosslinked ethylene / α-olefin copolymer It is preferably 45 to 65% by mass with respect to the total mass of the combined (C).
本発明の第四の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、架橋アクリル酸エステル系ゴム状重合体(E)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m2)を重合して得られたグラフト共重合体(F)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5である、エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であって、前記架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が、前記架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、45~65質量%であって、前記エチレン・α-オレフィン共重合体(A)がエチレン・プロピレン共重合体であることが好ましい。 The thermoplastic resin composition (I) according to the fourth aspect of the present invention comprises an aromatic vinyl compound and cyanide in the presence of the graft copolymer (D) and the crosslinked acrylate rubber polymer (E). It is obtained by polymerizing a graft copolymer (F) obtained by polymerizing a vinyl monomer mixture (m2) containing a vinyl chloride compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester. The graft copolymer (D) has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1. Aromatic vinyl compound and vinyl cyanide compound in the presence of a crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A), which is .9 to 2.5 Including vinyl A graft copolymer obtained by polymerizing the monomer mixture (m1), wherein the crosslinked ethylene / α-olefin copolymer (C) has a gel content of the crosslinked ethylene / α-olefin copolymer The ethylene / α-olefin copolymer (A) is preferably an ethylene / propylene copolymer in an amount of 45 to 65% by mass based on the total mass of the polymer (C).
本発明の第四の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、架橋アクリル酸エステル系ゴム状重合体(E)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m2)を重合して得られたグラフト共重合体(F)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5である、エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であって、前記架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が、前記架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、45~65質量%であって、前記架橋エチレン・α-オレフィン共重合体(C)がエチレン・プロピレン共重合体であって、前記架橋エチレン・α-オレフィン共重合体(C)のエチレン単位の含有率が45~65質量%であることが好ましい。 The thermoplastic resin composition (I) according to the fourth aspect of the present invention comprises an aromatic vinyl compound and cyanide in the presence of the graft copolymer (D) and the crosslinked acrylate rubber polymer (E). It is obtained by polymerizing a graft copolymer (F) obtained by polymerizing a vinyl monomer mixture (m2) containing a vinyl chloride compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester. The graft copolymer (D) has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1. Aromatic vinyl compound and vinyl cyanide compound in the presence of a crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A), which is .9 to 2.5 Including vinyl A graft copolymer obtained by polymerizing the monomer mixture (m1), wherein the crosslinked ethylene / α-olefin copolymer (C) has a gel content of the crosslinked ethylene / α-olefin copolymer 45 to 65% by mass relative to the total mass of the blend (C), and the crosslinked ethylene / α-olefin copolymer (C) is an ethylene / propylene copolymer, and the crosslinked ethylene / α-olefin The ethylene unit content of the copolymer (C) is preferably 45 to 65% by mass.
本発明の第四の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、架橋アクリル酸エステル系ゴム状重合体(E)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m2)を重合して得られたグラフト共重合体(F)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5である、エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を乳化重合して得られたグラフト共重合体であって、前記架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が、前記架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、45~65質量%であって、前記エチレン・α-オレフィン共重合体(A)がエチレン・プロピレン共重合体であって、前記エチレン・α-オレフィン共重合体(A)のエチレン単位の含有率が、前記エチレン・α-オレフィン共重合体(A)を構成する構成単位の総質量に対して、45~65質量%であることが好ましい。 The thermoplastic resin composition (I) according to the fourth aspect of the present invention comprises an aromatic vinyl compound and cyanide in the presence of the graft copolymer (D) and the crosslinked acrylate rubber polymer (E). It is obtained by polymerizing a graft copolymer (F) obtained by polymerizing a vinyl monomer mixture (m2) containing a vinyl chloride compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester. The graft copolymer (D) has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1. Aromatic vinyl compound and vinyl cyanide compound in the presence of a crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A), which is .9 to 2.5 Including vinyl A graft copolymer obtained by emulsion polymerization of the monomer mixture (m1), wherein the crosslinked ethylene / α-olefin copolymer (C) has a gel content of the crosslinked ethylene / α-olefin copolymer. 45 to 65% by mass based on the total mass of the polymer (C), and the ethylene / α-olefin copolymer (A) is an ethylene / propylene copolymer, The ethylene unit content of the polymer (A) is preferably 45 to 65% by mass based on the total mass of the constituent units constituting the ethylene / α-olefin copolymer (A).
本発明の第四の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、架橋アクリル酸エステル系ゴム状重合体(E)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m2)を重合して得られたグラフト共重合体(F)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5であるエチレン・α-オレフィン共重合体(A)または前記エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であり、前記ビニル系単量体混合物(m2)100質量%中、芳香族ビニル化合物の含有率が65~82質量%であり、シアン化ビニル化合物の含有率が18~35質量%であることが好ましい。 The thermoplastic resin composition (I) according to the fourth aspect of the present invention comprises an aromatic vinyl compound and cyanide in the presence of the graft copolymer (D) and the crosslinked acrylate rubber polymer (E). It is obtained by polymerizing a graft copolymer (F) obtained by polymerizing a vinyl monomer mixture (m2) containing a vinyl chloride compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester. The graft copolymer (D) has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1. The presence of a 9 to 2.5 ethylene / α-olefin copolymer (A) or a crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A) Under the aromatic vinyl A graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing a compound and a vinyl cyanide compound, wherein 100% by mass of the vinyl monomer mixture (m2) is an aromatic vinyl compound Is preferably 65 to 82% by mass, and the vinyl cyanide compound content is preferably 18 to 35% by mass.
本発明の第四の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、架橋アクリル酸エステル系ゴム状重合体(E)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m2)を重合して得られたグラフト共重合体(F)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5であるエチレン・α-オレフィン共重合体(A)または前記エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であり、前記ビニル系単量体混合物(m2)100質量%中、芳香族ビニル化合物の含有率が65~82質量%であり、シアン化ビニル化合物の含有率が18~35質量%であり、前記ビニル系単量体混合物(m3)100質量%中、メタクリル酸エステルの含有率が50~94質量%、マレイミド系化合物の含有率が5~49質量%、芳香族ビニル化合物の含有率が1~45質量%であることが好ましい。 The thermoplastic resin composition (I) according to the fourth aspect of the present invention comprises an aromatic vinyl compound and cyanide in the presence of the graft copolymer (D) and the crosslinked acrylate rubber polymer (E). It is obtained by polymerizing a graft copolymer (F) obtained by polymerizing a vinyl monomer mixture (m2) containing a vinyl chloride compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester. The graft copolymer (D) has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1. The presence of a 9 to 2.5 ethylene / α-olefin copolymer (A) or a crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A) Under the aromatic vinyl A graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing a compound and a vinyl cyanide compound, wherein 100% by mass of the vinyl monomer mixture (m2) is an aromatic vinyl compound Is 65 to 82% by mass, the vinyl cyanide compound content is 18 to 35% by mass, and 100% by mass of the vinyl monomer mixture (m3) has a methacrylic acid ester content. It is preferable that the content of the maleimide compound is 50 to 94% by mass, the content of the maleimide compound is 5 to 49% by mass, and the content of the aromatic vinyl compound is 1 to 45% by mass.
本発明の第四の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、架橋アクリル酸エステル系ゴム状重合体(E)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m2)を重合して得られたグラフト共重合体(F)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)と、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m4)を重合して得られるスチレン系共重合体(H)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5であるエチレン・α-オレフィン共重合体(A)または前記エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であり、前記ビニル系単量体混合物(m2)100質量%中、芳香族ビニル化合物の含有率が65~82質量%であり、シアン化ビニル化合物の含有率が18~35質量%であり、前記ビニル系単量体混合物(m3)100質量%中、メタクリル酸エステルの含有率が50~94質量%、マレイミド系化合物の含有率が5~49質量%、芳香族ビニル化合物の含有率が1~45質量%であり、前記ビニル系単量体混合物(m4)100質量%中、前記芳香族ビニル化合物の含有率が15~95質量%であり、前記シアン化ビニル化合物の含有率が5~85質量%であることが好ましい。 The thermoplastic resin composition (I) according to the fourth aspect of the present invention comprises an aromatic vinyl compound and cyanide in the presence of the graft copolymer (D) and the crosslinked acrylate rubber polymer (E). It is obtained by polymerizing a graft copolymer (F) obtained by polymerizing a vinyl monomer mixture (m2) containing a vinyl chloride compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester. A methacrylic acid ester resin (G) and a styrene copolymer (H) obtained by polymerizing a vinyl monomer mixture (m4) containing an aromatic vinyl compound and a vinyl cyanide compound, the graft The copolymer (D) is an ethylene / α-olefin copolymer having a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution (Mw / Mn) of 1.9 to 2.5. Polymer (A) Is a vinyl monomer containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of the crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A). A graft copolymer obtained by polymerizing the mixture (m1), wherein 100% by mass of the vinyl monomer mixture (m2) has an aromatic vinyl compound content of 65 to 82% by mass, cyanide The content of the vinyl chloride compound is 18 to 35% by mass, the content of the methacrylic acid ester is 50 to 94% by mass, and the content of the maleimide compound is 100% by mass of the vinyl monomer mixture (m3). The content of the aromatic vinyl compound is 5 to 49% by mass, the content of the aromatic vinyl compound is 1 to 45% by mass, and the content of the aromatic vinyl compound is 15 to 95% in 100% by mass of the vinyl monomer mixture (m4). An amount%, a content of the vinyl cyanide compound is preferably 5 to 85 mass%.
本発明の第五の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、ポリオルガノシロキサン(La)、および(メタ)アクリル酸エステルに由来する単位と、架橋剤に由来する単位またはグラフト交叉剤に由来する単位のいずれか一方または両方とを有するポリ(メタ)アクリル酸エステル(Lb)からなる複合ゴム状重合体(L1)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m5)を重合して得られたグラフト共重合体(M)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5であるエチレン・α-オレフィン共重合体(A)または前記エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であることが好ましい。 The thermoplastic resin composition (I) according to the fifth aspect of the present invention includes a graft copolymer (D), a polyorganosiloxane (La), a unit derived from a (meth) acrylic acid ester, and a crosslinking agent. In the presence of a composite rubber-like polymer (L1) comprising a poly (meth) acrylate (Lb) having either one or both of a unit derived from or a unit derived from a graft crossing agent, an aromatic vinyl compound and Obtained by polymerizing a graft copolymer (M) obtained by polymerizing a vinyl monomer mixture (m5) containing a vinyl cyanide compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester. The graft copolymer (D) has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution ( Mw / Mn) 1.9 to 2.5 ethylene / α-olefin copolymer (A) or cross-linked ethylene / α-olefin copolymer obtained by crosslinking the ethylene / α-olefin copolymer (A) A graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of the compound (C) is preferable.
本発明の第五の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、ポリオルガノシロキサン(La)、および(メタ)アクリル酸エステルに由来する単位と、架橋剤に由来する単位またはグラフト交叉剤に由来する単位のいずれか一方または両方とを有するポリ(メタ)アクリル酸エステル(Lb)からなる複合ゴム状重合体(L1)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m5)を重合して得られたグラフト共重合体(M)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5である、エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であって、前記架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が、前記架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、45~65質量%であることが好ましい。 The thermoplastic resin composition (I) according to the fifth aspect of the present invention includes a graft copolymer (D), a polyorganosiloxane (La), a unit derived from a (meth) acrylic acid ester, and a crosslinking agent. In the presence of a composite rubber-like polymer (L1) comprising a poly (meth) acrylate (Lb) having either one or both of a unit derived from or a unit derived from a graft crossing agent, an aromatic vinyl compound and Obtained by polymerizing a graft copolymer (M) obtained by polymerizing a vinyl monomer mixture (m5) containing a vinyl cyanide compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester. The graft copolymer (D) has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution ( In the presence of the crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A) having an Mw / Mn) of 1.9 to 2.5, aromatic vinyl is used. A graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing a compound and a vinyl cyanide compound, wherein the gel content of the crosslinked ethylene / α-olefin copolymer (C) is The amount of the crosslinked ethylene / α-olefin copolymer (C) is preferably 45 to 65% by mass based on the total mass.
本発明の第五の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、ポリオルガノシロキサン(La)、および(メタ)アクリル酸エステルに由来する単位と、架橋剤に由来する単位またはグラフト交叉剤に由来する単位のいずれか一方または両方とを有するポリ(メタ)アクリル酸エステル(Lb)からなる複合ゴム状重合体(L1)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m5)を重合して得られたグラフト共重合体(M)と、メタクリル酸エステルを含むビニル系単量体混合物(m5)を重合して得られたメタクリル酸エステル樹脂(G)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5である、エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であって、前記架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が、前記架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、45~65質量%であって、前記エチレン・α-オレフィン共重合体(A)がエチレン・プロピレン共重合体であることが好ましい。 The thermoplastic resin composition (I) according to the fifth aspect of the present invention includes a graft copolymer (D), a polyorganosiloxane (La), a unit derived from a (meth) acrylic acid ester, and a crosslinking agent. In the presence of a composite rubber-like polymer (L1) comprising a poly (meth) acrylate (Lb) having either one or both of a unit derived from or a unit derived from a graft crossing agent, an aromatic vinyl compound and Obtained by polymerizing a graft copolymer (M) obtained by polymerizing a vinyl monomer mixture (m5) containing a vinyl cyanide compound and a vinyl monomer mixture (m5) containing a methacrylic acid ester. The graft copolymer (D) has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution ( In the presence of the crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A) having an Mw / Mn) of 1.9 to 2.5, aromatic vinyl is used. A graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing a compound and a vinyl cyanide compound, wherein the gel content of the crosslinked ethylene / α-olefin copolymer (C) is 45 to 65% by mass with respect to the total mass of the crosslinked ethylene / α-olefin copolymer (C), and the ethylene / α-olefin copolymer (A) is an ethylene / propylene copolymer. It is preferable.
本発明の第五の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、ポリオルガノシロキサン(La)、および(メタ)アクリル酸エステルに由来する単位と、架橋剤に由来する単位またはグラフト交叉剤に由来する単位のいずれか一方または両方とを有するポリ(メタ)アクリル酸エステル(Lb)からなる複合ゴム状重合体(L1)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m5)を重合して得られたグラフト共重合体(M)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5である、エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であって、前記架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が、前記架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、45~65質量%であって、前記エチレン・α-オレフィン共重合体(A)のエチレン単位の含有率が、前記エチレン・α-オレフィン共重合体(A)を構成する構成単位の総質量に対して、45~65質量%であることが好ましい。 The thermoplastic resin composition (I) according to the fifth aspect of the present invention includes a graft copolymer (D), a polyorganosiloxane (La), a unit derived from a (meth) acrylic acid ester, and a crosslinking agent. In the presence of a composite rubber-like polymer (L1) comprising a poly (meth) acrylate (Lb) having either one or both of a unit derived from or a unit derived from a graft crossing agent, an aromatic vinyl compound and Obtained by polymerizing a graft copolymer (M) obtained by polymerizing a vinyl monomer mixture (m5) containing a vinyl cyanide compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester. The graft copolymer (D) has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution ( In the presence of the crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A) having an Mw / Mn) of 1.9 to 2.5, aromatic vinyl is used. A graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing a compound and a vinyl cyanide compound, wherein the gel content of the crosslinked ethylene / α-olefin copolymer (C) is 45 to 65% by mass with respect to the total mass of the crosslinked ethylene / α-olefin copolymer (C), and the ethylene unit content of the ethylene / α-olefin copolymer (A) is The content is preferably 45 to 65% by mass with respect to the total mass of the constituent units constituting the ethylene / α-olefin copolymer (A).
本発明の第五の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、ポリオルガノシロキサン(La)、および(メタ)アクリル酸エステルに由来する単位と、架橋剤に由来する単位またはグラフト交叉剤に由来する単位のいずれか一方または両方とを有するポリ(メタ)アクリル酸エステル(Lb)からなる複合ゴム状重合体(L1)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m5)を重合して得られたグラフト共重合体(M)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5である、エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を乳化重合して得られたグラフト共重合体であって、前記架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が、前記架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、45~65質量%であって、前記エチレン・α-オレフィン共重合体(A)のエチレン単位の含有率が、前記エチレン・α-オレフィン共重合体(A)を構成する構成単位の総質量に対して、45~65質量%であることが好ましい。 The thermoplastic resin composition (I) according to the fifth aspect of the present invention includes a graft copolymer (D), a polyorganosiloxane (La), a unit derived from a (meth) acrylic acid ester, and a crosslinking agent. In the presence of a composite rubber-like polymer (L1) comprising a poly (meth) acrylate (Lb) having either one or both of a unit derived from or a unit derived from a graft crossing agent, an aromatic vinyl compound and Obtained by polymerizing a graft copolymer (M) obtained by polymerizing a vinyl monomer mixture (m5) containing a vinyl cyanide compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester. The graft copolymer (D) has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution ( Aromatic vinyl in the presence of a crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A) having a Mw / Mn) of 1.9 to 2.5 A graft copolymer obtained by emulsion polymerization of a vinyl monomer mixture (m1) containing a compound and a vinyl cyanide compound, the gel content of the crosslinked ethylene / α-olefin copolymer (C) Is 45 to 65% by mass with respect to the total mass of the crosslinked ethylene / α-olefin copolymer (C), and the ethylene unit content of the ethylene / α-olefin copolymer (A) is: The content is preferably 45 to 65% by mass based on the total mass of the constituent units constituting the ethylene / α-olefin copolymer (A).
本発明の第五の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、ポリオルガノシロキサン(La)、および(メタ)アクリル酸エステルに由来する単位と、架橋剤に由来する単位またはグラフト交叉剤に由来する単位のいずれか一方または両方とを有するポリ(メタ)アクリル酸エステル(Lb)からなる複合ゴム状重合体(L1)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m5)を重合して得られたグラフト共重合体(M)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5であるエチレン・α-オレフィン共重合体(A)または前記エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であり、前記複合ゴム状重合体(L1)の体積平均粒子径が、0.05~0.18μmであることが好ましい。 The thermoplastic resin composition (I) according to the fifth aspect of the present invention includes a graft copolymer (D), a polyorganosiloxane (La), a unit derived from a (meth) acrylic acid ester, and a crosslinking agent. In the presence of a composite rubber-like polymer (L1) comprising a poly (meth) acrylate (Lb) having either one or both of a unit derived from or a unit derived from a graft crossing agent, an aromatic vinyl compound and Obtained by polymerizing a graft copolymer (M) obtained by polymerizing a vinyl monomer mixture (m5) containing a vinyl cyanide compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester. The graft copolymer (D) has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution ( Methyleneethylene / α-olefin copolymer (A) having a Mw / Mn) of 1.9 to 2.5 or a crosslinked ethylene / α-olefin copolymer obtained by crosslinking the ethylene / α-olefin copolymer (A). A graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of the compound (C), wherein the composite rubber-like polymer ( The volume average particle diameter of L1) is preferably 0.05 to 0.18 μm.
本発明の第五の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、ポリオルガノシロキサン(La)、および(メタ)アクリル酸エステルに由来する単位と、架橋剤に由来する単位またはグラフト交叉剤に由来する単位のいずれか一方または両方とを有するポリ(メタ)アクリル酸エステル(Lb)からなる複合ゴム状重合体(L1)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m5)を重合して得られたグラフト共重合体(M)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5であるエチレン・α-オレフィン共重合体(A)または前記エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であり、前記複合ゴム状重合体(L1)の体積平均粒子径が、0.05~0.18μmであり、前記ビニル系単量体混合物(m3)100質量%中、メタクリル酸エステルの含有率が50~94質量%、マレイミド系化合物の含有率が5~49質量%、芳香族ビニル化合物の含有率が1~45質量%であることが好ましい。 The thermoplastic resin composition (I) according to the fifth aspect of the present invention includes a graft copolymer (D), a polyorganosiloxane (La), a unit derived from a (meth) acrylic acid ester, and a crosslinking agent. In the presence of a composite rubber-like polymer (L1) comprising a poly (meth) acrylate (Lb) having either one or both of a unit derived from or a unit derived from a graft crossing agent, an aromatic vinyl compound and Obtained by polymerizing a graft copolymer (M) obtained by polymerizing a vinyl monomer mixture (m5) containing a vinyl cyanide compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester. The graft copolymer (D) has a mass average molecular weight (Mw) of 26 × 10 4 to 32 × 10 4 and a molecular weight distribution ( Methyleneethylene / α-olefin copolymer (A) having a Mw / Mn) of 1.9 to 2.5 or a crosslinked ethylene / α-olefin copolymer obtained by crosslinking the ethylene / α-olefin copolymer (A). A graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of the compound (C), wherein the composite rubber-like polymer ( L1) has a volume average particle diameter of 0.05 to 0.18 μm, and in 100% by mass of the vinyl monomer mixture (m3), the content of methacrylic acid ester is 50 to 94% by mass. Is preferably 5 to 49% by mass, and the aromatic vinyl compound content is preferably 1 to 45% by mass.
本発明の第五の態様における熱可塑性樹脂組成物(I)は、グラフト共重合体(D)と、ポリオルガノシロキサン(La)、および(メタ)アクリル酸エステルに由来する単位と、架橋剤に由来する単位またはグラフト交叉剤に由来する単位のいずれか一方または両方とを有するポリ(メタ)アクリル酸エステル(Lb)からなる複合ゴム状重合体(L1)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m5)を重合して得られたグラフト共重合体(M)と、メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)と、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m4)を重合して得られるスチレン系共重合体(H)とを含み、前記グラフト共重合体(D)が、質量平均分子量(Mw)が26×10~32×10であり、分子量分布(Mw/Mn)が1.9~2.5であるエチレン・α-オレフィン共重合体(A)または前記エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体であり、前記複合ゴム状重合体(L1)の体積平均粒子径が、0.05~0.18μmであり、前記ビニル系単量体混合物(m3)100質量%中、メタクリル酸エステルの含有率が50~94質量%、マレイミド系化合物の含有率が5~49質量%、芳香族ビニル化合物の含有率が1~45質量%であり、前記ビニル系単量体混合物(m4)100質量%中、前記芳香族ビニル化合物の含有率が15~95質量%であり、前記シアン化ビニル化合物の含有率が5~85質量%であることが好ましい。 The thermoplastic resin composition (I) according to the fifth aspect of the present invention includes a graft copolymer (D), a polyorganosiloxane (La), a unit derived from a (meth) acrylic acid ester, and a crosslinking agent. In the presence of a composite rubber-like polymer (L1) comprising a poly (meth) acrylate (Lb) having either one or both of a unit derived from or a unit derived from a graft crossing agent, an aromatic vinyl compound and Obtained by polymerizing a graft copolymer (M) obtained by polymerizing a vinyl monomer mixture (m5) containing a vinyl cyanide compound and a vinyl monomer mixture (m3) containing a methacrylic acid ester. Obtained by polymerizing the resulting methacrylic ester resin (G) with a vinyl monomer mixture (m4) containing an aromatic vinyl compound and a vinyl cyanide compound And a polymer (H), the graft copolymer (D) is the weight average molecular weight (Mw) was 26 × 10 4 ~ 32 × 10 4, a molecular weight distribution (Mw / Mn) of 1.9 to In the presence of an ethylene / α-olefin copolymer (A) 2.5 or a crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A), A graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing an aromatic vinyl compound and a vinyl cyanide compound, and the volume average particle diameter of the composite rubber-like polymer (L1) is: 0.05 to 0.18 μm, in 100% by mass of the vinyl monomer mixture (m3), the content of methacrylic acid ester is 50 to 94% by mass, and the content of maleimide compound is 5 to 49% by mass. , Aromatic vinyl compounds The content is 1 to 45% by mass, and the content of the aromatic vinyl compound is 15 to 95% by mass in 100% by mass of the vinyl monomer mixture (m4). The rate is preferably 5 to 85% by mass.
 以下、具体的に実施例を示す。ただし、本発明は、これら実施例に限定されるものではない。
 以下に記載の「%」は「質量%」、「部」は「質量部」を意味する。
 以下の実施例および比較例における各種測定および評価方法は、以下の通りである。
Hereinafter, an example is shown concretely. However, the present invention is not limited to these examples.
In the following, “%” means “mass%” and “part” means “part by mass”.
Various measurements and evaluation methods in the following examples and comparative examples are as follows.
「測定方法」
<質量平均分子量(Mw)、分子量分布(Mw/Mn)の測定方法>
 エチレン・α-オレフィン共重合体について、GPC(GPC:Waters社製の「GPC/V2000」、カラム:昭和電工社製の「Shodex AT-G+AT-806MS」)を用い、o-ジクロロベンゼン(145℃)を溶媒として、ポリスチレン換算での質量平均分子量(Mw)および数平均分子量分子量(Mn)を測定し、分子量分布(Mw/Mn)を算出した。
"Measuring method"
<Measurement Method of Mass Average Molecular Weight (Mw), Molecular Weight Distribution (Mw / Mn)>
For the ethylene / α-olefin copolymer, GPC (GPC: “GPC / V2000” manufactured by Waters Inc., column: “Shodex AT-G + AT-806MS” manufactured by Showa Denko KK) was used and o-dichlorobenzene (145 ° C.). ) Was used as a solvent, and the weight average molecular weight (Mw) and number average molecular weight molecular weight (Mn) in terms of polystyrene were measured to calculate the molecular weight distribution (Mw / Mn).
<酸価の測定方法>
 JISK2501に準拠し測定した。
<Method for measuring acid value>
Measured according to JISK2501.
<体積平均粒子径の測定方法1>
 マイクロトラック(日機装社製、「ナノトラック150」)を用い、測定溶媒として純水を用いて、オレフィン樹脂水性分散体(C)の体積平均粒子径(MV)を測定した。
<Measurement method 1 of volume average particle diameter>
The volume average particle diameter (MV) of the aqueous olefin resin dispersion (C) was measured using Microtrac (manufactured by Nikkiso Co., Ltd., “Nanotrack 150”) using pure water as a measurement solvent.
<ゲル含有率の測定方法>
 架橋エチレン・α-オレフィン共重合体(C)の水性または溶媒分散体を希硫酸にて凝固させ、水洗乾燥して得られる凝固粉試料[D1]0.5gを、200mL、110℃のトルエン中に5時間浸漬し、次いで、200メッシュ金網にて濾過し、残渣を乾燥し、その乾燥物[D2]の質量を測定し、下記式(1)から、架橋エチレン・α-オレフィン共重合体(C)のゲル含有率を求めた。
 ゲル含有率(質量%)=乾燥物質量[D2](g)/凝固粉試料質量[D1](g)×100 ・・・(1)
<Measurement method of gel content>
0.5 g of a coagulated powder sample [D1] obtained by coagulating an aqueous or solvent dispersion of a crosslinked ethylene / α-olefin copolymer (C) with dilute sulfuric acid, washing with water and drying in 200 mL of toluene at 110 ° C. And then filtered through a 200 mesh wire mesh, the residue is dried, the mass of the dried product [D2] is measured, and the crosslinked ethylene / α-olefin copolymer ( The gel content of C) was determined.
Gel content rate (mass%) = dry substance amount [D2] (g) / coagulated powder sample mass [D1] (g) × 100 (1)
<グラフト率の測定方法>
 グラフト共重合体(D)1gを80mLのアセトンに添加し、65~70℃ にて3時間加熱還流し、得られた懸濁アセトン溶液を遠心分離機(日立工機社製「CR21E」)にて14,000rpm、30分間遠心分離して、沈殿成分(アセトン不溶成分)とアセトン溶液(アセトン可溶成分)を分取した。そして、沈殿成分(アセトン不溶成分)を乾燥させてその質量(Y(g))を測定し、下記式(2)によりグラフト率を算出した。なお、式(2)におけるYは、グラフト共重合体(D)のアセトン不溶成分の質量(g)、XはYを求める際に使用したグラフト共重合体(D)の全質量(g)、ゴム分率はグラフト共重合体(D)のエチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の固形分換算での含有割合である。
 グラフト率(質量%)={(Y-X×ゴム分率)/X×ゴム分率}×100 ・・・(2)
<Measurement method of graft ratio>
1 g of the graft copolymer (D) is added to 80 mL of acetone and heated to reflux at 65 to 70 ° C. for 3 hours. The mixture was centrifuged at 14,000 rpm for 30 minutes to separate a precipitation component (acetone insoluble component) and an acetone solution (acetone soluble component). And the precipitation component (acetone insoluble component) was dried, the mass (Y (g)) was measured, and the graft ratio was computed by following formula (2). In Formula (2), Y is the mass (g) of the acetone-insoluble component of the graft copolymer (D), X is the total mass (g) of the graft copolymer (D) used to determine Y, The rubber fraction is the content ratio of the graft copolymer (D) in terms of solid content of the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C).
Graft ratio (mass%) = {(Y−X × rubber fraction) / X × rubber fraction} × 100 (2)
「評価方法」
<溶融混練1>
 グラフト共重合体(D)と硬質成分(J)との合計量100部に対して、カーボンブラック0.5部を加えて混合し、30mmφの真空ベント付き2軸押し出し機(池貝社製、「PCM30」)で、シリンダー温度200~260℃、93.325kPa真空にて溶融混練を行い、熱可塑性樹脂組成物(1)を得た。また、必要に応じて溶融混練後に、ペレタイザー(創研社製「SH型ペレタイザー」)を用いてペレット化を行った。
"Evaluation methods"
<Melt-kneading 1>
To 100 parts of the total amount of the graft copolymer (D) and the hard component (J), 0.5 part of carbon black is added and mixed. PCM30 ") was melt kneaded at a cylinder temperature of 200 to 260 ° C and a vacuum of 93.325 kPa to obtain a thermoplastic resin composition (1). Moreover, after melt-kneading as needed, pelletization was performed using a pelletizer (“SH type pelletizer” manufactured by Souken Co., Ltd.).
<溶融混練2>
 グラフト共重合体(D)と硬質成分(J)との合計量100部に対して、カーボンブラック0.8部を加えて混合し、30mmφの真空ベント付き2軸押し出し機(池貝社製、「PCM30」)で、シリンダー温度200~260℃、93.325kPa真空にて溶融混練を行い、熱可塑性樹脂組成物(2)を得た。得られた熱可塑性樹脂組成物(2)について、ペレタイザー(創研社製「SH型ペレタイザー」)を用いてペレット化を行った。
<Melting and kneading 2>
To 100 parts of the total amount of the graft copolymer (D) and the hard component (J), 0.8 parts of carbon black is added and mixed, and a twin screw extruder with a 30 mmφ vacuum vent (Ikegai, “ PCM30 ”) was melt kneaded at a cylinder temperature of 200 to 260 ° C. and a vacuum of 93.325 kPa to obtain a thermoplastic resin composition (2). About the obtained thermoplastic resin composition (2), pelletization was performed using the pelletizer ("SH type pelletizer" by Soken Co., Ltd.).
(メルトボリュームレート(MVR)の測定)
 熱可塑性樹脂組成物(1)について、ISO 1133規格に従い測定した。なお、MVRは熱可塑性樹脂組成物の流動性の目安となる。
(Measurement of melt volume rate (MVR))
The thermoplastic resin composition (1) was measured in accordance with ISO 1133 standard. In addition, MVR becomes a standard of the fluidity | liquidity of a thermoplastic resin composition.
<射出成形1>
 溶融混練して得られた熱可塑性樹脂組成物(1)のペレットを射出成形機(東芝機械社製、「IS55FP-1.5A」)によりシリンダー温度200~260℃、金型温度60℃の条件で、縦80mm、横10cm、厚さ4mmの成形品を成形し、曲げ弾性率測定用成形品、シャルピー衝撃試験用成形品(成形品(Ma1))として用いた。
<Injection molding 1>
The pellets of the thermoplastic resin composition (1) obtained by melt-kneading are subjected to conditions of cylinder temperature 200 to 260 ° C. and mold temperature 60 ° C. using an injection molding machine (“TOSHIKI MACHINE Co., Ltd.,“ IS55FP-1.5A ”). Then, a molded product having a length of 80 mm, a width of 10 cm, and a thickness of 4 mm was molded and used as a molded product for measuring flexural modulus and a molded product for Charpy impact test (molded product (Ma1)).
<射出成形2>
 溶融混練して得られた熱可塑性樹脂組成物(2)のペレットを射出成形機(東芝機械社製、「IS55FP-1.5A」)によりシリンダー温度200~260℃、金型温度60℃の条件で、縦10cm、横10cm、厚さ2mmの黒着色平板(成形品(Ma2))を成形した。前記成形品(Ma2)を光沢性評価用成形品、発色性評価用成形品、耐傷付き性評価用成形品として用いた。
<Injection molding 2>
The pellets of the thermoplastic resin composition (2) obtained by melt-kneading are subjected to conditions of cylinder temperature 200 to 260 ° C. and mold temperature 60 ° C. using an injection molding machine (“TOSHIKI MACHINE Co., Ltd.,“ IS55FP-1.5A ”). Then, a black colored flat plate (molded product (Ma2)) having a length of 10 cm, a width of 10 cm, and a thickness of 2 mm was formed. The molded product (Ma2) was used as a molded product for evaluating glossiness, a molded product for evaluating color development, and a molded product for evaluating scratch resistance.
(曲げ弾性率の測定)
 成形品(Ma1)(試験片)について、曲げ弾性率をISO 178規格に従い測定した。
(Measurement of flexural modulus)
With respect to the molded article (Ma1) (test piece), the flexural modulus was measured in accordance with ISO 178 standard.
(耐衝撃性の評価:シャルピー衝撃試験)
 成形品(Ma1)について、ISO 179に従い、23℃の条件でシャルピー衝撃試験(ノッチ付)を行い、シャルピー衝撃強度を測定した。
(Evaluation of impact resistance: Charpy impact test)
The molded product (Ma1) was subjected to a Charpy impact test (notched) at 23 ° C. in accordance with ISO 179, and the Charpy impact strength was measured.
(光沢性の評価1)
 成形品(Ma2)について、デジタル変角光沢計(スガ試験機社製、「UGV-5D」)にて入射角60°、反射角60°の条件で反射率を測定した。反射率が高いほど光沢性に優れることを意味する。
(Glossiness evaluation 1)
The reflectance of the molded product (Ma2) was measured with a digital variable gloss meter (“UGV-5D” manufactured by Suga Test Instruments Co., Ltd.) under conditions of an incident angle of 60 ° and a reflection angle of 60 °. Higher reflectance means better gloss.
(発色性の評価1)
 成形品(Ma2)について、分光測色計(コニカミノルタオプティクス社製、「CM-3500d」)を用い、d/8(拡散照明/8度受光方式)光学系で、明度LをSCE(正反射光除去)方式にて測定した。こうして測定されたLを「L(ma)」とする。Lが低いほど発色性に優れることを意味する。
(Evaluation of color development 1)
For the molded product (Ma2), a spectral colorimeter (manufactured by Konica Minolta Optics, “CM-3500d”) is used, and the lightness L * is set to SCE (correct) using a d / 8 (diffuse illumination / 8-degree light receiving system) optical system. It was measured by the reflected light removal method. The L * measured in this way is referred to as “L * (ma)”. A lower L * means better color developability.
(耐傷付き性の評価1)
 図1に示すように、先端部11が略半球形に形成された棒状の治具10を用意し、前記先端部11に、ガーゼを8枚重ねた積層シート12を被せた。成形品(Ma2)13の表面に対して、棒状の治具10が直角になるように、積層シート12が被せられた先端部11を接触させ、先端部11を成形品(Ma2)13の表面において水平方向(図中矢印方向)に摺動させ、100回往復させ、成形品(Ma2)13の表面に傷を付けた。その際、加える荷重は1kgとした。表面に傷を付けた成形品(Ma2)13を「成形品(Mc2)」とする。
 成形品(Mc2)の表面の明度Lを、分光測色計を用いて、SCE方式にて測定した。こうして測定されたLを「L(mc)」とする。
(Scratch resistance evaluation 1)
As shown in FIG. 1, a rod-like jig 10 having a tip portion 11 formed in a substantially hemispherical shape was prepared, and the tip portion 11 was covered with a laminated sheet 12 in which eight sheets of gauze were stacked. The tip portion 11 covered with the laminated sheet 12 is brought into contact with the surface of the molded product (Ma2) 13 so that the rod-shaped jig 10 is at a right angle, and the tip portion 11 is brought into contact with the surface of the molded product (Ma2) 13. Was slid in the horizontal direction (arrow direction in the figure) and reciprocated 100 times to scratch the surface of the molded product (Ma2) 13. At that time, the applied load was 1 kg. The molded product (Ma2) 13 having a scratched surface is referred to as “molded product (Mc2)”.
The lightness L * of the surface of the molded product (Mc2) was measured by the SCE method using a spectrocolorimeter. The L * measured in this way is referred to as “L * (mc)”.
耐傷付き性の判定1:
 成形品(Mc2)の傷の目立ちやすさの判定指標ΔLを下記式(3)から算出した。
ΔLの絶対値が大きいほど傷が目立ちやすい。
 ΔL=L(mc)-L(ma) ・・・(3)
 ΔLの絶対値が3.0以下のとき、傷が目立たず、成形品の意匠性を損なわない。
 ΔLの絶対値が3.0超~7.0以下のとき、傷は目立ちにくく、成形品の意匠性を損なわない。 
 ΔLの絶対値が7.0超のとき、傷が目立ち、成形品の意匠性を損なう。
Judgment of scratch resistance 1:
A determination index ΔL * of the degree of conspicuousness of scratches on the molded product (Mc2) was calculated from the following formula (3).
As the absolute value of ΔL * is larger, the scratches are more conspicuous.
ΔL * = L * (mc) −L * (ma) (3)
When the absolute value of ΔL * is 3.0 or less, scratches are not noticeable and the design of the molded product is not impaired.
When the absolute value of ΔL * is more than 3.0 to 7.0 or less, scratches are not noticeable and the design properties of the molded product are not impaired.
When the absolute value of ΔL * is more than 7.0, scratches are conspicuous and the design of the molded product is impaired.
耐傷付き性の判定2:
 成形品(Ma2)の傷の入りやすさの判定指標として、形状測定レーザーマイクロスコープ(キーエンス社製、「VK-9700」)にて、成形品(Mc2)の10点平均粗さ(Rz jis)を測定した。Rz jisの値が大きいほど傷が入りやすい。
Determination of scratch resistance 2:
10-point average roughness (Rz jis) of the molded product (Mc2) using a shape measurement laser microscope (manufactured by Keyence Corporation, “VK-9700”) as an index for determining the ease of scratching of the molded product (Ma2) Was measured. The larger the value of Rz jis, the easier it is to scratch.
「各種成分」
 以下の例では、下記の(A)成分、オレフィン樹脂水性分散体(B)、架橋エチレン・α-オレフィン共重合体(C)、グラフト共重合体(D)、硬質成分(J)を用いた。
"Various ingredients"
In the following examples, the following component (A), olefin resin aqueous dispersion (B), crosslinked ethylene / α-olefin copolymer (C), graft copolymer (D), and hard component (J) were used. .
<(A)成分:エチレン・α‐オレフィン共重合体(A)またはその代替品>(エチレン・プロピレン共重合体(A-1A)の調製)
 20L攪拌機付きステンレス重合槽を十分に窒素置換した後に、脱水精製したヘキサン10Lを添加し、8.0mmol/Lに調製したエチルアルミニウムセスキクロリド(Al(C1.5・Cl1.5)のヘキサン溶液を、5L/hの量で連続的に1時間供給した後、さらに触媒として0.8mmol/Lに調整したVO(OC)Clのヘキサン溶液を5L/hの量で、ヘキサンを5L/hの量で連続的に供給した。一方重合槽上部から、重合液器内の重合液が常に10Lになるように重合液を連続的に抜き出した。次にバブリング管を用いてエチレンを2000L/hの量で、プロピレンを1000L/hの量で、水素を8L/hの量で供給し、重合反応を35℃で行った。
 上記条件で重合反応を行い、エチレン・プロピレン共重合体(A-1A)を含む重合溶液を得た。得られた重合溶液は、塩酸で脱灰した後に、メタノールに投入して析出させた後、乾燥させ、エチレン・プロピレン共重合体(A-1A)を得た。エチレン・プロピレン共重合体(A-1A)のポリマーの性状を表1Aに示す。
<(A) component: ethylene / α-olefin copolymer (A) or an alternative thereof> (Preparation of ethylene / propylene copolymer (A-1A))
After sufficiently substituting the stainless polymerization tank equipped with a 20 L stirrer with nitrogen, 10 L of dehydrated and purified hexane was added, and ethyl aluminum sesquichloride (Al (C 2 H 5 ) 1.5 · Cl prepared to 8.0 mmol / L was obtained . 5 ) A hexane solution of 5 L / h was continuously supplied for 1 hour, and then a hexane solution of VO (OC 2 H 5 ) Cl 2 adjusted to 0.8 mmol / L as a catalyst was further added at 5 L / h. By volume, hexane was continuously fed in an amount of 5 L / h. On the other hand, the polymerization solution was continuously extracted from the upper part of the polymerization tank so that the polymerization solution in the polymerization vessel was always 10 L. Next, ethylene was supplied in an amount of 2000 L / h, propylene in an amount of 1000 L / h, and hydrogen in an amount of 8 L / h using a bubbling tube, and a polymerization reaction was performed at 35 ° C.
A polymerization reaction was performed under the above conditions to obtain a polymerization solution containing an ethylene / propylene copolymer (A-1A). The obtained polymerization solution was deashed with hydrochloric acid, poured into methanol for precipitation, and then dried to obtain an ethylene / propylene copolymer (A-1A). Table 1A shows the properties of the ethylene / propylene copolymer (A-1A).
(エチレン・プロピレン共重合体(A-2A)~(A-8A)の調製)
 表1Aに示すように水素の供給量を変更した以外は、エチレン・プロピレン共重合体(A-1A)と同様にして、エチレン・プロピレン共重合体(A-2A)~(A-8A)を得た。各エチレン・プロピレン共重合体(A-2A)~(A-8A)のポリマーの性状を表1Aに示す。
(Preparation of ethylene / propylene copolymers (A-2A) to (A-8A))
The ethylene / propylene copolymers (A-2A) to (A-8A) were prepared in the same manner as the ethylene / propylene copolymer (A-1A) except that the hydrogen supply amount was changed as shown in Table 1A. Obtained. Table 1A shows the polymer properties of the ethylene / propylene copolymers (A-2A) to (A-8A).
(エチレン・プロピレン共重合体(A-9A)の調製)
 20L攪拌機付きステンレス重合槽を十分に窒素置換した後に、脱水精製したヘキサン10Lを添加し、プロピレンを110NL、水素を800mLを添加した。40℃まで加熱した後に、全圧が0.6MPa[gage]となるようにエチレンで加圧した。オートクレーブの内圧が0.6MPa[gage]になった所で、トリイソブチルアルミニウム(TIBA)の1.0mM/mLヘキサン溶液10mLを窒素で圧入した。続いて、予め調製しておいた、トリフェニルカルベニウム(テトラキスペンタフルオロフェニル)ボレートをホウ素換算で0.16mM、[ジメチル(t-ブチルアミド)(テトラメチル-η-シクロペンタジエニル)シラン]チタンクロリドを0.0004mMの量で含むトルエン溶液30mLを、窒素で圧入し重合を開始した。その後、5分間、40℃になるように温度調整し、かつ圧力が0.6MPa[gage]となるようにエチレンの供給を行なった。重合開始5分後、メタノール50mLを挿入して重合を停止し、大気圧まで脱圧しエチレン・プロピレン共重合体(A-9A)を含む重合溶液を得た。得られた重合溶液は、塩酸で脱灰した後に、メタノールに投入して析出させた後、乾燥させ、エチレン・プロピレン共重合体(A-9A)を得た。エチレン・プロピレン共重合体(A-9A)のポリマーの性状を表3Aに示す。
(Preparation of ethylene / propylene copolymer (A-9A))
After sufficiently substituting the stainless polymerization tank equipped with a 20 L stirrer with nitrogen, 10 L of dehydrated and purified hexane was added, and 110 NL of propylene and 800 mL of hydrogen were added. After heating to 40 ° C., it was pressurized with ethylene so that the total pressure was 0.6 MPa [gage]. When the internal pressure of the autoclave reached 0.6 MPa [gage], 10 mL of a 1.0 mM / mL hexane solution of triisobutylaluminum (TIBA) was injected with nitrogen. Subsequently, triphenylcarbenium (tetrakispentafluorophenyl) borate prepared in advance was converted to boron in an amount of 0.16 mM, [dimethyl (t-butylamide) (tetramethyl-η 5 -cyclopentadienyl) silane] Polymerization was initiated by injecting 30 mL of a toluene solution containing titanium chloride in an amount of 0.0004 mM with nitrogen. Thereafter, the temperature was adjusted to 40 ° C. for 5 minutes, and ethylene was supplied so that the pressure became 0.6 MPa [gage]. Five minutes after the start of the polymerization, 50 mL of methanol was inserted to terminate the polymerization, and the pressure was released to atmospheric pressure to obtain a polymerization solution containing an ethylene / propylene copolymer (A-9A). The obtained polymerization solution was deashed with hydrochloric acid, poured into methanol for precipitation, and then dried to obtain an ethylene / propylene copolymer (A-9A). Table 3A shows the polymer properties of the ethylene / propylene copolymer (A-9A).
(エチレン・プロピレン共重合体(A-10A)の調製)
 エチレン・プロピレン共重合体(A-1A)20部とエチレン・プロピレン共重合体(A-9A)80部を混合し、30mmφの真空ベント付き2軸押し出し機(池貝社製、「PCM30」)で200℃、93.325kPa真空にて溶融混練し、エチレン・プロピレン共重合体(A-10A)を調製した。エチレン・プロピレン共重合体(A-10A)のポリマーの性状を表3Aに示す。
(Preparation of ethylene / propylene copolymer (A-10A))
Mix 20 parts of ethylene / propylene copolymer (A-1A) and 80 parts of ethylene / propylene copolymer (A-9A), and use a twin screw extruder with a 30 mmφ vacuum vent ("PCM30" manufactured by Ikegai Co., Ltd.) The mixture was melt kneaded at 200 ° C. and 93.325 kPa vacuum to prepare an ethylene / propylene copolymer (A-10A). Table 3A shows the polymer properties of the ethylene / propylene copolymer (A-10A).
(エチレン・プロピレン共重合体(A-11A)の調製)
 触媒としてVO(OC)Clに代えてVClを使用した以外は、エチレン・プロピレン共重合体(A-1A)と同様にして、エチレン・プロピレン共重合体(A-11A)を得た。エチレン・プロピレン共重合体(A-11A)のポリマーの性状を表1Aに示す。
(Preparation of ethylene / propylene copolymer (A-11A))
The ethylene / propylene copolymer (A-11A) was prepared in the same manner as the ethylene / propylene copolymer (A-1A) except that VCl 4 was used instead of VO (OC 2 H 5 ) Cl 2 as a catalyst. Obtained. Table 1A shows the properties of the ethylene / propylene copolymer (A-11A).
(エチレン・プロピレン共重合体(A-12A)の調製)
 エチレン・プロピレン共重合体(A-1A)75部とエチレン・プロピレン共重合体(A-11A)25部を混合し、30mmφの真空ベント付き2軸押し出し機(池貝社製、「PCM30」)で200℃、93.325kPa真空にて溶融混練し、エチレン・プロピレン共重合体(A-12A)を調製した。エチレン・プロピレン共重合体(A-12A)のポリマーの性状を表3Aに示す。
(Preparation of ethylene / propylene copolymer (A-12A))
Mix 75 parts of ethylene / propylene copolymer (A-1A) and 25 parts of ethylene / propylene copolymer (A-11A), and use a twin screw extruder with a 30 mmφ vacuum vent ("PCM30" manufactured by Ikegai Co., Ltd.) The mixture was melt-kneaded at 200 ° C. and 93.325 kPa vacuum to prepare an ethylene / propylene copolymer (A-12A). Table 3A shows the properties of the ethylene / propylene copolymer (A-12A) polymer.
(エチレン・プロピレン共重合体(A-13A)の調製)
 エチレン・プロピレン共重合体(A-1A)50部とエチレン・プロピレン共重合体(A-11A)50部を混合し、30mmφの真空ベント付き2軸押し出し機(池貝社製、「PCM30」)で200℃、93.325kPa真空にて溶融混練し、エチレン・プロピレン共重合体(A-13A)を調製した。エチレン・プロピレン共重合体(A-13A)のポリマーの性状を表3Aに示す。
(Preparation of ethylene / propylene copolymer (A-13A))
Mix 50 parts of ethylene / propylene copolymer (A-1A) and 50 parts of ethylene / propylene copolymer (A-11A), and use a twin screw extruder with a 30 mmφ vacuum vent ("PCM30" manufactured by Ikegai Co., Ltd.) The mixture was melt-kneaded at 200 ° C. and 93.325 kPa vacuum to prepare an ethylene / propylene copolymer (A-13A). Table 3A shows the properties of the ethylene / propylene copolymer (A-13A).
(エチレン・プロピレン共重合体(A-14A)の調製)
 エチレン・プロピレン共重合体(A-1A)20部とエチレン・プロピレン共重合体(A-11A)80部を混合し、30mmφの真空ベント付き2軸押し出し機(池貝社製、「PCM30」)で200℃、93.325kPa真空にて溶融混練し、エチレン・プロピレン共重合体(A-14A)を調製した。エチレン・プロピレン共重合体(A-14A)のポリマーの性状を表3Aに示す。
(Preparation of ethylene / propylene copolymer (A-14A))
Mix 20 parts of ethylene / propylene copolymer (A-1A) and 80 parts of ethylene / propylene copolymer (A-11A), and use a twin screw extruder with a 30 mmφ vacuum vent (Ikegai Co., Ltd., “PCM30”). The mixture was melt-kneaded at 200 ° C. and 93.325 kPa vacuum to prepare an ethylene / propylene copolymer (A-14A). Table 3A shows the properties of the ethylene / propylene copolymer (A-14A).
(エチレン・プロピレン・非共役ジエン共重合体(A-15A)、エチレン・1-ブテン共重合体(A-16A)の調製)
 表2Aに示すようにエチレン、プロピレン、1-ブテン、水素の供給量を変更した以外は、エチレン・プロピレン共重合体(A-1A)と同様にして、エチレン・プロピレン・非共役ジエン共重合体(A-15A)、エチレン・1-ブテン共重合体(A-16A)を得た。得られたポリマーの性状を表2Aに示す。
(Preparation of ethylene / propylene / non-conjugated diene copolymer (A-15A) and ethylene / 1-butene copolymer (A-16A))
As shown in Table 2A, an ethylene / propylene / non-conjugated diene copolymer was prepared in the same manner as the ethylene / propylene copolymer (A-1A) except that the supply amounts of ethylene, propylene, 1-butene and hydrogen were changed. (A-15A), an ethylene / 1-butene copolymer (A-16A) was obtained. The properties of the obtained polymer are shown in Table 2A.
(エチレン・1-オクテン共重合体(A-17A)の調製)
 十分に窒素置換したガラス製フラスコにビス(1,3-ジメチルシクロペンタジエニル)ジルコニウムジクロリドを0.5mg入れ、さらにメチルアミノキサンのトルエン溶液(Al;1.1モル/L)1.57mL、およびトルエン2.76mLを添加することにより触媒溶液を得た。
 十分に窒素置換した20L攪拌機付きオートクレーブにヘキサン6000mLおよび1-オクテン4000mLを挿入し、系内の温度を70℃に昇温した。引き続き、トリイソブチルアルミニウム1ミリモルおよび上記の調製した触媒溶液5mLをエチレンで圧入することにより重合を開始した。その後、エチレンのみを連続的に供給することにより全圧を0.39MPa[gage]に保ち、80℃で1時間重合を行なった。
 上記条件で重合反応を行い、エチレン・1-オクテン共重合体を含む重合溶液を得た。
得られた重合溶液は、塩酸で脱灰した後に、メタノールに投入して析出させた後、乾燥させ、エチレン・1-オクテン共重合体(A-17A)を得た。得られたポリマーの性状を表3Aに示す。
(Preparation of ethylene / 1-octene copolymer (A-17A))
0.5 mg of bis (1,3-dimethylcyclopentadienyl) zirconium dichloride is placed in a glass flask thoroughly substituted with nitrogen, and 1.57 mL of a toluene solution of methylaminoxan (Al; 1.1 mol / L), A catalyst solution was obtained by adding 2.76 mL of toluene.
6000 mL of hexane and 4000 mL of 1-octene were inserted into a 20 L autoclave equipped with a stirrer sufficiently purged with nitrogen, and the temperature inside the system was raised to 70 ° C. Subsequently, polymerization was initiated by injecting 1 mmol of triisobutylaluminum and 5 mL of the catalyst solution prepared above with ethylene. Thereafter, by continuously supplying only ethylene, the total pressure was kept at 0.39 MPa [gage], and polymerization was carried out at 80 ° C. for 1 hour.
A polymerization reaction was performed under the above conditions to obtain a polymerization solution containing an ethylene / 1-octene copolymer.
The obtained polymerization solution was deashed with hydrochloric acid, poured into methanol for precipitation, and then dried to obtain an ethylene / 1-octene copolymer (A-17A). The properties of the obtained polymer are shown in Table 3A.
(エチレン・プロピレン共重合体(A-18A)~(A-23A)の調製)
 表2Aに示すようにエチレン、プロピレン、水素の供給量を変更した以外は、エチレン・プロピレン共重合体(A-1A)と同様にして、エチレン・プロピレン共重合体(A-18A)~(A-23A)を得た。得られたポリマーの性状を表2Aに示す。
(Preparation of ethylene / propylene copolymers (A-18A) to (A-23A))
As shown in Table 2A, ethylene / propylene copolymers (A-18A) to (A-18A) to (A) are the same as ethylene / propylene copolymers (A-1A) except that the supply amounts of ethylene, propylene, and hydrogen are changed. -23A) was obtained. The properties of the obtained polymer are shown in Table 2A.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<オレフィン樹脂水性分散体(B)>(オレフィン樹脂水性分散体(B-1A)の調製)
 エチレン・プロピレン共重合体(A-1A)100部と、酸変性オレフィン重合体(K)として無水マレイン酸変性ポリエチレン(三井化学社製、「三井ハイワックス 2203A」、質量平均分子量:2,700、酸価:30mg/g)(K-1A)15部と、アニオン系乳化剤としてオレイン酸カリウム3部とを混合した。
 次いで、この混合物を二軸スクリュー押出機(池貝社製、「PCM-30型」L/D=40)のホッパーより4kg/時間で供給し、水酸化カリウム14%水溶液を240g/時間で連続的に供給しながら、220℃に加熱して溶融混練し、得られた溶融混練物を押出した。
 引き続き、溶融混練物を同押出機先端に取り付けた冷却装置に連続的に供給し、90℃まで冷却した。取り出した固体を80℃の温水中に投入し、連続的に分散させて、体積平均粒子径が0.38μmのオレフィン樹脂水性分散体(B-1A)を得た。
<Olefin resin aqueous dispersion (B)> (Preparation of aqueous olefin resin dispersion (B-1A))
100 parts of ethylene / propylene copolymer (A-1A) and maleic anhydride-modified polyethylene (Mitsui Chemicals, "Mitsui High Wax 2203A", as the acid-modified olefin polymer (K), mass average molecular weight: 2,700, Acid value: 30 mg / g) 15 parts of (K-1A) and 3 parts of potassium oleate as an anionic emulsifier were mixed.
Next, this mixture was supplied at a rate of 4 kg / hour from the hopper of a twin screw extruder (“Ikegai Co., Ltd.,“ PCM-30 ”L / D = 40) at a continuous rate of 240 g / hour. The mixture was heated to 220 ° C. and melt kneaded, and the resulting melt kneaded product was extruded.
Subsequently, the melt-kneaded product was continuously supplied to a cooling device attached to the tip of the extruder and cooled to 90 ° C. The taken-out solid was poured into warm water at 80 ° C. and continuously dispersed to obtain an aqueous olefin resin dispersion (B-1A) having a volume average particle size of 0.38 μm.
(オレフィン樹脂水性分散体(B-2A)~(B-23A)の調製)
 表4A~6Aに示すように、(A)成分として(A-1A)を(A-2A)~(A-23A)へ変更した以外は、オレフィン樹脂水性分散体(C-1A)と同様にして、オレフィン樹脂水性分散体(B-2A)~(B-23A)を得た。各オレフィン樹脂水性分散体(B-2A)~(B-23A)の体積平均粒子径を表4A~6Aに示す。
(Preparation of aqueous olefin resin dispersions (B-2A) to (B-23A))
As shown in Tables 4A to 6A, the same procedure as in the aqueous olefin resin dispersion (C-1A) was conducted except that (A-1A) was changed to (A-2A) to (A-23A) as the component (A). Thus, aqueous olefin resin dispersions (B-2A) to (B-23A) were obtained. The volume average particle diameters of the respective olefin resin aqueous dispersions (B-2A) to (B-23A) are shown in Tables 4A to 6A.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<架橋エチレン・α-オレフィン共重合体(C)>(架橋オレフィン樹脂(C-1A)の調製)
 架橋オレフィン樹脂水性分散体(B-1A)の固形分100部に対して、有機過酸化物としてt-ブチルクミルパーオキサイドを0.5部、多官能性化合物としてジビニルベンゼンを1部添加し、130℃で5時間反応させ、架橋エチレン・α-オレフィン共重合体(C-1A)の水性分散体を調製した。架橋エチレン・α-オレフィン共重合体(C-1A)のゲル含有率を測定したところ51%であった。
<Crosslinked ethylene / α-olefin copolymer (C)> (Preparation of crosslinked olefin resin (C-1A))
To 100 parts of the solid content of the crosslinked olefin resin aqueous dispersion (B-1A), 0.5 part of t-butylcumyl peroxide as an organic peroxide and 1 part of divinylbenzene as a polyfunctional compound are added, By reacting at 130 ° C. for 5 hours, an aqueous dispersion of a crosslinked ethylene / α-olefin copolymer (C-1A) was prepared. The gel content of the crosslinked ethylene / α-olefin copolymer (C-1A) was measured and found to be 51%.
(架橋エチレン・α-オレフィン共重合体(C-2A)~(C-23A)の調製)
 表7A~9Aに示すようにオレフィン樹脂水性分散体(B)の種類とt-ブチルクミルパーオキサイドの添加部数を変更した以外は、架橋エチレン・α-オレフィン共重合体(C-1A)と同様にして、架橋エチレン・α-オレフィン共重合体(C-2A)~(C-23A)の水性分散体を得た。各架橋オレフィン樹脂(C-2A)~(C-23A)のゲル含有率を測定した結果を表7A~9Aに示す。
(Preparation of crosslinked ethylene / α-olefin copolymers (C-2A) to (C-23A))
As shown in Tables 7A to 9A, the same as the cross-linked ethylene / α-olefin copolymer (C-1A) except that the type of the aqueous olefin resin dispersion (B) and the number of added parts of t-butylcumyl peroxide were changed. Thus, an aqueous dispersion of the crosslinked ethylene / α-olefin copolymers (C-2A) to (C-23A) was obtained. Tables 7A to 9A show the results of measuring the gel contents of the respective crosslinked olefin resins (C-2A) to (C-23A).
(架橋エチレン・α-オレフィン共重合体(C-24A)~(C-31A)の調製)
 表10Aに示すようにt-ブチルクミルパーオキサイドの添加部数を変更した以外は、架橋オレフィン樹脂(C-1A)と同様にして、架橋エチレン・α-オレフィン共重合体(C-24A)~(C-31A)の水性分散体を得た。各架橋エチレン・α-オレフィン共重合体(C-24A)~(C-31A)のゲル含有率を測定した結果を表10Aに示す。
(Preparation of crosslinked ethylene / α-olefin copolymers (C-24A) to (C-31A))
As shown in Table 10A, the crosslinked ethylene / α-olefin copolymer (C-24A) to ( An aqueous dispersion of C-31A) was obtained. The results of measuring the gel content of each of the crosslinked ethylene / α-olefin copolymers (C-24A) to (C-31A) are shown in Table 10A.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
<グラフト共重合体(D)>(グラフト共重合体(D-1A)の調製)
 攪拌機付きステンレス重合槽に、イオン交換水180部、架橋エチレン・α-オレフィン共重合体(C-1A)の水性分散体を固形分換算で60部、硫酸第一鉄0.006部、ピロリン酸ナトリウム0.3部およびデキストロース0.35部を仕込み、温度を80℃とした。次に、アクリロニトリル13.7部、スチレン26.3部およびクメンハイドロパーオキサイド0.6部を150分連続的に添加し、重合温度を80℃一定に保ち乳化重合を行った。重合後、得られたグラフト共重合体(D-1A)を含有する水性分散体に酸化防止剤を添加し、硫酸にて固形分の析出を行い、洗浄、脱水、乾燥の工程を経て、粉状のグラフト共重合体(D-1A)を得た。グラフト共重合体(D-1A)のグラフト率を測定したところ40%であった。
<Graft Copolymer (D)> (Preparation of Graft Copolymer (D-1A))
In a stainless polymerization tank equipped with a stirrer, 180 parts of ion-exchanged water, 60 parts of an aqueous dispersion of a crosslinked ethylene / α-olefin copolymer (C-1A) in terms of solid content, 0.006 parts of ferrous sulfate, pyrophosphoric acid 0.3 parts of sodium and 0.35 parts of dextrose were charged and the temperature was set to 80 ° C. Next, 13.7 parts of acrylonitrile, 26.3 parts of styrene and 0.6 part of cumene hydroperoxide were continuously added for 150 minutes, and emulsion polymerization was carried out while keeping the polymerization temperature constant at 80 ° C. After polymerization, an antioxidant is added to the aqueous dispersion containing the obtained graft copolymer (D-1A), solids are precipitated with sulfuric acid, and after washing, dehydration and drying steps, A graft copolymer (D-1A) was obtained. The graft ratio of the graft copolymer (D-1A) was measured and found to be 40%.
(グラフト共重合体(F-2A)~(F-31A)の調製)
 表11A~14Aに示すように架橋エチレン・α-オレフィン共重合体(C)の種類を変更した以外は、グラフト共重合体(D-1A)と同様にして、グラフト共重合体(D-2A)~(D-31A)を得た。各グラフト共重合体(D-2)~(D-31)のグラフト率を測定した結果を表11A~14Aに示す。
(Preparation of graft copolymers (F-2A) to (F-31A))
As shown in Tables 11A to 14A, a graft copolymer (D-2A) was prepared in the same manner as the graft copolymer (D-1A) except that the type of the crosslinked ethylene / α-olefin copolymer (C) was changed. ) To (D-31A) were obtained. Tables 11A to 14A show the measurement results of the graft ratios of the respective graft copolymers (D-2) to (D-31).
(グラフト共重合体(D-32A)の調製)
 攪拌機付きステンレス重合槽に、エチレン・プロピレン共重合体(A-1A)52部、無水マレイン酸変性ポリエチレン(K-1A)8部、トルエン300部、ジビニルベンゼン1部を仕込み、内容物を75℃で1時間攪拌して均一に溶解した。十分に窒素置換を行った後にt-ブチルクミルパーオキサイド0.5部を添加し、内温を130℃まで昇温して5時間反応させて、ゲル含有率が46質量%である架橋エチレン・α-オレフィン共重合体(C-32A)の溶媒分散体を調製した。
 その後、内温を70℃まで降温し、スチレン26.3部、アクリロニトリル13.7部、tert-ドデシルメルカプタン0.24部、tert-ブチルパーオキシイソプロピルモノカーボネート0.22部を添加し、内温を110℃まで昇温し4時間反応させた後に、内温を120℃に昇温し2時間反応を行った。重合後、内温を100℃まで冷却し、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェノール)-プロピオネート0.2部を添加した後、反応混合物を抜き出し、水蒸気蒸留により未反応物と溶媒を留去し、更に、30mmφの真空ベント付き2軸押し出し機(池貝社製、「PCM30」)で220℃、93.325kPa真空にて、揮発分を実質的に脱揮させペレット化しグラフト共重合体(D-32A)を得た。グラフト共重合体(D-32A)のグラフト率を測定したところ35%であった。
(Preparation of graft copolymer (D-32A))
A stainless steel polymerization tank equipped with a stirrer was charged with 52 parts of ethylene / propylene copolymer (A-1A), 8 parts of maleic anhydride-modified polyethylene (K-1A), 300 parts of toluene, and 1 part of divinylbenzene, and the contents were 75 ° C. And stirred for 1 hour to dissolve uniformly. After sufficiently substituting with nitrogen, 0.5 part of t-butylcumyl peroxide was added, the internal temperature was raised to 130 ° C., and the reaction was performed for 5 hours. A solvent dispersion of α-olefin copolymer (C-32A) was prepared.
Thereafter, the internal temperature was lowered to 70 ° C., and 26.3 parts of styrene, 13.7 parts of acrylonitrile, 0.24 parts of tert-dodecyl mercaptan, and 0.22 parts of tert-butylperoxyisopropyl monocarbonate were added. Was heated to 110 ° C. and reacted for 4 hours, and then the internal temperature was raised to 120 ° C. and reacted for 2 hours. After polymerization, the internal temperature is cooled to 100 ° C., 0.2 part of octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenol) -propionate is added, and the reaction mixture is taken out and steam distilled. Then, unreacted substances and solvent were distilled off, and the volatile matter was substantially devolatilized at 220 ° C. and 93.325 kPa vacuum using a 30 mmφ twin-screw extruder equipped with a vacuum vent (manufactured by Ikegai Co., Ltd., “PCM30”). And pelletized to obtain a graft copolymer (D-32A). The graft ratio of the graft copolymer (D-32A) was measured and found to be 35%.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
<硬質成分(J)>(スチレン系共重合体(H-1A)の調製)
 窒素置換した攪拌機付きステンレス重合反応槽反応器に、イオン交換水120部、ポリビニルアルコール0.1部、アゾビスイソブチロニトリル0.3部、アクリロニトリル34部、スチレン66部、t-ドデシルメルカプタン0.3部を仕込んだ。そして、反応器の温度50℃ にして5時間重合した後、120℃ に昇温し4時間反応した後に抜き出し、洗浄、乾燥することにより粉状のスチレン系共重合体(H-1A)を得た。
<Hard component (J)> (Preparation of styrene copolymer (H-1A))
In a stainless steel polymerization reactor equipped with a stirrer purged with nitrogen, 120 parts of ion exchange water, 0.1 part of polyvinyl alcohol, 0.3 part of azobisisobutyronitrile, 34 parts of acrylonitrile, 66 parts of styrene, t-dodecyl mercaptan 0 .3 parts were charged. Then, after polymerization for 5 hours at a reactor temperature of 50 ° C., the temperature was raised to 120 ° C. and reacted for 4 hours, then extracted, washed and dried to obtain a powdery styrene copolymer (H-1A). It was.
(スチレン系共重合体(H-2A)の調製)
 窒素置換した攪拌機付きステンレス重合反応槽反応器に、ドデシルベンゼンスルホン酸ナトリウム0.003部、アクリロニトリル28部、スチレン26部、α-メチルスチレン36部、N-フェニルマレイミド10部、ベンゾイルパーオキサイド0.7部、t-ブチルパーオキシベンゾエート0.07部、リン酸カルシウム0.6部、t-ドデシルメルカプタン0.4部、イオン交換水120部を仕込んだ。そして、反応器の温度を80℃まで昇温し、この温度で8時間重合した後、120℃まで昇温し2時間重合させた後に抜き出し、洗浄、乾燥することにより粉状のスチレン系共重合体(H-2A)を得た。
(Preparation of styrene copolymer (H-2A))
In a stainless steel polymerization reactor with a nitrogen-substituted stirrer, 0.003 part of sodium dodecylbenzenesulfonate, 28 parts of acrylonitrile, 26 parts of styrene, 36 parts of α-methylstyrene, 10 parts of N-phenylmaleimide, 0.1 part of benzoyl peroxide 7 parts, 0.07 part of t-butyl peroxybenzoate, 0.6 part of calcium phosphate, 0.4 part of t-dodecyl mercaptan, and 120 parts of ion-exchanged water were charged. Then, the temperature of the reactor is raised to 80 ° C., polymerized at this temperature for 8 hours, heated to 120 ° C. and polymerized for 2 hours, then extracted, washed and dried to obtain a powdery styrene copolymer. Combined (H-2A) was obtained.
(ポリカーボネート(J-3A))
 ポリカーボネート(J-3A)として、ポリカーボネート(三菱エンジニアリングプラスチック社製、「ユーピロンS-3000F」)を用いた。
(Polycarbonate (J-3A))
Polycarbonate (“Iupilon S-3000F” manufactured by Mitsubishi Engineering Plastics) was used as the polycarbonate (J-3A).
「実施例1A」
 グラフト共重合体(D-1A)28部、スチレン系共重合体(H-1A)72部、カーボンブラック(三菱化学社製、「♯966」)0.5部を混合し、30mmφの真空ベント付き2軸押し出し機(池貝社製、「PCM30」)でシリンダー温度220℃、93.325kPa真空にて溶融混練し、熱可塑性樹脂組成物(1A)を調製した。得られた熱可塑性樹脂組成物(1A)のMVRを測定した結果を表15Aに示す。
 別途、グラフト共重合体(D-1A)28部、スチレン系共重合体(H-1A)72部、カーボンブラック(三菱化学社製、「♯966」)0.8部を混合し、30mmφの真空ベント付き2軸押し出し機(池貝社製、「PCM30」)で、シリンダー温度220℃、93.325kPa真空にて溶融混練を行い、熱可塑性樹脂組成物(2A)を調製した。
 得られた熱可塑性樹脂組成物(1A)、(2A)をそれぞれペレット化し、各種成形品を成形し、曲げ弾性率を測定し、耐衝撃性、光沢性、発色性、耐傷付き性を評価した。結果を表15Aに示す。
"Example 1A"
Graft copolymer (D-1A) 28 parts, styrene copolymer (H-1A) 72 parts, carbon black (Mitsubishi Chemical Co., Ltd., “# 966”) 0.5 part are mixed and a 30 mmφ vacuum vent is mixed. A thermoplastic resin composition (1A) was prepared by melt kneading at a cylinder temperature of 220 ° C. and a vacuum of 93.325 kPa with a twin screw extruder (“Ikegai Co., Ltd.,“ PCM30 ”). The result of having measured MVR of the obtained thermoplastic resin composition (1A) is shown in Table 15A.
Separately, 28 parts of graft copolymer (D-1A), 72 parts of styrene copolymer (H-1A) and 0.8 part of carbon black ("# 966" manufactured by Mitsubishi Chemical Corporation) were mixed, and 30 mmφ was mixed. A thermoplastic resin composition (2A) was prepared by melt kneading at a cylinder temperature of 220 ° C. and a vacuum of 93.325 kPa using a twin-screw extruder with a vacuum vent (“PCM30” manufactured by Ikegai Co., Ltd.).
The obtained thermoplastic resin compositions (1A) and (2A) were each pelletized, various molded products were molded, the flexural modulus was measured, and the impact resistance, glossiness, color developability, and scratch resistance were evaluated. . The results are shown in Table 15A.
「実施例2A~26A」
 表15A~17Aに示すようにグラフト共重合体(D)の種類を変更した以外は、実施例1Aと同様にして熱可塑性樹脂組成物(1A)、(2A)を調製し、MVRを測定した。また、得られた熱可塑性樹脂組成物(1A)、(2A)を用いて各種成形品を成形し、曲げ弾性率を測定し、耐衝撃性、光沢性、発色性、耐傷付き性を評価した。これらの結果を表15A~17Aに示す。
"Examples 2A to 26A"
The thermoplastic resin compositions (1A) and (2A) were prepared in the same manner as in Example 1A except that the type of the graft copolymer (D) was changed as shown in Tables 15A to 17A, and MVR was measured. . In addition, various molded products were molded using the obtained thermoplastic resin compositions (1A) and (2A), the flexural modulus was measured, and the impact resistance, glossiness, color development, and scratch resistance were evaluated. . These results are shown in Tables 15A-17A.
「実施例27A~29A」
 表17Aに示すように硬質成分(J)の種類、添加部数を変更し、溶融混練の条件を250℃、93.325kPaに変更した以外は、実施例1Aと同様にして熱可塑性樹脂組成物(1A)、(2A)を調製し、MVRを測定した。また、得られた熱可塑性樹脂組成物(1A)、(2A)を用いて各種成形品を成形し、曲げ弾性率を測定し、耐衝撃性、光沢性、発色性、耐傷付き性を評価した。これらの結果を表17Aに示す。
"Examples 27A-29A"
As shown in Table 17A, the thermoplastic resin composition (as in Example 1A) was changed except that the type of hard component (J) and the number of parts added were changed and the conditions of melt kneading were changed to 250 ° C. and 93.325 kPa. 1A) and (2A) were prepared, and MVR was measured. In addition, various molded products were molded using the obtained thermoplastic resin compositions (1A) and (2A), the flexural modulus was measured, and the impact resistance, glossiness, color development, and scratch resistance were evaluated. . These results are shown in Table 17A.
「比較例1A~6A」
 表18Aに示すようにグラフト共重合体(D)の種類を変更した以外は、実施例1Aと同様にして熱可塑性樹脂組成物(1A)、(2A)を調製し、MVRを測定した。また、得られた熱可塑性樹脂組成物(1A)、(2A)を用いて各種成形品を成形し、曲げ弾性率を測定し、耐衝撃性、光沢性、発色性、耐傷付き性を評価した。これらの結果を表18Aに示す。
“Comparative Examples 1A to 6A”
The thermoplastic resin compositions (1A) and (2A) were prepared in the same manner as in Example 1A, except that the type of the graft copolymer (D) was changed as shown in Table 18A, and MVR was measured. In addition, various molded products were molded using the obtained thermoplastic resin compositions (1A) and (2A), the flexural modulus was measured, and the impact resistance, glossiness, color development, and scratch resistance were evaluated. . These results are shown in Table 18A.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表15A~17Aから明らかなように、各実施例で得られた熱可塑性樹脂組成物は、流動性に優れていた。また、各実施例で得られた成形品は、耐衝撃性、光沢性、発色性、耐傷付き性に優れていた。
 よって、本発明の第一の態様におけるグラフト共重合体(D)を用いれば、流動性が良好な熱可塑性樹脂組成物、および耐衝撃性、耐傷付き性に優れ、光沢性、発色性にも優れた成形品を得ることができ、車輌内装部品、車輌外装部品、事務機器、家電、建材などの用途に適用できる。
As is clear from Tables 15A to 17A, the thermoplastic resin compositions obtained in the respective examples were excellent in fluidity. In addition, the molded articles obtained in each Example were excellent in impact resistance, glossiness, color development, and scratch resistance.
Therefore, if the graft copolymer (D) in the first aspect of the present invention is used, the thermoplastic resin composition having good fluidity, and excellent in impact resistance and scratch resistance, glossiness and color development are also obtained. An excellent molded product can be obtained and applied to applications such as vehicle interior parts, vehicle exterior parts, office equipment, home appliances, and building materials.
 一方、表18Aから明らかなように、(A)成分として質量平均分子量(Mw)が17×10未満のエチレン・プロピレン共重合体(A-2A)を用いて調製したグラフト共重合体(D-2A)を用いた比較例1Aは、成形品の耐衝撃性、耐傷付き性が低かった。
 (A)成分として質量平均分子量(Mw)が35×10を超えるエチレン・プロピレン共重合体(A-8A)を用いて調製したグラフト共重合体(D-8A)を用いた比較例2Aは、熱可塑性樹脂組成物の流動性が著しく低下し、成形品の光沢性が低かった。
 (A)成分として分子量分布(Mw/Mn)が3を超えるエチレン・プロピレン共重合体(A-11A)を用いて調製したグラフト共重合体(D-11A)を用いた比較例3Aは、成形品の耐衝撃性、耐傷付き性が低かった。
 (A)成分としてエチレン・プロピレン・非共役ジエン共重合体(A-15A)を用いて調製したグラフト共重合体(D-15A)を用いた比較例4Aでは、成形品の耐衝撃性が低かった。
 架橋エチレン・α-オレフィン共重合体(C)としてゲル含有率が35質量%未満の架橋エチレン・α-オレフィン共重合体(C-24A)を用いて調製したグラフト共重合体(D-24A)を用いた比較例5Aは、成形品の耐衝撃性、発色性、耐傷付き性が低かった。
 架橋エチレン・α-オレフィン共重合体(C)としてゲル含有率が75質量%を超える架橋エチレン・α-オレフィン共重合体(C-31A)を用いて調製したグラフト共重合体(D-31A)を用いた比較例6Aは、成形品の耐衝撃性、耐傷付き性が低かった。
On the other hand, as apparent from Table 18A, a graft copolymer (D) prepared using an ethylene / propylene copolymer (A-2A) having a mass average molecular weight (Mw) of less than 17 × 10 4 as the component (A) In Comparative Example 1A using -2A), the molded article had low impact resistance and scratch resistance.
Comparative Example 2A using a graft copolymer (D-8A) prepared using an ethylene / propylene copolymer (A-8A) having a mass average molecular weight (Mw) exceeding 35 × 10 4 as the component (A) The fluidity of the thermoplastic resin composition was remarkably lowered, and the gloss of the molded product was low.
Comparative Example 3A using a graft copolymer (D-11A) prepared using an ethylene / propylene copolymer (A-11A) having a molecular weight distribution (Mw / Mn) exceeding 3 as component (A) The impact resistance and scratch resistance of the product were low.
In Comparative Example 4A using the graft copolymer (D-15A) prepared using ethylene / propylene / non-conjugated diene copolymer (A-15A) as the component (A), the impact resistance of the molded product was low. It was.
Graft copolymer (D-24A) prepared using crosslinked ethylene / α-olefin copolymer (C-24A) having a gel content of less than 35% by mass as crosslinked ethylene / α-olefin copolymer (C) In Comparative Example 5A using No., the impact resistance, color developability and scratch resistance of the molded product were low.
Graft copolymer (D-31A) prepared by using crosslinked ethylene / α-olefin copolymer (C-31A) having a gel content of more than 75% by mass as crosslinked ethylene / α-olefin copolymer (C) In Comparative Example 6A using No., the impact resistance and scratch resistance of the molded product were low.
 <体積平均粒子径の測定方法2>
 マイクロトラック(日機装社製「ナノトラック150」)を用い、測定溶媒として純水を用いて体積平均粒子径(MV)を測定した。
 なお、オレフィン樹脂水性分散体(B)に分散しているエチレン・α-オレフィン共重合体(A)や、水性分散体に分散している架橋エチレン・α-オレフィン共重合体(C)の体積平均粒子径が、そのまま熱可塑性樹脂組成物中のエチレン・α-オレフィン共重合体(A)や架橋エチレン・α-オレフィン共重合体(C)の体積平均粒子径を示すことを、電子顕微鏡の画像解析によって確認している。
<Measurement method 2 of volume average particle diameter>
The volume average particle diameter (MV) was measured using a microtrack (“Nanotrack 150” manufactured by Nikkiso Co., Ltd.) using pure water as a measurement solvent.
The volume of the ethylene / α-olefin copolymer (A) dispersed in the aqueous olefin resin dispersion (B) and the volume of the crosslinked ethylene / α-olefin copolymer (C) dispersed in the aqueous dispersion are as follows. The average particle diameter shows the volume average particle diameter of the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C) in the thermoplastic resin composition as it is. Confirmed by image analysis.
 <溶融混練3>
 表22B~31Bに示す配合でグラフト共重合体(D)、メタクリル酸エステル樹脂(G)、必要に応じて他の成分を混合し、30mmφの真空ベント付き2軸押出機(池貝社製「PCM30」)で、シリンダー温度200~260℃、93.325kPa真空にて溶融混練を行い、熱可塑性樹脂組成物を得た。また、必要に応じて溶融混練後に、ペレタイザー(創研社製「SH型ペレタイザー」)を用いてペレット化を行った。
<Melting and kneading 3>
Graft copolymer (D), methacrylic ester resin (G), and other components as required are mixed in the formulations shown in Tables 22B to 31B, and a twin screw extruder with a 30 mmφ vacuum vent (“PCM30 manufactured by Ikegai Co., Ltd.) )) Was melt kneaded at a cylinder temperature of 200 to 260 ° C. and a vacuum of 93.325 kPa to obtain a thermoplastic resin composition. Moreover, after melt-kneading as needed, pelletization was performed using a pelletizer (“SH type pelletizer” manufactured by Souken Co., Ltd.).
 <射出成形3>
 溶融混練して得られた熱可塑性樹脂組成物のペレットを射出成形機(東芝機械社製「IS55FP-1.5A」)によってシリンダー温度200~260℃、金型温度60℃の条件で、曲げ弾性率およびシャルピー衝撃試験用の試験片、2mm厚の平板(10cm×10cm)を得た。
<Injection molding 3>
The pellets of the thermoplastic resin composition obtained by melt kneading are subjected to bending elasticity with an injection molding machine (“IS55FP-1.5A” manufactured by Toshiba Machine Co., Ltd.) under conditions of a cylinder temperature of 200 to 260 ° C. and a mold temperature of 60 ° C. Test pieces for rate and Charpy impact tests were obtained, 2 mm thick flat plates (10 cm × 10 cm).
 <耐衝撃性の評価:シャルピー衝撃試験>
 試験片について、ISO 179規格にしたがい、23℃の条件でシャルピー衝撃試験(ノッチ付)を行い、シャルピー衝撃強度を測定した。
<Evaluation of impact resistance: Charpy impact test>
The test piece was subjected to a Charpy impact test (notched) at 23 ° C. in accordance with ISO 179 standard, and the Charpy impact strength was measured.
 <耐熱性の評価>
 ISO試験法75規格に準拠し、1.83MPa、4mm、フラットワイズ法で荷重たわみ温度(℃)を測定した。
<Evaluation of heat resistance>
Based on the ISO test method 75 standard, the deflection temperature (° C.) under load was measured by 1.83 MPa, 4 mm, and the flatwise method.
 <光沢性の評価2>
 2mm厚の平板について、デジタル変角光沢計(スガ試験機社製、「UGV-5D」)にて入射角60°、反射角60°の条件で光沢を測定した。
<Glossiness evaluation 2>
The gloss of the 2 mm thick flat plate was measured with a digital variable gloss meter (“UGV-5D” manufactured by Suga Test Instruments Co., Ltd.) under conditions of an incident angle of 60 ° and a reflection angle of 60 °.
 <発色性の評価>
 熱可塑性樹脂組成物100部に対して、カーボンブラック0.8部を混合して着色し、射出成形にて100×100mm(厚さ2mm)の黒着色板(成形品(Ma))を得た。
 成形品(Ma)について、分光測色計(コニカミノルタオプティプス社製「CM-3500d」)を用いて明度Lを、SCE方式にて測定した。こうして測定されたLを「L(ma)」とする。Lが低いほど黒色となり、発色性が良好である。
<Evaluation of color development>
100 parts of the thermoplastic resin composition was mixed with 0.8 parts of carbon black and colored, and a black colored plate (molded product (Ma)) of 100 × 100 mm (thickness 2 mm) was obtained by injection molding. .
For the molded product (Ma), the lightness L * was measured by a SCE method using a spectrocolorimeter (“CM-3500d” manufactured by Konica Minolta Optips). The L * measured in this way is referred to as “L * (ma)”. The lower L * , the more black and the better the color developability.
 <耐引っ掻き傷性の評価>
 鉛筆硬度試験機を用い、750gの荷重で、3Hの硬度の鉛筆を成形品(Ma)の表面に押しつけ、その状態で成形品(Ma)を5cmほど移動させることによって、成形品(Ma)の表面を鉛筆で引っ掻き、成形品(Ma)に傷を付けた。傷を付けた成形品(Mb)の表面の明度Lを、分光測色計を用いて、SCE方式にて測定した。こうして測定されたLを「L(mb)」とする。
<Evaluation of scratch resistance>
Using a pencil hardness tester, a pencil with a hardness of 3H was pressed against the surface of the molded product (Ma) with a load of 750 g, and the molded product (Ma) was moved by about 5 cm in this state, whereby the molded product (Ma) The surface was scratched with a pencil to scratch the molded product (Ma). The brightness L * of the surface of the scratched molded article (Mb) was measured by the SCE method using a spectrocolorimeter. The L * measured in this way is referred to as “L * (mb)”.
 (耐引っ掻き傷性の判定1)
 成形品(Mb)の傷の目立ちやすさの判定指標ΔLを下記式(3)から算出した。ΔL(mb-ma)の絶対値が大きいほど傷が目立ちやすい。
 ΔL(mb-ma)=L(mb)-L(ma) ・・・(3)
(Scratch resistance determination 1)
A determination index ΔL * of the degree of conspicuousness of scratches on the molded product (Mb) was calculated from the following formula (3). As the absolute value of ΔL * (mb−ma) is larger, scratches are more conspicuous.
ΔL * (mb−ma) = L * (mb) −L * (ma) (3)
 ΔL(mb-ma)の絶対値が3.0以下のとき、傷が目立たず、成形品の意匠性を損なわない。
 ΔL(mb-ma)の絶対値が3.0超~7.0以下のとき、傷は目立ちにくく、成形品の意匠性を損なわない。
 ΔL(mb-ma)の絶対値が7.0超のとき、傷が目立ち、成形品の意匠性を損なう。
When the absolute value of ΔL * (mb−ma) is 3.0 or less, scratches are not noticeable and the design of the molded product is not impaired.
When the absolute value of ΔL * (mb−ma) is more than 3.0 to 7.0 or less, scratches are not noticeable and the design of the molded product is not impaired.
When the absolute value of ΔL * (mb−ma) is more than 7.0, scratches are conspicuous and the design of the molded product is impaired.
 (耐引っ掻き傷性の判定2)
 成形品(Ma)の傷の入りやすさの判定指標として、形状測定レーザーマイクロスコープ(キーエンス社製「VK-9700」)にて、成形品(Mb)の10点平均粗さ(Rz jis)を測定した。Rz jisの値が大きいほど傷が入りやすい。
(Scratch resistance determination 2)
Using a shape measurement laser microscope ("VK-9700" manufactured by Keyence Corporation) as an index for determining the ease of scratches on the molded product (Ma), the 10-point average roughness (Rz jis) of the molded product (Mb) is used. It was measured. The larger the value of Rz jis, the easier it is to scratch.
 <耐擦り傷性の評価>
 図1に示すように、先端部11が半球形に形成された棒状の治具10を用意し、先端部11に、ガーゼを8枚重ねた積層シート12を被せた。成形品(Ma)13の表面に対して、棒状の治具10が直角になるように、積層シート12が被せられた先端部11を接触させ、先端部11を成形品(Ma)13の表面において水平方向(図中矢印方向)に摺動させ、100回往復させた。その際、加える荷重は1kgとした。100回往復させた後、傷を付けた成形品(Mc)の表面の明度Lを、分光測色計を用いて、SCE方式にて測定した。こうして測定されたLを「L(mc)」とする。
<Evaluation of scratch resistance>
As shown in FIG. 1, a rod-like jig 10 having a tip portion 11 formed in a hemispherical shape was prepared, and the tip portion 11 was covered with a laminated sheet 12 in which eight sheets of gauze were stacked. The tip part 11 covered with the laminated sheet 12 is brought into contact with the surface of the molded product (Ma) 13 so that the rod-shaped jig 10 is at a right angle, and the tip part 11 is brought into contact with the surface of the molded product (Ma) 13. Were slid in the horizontal direction (arrow direction in the figure) and reciprocated 100 times. At that time, the applied load was 1 kg. After reciprocating 100 times, the lightness L * of the surface of the scratched molded article (Mc) was measured by the SCE method using a spectrocolorimeter. The L * measured in this way is referred to as “L * (mc)”.
 (耐擦り傷性の判定1)
 成形品(Mc)の傷の目立ちやすさの判定指標ΔLを下記式(4)から算出した。ΔL(mc-ma)の絶対値が大きいほど傷が目立ちやすい。
 ΔL(mc-ma)=L*(mc)-L*(ma)・・・(4)
(Abrasion resistance judgment 1)
A determination index ΔL * of the degree of conspicuousness of scratches on the molded article (Mc) was calculated from the following formula (4). As the absolute value of ΔL * (mc−ma) is larger, the scratches are more conspicuous.
ΔL * (mc−ma) = L * (mc) −L * (ma) (4)
 ΔL(mc-ma)の絶対値が3.0以下のとき、傷が目立たず、成形品の意匠性を損なわない。
 ΔL(mc-ma)の絶対値が3.0超~7.0以下のとき、傷は目立ちにくく、成形品の意匠性を損なわない。
 ΔL(mc―ma)の絶対値が7.0超のとき、傷が目立ち、成形品の意匠性を損なう。
When the absolute value of ΔL * (mc−ma) is 3.0 or less, scratches are not noticeable and the design of the molded product is not impaired.
When the absolute value of ΔL * (mc−ma) is more than 3.0 to 7.0 or less, scratches are not noticeable and the design of the molded product is not impaired.
When the absolute value of ΔL * (mc−ma) is more than 7.0, scratches are conspicuous and the design of the molded product is impaired.
 (耐擦り傷性の判定2)
 成形品(Ma)の傷の入りやすさの判定指標として、形状測定レーザーマイクロスコープ(キーエンス社製、VK-9700)にて、成形品(Mc)の10点平均粗さ(Rz jis)を測定した。Rz jisの値が大きいほど傷が入りやすい。
(Scratch resistance determination 2)
Measure the 10-point average roughness (Rz jis) of a molded product (Mc) with a shape measurement laser microscope (VK-9700, manufactured by Keyence Corporation) as an index for determining the ease of scratches on the molded product (Ma). did. The larger the value of Rz jis, the easier it is to scratch.
 <各成分>
 以下の例では、下記のエチレン・α-オレフィン共重合体(A)、オレフィン樹脂水性分散体(B)、架橋エチレン・α-オレフィン共重合体(C)、グラフト共重合体(D)、メタクリル酸エステル樹脂(G)、スチレン系共重合体(H)を用いた。
<Each component>
In the following examples, the following ethylene / α-olefin copolymer (A), olefin resin aqueous dispersion (B), crosslinked ethylene / α-olefin copolymer (C), graft copolymer (D), methacryl An acid ester resin (G) and a styrene copolymer (H) were used.
 <エチレン・α-オレフィン共重合体(A)>
 (エチレン・プロピレン共重合体(A-1B)の調製)
 20L撹拌機付きステンレス重合槽を十分に窒素置換した後に、脱水精製したヘキサン10Lを添加し、8.0mmol/Lに調製したエチルアルミニウムセスキクロリド(Al(C1.5・Cl1.5)のヘキサン溶液を、5L/hの量で連続的に1時間供給した後、さらに触媒として0.8mmol/Lに調整したVO(OC)Clのヘキサン溶液を5L/hの量で、ヘキサンを5L/hの量で連続的に供給した。一方、重合槽上部から、重合槽内の重合液が常に10Lになるように重合液を連続的に抜き出した。バブリング管を用いてエチレンを2000L/hの量で、プロピレンを1000L/hの量で、水素を8L/hの量で供給し、重合反応を35℃で行った。
 前記条件で重合反応を行い、エチレン・プロピレン共重合体(A-1B)を含む重合溶液を得た。得られた重合溶液を、塩酸で脱灰した後に、メタノールに投入して析出させた後、乾燥させ、エチレン・プロピレン共重合体(A-1B)を得た。エチレン・プロピレン共重合体(A-1B)のポリマーの性状を表1に示す。
<Ethylene / α-olefin copolymer (A)>
(Preparation of ethylene / propylene copolymer (A-1B))
After fully substituting the stainless polymerization tank equipped with a 20 L stirrer with nitrogen, 10 L of dehydrated and purified hexane was added, and ethylaluminum sesquichloride (Al (C 2 H 5 ) 1.5 · Cl 1 prepared to 8.0 mmol / L was added. 5 ) was continuously supplied at a rate of 5 L / h for 1 hour, and then a hexane solution of VO (OC 2 H 5 ) Cl 2 adjusted to 0.8 mmol / L as a catalyst was further added to 5 L / h. Hexane was continuously fed in an amount of 5 L / h. On the other hand, from the upper part of the polymerization tank, the polymerization liquid was continuously extracted so that the polymerization liquid in the polymerization tank was always 10 L. Using a bubbling tube, ethylene was supplied in an amount of 2000 L / h, propylene was supplied in an amount of 1000 L / h, hydrogen was supplied in an amount of 8 L / h, and a polymerization reaction was performed at 35 ° C.
A polymerization reaction was performed under the above conditions to obtain a polymerization solution containing an ethylene / propylene copolymer (A-1B). The obtained polymerization solution was deashed with hydrochloric acid, poured into methanol for precipitation, and then dried to obtain an ethylene / propylene copolymer (A-1B). Table 1 shows the properties of the ethylene / propylene copolymer (A-1B).
 (エチレン・プロピレン共重合体(A-2B)~(A-8B)の調製)
 表1B、表2Bに示すように水素の供給量を変更した以外は、エチレン・プロピレン共重合体(A-1B)と同様にして、エチレン・プロピレン共重合体(A-2B)~(A-8B)を得た。エチレン・プロピレン共重合体(A-2B)~(A-8B)のポリマーの性状を表1B、表2Bに示す。
(Preparation of ethylene / propylene copolymers (A-2B) to (A-8B))
The ethylene / propylene copolymers (A-2B) to (A-) were the same as the ethylene / propylene copolymers (A-1B) except that the hydrogen supply amount was changed as shown in Tables 1B and 2B. 8B) was obtained. The properties of the ethylene / propylene copolymers (A-2B) to (A-8B) are shown in Tables 1B and 2B.
 (エチレン・プロピレン共重合体(A-9B)の調製)
 20L撹拌機付きステンレス重合槽を十分に窒素置換した後に、脱水精製したヘキサン10Lを添加し、プロピレン110L(標準状態)、水素800mLを添加した。40℃まで加熱した後に、全圧が0.6MPa[gage]となるようにエチレンで加圧した。
 内圧が0.6MPa[gage]になったところで、トリイソブチルアルミニウム(TIBA)の1.0mM/mLヘキサン溶液10mLを窒素で圧入した。あらかじめ調製しておいた、トリフェニルカルベニウム(テトラキスペンタフルオロフェニル)ボレートをホウ素換算で0.16mM、[ジメチル(t-ブチルアミド)(テトラメチル-η5-シクロペンタジエニル)シラン]チタンクロリドを0.0004mMの量で含むトルエン溶液30mLを、窒素で圧入し重合を開始した。その後、5分間、40℃になるように温度調整し、かつ圧力が0.6MPa[gage]となるようにエチレンの供給を行なった。重合開始5分後、メタノール50mLを挿入して重合を停止し、大気圧まで脱圧し、エチレン・プロピレン共重合体(A-9B)を含む重合溶液を得た。得られた重合溶液は、塩酸で脱灰した後に、メタノールに投入して析出させた後、乾燥させ、エチレン・プロピレン共重合体(A-9B)を得た。エチレン・プロピレン共重合体(A-9B)のポリマーの性状を表4Bに示す。
(Preparation of ethylene / propylene copolymer (A-9B))
After sufficiently substituting a 20 L stainless steel tank with a stirrer with nitrogen, 10 L of dehydrated and purified hexane was added, and 110 L of propylene (standard state) and 800 mL of hydrogen were added. After heating to 40 ° C., it was pressurized with ethylene so that the total pressure was 0.6 MPa [gage].
When the internal pressure reached 0.6 MPa [gage], 10 mL of a 1.0 mM / mL hexane solution of triisobutylaluminum (TIBA) was injected with nitrogen. Triphenylcarbenium (tetrakispentafluorophenyl) borate prepared in advance was 0.16 mM in terms of boron, and [dimethyl (t-butylamide) (tetramethyl-η5-cyclopentadienyl) silane] titanium chloride was changed to 0. Polymerization was initiated by injecting 30 mL of a toluene solution containing 0004 mM with nitrogen. Thereafter, the temperature was adjusted to 40 ° C. for 5 minutes, and ethylene was supplied so that the pressure became 0.6 MPa [gage]. Five minutes after the start of the polymerization, 50 mL of methanol was inserted to stop the polymerization, and the pressure was released to atmospheric pressure to obtain a polymerization solution containing an ethylene / propylene copolymer (A-9B). The obtained polymerization solution was deashed with hydrochloric acid, poured into methanol for precipitation, and then dried to obtain an ethylene / propylene copolymer (A-9B). Properties of the ethylene / propylene copolymer (A-9B) polymer are shown in Table 4B.
 (エチレン・プロピレン共重合体(A-10B)の調製)
 エチレン・プロピレン共重合体(A-1B)20部とエチレン・プロピレン共重合体(A-9B)80部とを混合し、30mmφの真空ベント付き2軸押出機(池貝社製、「PCM30」)で200℃、93.325kPa真空にて溶融混練し、エチレン・プロピレン共重合体(A-10B)を調製した。エチレン・プロピレン共重合体(A-10B)のポリマーの性状を表4Bに示す。
(Preparation of ethylene / propylene copolymer (A-10B))
20 parts of ethylene / propylene copolymer (A-1B) and 80 parts of ethylene / propylene copolymer (A-9B) are mixed and a twin screw extruder with a 30 mmφ vacuum vent (“PCM30” manufactured by Ikekai Co., Ltd.) The mixture was melt-kneaded at 200 ° C. and 93.325 kPa vacuum to prepare an ethylene / propylene copolymer (A-10B). Table 4B shows the properties of the ethylene / propylene copolymer (A-10B) polymer.
 (エチレン・プロピレン共重合体(A-11B)の調製)
 触媒としてVO(OC)Clに代えてVClを用いた以外はエチレン・プロピレン共重合体(A-1B)と同様にして、エチレン・プロピレン共重合体(A-11B)を得た。エチレン・プロピレン共重合体(A-11B)のポリマーの性状を表2Bに示す。
(Preparation of ethylene / propylene copolymer (A-11B))
An ethylene / propylene copolymer (A-11B) is obtained in the same manner as the ethylene / propylene copolymer (A-1B) except that VCl 4 is used instead of VO (OC 2 H 5 ) Cl 2 as a catalyst. It was. Table 2B shows the polymer properties of the ethylene / propylene copolymer (A-11B).
 (エチレン・プロピレン共重合体(A-12B)の調製)
 エチレン・プロピレン共重合体(A-1B)75部とエチレン・プロピレン共重合体(A-11B)25部とを混合し、30mmφの真空ベント付き2軸押出機(池貝社製、「PCM30」)で200℃、93.325kPa真空にて溶融混練し、エチレン・プロピレン共重合体(A-12B)を調製した。エチレン・プロピレン共重合体(A-12B)のポリマーの性状を表4Bに示す。
(Preparation of ethylene / propylene copolymer (A-12B))
Mixing 75 parts of ethylene / propylene copolymer (A-1B) and 25 parts of ethylene / propylene copolymer (A-11B), twin screw extruder with 30 mmφ vacuum vent (“PCM30” manufactured by Ikegai Co., Ltd.) The mixture was melt kneaded at 200 ° C. and 93.325 kPa vacuum to prepare an ethylene / propylene copolymer (A-12B). Table 4B shows the polymer properties of the ethylene / propylene copolymer (A-12B).
 (エチレン・プロピレン共重合体(A-13B)の調製)
 エチレン・プロピレン共重合体(A-1B)50部とエチレン・プロピレン共重合体(A-11B)50部とを混合し、30mmφの真空ベント付き2軸押出機(池貝社製、「PCM30」)で200℃、93.325kPa真空にて溶融混練し、エチレン・プロピレン共重合体(A-13B)を調製した。エチレン・プロピレン共重合体(A-13B)のポリマーの性状を表4Bに示す。
(Preparation of ethylene / propylene copolymer (A-13B))
Mixing 50 parts of ethylene / propylene copolymer (A-1B) and 50 parts of ethylene / propylene copolymer (A-11B), twin screw extruder with 30 mmφ vacuum vent (“PCM30”, manufactured by Ikegai Co., Ltd.) The mixture was melt kneaded at 200 ° C. and 93.325 kPa vacuum to prepare an ethylene / propylene copolymer (A-13B). Properties of the ethylene / propylene copolymer (A-13B) polymer are shown in Table 4B.
 (エチレン・プロピレン共重合体(A-14B)の調製)
 エチレン・プロピレン共重合体(A-1B)20部とエチレン・プロピレン共重合体(A-11B)80部とを混合し、30mmφの真空ベント付き2軸押出機(池貝社製、「PCM30」)で200℃、93.325kPa真空にて溶融混練し、エチレン・プロピレン共重合体(A-14B)を調製した。エチレン・プロピレン共重合体(A-14B)のポリマーの性状を表4Bに示す。
(Preparation of ethylene / propylene copolymer (A-14B))
20 parts of ethylene / propylene copolymer (A-1B) and 80 parts of ethylene / propylene copolymer (A-11B) are mixed, and a twin screw extruder with a 30 mmφ vacuum vent (“PCM30” manufactured by Ikekai Co., Ltd.) Was melt-kneaded at 200 ° C. and 93.325 kPa vacuum to prepare an ethylene / propylene copolymer (A-14B). Table 4B shows the polymer properties of the ethylene / propylene copolymer (A-14B).
 (エチレン・プロピレン共重合体(A-15B)~(A-20B)の調製)
 表3Bに示すようにエチレン、プロピレン、水素の供給量を変更した以外は、エチレン・プロピレン共重合体(A-1B)と同様にして、エチレン・プロピレン共重合体(A-15B)~(A-20B)を得た。エチレン・プロピレン共重合体(A-15B)~(A-20B)のポリマーの性状を表3Bに示す。
(Preparation of ethylene / propylene copolymers (A-15B) to (A-20B))
As shown in Table 3B, the ethylene / propylene copolymers (A-15B) to (A-15B) to (A) are the same as the ethylene / propylene copolymers (A-1B) except that the supply amounts of ethylene, propylene and hydrogen are changed. -20B) was obtained. Properties of the ethylene / propylene copolymers (A-15B) to (A-20B) are shown in Table 3B.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 <オレフィン樹脂水性分散体(B)>
 (オレフィン樹脂水性分散体(B-1B)の調製)
 エチレン・プロピレン共重合体(A-1B)100部と、酸変性オレフィン重合体として無水マレイン酸変性ポリエチレン(三井化学社製、「三井ハイワックス 2203A」、質量平均分子量:2,700、酸価:30mg/g)20部と、アニオン系乳化剤としてオレイン酸カリウム4部とを混合した。
 この混合物を2軸スクリュー押出機(池貝社製、「PCM30」、L/D=40)のホッパーから4kg/hで供給し、水酸化カリウム14%水溶液を240g/hで連続的に供給しながら、220℃に加熱して溶融混練し、得られた溶融混練物を押出した。溶融混練物を押出機の先端に取り付けた冷却装置に連続的に供給し、90℃まで冷却した。取り出した固体を80℃の温水中に投入し、連続的に分散させて、体積平均粒子径が0.25μmのオレフィン樹脂水性分散体(B-1B)を得た。
<Olefin resin aqueous dispersion (B)>
(Preparation of aqueous dispersion of olefin resin (B-1B))
100 parts of an ethylene / propylene copolymer (A-1B) and maleic anhydride-modified polyethylene (“Mitsui Chemicals,“ Mitsui High Wax 2203A ”) as the acid-modified olefin polymer, mass average molecular weight: 2,700, acid value: 30 mg / g) 20 parts and 4 parts of potassium oleate as an anionic emulsifier were mixed.
While supplying this mixture at 4 kg / h from a hopper of a twin screw extruder (Ikegai, “PCM30”, L / D = 40) and continuously supplying a 14% potassium hydroxide aqueous solution at 240 g / h. The mixture was melt-kneaded by heating to 220 ° C., and the resulting melt-kneaded product was extruded. The melt-kneaded product was continuously supplied to a cooling device attached to the tip of the extruder and cooled to 90 ° C. The taken-out solid was poured into warm water at 80 ° C. and continuously dispersed to obtain an aqueous olefin resin dispersion (B-1B) having a volume average particle size of 0.25 μm.
 (オレフィン樹脂水性分散体(B-2B)~(B-20B)の調製)
 表2Bに示すように、A成分として(A-1B)を(A-2B)~(A-20B)へ変更した以外は、オレフィン樹脂水性分散体(B-1B)と同様にして、オレフィン樹脂水性分散体(B-2B)~(B-20B)を得た。
 各オレフィン樹脂水性分散体(B-1B)~(B-20B)に分散しているエチレン・α-オレフィン共重合体(A)の体積平均粒子径を表5B~表7Bに示す。
(Preparation of aqueous olefin resin dispersions (B-2B) to (B-20B))
As shown in Table 2B, the olefin resin was the same as the aqueous olefin resin dispersion (B-1B) except that (A-1B) was changed to (A-2B) to (A-20B) as the component A. Aqueous dispersions (B-2B) to (B-20B) were obtained.
Tables 5B to 7B show the volume average particle diameters of the ethylene / α-olefin copolymers (A) dispersed in the respective olefin resin aqueous dispersions (B-1B) to (B-20B).
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 <架橋エチレン・α-オレフィン共重合体(C)>
 (架橋エチレン・α-オレフィン共重合体(C-1B)の調製)
 オレフィン樹脂水性分散体(B-1B)(固形分として100部)に固形分濃度が35%になるようにイオン交換水を加え、有機過酸化物としてt-ブチルクミルペルオキシド0.5部、多官能性化合物としてジビニルベンゼン1部を添加し、130℃で5時間反応させて、架橋エチレン・α-オレフィン共重合体(C-1B)を調製した。架橋エチレン・α-オレフィン共重合体(C-1B)のゲル含有率を測定したところ51%であった。結果を表8Bに示す。
<Crosslinked ethylene / α-olefin copolymer (C)>
(Preparation of crosslinked ethylene / α-olefin copolymer (C-1B))
Ion exchange water was added to the olefin resin aqueous dispersion (B-1B) (100 parts as a solid content) to a solid content concentration of 35%, and 0.5 parts of t-butylcumyl peroxide as an organic peroxide, As a polyfunctional compound, 1 part of divinylbenzene was added and reacted at 130 ° C. for 5 hours to prepare a crosslinked ethylene / α-olefin copolymer (C-1B). The gel content of the crosslinked ethylene / α-olefin copolymer (C-1B) was measured and found to be 51%. The results are shown in Table 8B.
 (架橋エチレン・α-オレフィン共重合体(C-2B)~(C-15B)の調製)
 表8Bに示すようにオレフィン樹脂水性分散体(B)の種類とt-ブチルクミルペルオキシドの添加量を変更した以外は、架橋エチレン・α-オレフィン共重合体(C-1B)と同様にして、架橋エチレン・α-オレフィン共重合体(C-2B)~(C-15B)を得た。架橋エチレン・α-オレフィン共重合体(C-2B)~(C-15B)のゲル含有率を表8Bに示す。
(Preparation of crosslinked ethylene / α-olefin copolymers (C-2B) to (C-15B))
As shown in Table 8B, the same procedure as for the crosslinked ethylene / α-olefin copolymer (C-1B) except that the type of the aqueous olefin resin dispersion (B) and the addition amount of t-butylcumyl peroxide were changed. As a result, crosslinked ethylene / α-olefin copolymers (C-2B) to (C-15B) were obtained. The gel contents of the crosslinked ethylene / α-olefin copolymers (C-2B) to (C-15B) are shown in Table 8B.
 (架橋エチレン・α-オレフィン共重合体(C-16B)~(C-24B)の調整)
 表9B、表10Bに示すようにt-ブチルクミルペルオキシドの添加量を変更した以外は、架橋エチレン・α-オレフィン共重合体(C-1B)と同様にして、架橋エチレン・α-オレフィン共重合体(C-16B)~(C-24B)を得た。架橋エチレン・α-オレフィン共重合体(C-16B)~(C-24B)のゲル含有率を表9B、表10Bに示す。
(Adjustment of crosslinked ethylene / α-olefin copolymer (C-16B) to (C-24B))
As shown in Table 9B and Table 10B, except that the addition amount of t-butylcumyl peroxide was changed, the crosslinked ethylene / α-olefin copolymer was the same as the crosslinked ethylene / α-olefin copolymer (C-1B). Polymers (C-16B) to (C-24B) were obtained. The gel contents of the crosslinked ethylene / α-olefin copolymers (C-16B) to (C-24B) are shown in Table 9B and Table 10B.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 <グラフト共重合体(D)>
 (グラフト共重合体(D-1B)の調製)
 撹拌機付きステンレス重合槽に、オレフィン樹脂水性分散体(B-1B)(エチレン・プロピレン共重合体(A-1B)の固形分として70部)を入れ、オレフィン樹脂水性分散体(B-1B)に固形分濃度が30%になるようにイオン交換水を加え、硫酸第一鉄0.006部、ピロリン酸ナトリウム0.3部およびフラクトース0.35部を仕込み、温度を80℃とした。スチレン23.4部、アクリロニトリル6.6部およびクメンヒドロペルオキシド0.6部を150分間連続的に添加し、重合温度を80℃に保ち乳化重合を行った。重合後、グラフト共重合体(D-1B)を含む水性分散体に酸化防止剤を添加し、硫酸にて固形分の析出を行い、洗浄、脱水、乾燥の工程を経て、粉状のグラフト共重合体(D-1B)を得た。グラフト共重合体(D-1B)のグラフト率を測定したところ30%であった。結果を表11Bに示す。
<Graft copolymer (D)>
(Preparation of graft copolymer (D-1B))
An aqueous olefin resin dispersion (B-1B) (70 parts as a solid content of ethylene / propylene copolymer (A-1B)) is placed in a stainless polymerization tank equipped with a stirrer, and an aqueous olefin resin dispersion (B-1B). Ion-exchanged water was added to the solution so that the solid concentration was 30%, and 0.006 part of ferrous sulfate, 0.3 part of sodium pyrophosphate and 0.35 part of fructose were added, and the temperature was set to 80 ° C. Styrene (23.4 parts), acrylonitrile (6.6 parts) and cumene hydroperoxide (0.6 parts) were continuously added for 150 minutes, and the polymerization temperature was kept at 80 ° C. to carry out emulsion polymerization. After the polymerization, an antioxidant is added to the aqueous dispersion containing the graft copolymer (D-1B), solids are precipitated with sulfuric acid, and after washing, dehydration and drying, A polymer (D-1B) was obtained. The graft ratio of the graft copolymer (D-1B) was measured and found to be 30%. The results are shown in Table 11B.
 (グラフト共重合体(D-2B)~(D-14B)の調製)
 表11B~表14Bに示すようにオレフィン樹脂水性分散体(B)の種類を変更した以外は、グラフト共重合体(D-1B)と同様にして、グラフト共重合体(D-2B)~(D-14B)を得た。グラフト共重合体(D-2B)~(D-14B)のグラフト率を表11B~表14Bに示す。
(Preparation of graft copolymers (D-2B) to (D-14B))
As shown in Table 11B to Table 14B, except that the type of the aqueous olefin resin dispersion (B) was changed, the graft copolymer (D-2B) to (D-2B) to ( D-14B) was obtained. The graft ratios of the graft copolymers (D-2B) to (D-14B) are shown in Tables 11B to 14B.
 (グラフト共重合体(D-15B)の調製)
 撹拌機付きステンレス重合槽に、エチレン・プロピレン共重合体(A-1B)70部、トルエン300部を仕込み、内容物を70℃で1時間撹拌して均一に溶解した。十分に窒素置換を行った後、スチレン23.4部、アクリロニトリル6.6部、t-ドデシルメルカプタン0.24部、t-ブチルペルオキシイソプロピルモノカーボネート0.22部を添加し、内温を110℃まで昇温し、4時間反応させた。内温を120℃に昇温し、2時間反応させた。重合後、内温を100℃まで冷却し、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェノール)-プロピオネート0.2部を添加した。反応混合物を抜き出し、水蒸気蒸留によって未反応物と溶媒を留去した。30mmφの真空ベント付き2軸押出機(池貝社製、「PCM30」)で220℃、93.325kPa真空にて、揮発分を実質的に脱揮させ、ペレット化し、グラフト共重合体(D-15B)を得た。グラフト共重合体(D-15B)のグラフト率を測定したところ26%であった。結果を表14Bに示す。
(Preparation of graft copolymer (D-15B))
A stainless polymerization tank equipped with a stirrer was charged with 70 parts of ethylene / propylene copolymer (A-1B) and 300 parts of toluene, and the contents were stirred at 70 ° C. for 1 hour to uniformly dissolve. After sufficiently purging with nitrogen, 23.4 parts of styrene, 6.6 parts of acrylonitrile, 0.24 parts of t-dodecyl mercaptan and 0.22 parts of t-butylperoxyisopropyl monocarbonate were added, and the internal temperature was 110 ° C. The mixture was heated up to react for 4 hours. The internal temperature was raised to 120 ° C. and reacted for 2 hours. After the polymerization, the internal temperature was cooled to 100 ° C., and 0.2 part of octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenol) -propionate was added. The reaction mixture was extracted, and unreacted substances and the solvent were distilled off by steam distillation. The volatile matter was substantially devolatilized at 220 ° C. and 93.325 kPa vacuum using a twin screw extruder with a 30 mmφ vacuum vent (“PCM30” manufactured by Ikegai Co., Ltd.), pelletized, and graft copolymer (D-15B ) The graft ratio of the graft copolymer (D-15B) was measured and found to be 26%. The results are shown in Table 14B.
 (グラフト共重合体(D-16B)~(D-39B)の調製)
 表15B~表18Bに示すようにオレフィン樹脂水性分散体(B-1B)を、架橋エチレン・α-オレフィン共重合体(C)を含む水性分散体に変更した以外は、グラフト共重合体(D-1B)と同様にして、グラフト共重合体(D-16B)~(D-39B)を得た。グラフト共重合体(D-16B)~(D-39B)のグラフト率を表15B~表18Bに示す。
(Preparation of graft copolymers (D-16B) to (D-39B))
As shown in Tables 15B to 18B, the graft copolymer (D-1) except that the aqueous olefin resin dispersion (B-1B) was changed to an aqueous dispersion containing a crosslinked ethylene / α-olefin copolymer (C). In the same manner as in (-1B), graft copolymers (D-16B) to (D-39B) were obtained. The graft ratios of the graft copolymers (D-16B) to (D-39B) are shown in Tables 15B to 18B.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 <メタクリル酸エステル樹脂(G)>
 (メタクリル酸エステル樹脂(G-1B)の調製)
 撹拌機付きステンレス重合槽にイオン交換水150部、メタクリル酸メチル99部、アクリル酸メチル1部、2,2’-アゾビス(イソブチロニトリル)0.2部、n-オクチルメルカプタン0.25部、カルシウムヒドロオキシアパタイト0.47部、アルケニルコハク酸カリウム0.003部を仕込んだ。重合槽の内温を75℃にして3時間反応させ、90℃に昇温し1時間反応させた。内容物を抜き出し、遠心脱水機で洗浄し、乾燥させて粉状のメタクリル酸エステル樹脂(G-1B)を得た。単量体を表19Bに示す。
<Methacrylate ester resin (G)>
(Preparation of methacrylic ester resin (G-1B))
In a stainless steel polymerization tank equipped with a stirrer, 150 parts of ion exchange water, 99 parts of methyl methacrylate, 1 part of methyl acrylate, 0.2 part of 2,2′-azobis (isobutyronitrile), 0.25 part of n-octyl mercaptan , 0.47 part of calcium hydroxyapatite and 0.003 part of potassium alkenyl succinate were charged. The internal temperature of the polymerization tank was set to 75 ° C. for 3 hours, and the temperature was raised to 90 ° C. for 1 hour. The contents were extracted, washed with a centrifugal dehydrator, and dried to obtain a powdery methacrylic ester resin (G-1B). The monomers are shown in Table 19B.
 (メタクリル酸エステル樹脂(G-2B)の調製)
 撹拌機付きステンレス重合槽にイオン交換水150部、メタクリル酸メチル82部、N-フェニルマレイミド12部、スチレン6部、2,2’-アゾビス(イソブチロニトリル)0.2部、n-オクチルメルカプタン0.25部、ポリビニルアルコール0.7部を仕込んだ。重合槽の内温を75℃にして3時間反応させ、90℃まで昇温し1時間反応させた。内容物を抜き出し、遠心脱水機で洗浄し、乾燥させて粉状のメタクリル酸エステル樹脂(G-2B)を得た。単量体を表19Bに示す。
(Preparation of methacrylic ester resin (G-2B))
In a stainless polymerization tank equipped with a stirrer, 150 parts of ion exchange water, 82 parts of methyl methacrylate, 12 parts of N-phenylmaleimide, 6 parts of styrene, 0.2 part of 2,2′-azobis (isobutyronitrile), n-octyl Mercaptan (0.25 part) and polyvinyl alcohol (0.7 part) were charged. The internal temperature of the polymerization tank was set at 75 ° C. for 3 hours, and the temperature was raised to 90 ° C. for 1 hour. The contents were extracted, washed with a centrifugal dehydrator, and dried to obtain a powdery methacrylate resin (G-2B). The monomers are shown in Table 19B.
 (メタクリル酸エステル樹脂(G-3B)~(G-11B)の調製)
 表19B、表20Bに示すようにビニル系単量体混合物(m3)の種類を変更した以外は、メタクリル酸エステル樹脂(G-2B)と同様にして、メタクリル酸エステル樹脂(G-3B)~(G-11B)を得た。
(Preparation of methacrylate resin (G-3B) to (G-11B))
As shown in Table 19B and Table 20B, except for changing the kind of the vinyl monomer mixture (m3), the same procedure as for the methacrylate ester resin (G-2B), the methacrylate ester resin (G-3B) to (G-11B) was obtained.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 <スチレン系共重合体(H)>
 (スチレン系共重合体(H-1B)の調製)
 窒素置換した撹拌機付きステンレス重合槽に、イオン交換水120部、ポリビニルアルコール0.1部、2,2’-アゾビス(イソブチロニトリル)0.3部、アクリロニトリル25部、スチレン75部、t-ドデシルメルカプタン0.35部を仕込み、開始温度60℃として5時間反応させた。120℃に昇温し、4時間反応させた。内容物を取り出し、スチレン系共重合体(H-1B)を得た。
<Styrene copolymer (H)>
(Preparation of styrene copolymer (H-1B))
In a stainless steel polymerization tank equipped with a stirrer substituted with nitrogen, 120 parts of ion exchange water, 0.1 part of polyvinyl alcohol, 0.3 part of 2,2′-azobis (isobutyronitrile), 25 parts of acrylonitrile, 75 parts of styrene, t -0.35 part of dodecyl mercaptan was charged and reacted at an initial temperature of 60 ° C for 5 hours. The temperature was raised to 120 ° C. and reacted for 4 hours. The contents were taken out to obtain a styrene copolymer (H-1B).
 (スチレン系共重合体(H-2B)の調製)
 撹拌機付きステンレス重合槽に、イオン交換水150部、メタクリル酸メチル7部、アクリロニトリル23部、スチレン70部、2,2’-アゾビス(イソブチロニトリル)0.2部、n-オクチルメルカプタン0.25部、カルシウムヒドロオキシアパタイト0.47部、アルケニルコハク酸カリウム0.003部を仕込み、内温を75℃まで昇温し、3時間反応させた。90℃まで昇温し、60分間保持することで反応を完結させた。内容物を取り出し、遠心脱水機での洗浄、脱水を繰り返し、乾燥させてスチレン系共重合体(H-2B)を得た。
(Preparation of styrene copolymer (H-2B))
In a stainless steel polymerization tank equipped with a stirrer, 150 parts of ion exchange water, 7 parts of methyl methacrylate, 23 parts of acrylonitrile, 70 parts of styrene, 0.2 part of 2,2′-azobis (isobutyronitrile), n-octyl mercaptan 0 .25 parts, calcium hydroxyapatite 0.47 part, and potassium alkenyl succinate 0.003 part were charged, the internal temperature was raised to 75 ° C., and the reaction was performed for 3 hours. The reaction was completed by raising the temperature to 90 ° C. and holding for 60 minutes. The contents were taken out, repeatedly washed with a centrifugal dehydrator, dehydrated, and dried to obtain a styrene copolymer (H-2B).
(スチレン系共重合体(H-3B)~(H-6B)の調製)
 表21Bに示すようにビニル系単量体混合物(m4)の量を変更した以外は、スチレン系共重合体(H-2B)と同様にして、スチレン系共重合体(H-3B)~(H-6B)を得た。
(Preparation of styrenic copolymers (H-3B) to (H-6B))
As shown in Table 21B, except that the amount of the vinyl monomer mixture (m4) was changed, the styrene copolymer (H-3B) to (H-3B) to ( H-6B) was obtained.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 [実施例1B]
 グラフト共重合体(D-1B)24部、メタクリル酸エステル樹脂(G-1B)76部を混合し、30mmφの真空ベント付き2軸押出機(池貝社製、「PCM30」)で240℃、93.325kPa真空にて溶融混練し、熱可塑性樹脂組成物を調製した。熱可塑性樹脂組成物のMVRを表22Bに示す。
 熱可塑性樹脂組成物をペレット化し、各種成形品を成形し、曲げ弾性率を測定し、耐衝撃性、耐熱性、光沢性、発色性、耐引っ掻き傷性、耐擦り傷性を評価した。結果を表22Bに示す。
[Example 1B]
24 parts of graft copolymer (D-1B) and 76 parts of methacrylic ester resin (G-1B) were mixed, and 240 ° C., 93 ° C. using a 30 mmφ twin-screw extruder with a vacuum vent (“Ikegai Co., Ltd.,“ PCM30 ”) A thermoplastic resin composition was prepared by melt kneading in a vacuum of 325 kPa. The MVR of the thermoplastic resin composition is shown in Table 22B.
The thermoplastic resin composition was pelletized, various molded products were molded, the flexural modulus was measured, and the impact resistance, heat resistance, glossiness, color development, scratch resistance, and scratch resistance were evaluated. The results are shown in Table 22B.
 [実施例2B~33B]
 表22B~表27Bに示すようにグラフト共重合体(D)の種類を変更した以外は、実施例1Bと同様にして熱可塑性樹脂組成物を調製し、MVRを測定した。
 熱可塑性樹脂組成物をペレット化し、各種成形品を成形し、曲げ弾性率を測定し、耐衝撃性、耐熱性、光沢性、発色性、耐引っ掻き傷性、耐擦り傷性を評価した。結果を表22B~表27Bに示す。
[Examples 2B to 33B]
A thermoplastic resin composition was prepared and MVR was measured in the same manner as in Example 1B except that the type of graft copolymer (D) was changed as shown in Tables 22B to 27B.
The thermoplastic resin composition was pelletized, various molded products were molded, the flexural modulus was measured, and the impact resistance, heat resistance, glossiness, color development, scratch resistance, and scratch resistance were evaluated. The results are shown in Tables 22B to 27B.
 [実施例34B~56B]
 表28B~表31Bに示すようにグラフト共重合体(D)、メタクリル酸エステル樹脂(G)、スチレン系共重合体(H)の種類、量を変更し、溶融混練の条件を250℃、93.325kPaに変更した以外は、実施例1Bと同様にして熱可塑性樹脂組成物を調製し、MVRを測定した。
 熱可塑性樹脂組成物をペレット化し、各種成形品を成形し、曲げ弾性率を測定し、耐衝撃性、耐熱性、光沢性、発色性、耐引っ掻き傷性、耐擦り傷性を評価した。結果を表28B~表31Bに示す。
[Examples 34B to 56B]
As shown in Tables 28B to 31B, the types and amounts of the graft copolymer (D), the methacrylic ester resin (G), and the styrene copolymer (H) were changed, and the melt kneading conditions were 250 ° C., 93 A thermoplastic resin composition was prepared and MVR was measured in the same manner as in Example 1B except that the pressure was changed to .325 kPa.
The thermoplastic resin composition was pelletized, various molded products were molded, the flexural modulus was measured, and the impact resistance, heat resistance, glossiness, color development, scratch resistance, and scratch resistance were evaluated. The results are shown in Tables 28B to 31B.
 [比較例1B~6B]
 表32Bに示すようにグラフト共重合体(D)の種類を変更した以外は、実施例1Bと同様にして熱可塑性樹脂組成物を調製し、MVRを測定した。
 熱可塑性樹脂組成物をペレット化し、各種成形品を成形し、曲げ弾性率を測定し、耐衝撃性、耐熱性、光沢性、発色性、耐引っ掻き傷性、耐擦り傷性を評価した。結果を表32Bに示す。
[Comparative Examples 1B to 6B]
A thermoplastic resin composition was prepared and MVR was measured in the same manner as in Example 1B, except that the type of the graft copolymer (D) was changed as shown in Table 32B.
The thermoplastic resin composition was pelletized, various molded products were molded, the flexural modulus was measured, and the impact resistance, heat resistance, glossiness, color development, scratch resistance, and scratch resistance were evaluated. The results are shown in Table 32B.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
 実施例1B~56Bの熱可塑性樹脂組成物は流動性に優れていた。また、実施例1B~56Bで得られた成形品は、耐衝撃性、耐熱性、光沢性、発色性、耐引っ掻き傷性、耐擦り傷性が優れていた。
 したがって、本発明の第三の態様における熱可塑性樹脂組成物は、流動性が優れており、本発明の第三の態様における熱可塑性樹脂組成物を用いると、耐衝撃性、光沢性、発色性、耐引っ掻き傷性、耐擦り傷性に優れた成形品が得られ、車輌内装部品、車輌外装部品、事務機器、家電、建材等の用途に適用できることがわかる。
The thermoplastic resin compositions of Examples 1B to 56B were excellent in fluidity. In addition, the molded products obtained in Examples 1B to 56B were excellent in impact resistance, heat resistance, gloss, color development, scratch resistance, and scratch resistance.
Therefore, the thermoplastic resin composition according to the third aspect of the present invention has excellent fluidity, and when the thermoplastic resin composition according to the third aspect of the present invention is used, impact resistance, glossiness, color developability. It can be seen that a molded article excellent in scratch resistance and scratch resistance is obtained, and can be applied to uses such as vehicle interior parts, vehicle exterior parts, office equipment, home appliances, and building materials.
 一方、エチレン・α-オレフィン共重合体(A)として質量平均分子量(Mw)が17×10未満のエチレン・プロピレン共重合体(A-2B)を用いた比較例1Bは、成形品の耐衝撃性、耐擦り傷性が低かった。
 エチレン・α-オレフィン共重合体(A)として質量平均分子量(Mw)が35×10を超えるエチレン・プロピレン共重合体(A-8B)を用いた比較例2Bは、熱可塑性樹脂組成物の流動性が著しく低下し、成形品の光沢性が低かった。
 エチレン・α-オレフィン共重合体(A)として分子量分布(Mw/Mn)が3を超えるエチレン・プロピレン共重合体(A-11B)を用いた比較例3Bは、成形品の耐衝撃性、耐擦り傷性が低かった。
 架橋エチレン・α-オレフィン共重合体(C)として、エチレン・プロピレン共重合体(A-2B)を架橋処理した架橋エチレン・α-オレフィン共重合体(C-2B)を用いた比較例4Bは、成形品の耐衝撃性、耐擦り傷性が低かった。
 架橋エチレン・α-オレフィン共重合体(C)として、エチレン・プロピレン共重合体(A-8B)を架橋処理した架橋エチレン・α-オレフィン共重合体(C-5B)を用いた比較例5Bは、熱可塑性樹脂組成物の流動性が著しく低下し、成形品の光沢性が低かった。
 架橋エチレン・α-オレフィン共重合体(C)として、エチレン・プロピレン共重合体(A-11B)を架橋処理した架橋エチレン・α-オレフィン共重合体(C-8B)を用いた比較例6Bは、成形品の耐衝撃性、耐擦り傷性が低かった。
On the other hand, Comparative Example 1B using an ethylene / propylene copolymer (A-2B) having a mass average molecular weight (Mw) of less than 17 × 10 4 as the ethylene / α-olefin copolymer (A) Impact and scratch resistance were low.
Comparative Example 2B using an ethylene / propylene copolymer (A-8B) having a mass average molecular weight (Mw) exceeding 35 × 10 4 as the ethylene / α-olefin copolymer (A) is a thermoplastic resin composition. The fluidity was significantly reduced and the gloss of the molded product was low.
Comparative example 3B using an ethylene / propylene copolymer (A-11B) having a molecular weight distribution (Mw / Mn) of more than 3 as the ethylene / α-olefin copolymer (A) is used for the impact resistance, Scratch resistance was low.
Comparative Example 4B using a crosslinked ethylene / α-olefin copolymer (C-2B) obtained by crosslinking an ethylene / propylene copolymer (A-2B) as the crosslinked ethylene / α-olefin copolymer (C) is: The impact resistance and scratch resistance of the molded product were low.
Comparative Example 5B using a crosslinked ethylene / α-olefin copolymer (C-5B) obtained by crosslinking an ethylene / propylene copolymer (A-8B) as the crosslinked ethylene / α-olefin copolymer (C) is: The fluidity of the thermoplastic resin composition was remarkably lowered, and the gloss of the molded product was low.
Comparative Example 6B using a crosslinked ethylene / α-olefin copolymer (C-8B) obtained by crosslinking the ethylene / propylene copolymer (A-11B) as the crosslinked ethylene / α-olefin copolymer (C) is: The impact resistance and scratch resistance of the molded product were low.
 <体積平均粒子径の測定方法2>
 マイクロトラック(日機装社製「ナノトラック150」)を用い、測定溶媒として純水を用いて体積平均粒子径(MV)を測定した。
 なお、オレフィン樹脂水性分散体(B)に分散しているエチレン・α-オレフィン共重合体(A)や、水性分散体に分散している架橋エチレン・α-オレフィン共重合体(C)や、水性分散体に分散している架橋アクリル酸エステル系ゴム状重合体(E)の体積平均粒子径が、そのまま熱可塑性樹脂組成物中のエチレン・α-オレフィン共重合体(A)や架橋エチレン・α-オレフィン共重合体(C)や架橋アクリル酸エステル系ゴム状重合体(E)の体積平均粒子径を示すことを、電子顕微鏡の画像解析によって確認している。
<Measurement method 2 of volume average particle diameter>
The volume average particle diameter (MV) was measured using a microtrack (“Nanotrack 150” manufactured by Nikkiso Co., Ltd.) using pure water as a measurement solvent.
The ethylene / α-olefin copolymer (A) dispersed in the aqueous olefin resin dispersion (B), the crosslinked ethylene / α-olefin copolymer (C) dispersed in the aqueous dispersion, The volume average particle diameter of the crosslinked acrylic ester rubber-like polymer (E) dispersed in the aqueous dispersion is the same as that of the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / polymer in the thermoplastic resin composition. It has been confirmed by electron microscope image analysis that the volume average particle diameters of the α-olefin copolymer (C) and the crosslinked acrylate rubber polymer (E) are shown.
 <溶融混練4>
 表24C~表35Cに示す配合でグラフト共重合体(D)、グラフト共重合体(F)、メタクリル酸エステル樹脂(G)、必要に応じて他の成分を混合し、30mmφの真空ベント付き2軸押出機(池貝社製「PCM30」)で、シリンダー温度200~260℃、93.325kPa真空にて溶融混練を行い、熱可塑性樹脂組成物を得た。また、必要に応じて溶融混練後に、ペレタイザー(創研社製「SH型ペレタイザー」)を用いてペレット化を行った。
<Melt-kneading 4>
Graft copolymer (D), graft copolymer (F), methacrylic ester resin (G), and other components as necessary are mixed in the formulations shown in Table 24C to Table 35C, and a vacuum vent with 30 mmφ 2 A thermoplastic resin composition was obtained by melt kneading in a shaft extruder (“PCM30” manufactured by Ikegai Co., Ltd.) at a cylinder temperature of 200 to 260 ° C. and a vacuum of 93.325 kPa. Moreover, after melt-kneading as needed, pelletization was performed using a pelletizer (“SH type pelletizer” manufactured by Souken Co., Ltd.).
 <射出成形4>
 溶融混練して得られた熱可塑性樹脂組成物のペレットを射出成形機(東芝機械社製「IS55FP-1.5A」)によってシリンダー温度200~260℃、金型温度60℃の条件で、シャルピー衝撃試験用の試験片、2mm厚の平板(10cm×10cm)を得た。
<Injection molding 4>
The pellets of the thermoplastic resin composition obtained by melt kneading are subjected to Charpy impact using an injection molding machine (“IS55FP-1.5A” manufactured by Toshiba Machine Co., Ltd.) at a cylinder temperature of 200 to 260 ° C. and a mold temperature of 60 ° C. A test specimen for test, a 2 mm-thick flat plate (10 cm × 10 cm) was obtained.
 <各成分>
 以下の例では、下記のエチレン・α-オレフィン共重合体(A)、オレフィン樹脂水性分散体(B)、架橋エチレン・α-オレフィン共重合体(C)、グラフト共重合体(D)、架橋アクリル酸エステル系ゴム状重合体(E)、グラフト共重合体(F)、メタクリル酸エステル樹脂(G)、スチレン系共重合体(H)を用いた。
<Each component>
In the following examples, the following ethylene / α-olefin copolymer (A), olefin resin aqueous dispersion (B), crosslinked ethylene / α-olefin copolymer (C), graft copolymer (D), crosslinked An acrylic ester rubbery polymer (E), a graft copolymer (F), a methacrylic ester resin (G), and a styrene copolymer (H) were used.
 <エチレン・α-オレフィン共重合体(A)>
 (エチレン・プロピレン共重合体(A-1C)の調製)
 20L撹拌機付きステンレス重合槽を十分に窒素置換した後に、脱水精製したヘキサン10Lを添加し、8.0mmol/Lに調製したエチルアルミニウムセスキクロリド(Al(C1.5・Cl1.5)のヘキサン溶液を、5L/hの量で連続的に1時間供給した後、さらに触媒として0.8mmol/Lに調整したVO(OC)Clのヘキサン溶液を5L/hの量で、ヘキサンを5L/hの量で連続的に供給した。一方、重合槽上部から、重合槽内の重合液が常に10Lになるように重合液を連続的に抜き出した。バブリング管を用いてエチレンを2000L/hの量で、プロピレンを1000L/hの量で、水素を8L/hの量で供給し、重合反応を35℃で行った。
 前記条件で重合反応を行い、エチレン・プロピレン共重合体(A-1C)を含む重合溶液を得た。得られた重合溶液を、塩酸で脱灰した後に、メタノールに投入して析出させた後、乾燥させ、エチレン・プロピレン共重合体(A-1C)を得た。エチレン・プロピレン共重合体(A-1C)のポリマーの性状を表1に示す。
<Ethylene / α-olefin copolymer (A)>
(Preparation of ethylene / propylene copolymer (A-1C))
After fully substituting the stainless steel polymerization tank with a 20 L stirrer with nitrogen, 10 L of dehydrated and purified hexane was added, and ethylaluminum sesquichloride (Al (C 2 H 5 ) 1.5 · C 11 was prepared to 8.0 mmol / L. 5 ) was continuously supplied at a rate of 5 L / h for 1 hour, and then a hexane solution of VO (OC 2 H 5 ) Cl 2 adjusted to 0.8 mmol / L as a catalyst was further added to 5 L / h. Hexane was continuously fed in an amount of 5 L / h. On the other hand, from the upper part of the polymerization tank, the polymerization liquid was continuously extracted so that the polymerization liquid in the polymerization tank was always 10 L. Using a bubbling tube, ethylene was supplied in an amount of 2000 L / h, propylene was supplied in an amount of 1000 L / h, hydrogen was supplied in an amount of 8 L / h, and a polymerization reaction was performed at 35 ° C.
A polymerization reaction was performed under the above conditions to obtain a polymerization solution containing an ethylene / propylene copolymer (A-1C). The obtained polymerization solution was deashed with hydrochloric acid, poured into methanol for precipitation, and then dried to obtain an ethylene / propylene copolymer (A-1C). Table 1 shows the properties of the ethylene / propylene copolymer (A-1C) polymer.
 (エチレン・プロピレン共重合体(A-2C)~(A-5C)の調製)
 表1Cに示すように水素の供給量を変更した以外は、エチレン・プロピレン共重合体(A-1C)と同様にして、エチレン・プロピレン共重合体(A-2C)~(A-5C)を得た。エチレン・プロピレン共重合体(A-2C)~(A-5C)のポリマーの性状を表1Cに示す。
(Preparation of ethylene / propylene copolymers (A-2C) to (A-5C))
The ethylene / propylene copolymers (A-2C) to (A-5C) were prepared in the same manner as the ethylene / propylene copolymer (A-1C) except that the amount of hydrogen supplied was changed as shown in Table 1C. Obtained. Properties of the ethylene / propylene copolymers (A-2C) to (A-5C) are shown in Table 1C.
 (エチレン・プロピレン共重合体(A-6C)の調製)
 20L撹拌機付きステンレス重合槽を十分に窒素置換した後に、脱水精製したヘキサン10Lを添加し、プロピレン110L(標準状態)、水素800mLを添加した。40℃まで加熱した後に、全圧が0.6MPa[gage]となるようにエチレンで加圧した。
内圧が0.6MPa[gage]になったところで、トリイソブチルアルミニウム(TIBA)の1.0mM/mLヘキサン溶液10mLを窒素で圧入した。あらかじめ調製しておいた、トリフェニルカルベニウム(テトラキスペンタフルオロフェニル)ボレートをホウ素換算で0.16mM、[ジメチル(t-ブチルアミド)(テトラメチル-η5-シクロペンタジエニル)シラン]チタンクロリドを0.0004mMの量で含むトルエン溶液30mLを、窒素で圧入し重合を開始した。その後、5分間、40℃になるように温度調整し、かつ圧力が0.6MPa[gage]となるようにエチレンの供給を行なった。重合開始5分後、メタノール50mLを挿入して重合を停止し、大気圧まで脱圧し、エチレン・プロピレン共重合体(A-6C)を含む重合溶液を得た。得られた重合溶液は、塩酸で脱灰した後に、メタノールに投入して析出させた後、乾燥させ、エチレン・プロピレン共重合体(A-6C)を得た。エチレン・プロピレン共重合体(A-6C)のポリマーの性状を表2Cに示す。
(Preparation of ethylene / propylene copolymer (A-6C))
After sufficiently substituting a 20 L stainless steel tank with a stirrer with nitrogen, 10 L of dehydrated and purified hexane was added, and 110 L of propylene (standard state) and 800 mL of hydrogen were added. After heating to 40 ° C., it was pressurized with ethylene so that the total pressure was 0.6 MPa [gage].
When the internal pressure reached 0.6 MPa [gage], 10 mL of a 1.0 mM / mL hexane solution of triisobutylaluminum (TIBA) was injected with nitrogen. Triphenylcarbenium (tetrakispentafluorophenyl) borate prepared in advance was 0.16 mM in terms of boron, and [dimethyl (t-butylamide) (tetramethyl-η5-cyclopentadienyl) silane] titanium chloride was changed to 0. Polymerization was initiated by injecting 30 mL of a toluene solution containing 0004 mM with nitrogen. Thereafter, the temperature was adjusted to 40 ° C. for 5 minutes, and ethylene was supplied so that the pressure became 0.6 MPa [gage]. Five minutes after the start of the polymerization, 50 mL of methanol was inserted to terminate the polymerization, and the pressure was released to atmospheric pressure to obtain a polymerization solution containing an ethylene / propylene copolymer (A-6C). The obtained polymerization solution was deashed with hydrochloric acid, poured into methanol for precipitation, and then dried to obtain an ethylene / propylene copolymer (A-6C). Properties of the ethylene / propylene copolymer (A-6C) polymer are shown in Table 2C.
 (エチレン・プロピレン共重合体(A-7C)の調製)
 エチレン・プロピレン共重合体(A-1C)20部とエチレン・プロピレン共重合体(A-6C)80部とを混合し、30mmφの真空ベント付き2軸押出機(池貝社製、「PCM30」)で200℃、93.325kPa真空にて溶融混練し、エチレン・プロピレン共重合体(A-7C)を調製した。エチレン・プロピレン共重合体(A-7C)のポリマーの性状を表2Cに示す。
(Preparation of ethylene / propylene copolymer (A-7C))
20 parts of ethylene / propylene copolymer (A-1C) and 80 parts of ethylene / propylene copolymer (A-6C) are mixed, and a twin screw extruder with a 30 mmφ vacuum vent (“PCM30” manufactured by Ikegai Co., Ltd.) The mixture was melt kneaded at 200 ° C. and 93.325 kPa vacuum to prepare an ethylene / propylene copolymer (A-7C). Table 2C shows the properties of the ethylene / propylene copolymer (A-7C) polymer.
 (エチレン・プロピレン共重合体(A-11C)の調製)
 触媒としてVO(OC)Clに代えてVClを用いた以外はエチレン・プロピレン共重合体(A-1C)と同様にして、エチレン・プロピレン共重合体(A-11C)を得た。エチレン・プロピレン共重合体(A-11C)のポリマーの性状を表1Cに示す。
(Preparation of ethylene / propylene copolymer (A-11C))
An ethylene / propylene copolymer (A-11C) is obtained in the same manner as the ethylene / propylene copolymer (A-1C) except that VCl 4 is used instead of VO (OC 2 H 5 ) Cl 2 as a catalyst. It was. Table 1C shows the properties of the ethylene / propylene copolymer (A-11C) polymer.
 (エチレン・プロピレン共重合体(A-8C)の調製)
 エチレン・プロピレン共重合体(A-1C)75部とエチレン・プロピレン共重合体(A-11C)25部とを混合し、30mmφの真空ベント付き2軸押出機(池貝社製、「PCM30」)で200℃、93.325kPa真空にて溶融混練し、エチレン・プロピレン共重合体(A-8C)を調製した。エチレン・プロピレン共重合体(A-8C)のポリマーの性状を表2Cに示す。
(Preparation of ethylene / propylene copolymer (A-8C))
Mixing 75 parts of ethylene / propylene copolymer (A-1C) and 25 parts of ethylene / propylene copolymer (A-11C), twin screw extruder with 30 mmφ vacuum vent (“PCM30” manufactured by Ikegai Co., Ltd.) And kneaded at 200 ° C. and 93.325 kPa vacuum to prepare an ethylene / propylene copolymer (A-8C). The properties of the ethylene / propylene copolymer (A-8C) polymer are shown in Table 2C.
 (エチレン・プロピレン共重合体(A-9C)の調製)
 エチレン・プロピレン共重合体(A-1C)50部とエチレン・プロピレン共重合体(A-11C)50部とを混合し、30mmφの真空ベント付き2軸押出機(池貝社製、「PCM30」)で200℃、93.325kPa真空にて溶融混練し、エチレン・プロピレン共重合体(A-9C)を調製した。エチレン・プロピレン共重合体(A-9C)のポリマーの性状を表2Cに示す。
(Preparation of ethylene / propylene copolymer (A-9C))
Mixing 50 parts of ethylene / propylene copolymer (A-1C) and 50 parts of ethylene / propylene copolymer (A-11C), twin screw extruder with 30 mmφ vacuum vent (Ikegai, “PCM30”) The mixture was melt kneaded at 200 ° C. and 93.325 kPa vacuum to prepare an ethylene / propylene copolymer (A-9C). The properties of the ethylene / propylene copolymer (A-9C) polymer are shown in Table 2C.
 (エチレン・プロピレン共重合体(A-10C)の調製)
 エチレン・プロピレン共重合体(A-1C)20部とエチレン・プロピレン共重合体(A-11C)80部とを混合し、30mmφの真空ベント付き2軸押出機(池貝社製、「PCM30」)で200℃、93.325kPa真空にて溶融混練し、エチレン・プロピレン共重合体(A-10C)を調製した。エチレン・プロピレン共重合体(A-10C)のポリマーの性状を表2Cに示す。
(Preparation of ethylene / propylene copolymer (A-10C))
20 parts of ethylene / propylene copolymer (A-1C) and 80 parts of ethylene / propylene copolymer (A-11C) are mixed and a twin screw extruder with a 30 mmφ vacuum vent (“PCM30” manufactured by Ikekai Co., Ltd.) Was melt-kneaded at 200 ° C. and 93.325 kPa vacuum to prepare an ethylene / propylene copolymer (A-10C). Properties of the ethylene / propylene copolymer (A-10C) polymer are shown in Table 2C.
 (エチレン・プロピレン共重合体(A-12C)、(A-13C)の調製)
 表3Cに示すように水素の供給量を変更した以外は、エチレン・プロピレン共重合体(A-1C)と同様にして、エチレン・プロピレン共重合体(A-12C)、(A-13C)を得た。エチレン・プロピレン共重合体(A-12C)、(A-13C)のポリマーの性状を表3Cに示す。
(Preparation of ethylene / propylene copolymers (A-12C) and (A-13C))
The ethylene / propylene copolymers (A-12C) and (A-13C) were prepared in the same manner as the ethylene / propylene copolymer (A-1C) except that the supply amount of hydrogen was changed as shown in Table 3C. Obtained. Table 3C shows the properties of the ethylene / propylene copolymers (A-12C) and (A-13C).
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
 <オレフィン樹脂水性分散体(B)>
 (オレフィン樹脂水性分散体(B-1C)の調製)
 エチレン・プロピレン共重合体(A-1C)100部と、酸変性オレフィン重合体として無水マレイン酸変性ポリエチレン(三井化学社製、「三井ハイワックス 2203A」、質量平均分子量:2,700、酸価:30mg/g)20部と、アニオン系乳化剤としてオレイン酸カリウム5部とを混合した。
 この混合物を2軸スクリュー押出機(池貝社製、「PCM30」、L/D=40)のホッパーから4kg/hで供給し、前記2軸スクリュー押出機のベント部に設けた供給口より、水酸化カリウム0.5部とイオン交換水2.4部を混合した水溶液を連続的に供給しながら、220℃に加熱して溶融混練して押出した。溶融混練物を2軸スクリュー押出機の先端に取り付けた冷却装置に連続的に供給し、90℃まで冷却した。そして、2軸スクリュー押出機先端より吐出させた固体を、80℃の温水中に投入し、連続的に分散させて、固形分濃度40質量%付近まで希釈して、オレフィン樹脂水性分散体(B-1C)を得た。
オレフィン樹脂水性分散体(B-1C)に分散しているエチレン・α-オレフィン共重合体(A)の体積平均粒子径を表4Cに示す。
<Olefin resin aqueous dispersion (B)>
(Preparation of aqueous dispersion of olefin resin (B-1C))
100 parts of ethylene / propylene copolymer (A-1C) and maleic anhydride-modified polyethylene (Mitsui Chemicals, “Mitsui High Wax 2203A”) as an acid-modified olefin polymer, weight average molecular weight: 2,700, acid value: 30 mg / g) 20 parts and 5 parts of potassium oleate as an anionic emulsifier were mixed.
This mixture is supplied at 4 kg / h from a hopper of a twin screw extruder (Ikegai, “PCM30”, L / D = 40), and water is supplied from a supply port provided in a vent portion of the twin screw extruder. While continuously supplying an aqueous solution obtained by mixing 0.5 part of potassium oxide and 2.4 parts of ion-exchanged water, it was heated to 220 ° C., melt-kneaded and extruded. The melt-kneaded product was continuously supplied to a cooling device attached to the tip of the twin screw extruder and cooled to 90 ° C. Then, the solid discharged from the tip of the twin screw extruder is poured into warm water at 80 ° C., continuously dispersed, diluted to a solid content concentration of about 40% by mass, and an aqueous olefin resin dispersion (B -1C) was obtained.
Table 4C shows the volume average particle diameter of the ethylene / α-olefin copolymer (A) dispersed in the aqueous olefin resin dispersion (B-1C).
 (オレフィン樹脂水性分散体(B-2C)~(B-11C)の調製)
 表4C、表5Cに示すように、A成分として(A-1C)を(A-2C)~(A-11C)へ変更した以外は、オレフィン樹脂水性分散体(B-1C)と同様にして、オレフィン樹脂水性分散体(B-2C)~(B-11C)を得た。
 各オレフィン樹脂水性分散体(B-2C)~(B-11C)に分散しているエチレン・α-オレフィン共重合体(A)の体積平均粒子径を表4C、表5Cに示す。
(Preparation of aqueous olefin resin dispersions (B-2C) to (B-11C))
As shown in Table 4C and Table 5C, the same procedure as in the aqueous olefin resin dispersion (B-1C) was conducted except that (A-1C) was changed from (A-2C) to (A-11C) as the component A. Thus, aqueous olefin resin dispersions (B-2C) to (B-11C) were obtained.
Tables 4C and 5C show the volume average particle diameters of the ethylene / α-olefin copolymers (A) dispersed in each of the aqueous olefin resin dispersions (B-2C) to (B-11C).
 (オレフィン樹脂水性分散体(B-12C)~(B-17C)の調製)
 表5Cに示すように、乳化する際の水酸化カリウムの添加部数、イオン交換水の添加部数を変更した以外は、オレフィン樹脂水性分散体(B-1C)と同様にして、オレフィン樹脂水性分散体(B-12C)~(B-17C)を得た。
 各オレフィン樹脂水性分散体(B-12C)~(B-17C)に分散しているエチレン・α-オレフィン共重合体(A)の体積平均粒子径を表5Cに示す。
(Preparation of aqueous olefin resin dispersions (B-12C) to (B-17C))
As shown in Table 5C, the aqueous olefin resin dispersion was the same as the aqueous olefin resin dispersion (B-1C) except that the number of added parts of potassium hydroxide during emulsification and the number of added parts of ion exchange water were changed. (B-12C) to (B-17C) were obtained.
Table 5C shows the volume average particle diameter of the ethylene / α-olefin copolymer (A) dispersed in each of the aqueous olefin resin dispersions (B-12C) to (B-17C).
 (オレフィン樹脂水性分散体(B-18C)、(B-19C)の調製)
 表6Cに示すように、A成分として(A-1C)を(A-12C)、(A-13C)へ変更した以外は、オレフィン樹脂水性分散体(B-1C)と同様にして、オレフィン樹脂水性分散体(B-18C)、(B-19C)を得た。
 各オレフィン樹脂水性分散体(B-18C)、(B-19C)に分散しているエチレン・α-オレフィン共重合体(A)の体積平均粒子径を表6Cに示す。
(Preparation of aqueous dispersion of olefin resin (B-18C) and (B-19C))
As shown in Table 6C, the olefin resin was the same as the aqueous olefin resin dispersion (B-1C) except that (A-1C) was changed to (A-12C) and (A-13C) as the A component. Aqueous dispersions (B-18C) and (B-19C) were obtained.
Table 6C shows the volume average particle size of the ethylene / α-olefin copolymer (A) dispersed in each of the aqueous olefin resin dispersions (B-18C) and (B-19C).
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
 <架橋エチレン・α-オレフィン共重合体(C)>
 (架橋エチレン・α-オレフィン共重合体(C-1C)の調製)
 オレフィン樹脂水性分散体(B-1C)(固形分として100部)に固形分濃度が35%になるようにイオン交換水を加え、有機過酸化物としてt-ブチルクミルペルオキシド0.5部、多官能性化合物としてジビニルベンゼン1部を添加し、130℃で5時間反応させて、架橋エチレン・α-オレフィン共重合体(C-1C)を調製した。架橋エチレン・α-オレフィン共重合体(C-1C)のゲル含有率、体積平均粒子径を表7Cに示す。
<Crosslinked ethylene / α-olefin copolymer (C)>
(Preparation of cross-linked ethylene / α-olefin copolymer (C-1C))
Ion exchange water was added to the olefin resin aqueous dispersion (B-1C) (100 parts as a solid content) to a solid content concentration of 35%, and 0.5 parts of t-butylcumyl peroxide as an organic peroxide, As a polyfunctional compound, 1 part of divinylbenzene was added and reacted at 130 ° C. for 5 hours to prepare a crosslinked ethylene / α-olefin copolymer (C-1C). Table 7C shows the gel content and volume average particle size of the crosslinked ethylene / α-olefin copolymer (C-1C).
 (架橋エチレン・α-オレフィン共重合体(C-2C)~(C-14C)の調製)
 表7C、表8Cに示すようにオレフィン樹脂水性分散体(B)の種類とt-ブチルクミルペルオキシドの添加量を変更した以外は、架橋エチレン・α-オレフィン共重合体(C-1C)と同様にして、架橋エチレン・α-オレフィン共重合体(C-C2)~(C-14C)を得た。架橋エチレン・α-オレフィン共重合体(C-2C)~(C-14C)のゲル含有率、体積平均粒子径を表7C、表8Cに示す。
(Preparation of crosslinked ethylene / α-olefin copolymers (C-2C) to (C-14C))
As shown in Table 7C and Table 8C, the cross-linked ethylene / α-olefin copolymer (C-1C) and the olefin resin aqueous dispersion (B) and the addition amount of t-butylcumyl peroxide were changed except that Similarly, crosslinked ethylene / α-olefin copolymers (C—C2) to (C-14C) were obtained. Tables 7C and 8C show the gel contents and volume average particle diameters of the crosslinked ethylene / α-olefin copolymers (C-2C) to (C-14C).
 (架橋エチレン・α-オレフィン共重合体(C-15C)~(C-24C)の調製)
 表9C、表10Cに示すようにオレフィン樹脂水性分散体(B)の種類とt-ブチルクミルペルオキシドの添加量を変更した以外は、架橋エチレン・α-オレフィン共重合体(C-1C)と同様にして、架橋エチレン・α-オレフィン共重合体(C-15C)~(C-24C)を得た。架橋エチレン・α-オレフィン共重合体(C-15C)~(C-24C)のゲル含有率、体積平均粒子径を表9C、表10Cに示す。
(Preparation of crosslinked ethylene / α-olefin copolymers (C-15C) to (C-24C))
As shown in Table 9C and Table 10C, except that the type of aqueous olefin resin dispersion (B) and the amount of t-butylcumyl peroxide added were changed, the crosslinked ethylene / α-olefin copolymer (C-1C) and Similarly, crosslinked ethylene / α-olefin copolymers (C-15C) to (C-24C) were obtained. Tables 9C and 10C show the gel contents and volume average particle diameters of the crosslinked ethylene / α-olefin copolymers (C-15C) to (C-24C).
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
 <グラフト共重合体(D)>
 (グラフト共重合体(D-1C)の調製)
 撹拌機付きステンレス重合槽に、オレフィン樹脂水性分散体(B-1C)(エチレン・プロピレン共重合体(A-1C)の固形分として70部)を入れ、オレフィン樹脂水性分散体(B-1C)に固形分濃度が30%になるようにイオン交換水を加え、硫酸第一鉄0.006部、ピロリン酸ナトリウム0.3部およびフラクトース0.35部を仕込み、温度を80℃とした。スチレン23.4部、アクリロニトリル6.6部およびクメンヒドロペルオキシド0.6部を150分間連続的に添加し、重合温度を80℃に保ち乳化重合を行った。重合後、グラフト共重合体(D-1C)を含む水性分散体に酸化防止剤を添加し、硫酸にて固形分の析出を行い、洗浄、脱水、乾燥の工程を経て、粉状のグラフト共重合体(D-1C)を得た。グラフト共重合体(D-1C)のグラフト率を測定したところ30%であった。結果を表11Cに示す。
<Graft copolymer (D)>
(Preparation of graft copolymer (D-1C))
An aqueous olefin resin dispersion (B-1C) (70 parts as solid content of ethylene / propylene copolymer (A-1C)) is placed in a stainless polymerization tank equipped with a stirrer, and an aqueous olefin resin dispersion (B-1C) is added. Ion-exchanged water was added to the solution so that the solid concentration was 30%, and 0.006 part of ferrous sulfate, 0.3 part of sodium pyrophosphate and 0.35 part of fructose were added, and the temperature was set to 80 ° C. Styrene (23.4 parts), acrylonitrile (6.6 parts) and cumene hydroperoxide (0.6 parts) were continuously added for 150 minutes, and the polymerization temperature was kept at 80 ° C. to carry out emulsion polymerization. After polymerization, an antioxidant is added to the aqueous dispersion containing the graft copolymer (D-1C), solids are precipitated with sulfuric acid, and after washing, dehydration and drying, A polymer (D-1C) was obtained. The graft ratio of the graft copolymer (D-1C) was measured and found to be 30%. The results are shown in Table 11C.
 (グラフト共重合体(D-2C)~(D-17C)の調製)
 表11C~表14Cに示すようにオレフィン樹脂水性分散体(B)の種類を変更した以外は、グラフト共重合体(D-1C)と同様にして、グラフト共重合体(D-2C)~(D-17C)を得た。グラフト共重合体(D-2C)~(D-17C)のグラフト率を表11C~表14Cに示す。
(Preparation of graft copolymers (D-2C) to (D-17C))
As shown in Table 11C to Table 14C, except that the type of the aqueous olefin resin dispersion (B) was changed, in the same manner as the graft copolymer (D-1C), the graft copolymer (D-2C) to ( D-17C) was obtained. The graft ratios of the graft copolymers (D-2C) to (D-17C) are shown in Tables 11C to 14C.
 (グラフト共重合体(D-18C)~(D-23C)、(D-25C)~(D-32C)の調製)
 表15C~表17Cに示すようにオレフィン樹脂水性分散体(B)を、架橋エチレン・α-オレフィン共重合体(C)を含む水性分散体に変更した以外は、グラフト共重合体(D-1C)と同様にして、グラフト共重合体(D-18C)~(D-23C)および(D-25C)~(D-32C)を得た。グラフト共重合体(D-18C)~(D-23C)および(D-25C)~(D-32C)のグラフト率を表15C~表17Cに示す。
(Preparation of graft copolymers (D-18C) to (D-23C), (D-25C) to (D-32C))
As shown in Tables 15C to 17C, the graft copolymer (D-1C) was used except that the aqueous olefin resin dispersion (B) was changed to an aqueous dispersion containing a crosslinked ethylene / α-olefin copolymer (C). ), Graft copolymers (D-18C) to (D-23C) and (D-25C) to (D-32C) were obtained. The graft ratios of the graft copolymers (D-18C) to (D-23C) and (D-25C) to (D-32C) are shown in Tables 15C to 17C.
 (グラフト共重合体(D-24C)の調製)
 撹拌機付きステンレス重合槽に、エチレン・プロピレン共重合体(A-1C)70部、トルエン300部を仕込み、内容物を70℃で1時間撹拌して均一に溶解した。十分に窒素置換を行った後、スチレン23.4部、アクリロニトリル6.6部、t-ドデシルメルカプタン0.24部、t-ブチルペルオキシイソプロピルモノカーボネート0.22部を添加し、内温を110℃まで昇温し、4時間反応させた。内温を120℃に昇温し、2時間反応させた。重合後、内温を100℃まで冷却し、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェノール)-プロピオネート0.2部を添加した。反応混合物を抜き出し、水蒸気蒸留によって未反応物と溶媒を留去した。30mmφの真空ベント付き2軸押出機(池貝社製、「PCM30」)で220℃、93.325kPa真空にて、揮発分を実質的に脱揮させ、ペレット化し、グラフト共重合体(D-15C)を得た。グラフト共重合体(D-24C)のグラフト率を測定したところ26%であった。電子顕微鏡により、熱可塑性樹脂組成物中のエチレン・α-オレフィン共重合体(A)の体積平均粒子径を確認したところ、0.39μmであった。結果を表16Cに示す。
(Preparation of graft copolymer (D-24C))
A stainless polymerization tank equipped with a stirrer was charged with 70 parts of ethylene / propylene copolymer (A-1C) and 300 parts of toluene, and the contents were stirred at 70 ° C. for 1 hour to uniformly dissolve. After sufficiently purging with nitrogen, 23.4 parts of styrene, 6.6 parts of acrylonitrile, 0.24 parts of t-dodecyl mercaptan and 0.22 parts of t-butylperoxyisopropyl monocarbonate were added, and the internal temperature was 110 ° C. The mixture was heated up to react for 4 hours. The internal temperature was raised to 120 ° C. and reacted for 2 hours. After the polymerization, the internal temperature was cooled to 100 ° C., and 0.2 part of octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenol) -propionate was added. The reaction mixture was extracted, and unreacted substances and the solvent were distilled off by steam distillation. The volatile matter was substantially devolatilized at 220 ° C. and 93.325 kPa vacuum in a twin screw extruder with a 30 mmφ vacuum vent (“PCM30” manufactured by Ikegai Co., Ltd.), pelletized, and graft copolymer (D-15C ) The graft ratio of the graft copolymer (D-24C) was measured and found to be 26%. When the volume average particle diameter of the ethylene / α-olefin copolymer (A) in the thermoplastic resin composition was confirmed by an electron microscope, it was 0.39 μm. The results are shown in Table 16C.
 (グラフト共重合体(D-33C)、(D-34C)の調製)
 表18Cに示すようにオレフィン樹脂水性分散体(B)の種類を変更した以外は、グラフト共重合体(D-1C)と同様にして、グラフト共重合体(D-33C)、(D-34C)を得た。グラフト共重合体(D-33C)、(D-34C)のグラフト率を表18Cに示す。
(Preparation of graft copolymers (D-33C) and (D-34C))
As shown in Table 18C, the graft copolymers (D-33C) and (D-34C) were the same as the graft copolymer (D-1C) except that the type of the aqueous olefin resin dispersion (B) was changed. ) The graft ratios of the graft copolymers (D-33C) and (D-34C) are shown in Table 18C.
 (グラフト共重合体(D-35C)~(D-44C)の調製)
 表18C~表20Cに示すようにオレフィン樹脂水性分散体(B)を、架橋エチレン・α-オレフィン共重合体(C)を含む水性分散体に変更した以外は、グラフト共重合体(D-1C)と同様にして、グラフト共重合体(D-35C)~(D-44C)を得た。グラフト共重合体(D-35C)~(D-44C)のグラフト率を表18C~表20Cに示す。
(Preparation of graft copolymers (D-35C) to (D-44C))
As shown in Table 18C to Table 20C, the graft copolymer (D-1C) was used except that the aqueous olefin resin dispersion (B) was changed to an aqueous dispersion containing a crosslinked ethylene / α-olefin copolymer (C). ) To obtain graft copolymers (D-35C) to (D-44C). The graft ratios of the graft copolymers (D-35C) to (D-44C) are shown in Tables 18C to 20C.
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000070
 <グラフト共重合体(F)>(グラフト共重合体(F-1C)の調製)
 アルケニルコハク酸ジカリウム0.97部、イオン交換水175部、アクリル酸n-ブチル50部、メタクリル酸アリル0.16部、1,3-ブチレングリコールジメタクリレート0.08部、およびt-ブチルヒドロペルオキシド0.1部の混合物を反応器に投入した。反応器に窒素気流を通じることによって、反応器内を窒素置換し、60℃まで昇温した。内温が50℃となった時点で、硫酸第一鉄0.00015部、エチレンジアミン四酢酸二ナトリウム塩0.00045部、ロンガリット0.24部、およびイオン交換水5部からなる水溶液を添加して重合を開始させ、内温を75℃に上昇させた。さらにこの状態を1時間維持し、架橋アクリル酸エステル系ゴム状重合体(E-1C)の水性分散体を得た。水性分散体に分散している架橋アクリル酸エステル系ゴム状重合体(E-1C)の体積平均粒子径は0.082μmであった。
<Graft Copolymer (F)> (Preparation of Graft Copolymer (F-1C))
0.97 part of dipotassium alkenyl succinate, 175 parts of ion-exchanged water, 50 parts of n-butyl acrylate, 0.16 part of allyl methacrylate, 0.08 part of 1,3-butylene glycol dimethacrylate, and t-butyl hydroperoxide 0.1 part of the mixture was charged to the reactor. By passing a nitrogen stream through the reactor, the inside of the reactor was purged with nitrogen, and the temperature was raised to 60 ° C. When the internal temperature reached 50 ° C., an aqueous solution consisting of 0.00015 part of ferrous sulfate, 0.00045 part of ethylenediaminetetraacetic acid disodium salt, 0.24 part of Rongalite, and 5 parts of ion-exchanged water was added. Polymerization was started and the internal temperature was raised to 75 ° C. Further, this state was maintained for 1 hour to obtain an aqueous dispersion of a crosslinked acrylic ester rubber-like polymer (E-1C). The volume average particle diameter of the crosslinked acrylate rubber polymer (E-1C) dispersed in the aqueous dispersion was 0.082 μm.
 反応器の内温を75℃に保ったまま、架橋アクリル酸エステル系ゴム状重合体(E-1C)50部(固形分として)に対して、ロンガリット0.15部、アルケニルコハク酸ジカリウム0.65部、およびイオン交換水10部からなる水溶液を添加し、ついで、アクリロニトリル6.3部、スチレン18.7部、およびt-ブチルヒドロペルオキシド0.11部からなる混合液を1時間にわたって滴下し、グラフト重合させた。滴下終了から5分後に、硫酸第一鉄0.001部、エチレンジアミン四酢酸二ナトリウム塩0.003部、ロンガリット0.15部、およびイオン交換水5部からなる水溶液を添加し、ついで、アクリロニトリル6.3部、スチレン18.7部、t-ブチルヒドロペルオキシド0.19部、およびn-オクチルメルカプタン0.014部からなる混合液を1時間にわたって滴下しグラフト重合させた。滴下終了後、内温を75℃に10分間保持した後、冷却し、内温が60℃となった時点で、酸化防止剤(吉富製薬工業社製、アンテージW500)0.2部およびアルケニルコハク酸ジカリウム0.2部をイオン交換水5部に溶解した水溶液を添加した。以上の操作により、架橋アクリル酸エステル系ゴム状重合体(E-1C)へのアクリロニトリルおよびスチレンのグラフト重合を行った。ついで、反応生成物の水性分散体を硫酸水溶液で凝固、水洗した後、乾燥してグラフト共重合体(F-1C)を得た。 While maintaining the internal temperature of the reactor at 75 ° C., Rongalite 0.15 parts, alkenyl succinate dipotassium 0.15 parts, and 50 parts (as a solid content) of a crosslinked acrylate rubber polymer (E-1C). An aqueous solution consisting of 65 parts and 10 parts of ion-exchanged water was added, and then a mixed solution consisting of 6.3 parts of acrylonitrile, 18.7 parts of styrene and 0.11 part of t-butyl hydroperoxide was added dropwise over 1 hour. And graft polymerization. Five minutes after the completion of the dropping, an aqueous solution comprising 0.001 part of ferrous sulfate, 0.003 part of ethylenediaminetetraacetic acid disodium salt, 0.15 part of Rongalite, and 5 parts of ion-exchanged water was added, and then acrylonitrile 6 A mixture of 3 parts, 18.7 parts of styrene, 0.19 parts of t-butyl hydroperoxide, and 0.014 part of n-octyl mercaptan was added dropwise over 1 hour for graft polymerization. After completion of the dropwise addition, the internal temperature was kept at 75 ° C. for 10 minutes and then cooled. When the internal temperature reached 60 ° C., 0.2 parts of antioxidant (Yantomi Pharmaceutical Co., Ltd., Antage W500) and alkenyl succinic acid were added. An aqueous solution in which 0.2 part of dipotassium acid was dissolved in 5 parts of ion-exchanged water was added. Through the above operation, graft polymerization of acrylonitrile and styrene onto the crosslinked acrylate rubber polymer (E-1C) was performed. Subsequently, the aqueous dispersion of the reaction product was coagulated with an aqueous sulfuric acid solution, washed with water, and dried to obtain a graft copolymer (F-1C).
(グラフト共重合体(F-2C)の調製)
 アルケニルコハク酸ジカリウム1.2部、イオン交換水175部、アクリル酸n-ブチル50 部、メタクリル酸アリル0.16部、1,3-ブチレングリコールジメタクリレート0.08部、およびt-ブチルヒドロペルオキシド0.1部の混合物を反応器に投入した。反応器に窒素気流を通じることによって、反応器内を窒素置換し、60℃まで昇温した。内温が50℃となった時点で、硫酸第一鉄0.00015部、エチレンジアミン四酢酸二ナトリウム塩0.00045部、ロンガリット0.24部、およびイオン交換水5部からなる水溶液を添加して重合を開始させ、内温を75℃に上昇させた。さらにこの状態を1時間維持し、架橋アクリル酸エステル系ゴム状重合体(E-2C)の水性分散体を得た。水性分散体に分散している架橋アクリル酸エステル系ゴム状重合体(E-2C)の体積平均粒子径は0.037μmであった。
(Preparation of graft copolymer (F-2C))
1.2 parts of dipotassium alkenyl succinate, 175 parts of ion exchange water, 50 parts of n-butyl acrylate, 0.16 part of allyl methacrylate, 0.08 part of 1,3-butylene glycol dimethacrylate, and t-butyl hydroperoxide 0.1 part of the mixture was charged to the reactor. By passing a nitrogen stream through the reactor, the inside of the reactor was purged with nitrogen, and the temperature was raised to 60 ° C. When the internal temperature reached 50 ° C., an aqueous solution consisting of 0.00015 part of ferrous sulfate, 0.00045 part of ethylenediaminetetraacetic acid disodium salt, 0.24 part of Rongalite, and 5 parts of ion-exchanged water was added. Polymerization was started and the internal temperature was raised to 75 ° C. Furthermore, this state was maintained for 1 hour to obtain an aqueous dispersion of a cross-linked acrylic acid ester rubbery polymer (E-2C). The volume average particle diameter of the crosslinked acrylic ester rubber-like polymer (E-2C) dispersed in the aqueous dispersion was 0.037 μm.
 反応器の内温を75℃に保ったまま、架橋アクリル酸エステル系ゴム状重合体(E-2C)50部(固形分として)に対して、ロンガリット0.15部、アルケニルコハク酸ジカリウム0.65部、およびイオン交換水10部からなる水溶液を添加し、ついで、アクリロニトリル6.3部、スチレン18.7部、およびt-ブチルヒドロペルオキシド0.11部からなる混合液を1時間にわたって滴下し、グラフト重合させた。滴下終了から5分後に、硫酸第一鉄0.001部、エチレンジアミン四酢酸二ナトリウム塩0.003部、ロンガリット0.15部、およびイオン交換水5部からなる水溶液を添加し、ついで、アクリロニトリル6.3部、スチレン18.7部、t-ブチルヒドロペルオキシド0.19部、およびn-オクチルメルカプタン0.014部からなる混合液を1時間にわたって滴下しグラフト重合させた。滴下終了後、内温を75℃に10分間保持した後、冷却し、内温が60℃となった時点で、酸化防止剤(吉富製薬工業社製、アンテージW500)0.2部およびアルケニルコハク酸ジカリウム0.2部をイオン交換水5部に溶解した水溶液を添加した。以上の操作により、架橋アクリル酸エステル系ゴム状重合体(E-2C)へのアクリロニトリルおよびスチレンのグラフト重合を行った。ついで、反応生成物の水性分散体を硫酸水溶液で凝固、水洗した後、乾燥してグラフト共重合体(F-2C)を得た。 While maintaining the internal temperature of the reactor at 75 ° C., Rongalite 0.15 parts, alkenyl succinate dipotassium 0.15 parts with respect to 50 parts (as a solid content) of the crosslinked acrylate rubber polymer (E-2C). An aqueous solution consisting of 65 parts and 10 parts of ion-exchanged water was added, and then a mixed solution consisting of 6.3 parts of acrylonitrile, 18.7 parts of styrene and 0.11 part of t-butyl hydroperoxide was added dropwise over 1 hour. And graft polymerization. Five minutes after the completion of the dropping, an aqueous solution comprising 0.001 part of ferrous sulfate, 0.003 part of ethylenediaminetetraacetic acid disodium salt, 0.15 part of Rongalite, and 5 parts of ion-exchanged water was added, and then acrylonitrile 6 A mixture of 3 parts, 18.7 parts of styrene, 0.19 parts of t-butyl hydroperoxide, and 0.014 part of n-octyl mercaptan was added dropwise over 1 hour for graft polymerization. After completion of the dropwise addition, the internal temperature was kept at 75 ° C. for 10 minutes and then cooled. When the internal temperature reached 60 ° C., 0.2 parts of antioxidant (Yantomi Pharmaceutical Co., Ltd., Antage W500) and alkenyl succinic acid were added. An aqueous solution in which 0.2 part of dipotassium acid was dissolved in 5 parts of ion-exchanged water was added. By the above operation, graft polymerization of acrylonitrile and styrene onto the crosslinked acrylic ester rubber polymer (E-2C) was performed. Subsequently, the aqueous dispersion of the reaction product was coagulated with an aqueous sulfuric acid solution, washed with water, and dried to obtain a graft copolymer (F-2C).
(グラフト共重合体(F-3C)の調製)
 アルケニルコハク酸ジカリウム1.08部、イオン交換水175部、アクリル酸n-ブチル50部、メタクリル酸アリル0.16部、1,3-ブチレングリコールジメタクリレート0.08部、およびt-ブチルヒドロペルオキシド0.1部の混合物を反応器に投入した。反応器に窒素気流を通じることによって、反応器内を窒素置換し、60℃まで昇温した。内温が50℃となった時点で、硫酸第一鉄0.00015部、エチレンジアミン四酢酸二ナトリウム塩0.00045部、ロンガリット0.24部、およびイオン交換水5部からなる水溶液を添加して重合を開始させ、内温を75℃に上昇させた。さらにこの状態を1時間維持し、架橋アクリル酸エステル系ゴム状重合体(E-3C)の水性分散体を得た。水性分散体に分散している架橋アクリル酸エステル系ゴム状重合体(E-3C)の体積平均粒子径は0.050μmであった。
(Preparation of graft copolymer (F-3C))
1.08 parts dipotassium alkenyl succinate, 175 parts ion-exchanged water, 50 parts n-butyl acrylate, 0.16 parts allyl methacrylate, 0.08 parts 1,3-butylene glycol dimethacrylate, and t-butyl hydroperoxide 0.1 part of the mixture was charged to the reactor. By passing a nitrogen stream through the reactor, the inside of the reactor was purged with nitrogen, and the temperature was raised to 60 ° C. When the internal temperature reached 50 ° C., an aqueous solution consisting of 0.00015 part of ferrous sulfate, 0.00045 part of ethylenediaminetetraacetic acid disodium salt, 0.24 part of Rongalite, and 5 parts of ion-exchanged water was added. Polymerization was started and the internal temperature was raised to 75 ° C. Further, this state was maintained for 1 hour to obtain an aqueous dispersion of a cross-linked acrylic ester rubbery polymer (E-3C). The volume average particle diameter of the crosslinked acrylate rubber polymer (E-3C) dispersed in the aqueous dispersion was 0.050 μm.
 反応器の内温を75℃に保ったまま、架橋アクリル酸エステル系ゴム状重合体(E-3C)50部(固形分として)に対して、ロンガリット0.15部、アルケニルコハク酸ジカリウム0.65部、およびイオン交換水10部からなる水溶液を添加し、ついで、アクリロニトリル6.3部、スチレン18.7部、およびt-ブチルヒドロペルオキシド0.11部からなる混合液を1時間にわたって滴下し、グラフト重合させた。滴下終了から5分後に、硫酸第一鉄0.001部、エチレンジアミン四酢酸二ナトリウム塩0.003部、ロンガリット0.15部、およびイオン交換水5部からなる水溶液を添加し、ついで、アクリロニトリル6.3部、スチレン18.7部、t-ブチルヒドロペルオキシド0.19部、およびn-オクチルメルカプタン0.014部からなる混合液を1時間にわたって滴下しグラフト重合させた。滴下終了後、内温を75℃に10分間保持した後、冷却し、内温が60℃となった時点で、酸化防止剤(吉富製薬工業社製、アンテージW500)0.2部およびアルケニルコハク酸ジカリウム0.2部をイオン交換水5部に溶解した水溶液を添加した。以上の操作により、架橋アクリル酸エステル系ゴム状重合体(E-3C)へのアクリロニトリルおよびスチレンのグラフト重合を行った。ついで、反応生成物の水性分散体を硫酸水溶液で凝固、水洗した後、乾燥してグラフト共重合体(F-3C)を得た。 While maintaining the internal temperature of the reactor at 75 ° C., Rongalite 0.15 parts, alkenyl succinate dipotassium 0.15 parts with respect to 50 parts (as a solid content) of a crosslinked acrylate rubber polymer (E-3C). An aqueous solution consisting of 65 parts and 10 parts of ion-exchanged water was added, and then a mixed solution consisting of 6.3 parts of acrylonitrile, 18.7 parts of styrene and 0.11 part of t-butyl hydroperoxide was added dropwise over 1 hour. And graft polymerization. Five minutes after the completion of the dropping, an aqueous solution comprising 0.001 part of ferrous sulfate, 0.003 part of ethylenediaminetetraacetic acid disodium salt, 0.15 part of Rongalite, and 5 parts of ion-exchanged water was added, and then acrylonitrile 6 A mixture of 3 parts, 18.7 parts of styrene, 0.19 parts of t-butyl hydroperoxide, and 0.014 part of n-octyl mercaptan was added dropwise over 1 hour for graft polymerization. After completion of the dropwise addition, the internal temperature was kept at 75 ° C. for 10 minutes and then cooled. When the internal temperature reached 60 ° C., 0.2 parts of antioxidant (Yantomi Pharmaceutical Co., Ltd., Antage W500) and alkenyl succinic acid were added. An aqueous solution in which 0.2 part of dipotassium acid was dissolved in 5 parts of ion-exchanged water was added. Through the above operation, graft polymerization of acrylonitrile and styrene onto the crosslinked acrylic acid ester rubbery polymer (E-3C) was performed. Subsequently, the aqueous dispersion of the reaction product was coagulated with an aqueous sulfuric acid solution, washed with water, and dried to obtain a graft copolymer (F-3C).
(グラフト共重合体(F-4C)の調製)
 アルケニルコハク酸ジカリウム0.59部、イオン交換水175部、アクリル酸n-ブチル50部、メタクリル酸アリル0.16部、1,3-ブチレングリコールジメタクリレート0.08部、およびt-ブチルヒドロペルオキシド0.1部の混合物を反応器に投入した。反応器に窒素気流を通じることによって、反応器内を窒素置換し、60℃まで昇温した。内温が50℃となった時点で、硫酸第一鉄0.00015部、エチレンジアミン四酢酸二ナトリウム塩0.00045部、ロンガリット0.24部、およびイオン交換水5部からなる水溶液を添加して重合を開始させ、内温を75℃に上昇させた。さらにこの状態を1時間維持し、架橋アクリル酸エステル系ゴム状重合体(E-4C)の水性分散体を得た。水性分散体に分散している架橋アクリル酸エステル系ゴム状重合体(E-4C)の体積平均粒子径は0.18μmであった。
(Preparation of graft copolymer (F-4C))
0.59 parts dipotassium alkenyl succinate, 175 parts ion-exchanged water, 50 parts n-butyl acrylate, 0.16 parts allyl methacrylate, 0.08 parts 1,3-butylene glycol dimethacrylate, and t-butyl hydroperoxide 0.1 part of the mixture was charged to the reactor. By passing a nitrogen stream through the reactor, the inside of the reactor was purged with nitrogen, and the temperature was raised to 60 ° C. When the internal temperature reached 50 ° C., an aqueous solution consisting of 0.00015 part of ferrous sulfate, 0.00045 part of ethylenediaminetetraacetic acid disodium salt, 0.24 part of Rongalite, and 5 parts of ion-exchanged water was added. Polymerization was started and the internal temperature was raised to 75 ° C. Furthermore, this state was maintained for 1 hour to obtain an aqueous dispersion of a cross-linked acrylic acid ester rubbery polymer (E-4C). The volume average particle diameter of the crosslinked acrylate rubber polymer (E-4C) dispersed in the aqueous dispersion was 0.18 μm.
 反応器の内温を75℃に保ったまま、架橋アクリル酸エステル系ゴム状重合体(E-4C)50部(固形分として)に対して、ロンガリット0.15部、アルケニルコハク酸ジカリウム0.65部、およびイオン交換水10部からなる水溶液を添加し、ついで、アクリロニトリル6.3部、スチレン18.7部、およびt-ブチルヒドロペルオキシド0.11部からなる混合液を1時間にわたって滴下し、グラフト重合させた。滴下終了から5分後に、硫酸第一鉄0.001部、エチレンジアミン四酢酸二ナトリウム塩0.003部、ロンガリット0.15部、およびイオン交換水5部からなる水溶液を添加し、ついで、アクリロニトリル6.3部、スチレン18.7部、t-ブチルヒドロペルオキシド0.19部、およびn-オクチルメルカプタン0.014部からなる混合液を1時間にわたって滴下しグラフト重合させた。滴下終了後、内温を75℃に10分間保持した後、冷却し、内温が60℃となった時点で、酸化防止剤(吉富製薬工業社製、アンテージW500)0.2部およびアルケニルコハク酸ジカリウム0.2部をイオン交換水5部に溶解した水溶液を添加した。以上の操作により、架橋アクリル酸エステル系ゴム状重合体(E-4C)へのアクリロニトリルおよびスチレンのグラフト重合を行った。ついで、反応生成物の水性分散体を硫酸水溶液で凝固、水洗した後、乾燥してグラフト共重合体(F-4C)を得た。 While maintaining the internal temperature of the reactor at 75 ° C., Rongalite 0.15 parts, alkenyl succinate dipotassium 0.15 parts, and 50 parts of crosslinked acrylic ester rubber polymer (E-4C) (as a solid content). An aqueous solution consisting of 65 parts and 10 parts of ion-exchanged water was added, and then a mixed solution consisting of 6.3 parts of acrylonitrile, 18.7 parts of styrene and 0.11 part of t-butyl hydroperoxide was added dropwise over 1 hour. And graft polymerization. Five minutes after the completion of the dropping, an aqueous solution comprising 0.001 part of ferrous sulfate, 0.003 part of ethylenediaminetetraacetic acid disodium salt, 0.15 part of Rongalite, and 5 parts of ion-exchanged water was added, and then acrylonitrile 6 A mixture of 3 parts, 18.7 parts of styrene, 0.19 parts of t-butyl hydroperoxide, and 0.014 part of n-octyl mercaptan was added dropwise over 1 hour for graft polymerization. After completion of the dropwise addition, the internal temperature was kept at 75 ° C. for 10 minutes and then cooled. When the internal temperature reached 60 ° C., 0.2 parts of antioxidant (Yantomi Pharmaceutical Co., Ltd., Antage W500) and alkenyl succinic acid were added. An aqueous solution in which 0.2 part of dipotassium acid was dissolved in 5 parts of ion-exchanged water was added. Through the above operation, graft polymerization of acrylonitrile and styrene onto the crosslinked acrylate rubber polymer (E-4C) was performed. Subsequently, the aqueous dispersion of the reaction product was coagulated with an aqueous sulfuric acid solution, washed with water, and dried to obtain a graft copolymer (F-4C).
(グラフト共重合体(F-5C)の調製)
 アルケニルコハク酸ジカリウム0.43部、イオン交換水175部、アクリル酸n-ブチル50部、メタクリル酸アリル0.16部、1,3-ブチレングリコールジメタクリレート0.08部、およびt-ブチルヒドロペルオキシド0.1部の混合物を反応器に投入した。反応器に窒素気流を通じることによって、反応器内を窒素置換し、60℃まで昇温した。内温が50℃となった時点で、硫酸第一鉄0.00015部、エチレンジアミン四酢酸二ナトリウム塩0.00045部、ロンガリット0.24部、およびイオン交換水5部からなる水溶液を添加して重合を開始させ、内温を75℃に上昇させた。さらにこの状態を1時間維持し、架橋アクリル酸エステル系ゴム状重合体(E-5C)の水性分散体を得た。水性分散体に分散している架橋アクリル酸エステル系ゴム状重合体(E-5C)の体積平均粒子径は0.24μmであった。
(Preparation of graft copolymer (F-5C))
0.43 part of dipotassium alkenyl succinate, 175 parts of ion exchange water, 50 parts of n-butyl acrylate, 0.16 part of allyl methacrylate, 0.08 part of 1,3-butylene glycol dimethacrylate, and t-butyl hydroperoxide 0.1 part of the mixture was charged to the reactor. By passing a nitrogen stream through the reactor, the inside of the reactor was purged with nitrogen, and the temperature was raised to 60 ° C. When the internal temperature reached 50 ° C., an aqueous solution consisting of 0.00015 part of ferrous sulfate, 0.00045 part of ethylenediaminetetraacetic acid disodium salt, 0.24 part of Rongalite, and 5 parts of ion-exchanged water was added. Polymerization was started and the internal temperature was raised to 75 ° C. Further, this state was maintained for 1 hour to obtain an aqueous dispersion of a crosslinked acrylic ester rubber-like polymer (E-5C). The volume average particle diameter of the crosslinked acrylic ester rubber-like polymer (E-5C) dispersed in the aqueous dispersion was 0.24 μm.
 反応器の内温を75℃に保ったまま、架橋アクリル酸エステル系ゴム状重合体(E-5C)50部(固形分として)に対して、ロンガリット0.15部、アルケニルコハク酸ジカリウム0.65部、およびイオン交換水10部からなる水溶液を添加し、ついで、アクリロニトリル6.3部、スチレン18.7部、およびt-ブチルヒドロペルオキシド0.11部からなる混合液を1時間にわたって滴下し、グラフト重合させた。滴下終了から5分後に、硫酸第一鉄0.001部、エチレンジアミン四酢酸二ナトリウム塩0.003部、ロンガリット0.15部、およびイオン交換水5部からなる水溶液を添加し、ついで、アクリロニトリル6.3部、スチレン18.7部、t-ブチルヒドロペルオキシド0.19部、およびn-オクチルメルカプタン0.014部からなる混合液を1時間にわたって滴下しグラフト重合させた。滴下終了後、内温を75℃に10分間保持した後、冷却し、内温が60℃となった時点で、酸化防止剤(吉富製薬工業社製、アンテージW500)0.2部およびアルケニルコハク酸ジカリウム0.2部をイオン交換水5部に溶解した水溶液を添加した。以上の操作により、架橋アクリル酸エステル系ゴム状重合体(E-5C)へのアクリロニトリルおよびスチレンのグラフト重合を行った。ついで、反応生成物の水性分散体を硫酸水溶液で凝固、水洗した後、乾燥してグラフト共重合体(F-5C)を得た。 While maintaining the internal temperature of the reactor at 75 ° C., Rongalite 0.15 parts, alkenyl succinate dipotassium 0.15 parts with respect to 50 parts (as a solid content) of a crosslinked acrylate rubber polymer (E-5C). An aqueous solution consisting of 65 parts and 10 parts of ion-exchanged water was added, and then a mixed solution consisting of 6.3 parts of acrylonitrile, 18.7 parts of styrene and 0.11 part of t-butyl hydroperoxide was added dropwise over 1 hour. And graft polymerization. Five minutes after the completion of the dropping, an aqueous solution comprising 0.001 part of ferrous sulfate, 0.003 part of ethylenediaminetetraacetic acid disodium salt, 0.15 part of Rongalite, and 5 parts of ion-exchanged water was added, and then acrylonitrile 6 A mixture of 3 parts, 18.7 parts of styrene, 0.19 parts of t-butyl hydroperoxide, and 0.014 part of n-octyl mercaptan was added dropwise over 1 hour for graft polymerization. After completion of the dropwise addition, the internal temperature was kept at 75 ° C. for 10 minutes and then cooled. When the internal temperature reached 60 ° C., 0.2 parts of antioxidant (Yantomi Pharmaceutical Co., Ltd., Antage W500) and alkenyl An aqueous solution in which 0.2 part of dipotassium acid was dissolved in 5 parts of ion-exchanged water was added. Through the above operation, graft polymerization of acrylonitrile and styrene onto the crosslinked acrylate rubber polymer (E-5C) was performed. Subsequently, the aqueous dispersion of the reaction product was coagulated with an aqueous sulfuric acid solution, washed with water, and dried to obtain a graft copolymer (F-5C).
 <メタクリル酸エステル樹脂(G)>
 (メタクリル酸エステル樹脂(G-1C)の調製)
 撹拌機付きステンレス重合槽にイオン交換水150部、メタクリル酸メチル99部、アクリル酸メチル1部、2,2’-アゾビス(イソブチロニトリル)0.2部、n-オクチルメルカプタン0.25部、カルシウムヒドロオキシアパタイト0.47部、アルケニルコハク酸カリウム0.003部を仕込んだ。重合槽の内温を75℃にして3時間反応させ、90℃に昇温し1時間反応させた。内容物を抜き出し、遠心脱水機で洗浄し、乾燥させて粉状のメタクリル酸エステル樹脂(G-1C)を得た。単量体を表21Cに示す。
<Methacrylate ester resin (G)>
(Preparation of methacrylate ester resin (G-1C))
In a stainless steel polymerization tank equipped with a stirrer, 150 parts of ion exchange water, 99 parts of methyl methacrylate, 1 part of methyl acrylate, 0.2 part of 2,2′-azobis (isobutyronitrile), 0.25 part of n-octyl mercaptan , 0.47 part of calcium hydroxyapatite and 0.003 part of potassium alkenyl succinate were charged. The internal temperature of the polymerization tank was set to 75 ° C. for 3 hours, and the temperature was raised to 90 ° C. for 1 hour. The contents were extracted, washed with a centrifugal dehydrator, and dried to obtain a powdery methacrylate resin (G-1C). The monomers are shown in Table 21C.
 (メタクリル酸エステル樹脂(G-2C)の調製)
 撹拌機付きステンレス重合槽にイオン交換水150部、メタクリル酸メチル82部、N-フェニルマレイミド12部、スチレン6部、2,2’-アゾビス(イソブチロニトリル)0.2部、n-オクチルメルカプタン0.25部、ポリビニルアルコール0.7部を仕込んだ。重合槽の内温を75℃にして3時間反応させ、90℃まで昇温し1時間反応させた。内容物を抜き出し、遠心脱水機で洗浄し、乾燥させて粉状のメタクリル酸エステル樹脂(G-2C)を得た。単量体を表21Cに示す。
(Preparation of methacrylate ester resin (G-2C))
In a stainless polymerization tank equipped with a stirrer, 150 parts of ion exchange water, 82 parts of methyl methacrylate, 12 parts of N-phenylmaleimide, 6 parts of styrene, 0.2 part of 2,2′-azobis (isobutyronitrile), n-octyl Mercaptan (0.25 part) and polyvinyl alcohol (0.7 part) were charged. The internal temperature of the polymerization tank was set at 75 ° C. for 3 hours, and the temperature was raised to 90 ° C. for 1 hour. The contents were extracted, washed with a centrifugal dehydrator, and dried to obtain a powdery methacrylate resin (G-2C). The monomers are shown in Table 21C.
 (メタクリル酸エステル樹脂(G-3C)~(G-11C)の調製)
 表21C、表22Cに示すようにビニル系単量体混合物(m3)の種類を変更した以外は、メタクリル酸エステル樹脂(G-2C)と同様にして、メタクリル酸エステル樹脂(G-3C)~(G-11C)を得た。
(Preparation of Methacrylate Resin (G-3C) to (G-11C))
As shown in Table 21C and Table 22C, except that the type of the vinyl monomer mixture (m3) was changed, in the same manner as the methacrylate ester resin (G-2C), the methacrylate ester resin (G-3C) to (G-11C) was obtained.
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000072
 <スチレン系共重合体(H)>
 (スチレン系共重合体(H-1C)の調製)
 窒素置換した撹拌機付きステンレス重合槽に、イオン交換水120部、ポリビニルアルコール0.1部、2,2’-アゾビス(イソブチロニトリル)0.3部、アクリロニトリル25部、スチレン75部、t-ドデシルメルカプタン0.35部を仕込み、開始温度60℃として5時間反応させた。120℃に昇温し、4時間反応させた。内容物を取り出し、スチレン系共重合体(H-1C)を得た。
<Styrene copolymer (H)>
(Preparation of styrene copolymer (H-1C))
In a stainless steel polymerization tank equipped with a stirrer substituted with nitrogen, 120 parts of ion exchange water, 0.1 part of polyvinyl alcohol, 0.3 part of 2,2′-azobis (isobutyronitrile), 25 parts of acrylonitrile, 75 parts of styrene, t -0.35 part of dodecyl mercaptan was charged and reacted at an initial temperature of 60 ° C for 5 hours. The temperature was raised to 120 ° C. and reacted for 4 hours. The contents were taken out to obtain a styrene copolymer (H-1C).
 (スチレン系共重合体(H-2C)の調製)
 撹拌機付きステンレス重合槽に、イオン交換水150部、メタクリル酸メチル7部、アクリロニトリル23部、スチレン70部、2,2’-アゾビス(イソブチロニトリル)0.2部、n-オクチルメルカプタン0.25部、カルシウムヒドロオキシアパタイト0.47部、アルケニルコハク酸カリウム0.003部を仕込み、内温を75℃まで昇温し、3時間反応させた。90℃まで昇温し、60分間保持することで反応を完結させた。内容物を取り出し、遠心脱水機での洗浄、脱水を繰り返し、乾燥させてスチレン系共重合体(H-2C)を得た。
(Preparation of styrene copolymer (H-2C))
In a stainless steel polymerization tank equipped with a stirrer, 150 parts of ion exchange water, 7 parts of methyl methacrylate, 23 parts of acrylonitrile, 70 parts of styrene, 0.2 part of 2,2′-azobis (isobutyronitrile), n-octyl mercaptan 0 .25 parts, calcium hydroxyapatite 0.47 part, and potassium alkenyl succinate 0.003 part were charged, the internal temperature was raised to 75 ° C., and the reaction was performed for 3 hours. The reaction was completed by raising the temperature to 90 ° C. and holding for 60 minutes. The contents were taken out, repeatedly washed with a centrifugal dehydrator, dehydrated, and dried to obtain a styrene copolymer (H-2C).
(スチレン系共重合体(H-3C)~(H-5C)の調製)
 表23Cに示すようにビニル系単量体混合物(m4)の量を変更した以外は、スチレン系共重合体(H-2C)と同様にして、スチレン系共重合体(H-3C)~(H-5C)を得た。
(Preparation of styrenic copolymers (H-3C) to (H-5C))
As shown in Table 23C, except that the amount of the vinyl monomer mixture (m4) was changed, the styrene copolymer (H-3C) ˜ ( H-5C) was obtained.
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000073
 [実施例1C]
 グラフト共重合体(D-1C)10部、グラフト共重合体(F-1C)14部、メタクリル酸エステル樹脂(G-1C)76部を混合し、30mmφの真空ベント付き2軸押出機(池貝社製、「PCM30」)で240℃、93.325kPa真空にて溶融混練し、熱可塑性樹脂組成物を調製した。熱可塑性樹脂組成物のMVRを表15Cに示す。
 熱可塑性樹脂組成物をペレット化し、各種成形品を成形し、耐衝撃性、発色性、耐引っ掻き傷性、耐擦り傷性、耐熱性を評価した。結果を表24Cに示す。
[Example 1C]
10 parts of graft copolymer (D-1C), 14 parts of graft copolymer (F-1C) and 76 parts of methacrylic ester resin (G-1C) were mixed and a twin screw extruder with a 30 mmφ vacuum vent (Ikekai A thermoplastic resin composition was prepared by melt-kneading at 240 ° C. and 93.325 kPa vacuum using a “PCM30” manufactured by the company. The MVR of the thermoplastic resin composition is shown in Table 15C.
The thermoplastic resin composition was pelletized and various molded products were molded, and impact resistance, color development, scratch resistance, scratch resistance, and heat resistance were evaluated. The results are shown in Table 24C.
 [実施例2C~72C]
 表24C~表32Cに示す配合処方に変更した以外は、実施例1Cと同様にして熱可塑性樹脂組成物を調製し、MVRを測定した。
 熱可塑性樹脂組成物をペレット化し、各種成形品を成形し、耐衝撃性、発色性、耐引っ掻き傷性、耐擦り傷性、耐熱性を評価した。結果を表24C~表32Cに示す。
[Examples 2C to 72C]
A thermoplastic resin composition was prepared and MVR was measured in the same manner as in Example 1C, except that the formulation shown in Tables 24C to 32C was changed.
The thermoplastic resin composition was pelletized and various molded products were molded, and impact resistance, color development, scratch resistance, scratch resistance, and heat resistance were evaluated. The results are shown in Tables 24C to 32C.
 [比較例1C~17C]
 表33C~表35Cに示す配合処方に変更した以外は、実施例1Cと同様にして熱可塑性樹脂組成物を調製し、MVRを測定した。
 熱可塑性樹脂組成物をペレット化し、各種成形品を成形し、耐衝撃性、発色性、耐引っ掻き傷性、耐擦り傷性、耐熱性を評価した。結果を表33C~表35Cに示す。
[Comparative Examples 1C to 17C]
A thermoplastic resin composition was prepared and MVR was measured in the same manner as in Example 1C, except that the formulation shown in Table 33C to Table 35C was changed.
The thermoplastic resin composition was pelletized and various molded products were molded, and impact resistance, color development, scratch resistance, scratch resistance, and heat resistance were evaluated. The results are shown in Table 33C to Table 35C.
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000082
Figure JPOXMLDOC01-appb-T000082
Figure JPOXMLDOC01-appb-T000083
Figure JPOXMLDOC01-appb-T000083
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000085
 実施例1C~72Cの熱可塑性樹脂組成物は流動性に優れていた。また、実施例1C~72Cで得られた成形品は、耐衝撃性、耐熱性、発色性、耐引っ掻き傷性、耐擦り傷性が優れていた。
 したがって、本発明の第四の態様における熱可塑性樹脂組成物は、流動性が優れており、本発明の第四の態様における熱可塑性樹脂組成物を用いると、耐衝撃性、発色性、耐引っ掻き傷性、耐擦り傷性に優れた成形品が得られ、車輌内装部品、車輌外装部品、事務機器、家電、建材等の用途に適用できることがわかる。
The thermoplastic resin compositions of Examples 1C to 72C were excellent in fluidity. In addition, the molded products obtained in Examples 1C to 72C were excellent in impact resistance, heat resistance, color development, scratch resistance, and scratch resistance.
Therefore, the thermoplastic resin composition according to the fourth aspect of the present invention has excellent fluidity, and when the thermoplastic resin composition according to the fourth aspect of the present invention is used, impact resistance, color developability, and scratch resistance are improved. It can be seen that a molded article having excellent scratch resistance and scratch resistance can be obtained and can be applied to uses such as vehicle interior parts, vehicle exterior parts, office equipment, home appliances, and building materials.
 一方、比較例1C~17Cの結果から、本発明以外のものは、成形品の耐衝撃性、耐擦り傷性が低かった。 On the other hand, from the results of Comparative Examples 1C to 17C, those other than the present invention had low impact resistance and scratch resistance of the molded product.
 <体積平均粒子径の測定方法3>
 マイクロトラック(日機装社製「ナノトラック150」)を用い、測定溶媒として純水を用いて体積平均粒子径(MV)を測定した。
 なお、オレフィン樹脂水性分散体(B)に分散しているエチレン・α-オレフィン共重合体(A)や、水性分散体に分散している架橋エチレン・α-オレフィン共重合体(C)や、水性分散体に分散している複合ゴム状重合体(L)の体積平均粒子径が、そのまま熱可塑性樹脂組成物中のエチレン・α-オレフィン共重合体(A)や架橋エチレン・α-オレフィン共重合体(C)や複合ゴム状重合体(L)の体積平均粒子径を示すことを、電子顕微鏡の画像解析によって確認している。
<Measurement method 3 of volume average particle diameter>
The volume average particle diameter (MV) was measured using a microtrack (“Nanotrack 150” manufactured by Nikkiso Co., Ltd.) using pure water as a measurement solvent.
The ethylene / α-olefin copolymer (A) dispersed in the aqueous olefin resin dispersion (B), the crosslinked ethylene / α-olefin copolymer (C) dispersed in the aqueous dispersion, The volume average particle diameter of the composite rubber-like polymer (L) dispersed in the aqueous dispersion is the same as that of the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer in the thermoplastic resin composition. It has been confirmed by image analysis with an electron microscope that the volume average particle diameter of the polymer (C) and the composite rubber-like polymer (L) is shown.
 <溶融混練5>
 表24D~表35Dに示す配合でグラフト共重合体(D)、グラフト共重合体(M)、メタクリル酸エステル樹脂(G)、必要に応じて他の成分を混合し、30mmφの真空ベント付き2軸押出機(池貝社製「PCM30」)で、シリンダー温度200~260℃、93.325kPa真空にて溶融混練を行い、熱可塑性樹脂組成物を得た。また、必要に応じて溶融混練後に、ペレタイザー(創研社製「SH型ペレタイザー」)を用いてペレット化を行った。
<Melting and kneading 5>
Graft copolymer (D), graft copolymer (M), methacrylic ester resin (G), and other components as necessary are mixed in the formulations shown in Tables 24D to 35D, and a vacuum vent with 30 mmφ 2 A thermoplastic resin composition was obtained by melt kneading in a shaft extruder (“PCM30” manufactured by Ikegai Co., Ltd.) at a cylinder temperature of 200 to 260 ° C. and a vacuum of 93.325 kPa. Moreover, after melt-kneading as needed, pelletization was performed using a pelletizer (“SH type pelletizer” manufactured by Souken Co., Ltd.).
 <射出成形5>
 溶融混練して得られた熱可塑性樹脂組成物のペレットを射出成形機(東芝機械社製「IS55FP-1.5A」)によってシリンダー温度200~260℃、金型温度60℃の条件で、シャルピー衝撃試験用の試験片、2mm厚の平板(10cm×10cm)を得た。また、射出成形機(住友重機工業製「SG150-SYCAPM IV」)によってシリンダー温度200~260℃、金型温度60℃の条件で潤滑性の評価の試験片を得た。
<Injection molding 5>
The pellets of the thermoplastic resin composition obtained by melt kneading are subjected to Charpy impact using an injection molding machine (“IS55FP-1.5A” manufactured by Toshiba Machine Co., Ltd.) at a cylinder temperature of 200 to 260 ° C. and a mold temperature of 60 ° C. A test specimen for test, a 2 mm-thick flat plate (10 cm × 10 cm) was obtained. Further, a test piece for evaluating the lubricity was obtained with an injection molding machine (“SG150-SYCAPM IV” manufactured by Sumitomo Heavy Industries, Ltd.) under conditions of a cylinder temperature of 200 to 260 ° C. and a mold temperature of 60 ° C.
 <潤滑性の評価:脱脂前> 
 図2に示すリブ構造21aを有する試験片21および平面部分を有する試験片22を用い、荷重500gまたは1kgをかけながら往復運動を行ったときに、きしみ音が発生するか否かを調べ、下記基準で評価した。△以上を潤滑性があるとした。
 ◎:荷重500gと1kgのいずれでもきしみ音が発生しない。
 ○:荷重1kgの場合は小さなきしみ音が発生するが、500gの場合は発生しない。
 △:荷重500gと1kgのいずれでも小さなきしみ音がする。
 ×:荷重500gと1kgのいずれでもきしみ音が発生する。
<Evaluation of lubricity: before degreasing>
Using the test piece 21 having the rib structure 21a shown in FIG. 2 and the test piece 22 having a flat portion, it was investigated whether or not a squeak noise was generated when reciprocating while applying a load of 500 g or 1 kg. Evaluated by criteria. Δ or more was considered to have lubricity.
(Double-circle): A squeak noise does not generate | occur | produce in any of load 500g and 1kg.
○: A small squeak noise is generated when the load is 1 kg, but not when the load is 500 g.
Δ: A small squeak noise is produced at both loads of 500 g and 1 kg.
X: A squeak noise is generated at any load of 500 g and 1 kg.
 <潤滑性の評価:脱脂後>
 図2に示すリブ構造21aを有する試験片21および平面部分を有する試験片22を60℃にて10日間アニールした後、試験片21および試験片22の表面をイソプロピルアルコールで脱脂することによってブリード成分を取り除いた。脱脂後のきしみ音の発生を、前記方法と同様にして調べ、下記基準で評価した。△以上を潤滑性の永続性があるとした。
 ◎:荷重500gと1kgのいずれでもきしみ音が発生しない。
 ○:荷重1kgの場合は小さなきしみ音が発生するが、500gの場合は発生しない。
 △:荷重500gと1kgのいずれでも小さなきしみ音がする。
 ×:荷重500gと1kgのいずれでもきしみ音が発生する。
<Evaluation of lubricity: after degreasing>
The specimen 21 having the rib structure 21a shown in FIG. 2 and the specimen 22 having a flat surface portion are annealed at 60 ° C. for 10 days, and then the surfaces of the specimen 21 and the specimen 22 are degreased with isopropyl alcohol to cause bleeding components. Removed. Generation | occurrence | production of the squeak noise after degreasing was investigated like the said method, and the following reference | standard evaluated. △ or more is regarded as having a permanent lubricity.
(Double-circle): A squeak noise does not generate | occur | produce in any of load 500g and 1kg.
○: A small squeak noise is generated when the load is 1 kg, but not when the load is 500 g.
Δ: A small squeak noise is produced at both loads of 500 g and 1 kg.
X: A squeak noise is generated at any load of 500 g and 1 kg.
 <各成分>
 以下の例では、下記のエチレン・α-オレフィン共重合体(A)、オレフィン樹脂水性分散体(B)、架橋エチレン・α-オレフィン共重合体(C)、グラフト共重合体(D)、ポリオルガノシロキサン(La)、複合ゴム状重合体(L)、グラフト共重合体(M)、メタクリル酸エステル樹脂(G)、スチレン系共重合体(H)を用いた。
<Each component>
In the following examples, the following ethylene / α-olefin copolymer (A), olefin resin aqueous dispersion (B), crosslinked ethylene / α-olefin copolymer (C), graft copolymer (D), Organosiloxane (La), composite rubber-like polymer (L), graft copolymer (M), methacrylic ester resin (G), and styrene copolymer (H) were used.
 <エチレン・α-オレフィン共重合体(A)>
 (エチレン・プロピレン共重合体(A-1D)の調製)
 20L撹拌機付きステンレス重合槽を十分に窒素置換した後に、脱水精製したヘキサン10Lを添加し、8.0mmol/Lに調製したエチルアルミニウムセスキクロリド(Al(C1.5・Cl1.5)のヘキサン溶液を、5L/hの量で連続的に1時間供給した後、さらに触媒として0.8mmol/Lに調整したVO(OC)Clのヘキサン溶液を5L/hの量で、ヘキサンを5L/hの量で連続的に供給した。一方、重合槽上部から、重合槽内の重合液が常に10Lになるように重合液を連続的に抜き出した。バブリング管を用いてエチレンを2000L/hの量で、プロピレンを1000L/hの量で、水素を8L/hの量で供給し、重合反応を35℃で行った。
 前記条件で重合反応を行い、エチレン・プロピレン共重合体(A-1D)を含む重合溶液を得た。得られた重合溶液を、塩酸で脱灰した後に、メタノールに投入して析出させた後、乾燥させ、エチレン・プロピレン共重合体(A-1D)を得た。エチレン・プロピレン共重合体(A-1D)のポリマーの性状を表1Dに示す。
<Ethylene / α-olefin copolymer (A)>
(Preparation of ethylene / propylene copolymer (A-1D))
After fully substituting the stainless polymerization tank equipped with a 20 L stirrer with nitrogen, 10 L of dehydrated and purified hexane was added, and ethylaluminum sesquichloride (Al (C 2 H 5 ) 1.5 · Cl 1 prepared to 8.0 mmol / L was added. 5 ) was continuously supplied at a rate of 5 L / h for 1 hour, and then a hexane solution of VO (OC 2 H 5 ) Cl 2 adjusted to 0.8 mmol / L as a catalyst was further added to 5 L / h. Hexane was continuously fed in an amount of 5 L / h. On the other hand, from the upper part of the polymerization tank, the polymerization liquid was continuously extracted so that the polymerization liquid in the polymerization tank was always 10 L. Using a bubbling tube, ethylene was supplied in an amount of 2000 L / h, propylene was supplied in an amount of 1000 L / h, hydrogen was supplied in an amount of 8 L / h, and a polymerization reaction was performed at 35 ° C.
A polymerization reaction was performed under the above conditions to obtain a polymerization solution containing an ethylene / propylene copolymer (A-1D). The obtained polymerization solution was deashed with hydrochloric acid, poured into methanol for precipitation, and then dried to obtain an ethylene / propylene copolymer (A-1D). The properties of the ethylene / propylene copolymer (A-1D) polymer are shown in Table 1D.
 (エチレン・プロピレン共重合体(A-2D)~(A-5D)の調製)
 表1Dに示すように水素の供給量を変更した以外は、エチレン・プロピレン共重合体(A-1D)と同様にして、エチレン・プロピレン共重合体(A-2D)~(A-5D)を得た。エチレン・プロピレン共重合体(A-2D)~(A-5D)のポリマーの性状を表1Dに示す。
(Preparation of ethylene / propylene copolymers (A-2D) to (A-5D))
The ethylene / propylene copolymers (A-2D) to (A-5D) were prepared in the same manner as the ethylene / propylene copolymer (A-1D) except that the hydrogen supply amount was changed as shown in Table 1D. Obtained. Table 1D shows the properties of the ethylene / propylene copolymers (A-2D) to (A-5D).
 (エチレン・プロピレン共重合体(A-6D)の調製)
 20L撹拌機付きステンレス重合槽を十分に窒素置換した後に、脱水精製したヘキサン10Lを添加し、プロピレン110L(標準状態)、水素800mLを添加した。40℃まで加熱した後に、全圧が0.6MPa[gage]となるようにエチレンで加圧した。
 内圧が0.6MPa[gage]になったところで、トリイソブチルアルミニウム(TIBA)の1.0mM/mLヘキサン溶液10mLを窒素で圧入した。あらかじめ調製しておいた、トリフェニルカルベニウム(テトラキスペンタフルオロフェニル)ボレートをホウ素換算で0.16mM、[ジメチル(t-ブチルアミド)(テトラメチル-η5-シクロペンタジエニル)シラン]チタンクロリドを0.0004mMの量で含むトルエン溶液30mLを、窒素で圧入し重合を開始した。その後、5分間、40℃になるように温度調整し、かつ圧力が0.6MPa[gage]となるようにエチレンの供給を行なった。重合開始5分後、メタノール50mLを挿入して重合を停止し、大気圧まで脱圧し、エチレン・プロピレン共重合体(A-6D)を含む重合溶液を得た。得られた重合溶液は、塩酸で脱灰した後に、メタノールに投入して析出させた後、乾燥させ、エチレン・プロピレン共重合体(A-6D)を得た。エチレン・プロピレン共重合体(A-6D)のポリマーの性状を表2Dに示す。
(Preparation of ethylene / propylene copolymer (A-6D))
After sufficiently substituting a 20 L stainless steel tank with a stirrer with nitrogen, 10 L of dehydrated and purified hexane was added, and 110 L of propylene (standard state) and 800 mL of hydrogen were added. After heating to 40 ° C., it was pressurized with ethylene so that the total pressure was 0.6 MPa [gage].
When the internal pressure reached 0.6 MPa [gage], 10 mL of a 1.0 mM / mL hexane solution of triisobutylaluminum (TIBA) was injected with nitrogen. Triphenylcarbenium (tetrakispentafluorophenyl) borate prepared in advance was 0.16 mM in terms of boron, and [dimethyl (t-butylamide) (tetramethyl-η5-cyclopentadienyl) silane] titanium chloride was changed to 0. Polymerization was initiated by injecting 30 mL of a toluene solution containing 0004 mM with nitrogen. Thereafter, the temperature was adjusted to 40 ° C. for 5 minutes, and ethylene was supplied so that the pressure became 0.6 MPa [gage]. Five minutes after the start of the polymerization, 50 mL of methanol was inserted to terminate the polymerization, and the pressure was released to atmospheric pressure to obtain a polymerization solution containing an ethylene / propylene copolymer (A-6D). The obtained polymerization solution was deashed with hydrochloric acid, poured into methanol for precipitation, and then dried to obtain an ethylene / propylene copolymer (A-6D). Table 2D shows the properties of the ethylene / propylene copolymer (A-6D) polymer.
 (エチレン・プロピレン共重合体(A-7D)の調製)
 エチレン・プロピレン共重合体(A-1D)20部とエチレン・プロピレン共重合体(A-6D)80部とを混合し、30mmφの真空ベント付き2軸押出機(池貝社製、「PCM30」)で200℃、93.325kPa真空にて溶融混練し、エチレン・プロピレン共重合体(A-7D)を調製した。エチレン・プロピレン共重合体(A-7D)のポリマーの性状を表2Dに示す。
(Preparation of ethylene / propylene copolymer (A-7D))
20 parts of ethylene / propylene copolymer (A-1D) and 80 parts of ethylene / propylene copolymer (A-6D) are mixed and a twin screw extruder with a 30 mmφ vacuum vent (“PCM30” manufactured by Ikegai Co., Ltd.) The mixture was melt-kneaded at 200 ° C. and 93.325 kPa vacuum to prepare an ethylene / propylene copolymer (A-7D). Properties of the ethylene / propylene copolymer (A-7D) polymer are shown in Table 2D.
 (エチレン・プロピレン共重合体(A-11D)の調製)
 触媒としてVO(OC)Clに代えてVClを用いた以外はエチレン・プロピレン共重合体(A-1D)と同様にして、エチレン・プロピレン共重合体(A-11D)を得た。エチレン・プロピレン共重合体(A-11D)のポリマーの性状を表1Dに示す。
(Preparation of ethylene / propylene copolymer (A-11D))
An ethylene / propylene copolymer (A-11D) is obtained in the same manner as the ethylene / propylene copolymer (A-1D) except that VCl 4 is used instead of VO (OC 2 H 5 ) Cl 2 as a catalyst. It was. Table 1D shows the properties of the ethylene / propylene copolymer (A-11D).
 (エチレン・プロピレン共重合体(A-8D)の調製)
 エチレン・プロピレン共重合体(A-1D)75部とエチレン・プロピレン共重合体(A-11D)25部とを混合し、30mmφの真空ベント付き2軸押出機(池貝社製、「PCM30」)で200℃、93.325kPa真空にて溶融混練し、エチレン・プロピレン共重合体(A-8D)を調製した。エチレン・プロピレン共重合体(A-8D)のポリマーの性状を表2Dに示す。
(Preparation of ethylene / propylene copolymer (A-8D))
Mixing 75 parts of ethylene / propylene copolymer (A-1D) and 25 parts of ethylene / propylene copolymer (A-11D), twin screw extruder with 30 mmφ vacuum vent (Ikegai, “PCM30”) And kneaded at 200 ° C. and 93.325 kPa vacuum to prepare an ethylene / propylene copolymer (A-8D). Table 2D shows the properties of the ethylene / propylene copolymer (A-8D).
 (エチレン・プロピレン共重合体(A-9D)の調製)
 エチレン・プロピレン共重合体(A-1D)50部とエチレン・プロピレン共重合体(A-11D)50部とを混合し、30mmφの真空ベント付き2軸押出機(池貝社製、「PCM30」)で200℃、93.325kPa真空にて溶融混練し、エチレン・プロピレン共重合体(A-9D)を調製した。エチレン・プロピレン共重合体(A-9D)のポリマーの性状を表2Dに示す。
(Preparation of ethylene / propylene copolymer (A-9D))
Mixing 50 parts of ethylene / propylene copolymer (A-1D) and 50 parts of ethylene / propylene copolymer (A-11D), a twin screw extruder equipped with a 30 mmφ vacuum vent (“PCM30” manufactured by Ikegai Co., Ltd.) And kneaded at 200 ° C. and 93.325 kPa vacuum to prepare an ethylene / propylene copolymer (A-9D). Table 2D shows the properties of the ethylene / propylene copolymer (A-9D) polymer.
 (エチレン・プロピレン共重合体(A-10D)の調製)
 エチレン・プロピレン共重合体(A-1D)20部とエチレン・プロピレン共重合体(A-11D)80部とを混合し、30mmφの真空ベント付き2軸押出機(池貝社製、「PCM30」)で200℃、93.325kPa真空にて溶融混練し、エチレン・プロピレン共重合体(A-10D)を調製した。エチレン・プロピレン共重合体(A-10D)のポリマーの性状を表2Dに示す。
(Preparation of ethylene / propylene copolymer (A-10D))
20 parts of ethylene / propylene copolymer (A-1D) and 80 parts of ethylene / propylene copolymer (A-11D) are mixed and a twin screw extruder with a 30 mmφ vacuum vent (“Ikegai Co., Ltd.,“ PCM30 ”) The mixture was melt-kneaded at 200 ° C. and 93.325 kPa vacuum to prepare an ethylene / propylene copolymer (A-10D). Table 2D shows the properties of the ethylene / propylene copolymer (A-10D) polymer.
 (エチレン・プロピレン共重合体(A-12D)、(A-13D)の調製)
 表3Dに示すように水素の供給量を変更した以外は、エチレン・プロピレン共重合体(A-1D)と同様にして、エチレン・プロピレン共重合体(A-12D)、(A-13D)を得た。エチレン・プロピレン共重合体(A-12D)、(A-13D)のポリマーの性状を表3Dに示す。
(Preparation of ethylene / propylene copolymer (A-12D), (A-13D))
The ethylene / propylene copolymers (A-12D) and (A-13D) were prepared in the same manner as the ethylene / propylene copolymer (A-1D) except that the hydrogen supply amount was changed as shown in Table 3D. Obtained. Table 3D shows the properties of the ethylene / propylene copolymers (A-12D) and (A-13D).
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000088
 <オレフィン樹脂水性分散体(B)>
 (オレフィン樹脂水性分散体(B-1D)の調製)
 エチレン・プロピレン共重合体(A-1D)100部と、酸変性オレフィン重合体として無水マレイン酸変性ポリエチレン(三井化学社製、「三井ハイワックス 2203A」、質量平均分子量:2,700、酸価:30mg/g)20部と、アニオン系乳化剤としてオレイン酸カリウム5部とを混合した。
 この混合物を2軸スクリュー押出機(池貝社製、「PCM30」、L/D=40)のホッパーから4kg/hで供給し、前記2軸スクリュー押出機のベント部に設けた供給口より、水酸化カリウム0.5部とイオン交換水2.4部を混合した水溶液を連続的に供給しながら、220℃に加熱して溶融混練して押出した。溶融混練物を2軸スクリュー押出機の先端に取り付けた冷却装置に連続的に供給し、90℃まで冷却した。そして、2軸スクリュー押出機先端より吐出させた固体を、80℃の温水中に投入し、連続的に分散させて、固形分濃度40質量%付近まで希釈して、オレフィン樹脂水性分散体(B-1D)を得た。
オレフィン樹脂水性分散体(B-1D)に分散しているエチレン・α-オレフィン共重合体(A)の体積平均粒子径を表4Dに示す。
<Olefin resin aqueous dispersion (B)>
(Preparation of aqueous dispersion of olefin resin (B-1D))
100 parts of ethylene / propylene copolymer (A-1D) and maleic anhydride-modified polyethylene (“Mitsui Chemicals,“ Mitsui High Wax 2203A ”) as the acid-modified olefin polymer, mass average molecular weight: 2,700, acid value: 30 mg / g) 20 parts and 5 parts of potassium oleate as an anionic emulsifier were mixed.
This mixture is supplied at 4 kg / h from a hopper of a twin screw extruder (Ikegai, “PCM30”, L / D = 40), and water is supplied from a supply port provided in a vent portion of the twin screw extruder. While continuously supplying an aqueous solution obtained by mixing 0.5 part of potassium oxide and 2.4 parts of ion-exchanged water, it was heated to 220 ° C., melt-kneaded and extruded. The melt-kneaded product was continuously supplied to a cooling device attached to the tip of the twin screw extruder and cooled to 90 ° C. Then, the solid discharged from the tip of the twin screw extruder is poured into warm water at 80 ° C., continuously dispersed, diluted to a solid content concentration of about 40% by mass, and an aqueous olefin resin dispersion (B -1D) was obtained.
Table 4D shows the volume average particle size of the ethylene / α-olefin copolymer (A) dispersed in the aqueous olefin resin dispersion (B-1D).
 (オレフィン樹脂水性分散体(B-2D)~(B-11D)の調製)
 表4D、表5Dに示すように、A成分として(A-1D)を(A-2D)~(A-11D)へ変更した以外は、オレフィン樹脂水性分散体(B-1D)と同様にして、オレフィン樹脂水性分散体(B-2D)~(B-11D)を得た。
 各オレフィン樹脂水性分散体(B-2D)~(B-11D)に分散しているエチレン・α-オレフィン共重合体(A)の体積平均粒子径を表4D、表5Dに示す。
(Preparation of aqueous olefin resin dispersions (B-2D) to (B-11D))
As shown in Table 4D and Table 5D, the same procedure as in the aqueous olefin resin dispersion (B-1D) was conducted except that (A-1D) was changed from (A-2D) to (A-11D) as the component A. Thus, aqueous olefin resin dispersions (B-2D) to (B-11D) were obtained.
Tables 4D and 5D show the volume average particle diameters of the ethylene / α-olefin copolymers (A) dispersed in each of the aqueous olefin resin dispersions (B-2D) to (B-11D).
 (オレフィン樹脂水性分散体(B-12D)~(B-17D)の調製)
 表5Dに示すように、乳化する際の水酸化カリウムの添加部数、イオン交換水の添加部数を変更した以外は、オレフィン樹脂水性分散体(B-1D)と同様にして、オレフィン樹脂水性分散体(B-12D)~(B-17D)を得た。
 各オレフィン樹脂水性分散体(B-12D)~(B-17D)に分散しているエチレン・α-オレフィン共重合体(A)の体積平均粒子径を表5Dに示す。
(Preparation of aqueous olefin resin dispersions (B-12D) to (B-17D))
As shown in Table 5D, the aqueous olefin resin dispersion was the same as the aqueous olefin resin dispersion (B-1D) except that the number of added parts of potassium hydroxide and the number of added parts of ion exchange water during emulsification were changed. (B-12D) to (B-17D) were obtained.
Table 5D shows the volume average particle diameter of the ethylene / α-olefin copolymer (A) dispersed in each of the aqueous olefin resin dispersions (B-12D) to (B-17D).
 (オレフィン樹脂水性分散体(B-18D)、(B-19D)の調製)
 表6Dに示すように、A成分として(A-1D)を(A-12D)、(A-13D)へ変更した以外は、オレフィン樹脂水性分散体(B-1D)と同様にして、オレフィン樹脂水性分散体(B-18D)、(B-19D)を得た。
 各オレフィン樹脂水性分散体(B-18D)、(B-19D)に分散しているエチレン・α-オレフィン共重合体(A)の体積平均粒子径を表6Dに示す。
(Preparation of aqueous dispersion of olefin resin (B-18D), (B-19D))
As shown in Table 6D, the olefin resin was the same as the aqueous olefin resin dispersion (B-1D) except that (A-1D) was changed to (A-12D) and (A-13D) as the A component. Aqueous dispersions (B-18D) and (B-19D) were obtained.
Table 6D shows the volume average particle size of the ethylene / α-olefin copolymer (A) dispersed in each of the aqueous dispersions of olefin resin (B-18D) and (B-19D).
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000090
Figure JPOXMLDOC01-appb-T000090
Figure JPOXMLDOC01-appb-T000091
Figure JPOXMLDOC01-appb-T000091
 <架橋エチレン・α-オレフィン共重合体(C)>
 (架橋エチレン・α-オレフィン共重合体(C-1D)の調製)
 オレフィン樹脂水性分散体(B-1D)(固形分として100部)に固形分濃度が35%になるようにイオン交換水を加え、有機過酸化物としてt-ブチルクミルペルオキシド0.5部、多官能性化合物としてジビニルベンゼン1部を添加し、130℃で5時間反応させて、架橋エチレン・α-オレフィン共重合体(C-1)を調製した。架橋エチレン・α-オレフィン共重合体(C-1D)のゲル含有率、体積平均粒子径を表7Dに示す。
<Crosslinked ethylene / α-olefin copolymer (C)>
(Preparation of cross-linked ethylene / α-olefin copolymer (C-1D))
Ion exchange water was added to the olefin resin aqueous dispersion (B-1D) (100 parts as a solid content) so that the solid content concentration was 35%, and 0.5 parts of t-butylcumyl peroxide as an organic peroxide, As a polyfunctional compound, 1 part of divinylbenzene was added and reacted at 130 ° C. for 5 hours to prepare a crosslinked ethylene / α-olefin copolymer (C-1). Table 7D shows the gel content and volume average particle size of the crosslinked ethylene / α-olefin copolymer (C-1D).
 (架橋エチレン・α-オレフィン共重合体(C-2D)~(C-14D)の調製)
 表7D、表8Dに示すようにオレフィン樹脂水性分散体(B)の種類とt-ブチルクミルペルオキシドの添加量を変更した以外は、架橋エチレン・α-オレフィン共重合体(C-1D)と同様にして、架橋エチレン・α-オレフィン共重合体(C-2D)~(C-14D)を得た。架橋エチレン・α-オレフィン共重合体(C-2D)~(C-14D)のゲル含有率、体積平均粒子径を表7D、表8Dに示す。
(Preparation of crosslinked ethylene / α-olefin copolymers (C-2D) to (C-14D))
As shown in Table 7D and Table 8D, the cross-linked ethylene / α-olefin copolymer (C-1D) and the olefin resin aqueous dispersion (B) and the addition amount of t-butylcumyl peroxide were changed except that Similarly, crosslinked ethylene / α-olefin copolymers (C-2D) to (C-14D) were obtained. Tables 7D and 8D show the gel contents and volume average particle diameters of the crosslinked ethylene / α-olefin copolymers (C-2D) to (C-14D).
 (架橋エチレン・α-オレフィン共重合体(C-15D)~(C-24D)の調製)
 表9D、表10Dに示すようにオレフィン樹脂水性分散体(B)の種類とt-ブチルクミルペルオキシドの添加量を変更した以外は、架橋エチレン・α-オレフィン共重合体(C-1D)と同様にして、架橋エチレン・α-オレフィン共重合体(C-15D)~(C-24D)を得た。架橋エチレン・α-オレフィン共重合体(C-15D)~(C-24D)のゲル含有率、体積平均粒子径を表9D、表10Dに示す。
(Preparation of crosslinked ethylene / α-olefin copolymers (C-15D) to (C-24D))
As shown in Table 9D and Table 10D, except that the type of olefin resin aqueous dispersion (B) and the amount of t-butylcumyl peroxide added were changed, the crosslinked ethylene / α-olefin copolymer (C-1D) and Similarly, crosslinked ethylene / α-olefin copolymers (C-15D) to (C-24D) were obtained. Tables 9D and 10D show the gel contents and volume average particle diameters of the crosslinked ethylene / α-olefin copolymers (C-15D) to (C-24D).
Figure JPOXMLDOC01-appb-T000092
Figure JPOXMLDOC01-appb-T000092
Figure JPOXMLDOC01-appb-T000093
Figure JPOXMLDOC01-appb-T000093
Figure JPOXMLDOC01-appb-T000094
Figure JPOXMLDOC01-appb-T000094
Figure JPOXMLDOC01-appb-T000095
Figure JPOXMLDOC01-appb-T000095
 <グラフト共重合体(D)>
 (グラフト共重合体(D-1D)の調製)
 撹拌機付きステンレス重合槽に、オレフィン樹脂水性分散体(B-1D)(エチレン・プロピレン共重合体(A-1D)の固形分として70部)を入れ、オレフィン樹脂水性分散体(B-1D)に固形分濃度が30%になるようにイオン交換水を加え、硫酸第一鉄0.006部、ピロリン酸ナトリウム0.3部およびフラクトース0.35部を仕込み、温度を80℃とした。スチレン23.4部、アクリロニトリル6.6部およびクメンヒドロペルオキシド0.6部を150分間連続的に添加し、重合温度を80℃に保ち乳化重合を行った。重合後、グラフト共重合体(D-1D)を含む水性分散体に酸化防止剤を添加し、硫酸にて固形分の析出を行い、洗浄、脱水、乾燥の工程を経て、粉状のグラフト共重合体(D-1D)を得た。グラフト共重合体(D-1D)のグラフト率を測定したところ30%であった。結果を表11Dに示す。
<Graft copolymer (D)>
(Preparation of graft copolymer (D-1D))
An aqueous olefin resin dispersion (B-1D) (70 parts as solid content of ethylene / propylene copolymer (A-1D)) is placed in a stainless polymerization tank equipped with a stirrer, and the aqueous olefin resin dispersion (B-1D) is added. Ion-exchanged water was added to the solution so that the solid concentration was 30%, and 0.006 part of ferrous sulfate, 0.3 part of sodium pyrophosphate and 0.35 part of fructose were added, and the temperature was set to 80 ° C. Styrene (23.4 parts), acrylonitrile (6.6 parts) and cumene hydroperoxide (0.6 parts) were continuously added for 150 minutes, and the polymerization temperature was kept at 80 ° C. to carry out emulsion polymerization. After the polymerization, an antioxidant is added to the aqueous dispersion containing the graft copolymer (D-1D), the solid content is precipitated with sulfuric acid, and after washing, dehydration and drying, A polymer (D-1D) was obtained. The graft ratio of the graft copolymer (D-1D) was measured and found to be 30%. The results are shown in Table 11D.
 (グラフト共重合体(D-2D)~(D-1D)の調製)
 表11D~表14Dに示すようにオレフィン樹脂水性分散体(B)の種類を変更した以外は、グラフト共重合体(D-1D)と同様にして、グラフト共重合体(D-2D)~(D-17D)を得た。グラフト共重合体(D-2D)~(D-17D)のグラフト率を表11D~表14Dに示す。
(Preparation of graft copolymers (D-2D) to (D-1D))
As shown in Table 11D to Table 14D, except that the type of the aqueous olefin resin dispersion (B) was changed, the same manner as the graft copolymer (D-1D), the graft copolymer (D-2D) to ( D-17D) was obtained. The graft ratios of the graft copolymers (D-2D) to (D-17D) are shown in Tables 11D to 14D.
 (グラフト共重合体(D-18D)~(D-23D)、(D-25D)~(D-32D)の調製)
 表15D~表17Dに示すようにオレフィン樹脂水性分散体(B)を、架橋エチレン・α-オレフィン共重合体(C)を含む水性分散体に変更した以外は、グラフト共重合体(D-1D)と同様にして、グラフト共重合体(D-18D)~(D-23D)および(D-25D)~(D-32D)を得た。グラフト共重合体(D-18D)~(D-23D)および(D-25D)~(D-32D)のグラフト率を表15D~表17Dに示す。
(Preparation of graft copolymers (D-18D) to (D-23D), (D-25D) to (D-32D))
As shown in Tables 15D to 17D, the graft copolymer (D-1D) was used except that the aqueous olefin resin dispersion (B) was changed to an aqueous dispersion containing a crosslinked ethylene / α-olefin copolymer (C). ), Graft copolymers (D-18D) to (D-23D) and (D-25D) to (D-32D) were obtained. The graft ratios of the graft copolymers (D-18D) to (D-23D) and (D-25D) to (D-32D) are shown in Tables 15D to 17D.
 (グラフト共重合体(D-24D)の調製)
 撹拌機付きステンレス重合槽に、エチレン・プロピレン共重合体(A-1D)70部、トルエン300部を仕込み、内容物を70℃で1時間撹拌して均一に溶解した。十分に窒素置換を行った後、スチレン23.4部、アクリロニトリル6.6部、t-ドデシルメルカプタン0.24部、t-ブチルペルオキシイソプロピルモノカーボネート0.22部を添加し、内温を110℃まで昇温し、4時間反応させた。内温を120℃に昇温し、2時間反応させた。重合後、内温を100℃まで冷却し、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェノール)-プロピオネート0.2部を添加した。反応混合物を抜き出し、水蒸気蒸留によって未反応物と溶媒を留去した。30mmφの真空ベント付き2軸押出機(池貝社製、「PCM30」)で220℃、93.325kPa真空にて、揮発分を実質的に脱揮させ、ペレット化し、グラフト共重合体(D-15D)を得た。グラフト共重合体(D-24D)のグラフト率を測定したところ26%であった。電子顕微鏡により、熱可塑性樹脂組成物中のエチレン・α-オレフィン共重合体(A)の体積平均粒子径を確認したところ、0.39μmであった。結果を表16Dに示す。
(Preparation of graft copolymer (D-24D))
A stainless polymerization tank equipped with a stirrer was charged with 70 parts of ethylene / propylene copolymer (A-1D) and 300 parts of toluene, and the contents were stirred at 70 ° C. for 1 hour to uniformly dissolve. After sufficiently purging with nitrogen, 23.4 parts of styrene, 6.6 parts of acrylonitrile, 0.24 parts of t-dodecyl mercaptan and 0.22 parts of t-butylperoxyisopropyl monocarbonate were added, and the internal temperature was 110 ° C. The mixture was heated up to react for 4 hours. The internal temperature was raised to 120 ° C. and reacted for 2 hours. After the polymerization, the internal temperature was cooled to 100 ° C., and 0.2 part of octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenol) -propionate was added. The reaction mixture was extracted, and unreacted substances and the solvent were distilled off by steam distillation. The volatile matter was substantially devolatilized at 220 ° C. and 93.325 kPa vacuum in a twin screw extruder with a 30 mmφ vacuum vent (“PCM30” manufactured by Ikegai Co., Ltd.), pelletized, and graft copolymer (D-15D ) The graft ratio of the graft copolymer (D-24D) was measured and found to be 26%. When the volume average particle diameter of the ethylene / α-olefin copolymer (A) in the thermoplastic resin composition was confirmed by an electron microscope, it was 0.39 μm. The results are shown in Table 16D.
 (グラフト共重合体(D-33D)、(D-34D)の調製)
 表18Dに示すようにオレフィン樹脂水性分散体(B)の種類を変更した以外は、グラフト共重合体(D-1D)と同様にして、グラフト共重合体(D-33D)、(D-34D)を得た。グラフト共重合体(D-33D)、(D-34D)のグラフト率を表18Dに示す。
(Preparation of graft copolymer (D-33D), (D-34D))
As shown in Table 18D, the graft copolymers (D-33D), (D-34D) were the same as the graft copolymers (D-1D) except that the type of the aqueous olefin resin dispersion (B) was changed. ) The graft ratios of the graft copolymers (D-33D) and (D-34D) are shown in Table 18D.
 (グラフト共重合体(D-35D)~(D-44D)の調製)
 表18D~表20Dに示すようにオレフィン樹脂水性分散体(B)を、架橋エチレン・α-オレフィン共重合体(C)を含む水性分散体に変更した以外は、グラフト共重合体(D-1D)と同様にして、グラフト共重合体(D-35D)~(D-44D)を得た。グラフト共重合体(D-35D)~(D-44D)のグラフト率を表18D~表20Dに示す。
(Preparation of graft copolymers (D-35D) to (D-44D))
As shown in Tables 18D to 20D, the graft copolymer (D-1D) was used except that the aqueous olefin resin dispersion (B) was changed to an aqueous dispersion containing a crosslinked ethylene / α-olefin copolymer (C). ) To obtain graft copolymers (D-35D) to (D-44D). The graft ratios of the graft copolymers (D-35D) to (D-44D) are shown in Tables 18D to 20D.
Figure JPOXMLDOC01-appb-T000096
Figure JPOXMLDOC01-appb-T000096
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-T000101
Figure JPOXMLDOC01-appb-T000101
Figure JPOXMLDOC01-appb-T000102
Figure JPOXMLDOC01-appb-T000102
Figure JPOXMLDOC01-appb-T000103
Figure JPOXMLDOC01-appb-T000103
Figure JPOXMLDOC01-appb-T000104
Figure JPOXMLDOC01-appb-T000104
Figure JPOXMLDOC01-appb-T000105
Figure JPOXMLDOC01-appb-T000105
 <グラフト共重合体(M)>
 (ポリオルガノシロキサン(La-1D)の調製)
 オクタメチルテトラシクロシロキサン96部、γ-メタクリルオキシプロピルジメトキシメチルシラン2部およびエチルオルソシリケート2部を混合してシロキサン系混合物100部を得た。これにドデシルベンゼンスルホン酸ナトリウム0.67部を溶解したイオン交換水300部を添加し、ホモミキサーにて10000回転で2分間撹拌した後、ホモジナイザーに30MPaの圧力で1回通し、安定な予備混合オルガノシロキサン水性分散体を得た。
 試薬注入容器、冷却管、ジャケット加熱器および撹拌装置を備えた反応器内に、ドデシルベンゼンスルホン酸2部、イオン交換水98部を注入し、2%のドデシルベンゼンスルホン酸水溶液を調製した。この水溶液を85℃に加熱した状態で、予備混合オルガノシロキサン水性分散体を4時間にわたって滴下し、滴下終了後1時間温度を維持し、冷却した。この反応液を室温で48時間放置した後、水酸化ナトリウム水溶液で中和して、ポリオルガノシロキサン(La-1D)の水性分散体を得た。ポリオルガノシロキサン(La-1D)水性分散体の一部を170℃で30分間乾燥して固形分濃度を求めたところ、17.3%であった。また、水性分散体に分散しているポリオルガノシロキサン(La-1D)の体積平均粒子径は0.05μmであった。
<Graft copolymer (M)>
(Preparation of polyorganosiloxane (La-1D))
96 parts of octamethyltetracyclosiloxane, 2 parts of γ-methacryloxypropyldimethoxymethylsilane and 2 parts of ethyl orthosilicate were mixed to obtain 100 parts of a siloxane mixture. To this was added 300 parts of ion-exchanged water in which 0.67 parts of sodium dodecylbenzenesulfonate was dissolved, and the mixture was stirred at 10000 rpm for 2 minutes with a homomixer. An aqueous organosiloxane dispersion was obtained.
2 parts of dodecylbenzenesulfonic acid and 98 parts of ion-exchanged water were injected into a reactor equipped with a reagent injection container, a cooling tube, a jacket heater and a stirrer to prepare a 2% aqueous solution of dodecylbenzenesulfonic acid. With this aqueous solution heated to 85 ° C., the premixed organosiloxane aqueous dispersion was added dropwise over 4 hours, and the temperature was maintained for 1 hour after the completion of the addition, followed by cooling. The reaction solution was allowed to stand at room temperature for 48 hours and then neutralized with an aqueous sodium hydroxide solution to obtain an aqueous dispersion of polyorganosiloxane (La-1D). A part of the polyorganosiloxane (La-1D) aqueous dispersion was dried at 170 ° C. for 30 minutes to obtain a solid content concentration of 17.3%. The volume average particle diameter of polyorganosiloxane (La-1D) dispersed in the aqueous dispersion was 0.05 μm.
 (ポリオルガノシロキサン(La-2D)の調製)
 オクタメチルテトラシクロシロキサン96部、γ-メタクリルオキシプロピルジメトキシメチルシラン2部およびエチルオルソシリケート2部を混合してシロキサン系混合物100部を得た。これにドデシルベンゼンスルホン酸ナトリウム10部を溶解したイオン交換水300部を添加し、ホモミキサーにて10000回転で2分間撹拌した後、ホモジナイザーに30MPaの圧力で1回通し、安定な予備混合オルガノシロキサン水性分散体を得た。
 試薬注入容器、冷却管、ジャケット加熱器および撹拌装置を備えた反応器内に、ドデシルベンゼンスルホン酸2部、イオン交換水98部を注入し、2%のドデシルベンゼンスルホン酸水溶液を調製した。この水溶液を85℃に加熱した状態で、予備混合オルガノシロキサン水性分散体を4時間にわたって滴下し、滴下終了後1時間温度を維持し、冷却した。この反応液を室温で48時間放置した後、水酸化ナトリウム水溶液で中和して、ポリオルガノシロキサン(La-2D)の水性分散体を得た。ポリオルガノシロキサン(La-2D)水性分散体の一部を170℃で30分間乾燥して固形分濃度を求めたところ、17.3%であった。また、水性分散体に分散しているポリオルガノシロキサン(La-2D)の体積平均粒子径は0.03μmであった。
(Preparation of polyorganosiloxane (La-2D))
96 parts of octamethyltetracyclosiloxane, 2 parts of γ-methacryloxypropyldimethoxymethylsilane and 2 parts of ethyl orthosilicate were mixed to obtain 100 parts of a siloxane mixture. To this was added 300 parts of ion-exchanged water in which 10 parts of sodium dodecylbenzenesulfonate was dissolved, and the mixture was stirred at 10000 rpm for 2 minutes with a homomixer. An aqueous dispersion was obtained.
2 parts of dodecylbenzenesulfonic acid and 98 parts of ion-exchanged water were injected into a reactor equipped with a reagent injection container, a cooling tube, a jacket heater and a stirrer to prepare a 2% aqueous solution of dodecylbenzenesulfonic acid. With this aqueous solution heated to 85 ° C., the premixed organosiloxane aqueous dispersion was added dropwise over 4 hours, and the temperature was maintained for 1 hour after the completion of the addition, followed by cooling. The reaction solution was allowed to stand at room temperature for 48 hours and then neutralized with an aqueous sodium hydroxide solution to obtain an aqueous dispersion of polyorganosiloxane (La-2D). A part of the aqueous polyorganosiloxane (La-2D) dispersion was dried at 170 ° C. for 30 minutes and the solid content concentration was determined to be 17.3%. The volume average particle diameter of the polyorganosiloxane (La-2D) dispersed in the aqueous dispersion was 0.03 μm.
 (グラフト共重合体(M-1D)の調製)
 試薬注入容器、冷却管、ジャケット加熱器および撹拌装置を備えた反応器内に、ポリオルガノシロキサン(La-1D)の水性分散体119.5部、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム0.8部を仕込み、イオン交換水203部を添加し、混合した。その後、アクリル酸n-ブチル53.2部、メタクリル酸アリル0.21部、1,3-ブチレングリコールジメタクリレート0.11部およびt-ブチルヒドロペルオキシド0.13部からなる混合物を添加した。この反応器に窒素気流を通じることによって、雰囲気の窒素置換を行い、60℃まで昇温した。反応器の内部の温度が60℃になった時点で、硫酸第一鉄0.0001部、エチレンジアミン四酢酸二ナトリウム塩0.0003部およびロンガリット0.24部をイオン交換水10部に溶解させた水溶液を添加し、ラジカル重合を開始させた。(メタ)アクリル酸エステル成分の重合により、液温は78℃まで上昇した。1時間この状態を維持し、(メタ)アクリル酸エステル成分の重合を完結させて、複合ゴム状重合体(L1-1D)の水性分散体を得た。水性分散体に分散している複合ゴム状重合体(L1-1D)の体積均粒子径は0.082μmであった。
(Preparation of graft copolymer (M-1D))
In a reactor equipped with a reagent injection container, a condenser, a jacket heater and a stirrer, 119.5 parts of an aqueous dispersion of polyorganosiloxane (La-1D) and 0.8 parts of sodium polyoxyethylene alkylphenyl ether sulfate Was added, and 203 parts of ion-exchanged water was added and mixed. Thereafter, a mixture consisting of 53.2 parts of n-butyl acrylate, 0.21 part of allyl methacrylate, 0.11 part of 1,3-butylene glycol dimethacrylate and 0.13 part of t-butyl hydroperoxide was added. The atmosphere was purged with nitrogen by passing a nitrogen stream through the reactor, and the temperature was raised to 60 ° C. When the temperature inside the reactor reached 60 ° C., 0.0001 part of ferrous sulfate, 0.0003 part of ethylenediaminetetraacetic acid disodium salt and 0.24 part of Rongalite were dissolved in 10 parts of ion-exchanged water. An aqueous solution was added to initiate radical polymerization. The liquid temperature rose to 78 ° C. by polymerization of the (meth) acrylic acid ester component. This state was maintained for 1 hour, and the polymerization of the (meth) acrylic acid ester component was completed to obtain an aqueous dispersion of a composite rubber-like polymer (L1-1D). The volume average particle diameter of the composite rubber-like polymer (L1-1D) dispersed in the aqueous dispersion was 0.082 μm.
 反応器内部の液温が60℃に低下した後、ロンガリット0.4部をイオン交換水10部に溶解した水溶液を添加した。次いで、アクリロニトリル11.1部、スチレン33.2部およびt-ブチルヒドロペルオキシド0.2部の混合液を約1時間にわたって滴下し重合した。滴下終了後1時間保持した後、硫酸第一鉄0.0002部、エチレンジアミン四酢酸二ナトリウム塩0.0006部およびロンガリット0.25部をイオン交換水10部に溶解させた水溶液を添加した。次いで、アクリロニトリル7.4部、スチレン22.2部およびt-ブチルヒドロペルオキシド0.1部の混合液を約40分間にわたって滴下し重合した。滴下終了後1時間保持した後、冷却して、グラフト共重合体(M-1D)の水性分散体を得た。次いで、酢酸カルシウムを5%の割合で溶解した水溶液150部を60℃に加熱し撹拌した。その酢酸カルシウム水溶液中にグラフト共重合体(M-1)の水性分散体100部を徐々に滴下して凝固させた。得られた凝固物を分離し、洗浄した後、乾燥させて、グラフト共重合体(M-1D)の乾燥粉末を得た。 After the liquid temperature inside the reactor had dropped to 60 ° C., an aqueous solution in which 0.4 part of Rongalite was dissolved in 10 parts of ion-exchanged water was added. Next, a mixture of 11.1 parts of acrylonitrile, 33.2 parts of styrene and 0.2 part of t-butyl hydroperoxide was added dropwise over about 1 hour for polymerization. After holding for 1 hour after the completion of dropping, an aqueous solution in which 0.0002 part of ferrous sulfate, 0.0006 part of ethylenediaminetetraacetic acid disodium salt and 0.25 part of Rongalite were dissolved in 10 parts of ion-exchanged water was added. Next, a mixture of 7.4 parts of acrylonitrile, 22.2 parts of styrene and 0.1 part of t-butyl hydroperoxide was added dropwise over about 40 minutes for polymerization. After the completion of dropping, the mixture was held for 1 hour and then cooled to obtain an aqueous dispersion of a graft copolymer (M-1D). Next, 150 parts of an aqueous solution in which calcium acetate was dissolved at a rate of 5% was heated to 60 ° C. and stirred. 100 parts of an aqueous dispersion of the graft copolymer (M-1) was gradually dropped into the aqueous calcium acetate solution to solidify. The obtained coagulum was separated, washed, and dried to obtain a dry powder of the graft copolymer (M-1D).
 (グラフト共重合体(M-2D)の調製)
 試薬注入容器、冷却管、ジャケット加熱器および撹拌装置を備えた反応器内に、ポリオルガノシロキサン(La-2D)の水性分散体119.5部、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム0.94部を仕込み、イオン交換水203部を添加し、混合した。その後、アクリル酸n-ブチル53.2部、メタクリル酸アリル0.21部、1,3-ブチレングリコールジメタクリレート0.11部およびt-ブチルヒドロペルオキシド0.13部からなる混合物を添加した。この反応器に窒素気流を通じることによって、雰囲気の窒素置換を行い、60℃まで昇温した。反応器の内部の温度が60℃になった時点で、硫酸第一鉄0.0001部、エチレンジアミン四酢酸二ナトリウム塩0.0003部およびロンガリット0.24部をイオン交換水10部に溶解させた水溶液を添加し、ラジカル重合を開始させた。(メタ)アクリル酸エステル成分の重合により、液温は78℃まで上昇した。1時間この状態を維持し、(メタ)アクリル酸エステル成分の重合を完結させて、複合ゴム状重合体(L1-2D)の水性分散体を得た。水性分散体に分散している複合ゴム状重合体(L1-2D)の体積平均粒子径は0.037μmであった。
(Preparation of graft copolymer (M-2D))
In a reactor equipped with a reagent injection vessel, a condenser, a jacket heater and a stirrer, 119.5 parts of an aqueous dispersion of polyorganosiloxane (La-2D) and 0.94 parts of sodium polyoxyethylene alkylphenyl ether sulfate Was added, and 203 parts of ion-exchanged water was added and mixed. Thereafter, a mixture consisting of 53.2 parts of n-butyl acrylate, 0.21 part of allyl methacrylate, 0.11 part of 1,3-butylene glycol dimethacrylate and 0.13 part of t-butyl hydroperoxide was added. The atmosphere was purged with nitrogen by passing a nitrogen stream through the reactor, and the temperature was raised to 60 ° C. When the temperature inside the reactor reached 60 ° C., 0.0001 part of ferrous sulfate, 0.0003 part of ethylenediaminetetraacetic acid disodium salt and 0.24 part of Rongalite were dissolved in 10 parts of ion-exchanged water. An aqueous solution was added to initiate radical polymerization. The liquid temperature rose to 78 ° C. by polymerization of the (meth) acrylic acid ester component. This state was maintained for 1 hour to complete the polymerization of the (meth) acrylic acid ester component to obtain an aqueous dispersion of a composite rubber-like polymer (L1-2D). The volume average particle diameter of the composite rubber-like polymer (L1-2D) dispersed in the aqueous dispersion was 0.037 μm.
 反応器内部の液温が60℃に低下した後、ロンガリット0.4部をイオン交換水10部に溶解した水溶液を添加した。次いで、アクリロニトリル11.1部、スチレン33.2部およびt-ブチルヒドロペルオキシド0.2部の混合液を約1時間にわたって滴下し重合した。滴下終了後1時間保持した後、硫酸第一鉄0.0002部、エチレンジアミン四酢酸二ナトリウム塩0.0006部およびロンガリット0.25部をイオン交換水10部に溶解させた水溶液を添加した。次いで、アクリロニトリル7.4部、スチレン22.2部およびt-ブチルヒドロペルオキシド0.1部の混合液を約40分間にわたって滴下し重合した。滴下終了後1時間保持した後、冷却して、グラフト共重合体(M-2D)の水性分散体を得た。次いで、酢酸カルシウムを5%の割合で溶解した水溶液150部を60℃に加熱し撹拌した。その酢酸カルシウム水溶液中にグラフト共重合体(M-2D)の水性分散体100部を徐々に滴下して凝固させた。得られた凝固物を分離し、洗浄した後、乾燥させて、グラフト共重合体(M-2D)の乾燥粉末を得た。 After the liquid temperature inside the reactor had dropped to 60 ° C., an aqueous solution in which 0.4 part of Rongalite was dissolved in 10 parts of ion-exchanged water was added. Next, a mixture of 11.1 parts of acrylonitrile, 33.2 parts of styrene and 0.2 part of t-butyl hydroperoxide was added dropwise over about 1 hour for polymerization. After holding for 1 hour after the completion of dropping, an aqueous solution in which 0.0002 part of ferrous sulfate, 0.0006 part of ethylenediaminetetraacetic acid disodium salt and 0.25 part of Rongalite were dissolved in 10 parts of ion-exchanged water was added. Next, a mixture of 7.4 parts of acrylonitrile, 22.2 parts of styrene and 0.1 part of t-butyl hydroperoxide was added dropwise over about 40 minutes for polymerization. After the completion of dropping, the mixture was kept for 1 hour and then cooled to obtain an aqueous dispersion of a graft copolymer (M-2D). Next, 150 parts of an aqueous solution in which calcium acetate was dissolved at a rate of 5% was heated to 60 ° C. and stirred. 100 parts of an aqueous dispersion of the graft copolymer (M-2D) was gradually dropped into the aqueous calcium acetate solution to solidify. The obtained coagulated product was separated, washed, and dried to obtain a dry powder of the graft copolymer (M-2D).
 (グラフト共重合体(M-3D)の調製)
 試薬注入容器、冷却管、ジャケット加熱器および撹拌装置を備えた反応器内に、ポリオルガノシロキサン(La-2D)の水性分散体119.5部、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム0.9部を仕込み、イオン交換水203部を添加し、混合した。その後、アクリル酸n-ブチル53.2部、メタクリル酸アリル0.21部、1,3-ブチレングリコールジメタクリレート0.11部およびt-ブチルヒドロペルオキシド0.13部からなる混合物を添加した。この反応器に窒素気流を通じることによって、雰囲気の窒素置換を行い、60℃まで昇温した。反応器の内部の温度が60℃になった時点で、硫酸第一鉄0.0001部、エチレンジアミン四酢酸二ナトリウム塩0.0003部およびロンガリット0.24部をイオン交換水10部に溶解させた水溶液を添加し、ラジカル重合を開始させた。(メタ)アクリル酸エステル成分の重合により、液温は78℃まで上昇した。1時間この状態を維持し、(メタ)アクリル酸エステル成分の重合を完結させて、複合ゴム状重合体(L1-3D)の水性分散体を得た。水性分散体に分散している複合ゴム状重合体(L1-3D)の体積平均粒子径は0.05μmであった。
(Preparation of graft copolymer (M-3D))
In a reactor equipped with a reagent injection vessel, a condenser, a jacket heater and a stirrer, 119.5 parts of an aqueous dispersion of polyorganosiloxane (La-2D), 0.9 parts of polyoxyethylene alkylphenyl ether sodium sulfate Was added, and 203 parts of ion-exchanged water was added and mixed. Thereafter, a mixture consisting of 53.2 parts of n-butyl acrylate, 0.21 part of allyl methacrylate, 0.11 part of 1,3-butylene glycol dimethacrylate and 0.13 part of t-butyl hydroperoxide was added. The atmosphere was purged with nitrogen by passing a nitrogen stream through the reactor, and the temperature was raised to 60 ° C. When the temperature inside the reactor reached 60 ° C., 0.0001 part of ferrous sulfate, 0.0003 part of ethylenediaminetetraacetic acid disodium salt and 0.24 part of Rongalite were dissolved in 10 parts of ion-exchanged water. An aqueous solution was added to initiate radical polymerization. The liquid temperature rose to 78 ° C. by polymerization of the (meth) acrylic acid ester component. This state was maintained for 1 hour to complete the polymerization of the (meth) acrylic acid ester component to obtain an aqueous dispersion of a composite rubber-like polymer (L1-3D). The volume average particle diameter of the composite rubber-like polymer (L1-3D) dispersed in the aqueous dispersion was 0.05 μm.
 反応器内部の液温が60℃に低下した後、ロンガリット0.4部をイオン交換水10部に溶解した水溶液を添加した。次いで、アクリロニトリル11.1部、スチレン33.2部およびt-ブチルヒドロペルオキシド0.2部の混合液を約1時間にわたって滴下し重合した。滴下終了後1時間保持した後、硫酸第一鉄0.0002部、エチレンジアミン四酢酸二ナトリウム塩0.0006部およびロンガリット0.25部をイオン交換水10部に溶解させた水溶液を添加した。次いで、アクリロニトリル7.4部、スチレン22.2部およびt-ブチルヒドロペルオキシド0.1部の混合液を約40分間にわたって滴下し重合した。滴下終了後1時間保持した後、冷却して、グラフト共重合体(M-3D)の水性分散体を得た。次いで、酢酸カルシウムを5%の割合で溶解した水溶液150部を60℃に加熱し撹拌した。その酢酸カルシウム水溶液中にグラフト共重合体(M-3D)の水性分散体100部を徐々に滴下して凝固させた。得られた凝固物を分離し、洗浄した後、乾燥させて、グラフト共重合体(M-3D)の乾燥粉末を得た。 After the liquid temperature inside the reactor had dropped to 60 ° C., an aqueous solution in which 0.4 part of Rongalite was dissolved in 10 parts of ion-exchanged water was added. Next, a mixture of 11.1 parts of acrylonitrile, 33.2 parts of styrene and 0.2 part of t-butyl hydroperoxide was added dropwise over about 1 hour for polymerization. After holding for 1 hour after the completion of dropping, an aqueous solution in which 0.0002 part of ferrous sulfate, 0.0006 part of ethylenediaminetetraacetic acid disodium salt and 0.25 part of Rongalite were dissolved in 10 parts of ion-exchanged water was added. Next, a mixture of 7.4 parts of acrylonitrile, 22.2 parts of styrene and 0.1 part of t-butyl hydroperoxide was added dropwise over about 40 minutes for polymerization. After the completion of dropping, the mixture was kept for 1 hour and then cooled to obtain an aqueous dispersion of a graft copolymer (M-3D). Next, 150 parts of an aqueous solution in which calcium acetate was dissolved at a rate of 5% was heated to 60 ° C. and stirred. 100 parts of an aqueous dispersion of the graft copolymer (M-3D) was gradually dropped into the aqueous calcium acetate solution to solidify. The obtained coagulated product was separated, washed, and dried to obtain a dry powder of the graft copolymer (M-3D).
 (グラフト共重合体(M-4D)の調製)
 試薬注入容器、冷却管、ジャケット加熱器および撹拌装置を備えた反応器内に、ポリオルガノシロキサン(La-1D)の水性分散体119.5部、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム0.51部を仕込み、イオン交換水203部を添加し、混合した。その後、アクリル酸n-ブチル53.2部、メタクリル酸アリル0.21部、1,3-ブチレングリコールジメタクリレート0.11部およびt-ブチルヒドロペルオキシド0.13部からなる混合物を添加した。この反応器に窒素気流を通じることによって、雰囲気の窒素置換を行い、60℃まで昇温した。反応器の内部の温度が60℃になった時点で、硫酸第一鉄0.0001部、エチレンジアミン四酢酸二ナトリウム塩0.0003部およびロンガリット0.24部をイオン交換水10部に溶解させた水溶液を添加し、ラジカル重合を開始させた。(メタ)アクリル酸エステル成分の重合により、液温は78℃まで上昇した。1時間この状態を維持し、(メタ)アクリル酸エステル成分の重合を完結させて、複合ゴム状重合体(L1-4D)の水性分散体を得た。水性分散体に分散している複合ゴム状重合体(L1-4D)の体積平均粒子径は0.18μmであった。
(Preparation of graft copolymer (M-4D))
In a reactor equipped with a reagent injection container, a condenser, a jacket heater and a stirrer, 119.5 parts of an aqueous dispersion of polyorganosiloxane (La-1D) and 0.51 part of sodium polyoxyethylene alkylphenyl ether sulfate Was added, and 203 parts of ion-exchanged water was added and mixed. Thereafter, a mixture consisting of 53.2 parts of n-butyl acrylate, 0.21 part of allyl methacrylate, 0.11 part of 1,3-butylene glycol dimethacrylate and 0.13 part of t-butyl hydroperoxide was added. The atmosphere was purged with nitrogen by passing a nitrogen stream through the reactor, and the temperature was raised to 60 ° C. When the temperature inside the reactor reached 60 ° C., 0.0001 part of ferrous sulfate, 0.0003 part of ethylenediaminetetraacetic acid disodium salt and 0.24 part of Rongalite were dissolved in 10 parts of ion-exchanged water. An aqueous solution was added to initiate radical polymerization. The liquid temperature rose to 78 ° C. by polymerization of the (meth) acrylic acid ester component. This state was maintained for 1 hour to complete the polymerization of the (meth) acrylic acid ester component to obtain an aqueous dispersion of a composite rubber-like polymer (L1-4D). The volume average particle diameter of the composite rubber-like polymer (L1-4D) dispersed in the aqueous dispersion was 0.18 μm.
 反応器内部の液温が60℃に低下した後、ロンガリット0.4部をイオン交換水10部に溶解した水溶液を添加した。次いで、アクリロニトリル11.1部、スチレン33.2部およびt-ブチルヒドロペルオキシド0.2部の混合液を約1時間にわたって滴下し重合した。滴下終了後1時間保持した後、硫酸第一鉄0.0002部、エチレンジアミン四酢酸二ナトリウム塩0.0006部およびロンガリット0.25部をイオン交換水10部に溶解させた水溶液を添加した。次いで、アクリロニトリル7.4部、スチレン22.2部およびt-ブチルヒドロペルオキシド0.1部の混合液を約40分間にわたって滴下し重合した。滴下終了後1時間保持した後、冷却して、グラフト共重合体(M-4D)の水性分散体を得た。次いで、酢酸カルシウムを5%の割合で溶解した水溶液150部を60℃に加熱し撹拌した。その酢酸カルシウム水溶液中にグラフト共重合体(M-4D)の水性分散体100部を徐々に滴下して凝固させた。得られた凝固物を分離し、洗浄した後、乾燥させて、グラフト共重合体(M-4D)の乾燥粉末を得た。 After the liquid temperature inside the reactor had dropped to 60 ° C., an aqueous solution in which 0.4 part of Rongalite was dissolved in 10 parts of ion-exchanged water was added. Next, a mixture of 11.1 parts of acrylonitrile, 33.2 parts of styrene and 0.2 part of t-butyl hydroperoxide was added dropwise over about 1 hour for polymerization. After holding for 1 hour after the completion of dropping, an aqueous solution in which 0.0002 part of ferrous sulfate, 0.0006 part of ethylenediaminetetraacetic acid disodium salt and 0.25 part of Rongalite were dissolved in 10 parts of ion-exchanged water was added. Next, a mixture of 7.4 parts of acrylonitrile, 22.2 parts of styrene and 0.1 part of t-butyl hydroperoxide was added dropwise over about 40 minutes for polymerization. After the completion of dropping, the mixture was kept for 1 hour and then cooled to obtain an aqueous dispersion of a graft copolymer (M-4D). Next, 150 parts of an aqueous solution in which calcium acetate was dissolved at a rate of 5% was heated to 60 ° C. and stirred. 100 parts of an aqueous dispersion of the graft copolymer (M-4D) was gradually dropped into the calcium acetate aqueous solution to be solidified. The obtained coagulated product was separated, washed, and dried to obtain a dry powder of the graft copolymer (M-4D).
 (グラフト共重合体(M-5D)の調製)
 試薬注入容器、冷却管、ジャケット加熱器および撹拌装置を備えた反応器内に、ポリオルガノシロキサン(La-1D)の水性分散体119.5部、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム0.33部を仕込み、イオン交換水203部を添加し、混合した。その後、アクリル酸n-ブチル53.2部、メタクリル酸アリル0.21部、1,3-ブチレングリコールジメタクリレート0.11部およびt-ブチルヒドロペルオキシド0.13部からなる混合物を添加した。この反応器に窒素気流を通じることによって、雰囲気の窒素置換を行い、60℃まで昇温した。反応器の内部の温度が60℃になった時点で、硫酸第一鉄0.0001部、エチレンジアミン四酢酸二ナトリウム塩0.0003部およびロンガリット0.24部をイオン交換水10部に溶解させた水溶液を添加し、ラジカル重合を開始させた。(メタ)アクリル酸エステル成分の重合により、液温は78℃まで上昇した。1時間この状態を維持し、(メタ)アクリル酸エステル成分の重合を完結させて、複合ゴム状重合体(L1-5D)の水性分散体を得た。水性分散体に分散している複合ゴム状重合体(L1-5D)の体積平均粒子径は0.24μmであった。
(Preparation of graft copolymer (M-5D))
In a reactor equipped with a reagent injection container, a condenser, a jacket heater and a stirrer, 119.5 parts of an aqueous dispersion of polyorganosiloxane (La-1D) and 0.33 parts of sodium polyoxyethylene alkylphenyl ether sulfate Was added, and 203 parts of ion-exchanged water was added and mixed. Thereafter, a mixture consisting of 53.2 parts of n-butyl acrylate, 0.21 part of allyl methacrylate, 0.11 part of 1,3-butylene glycol dimethacrylate and 0.13 part of t-butyl hydroperoxide was added. The atmosphere was purged with nitrogen by passing a nitrogen stream through the reactor, and the temperature was raised to 60 ° C. When the temperature inside the reactor reached 60 ° C., 0.0001 part of ferrous sulfate, 0.0003 part of ethylenediaminetetraacetic acid disodium salt and 0.24 part of Rongalite were dissolved in 10 parts of ion-exchanged water. An aqueous solution was added to initiate radical polymerization. The liquid temperature rose to 78 ° C. by polymerization of the (meth) acrylic acid ester component. This state was maintained for 1 hour to complete the polymerization of the (meth) acrylic acid ester component to obtain an aqueous dispersion of a composite rubber-like polymer (L1-5D). The volume average particle diameter of the composite rubber-like polymer (L1-5D) dispersed in the aqueous dispersion was 0.24 μm.
 反応器内部の液温が60℃に低下した後、ロンガリット0.4部をイオン交換水10部に溶解した水溶液を添加した。次いで、アクリロニトリル11.1部、スチレン33.2部およびt-ブチルヒドロペルオキシド0.2部の混合液を約1時間にわたって滴下し重合した。滴下終了後1時間保持した後、硫酸第一鉄0.0002部、エチレンジアミン四酢酸二ナトリウム塩0.0006部およびロンガリット0.25部をイオン交換水10部に溶解させた水溶液を添加した。次いで、アクリロニトリル7.4部、スチレン22.2部およびt-ブチルヒドロペルオキシド0.1部の混合液を約40分間にわたって滴下し重合した。滴下終了後1時間保持した後、冷却して、グラフト共重合体(M-5D)の水性分散体を得た。次いで、酢酸カルシウムを5%の割合で溶解した水溶液150部を60℃に加熱し撹拌した。その酢酸カルシウム水溶液中にグラフト共重合体(M-5D)の水性分散体100部を徐々に滴下して凝固させた。得られた凝固物を分離し、洗浄した後、乾燥させて、グラフト共重合体共(M-5D)の乾燥粉末を得た。 After the liquid temperature inside the reactor had dropped to 60 ° C., an aqueous solution in which 0.4 part of Rongalite was dissolved in 10 parts of ion-exchanged water was added. Next, a mixture of 11.1 parts of acrylonitrile, 33.2 parts of styrene and 0.2 part of t-butyl hydroperoxide was added dropwise over about 1 hour for polymerization. After holding for 1 hour after the completion of dropping, an aqueous solution in which 0.0002 part of ferrous sulfate, 0.0006 part of ethylenediaminetetraacetic acid disodium salt and 0.25 part of Rongalite were dissolved in 10 parts of ion-exchanged water was added. Next, a mixture of 7.4 parts of acrylonitrile, 22.2 parts of styrene and 0.1 part of t-butyl hydroperoxide was added dropwise over about 40 minutes for polymerization. After the completion of dropping, the mixture was kept for 1 hour and then cooled to obtain an aqueous dispersion of a graft copolymer (M-5D). Next, 150 parts of an aqueous solution in which calcium acetate was dissolved at a rate of 5% was heated to 60 ° C. and stirred. 100 parts of an aqueous dispersion of the graft copolymer (M-5D) was gradually dropped into the calcium acetate aqueous solution to solidify. The obtained coagulated product was separated, washed, and dried to obtain a dry powder of graft copolymer (M-5D).
 <メタクリル酸エステル樹脂(G)>
 (メタクリル酸エステル樹脂(G-1D)の調製)
 撹拌機付きステンレス重合槽にイオン交換水150部、メタクリル酸メチル99部、アクリル酸メチル1部、2,2’-アゾビス(イソブチロニトリル)0.2部、n-オクチルメルカプタン0.25部、カルシウムヒドロオキシアパタイト0.47部、アルケニルコハク酸カリウム0.003部を仕込んだ。重合槽の内温を75℃にして3時間反応させ、90℃に昇温し1時間反応させた。内容物を抜き出し、遠心脱水機で洗浄し、乾燥させて粉状のメタクリル酸エステル樹脂(G-1D)を得た。単量体を表21Dに示す。
<Methacrylate ester resin (G)>
(Preparation of methacrylate ester resin (G-1D))
In a stainless steel polymerization tank equipped with a stirrer, 150 parts of ion exchange water, 99 parts of methyl methacrylate, 1 part of methyl acrylate, 0.2 part of 2,2′-azobis (isobutyronitrile), 0.25 part of n-octyl mercaptan , 0.47 part of calcium hydroxyapatite and 0.003 part of potassium alkenyl succinate were charged. The internal temperature of the polymerization tank was set to 75 ° C. for 3 hours, and the temperature was raised to 90 ° C. for 1 hour. The contents were extracted, washed with a centrifugal dehydrator, and dried to obtain a powdery methacrylate resin (G-1D). The monomers are shown in Table 21D.
 (メタクリル酸エステル樹脂(G-2D)の調製)
 撹拌機付きステンレス重合槽にイオン交換水150部、メタクリル酸メチル82部、N-フェニルマレイミド12部、スチレン6部、2,2’-アゾビス(イソブチロニトリル)0.2部、n-オクチルメルカプタン0.25部、ポリビニルアルコール0.7部を仕込んだ。重合槽の内温を75℃にして3時間反応させ、90℃まで昇温し1時間反応させた。内容物を抜き出し、遠心脱水機で洗浄し、乾燥させて粉状のメタクリル酸エステル樹脂(G-2D)を得た。単量体を表21Dに示す。
(Preparation of methacrylate ester resin (G-2D))
In a stainless polymerization tank equipped with a stirrer, 150 parts of ion exchange water, 82 parts of methyl methacrylate, 12 parts of N-phenylmaleimide, 6 parts of styrene, 0.2 part of 2,2′-azobis (isobutyronitrile), n-octyl Mercaptan (0.25 part) and polyvinyl alcohol (0.7 part) were charged. The internal temperature of the polymerization tank was set at 75 ° C. for 3 hours, and the temperature was raised to 90 ° C. for 1 hour. The contents were extracted, washed with a centrifugal dehydrator, and dried to obtain a powdery methacrylic ester resin (G-2D). The monomers are shown in Table 21D.
 (メタクリル酸エステル樹脂(G-3D)~(G-11D)の調製)
 表21D、表22Dに示すようにビニル系単量体混合物(m3)の種類を変更した以外は、メタクリル酸エステル樹脂(G-2D)と同様にして、メタクリル酸エステル樹脂(G-3D)~(G-11D)を得た。
(Preparation of methacrylate ester resins (G-3D) to (G-11D))
As shown in Table 21D and Table 22D, except that the type of the vinyl monomer mixture (m3) was changed, in the same manner as the methacrylate ester resin (G-2D), the methacrylate ester resin (G-3D) to (G-11D) was obtained.
Figure JPOXMLDOC01-appb-T000106
Figure JPOXMLDOC01-appb-T000106
Figure JPOXMLDOC01-appb-T000107
Figure JPOXMLDOC01-appb-T000107
 <スチレン系共重合体(H)>
 (スチレン系共重合体(H-1D)の調製)
 窒素置換した撹拌機付きステンレス重合槽に、イオン交換水120部、ポリビニルアルコール0.1部、2,2’-アゾビス(イソブチロニトリル)0.3部、アクリロニトリル25部、スチレン75部、t-ドデシルメルカプタン0.35部を仕込み、開始温度60℃として5時間反応させた。120℃に昇温し、4時間反応させた。内容物を取り出し、スチレン系共重合体(H-1D)を得た。
<Styrene copolymer (H)>
(Preparation of styrene copolymer (H-1D))
In a stainless steel polymerization tank equipped with a stirrer substituted with nitrogen, 120 parts of ion exchange water, 0.1 part of polyvinyl alcohol, 0.3 part of 2,2′-azobis (isobutyronitrile), 25 parts of acrylonitrile, 75 parts of styrene, t -0.35 part of dodecyl mercaptan was charged and reacted at an initial temperature of 60 ° C for 5 hours. The temperature was raised to 120 ° C. and reacted for 4 hours. The contents were taken out to obtain a styrene copolymer (H-1D).
 (スチレン系共重合体(H-2D)の調製)
 撹拌機付きステンレス重合槽に、イオン交換水150部、メタクリル酸メチル7部、アクリロニトリル23部、スチレン70部、2,2’-アゾビス(イソブチロニトリル)0.2部、n-オクチルメルカプタン0.25部、カルシウムヒドロオキシアパタイト0.47部、アルケニルコハク酸カリウム0.003部を仕込み、内温を75℃まで昇温し、3時間反応させた。90℃まで昇温し、60分間保持することで反応を完結させた。内容物を取り出し、遠心脱水機での洗浄、脱水を繰り返し、乾燥させてスチレン系共重合体(H-2D)を得た。
(Preparation of styrene copolymer (H-2D))
In a stainless steel polymerization tank equipped with a stirrer, 150 parts of ion exchange water, 7 parts of methyl methacrylate, 23 parts of acrylonitrile, 70 parts of styrene, 0.2 part of 2,2′-azobis (isobutyronitrile), n-octyl mercaptan 0 .25 parts, calcium hydroxyapatite 0.47 part, and potassium alkenyl succinate 0.003 part were charged, the internal temperature was raised to 75 ° C., and the reaction was performed for 3 hours. The reaction was completed by raising the temperature to 90 ° C. and holding for 60 minutes. The contents were taken out, repeatedly washed with a centrifugal dehydrator, dehydrated, and dried to obtain a styrene copolymer (H-2D).
(スチレン系共重合体(H-3D)~(H-5D)の調製)
 表23Dに示すようにビニル系単量体混合物(m4)の量を変更した以外は、スチレン系共重合体(H-2D)と同様にして、スチレン系共重合体(H-3D)~(H-5D)を得た。
(Preparation of styrenic copolymers (H-3D) to (H-5D))
As shown in Table 23D, except that the amount of the vinyl monomer mixture (m4) was changed, in the same manner as the styrene copolymer (H-2D), the styrene copolymer (H-3D) to ( H-5D) was obtained.
Figure JPOXMLDOC01-appb-T000108
Figure JPOXMLDOC01-appb-T000108
 [実施例1D]
 グラフト共重合体(D-1D)10部、グラフト共重合体(M-1D)14部、メタクリル酸エステル樹脂(G-1D)76部を混合し、30mmφの真空ベント付き2軸押出機(池貝社製、「PCM30」)で240℃、93.325kPa真空にて溶融混練し、熱可塑性樹脂組成物を調製した。熱可塑性樹脂組成物のMVRを表24Dに示す。
 熱可塑性樹脂組成物をペレット化し、各種成形品を成形し、耐衝撃性、発色性、耐引っ掻き傷性、耐擦り傷性、耐熱性、潤滑性(きしみ音)を評価した。結果を表24Dに示す。
[Example 1D]
10 parts of graft copolymer (D-1D), 14 parts of graft copolymer (M-1D) and 76 parts of methacrylic ester resin (G-1D) were mixed and a twin screw extruder equipped with a 30 mmφ vacuum vent (Ikekai A thermoplastic resin composition was prepared by melt-kneading at 240 ° C. and 93.325 kPa vacuum using a “PCM30” manufactured by the company. The MVR of the thermoplastic resin composition is shown in Table 24D.
The thermoplastic resin composition was pelletized, and various molded articles were molded, and impact resistance, color development, scratch resistance, scratch resistance, heat resistance, and lubricity (squeak noise) were evaluated. The results are shown in Table 24D.
 [実施例2D~88D]
 表24D~表32Dに示す配合処方に変更した以外は、実施例1Dと同様にして熱可塑性樹脂組成物を調製し、MVRを測定した。
 熱可塑性樹脂組成物をペレット化し、各種成形品を成形し、耐衝撃性、発色性、耐引っ掻き傷性、耐擦り傷性、耐熱性、潤滑性(きしみ音)を評価した。結果を表24D~表32Dに示す。
[Examples 2D to 88D]
A thermoplastic resin composition was prepared and MVR was measured in the same manner as in Example 1D, except that the formulation shown in Tables 24D to 32D was changed.
The thermoplastic resin composition was pelletized, and various molded articles were molded, and impact resistance, color development, scratch resistance, scratch resistance, heat resistance, and lubricity (squeak noise) were evaluated. The results are shown in Tables 24D to 32D.
 [比較例1D~24D]
 表33D~表35Dに示す配合処方に変更した以外は、実施例1Dと同様にして熱可塑性樹脂組成物を調製し、MVRを測定した。
 熱可塑性樹脂組成物をペレット化し、各種成形品を成形し、耐衝撃性、発色性、耐引っ掻き傷性、耐擦り傷性、耐熱性、潤滑性(きしみ音)を評価した。結果を表33D~表35Dに示す。
[Comparative Examples 1D to 24D]
A thermoplastic resin composition was prepared and MVR was measured in the same manner as in Example 1D, except that the formulation shown in Table 33D to Table 35D was changed.
The thermoplastic resin composition was pelletized, and various molded articles were molded, and impact resistance, color development, scratch resistance, scratch resistance, heat resistance, and lubricity (squeak noise) were evaluated. The results are shown in Table 33D to Table 35D.
Figure JPOXMLDOC01-appb-T000109
Figure JPOXMLDOC01-appb-T000109
Figure JPOXMLDOC01-appb-T000110
Figure JPOXMLDOC01-appb-T000110
Figure JPOXMLDOC01-appb-T000111
Figure JPOXMLDOC01-appb-T000111
Figure JPOXMLDOC01-appb-T000112
Figure JPOXMLDOC01-appb-T000112
Figure JPOXMLDOC01-appb-T000113
Figure JPOXMLDOC01-appb-T000113
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000115
Figure JPOXMLDOC01-appb-T000115
Figure JPOXMLDOC01-appb-T000116
Figure JPOXMLDOC01-appb-T000116
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000120
Figure JPOXMLDOC01-appb-T000120
 実施例1D~88Dの熱可塑性樹脂組成物は流動性に優れていた。また、実施例1D~88Dで得られた成形品は、潤滑性(きしみ音)、耐衝撃性、耐熱性、発色性、耐引っ掻き傷性、耐擦り傷性が優れていた。
 したがって、本発明の第五の態様における熱可塑性樹脂組成物は、流動性が優れており、本発明の第五の態様における熱可塑性樹脂組成物を用いると、潤滑性(きしみ音)、耐衝撃性、発色性、耐引っ掻き傷性、耐擦り傷性に優れた成形品が得られ、車輌内外装部品、車輌外装部品、事務機器、家電、建材等の用途に適用できることがわかる。
The thermoplastic resin compositions of Examples 1D to 88D were excellent in fluidity. In addition, the molded products obtained in Examples 1D to 88D were excellent in lubricity (squeaking noise), impact resistance, heat resistance, color development, scratch resistance, and scratch resistance.
Therefore, the thermoplastic resin composition according to the fifth aspect of the present invention has excellent fluidity. When the thermoplastic resin composition according to the fifth aspect of the present invention is used, lubricity (squeak noise) and impact resistance are achieved. It can be seen that a molded product having excellent properties, color developability, scratch resistance and scratch resistance can be obtained, and can be applied to uses such as vehicle interior / exterior parts, vehicle exterior parts, office equipment, home appliances, and building materials.
 一方、比較例1D~24Dの結果から、本発明以外のものは、潤滑性(きしみ音)の特性が得られなかったり、成形品の耐衝撃性、耐擦り傷性が低かったりした。 On the other hand, from the results of Comparative Examples 1D to 24D, those other than the present invention could not obtain lubricity (squeak noise) characteristics, and the molded article had low impact resistance and scratch resistance.
 本発明の熱可塑性樹脂組成物を用いた成形品は、車輌内装部品、車輌外装部品、事務機器、家電、建材等として有用である。 The molded article using the thermoplastic resin composition of the present invention is useful as vehicle interior parts, vehicle exterior parts, office equipment, home appliances, building materials, and the like.
 10 治具 11 先端部 12 積層シート 13 成形品(Ma)) 21 試験片 21a リブ構造 22 試験片 10 jig 11 tip 12 laminated sheet 13 molded product (Ma) 21 test piece 21a rib structure 22 test piece

Claims (12)

  1. 質量平均分子量(Mw)が17×10~35×10であり、質量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)が1~3であるエチレン・α-オレフィン共重合体(A)または前記エチレン・α-オレフィン共重合体(A)を架橋処理した架橋エチレン・α-オレフィン共重合体(C)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m1)を重合して得られたグラフト共重合体。 The weight average molecular weight (Mw) is 17 × 10 4 to 35 × 10 4 , and the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 1 to 3 In the presence of the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C) obtained by crosslinking the ethylene / α-olefin copolymer (A). A graft copolymer obtained by polymerizing a vinyl monomer mixture (m1) containing a compound and a vinyl cyanide compound.
  2.  前記架橋エチレン・α-オレフィン共重合体(C)のゲル含有率が、前記架橋エチレン・α-オレフィン共重合体(C)の総質量に対し、35~75質量%である、グラフト共重合体。 Graft copolymer in which the gel content of the crosslinked ethylene / α-olefin copolymer (C) is 35 to 75% by mass with respect to the total mass of the crosslinked ethylene / α-olefin copolymer (C). .
  3.  前記エチレン・α-オレフィン共重合体(A)がエチレン・プロピレン共重合体である、請求項1または2に記載のグラフト共重合体。 The graft copolymer according to claim 1 or 2, wherein the ethylene / α-olefin copolymer (A) is an ethylene / propylene copolymer.
  4.  前記エチレン・α-オレフィン共重合体(A)のエチレン単位の含有率が、前記エチレン・α-オレフィン共重合体(A)を構成する構成単位の総質量に対して、45~65質量%である、請求項1~3のいずれか一項に記載のグラフト共重合体。 The ethylene unit content of the ethylene / α-olefin copolymer (A) is 45 to 65% by mass based on the total mass of the structural units constituting the ethylene / α-olefin copolymer (A). The graft copolymer according to any one of claims 1 to 3, wherein
  5.  前記重合が乳化重合である、請求項1~4のいずれか一項に記載のグラフト共重合体。 The graft copolymer according to any one of claims 1 to 4, wherein the polymerization is emulsion polymerization.
  6. 請求項1~5のいずれか一項に記載のグラフト共重合体(D)と、硬質成分(J)とを含む、熱可塑性樹脂組成物。 A thermoplastic resin composition comprising the graft copolymer (D) according to any one of claims 1 to 5 and a hard component (J).
  7. 前記硬質成分(J)が、スチレン系共重合体(H)である、請求項6に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 6, wherein the hard component (J) is a styrene-based copolymer (H).
  8.  請求項1~5のいずれか一項に記載のグラフト共重合体(D)と、
     メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)と
     を含む、熱可塑性樹脂組成物。
    The graft copolymer (D) according to any one of claims 1 to 5,
    A thermoplastic resin composition comprising: a methacrylic ester resin (G) obtained by polymerizing a vinyl monomer mixture (m3) containing a methacrylic ester.
  9.  請求項1~5のいずれか一項に記載のグラフト共重合体(D)と、
     架橋アクリル酸エステル系ゴム状重合体(E)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体混合物(m2)を重合して得られたグラフト共重合体(F)と、
     メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)と
     を含み、
     熱可塑性樹脂組成物中のグラフト共重合体(D)に含まれるエチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の体積平均粒子径が、0.2μm~0.6μmであり、
     熱可塑性樹脂組成物中のグラフト共重合体(F)に含まれる架橋アクリル酸エステル系ゴム状重合体(E)の体積平均粒子径が、0.05μm~0.18μmであり、
     エチレン・α-オレフィン共重合体(A)、架橋エチレン・α-オレフィン共重合体(C)および架橋アクリル酸エステル系ゴム状重合体(E)の合計(100質量%)のうち、エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の割合が、15~85質量%であり、架橋アクリル酸エステル系ゴム状重合体(E)の割合が、85~15質量%である、熱可塑性樹脂組成物。
    The graft copolymer (D) according to any one of claims 1 to 5,
    A graft copolymer (F) obtained by polymerizing a vinyl monomer mixture (m2) containing an aromatic vinyl compound and a vinyl cyanide compound in the presence of the crosslinked acrylic ester rubber polymer (E). )When,
    A methacrylic acid ester resin (G) obtained by polymerizing a vinyl monomer mixture (m3) containing a methacrylic acid ester,
    The volume average particle diameter of the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C) contained in the graft copolymer (D) in the thermoplastic resin composition is 0.00. 2 μm to 0.6 μm,
    The volume average particle diameter of the crosslinked acrylic ester rubber-like polymer (E) contained in the graft copolymer (F) in the thermoplastic resin composition is 0.05 μm to 0.18 μm,
    Of the total (100% by mass) of the ethylene / α-olefin copolymer (A), the cross-linked ethylene / α-olefin copolymer (C), and the cross-linked acrylate rubber polymer (E), ethylene / α The proportion of the olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C) is 15 to 85% by mass, and the proportion of the crosslinked acrylate rubber polymer (E) is 85 A thermoplastic resin composition having a content of 15% by mass.
  10.  請求項1~5のいずれか一項に記載のグラフト共重合体(D)と、
     ポリオルガノシロキサン(La)を含む複合ゴム状重合体(L)の存在下に、ビニル系単量体混合物(m5)を重合して得られたグラフト共重合体(M)と、
     メタクリル酸エステルを含むビニル系単量体混合物(m3)を重合して得られたメタクリル酸エステル樹脂(G)と
     を含み、
     熱可塑性樹脂組成物中のグラフト共重合体(D)に含まれるエチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の体積平均粒子径が、0.2μm~0.6μmであり、
     熱可塑性樹脂組成物中のグラフト共重合体(M)に含まれる複合ゴム状重合体(L)の体積平均粒子径が、0.05μm~0.18μmであり、
     エチレン・α-オレフィン共重合体(A)、架橋エチレン・α-オレフィン共重合体(C)および複合ゴム状重合体(L)の合計(100質量%)のうち、エチレン・α-オレフィン共重合体(A)または架橋エチレン・α-オレフィン共重合体(C)の割合が、15~85質量%であり、複合ゴム状重合体(L)の割合が、85~15質量%である、熱可塑性樹脂組成物。
    The graft copolymer (D) according to any one of claims 1 to 5,
    A graft copolymer (M) obtained by polymerizing a vinyl monomer mixture (m5) in the presence of a composite rubber-like polymer (L) containing a polyorganosiloxane (La);
    A methacrylic acid ester resin (G) obtained by polymerizing a vinyl monomer mixture (m3) containing a methacrylic acid ester,
    The volume average particle diameter of the ethylene / α-olefin copolymer (A) or the crosslinked ethylene / α-olefin copolymer (C) contained in the graft copolymer (D) in the thermoplastic resin composition is 0.00. 2 μm to 0.6 μm,
    The volume average particle size of the composite rubber-like polymer (L) contained in the graft copolymer (M) in the thermoplastic resin composition is 0.05 μm to 0.18 μm,
    Of the total (100% by mass) of ethylene / α-olefin copolymer (A), crosslinked ethylene / α-olefin copolymer (C) and composite rubber-like polymer (L), ethylene / α-olefin copolymer The ratio of the polymer (A) or the crosslinked ethylene / α-olefin copolymer (C) is 15 to 85% by mass, and the ratio of the composite rubbery polymer (L) is 85 to 15% by mass. Plastic resin composition.
  11. 前記グラフト共重合体(M)が、ポリオルガノシロキサン(La)、および(メタ)アクリル酸エステルに由来する単位と、架橋剤に由来する単位またはグラフト交叉剤に由来する単位のいずれか一方または両方と有するポリ(メタ)アクリル酸エステル(Lb)からなる複合ゴム状重合体(L1)の存在下に、芳香族ビニル化合物およびシアン化ビニル化合物を含むビニル系単量体成分(m5)を重合して得られたものである、請求項10に記載の熱可塑性樹脂組成物。 The graft copolymer (M) is a unit derived from a polyorganosiloxane (La) or (meth) acrylic acid ester, a unit derived from a crosslinking agent, or a unit derived from a graft crossing agent, or both In the presence of the composite rubber-like polymer (L1) comprising the poly (meth) acrylic acid ester (Lb) having a vinyl monomer component (m5) containing an aromatic vinyl compound and a vinyl cyanide compound. The thermoplastic resin composition according to claim 10, which is obtained in the above manner.
  12.  請求項6~11のいずれか一項に記載の熱可塑性樹脂組成物から形成された成形品。 A molded article formed from the thermoplastic resin composition according to any one of claims 6 to 11.
PCT/JP2014/053518 2013-02-15 2014-02-14 Graft copolymer, thermoplastic resin composition, and moulded article of said resin composition WO2014126215A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES14751507T ES2746798T3 (en) 2013-02-15 2014-02-14 Graft copolymer, thermoplastic resin composition, and molded article of said resin composition
EP14751507.6A EP2957580B8 (en) 2013-02-15 2014-02-14 Graft copolymer, thermoplastic resin composition, and moulded article of said resin composition
PL14751507T PL2957580T3 (en) 2013-02-15 2014-02-14 Graft copolymer, thermoplastic resin composition, and moulded article of said resin composition
CN201480009002.5A CN105008420B (en) 2013-02-15 2014-02-14 Graft copolymer, thermoplastic resin composition, and moulded article of said resin composition
MX2015010432A MX2015010432A (en) 2013-02-15 2014-02-14 Graft copolymer, thermoplastic resin composition, and moulded article of said resin composition.
US14/765,667 US9657169B2 (en) 2013-02-15 2014-02-14 Graft copolymer, thermoplastic resin composition, and molded article of said resin composition
CA2897935A CA2897935C (en) 2013-02-15 2014-02-14 Graft copolymer, thermoplastic resin composition, and molded article of said resin composition

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2013028362 2013-02-15
JP2013028360A JP6086747B2 (en) 2013-02-15 2013-02-15 Graft copolymer
JP2013-028361 2013-02-15
JP2013028130 2013-02-15
JP2013-028130 2013-02-15
JP2013-028360 2013-02-15
JP2013-028362 2013-02-15
JP2013028361A JP6086748B2 (en) 2013-02-15 2013-02-15 Thermoplastic resin composition and molded article thereof
JP2014-018864 2014-02-03
JP2014018865A JP6393947B2 (en) 2013-02-15 2014-02-03 Thermoplastic resin composition and molded article thereof
JP2014-018865 2014-02-03
JP2014018864A JP6395280B2 (en) 2013-02-15 2014-02-03 Thermoplastic resin composition and molded article thereof

Publications (1)

Publication Number Publication Date
WO2014126215A1 true WO2014126215A1 (en) 2014-08-21

Family

ID=53758580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053518 WO2014126215A1 (en) 2013-02-15 2014-02-14 Graft copolymer, thermoplastic resin composition, and moulded article of said resin composition

Country Status (10)

Country Link
US (1) US9657169B2 (en)
EP (1) EP2957580B8 (en)
CN (1) CN105008420B (en)
CA (1) CA2897935C (en)
ES (1) ES2746798T3 (en)
HU (1) HUE046407T2 (en)
MX (1) MX2015010432A (en)
PL (1) PL2957580T3 (en)
PT (1) PT2957580T (en)
WO (1) WO2014126215A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016074756A (en) * 2014-10-02 2016-05-12 ユーエムジー・エービーエス株式会社 Thermoplastic resin composition and molded product thereof
WO2018139466A1 (en) * 2017-01-27 2018-08-02 日本ゼオン株式会社 Method for producing acrylic rubber
WO2019004317A1 (en) * 2017-06-28 2019-01-03 旭化成株式会社 Resin composition, method for producing resin composition, and molded article
JP2021031569A (en) * 2019-08-22 2021-03-01 テクノUmg株式会社 Thermoplastic resin composition and molded article thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6569147B2 (en) * 2014-06-02 2019-09-04 テクノUmg株式会社 Thermoplastic resin composition and molded article thereof
US11453686B2 (en) * 2017-03-29 2022-09-27 Shin-Etsu Chemical Co., Ltd. (Meth)acrylic-modified silicone macromonomer
US20230066557A1 (en) * 2019-12-20 2023-03-02 Purdue Research Foundation Large scale production of catechol-containing polymers

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641600A (en) 1987-06-25 1989-01-05 Masayuki Kanai Accessories, synthetic resin-made decorative material, and manufacture thereof
JPH01118510A (en) * 1987-11-02 1989-05-11 Mitsubishi Petrochem Co Ltd Preparation of graft-modified alpha-olefin copolymer
JPH05279434A (en) 1992-02-06 1993-10-26 Mitsubishi Rayon Co Ltd Graft copolymer and its production
JP2688619B2 (en) 1989-04-13 1997-12-10 出光石油化学株式会社 Rubber modified styrenic resin composition
JP2000119477A (en) 1998-10-14 2000-04-25 Techno Polymer Kk Rubber-modified thermoplastic styrene resin composition
JP2000351816A (en) * 1999-06-11 2000-12-19 Techno Polymer Kk Rubber reinforced thermoplastic resin and rubber reinforced thermoplastic resin composition
JP2001098135A (en) * 1999-09-28 2001-04-10 Mitsui Chemicals Inc Vinyl compound-modified ethylenic polymer composition, resin modifier comprising the composition, thermoplastic polymer composition and molding comprising the composition
JP2002256036A (en) * 2001-03-01 2002-09-11 Techno Polymer Co Ltd Rubber-reinforced vinylic resin and rubber-reinforced vinylic resin composition
JP2003277570A (en) 2002-03-25 2003-10-02 Techno Polymer Co Ltd Thermoplastic resin composition
JP2004346187A (en) 2003-05-22 2004-12-09 Mitsubishi Rayon Co Ltd Thermoplastic resin composition and molded product
JP2004352842A (en) 2003-05-28 2004-12-16 Umg Abs Ltd Thermoplastic resin composition
JP2005132970A (en) 2003-10-30 2005-05-26 Umg Abs Ltd Thermoplastic resin composition
JP2008291158A (en) 2007-05-28 2008-12-04 Asahi Kasei Chemicals Corp Thermoplastic resin composition excellent in scratch resistance, designability and impact resistance
JP2011168186A (en) 2010-02-19 2011-09-01 Techno Polymer Co Ltd Automobile interior trimming part with reduced creak noise
JP2011174029A (en) 2009-04-08 2011-09-08 Techno Polymer Co Ltd Automobile interior part with reduced squeaking noise

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037890A (en) 1987-11-02 1991-08-06 Mitsubishi Petrochemical Company Limited Process for producing graft-modified α-olefin copolymer
JPH0522735A (en) 1991-07-12 1993-01-29 Matsushita Electric Ind Co Ltd Burst separating circuit
JP2848584B2 (en) 1994-06-23 1999-01-20 日本製紙株式会社 Aqueous resin composition, its production method and use
JP4048575B2 (en) 1997-06-11 2008-02-20 ユーエムジー・エービーエス株式会社 Thermoplastic resin composition having scratch resistance
DE10259500A1 (en) 2002-12-19 2004-07-01 Bayer Ag Graft polymers based on ethylene-α-olefin rubbers and process for their preparation

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641600A (en) 1987-06-25 1989-01-05 Masayuki Kanai Accessories, synthetic resin-made decorative material, and manufacture thereof
JPH01118510A (en) * 1987-11-02 1989-05-11 Mitsubishi Petrochem Co Ltd Preparation of graft-modified alpha-olefin copolymer
JP2688619B2 (en) 1989-04-13 1997-12-10 出光石油化学株式会社 Rubber modified styrenic resin composition
JPH05279434A (en) 1992-02-06 1993-10-26 Mitsubishi Rayon Co Ltd Graft copolymer and its production
JP2000119477A (en) 1998-10-14 2000-04-25 Techno Polymer Kk Rubber-modified thermoplastic styrene resin composition
JP2000351816A (en) * 1999-06-11 2000-12-19 Techno Polymer Kk Rubber reinforced thermoplastic resin and rubber reinforced thermoplastic resin composition
JP2001098135A (en) * 1999-09-28 2001-04-10 Mitsui Chemicals Inc Vinyl compound-modified ethylenic polymer composition, resin modifier comprising the composition, thermoplastic polymer composition and molding comprising the composition
JP2002256036A (en) * 2001-03-01 2002-09-11 Techno Polymer Co Ltd Rubber-reinforced vinylic resin and rubber-reinforced vinylic resin composition
JP2003277570A (en) 2002-03-25 2003-10-02 Techno Polymer Co Ltd Thermoplastic resin composition
JP2004346187A (en) 2003-05-22 2004-12-09 Mitsubishi Rayon Co Ltd Thermoplastic resin composition and molded product
JP2004352842A (en) 2003-05-28 2004-12-16 Umg Abs Ltd Thermoplastic resin composition
JP2005132970A (en) 2003-10-30 2005-05-26 Umg Abs Ltd Thermoplastic resin composition
JP2008291158A (en) 2007-05-28 2008-12-04 Asahi Kasei Chemicals Corp Thermoplastic resin composition excellent in scratch resistance, designability and impact resistance
JP2011174029A (en) 2009-04-08 2011-09-08 Techno Polymer Co Ltd Automobile interior part with reduced squeaking noise
JP2011168186A (en) 2010-02-19 2011-09-01 Techno Polymer Co Ltd Automobile interior trimming part with reduced creak noise

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016074756A (en) * 2014-10-02 2016-05-12 ユーエムジー・エービーエス株式会社 Thermoplastic resin composition and molded product thereof
WO2018139466A1 (en) * 2017-01-27 2018-08-02 日本ゼオン株式会社 Method for producing acrylic rubber
JPWO2018139466A1 (en) * 2017-01-27 2019-11-21 日本ゼオン株式会社 Acrylic rubber manufacturing method
WO2019004317A1 (en) * 2017-06-28 2019-01-03 旭化成株式会社 Resin composition, method for producing resin composition, and molded article
US11352496B2 (en) 2017-06-28 2022-06-07 Asahi Kasei Kabushiki Kaisha Resin composition, method of producing resin composition, and molded article
JP2021031569A (en) * 2019-08-22 2021-03-01 テクノUmg株式会社 Thermoplastic resin composition and molded article thereof

Also Published As

Publication number Publication date
US20150376395A1 (en) 2015-12-31
PT2957580T (en) 2019-08-07
CN105008420B (en) 2017-05-24
EP2957580B8 (en) 2019-07-31
EP2957580A4 (en) 2016-11-16
US9657169B2 (en) 2017-05-23
EP2957580A1 (en) 2015-12-23
CA2897935A1 (en) 2014-08-21
MX2015010432A (en) 2016-03-11
CA2897935C (en) 2018-06-05
EP2957580B1 (en) 2019-06-19
CN105008420A (en) 2015-10-28
PL2957580T3 (en) 2020-03-31
HUE046407T2 (en) 2020-02-28
ES2746798T3 (en) 2020-03-06

Similar Documents

Publication Publication Date Title
WO2014126215A1 (en) Graft copolymer, thermoplastic resin composition, and moulded article of said resin composition
WO2017073294A1 (en) Graft copolymer, crosslinked particles, graft crosslinked particles, rubbery polymer and thermoplastic resin composition using same
JP6155340B2 (en) Thermoplastic resin composition and molded article thereof
JP6291702B2 (en) Thermoplastic resin composition and molded article thereof
WO2015151853A1 (en) Thermoplastic resin composition and molded article of same
JP2018095722A (en) Thermoplastic resin composition and method for producing the same, and molded article
JP6393947B2 (en) Thermoplastic resin composition and molded article thereof
JP6569147B2 (en) Thermoplastic resin composition and molded article thereof
JP6395280B2 (en) Thermoplastic resin composition and molded article thereof
JP6086748B2 (en) Thermoplastic resin composition and molded article thereof
JP6086747B2 (en) Graft copolymer
JP2019167534A (en) Thermoplastic resin composition and molded article
JP6351152B2 (en) Thermoplastic resin composition and molded article thereof
JP6670087B2 (en) Thermoplastic resin composition and molded article thereof
JP6257278B2 (en) Thermoplastic resin composition and molded article thereof
JP6678449B2 (en) Thermoplastic resin composition for heat cycle injection molding, molded article, and method for producing molded article
JP6418954B2 (en) Thermoplastic resin composition and molded article thereof
JP6459367B2 (en) Thermoplastic resin composition and molded article thereof
JP7257108B2 (en) Graft polymer and thermoplastic resin composition
JP6954727B2 (en) Thermoplastic resin composition, its manufacturing method and molded product
JP2019167533A (en) Thermoplastic resin composition and molded article
JP6541254B2 (en) Thermoplastic resin composition and molded article thereof
JP7049100B2 (en) Thermoplastic resin composition and its molded product
JP2019099735A (en) Thermoplastic resin composition and molded article thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2897935

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2014751507

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14765667

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201504829

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/010432

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE