WO2014126190A1 - Fuel gas calorie estimation device, fuel gas calorie estimation method, and program - Google Patents

Fuel gas calorie estimation device, fuel gas calorie estimation method, and program Download PDF

Info

Publication number
WO2014126190A1
WO2014126190A1 PCT/JP2014/053447 JP2014053447W WO2014126190A1 WO 2014126190 A1 WO2014126190 A1 WO 2014126190A1 JP 2014053447 W JP2014053447 W JP 2014053447W WO 2014126190 A1 WO2014126190 A1 WO 2014126190A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel gas
efficiency
gas calorie
calorie
power generation
Prior art date
Application number
PCT/JP2014/053447
Other languages
French (fr)
Japanese (ja)
Inventor
泰郎 藤島
昭彦 齋藤
園田 隆
丈尾 平崎
忠臣 末原
敬史 宇田
諒 東
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020157015369A priority Critical patent/KR101704326B1/en
Priority to CN201480003302.2A priority patent/CN104854327B/en
Publication of WO2014126190A1 publication Critical patent/WO2014126190A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the present invention relates to a fuel gas calorie estimation device, a fuel gas calorie estimation method, and a program.
  • This application claims priority based on Japanese Patent Application No. 2013-028356 for which it applied to Japan on February 15, 2013, and uses the content here.
  • BFG blast furnace gas (Blast ⁇ Furnace ⁇ ⁇ ⁇ Gas; BFG) ⁇ gas turbine
  • BFG is used as a fuel to be input to the gas turbine.
  • This BFG is a by-product gas generated in the blast furnace in the iron making process.
  • the gas calorie of BFG changes greatly according to the operating conditions of the blast furnace etc. in a steelworks, and may affect the behavior of a gas turbine main part.
  • a method of reducing calorie fluctuations by mixing a heat increasing gas or a heat reducing gas with the original gas such as BFG is generally used. ing. Specifically, a method is generally used in which the calorimeter of the mixed gas or the original gas is measured using a calorimeter, and the mixing amount of the heat-increasing gas or the heat-reducing gas is controlled so as to cancel the variation in calories. ing.
  • the calorimeter generally has a large measurement delay of the order of about 60 seconds. For this reason, detection of a sudden change in gas calories may be delayed. If the control of the sudden change in calories is delayed, the control of the mixing amount of the heat increasing gas and the heat reducing gas does not function effectively, and there is a possibility that overload and misfire cannot be prevented.
  • (eta) shows efficiency (power generation efficiency).
  • the gas calorie is estimated from the power generation output, the fuel gas flow rate, and the power generation efficiency.
  • the dead time and time constant in the gas transmission system and the gas cleaning system can be greatly shortened compared with the conventional method using a calorimeter, and prompt control is realized. it can.
  • gas calorie control can be performed based on gas calorie, and interference with control of a turbine body and control of gas calorie can be avoided.
  • the method described in Patent Document 2 it is possible to control the gas calorie based on the gas calorie, and in this respect, it is possible to take fundamental measures against overload and misfire due to a sudden change in the gas calorie. .
  • JP 9-317499 A Japanese Patent No. 3,905,829
  • the accuracy of gas calorie estimation depends on the accuracy of power generation efficiency. It is desired that the gas calorie can be estimated more accurately by increasing the accuracy of the power generation efficiency (that is, by reducing the difference between the obtained power generation efficiency value and the actual value).
  • the present invention provides a fuel gas calorie estimation device, a fuel gas calorie estimation method, and a program capable of estimating the gas calorie with higher accuracy by improving the accuracy of power generation efficiency.
  • the fuel gas calorie estimation device includes a fuel gas flow rate acquisition unit that acquires a flow rate of fuel gas flowing into a combustor of a gas turbine, and a state quantity that acquires a state quantity of the gas turbine.
  • An acquisition unit a storage unit that stores power generation efficiency including an efficiency correction coefficient associated with the state quantity, the fuel gas flow rate, the state quantity, and a power generation obtained from the efficiency correction coefficient according to the state quantity
  • a fuel gas calorie calculation unit that performs a fuel gas calorie calculation based on the efficiency.
  • the fuel gas calorie estimation apparatus described above determines the magnitude of the difference between the calorie measurement value acquisition unit that acquires the fuel gas calorie measurement value, and the fuel gas calorie measurement value and the true value of the fuel gas calorie, The power generation efficiency corresponding to the state quantity based on the fuel gas calorie measurement value and the state quantity at the timing when it is determined that the difference between the fuel gas calorie measurement value and the true value of the fuel gas calorie is small And an efficiency updating unit for updating.
  • the efficiency update unit determines the magnitude of the fluctuation of the fuel gas calorie measurement value and the magnitude of the fluctuation of the fuel gas calorie measurement value is small over a period longer than the response delay of the fuel gas calorie measurement value If it judges, you may make it detect the time of the start of the said period as a timing with a small magnitude
  • the efficiency update unit may update the power generation efficiency to a value reflecting a past value of the power generation efficiency.
  • the efficiency update unit may perform correction to cancel the influence of the steady deviation between the true value of the fuel gas calorie and the measured value of the fuel gas calorie on the power generation efficiency.
  • the fuel gas calorie estimation method includes a storage unit that stores power generation efficiency including an efficiency correction coefficient associated with the state quantity of the gas turbine.
  • the fuel gas calorie estimation method of claim 1 wherein a fuel gas flow rate obtaining step for obtaining a flow rate of fuel gas flowing into a combustor of the gas turbine, a state quantity obtaining step for obtaining a state quantity of the gas turbine, and the fuel gas A fuel gas calorie calculation step for performing a fuel gas calorie calculation based on the flow rate, the state quantity, and the power generation efficiency obtained from the efficiency correction coefficient corresponding to the state quantity.
  • the program is stored in a computer as a fuel gas calorie estimation apparatus including a storage unit that stores power generation efficiency including an efficiency correction coefficient associated with a state quantity of the gas turbine.
  • a fuel gas flow rate acquisition step for acquiring a flow rate of fuel gas flowing into the combustor of the gas turbine, a state quantity acquisition step for acquiring a state quantity of the gas turbine, the fuel gas flow rate, the state quantity,
  • This is a program for executing a fuel gas calorie calculation step for performing a fuel gas calorie calculation based on the power generation efficiency obtained from the efficiency correction coefficient corresponding to the state quantity.
  • the accuracy of power generation efficiency can be improved and the gas calorie can be estimated more accurately.
  • FIG. 1 is a schematic configuration diagram showing the equipment configuration of the power generation system according to the first embodiment of the present invention.
  • the power generation system 1 includes a fuel gas calorie estimation device 100, a control device 800, and a gas turbine power generation facility 900.
  • the gas turbine power generation facility 900 generates power using blast furnace gas (BFG), which is a by-product gas generated in the blast furnace during the iron making process, as a main fuel.
  • BFG blast furnace gas
  • FIG. 2 is a schematic configuration diagram illustrating a device configuration of the gas turbine power generation facility 900.
  • a gas turbine power generation facility 900 includes a BFG main pipe 911, an N 2 (nitrogen) gas supply valve 921, a COG (Cokes Oven Gas) supply valve 922, a mixer 931, and an electric dust collector.
  • N 2 nitrogen
  • COG Cokes Oven Gas
  • the gas turbine 940 includes a filter 941, an air compressor 942, a combustor 943, a gas turbine main body 944, and a rotor (rotor shaft) 945.
  • the BFG mother pipe 911 is a pipe for supplying BFG generated in the blast furnace to the gas turbine power generation facility 900.
  • the N 2 gas supply valve 921 is a valve for adjusting the presence / absence and supply amount of N 2 gas which is a heat reducing gas.
  • the COG supply valve 922 is a valve for adjusting the presence / absence and supply amount of COG which is a heat-increasing gas.
  • the mixer 931 mixes N 2 gas and COG supplied according to the calories of the BFG into the BFG from the BFG mother pipe 911.
  • N 2 gas to BFG
  • COG gas calorie increases (thus increasing heat). Therefore, according to the calorific value of BFG from the BFG mother pipe 911, the N 2 gas supply valve 921 and the COG supply valve 922 adjust whether N 2 gas and COG are supplied or not, and the mixer 931 is supplied.
  • N 2 gas supply valve 921 and the COG supply valve 922 adjust whether N 2 gas and COG are supplied or not, and the mixer 931 is supplied.
  • the gas after passing through the mixer 931 (and therefore, BFG to which these gases are added when N 2 gas or COG is supplied) will be referred to as “fuel gas”.
  • the electric dust collector 932 is a device that collects and removes dust and the like contained in the fuel gas.
  • the gas compressor 933 compresses the fuel gas output from the electric dust collector 932 and introduces it into the combustor 943.
  • the bypass valve 934 adjusts the flow rate of the gas returned from the fuel gas output from the gas compressor 933 to the outlet side of the mixer 931 as surplus gas. As shown in FIG. 2, the outlet of the gas compressor 933 is connected to the inlet side of the combustor 943 and is connected (bypassed) to the outlet side of the mixer 931 via the gas cooler 935. .
  • the bypass valve 934 adjusts the flow rate of the fuel gas supplied to the combustor 943 by flowing a part of the fuel gas compressed by the gas compressor 933 to the bypass path.
  • the gas cooler 935 cools the surplus gas output from the bypass valve 934.
  • the surplus gas output from the bypass valve 934 is at a high temperature due to compression by the gas compressor 933. Therefore, the gas cooler 935 cools the surplus gas from the bypass valve and then returns it to the outlet side of the mixer 931.
  • the gas turbine 940 burns the fuel gas from the gas compressor 933 to generate a rotational force.
  • the filter 941 is provided on the inlet side of the air compressor 942 and removes dust and the like from the air (outside air) sucked by the air compressor.
  • the air compressor 942 compresses the air sucked through the filter 941 and outputs the obtained compressed air to the combustor 943.
  • the combustor 943 mixes and burns the fuel gas from the gas compressor 933 and the compressed air from the air compressor, and outputs the obtained high-temperature combustion gas to the gas turbine main body 944.
  • the gas turbine main body 944 is rotatably supported by the rotor 945, and the gas turbine main body 944 itself rotates by the combustion gas from the combustor 943, thereby rotating the rotor 945 together with the steam turbine 961.
  • the rotor 945 transmits the rotational force from the gas turbine main body 944 and the steam turbine 961 to the air compressor 942, the generator 971, and the speed increasing gear 972.
  • the exhaust heat recovery boiler 951 generates steam (high pressure steam) using the heat of the combustion gas (exhaust gas) exhausted by the gas turbine body 944 and supplies the obtained high pressure steam to the steam turbine 961.
  • the exhaust heat recovery boiler 951 reheats the steam discharged from the steam turbine 961 and supplies the steam as low pressure steam to the steam turbine 961.
  • the chimney 952 releases the combustion gas exhausted by the exhaust heat recovery boiler 951 into the atmosphere.
  • the steam turbine 961 is rotatably supported by a rotor 945, and the steam turbine 961 itself is rotated by steam (high pressure steam and low pressure steam) from the exhaust heat recovery boiler 951, so that the rotor 945 is moved together with the gas turbine body 944. Rotate.
  • the condenser 962 cools the steam exhausted from the steam turbine 961 and returns it to water (condensate).
  • the condensate pump 963 sends the condensate from the condenser 962 to the exhaust heat recovery boiler 951. The condensate is heated by the exhaust heat recovery boiler 951 and becomes high-pressure steam.
  • the generator 971 generates power using the rotational force transmitted from the gas turbine main body 944 and the steam turbine 961 transmitted by the rotor 945.
  • the speed increasing gear 972 increases the rotational force transmitted from the gas turbine main body 944 and the steam turbine 961 transmitted by the rotor 945 and transmits it to the gas compressor 933.
  • the calorimeter 991 measures the calorie of the fuel gas.
  • the flow meter 992 measures the flow rate of the fuel gas flowing into the combustor 943.
  • the wattmeter 993 measures the power generation output (electric power) of the generator 971. The power generation output measured by the wattmeter 993 correlates with the rotational force generated by the gas turbine 940, and corresponds to an example of a state quantity of the gas turbine.
  • the fuel gas calorie estimation apparatus 100 estimates the fuel gas calorie based on the fuel gas flow rate measured by the flow meter 992 and the power generation output of the generator 971 measured by the power meter 993.
  • the fuel gas calorie estimation apparatus 100 is configured by a computer, for example.
  • FIG. 3 is a schematic block diagram showing a functional configuration of the fuel gas calorie estimation apparatus 100.
  • the fuel gas calorie estimation apparatus 100 includes a state quantity acquisition unit 111, a fuel gas flow rate acquisition unit 112, a storage unit 121, a fuel gas calorie calculation unit 131, and a calculation result output unit 141.
  • the state quantity acquisition unit 111 acquires the power generation output of the generator 971 measured by the wattmeter 993.
  • the fuel gas flow rate acquisition unit 112 acquires the fuel gas flow rate measured by the flow meter 992.
  • the storage unit 121 stores various data such as power generation efficiency including an efficiency correction coefficient associated with the power generation output of the generator 971.
  • the storage unit 121 is configured using a storage device included in the fuel gas calorie estimation apparatus 100.
  • the fuel gas calorie calculation unit 131 includes a power generation output acquired by the state quantity acquisition unit 111, a fuel gas flow rate acquired by the fuel gas flow rate acquisition unit 112, and a power generation efficiency obtained from an efficiency correction coefficient according to the power generation output. , Fuel gas calorie calculation is performed.
  • the fuel gas calorie calculating unit 131 is configured, for example, by reading and executing a program stored in the storage unit 121 by a CPU (Central Processing Unit) that the fuel gas calorie estimation device 100 has.
  • CPU Central Processing Unit
  • the calculation result output unit 141 transmits the fuel gas calorie calculated by the fuel gas calorie calculation unit 131 to the control device 800.
  • the state quantity acquisition unit 111, the fuel gas flow rate acquisition unit 112, and the calculation result output unit 141 are configured using a communication circuit included in the fuel gas calorie estimation device 100.
  • the power generation output of the generator 971 is P [kilowatt (KW)]
  • the fuel gas calorie is H [kilojoule per Newton cubic meter (KJ / Nm 3 )]
  • the fuel gas flow rate is Q [Newton cubic meter per second (Nm). 3 / s)]
  • ⁇ (P) indicates power generation efficiency (hereinafter, simply referred to as “efficiency”), and can be expressed as in Expression (2).
  • ⁇ 0 (P) represents the efficiency derived in the gas turbine design stage (hereinafter referred to as “initial efficiency”).
  • Expression (3) is obtained from Expression (1) and Expression (2).
  • the storage unit 121 stores the initial efficiency ⁇ 0 (P) and the efficiency correction coefficient k ⁇ (P), and the fuel gas calorie calculation unit 131 calculates the fuel gas calorie H based on the equation (3).
  • the fuel gas calorie H is estimated.
  • FIG. 4 is a graph showing an example of fuel gas calorie estimation by the fuel gas calorie calculating unit 131.
  • the horizontal axis indicates time, and the vertical axis indicates calories.
  • a line L11 indicates the actual value of fuel gas calories (hereinafter referred to as “true value”).
  • a line L12 indicates the measured value of the fuel gas calorie by the calorimeter 991.
  • a line L13 indicates an estimated value of the fuel gas calorie by the fuel gas calorie calculating unit 131.
  • the true value (line L11) of the fuel gas calorie is substantially constant at the set value, and the measured value (line L12) by the calorimeter 991 is calculated. All of the estimated values by (line L13) indicate values close to the true value.
  • the true value of fuel gas calories (line L11) decreases.
  • the measured value (line L12) of the fuel gas calorie is different from the true value due to the response delay of the calorimeter 991. For example, at time T12, there is a difference indicated by an arrow in the figure.
  • the estimated value (line L13) of the fuel gas calorie follows the true value by estimating the power generation output that has a quick response to fluctuations in the fuel gas calorie using the value measured by a responsive wattmeter. Have changed.
  • the state quantity used by the fuel gas calorie calculation unit 131 for estimating the fuel gas calorie is not limited to the power generation output of the generator 971.
  • the fuel gas calorie calculation unit 131 may use a state quantity of the gas turbine 940 other than the power generation output, such as the exhaust gas temperature of the gas turbine body 944 or the rotational speed of the gas turbine body 944.
  • the fuel gas calorie calculating unit 131 may estimate the fuel gas calorie based on the equation (4).
  • ⁇ 2 0 (T) indicates the efficiency derived at the gas turbine design stage with respect to the exhaust gas temperature.
  • K 2 ⁇ (T) represents an efficiency correction coefficient for the efficiency ⁇ 2 0 (T).
  • control device 800 controls each part of the gas turbine power generation facility 900.
  • control device 800 controls the loads of the gas turbine 940 and the steam turbine 961 according to the power generation output target set by the operator of the gas turbine power generation facility 900.
  • control device 800 controls the N 2 gas supply valve 921 and the COG supply valve 922 so that the fuel gas calorie is constant based on the fuel gas calorie calculated by the fuel gas calorie estimation device 100.
  • the fuel gas calorie calculation unit 131 estimates the fuel gas calorie based on the state quantity of the gas turbine 940. Thereby, the fuel gas calorie calculating part 131 can estimate a fuel gas calorie with a quick response according to the fluctuation
  • control device 800 can control the gas calorie based on the gas calorie by using the estimation result of the fuel gas calorie calculating unit 131.
  • the control device 800 can cope with an overload or misfire caused by a sudden change in the gas calorie. Basic measures can be taken.
  • the fuel gas calorie calculating unit 131 uses the power generation efficiency including the efficiency correction coefficient associated with the state quantity of the gas turbine 940.
  • the efficiency that can be derived at the design stage does not always coincide with the efficiency of the actual machine, and the efficiency gradually changes due to aging and atmospheric temperature fluctuations.
  • the efficiency varies depending on the state quantity of the gas turbine such as the power generation output (load zone).
  • the fuel gas calorie calculation unit 131 multiplies the efficiency ⁇ 0 (P) derived in the design stage by the efficiency correction coefficient k ⁇ (P) for each state quantity (power generation output in this embodiment).
  • the fuel gas calorie can be estimated by using finely adjusted and more accurate efficiency.
  • the fuel gas calorie calculation unit 131 can estimate the gas calorie with higher accuracy by improving the accuracy of the power generation efficiency, and can also cope with changes in the environment such as the aging of the gas turbine 940 and the atmospheric temperature. It is possible. And the control apparatus 800 can further reduce the possibility of overload and misfire due to sudden change of gas calorie by controlling the fuel gas calorie using the estimation result of the fuel gas calorie calculating unit 131. Further, the fuel gas calorie calculating unit 131 can estimate the fuel gas calorie using the state quantity of the gas turbine 940 other than the power generation output, such as the exhaust gas temperature or the rotation speed of the gas turbine 940.
  • the fuel gas calorie estimation apparatus 100 can estimate the fuel gas calorie of various gas turbines not only in the example of FIG.
  • the fuel gas calorie estimation apparatus 100 may be used not only for BFG gas turbines but also for various gas turbine facilities in which fuel gas calories can fluctuate such as coal gasification combined power generation (Integrated coal Gasification Combined Cycle; IGCC). it can.
  • the fuel gas calorie estimation apparatus 100 can be used not only for combined cycle power generation equipment but also for power generation equipment for a gas turbine alone.
  • the number of stages of the steam turbine is not limited to two, but may be one or three or more.
  • the fuel gas calorie estimation apparatus 100 can be used for various gas turbines other than power generation applications such as a power gas turbine.
  • the fuel gas calorie estimated by the fuel gas calorie estimation device 100 may be used for purposes other than the control of the gas turbine power generation facility 900, such as display or recording to an operator.
  • the gas turbine power generation facility 900 may not include a calorimeter.
  • FIG. 5 is a schematic block diagram showing a functional configuration of the fuel gas calorie estimation apparatus 200.
  • a fuel gas calorie estimation apparatus 200 includes a state quantity acquisition unit 111, a fuel gas flow rate acquisition unit 112, a storage unit 121, a fuel gas calorie calculation unit 131, a calculation result output unit 141, and a calorie measurement value.
  • An acquisition unit 213 and an efficiency update unit 251 are provided.
  • parts having the same functions corresponding to the respective parts in FIG. 3 are denoted by the same reference numerals (111, 112, 121, 131, 141), and description thereof is omitted.
  • the fuel gas calorie estimation apparatus 200 estimates the fuel gas calorie based on the fuel gas flow rate measured by the flow meter 992 (FIG. 1) and the power generation output of the generator 971 measured by the power meter 993. In addition, the fuel gas calorie estimation apparatus 200 updates the efficiency correction coefficient based on the fuel gas calorie measured by the calorimeter 991.
  • the fuel gas calorie estimation apparatus 200 is configured by a computer, for example.
  • the calorie measurement value acquisition unit 213 acquires the fuel gas calorie measurement value measured by the calorimeter 991.
  • the efficiency updating unit 251 determines the magnitude of the difference between the fuel gas calorie measurement value and the true value of the fuel gas calorie. And the efficiency update part 251 is based on the fuel gas calorie measurement value and the state quantity of the gas turbine 940 at the timing when it is determined that the magnitude of the difference between the fuel gas calorie measurement value and the true value of the fuel gas calorie is small.
  • the power generation efficiency corresponding to the state quantity is updated.
  • the efficiency updating unit 251 determines the magnitude of the fluctuation of the fuel gas calorie measurement value by the calorimeter 991, and the magnitude of the fluctuation of the fuel gas calorie measurement value over a period longer than the response delay of the fuel gas calorie measurement value. Is determined to be small, the start of the period is detected as a timing at which the difference between the measured value of the fuel gas calories and the true value of the fuel gas calories is small.
  • FIG. 6 is a graph illustrating an example in which the efficiency updating unit 251 determines that the variation in the fuel gas calorie measurement value is small over a period longer than the response delay of the fuel gas calorie measurement value.
  • the horizontal axis indicates time, and the vertical axis indicates calories.
  • a line L21 indicates the true value of the fuel gas calorie.
  • a line L22 indicates the measured value of the fuel gas calorie by the calorimeter 991.
  • Time T212 indicates the current time.
  • the time T221 indicates the response delay time of the fuel gas calorie measurement value.
  • the true value of the fuel gas calorie (line L21) starts to decrease, whereas the fuel gas calorie measurement value (line L22) starts to decrease at the end of time T221.
  • Time T211 indicates a time past the response delay time indicated by time T221 than the current time (time T212).
  • the fuel gas calorie measurement value (line L22) is substantially constant at the set value for the time from time T211 to time T212.
  • the efficiency update unit 251 acquires the fuel gas calorie measurement value measured by the calorimeter 991 through the calorie measurement value acquisition unit 213 for each sampling time from time T211 to time T212, for example. And the efficiency update part 251 calculates dispersion
  • the method by which the efficiency updating unit 251 evaluates the magnitude of the variation in the fuel gas calorie measurement value is not limited to the method using dispersion.
  • the efficiency updating unit 251 calculates the magnitude of the difference between the fuel gas calorie measurement value and the set value at each sampling time of the evaluation target period (from time T211 to time T212 in the example of FIG. 6). Also good.
  • the efficiency update unit 251 determines the fuel gas calorie measurement value over a period longer than the response delay of the fuel gas calorie measurement value. You may make it determine with the magnitude
  • the fuel gas calorie measurement value (line L22) is substantially constant during the period from time T211 to time T212 (the magnitude of fluctuation is small). From this, at least at time T211, it can be considered that the fuel gas calorie measurement value (line L22) is equal to the true value (line L21).
  • the efficiency update unit 251 that has determined that the magnitude of the variation in the fuel gas calorie measurement value is small over a period longer than the response delay of the fuel gas calorie measurement value is based on the fuel gas calorie measurement value at time T211.
  • the efficiency correction coefficient corresponding to the power generation output at is updated.
  • the efficiency updating unit 251 calculates the fuel gas calorie measurement value of the calorimeter 991, the fuel gas flow rate measurement value of the flow meter 992, and the power generation output measurement value of the watt meter 993 at time T211 using the formula ( Applying the relationship shown in 5), a reference signal (teacher signal) k r ⁇ (P) of the efficiency correction coefficient is obtained.
  • P shows a power generation output.
  • Q indicates the fuel gas flow rate.
  • H s indicates a fuel gas calorie measurement value.
  • ⁇ 0 (P) represents a value corresponding to the power generation output P of the efficiency derived in the design stage.
  • the efficiency updating unit 251 then replaces the efficiency correction coefficient k ⁇ (P) corresponding to the power generation output P at time T211 with the obtained efficiency correction coefficient reference signal k r ⁇ (P).
  • the storage unit 121 stores an efficiency correction coefficient corresponding to the power generation output for each section obtained by dividing the power generation output (load band) of the generator 971. Then, the efficiency update unit 251 detects the time detected as the time when the measured value of the fuel gas calorie can be regarded as being equal to the true value among the efficiency correction coefficients stored in the storage unit 121 (in the example of FIG. 6, the time T211.
  • the efficiency correction coefficient corresponding to the power generation output at “reference time” is replaced with a reference signal of the efficiency correction coefficient.
  • FIG. 7 is an explanatory diagram illustrating an example of updating the efficiency correction coefficient performed by the efficiency updating unit 251.
  • the horizontal axis indicates the power generation output
  • the vertical axis indicates the efficiency correction coefficient.
  • the measured value of the power generation output P at the reference time corresponds to P 2
  • the efficiency update unit 251 calculates the efficiency correction coefficient k ⁇ (P 2 ) of the power generation output P 2 as the obtained efficiency. Replace with the reference signal k r ⁇ (P) of the correction coefficient.
  • FIG. 8 is a flowchart illustrating a procedure of processing in which the efficiency update unit 251 updates the efficiency correction coefficient.
  • the efficiency update unit 251 performs the process illustrated in FIG.
  • the efficiency update unit 251 first calculates the calorie through the calorie measurement value acquisition unit 213 for each sampling time for a predetermined time set as a time longer than the response delay time of the calorimeter 991.
  • the fuel gas calorie measurement value measured by the meter 991 is acquired (step S101).
  • the efficiency update part 251 calculates dispersion
  • step S103 NO
  • the process returns to step S101.
  • step S103: YES the efficiency updating unit 251 calculates a reference signal k r ⁇ (P) for the efficiency correction coefficient (step S104). Then, the efficiency update unit 251 replaces the efficiency correction coefficient corresponding to the power generation output at the reference time among the efficiency correction coefficients stored in the storage unit 121 with the reference signal of the efficiency correction coefficient (step S105). Thereafter, the process of FIG.
  • the efficiency updating unit 251 determines the magnitude of the difference between the measured fuel gas calorie value and the true value of the fuel gas calorie, and the difference between the measured fuel gas calorie value and the true value of the fuel gas calorie.
  • the power generation efficiency corresponding to the turbine state quantity is updated based on the fuel gas calorie measurement value and the turbine state quantity at the timing when it is determined that the size of the engine is small.
  • the efficiency update part 251 can update an efficiency correction coefficient finely for every electric power generation output, and the fuel gas calorie calculating part 131 calculates a fuel gas calorie more accurately using the said efficiency correction coefficient. can do.
  • the efficiency update unit 251 uses the fuel gas calorie measurement value by updating the efficiency correction coefficient at the timing when it is determined that the difference between the fuel gas calorie measurement value and the true value of the fuel gas calorie is small.
  • the efficiency correction coefficient can be updated easily and more accurately.
  • the efficiency updating unit 251 determines the magnitude of the fluctuation of the fuel gas calorie measurement value, and determines that the fluctuation magnitude of the fuel gas calorie measurement value is small over a period longer than the response delay of the fuel gas calorie measurement value. Then, the start time of the period is detected as a timing at which the difference between the measured value of the fuel gas calorie and the true value of the fuel gas calorie is small.
  • the efficiency update unit 251 instead of constantly updating the efficiency correction coefficient, accurately updates the efficiency correction coefficient by performing an update when it is determined that the variation in the fuel gas calorie measurement value is small. Can be updated. Therefore, the fuel gas calorie calculating unit 131 can calculate the fuel gas calorie more accurately using the efficiency correction coefficient.
  • the state quantity used by the efficiency updating unit 251 for updating the efficiency correction coefficient is not limited to the power generation output of the generator 971, similarly to the state quantity used by the fuel gas calorie calculating unit 131 for estimating the fuel gas calorie.
  • the efficiency updating unit 251 may use a state quantity of the gas turbine 940 other than the power generation output, such as the exhaust gas temperature of the gas turbine body 944 or the rotational speed of the gas turbine body 944.
  • the state quantity used by the fuel gas calorie calculating unit 131 and the state quantity used by the efficiency updating unit 251 may be the same state quantity or different state quantities.
  • the fuel gas calorie estimation apparatus 200 can estimate the fuel gas calorie of various gas turbines not only in the example of FIG.
  • the fuel gas calorie estimation apparatus 200 can be used not only for the BFG gas turbine but also for various gas turbine facilities where the fuel gas calorie can vary, such as coal gasification combined power generation.
  • the fuel gas calorie estimation apparatus 200 can be used not only for combined cycle power generation equipment but also for power generation equipment for a gas turbine alone.
  • the number of stages of the steam turbine is not limited to two, but may be one or three or more.
  • the fuel gas calorie estimation apparatus 200 can be used for various gas turbines other than power generation applications, such as a power gas turbine. Further, the fuel gas calorie estimated by the fuel gas calorie estimation apparatus 200 may be used for purposes other than the control of the gas turbine power generation facility 900, such as display to an operator or recording.
  • the format in which the storage unit 121 stores the efficiency correction coefficient is not limited to the format (for example, the table format) in which the power generation output and the efficiency correction coefficient are stored in association with each other as described with reference to FIG.
  • the storage unit 121 may store an approximate curve indicating the relationship between the power generation output and the efficiency correction coefficient.
  • the efficiency update unit 251 can update the efficiency correction coefficient by obtaining the parameters of the approximate curve (for example, the coefficient of each term in the polynomial) by, for example, the least square method.
  • the method in which the efficiency update part 251 detects the timing when the magnitude of the difference between the fuel gas calorie measurement value and the true value of the fuel gas calorie is small is a method for detecting a period in which the fluctuation of the fuel gas calorie measurement value is small.
  • the efficiency updating unit 251 determines the magnitude of the fluctuation of the estimated fuel gas calorie value calculated by the fuel gas calorie calculating unit 131, and the magnitude of the fluctuation is small over a period longer than the response delay of the measured fuel gas calorie value. May be detected. Then, the efficiency update unit 251 may detect the end time of the detected period as a timing when the magnitude of the difference between the measured fuel gas calorie value and the true value of the fuel gas calorie is small.
  • the efficiency update unit 251 may directly update the efficiency instead of the efficiency correction coefficient. That is, the storage unit 121 stores the efficiency ⁇ (P) according to the power generation output, and updates the efficiency according to the power generation output at the time based on the fuel gas calorie measurement value at the reference time. Also good. Specifically, the efficiency updating unit 251 calculates the fuel gas calorie measurement value of the calorimeter 991, the fuel gas flow rate measurement value of the flow meter 992, and the power generation output measurement value of the watt meter 993 at the reference time by the formula ( Applying the relationship shown in 6), an efficiency reference signal ⁇ r (P) is obtained.
  • P shows a power generation output.
  • Q indicates the fuel gas flow rate.
  • H s indicates a fuel gas calorie measurement value.
  • the efficiency updating unit 251 replaces the efficiency ⁇ (P) corresponding to the power generation output P at the reference time with the obtained efficiency reference signal ⁇ r (P).
  • the storage unit 121 may store the power generation output and the efficiency in association with each other (for example, in a table format). Or you may make it the memory
  • the storage unit 121 may use a cubic expression shown in Expression (7) for storage.
  • x shows the state quantity of turbines, such as a power generation output, for example.
  • a 0 , a 1 , a 2 , and a 3 each indicate a coefficient.
  • y (x) represents an approximate value of efficiency.
  • the superscript number indicates a multiplier.
  • the storage unit 121 stores, for example, the approximate curve of Expression (7) by storing the coefficient vector a shown in Expression (8) (in the description of the specification, bold notation indicating a vector or a matrix is omitted). .
  • the storage unit 121 first stores an initial value of a coefficient vector a (for example, a coefficient vector that approximates efficiency at the design stage) that is obtained in advance using a method such as a least square method. . Then, the efficiency updating unit 251 updates the coefficient vector a based on the reference signal ⁇ r (P). For example, the efficiency updating unit 251 updates the coefficient vector a based on Expression (9) using an LMS (Least Mean Square) algorithm.
  • a coefficient vector a for example, a coefficient vector that approximates efficiency at the design stage
  • the vector P is a vector based on the power generation output P shown in Expression (10).
  • represents a constant.
  • the superscript number indicates a multiplier.
  • the efficiency update unit 251 updates the efficiency using the LMS algorithm, thereby avoiding a steep fluctuation in the efficiency (estimated value thereof).
  • the true value of the efficiency gradually changes according to the secular change of the gas turbine 940, the atmospheric temperature, and the like, and should not change steeply. Therefore, it is expected that the efficiency update unit 251 can obtain an efficiency close to the true value by avoiding a steep fluctuation in efficiency.
  • the efficiency updating unit 251 updates the efficiency, the same effect as that when the efficiency correction coefficient is updated can be obtained. Specifically, in this way, the efficiency update unit 251 can finely update the efficiency for each power generation output, and the fuel gas calorie calculation unit 131 uses the efficiency to more accurately calculate the fuel gas calorie. Can be calculated. In addition, the efficiency updating unit 251 can easily use the fuel gas calorie measurement value by updating the efficiency at the timing when it is determined that the difference between the fuel gas calorie measurement value and the true value of the fuel gas calorie is small. In addition, the update can be performed more accurately and efficiently.
  • the efficiency update unit 251 can update the efficiency with high accuracy by performing the update when it is determined that the magnitude of the variation of the fuel gas calorie measurement value is small instead of constantly updating the efficiency. Therefore, the fuel gas calorie calculating unit 131 can calculate the fuel gas calorie more accurately using the efficiency.
  • the efficiency updating unit 251 may update the efficiency to a value reflecting the past value of the efficiency.
  • the efficiency update unit 251 uses the forgetting factor ⁇ ( ⁇ is a constant satisfying 0 ⁇ ⁇ 1) to update the efficiency correction factor based on Equation (11), thereby causing a steep fluctuation in the efficiency correction factor. Suppress.
  • the value of the forgetting factor ⁇ is set by the user of the fuel gas calorie estimation apparatus 200, for example.
  • the method in which the efficiency updating unit 251 updates the efficiency to a value reflecting the past value of the efficiency is not limited to the method using the forgetting factor.
  • the efficiency update unit 251 applies an integration filter to the reference signal k r ⁇ (P) of the efficiency correction coefficient to generate a first-order lag, and the efficiency stored in the storage unit 121 using the reference signal in which the first-order lag has occurred
  • the correction coefficient may be updated.
  • the efficiency update unit 251 updates the efficiency to a value reflecting the past value of the efficiency.
  • the efficiency update part 251 can suppress the steep fluctuation
  • the true value of efficiency should not change steeply, and the true value of the efficiency correction coefficient should not change steeply. Therefore, it is expected that the efficiency update unit 251 can obtain an efficiency correction coefficient close to the true value by avoiding a sharp change in efficiency.
  • the fuel gas calorie calculating part 131 can obtain
  • the efficiency update unit 251 may perform correction to cancel the influence of the steady deviation between the true value of the fuel gas calorie and the measured value of the fuel gas calorie on the efficiency.
  • the efficiency correction coefficient updated by the efficiency updating unit 251 based on the fuel gas calorie measurement value or Efficiency can also include steady-state deviations. Therefore, the efficiency updating unit 251 may generate a coefficient for correcting the steady-state deviation, such as the coefficient j ⁇ shown in Expression (12).
  • F (s) represents a filter such as a first-order lag system 1 / (Ts + 1) having a time constant T [second (sec)], for example.
  • 1 / s indicates an integral operator (s is a differential operator).
  • the efficiency updating unit 251 can set j ⁇ k ⁇ (P) as a new efficiency correction coefficient. For example, for the efficiency correction coefficient reference signal k r ⁇ (P), the efficiency update unit 251 determines the efficiency correction coefficient corresponding to the power generation output P among the efficiency correction coefficients stored in the storage unit 121 as j ⁇ k r. It can be updated to ⁇ (P). Alternatively, when the efficiency updating unit 251 updates the efficiency, the efficiency corresponding to the power generation output P among the efficiency stored in the storage unit 121 can be updated to j ⁇ ⁇ (P).
  • the efficiency update unit 251 acquires the coefficient j ⁇ based on, for example, the deviation between the target value of the power generation output and the measurement value of the power generation output.
  • the control device 800 uses the estimated fuel gas calorie value. This also affects the control of the power generation output. That is, the steady deviation between the true value and the measured value of the fuel gas calorie is indicated by the deviation between the target value of the power generation output and the measured value.
  • the efficiency updating unit 251 acquires the coefficient j ⁇ corresponding to the steady deviation between the true value of the fuel gas calories and the measured value based on the deviation between the target value of the generated power output and the measured value of the generated power output. .
  • the efficiency updating unit 251 performs correction to cancel the influence on the efficiency of the steady deviation between the true value of the fuel gas calorie and the measured value of the fuel gas calorie. Thereby, the efficiency update part 251 can further improve the precision of efficiency. And by using the said efficiency, the fuel gas calorie calculating part 131 can further improve the precision of a fuel gas calorie estimated value.
  • a program for realizing all or part of the functions of the fuel gas calorie estimation apparatus 100 or 200 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read by a computer system, The processing of each unit may be performed by executing.
  • the “computer system” includes an OS and hardware such as peripheral devices. Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory in a computer system serving as a server or a client in that case and a program that holds a program for a certain period of time are also included.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • the present invention provides a fuel gas flow rate acquisition unit that acquires a flow rate of fuel gas flowing into a combustor of a gas turbine, a state quantity acquisition unit that acquires a state quantity of the gas turbine, and an efficiency correction associated with the state quantity Fuel gas that performs a fuel gas calorie calculation based on a storage unit that stores power generation efficiency including a coefficient, the fuel gas flow rate, the state quantity, and a power generation efficiency obtained from an efficiency correction coefficient corresponding to the state quantity And a calorie calculating unit. According to the present invention, the accuracy of power generation efficiency can be improved and the gas calorie can be estimated more accurately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

A fuel gas calorie estimation device equipped with: a fuel gas flow volume acquisition unit that acquires the flow volume of a fuel gas flowing into the combustor of a gas turbine; a state quantity acquisition unit that acquires the state quantity of the gas turbine; a storage unit that stores the power generation efficiency, which includes an efficiency correction coefficient corresponding to the state quantity; and a fuel gas calorie calculation unit that calculates the fuel gas calories on the basis of the fuel gas flow volume, the state quantity, and the power generation efficiency obtained from the efficiency correction coefficient in accordance with that state quantity.

Description

燃料ガスカロリー推定装置、燃料ガスカロリー推定方法およびプログラムFuel gas calorie estimation apparatus, fuel gas calorie estimation method and program
 本発明は、燃料ガスカロリー推定装置、燃料ガスカロリー推定方法およびプログラムに関する。
 本願は、2013年2月15日に、日本国に出願された特願2013-028356号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a fuel gas calorie estimation device, a fuel gas calorie estimation method, and a program.
This application claims priority based on Japanese Patent Application No. 2013-028356 for which it applied to Japan on February 15, 2013, and uses the content here.
高炉ガス(Blast Furnace Gas;BFG)焚ガスタービンでは,ガスタービンに投入する燃料としてBFGを用いている。このBFGは、製鉄の過程において高炉で発生する副生ガスである。このため、BFGのガスカロリーは製鉄所内にある高炉などの運転状況に応じて大きく変化し、ガスタービン本体の挙動にも影響を与えることがある。 In a blast furnace gas (Blast 焚 Furnace と し て Gas; BFG) 焚 gas turbine, BFG is used as a fuel to be input to the gas turbine. This BFG is a by-product gas generated in the blast furnace in the iron making process. For this reason, the gas calorie of BFG changes greatly according to the operating conditions of the blast furnace etc. in a steelworks, and may affect the behavior of a gas turbine main part.
例えば、BFGのカロリーが急増するとガスタービンが過負荷(オーバロード)となり、逆にカロリーが急減した場合は失火する恐れがある。過負荷や失火はガスタービン本体の緊急停止を発生させ得る深刻な事象であるため、できるだけ未然に防止しなければならない。これは、BFG焚ガスタービンのようにガスカロリーが急激に変動するガスを用いるプラントに共通の課題である。なお、BFG焚ガスタービン設備以外では、石炭ガス化複合発電(Integrated coal Gasification Combined Cycle;IGCC)などにおいてガスカロリーの変動が発生し得る。 For example, if the calorific value of BFG suddenly increases, the gas turbine is overloaded (overload). Since overload and misfire are serious events that can cause an emergency stop of the gas turbine body, they must be prevented as much as possible. This is a problem common to plants that use a gas whose gas calorie fluctuates abruptly like a BFG soot gas turbine. In addition to the BFG gas turbine equipment, gas calorie fluctuations may occur in coal gasification combined power generation (Integrated Gasolysis Gas Combined Cycle; IGCC).
ガスカロリーの変動が発生してもガスタービン本体を継続して運転させるために、増熱ガスまたは減熱ガスをBFGなど元のガスに混合してカロリー変動を低減させる方法が一般的に用いられている。具体的には、カロリーメータを用いて混合ガスまたは元のガスのカロリーを測定し、カロリーの変動分を打ち消すように増熱ガスまたは減熱ガスの混合量を制御する方法が一般的に用いられている。 In order to continuously operate the gas turbine body even if gas calorie fluctuations occur, a method of reducing calorie fluctuations by mixing a heat increasing gas or a heat reducing gas with the original gas such as BFG is generally used. ing. Specifically, a method is generally used in which the calorimeter of the mixed gas or the original gas is measured using a calorimeter, and the mixing amount of the heat-increasing gas or the heat-reducing gas is controlled so as to cancel the variation in calories. ing.
しかしながら、カロリーメータは一般に60秒程度など分オーダの多大な計測遅れを有する。このため、ガスカロリーの急変の検出が遅れることがある。カロリーの急変の制御が遅れると、増熱ガスや減熱ガスの混合量の制御が有効に機能せず、過負荷や失火を防止できないおそれがある。 However, the calorimeter generally has a large measurement delay of the order of about 60 seconds. For this reason, detection of a sudden change in gas calories may be delayed. If the control of the sudden change in calories is delayed, the control of the mixing amount of the heat increasing gas and the heat reducing gas does not function effectively, and there is a possibility that overload and misfire cannot be prevented.
これに対して、ガスカロリーの急変を検出して過負荷や失火を防止するための幾つかの方法が提案されている。
例えば、特許文献1に記載の、高炉ガス専燃式ガスタービンの制御方法では、高炉ガス焚きガスタービンの運転に当たり、発電機の出力に応じ、燃焼器の燃料用高炉ガス中にNなどの減熱用希釈ガスもしくはLPGなどの増熱用富化ガスのいずれかを添加してガスタービン出力が一定になるように制御する。
これにより、特許文献1に記載の、高炉ガス専燃式ガスタービンの制御方法では、専燃式の故に不可避に起こる高炉ガスカロリー変動に起因するガスタービンの出力変動を克服して発電出力を一定にすることができる、とされている。
On the other hand, several methods for detecting an abrupt change in gas calories and preventing overload and misfire have been proposed.
For example, in the method for controlling a blast furnace gas-only gas turbine described in Patent Document 1, in operation of the blast furnace gas-fired gas turbine, N 2 or the like is contained in the blast furnace gas for the fuel of the combustor according to the output of the generator. Either the dilution gas for heat reduction or the enrichment gas for heat increase such as LPG is added to control the gas turbine output to be constant.
Thereby, in the control method of the blast furnace gas exclusive combustion type gas turbine described in patent document 1, the power generation output is fixed by overcoming the output fluctuation of the gas turbine caused by the blast furnace gas calorie fluctuation inevitably caused by the exclusive combustion type. It is said that it can be.
しかしながら、特許文献1に記載の、高炉ガス専燃式ガスタービンの制御方法では、発電機の出力に応じてガスカロリーを制御するため、発電出力に基づくタービン本体の制御と、発電出力に基づくガスカロリーの制御とが干渉する可能性がある。また、特許文献1に記載の、高炉ガス専燃式ガスタービンの制御方法では、ガスカロリーの制御に関してガスカロリー自体の値は無視している。この点において、ガスカロリーの急変による過負荷や失火に対する根本的対策にはなっていない。 However, in the method for controlling a blast furnace gas-only gas turbine described in Patent Document 1, since the gas calorie is controlled according to the output of the generator, the control of the turbine body based on the power generation output and the gas based on the power generation output Calorie control can interfere. Moreover, in the control method of the blast furnace gas exclusive combustion type gas turbine described in patent document 1, the value of gas calorie itself is disregarded regarding control of gas calorie. In this respect, it is not a fundamental measure against overload and misfire due to sudden changes in gas calories.
これに対して、特許文献2では、発電出力Pとガス流量Qとから、P=ηHQにて示される関係に基づいてガスカロリーHを推定する手法を提案している。但し、ηは効率(発電効率)を示す。
この手法では、発電出力と燃料ガス流量および発電効率により、ガスカロリーを推定する。これにより、特許文献2に記載の手法では、カロリーメータを用いる従来の方法に比べて、ガス伝達系およびガス洗浄系での無駄時間や時定数の大幅な短縮が可能となり、速やかな制御を実現できる。
また、特許文献2に記載の手法を用いれば、ガスカロリーに基づいてガスカロリーの制御を行うことができ、タービン本体の制御とガスカロリーの制御との干渉を回避し得る。さらに、特許文献2に記載の手法を用いれば、ガスカロリーに基づいてガスカロリーの制御を行うことができ、この点において、ガスカロリーの急変による過負荷や失火に対する根本的対策を講じることができる。
On the other hand, Patent Document 2 proposes a method for estimating the gas calorie H from the power generation output P and the gas flow rate Q based on the relationship represented by P = ηHQ. However, (eta) shows efficiency (power generation efficiency).
In this method, the gas calorie is estimated from the power generation output, the fuel gas flow rate, and the power generation efficiency. As a result, in the method described in Patent Document 2, the dead time and time constant in the gas transmission system and the gas cleaning system can be greatly shortened compared with the conventional method using a calorimeter, and prompt control is realized. it can.
Moreover, if the method of patent document 2 is used, gas calorie control can be performed based on gas calorie, and interference with control of a turbine body and control of gas calorie can be avoided. Furthermore, if the method described in Patent Document 2 is used, it is possible to control the gas calorie based on the gas calorie, and in this respect, it is possible to take fundamental measures against overload and misfire due to a sudden change in the gas calorie. .
特開平9-317499号公報JP 9-317499 A 日本国特許第3905829号公報Japanese Patent No. 3,905,829
特許文献2に記載の手法では、ガスカロリーの推定精度は発電効率の精度に依存する。発電効率の精度を高めて(すなわち、得られる発電効率の値と実際値との差を小さくして)、ガスカロリーをより精度良く推定できることが望まれる。 In the method described in Patent Document 2, the accuracy of gas calorie estimation depends on the accuracy of power generation efficiency. It is desired that the gas calorie can be estimated more accurately by increasing the accuracy of the power generation efficiency (that is, by reducing the difference between the obtained power generation efficiency value and the actual value).
本発明は、発電効率の精度を高めて、ガスカロリーをより精度良く推定することのできる燃料ガスカロリー推定装置、燃料ガスカロリー推定方法およびプログラムを提供する。 The present invention provides a fuel gas calorie estimation device, a fuel gas calorie estimation method, and a program capable of estimating the gas calorie with higher accuracy by improving the accuracy of power generation efficiency.
本発明の第1の態様によれば、燃料ガスカロリー推定装置は、ガスタービンの燃焼器に流入する燃料ガス流量を取得する燃料ガス流量取得部と、前記ガスタービンの状態量を取得する状態量取得部と、前記状態量に対応付けられた効率補正係数を含む発電効率を記憶する記憶部と、前記燃料ガス流量と、前記状態量と、前記状態量に応じた効率補正係数から得られる発電効率と、に基づいて燃料ガスカロリー演算を行う燃料ガスカロリー演算部と、を具備する。 According to the first aspect of the present invention, the fuel gas calorie estimation device includes a fuel gas flow rate acquisition unit that acquires a flow rate of fuel gas flowing into a combustor of a gas turbine, and a state quantity that acquires a state quantity of the gas turbine. An acquisition unit, a storage unit that stores power generation efficiency including an efficiency correction coefficient associated with the state quantity, the fuel gas flow rate, the state quantity, and a power generation obtained from the efficiency correction coefficient according to the state quantity And a fuel gas calorie calculation unit that performs a fuel gas calorie calculation based on the efficiency.
上述の燃料ガスカロリー推定装置が、燃料ガスカロリー測定値を取得するカロリー測定値取得部と、前記燃料ガスカロリー測定値と前記燃料ガスカロリーの真値との差の大きさの大小を判定し、前記燃料ガスカロリー測定値と前記燃料ガスカロリーの真値との差の大きさが小さいと判定したタイミングにおける前記燃料ガスカロリー測定値および前記状態量に基づいて、当該状態量に対応する前記発電効率を更新する効率更新部と、を具備するようにしてもよい。 The fuel gas calorie estimation apparatus described above determines the magnitude of the difference between the calorie measurement value acquisition unit that acquires the fuel gas calorie measurement value, and the fuel gas calorie measurement value and the true value of the fuel gas calorie, The power generation efficiency corresponding to the state quantity based on the fuel gas calorie measurement value and the state quantity at the timing when it is determined that the difference between the fuel gas calorie measurement value and the true value of the fuel gas calorie is small And an efficiency updating unit for updating.
前記効率更新部が、前記燃料ガスカロリー測定値の変動の大きさの大小を判定し、前記燃料ガスカロリー測定値の応答遅延以上の期間にわたって前記燃料ガスカロリー測定値の変動の大きさが小さいと判定すると、当該期間の開始時を、前記燃料ガスカロリー測定値と前記燃料ガスカロリーの真値の差の大きさが小さいタイミングとして検出するようにしてもよい。 When the efficiency update unit determines the magnitude of the fluctuation of the fuel gas calorie measurement value and the magnitude of the fluctuation of the fuel gas calorie measurement value is small over a period longer than the response delay of the fuel gas calorie measurement value If it judges, you may make it detect the time of the start of the said period as a timing with a small magnitude | size of the difference of the true value of the said fuel gas calorie measured value and the said fuel gas calorie.
前記効率更新部が、前記発電効率を、当該発電効率の過去値を反映させた値に更新するようにしてもよい。 The efficiency update unit may update the power generation efficiency to a value reflecting a past value of the power generation efficiency.
前記効率更新部が、前記燃料ガスカロリーの真値と前記燃料ガスカロリー測定値との定常偏差の前記発電効率に対する影響を打ち消す補正を行うようにしてもよい。 The efficiency update unit may perform correction to cancel the influence of the steady deviation between the true value of the fuel gas calorie and the measured value of the fuel gas calorie on the power generation efficiency.
また、本発明の第2の態様によれば、燃料ガスカロリー推定方法は、ガスタービンの状態量に対応付けられた効率補正係数を含む発電効率を記憶する記憶部を具備する燃料ガスカロリー推定装置の燃料ガスカロリー推定方法であって、前記ガスタービンの燃焼器に流入する燃料ガス流量を取得する燃料ガス流量取得ステップと、前記ガスタービンの状態量を取得する状態量取得ステップと、前記燃料ガス流量と、前記状態量と、前記状態量に応じた効率補正係数から得られる発電効率と、に基づいて燃料ガスカロリー演算を行う燃料ガスカロリー演算ステップと、を具備する。 According to the second aspect of the present invention, the fuel gas calorie estimation method includes a storage unit that stores power generation efficiency including an efficiency correction coefficient associated with the state quantity of the gas turbine. The fuel gas calorie estimation method of claim 1, wherein a fuel gas flow rate obtaining step for obtaining a flow rate of fuel gas flowing into a combustor of the gas turbine, a state quantity obtaining step for obtaining a state quantity of the gas turbine, and the fuel gas A fuel gas calorie calculation step for performing a fuel gas calorie calculation based on the flow rate, the state quantity, and the power generation efficiency obtained from the efficiency correction coefficient corresponding to the state quantity.
また、本発明の第3の態様によれば、プログラムは、ガスタービンの状態量に対応付けられた効率補正係数を含む発電効率を記憶する記憶部を具備する燃料ガスカロリー推定装置としてのコンピュータに、前記ガスタービンの燃焼器に流入する燃料ガス流量を取得する燃料ガス流量取得ステップと、前記ガスタービンの状態量を取得する状態量取得ステップと、前記燃料ガス流量と、前記状態量と、前記状態量に応じた効率補正係数から得られる発電効率と、に基づいて燃料ガスカロリー演算を行う燃料ガスカロリー演算ステップと、を実行させるためのプログラムである。 Further, according to the third aspect of the present invention, the program is stored in a computer as a fuel gas calorie estimation apparatus including a storage unit that stores power generation efficiency including an efficiency correction coefficient associated with a state quantity of the gas turbine. A fuel gas flow rate acquisition step for acquiring a flow rate of fuel gas flowing into the combustor of the gas turbine, a state quantity acquisition step for acquiring a state quantity of the gas turbine, the fuel gas flow rate, the state quantity, This is a program for executing a fuel gas calorie calculation step for performing a fuel gas calorie calculation based on the power generation efficiency obtained from the efficiency correction coefficient corresponding to the state quantity.
 上記した燃料ガスカロリー推定装置、燃料ガスカロリー推定方法およびプログラムによれば、発電効率の精度を高めて、ガスカロリーをより精度良く推定することができる。 According to the fuel gas calorie estimation device, the fuel gas calorie estimation method, and the program described above, the accuracy of power generation efficiency can be improved and the gas calorie can be estimated more accurately.
本発明の第1の実施形態における発電システムの設備構成を示す概略構成図である。It is a schematic block diagram which shows the installation structure of the electric power generation system in the 1st Embodiment of this invention. 同実施形態におけるガスタービン発電設備の機器構成を示す概略構成図である。It is a schematic block diagram which shows the apparatus structure of the gas turbine power generation equipment in the embodiment. 同実施形態における燃料ガスカロリー推定装置の機能構成を示す概略ブロック図である。It is a schematic block diagram which shows the function structure of the fuel gas calorie estimation apparatus in the same embodiment. 同実施形態における燃料ガスカロリー演算部による燃料ガスカロリーの推定例を示すグラフである。It is a graph which shows the example of estimation of the fuel gas calorie by the fuel gas calorie calculating part in the embodiment. 本発明の第2の実施形態における燃料ガスカロリー推定装置の機能構成を示す概略ブロック図である。It is a schematic block diagram which shows the function structure of the fuel gas calorie estimation apparatus in the 2nd Embodiment of this invention. 同実施形態における効率更新部が、燃料ガスカロリー測定値の応答遅延以上の期間にわたって燃料ガスカロリー測定値の変動の大きさが小さいと判定する例を示すグラフである。It is a graph which shows the example which the efficiency update part in the embodiment determines with the magnitude | size of the fluctuation | variation of a fuel gas calorie measurement value being small over the period more than the response delay of a fuel gas calorie measurement value. 同実施形態における効率更新部が行う効率補正係数の更新の例を示す説明図である。It is explanatory drawing which shows the example of the update of the efficiency correction coefficient which the efficiency update part in the embodiment performs. 同実施形態において、効率更新部が効率補正係数を更新する処理の手順を示すフローチャートである。In the same embodiment, it is a flowchart which shows the procedure of the process in which an efficiency update part updates an efficiency correction coefficient.
 以下、発明の実施の形態について説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, embodiments of the invention will be described. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
<第1の実施形態>
図1は、本発明の第1の実施形態における発電システムの設備構成を示す概略構成図である。同図において、発電システム1は、燃料ガスカロリー推定装置100と、制御装置800と、ガスタービン発電設備900とを具備する。
ガスタービン発電設備900は、製鉄の過程において高炉で発生する副生ガスである高炉ガス(Blast Furnace Gas;BFG)を主燃料として発電を行う。
<First Embodiment>
FIG. 1 is a schematic configuration diagram showing the equipment configuration of the power generation system according to the first embodiment of the present invention. In the figure, the power generation system 1 includes a fuel gas calorie estimation device 100, a control device 800, and a gas turbine power generation facility 900.
The gas turbine power generation facility 900 generates power using blast furnace gas (BFG), which is a by-product gas generated in the blast furnace during the iron making process, as a main fuel.
図2は、ガスタービン発電設備900の機器構成を示す概略構成図である。同図において、ガスタービン発電設備900は、BFG母管911と、N(窒素)ガス供給弁921と、COG(Cokes Oven Gas、コークス炉ガス)供給弁922と、混合器931と、電気集塵機(Electrostatic Precipitator;EP)932と、ガス圧縮機933と、バイパス弁934と、ガス冷却器935と、ガスタービン940と、排熱回収ボイラ(Heat Recovery Steam Generator;HRSG)951と、煙突952と、蒸気タービン961と、復水器962と、復水ポンプ963と、発電機971と、増速歯車972と、カロリーメータ991と、流量計992と、電力計993とを具備する。ガスタービン940は、フィルタ941と、空気圧縮機942と、燃焼器943と、ガスタービン本体944と、ロータ(rotor、回転軸)945とを具備する。 FIG. 2 is a schematic configuration diagram illustrating a device configuration of the gas turbine power generation facility 900. In the figure, a gas turbine power generation facility 900 includes a BFG main pipe 911, an N 2 (nitrogen) gas supply valve 921, a COG (Cokes Oven Gas) supply valve 922, a mixer 931, and an electric dust collector. (Electrostatic Precipitator; EP) 932, a gas compressor 933, a bypass valve 934, a gas cooler 935, a gas turbine 940, a heat recovery steam generator (HRSG) 951, a chimney 952, A steam turbine 961, a condenser 962, a condensing pump 963, a generator 971, a speed increasing gear 972, a calorimeter 991, a flow meter 992, and a wattmeter 993 are provided. The gas turbine 940 includes a filter 941, an air compressor 942, a combustor 943, a gas turbine main body 944, and a rotor (rotor shaft) 945.
BFG母管911は、高炉で発生したBFGをガスタービン発電設備900へ供給するための配管である。Nガス供給弁921は、減熱ガスであるNガスの供給有無および供給量を調整するための弁である。COG供給弁922は、増熱ガスであるCOGの供給有無および供給量を調整するための弁である。 The BFG mother pipe 911 is a pipe for supplying BFG generated in the blast furnace to the gas turbine power generation facility 900. The N 2 gas supply valve 921 is a valve for adjusting the presence / absence and supply amount of N 2 gas which is a heat reducing gas. The COG supply valve 922 is a valve for adjusting the presence / absence and supply amount of COG which is a heat-increasing gas.
混合器931は、BFG母管911からのBFGに、当該BFGのカロリーに応じて供給されるNガスやCOGを混合する。
ここで、BFGにNガスを添加することで、ガスカロリーが減少(従って、減熱)する。一方、BFGにCOGを添加することで、ガスカロリーが増加(従って、増熱)する。そこで、BFG母管911からのBFGのカロリーに応じて、Nガス供給弁921やCOG供給弁922がNガスやCOGの供給有無および供給量を調整し、混合器931が、供給されたNガスやCOGをBFGに添加することで、ガスカロリーの変動を低減させることができる。
なお、以下では、混合器931通過後のガス(従って、NガスやCOGの供給がある場合は、これらのガスを添加されたBFG)を「燃料ガス」と称する。
The mixer 931 mixes N 2 gas and COG supplied according to the calories of the BFG into the BFG from the BFG mother pipe 911.
Here, by adding N 2 gas to BFG, the gas calorie is reduced (thus reducing heat). On the other hand, by adding COG to BFG, gas calorie increases (thus increasing heat). Therefore, according to the calorific value of BFG from the BFG mother pipe 911, the N 2 gas supply valve 921 and the COG supply valve 922 adjust whether N 2 gas and COG are supplied or not, and the mixer 931 is supplied. By adding N 2 gas or COG to BFG, fluctuations in gas calories can be reduced.
In the following, the gas after passing through the mixer 931 (and therefore, BFG to which these gases are added when N 2 gas or COG is supplied) will be referred to as “fuel gas”.
電気集塵機932は、燃料ガスに含まれるダスト等を集塵して除去する装置である。
ガス圧縮機933は、電気集塵機932が出力した燃料ガスを圧縮して燃焼器943へ導入する。
バイパス弁934は、ガス圧縮機933が出力した燃料ガスのうち、余剰ガスとして混合器931の出口側へ戻すガスの流量を調整する。図2に示すように、ガス圧縮機933の出口は、燃焼器943の入口側へと接続されると共に、ガス冷却器935を介して混合器931の出口側へと接続(バイパス)されている。バイパス弁934は、ガス圧縮機933が圧縮した燃料ガスの一部をバイパス経路へ流すことで、燃焼器943へ供給する燃料ガスの流量を調整する。
The electric dust collector 932 is a device that collects and removes dust and the like contained in the fuel gas.
The gas compressor 933 compresses the fuel gas output from the electric dust collector 932 and introduces it into the combustor 943.
The bypass valve 934 adjusts the flow rate of the gas returned from the fuel gas output from the gas compressor 933 to the outlet side of the mixer 931 as surplus gas. As shown in FIG. 2, the outlet of the gas compressor 933 is connected to the inlet side of the combustor 943 and is connected (bypassed) to the outlet side of the mixer 931 via the gas cooler 935. . The bypass valve 934 adjusts the flow rate of the fuel gas supplied to the combustor 943 by flowing a part of the fuel gas compressed by the gas compressor 933 to the bypass path.
ガス冷却器935は、バイパス弁934が出力した余剰ガスを冷却する。バイパス弁934が出力する余剰ガスは、ガス圧縮機933による圧縮にて高温になっている。そこで、ガス冷却器935は、バイパス弁からの余剰ガスを冷却した後、混合器931の出口側へ戻す。 The gas cooler 935 cools the surplus gas output from the bypass valve 934. The surplus gas output from the bypass valve 934 is at a high temperature due to compression by the gas compressor 933. Therefore, the gas cooler 935 cools the surplus gas from the bypass valve and then returns it to the outlet side of the mixer 931.
ガスタービン940は、ガス圧縮機933からの燃料ガスを燃焼させて回転力を生成する。
フィルタ941は、空気圧縮機942の入口側に設けられ、空気圧縮機が吸入する空気(外気)から埃等を除去する。
空気圧縮機942は、フィルタ941を介して吸入する空気を圧縮し、得られた圧縮空気を燃焼器943へ出力する。
The gas turbine 940 burns the fuel gas from the gas compressor 933 to generate a rotational force.
The filter 941 is provided on the inlet side of the air compressor 942 and removes dust and the like from the air (outside air) sucked by the air compressor.
The air compressor 942 compresses the air sucked through the filter 941 and outputs the obtained compressed air to the combustor 943.
燃焼器943は、ガス圧縮機933からの燃料ガスと空気圧縮機からの圧縮空気とを混合して燃焼させ、得られた高温の燃焼ガスをガスタービン本体944へ出力する。
ガスタービン本体944は、ロータ945によって回転可能に支持されており、燃焼器943からの燃焼ガスによってガスタービン本体944自らが回転することで、蒸気タービン961と共にロータ945を回転させる。
ロータ945は、ガスタービン本体944や蒸気タービン961からの回転力を空気圧縮機942と発電機971と増速歯車972とへ伝達する。
The combustor 943 mixes and burns the fuel gas from the gas compressor 933 and the compressed air from the air compressor, and outputs the obtained high-temperature combustion gas to the gas turbine main body 944.
The gas turbine main body 944 is rotatably supported by the rotor 945, and the gas turbine main body 944 itself rotates by the combustion gas from the combustor 943, thereby rotating the rotor 945 together with the steam turbine 961.
The rotor 945 transmits the rotational force from the gas turbine main body 944 and the steam turbine 961 to the air compressor 942, the generator 971, and the speed increasing gear 972.
排熱回収ボイラ951は、ガスタービン本体944が排気した燃焼ガス(排ガス)の熱を利用して蒸気(高圧蒸気)を生成し、得られた高圧蒸気を蒸気タービン961へ供給する。また、排熱回収ボイラ951は、蒸気タービン961が排出した蒸気を再加熱し、低圧蒸気として蒸気タービン961へ供給する。
煙突952は、排熱回収ボイラ951が排気した燃焼ガスを大気中へ放出する。
The exhaust heat recovery boiler 951 generates steam (high pressure steam) using the heat of the combustion gas (exhaust gas) exhausted by the gas turbine body 944 and supplies the obtained high pressure steam to the steam turbine 961. The exhaust heat recovery boiler 951 reheats the steam discharged from the steam turbine 961 and supplies the steam as low pressure steam to the steam turbine 961.
The chimney 952 releases the combustion gas exhausted by the exhaust heat recovery boiler 951 into the atmosphere.
蒸気タービン961は、ロータ945によって回転可能に支持されており、排熱回収ボイラ951からの蒸気(高圧蒸気および低圧蒸気)によって蒸気タービン961自らが回転することで、ガスタービン本体944と共にロータ945を回転させる。
復水器962は、蒸気タービン961から排気された蒸気を冷却して水(復水)に戻す。
復水ポンプ963は、復水器962からの復水を排熱回収ボイラ951へ送出する。当該復水は、排熱回収ボイラ951にて加熱されて高圧蒸気となる。
The steam turbine 961 is rotatably supported by a rotor 945, and the steam turbine 961 itself is rotated by steam (high pressure steam and low pressure steam) from the exhaust heat recovery boiler 951, so that the rotor 945 is moved together with the gas turbine body 944. Rotate.
The condenser 962 cools the steam exhausted from the steam turbine 961 and returns it to water (condensate).
The condensate pump 963 sends the condensate from the condenser 962 to the exhaust heat recovery boiler 951. The condensate is heated by the exhaust heat recovery boiler 951 and becomes high-pressure steam.
発電機971は、ロータ945によって伝達される、ガスタービン本体944や蒸気タービン961からの回転力を用いて発電する。
増速歯車972は、ロータ945によって伝達される、ガスタービン本体944や蒸気タービン961からの回転力を、増速してガス圧縮機933へ伝達する。
The generator 971 generates power using the rotational force transmitted from the gas turbine main body 944 and the steam turbine 961 transmitted by the rotor 945.
The speed increasing gear 972 increases the rotational force transmitted from the gas turbine main body 944 and the steam turbine 961 transmitted by the rotor 945 and transmits it to the gas compressor 933.
カロリーメータ991は、燃料ガスのカロリーを測定する。
流量計992は、燃焼器943に流入する燃料ガス流量を測定する。
電力計993は、発電機971の発電出力(電力)を測定する。電力計993が測定する発電出力は、ガスタービン940が生成する回転力と相関しており、ガスタービンの状態量の一例に該当する。
The calorimeter 991 measures the calorie of the fuel gas.
The flow meter 992 measures the flow rate of the fuel gas flowing into the combustor 943.
The wattmeter 993 measures the power generation output (electric power) of the generator 971. The power generation output measured by the wattmeter 993 correlates with the rotational force generated by the gas turbine 940, and corresponds to an example of a state quantity of the gas turbine.
燃料ガスカロリー推定装置100は、流量計992が測定する燃料ガス流量と、電力計993が測定する発電機971の発電出力とに基づいて、燃料ガスカロリーを推定する。燃料ガスカロリー推定装置100は、例えばコンピュータにて構成される。
図3は、燃料ガスカロリー推定装置100の機能構成を示す概略ブロック図である。同図において、燃料ガスカロリー推定装置100は、状態量取得部111と、燃料ガス流量取得部112と、記憶部121と、燃料ガスカロリー演算部131と、演算結果出力部141とを具備する。
The fuel gas calorie estimation apparatus 100 estimates the fuel gas calorie based on the fuel gas flow rate measured by the flow meter 992 and the power generation output of the generator 971 measured by the power meter 993. The fuel gas calorie estimation apparatus 100 is configured by a computer, for example.
FIG. 3 is a schematic block diagram showing a functional configuration of the fuel gas calorie estimation apparatus 100. In the figure, the fuel gas calorie estimation apparatus 100 includes a state quantity acquisition unit 111, a fuel gas flow rate acquisition unit 112, a storage unit 121, a fuel gas calorie calculation unit 131, and a calculation result output unit 141.
状態量取得部111は、電力計993が測定する発電機971の発電出力を取得する。
燃料ガス流量取得部112は、流量計992が測定する燃料ガス流量を取得する。
記憶部121は、発電機971の発電出力に対応付けられた効率補正係数を含む発電効率など、各種データを記憶する。記憶部121は、燃料ガスカロリー推定装置100の具備する記憶デバイスを用いて構成される。
The state quantity acquisition unit 111 acquires the power generation output of the generator 971 measured by the wattmeter 993.
The fuel gas flow rate acquisition unit 112 acquires the fuel gas flow rate measured by the flow meter 992.
The storage unit 121 stores various data such as power generation efficiency including an efficiency correction coefficient associated with the power generation output of the generator 971. The storage unit 121 is configured using a storage device included in the fuel gas calorie estimation apparatus 100.
燃料ガスカロリー演算部131は、状態量取得部111が取得する発電出力と、燃料ガス流量取得部112が取得する取得する燃料ガス流量と、発電出力に応じた効率補正係数から得られる発電効率と、に基づいて燃料ガスカロリー演算を行う。燃料ガスカロリー演算部131は、例えば、燃料ガスカロリー推定装置100の具備するCPU(Central Processing Unit、中央処理装置)が記憶部121の記憶するプログラムを読み出して実行することで構成される。 The fuel gas calorie calculation unit 131 includes a power generation output acquired by the state quantity acquisition unit 111, a fuel gas flow rate acquired by the fuel gas flow rate acquisition unit 112, and a power generation efficiency obtained from an efficiency correction coefficient according to the power generation output. , Fuel gas calorie calculation is performed. The fuel gas calorie calculating unit 131 is configured, for example, by reading and executing a program stored in the storage unit 121 by a CPU (Central Processing Unit) that the fuel gas calorie estimation device 100 has.
演算結果出力部141は、燃料ガスカロリー演算部131が算出した燃料ガスカロリーを制御装置800へ送信する。
状態量取得部111と燃料ガス流量取得部112と演算結果出力部141とは、燃料ガスカロリー推定装置100の具備する通信回路を用いて構成される。
The calculation result output unit 141 transmits the fuel gas calorie calculated by the fuel gas calorie calculation unit 131 to the control device 800.
The state quantity acquisition unit 111, the fuel gas flow rate acquisition unit 112, and the calculation result output unit 141 are configured using a communication circuit included in the fuel gas calorie estimation device 100.
ここで、発電機971の発電出力をP[キロワット(KW)]とし、燃料ガスカロリーをH[キロジュール毎ニュートン立方メートル(KJ/Nm)]とし、燃料ガス流量をQ[ニュートン立方メートル毎秒(Nm/s)]とすると、式(1)の関係が成り立つと考えられる。 Here, the power generation output of the generator 971 is P [kilowatt (KW)], the fuel gas calorie is H [kilojoule per Newton cubic meter (KJ / Nm 3 )], and the fuel gas flow rate is Q [Newton cubic meter per second (Nm). 3 / s)], it is considered that the relationship of the expression (1) is established.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
但し、η(P)は発電効率(以下、単に「効率」と称する)を示し、式(2)のように示すことができる。 However, η (P) indicates power generation efficiency (hereinafter, simply referred to as “efficiency”), and can be expressed as in Expression (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
但し、η(P)は、ガスタービン設計段階で導出される効率(以下、「初期効率」と称する)を示す。また、kη(P)は、効率補正係数(効率の補正係数)を示す。例えば、補正の必要がない場合、kη(P)=1となる。
式(1)と式(2)とより、式(3)が得られる。
However, η 0 (P) represents the efficiency derived in the gas turbine design stage (hereinafter referred to as “initial efficiency”). K η (P) represents an efficiency correction coefficient (efficiency correction coefficient). For example, when there is no need for correction, k η (P) = 1.
Expression (3) is obtained from Expression (1) and Expression (2).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
そこで、記憶部121が初期効率η(P)および効率補正係数kη(P)を記憶しておき、燃料ガスカロリー演算部131は、式(3)に基づいて燃料ガスカロリーHを算出することで、燃料ガスカロリーHを推定する。 Therefore, the storage unit 121 stores the initial efficiency η 0 (P) and the efficiency correction coefficient k η (P), and the fuel gas calorie calculation unit 131 calculates the fuel gas calorie H based on the equation (3). Thus, the fuel gas calorie H is estimated.
図4は、燃料ガスカロリー演算部131による燃料ガスカロリーの推定例を示すグラフである。同図の横軸は時刻を示し、縦軸はカロリーを示す。また、線L11は、燃料ガスカロリーの実際の値(以下、「真値」と称する)を示す。線L12は、カロリーメータ991による燃料ガスカロリーの測定値を示す。線L13は、燃料ガスカロリー演算部131による燃料ガスカロリーの推定値を示す。 FIG. 4 is a graph showing an example of fuel gas calorie estimation by the fuel gas calorie calculating unit 131. In the figure, the horizontal axis indicates time, and the vertical axis indicates calories. A line L11 indicates the actual value of fuel gas calories (hereinafter referred to as “true value”). A line L12 indicates the measured value of the fuel gas calorie by the calorimeter 991. A line L13 indicates an estimated value of the fuel gas calorie by the fuel gas calorie calculating unit 131.
図4の例において、時刻T11までは、燃料ガスカロリーの真値(線L11)が設定値にてほぼ一定となっており、カロリーメータ991による測定値(線L12)、燃料ガスカロリー演算部131による推定値(線L13)のいずれも、真値に近い値を示している。
一方、時刻T11以後は、燃料ガスカロリーの真値(線L11)が減少している。これに対して、燃料ガスカロリーの測定値(線L12)は、カロリーメータ991の応答遅延により真値との差が生じている。例えば、時刻T12では、図中に矢印で示す差が生じている。
一方、燃料ガスカロリーの推定値(線L13)は、燃料ガスカロリーの変動に対する応答の速い発電出力を、応答の速い電力計で測定した値を用いて推定を行うことで、真値に追従して変化している。
In the example of FIG. 4, until the time T11, the true value (line L11) of the fuel gas calorie is substantially constant at the set value, and the measured value (line L12) by the calorimeter 991 is calculated. All of the estimated values by (line L13) indicate values close to the true value.
On the other hand, after time T11, the true value of fuel gas calories (line L11) decreases. On the other hand, the measured value (line L12) of the fuel gas calorie is different from the true value due to the response delay of the calorimeter 991. For example, at time T12, there is a difference indicated by an arrow in the figure.
On the other hand, the estimated value (line L13) of the fuel gas calorie follows the true value by estimating the power generation output that has a quick response to fluctuations in the fuel gas calorie using the value measured by a responsive wattmeter. Have changed.
なお、燃料ガスカロリー演算部131が燃料ガスカロリーの推定に用いる状態量は、発電機971の発電出力に限らない。例えば、燃料ガスカロリー演算部131が、ガスタービン本体944の排ガス温度、または、ガスタービン本体944の回転数など、発電出力以外の、ガスタービン940の状態量を用いるようにしてもよい。
例えば、ガスタービン本体944の排ガス温度をT[ケルビン(K)]として、燃料ガスカロリー演算部131が、式(4)に基づいて燃料ガスカロリーを推定するようにしてもよい。
Note that the state quantity used by the fuel gas calorie calculation unit 131 for estimating the fuel gas calorie is not limited to the power generation output of the generator 971. For example, the fuel gas calorie calculation unit 131 may use a state quantity of the gas turbine 940 other than the power generation output, such as the exhaust gas temperature of the gas turbine body 944 or the rotational speed of the gas turbine body 944.
For example, assuming that the exhaust gas temperature of the gas turbine main body 944 is T [Kelvin (K)], the fuel gas calorie calculating unit 131 may estimate the fuel gas calorie based on the equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
但し、η (T)は、排ガス温度に関してガスタービン設計段階で導出される効率を示す。また、k η(T)は、当該効率η (T)に対する効率補正係数を示す。 However, η 2 0 (T) indicates the efficiency derived at the gas turbine design stage with respect to the exhaust gas temperature. K 2 η (T) represents an efficiency correction coefficient for the efficiency η 2 0 (T).
図1に戻って、制御装置800は、ガスタービン発電設備900の各部を制御する。特に、制御装置800は、ガスタービン発電設備900の運転員の設定する発電出力目標に従って、ガスタービン940や蒸気タービン961の負荷を制御する。また、制御装置800は、燃料ガスカロリー推定装置100が算出する燃料ガスカロリーに基づいて、燃料ガスカロリーが一定になるようにNガス供給弁921とCOG供給弁922とを制御する。 Returning to FIG. 1, the control device 800 controls each part of the gas turbine power generation facility 900. In particular, the control device 800 controls the loads of the gas turbine 940 and the steam turbine 961 according to the power generation output target set by the operator of the gas turbine power generation facility 900. Further, the control device 800 controls the N 2 gas supply valve 921 and the COG supply valve 922 so that the fuel gas calorie is constant based on the fuel gas calorie calculated by the fuel gas calorie estimation device 100.
以上のように、燃料ガスカロリー演算部131は、ガスタービン940の状態量に基づいて燃料ガスカロリーを推定する。これにより燃料ガスカロリー演算部131は、燃料ガスカロリーの変動に応じて速い応答にて燃料ガスカロリーを推定し得る。従って、制御装置800は、燃料ガスカロリー演算部131の推定結果を用いて、速やかにガスタービン発電設備900の制御を行うことができる。さらに、制御装置800は、燃料ガスカロリー演算部131の推定結果を用いることで、ガスカロリーに基づいてガスカロリーの制御を行うことができ、タービン本体の制御とガスカロリーの制御との干渉を回避し得る。また、制御装置800は、燃料ガスカロリー演算部131の推定結果を用いることで、ガスカロリーに基づいてガスカロリーの制御を行うことができ、この点において、ガスカロリーの急変による過負荷や失火に対する根本的対策を講じることができる。 As described above, the fuel gas calorie calculation unit 131 estimates the fuel gas calorie based on the state quantity of the gas turbine 940. Thereby, the fuel gas calorie calculating part 131 can estimate a fuel gas calorie with a quick response according to the fluctuation | variation of a fuel gas calorie. Therefore, the control device 800 can quickly control the gas turbine power generation equipment 900 using the estimation result of the fuel gas calorie calculation unit 131. Furthermore, the control device 800 can control the gas calorie based on the gas calorie by using the estimation result of the fuel gas calorie calculating unit 131, and avoid interference between the control of the turbine body and the control of the gas calorie. Can do. In addition, the control device 800 can control the gas calorie based on the gas calorie by using the estimation result of the fuel gas calorie calculating unit 131. In this regard, the control device 800 can cope with an overload or misfire caused by a sudden change in the gas calorie. Basic measures can be taken.
さらに、燃料ガスカロリー演算部131は、燃料ガスカロリーを推定する際、ガスタービン940の状態量に対応付けられた効率補正係数を含む発電効率を用いる。
ここで、設計段階で導出できる効率と実機の効率とが完全に一致するとは限らず、しかも効率は経年や大気温度変動により徐々に変化してしまう。そして、効率は、発電出力(負荷帯)などガスタービンの状態量に応じて異なる値となる。
これに対して、燃料ガスカロリー演算部131は、設計段階で導出された効率η(P)に効率補正係数kη(P)を乗算して状態量(本実施形態では発電出力)毎にきめ細やかに調整された、より正確な効率を用いて燃料ガスカロリーの推定を行うことができる。この点において、燃料ガスカロリー演算部131は、発電効率の精度を高めて、ガスカロリーをより精度良く推定することができ、また、ガスタービン940の経年変化や、大気温度など環境の変化にも対応可能である。そして、制御装置800は、燃料ガスカロリー演算部131の推定結果を用いて燃料ガスカロリーの制御を行うことで、ガスカロリーの急変による過負荷や失火の可能性を、より低減させることができる。
また、燃料ガスカロリー演算部131は、ガスタービン940の排ガス温度または回転数など、発電出力以外のガスタービン940の状態量を用いて燃料ガスカロリーを推定することができる。
Further, when estimating the fuel gas calorie, the fuel gas calorie calculating unit 131 uses the power generation efficiency including the efficiency correction coefficient associated with the state quantity of the gas turbine 940.
Here, the efficiency that can be derived at the design stage does not always coincide with the efficiency of the actual machine, and the efficiency gradually changes due to aging and atmospheric temperature fluctuations. The efficiency varies depending on the state quantity of the gas turbine such as the power generation output (load zone).
In contrast, the fuel gas calorie calculation unit 131 multiplies the efficiency η 0 (P) derived in the design stage by the efficiency correction coefficient k η (P) for each state quantity (power generation output in this embodiment). The fuel gas calorie can be estimated by using finely adjusted and more accurate efficiency. In this respect, the fuel gas calorie calculation unit 131 can estimate the gas calorie with higher accuracy by improving the accuracy of the power generation efficiency, and can also cope with changes in the environment such as the aging of the gas turbine 940 and the atmospheric temperature. It is possible. And the control apparatus 800 can further reduce the possibility of overload and misfire due to sudden change of gas calorie by controlling the fuel gas calorie using the estimation result of the fuel gas calorie calculating unit 131.
Further, the fuel gas calorie calculating unit 131 can estimate the fuel gas calorie using the state quantity of the gas turbine 940 other than the power generation output, such as the exhaust gas temperature or the rotation speed of the gas turbine 940.
なお、燃料ガスカロリー推定装置100は、図2の例に限らず様々なガスタービンの燃料ガスカロリーを推定可能である。例えば、BFG炊ガスタービンに限らず、石炭ガス化複合発電(Integrated coal Gasification Combined Cycle;IGCC)など、燃料ガスカロリーが変動し得る様々なガスタービンの設備に燃料ガスカロリー推定装置100を用いることができる。また、コンバインドサイクル発電設備に限らずガスタービン単体の発電設備にも燃料ガスカロリー推定装置100を用いることができる。また、コンバインドサイクル発電設備の場合でも、一軸コンバインドサイクルに限らない。また、蒸気タービンの段数も2段に限らず、1段であってもよいし、3段またはそれ以上であってもよい。さらには、動力用のガスタービンなど、発電用途以外の様々なガスタービンにも燃料ガスカロリー推定装置100を用いることができる。 In addition, the fuel gas calorie estimation apparatus 100 can estimate the fuel gas calorie of various gas turbines not only in the example of FIG. For example, the fuel gas calorie estimation apparatus 100 may be used not only for BFG gas turbines but also for various gas turbine facilities in which fuel gas calories can fluctuate such as coal gasification combined power generation (Integrated coal Gasification Combined Cycle; IGCC). it can. Moreover, the fuel gas calorie estimation apparatus 100 can be used not only for combined cycle power generation equipment but also for power generation equipment for a gas turbine alone. Moreover, even in the case of a combined cycle power generation facility, it is not limited to a single-shaft combined cycle. Further, the number of stages of the steam turbine is not limited to two, but may be one or three or more. Furthermore, the fuel gas calorie estimation apparatus 100 can be used for various gas turbines other than power generation applications such as a power gas turbine.
また、燃料ガスカロリー推定装置100が推定する燃料ガスカロリーを、運転員への表示、あるいは、記録など、ガスタービン発電設備900の制御以外の用途に用いるようにしてもよい。
また、第1の実施形態では、ガスタービン発電設備900がカロリーメータを具備していなくてもよい。
Further, the fuel gas calorie estimated by the fuel gas calorie estimation device 100 may be used for purposes other than the control of the gas turbine power generation facility 900, such as display or recording to an operator.
In the first embodiment, the gas turbine power generation facility 900 may not include a calorimeter.
<第2の実施形態>
本実施形態では、図1の燃料ガスカロリー推定装置100に代えて、図5に示す燃料ガスカロリー推定装置200を用いる。制御装置800やガスタービン発電設備900については、第1の実施形態の場合と同様である。
図5は、燃料ガスカロリー推定装置200の機能構成を示す概略ブロック図である。同図において、燃料ガスカロリー推定装置200は、状態量取得部111と、燃料ガス流量取得部112と、記憶部121と、燃料ガスカロリー演算部131と、演算結果出力部141と、カロリー測定値取得部213と、効率更新部251とを具備する。
同図において、図3の各部に対応して同様の機能を有する部分には同一の符号(111、112、121、131、141)を付して説明を省略する。
<Second Embodiment>
In the present embodiment, a fuel gas calorie estimation device 200 shown in FIG. 5 is used instead of the fuel gas calorie estimation device 100 of FIG. The control device 800 and the gas turbine power generation facility 900 are the same as those in the first embodiment.
FIG. 5 is a schematic block diagram showing a functional configuration of the fuel gas calorie estimation apparatus 200. In the figure, a fuel gas calorie estimation apparatus 200 includes a state quantity acquisition unit 111, a fuel gas flow rate acquisition unit 112, a storage unit 121, a fuel gas calorie calculation unit 131, a calculation result output unit 141, and a calorie measurement value. An acquisition unit 213 and an efficiency update unit 251 are provided.
In the same figure, parts having the same functions corresponding to the respective parts in FIG. 3 are denoted by the same reference numerals (111, 112, 121, 131, 141), and description thereof is omitted.
燃料ガスカロリー推定装置200は、流量計992(図1)が測定する燃料ガス流量と、電力計993が測定する発電機971の発電出力とに基づいて、燃料ガスカロリーを推定する。加えて、燃料ガスカロリー推定装置200は、カロリーメータ991が測定する燃料ガスカロリーに基づいて、効率補正係数の更新を行う。燃料ガスカロリー推定装置200は、例えばコンピュータにて構成される。 The fuel gas calorie estimation apparatus 200 estimates the fuel gas calorie based on the fuel gas flow rate measured by the flow meter 992 (FIG. 1) and the power generation output of the generator 971 measured by the power meter 993. In addition, the fuel gas calorie estimation apparatus 200 updates the efficiency correction coefficient based on the fuel gas calorie measured by the calorimeter 991. The fuel gas calorie estimation apparatus 200 is configured by a computer, for example.
カロリー測定値取得部213は、カロリーメータ991が測定する燃料ガスカロリー測定値を取得する。
効率更新部251は、燃料ガスカロリー測定値と燃料ガスカロリーの真値との差の大きさの大小を判定する。そして、効率更新部251は、燃料ガスカロリー測定値と燃料ガスカロリーの真値との差の大きさが小さいと判定したタイミングにおける燃料ガスカロリー測定値およびガスタービン940の状態量に基づいて、当該状態量に対応する発電効率を更新する。
The calorie measurement value acquisition unit 213 acquires the fuel gas calorie measurement value measured by the calorimeter 991.
The efficiency updating unit 251 determines the magnitude of the difference between the fuel gas calorie measurement value and the true value of the fuel gas calorie. And the efficiency update part 251 is based on the fuel gas calorie measurement value and the state quantity of the gas turbine 940 at the timing when it is determined that the magnitude of the difference between the fuel gas calorie measurement value and the true value of the fuel gas calorie is small. The power generation efficiency corresponding to the state quantity is updated.
例えば、効率更新部251は、カロリーメータ991による燃料ガスカロリー測定値の変動の大きさの大小を判定し、燃料ガスカロリー測定値の応答遅延以上の期間にわたって燃料ガスカロリー測定値の変動の大きさが小さいと判定すると、当該期間の開始時を、燃料ガスカロリー測定値と燃料ガスカロリーの真値の差の大きさが小さいタイミングとして検出する。 For example, the efficiency updating unit 251 determines the magnitude of the fluctuation of the fuel gas calorie measurement value by the calorimeter 991, and the magnitude of the fluctuation of the fuel gas calorie measurement value over a period longer than the response delay of the fuel gas calorie measurement value. Is determined to be small, the start of the period is detected as a timing at which the difference between the measured value of the fuel gas calories and the true value of the fuel gas calories is small.
図6は、効率更新部251が、燃料ガスカロリー測定値の応答遅延以上の期間にわたって燃料ガスカロリー測定値の変動の大きさが小さいと判定する例を示すグラフである。同図の横軸は時刻を示し、縦軸は、カロリーを示す。また、線L21は、燃料ガスカロリーの真値を示す。線L22は、カロリーメータ991による燃料ガスカロリーの測定値を示す。 FIG. 6 is a graph illustrating an example in which the efficiency updating unit 251 determines that the variation in the fuel gas calorie measurement value is small over a period longer than the response delay of the fuel gas calorie measurement value. In the figure, the horizontal axis indicates time, and the vertical axis indicates calories. A line L21 indicates the true value of the fuel gas calorie. A line L22 indicates the measured value of the fuel gas calorie by the calorimeter 991.
また、時刻T212は、現在時刻を示す。時間T221は、燃料ガスカロリー測定値の応答遅延時間を示しており、当該時間T221の開始時に燃料ガスカロリーの真値(線L21)が減少し始めているのに対し、燃料ガスカロリー測定値(線L22)は、時間T221の終了時に減少し始めている。時刻T211は、現在時刻(時刻T212)よりも、時間T221にて示される応答遅延時間以上過去の時刻を示す。 Time T212 indicates the current time. The time T221 indicates the response delay time of the fuel gas calorie measurement value. At the start of the time T221, the true value of the fuel gas calorie (line L21) starts to decrease, whereas the fuel gas calorie measurement value (line L22) starts to decrease at the end of time T221. Time T211 indicates a time past the response delay time indicated by time T221 than the current time (time T212).
図6の例では、時刻T211から時刻T212までの時間は、燃料ガスカロリー測定値(線L22)が設定値にてほぼ一定となっている。
効率更新部251は、例えば、時刻T211から時刻T212まで、サンプリング時間毎にカロリー測定値取得部213を介して、カロリーメータ991が測定する燃料ガスカロリー測定値を取得する。そして、効率更新部251は、得られた燃料ガスカロリー測定値の分散を算出し、得られた分散が所定の閾値以下か否かを判定する。分散が閾値以下であることを検出した場合、効率更新部251は、燃料ガスカロリー測定値の応答遅延以上の期間にわたって燃料ガスカロリー測定値の変動の大きさが小さいと判定する。
In the example of FIG. 6, the fuel gas calorie measurement value (line L22) is substantially constant at the set value for the time from time T211 to time T212.
The efficiency update unit 251 acquires the fuel gas calorie measurement value measured by the calorimeter 991 through the calorie measurement value acquisition unit 213 for each sampling time from time T211 to time T212, for example. And the efficiency update part 251 calculates dispersion | distribution of the obtained fuel gas calorie measured value, and determines whether the obtained dispersion | distribution is below a predetermined threshold value. When it is detected that the variance is equal to or less than the threshold value, the efficiency updating unit 251 determines that the magnitude of the variation in the fuel gas calorie measurement value is small over a period longer than the response delay of the fuel gas calorie measurement value.
なお、効率更新部251が、燃料ガスカロリー測定値の変動の大きさを評価する方法は、分散を用いる方法に限らない。例えば、効率更新部251が、評価対象の期間(図6の例では時刻T211から時刻T212まで)の各サンプリング時刻において、燃料ガスカロリー測定値と設定値の差の大きさを算出するようにしてもよい。そして、いずれのサンプリング時刻においても差の大きさが所定の閾値以下であることを検出した場合に、効率更新部251が、燃料ガスカロリー測定値の応答遅延以上の期間にわたって燃料ガスカロリー測定値の変動の大きさが小さいと判定するようにしてもよい。 Note that the method by which the efficiency updating unit 251 evaluates the magnitude of the variation in the fuel gas calorie measurement value is not limited to the method using dispersion. For example, the efficiency updating unit 251 calculates the magnitude of the difference between the fuel gas calorie measurement value and the set value at each sampling time of the evaluation target period (from time T211 to time T212 in the example of FIG. 6). Also good. When it is detected that the magnitude of the difference is equal to or less than a predetermined threshold at any sampling time, the efficiency update unit 251 determines the fuel gas calorie measurement value over a period longer than the response delay of the fuel gas calorie measurement value. You may make it determine with the magnitude | size of a fluctuation | variation being small.
図6の例において、時刻T211から時刻T212までの時間は、燃料ガスカロリー測定値(線L22)がほぼ一定となっている(変動の大きさが小さい)。このことから、少なくとも時刻T211においては、燃料ガスカロリー測定値(線L22)が真値(線L21)に等しいと見做し得る。 In the example of FIG. 6, the fuel gas calorie measurement value (line L22) is substantially constant during the period from time T211 to time T212 (the magnitude of fluctuation is small). From this, at least at time T211, it can be considered that the fuel gas calorie measurement value (line L22) is equal to the true value (line L21).
そこで、燃料ガスカロリー測定値の応答遅延以上の期間にわたって燃料ガスカロリー測定値の変動の大きさが小さいと判定した効率更新部251は、時刻T211における燃料ガスカロリー測定値に基づいて、当該時刻T211における発電出力に応じた効率補正係数を更新する。具体的には、効率更新部251は、時刻T211における、カロリーメータ991の燃料ガスカロリー測定値と、流量計992の燃料ガス流量測定値と、電力計993の発電出力測定値とを、式(5)に示される関係に適用して、効率補正係数の参照信号(教師信号)k η(P)を得る。 Therefore, the efficiency update unit 251 that has determined that the magnitude of the variation in the fuel gas calorie measurement value is small over a period longer than the response delay of the fuel gas calorie measurement value is based on the fuel gas calorie measurement value at time T211. The efficiency correction coefficient corresponding to the power generation output at is updated. Specifically, the efficiency updating unit 251 calculates the fuel gas calorie measurement value of the calorimeter 991, the fuel gas flow rate measurement value of the flow meter 992, and the power generation output measurement value of the watt meter 993 at time T211 using the formula ( Applying the relationship shown in 5), a reference signal (teacher signal) k r η (P) of the efficiency correction coefficient is obtained.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
但し、Pは発電出力を示す。Qは燃料ガス流量を示す。Hは、燃料ガスカロリー測定値を示す。η(P)は、設計段階で導出された効率の、発電出力Pに対応する値を示す。
そして、効率更新部251は、時刻T211における発電出力Pに対応する効率補正係数kη(P)を、得られた効率補正係数の参照信号k η(P)に置き換える。
However, P shows a power generation output. Q indicates the fuel gas flow rate. H s indicates a fuel gas calorie measurement value. η 0 (P) represents a value corresponding to the power generation output P of the efficiency derived in the design stage.
The efficiency updating unit 251 then replaces the efficiency correction coefficient k η (P) corresponding to the power generation output P at time T211 with the obtained efficiency correction coefficient reference signal k r η (P).
例えば、記憶部121が、発電機971の発電出力(負荷帯)を分割した区間毎に、発電出力に応じた効率補正係数を記憶しておく。そして、効率更新部251は、記憶部121が記憶している効率補正係数のうち、燃料ガスカロリーの測定値が真値に等しいと見做し得る時刻として検出した時刻(図6の例では時刻T211。以下、「参照時刻」と称する)における発電出力に対応する効率補正係数を、効率補正係数の参照信号に置き換える。 For example, the storage unit 121 stores an efficiency correction coefficient corresponding to the power generation output for each section obtained by dividing the power generation output (load band) of the generator 971. Then, the efficiency update unit 251 detects the time detected as the time when the measured value of the fuel gas calorie can be regarded as being equal to the true value among the efficiency correction coefficients stored in the storage unit 121 (in the example of FIG. 6, the time T211. Hereinafter, the efficiency correction coefficient corresponding to the power generation output at “reference time” is replaced with a reference signal of the efficiency correction coefficient.
図7は、効率更新部251が行う効率補正係数の更新の例を示す説明図である。同図の横軸は発電出力を示し、縦軸は効率補正係数を示す。
図7の例では、参照時刻における発電出力Pの測定値がPに対応しており、効率更新部251は、発電出力Pの効率補正係数kη(P)を、得られた効率補正係数の参照信号k η(P)に置き換える。
FIG. 7 is an explanatory diagram illustrating an example of updating the efficiency correction coefficient performed by the efficiency updating unit 251. In the figure, the horizontal axis indicates the power generation output, and the vertical axis indicates the efficiency correction coefficient.
In the example of FIG. 7, the measured value of the power generation output P at the reference time corresponds to P 2 , and the efficiency update unit 251 calculates the efficiency correction coefficient k η (P 2 ) of the power generation output P 2 as the obtained efficiency. Replace with the reference signal k r η (P) of the correction coefficient.
次に、図8を参照して効率更新部251の動作について説明する。
図8は、効率更新部251が効率補正係数を更新する処理の手順を示すフローチャートである。効率更新部251は、例えば、所定周期毎に同図の処理を行う。
図8の処理において、効率更新部251は、まず、カロリーメータ991の応答遅延時間以上の時間として設定されている所定時間の間、サンプリング時間毎に、カロリー測定値取得部213を介して、カロリーメータ991が測定する燃料ガスカロリー測定値を取得する(ステップS101)。
そして、効率更新部251は、得られた燃料ガスカロリー測定値の分散を算出し(ステップS102)、得られた分散が所定の閾値以下か否かを判定する(ステップS103)。
Next, the operation of the efficiency updating unit 251 will be described with reference to FIG.
FIG. 8 is a flowchart illustrating a procedure of processing in which the efficiency update unit 251 updates the efficiency correction coefficient. For example, the efficiency update unit 251 performs the process illustrated in FIG.
In the process of FIG. 8, the efficiency update unit 251 first calculates the calorie through the calorie measurement value acquisition unit 213 for each sampling time for a predetermined time set as a time longer than the response delay time of the calorimeter 991. The fuel gas calorie measurement value measured by the meter 991 is acquired (step S101).
And the efficiency update part 251 calculates dispersion | distribution of the obtained fuel gas calorie measured value (step S102), and determines whether the obtained dispersion | distribution is below a predetermined threshold value (step S103).
分散が閾値より大きいと判定した場合(ステップS103:NO)、ステップS101へ戻る。
一方、分散が閾値以下であると判定した場合(ステップS103:YES)、効率更新部251は、効率補正係数の参照信号k η(P)を算出する(ステップS104)。そして、効率更新部251は、記憶部121が記憶している効率補正係数のうち、参照時刻における発電出力に対応する効率補正係数を、効率補正係数の参照信号に置き換える(ステップS105)。
その後、図8の処理を終了する。
When it is determined that the variance is larger than the threshold (step S103: NO), the process returns to step S101.
On the other hand, when it is determined that the variance is equal to or less than the threshold value (step S103: YES), the efficiency updating unit 251 calculates a reference signal k r η (P) for the efficiency correction coefficient (step S104). Then, the efficiency update unit 251 replaces the efficiency correction coefficient corresponding to the power generation output at the reference time among the efficiency correction coefficients stored in the storage unit 121 with the reference signal of the efficiency correction coefficient (step S105).
Thereafter, the process of FIG.
以上のように、効率更新部251は、燃料ガスカロリー測定値と燃料ガスカロリーの真値との差の大きさの大小を判定し、燃料ガスカロリー測定値と燃料ガスカロリーの真値との差の大きさが小さいと判定したタイミングにおける燃料ガスカロリー測定値およびタービン状態量に基づいて、タービン状態量に対応する発電効率を更新する。
これにより、効率更新部251は、効率補正係数を発電出力毎にきめ細やかに更新することができ、燃料ガスカロリー演算部131は、当該効率補正係数を用いて、より精度よく燃料ガスカロリーを算出することができる。
As described above, the efficiency updating unit 251 determines the magnitude of the difference between the measured fuel gas calorie value and the true value of the fuel gas calorie, and the difference between the measured fuel gas calorie value and the true value of the fuel gas calorie. The power generation efficiency corresponding to the turbine state quantity is updated based on the fuel gas calorie measurement value and the turbine state quantity at the timing when it is determined that the size of the engine is small.
Thereby, the efficiency update part 251 can update an efficiency correction coefficient finely for every electric power generation output, and the fuel gas calorie calculating part 131 calculates a fuel gas calorie more accurately using the said efficiency correction coefficient. can do.
また、効率更新部251は、燃料ガスカロリー測定値と燃料ガスカロリーの真値との差の大きさが小さいと判定したタイミングにおいて効率補正係数を更新することで、燃料ガスカロリー測定値を用いて簡単に、かつ、より精度よく効率補正係数の更新を行うことができる。 Further, the efficiency update unit 251 uses the fuel gas calorie measurement value by updating the efficiency correction coefficient at the timing when it is determined that the difference between the fuel gas calorie measurement value and the true value of the fuel gas calorie is small. The efficiency correction coefficient can be updated easily and more accurately.
また、効率更新部251は、燃料ガスカロリー測定値の変動の大きさの大小を判定し、燃料ガスカロリー測定値の応答遅延以上の期間にわたって燃料ガスカロリー測定値の変動の大きさが小さいと判定すると、当該期間の開始時を、燃料ガスカロリー測定値と燃料ガスカロリーの真値の差の大きさが小さいタイミングとして検出する。
このように、効率補正係数を常時更新するのではなく、燃料ガスカロリー測定値の変動の大きさが小さいと判定した場合に更新を行うことで、効率更新部251は、効率補正係数を精度よく更新することができる。従って、燃料ガスカロリー演算部131は、当該効率補正係数を用いて、より精度よく燃料ガスカロリーを算出することができる。
Further, the efficiency updating unit 251 determines the magnitude of the fluctuation of the fuel gas calorie measurement value, and determines that the fluctuation magnitude of the fuel gas calorie measurement value is small over a period longer than the response delay of the fuel gas calorie measurement value. Then, the start time of the period is detected as a timing at which the difference between the measured value of the fuel gas calorie and the true value of the fuel gas calorie is small.
Thus, instead of constantly updating the efficiency correction coefficient, the efficiency update unit 251 accurately updates the efficiency correction coefficient by performing an update when it is determined that the variation in the fuel gas calorie measurement value is small. Can be updated. Therefore, the fuel gas calorie calculating unit 131 can calculate the fuel gas calorie more accurately using the efficiency correction coefficient.
なお、燃料ガスカロリー演算部131が燃料ガスカロリーの推定に用いる状態量と同様、効率更新部251が効率補正係数の更新に用いる状態量は、発電機971の発電出力に限らない。例えば、効率更新部251が、ガスタービン本体944の排ガス温度、または、ガスタービン本体944の回転数など、発電出力以外の、ガスタービン940の状態量を用いるようにしてもよい。
さらに、燃料ガスカロリー演算部131が用いる状態量と効率更新部251が用いる状態量とは、同一の状態量であってもよいし、異なる状態量であってもよい。
Note that the state quantity used by the efficiency updating unit 251 for updating the efficiency correction coefficient is not limited to the power generation output of the generator 971, similarly to the state quantity used by the fuel gas calorie calculating unit 131 for estimating the fuel gas calorie. For example, the efficiency updating unit 251 may use a state quantity of the gas turbine 940 other than the power generation output, such as the exhaust gas temperature of the gas turbine body 944 or the rotational speed of the gas turbine body 944.
Further, the state quantity used by the fuel gas calorie calculating unit 131 and the state quantity used by the efficiency updating unit 251 may be the same state quantity or different state quantities.
なお、燃料ガスカロリー推定装置200は、図2の例に限らず様々なガスタービンの燃料ガスカロリーを推定可能である。例えば、BFG炊ガスタービンに限らず、石炭ガス化複合発電など、燃料ガスカロリーが変動し得る様々なガスタービンの設備に燃料ガスカロリー推定装置200を用いることができる。また、コンバインドサイクル発電設備に限らずガスタービン単体の発電設備にも燃料ガスカロリー推定装置200を用いることができる。また、コンバインドサイクル発電設備の場合でも、一軸コンバインドサイクルに限らない。また、蒸気タービンの段数も2段に限らず、1段であってもよいし、3段またはそれ以上であってもよい。さらには、動力用のガスタービンなど、発電用途以外の様々なガスタービンにも燃料ガスカロリー推定装置200を用いることができる。
また、燃料ガスカロリー推定装置200が推定する燃料ガスカロリーを、運転員への表示、あるいは、記録など、ガスタービン発電設備900の制御以外の用途に用いるようにしてもよい。
In addition, the fuel gas calorie estimation apparatus 200 can estimate the fuel gas calorie of various gas turbines not only in the example of FIG. For example, the fuel gas calorie estimation apparatus 200 can be used not only for the BFG gas turbine but also for various gas turbine facilities where the fuel gas calorie can vary, such as coal gasification combined power generation. Moreover, the fuel gas calorie estimation apparatus 200 can be used not only for combined cycle power generation equipment but also for power generation equipment for a gas turbine alone. Moreover, even in the case of a combined cycle power generation facility, it is not limited to a single-shaft combined cycle. Further, the number of stages of the steam turbine is not limited to two, but may be one or three or more. Furthermore, the fuel gas calorie estimation apparatus 200 can be used for various gas turbines other than power generation applications, such as a power gas turbine.
Further, the fuel gas calorie estimated by the fuel gas calorie estimation apparatus 200 may be used for purposes other than the control of the gas turbine power generation facility 900, such as display to an operator or recording.
なお、記憶部121が効率補正係数を記憶する形式は、図7を参照して説明したような、発電出力と効率補正係数とを対応付けて記憶する形式(たとえばテーブル形式)に限らない。
例えば、記憶部121が、発電出力と効率補正係数との関係を示す近似曲線を記憶するようにしてもよい。この場合、効率更新部251は、当該近似曲線のパラメータ(例えば多項式における各項の係数)を、例えば最小二乗法などにより求めることで、効率補正係数を更新することができる。
The format in which the storage unit 121 stores the efficiency correction coefficient is not limited to the format (for example, the table format) in which the power generation output and the efficiency correction coefficient are stored in association with each other as described with reference to FIG.
For example, the storage unit 121 may store an approximate curve indicating the relationship between the power generation output and the efficiency correction coefficient. In this case, the efficiency update unit 251 can update the efficiency correction coefficient by obtaining the parameters of the approximate curve (for example, the coefficient of each term in the polynomial) by, for example, the least square method.
なお、効率更新部251が、燃料ガスカロリー測定値と燃料ガスカロリーの真値との差の大きさが小さいタイミングを検出する方法は、燃料ガスカロリー測定値の変動が小さい期間を検出する方法に限らない。
例えば、効率更新部251が、燃料ガスカロリー演算部131の算出する燃料ガスカロリー推定値の変動の大小を判定し、当該変動の大きさが燃料ガスカロリー測定値の応答遅延以上の期間にわたって小さい期間を検出するようにしてもよい。そして、効率更新部251が、検出した期間の終了時刻を、燃料ガスカロリー測定値と燃料ガスカロリーの真値との差の大きさが小さいタイミングとして検出するようにしてもよい。
In addition, the method in which the efficiency update part 251 detects the timing when the magnitude of the difference between the fuel gas calorie measurement value and the true value of the fuel gas calorie is small is a method for detecting a period in which the fluctuation of the fuel gas calorie measurement value is small. Not exclusively.
For example, the efficiency updating unit 251 determines the magnitude of the fluctuation of the estimated fuel gas calorie value calculated by the fuel gas calorie calculating unit 131, and the magnitude of the fluctuation is small over a period longer than the response delay of the measured fuel gas calorie value. May be detected. Then, the efficiency update unit 251 may detect the end time of the detected period as a timing when the magnitude of the difference between the measured fuel gas calorie value and the true value of the fuel gas calorie is small.
なお、効率更新部251が、効率補正係数ではなく効率を直接更新するようにしてもよい。すなわち、記憶部121が、発電出力に応じた効率η(P)を記憶しておき、参照時刻における燃料ガスカロリー測定値に基づいて、当該時刻における発電出力に応じた効率を更新するようにしてもよい。
具体的には、効率更新部251は、参照時刻における、カロリーメータ991の燃料ガスカロリー測定値と、流量計992の燃料ガス流量測定値と、電力計993の発電出力測定値とを、式(6)に示される関係に適用して、効率の参照信号η(P)を得る。
Note that the efficiency update unit 251 may directly update the efficiency instead of the efficiency correction coefficient. That is, the storage unit 121 stores the efficiency η (P) according to the power generation output, and updates the efficiency according to the power generation output at the time based on the fuel gas calorie measurement value at the reference time. Also good.
Specifically, the efficiency updating unit 251 calculates the fuel gas calorie measurement value of the calorimeter 991, the fuel gas flow rate measurement value of the flow meter 992, and the power generation output measurement value of the watt meter 993 at the reference time by the formula ( Applying the relationship shown in 6), an efficiency reference signal η r (P) is obtained.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
但し、Pは発電出力を示す。Qは燃料ガス流量を示す。Hは、燃料ガスカロリー測定値を示す。
そして、効率更新部251は、参照時刻における発電出力Pに対応する効率η(P)を得られた効率の参照信号η(P)に置き換える。
However, P shows a power generation output. Q indicates the fuel gas flow rate. H s indicates a fuel gas calorie measurement value.
Then, the efficiency updating unit 251 replaces the efficiency η (P) corresponding to the power generation output P at the reference time with the obtained efficiency reference signal η r (P).
上述した記憶部121が効率補正係数を記憶する形式と同様、記憶部121が効率を記憶する形式として様々な形式を用いることができる。例えば、記憶部121が、発電出力と効率とを対応付けて(例えばテーブル形式で)記憶するようにしてもよい。あるいは、記憶部121が、発電出力と効率との関係を示す近似曲線を記憶するようにしてもよい。
発電出力と効率との関係を示す近似曲線の一例として、記憶部121が、式(7)に示す3次式を記憶用にしてもよい。
Similar to the format in which the storage unit 121 stores the efficiency correction coefficient, various formats can be used as the format in which the storage unit 121 stores the efficiency. For example, the storage unit 121 may store the power generation output and the efficiency in association with each other (for example, in a table format). Or you may make it the memory | storage part 121 memorize | store the approximated curve which shows the relationship between an electric power generation output and efficiency.
As an example of the approximate curve indicating the relationship between the power generation output and the efficiency, the storage unit 121 may use a cubic expression shown in Expression (7) for storage.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
但し、xは、例えば発電出力など、タービンの状態量を示す。a、a、a、aは、それぞれ係数を示す。y(x)は、効率の近似値を示す。また、式(7)において、上付きの数字は乗数を示す。
記憶部121は、例えば、式(8)に示す係数ベクトルa(明細書の記載において、ベクトルや行列を示す太字表記を省略する)を記憶することで、式(7)の近似曲線を記憶する。
However, x shows the state quantity of turbines, such as a power generation output, for example. a 0 , a 1 , a 2 , and a 3 each indicate a coefficient. y (x) represents an approximate value of efficiency. In the formula (7), the superscript number indicates a multiplier.
The storage unit 121 stores, for example, the approximate curve of Expression (7) by storing the coefficient vector a shown in Expression (8) (in the description of the specification, bold notation indicating a vector or a matrix is omitted). .
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
具体的には、記憶部121は、まず、最小二乗法などの方法を用いて予め求められた、係数ベクトルaの初期値(例えば、設計段階における効率を近似する係数ベクトル)を記憶しておく。そして、効率更新部251は、係数ベクトルaを参照信号η(P)に基づいて更新する。例えば、効率更新部251は、LMS(Least Mean Square)アルゴリズムを用いて、式(9)に基づいて、係数ベクトルaを更新する。 Specifically, the storage unit 121 first stores an initial value of a coefficient vector a (for example, a coefficient vector that approximates efficiency at the design stage) that is obtained in advance using a method such as a least square method. . Then, the efficiency updating unit 251 updates the coefficient vector a based on the reference signal η r (P). For example, the efficiency updating unit 251 updates the coefficient vector a based on Expression (9) using an LMS (Least Mean Square) algorithm.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
但し、anew、aoldは、それぞれ、更新後、更新前の係数ベクトルを示す。ベクトルPは、式(10)に示される、発電出力Pに基づくベクトルである。αは、定数を示す。 However, a new and a old indicate coefficient vectors after update and before update, respectively. The vector P is a vector based on the power generation output P shown in Expression (10). α represents a constant.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
但し、式(10)において、上付きの数字は乗数を示す。
効率更新部251が、LMSアルゴリズムを用いて効率の更新を行うことで、効率(の推定値)の急峻な変動を避けることができる。効率の真値はガスタービン940の経年変化や大気温度等の変化に応じて徐々に変動するものであり、急峻には変動しないはずである。従って、効率更新部251が、効率の急峻な変動を避けることで、真値に近い効率を得られることが期待される。
However, in the formula (10), the superscript number indicates a multiplier.
The efficiency update unit 251 updates the efficiency using the LMS algorithm, thereby avoiding a steep fluctuation in the efficiency (estimated value thereof). The true value of the efficiency gradually changes according to the secular change of the gas turbine 940, the atmospheric temperature, and the like, and should not change steeply. Therefore, it is expected that the efficiency update unit 251 can obtain an efficiency close to the true value by avoiding a steep fluctuation in efficiency.
効率更新部251が、効率の更新を行う場合も、効率補正係数の更新を行う場合と同様の効果を得られる。
具体的には、これにより、効率更新部251は、効率を発電出力毎にきめ細やかに更新することができ、燃料ガスカロリー演算部131は、当該効率を用いて、より精度よく燃料ガスカロリーを算出することができる。
また、効率更新部251は、燃料ガスカロリー測定値と燃料ガスカロリーの真値との差の大きさが小さいと判定したタイミングにおいて効率を更新することで、燃料ガスカロリー測定値を用いて簡単に、かつ、より精度よく効率の更新を行うことができる。
When the efficiency updating unit 251 updates the efficiency, the same effect as that when the efficiency correction coefficient is updated can be obtained.
Specifically, in this way, the efficiency update unit 251 can finely update the efficiency for each power generation output, and the fuel gas calorie calculation unit 131 uses the efficiency to more accurately calculate the fuel gas calorie. Can be calculated.
In addition, the efficiency updating unit 251 can easily use the fuel gas calorie measurement value by updating the efficiency at the timing when it is determined that the difference between the fuel gas calorie measurement value and the true value of the fuel gas calorie is small. In addition, the update can be performed more accurately and efficiently.
また、効率を常時更新するのではなく、燃料ガスカロリー測定値の変動の大きさが小さいと判定した場合に更新を行うことで、効率更新部251は、効率を精度よく更新することができる。従って、燃料ガスカロリー演算部131は、当該効率を用いて、より精度よく燃料ガスカロリーを算出することができる。 In addition, the efficiency update unit 251 can update the efficiency with high accuracy by performing the update when it is determined that the magnitude of the variation of the fuel gas calorie measurement value is small instead of constantly updating the efficiency. Therefore, the fuel gas calorie calculating unit 131 can calculate the fuel gas calorie more accurately using the efficiency.
なお、効率更新部251が、効率を、当該効率の過去値を反映させた値に更新するようにしてもよい。例えば、効率更新部251は、忘却係数β(βは、0<β≦1の定数)を用いて、式(11)に基づいて効率補正係数を更新することで、効率補正係数の急峻な変動を抑制する。 The efficiency updating unit 251 may update the efficiency to a value reflecting the past value of the efficiency. For example, the efficiency update unit 251 uses the forgetting factor β (β is a constant satisfying 0 <β ≦ 1) to update the efficiency correction factor based on Equation (11), thereby causing a steep fluctuation in the efficiency correction factor. Suppress.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
忘却係数βの値が1に近いほど現在の情報の影響が大きくなる。逆に、忘却係数βの値が0に近いほど過去の効率補正係数の影響が大きくなる。忘却係数βの値は、例えば、燃料ガスカロリー推定装置200のユーザが設定する。 The closer the value of the forgetting factor β is to 1, the greater the influence of the current information. Conversely, the closer the value of the forgetting factor β is to 0, the greater the influence of past efficiency correction factors. The value of the forgetting factor β is set by the user of the fuel gas calorie estimation apparatus 200, for example.
なお、効率更新部251が、効率を、当該効率の過去値を反映させた値に更新する方法は、忘却係数を用いる方法に限らない。例えば、効率更新部251が、効率補正係数の参照信号k η(P)に積分フィルタを適用して一次遅れを発生させ、一次遅れの生じた参照信号を用いて記憶部121の記憶する効率補正係数を更新するようにしてもよい。 The method in which the efficiency updating unit 251 updates the efficiency to a value reflecting the past value of the efficiency is not limited to the method using the forgetting factor. For example, the efficiency update unit 251 applies an integration filter to the reference signal k r η (P) of the efficiency correction coefficient to generate a first-order lag, and the efficiency stored in the storage unit 121 using the reference signal in which the first-order lag has occurred The correction coefficient may be updated.
以上のように、効率更新部251は、効率を、当該効率の過去値を反映させた値に更新する。これにより、効率更新部251は、効率補正係数の急峻な変動を抑制することができる。
上述したように、効率の真値は急峻には変動しないはずであり、効率補正係数の真値も急峻には変動しないはずである。従って、効率更新部251が、効率の急峻な変動を避けることで、真値に近い効率補正係数を得られることが期待される。そして、当該効率補正係数を用いることで、燃料ガスカロリー演算部131は、燃料ガスカロリー推定値を精度よく求め得る。
As described above, the efficiency update unit 251 updates the efficiency to a value reflecting the past value of the efficiency. Thereby, the efficiency update part 251 can suppress the steep fluctuation | variation of an efficiency correction coefficient.
As described above, the true value of efficiency should not change steeply, and the true value of the efficiency correction coefficient should not change steeply. Therefore, it is expected that the efficiency update unit 251 can obtain an efficiency correction coefficient close to the true value by avoiding a sharp change in efficiency. And the fuel gas calorie calculating part 131 can obtain | require a fuel gas calorie estimated value accurately by using the said efficiency correction coefficient.
なお、効率更新部251が、燃料ガスカロリーの真値と燃料ガスカロリー測定値との定常偏差の効率に対する影響を打ち消す補正を行うようにしてもよい。
ここで、カロリーメータ991が測定する燃料ガスカロリー測定値に、真値に対する定常偏差(オフセット)が含まれている場合、効率更新部251が燃料ガスカロリー測定値に基づいて更新する効率補正係数または効率にも定常偏差が含まれ得る。そこで、効率更新部251が、式(12)に示す係数jηのように、定常偏差を補正する係数を生成するようにしてもよい。
Note that the efficiency update unit 251 may perform correction to cancel the influence of the steady deviation between the true value of the fuel gas calorie and the measured value of the fuel gas calorie on the efficiency.
Here, when the fuel gas calorie measurement value measured by the calorimeter 991 includes a steady deviation (offset) with respect to the true value, the efficiency correction coefficient updated by the efficiency updating unit 251 based on the fuel gas calorie measurement value or Efficiency can also include steady-state deviations. Therefore, the efficiency updating unit 251 may generate a coefficient for correcting the steady-state deviation, such as the coefficient j η shown in Expression (12).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
但し、F(s)は、例えば時定数T[秒(sec)]の1次遅れ系1/(Ts+1)のようなフィルタを示す。また、1/sは、積分作用素(sは微分作用素)を示す。
効率更新部251は、jηη(P)を新たな効率補正係数とすることができる。例えば、効率更新部251は、効率補正係数の参照信号k η(P)に対して、記憶部121の記憶する効率補正係数のうち発電出力Pに対応する効率補正係数を、jη η(P)に更新することができる。
あるいは、効率更新部251が効率の更新を行う場合、記憶部121の記憶する効率のうち発電出力Pに対応する効率を、jηη(P)に更新することができる。
F (s) represents a filter such as a first-order lag system 1 / (Ts + 1) having a time constant T [second (sec)], for example. 1 / s indicates an integral operator (s is a differential operator).
The efficiency updating unit 251 can set j η k η (P) as a new efficiency correction coefficient. For example, for the efficiency correction coefficient reference signal k r η (P), the efficiency update unit 251 determines the efficiency correction coefficient corresponding to the power generation output P among the efficiency correction coefficients stored in the storage unit 121 as j η k r. It can be updated to η (P).
Alternatively, when the efficiency updating unit 251 updates the efficiency, the efficiency corresponding to the power generation output P among the efficiency stored in the storage unit 121 can be updated to j η η (P).
なお、式(12)に示す燃料ガスカロリーHの真値は、通常得ることができない。そこで、効率更新部251は、例えば、発電出力の目標値と発電出力の測定値との偏差に基づいて係数jηを取得する。
ここで、燃料ガスカロリーの真値と測定値との定常偏差が、燃料ガスカロリー推定装置200の出力する燃料ガスカロリー推定値に影響を及ぼすと、制御装置800が当該燃料ガスカロリー推定値を用いて行う発電出力の制御にも影響が生じる。すなわち、燃料ガスカロリーの真値と測定値との定常偏差が、発電出力の目標値と測定値の偏差にて示される。
そこで、効率更新部251は、例えば、発電出力の目標値と発電出力の測定値との偏差に基づいて、燃料ガスカロリーの真値と測定値との定常偏差に応じた係数jηを取得する。
In addition, the true value of the fuel gas calorie H shown in Formula (12) cannot usually be obtained. Therefore, the efficiency update unit 251 acquires the coefficient j η based on, for example, the deviation between the target value of the power generation output and the measurement value of the power generation output.
Here, when the steady deviation between the true value and the measured value of the fuel gas calorie affects the estimated fuel gas calorie value output from the fuel gas calorie estimation device 200, the control device 800 uses the estimated fuel gas calorie value. This also affects the control of the power generation output. That is, the steady deviation between the true value and the measured value of the fuel gas calorie is indicated by the deviation between the target value of the power generation output and the measured value.
Therefore, for example, the efficiency updating unit 251 acquires the coefficient j η corresponding to the steady deviation between the true value of the fuel gas calories and the measured value based on the deviation between the target value of the generated power output and the measured value of the generated power output. .
以上のように、効率更新部251は、燃料ガスカロリーの真値と燃料ガスカロリー測定値との定常偏差の効率に対する影響を打ち消す補正を行う。
これにより、効率更新部251は、効率の精度をさらに向上させることができる。そして、当該効率用いることで、燃料ガスカロリー演算部131は、燃料ガスカロリー推定値の精度をさらに向上させることができる。
As described above, the efficiency updating unit 251 performs correction to cancel the influence on the efficiency of the steady deviation between the true value of the fuel gas calorie and the measured value of the fuel gas calorie.
Thereby, the efficiency update part 251 can further improve the precision of efficiency. And by using the said efficiency, the fuel gas calorie calculating part 131 can further improve the precision of a fuel gas calorie estimated value.
なお、燃料ガスカロリー推定装置100または200の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
In addition, a program for realizing all or part of the functions of the fuel gas calorie estimation apparatus 100 or 200 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read by a computer system, The processing of each unit may be performed by executing. Here, the “computer system” includes an OS and hardware such as peripheral devices.
Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case, and a program that holds a program for a certain period of time are also included. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design changes and the like without departing from the gist of the present invention.
本発明は、ガスタービンの燃焼器に流入する燃料ガス流量を取得する燃料ガス流量取得部と、前記ガスタービンの状態量を取得する状態量取得部と、前記状態量に対応付けられた効率補正係数を含む発電効率を記憶する記憶部と、前記燃料ガス流量と、前記状態量と、前記状態量に応じた効率補正係数から得られる発電効率と、に基づいて燃料ガスカロリー演算を行う燃料ガスカロリー演算部と、を具備する燃料ガスカロリー推定装置に関する。
本発明によれば、発電効率の精度を高めて、ガスカロリーをより精度良く推定することができる。
The present invention provides a fuel gas flow rate acquisition unit that acquires a flow rate of fuel gas flowing into a combustor of a gas turbine, a state quantity acquisition unit that acquires a state quantity of the gas turbine, and an efficiency correction associated with the state quantity Fuel gas that performs a fuel gas calorie calculation based on a storage unit that stores power generation efficiency including a coefficient, the fuel gas flow rate, the state quantity, and a power generation efficiency obtained from an efficiency correction coefficient corresponding to the state quantity And a calorie calculating unit.
According to the present invention, the accuracy of power generation efficiency can be improved and the gas calorie can be estimated more accurately.
1 発電システム
100、200 燃料ガスカロリー推定装置
111 状態量取得部
112 燃料ガス流量取得部
121 記憶部
131 燃料ガスカロリー演算部
141 演算結果出力部
213 カロリー測定値取得部
251 効率更新部
800 制御装置
900 ガスタービン発電設備
DESCRIPTION OF SYMBOLS 1 Power generation system 100, 200 Fuel gas calorie estimation apparatus 111 State quantity acquisition part 112 Fuel gas flow rate acquisition part 121 Storage part 131 Fuel gas calorie calculation part 141 Calculation result output part 213 Calorie measurement value acquisition part 251 Efficiency update part 800 Control apparatus 900 Gas turbine power generation equipment

Claims (7)

  1. ガスタービンの燃焼器に流入する燃料ガス流量を取得する燃料ガス流量取得部と、
    前記ガスタービンの状態量を取得する状態量取得部と、
    前記状態量に対応付けられた効率補正係数を含む発電効率を記憶する記憶部と、
    前記燃料ガス流量と、前記状態量と、前記状態量に応じた効率補正係数から得られる発電効率と、に基づいて燃料ガスカロリー演算を行う燃料ガスカロリー演算部と、
    を具備する燃料ガスカロリー推定装置。
    A fuel gas flow rate acquisition unit for acquiring a flow rate of the fuel gas flowing into the combustor of the gas turbine;
    A state quantity obtaining unit for obtaining a state quantity of the gas turbine;
    A storage unit for storing power generation efficiency including an efficiency correction coefficient associated with the state quantity;
    A fuel gas calorie calculation unit that performs a fuel gas calorie calculation based on the fuel gas flow rate, the state quantity, and the power generation efficiency obtained from the efficiency correction coefficient according to the state quantity;
    A fuel gas calorie estimation apparatus comprising:
  2. 燃料ガスカロリー測定値を取得するカロリー測定値取得部と、
    前記燃料ガスカロリー測定値と前記燃料ガスカロリーの真値との差の大きさの大小を判定し、前記燃料ガスカロリー測定値と前記燃料ガスカロリーの真値との差の大きさが小さいと判定したタイミングにおける前記燃料ガスカロリー測定値および前記状態量に基づいて、当該状態量に対応する前記発電効率を更新する効率更新部と、
    を具備する請求項1に記載の燃料ガスカロリー推定装置。
    A calorie measurement value acquisition unit for acquiring a fuel gas calorie measurement value;
    The magnitude of the difference between the measured fuel gas calorie value and the true value of the fuel gas calorie is determined, and the magnitude of the difference between the measured fuel gas calorie value and the true value of the fuel gas calorie is determined to be small. An efficiency update unit that updates the power generation efficiency corresponding to the state quantity based on the measured fuel gas calorie value and the state quantity at
    The fuel gas calorie estimation apparatus according to claim 1 comprising:
  3. 前記効率更新部は、前記燃料ガスカロリー測定値の変動の大きさの大小を判定し、前記燃料ガスカロリー測定値の応答遅延以上の期間にわたって前記燃料ガスカロリー測定値の変動の大きさが小さいと判定すると、当該期間の開始時を、前記燃料ガスカロリー測定値と前記燃料ガスカロリーの真値の差の大きさが小さいタイミングとして検出する請求項2に記載の燃料ガスカロリー推定装置。 The efficiency update unit determines the magnitude of the fluctuation of the fuel gas calorie measurement value, and when the fluctuation magnitude of the fuel gas calorie measurement value is small over a period longer than the response delay of the fuel gas calorie measurement value 3. The fuel gas calorie estimation device according to claim 2, wherein, when determined, the start time of the period is detected as a timing at which a difference between the measured value of the fuel gas calorie and the true value of the fuel gas calorie is small.
  4. 前記効率更新部は、前記発電効率を、当該発電効率の過去値を反映させた値に更新する請求項2に記載の燃料ガスカロリー推定装置。 The fuel gas calorie estimation device according to claim 2, wherein the efficiency update unit updates the power generation efficiency to a value reflecting a past value of the power generation efficiency.
  5. 前記効率更新部は、前記燃料ガスカロリーの真値と前記燃料ガスカロリー測定値との定常偏差の前記発電効率に対する影響を打ち消す補正を行う請求項2に記載の燃料ガスカロリー推定装置。 The fuel gas calorie estimation device according to claim 2, wherein the efficiency update unit performs correction to cancel the influence of the steady deviation between the true value of the fuel gas calorie and the measured value of the fuel gas calorie on the power generation efficiency.
  6. ガスタービンの状態量に対応付けられた効率補正係数を含む発電効率を記憶する記憶部を具備する燃料ガスカロリー推定装置の燃料ガスカロリー推定方法であって、
    前記ガスタービンの燃焼器に流入する燃料ガス流量を取得する燃料ガス流量取得ステップと、
    前記ガスタービンの状態量を取得する状態量取得ステップと、
    前記燃料ガス流量と、前記状態量と、前記状態量に応じた効率補正係数から得られる発電効率と、に基づいて燃料ガスカロリー演算を行う燃料ガスカロリー演算ステップと、
    を具備する燃料ガスカロリー推定方法。
    A fuel gas calorie estimation method for a fuel gas calorie estimation device comprising a storage unit for storing power generation efficiency including an efficiency correction coefficient associated with a state quantity of a gas turbine,
    A fuel gas flow rate acquisition step for acquiring a flow rate of fuel gas flowing into the combustor of the gas turbine;
    A state quantity obtaining step for obtaining a state quantity of the gas turbine;
    A fuel gas calorie calculation step for calculating a fuel gas calorie based on the fuel gas flow rate, the state quantity, and the power generation efficiency obtained from the efficiency correction coefficient corresponding to the state quantity;
    A fuel gas calorie estimation method comprising:
  7. ガスタービンの状態量に対応付けられた効率補正係数を含む発電効率を記憶する記憶部を具備する燃料ガスカロリー推定装置としてのコンピュータに、
    前記ガスタービンの燃焼器に流入する燃料ガス流量を取得する燃料ガス流量取得ステップと、
    前記ガスタービンの状態量を取得する状態量取得ステップと、
    前記燃料ガス流量と、前記状態量と、前記状態量に応じた効率補正係数から得られる発電効率と、に基づいて燃料ガスカロリー演算を行う燃料ガスカロリー演算ステップと、
    を実行させるためのプログラム。
    In a computer as a fuel gas calorie estimation device comprising a storage unit for storing power generation efficiency including an efficiency correction coefficient associated with the state quantity of the gas turbine,
    A fuel gas flow rate acquisition step for acquiring a flow rate of fuel gas flowing into the combustor of the gas turbine;
    A state quantity obtaining step for obtaining a state quantity of the gas turbine;
    A fuel gas calorie calculation step for calculating a fuel gas calorie based on the fuel gas flow rate, the state quantity, and the power generation efficiency obtained from the efficiency correction coefficient corresponding to the state quantity;
    A program for running
PCT/JP2014/053447 2013-02-15 2014-02-14 Fuel gas calorie estimation device, fuel gas calorie estimation method, and program WO2014126190A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157015369A KR101704326B1 (en) 2013-02-15 2014-02-14 Fuel gas calorie estimation device, fuel gas calorie estimation method, and computer readable storage medium
CN201480003302.2A CN104854327B (en) 2013-02-15 2014-02-14 Gaseous fuel heat estimation unit and gaseous fuel heat method of estimation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-028356 2013-02-15
JP2013028356A JP5968248B2 (en) 2013-02-15 2013-02-15 Fuel gas calorie estimation apparatus, fuel gas calorie estimation method and program

Publications (1)

Publication Number Publication Date
WO2014126190A1 true WO2014126190A1 (en) 2014-08-21

Family

ID=51354189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053447 WO2014126190A1 (en) 2013-02-15 2014-02-14 Fuel gas calorie estimation device, fuel gas calorie estimation method, and program

Country Status (4)

Country Link
JP (1) JP5968248B2 (en)
KR (1) KR101704326B1 (en)
CN (1) CN104854327B (en)
WO (1) WO2014126190A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6062581B1 (en) * 2016-01-14 2017-01-18 三菱日立パワーシステムズ株式会社 Plant analysis apparatus, plant analysis method, and program
KR102126445B1 (en) 2019-07-05 2020-06-24 한국전력공사 Apparatus and method for calculating calorific value of fuel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190633A (en) * 2002-12-13 2004-07-08 Mitsubishi Heavy Ind Ltd Fuel gas calorie estimating device of gas turbine
JP2012122442A (en) * 2010-12-10 2012-06-28 Toyota Motor Corp Gas turbine control apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09317499A (en) * 1996-05-28 1997-12-09 Kawasaki Steel Corp Control method for blast furnace gas monofuel combustion gas turbine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190633A (en) * 2002-12-13 2004-07-08 Mitsubishi Heavy Ind Ltd Fuel gas calorie estimating device of gas turbine
JP2012122442A (en) * 2010-12-10 2012-06-28 Toyota Motor Corp Gas turbine control apparatus

Also Published As

Publication number Publication date
KR20150084045A (en) 2015-07-21
JP5968248B2 (en) 2016-08-10
CN104854327B (en) 2016-11-30
CN104854327A (en) 2015-08-19
JP2014156825A (en) 2014-08-28
KR101704326B1 (en) 2017-02-07

Similar Documents

Publication Publication Date Title
CN110268148B (en) Gas turbine control device, gas turbine plant, and gas turbine control method
JP5650929B2 (en) System and method for correcting gas turbine performance
JP4513771B2 (en) Performance monitoring method and system for single-shaft combined cycle plant
JP5276756B2 (en) Operation method of gas compressor and gas turbine provided with gas compressor
JP2009047092A (en) Performance diagnostic method and performance diagnostic system of gas turbine
US9909509B2 (en) Gas turbine fuel supply method and arrangement
JP5535883B2 (en) Control device and state quantity acquisition device
JP5968248B2 (en) Fuel gas calorie estimation apparatus, fuel gas calorie estimation method and program
KR20180110063A (en) Control device of gas turbine and control method of gas turbine
JP3905829B2 (en) Gas turbine fuel gas calorie estimation apparatus and gas turbine
JP6673733B2 (en) Modified rotational speed calculation method for compressor, method for controlling compressor, apparatus for executing these methods, and gas turbine plant equipped with this apparatus
JP3950413B2 (en) Fuel gas calorie control device for gas turbine
JP5523950B2 (en) Fuel calorie calculation device and fuel calorie calculation method
JP2005240608A (en) Gas turbine control device
JP5615052B2 (en) Gas turbine plant and control method of gas turbine plant
JP5215815B2 (en) Turbine cooling system control device, turbine cooling system, and turbine cooling system control method
JP6164994B2 (en) Gas turbine plant, its control device, and operation method of gas turbine
JP5523949B2 (en) Fuel abnormality detection device, fuel adjustment device, and fuel abnormality detection method
JP2004124851A (en) Gas turbine plant and fuel supplying method for gas turbine
JP2016113975A (en) Gas turbine plant control device and gas turbine plant control method
JP2012149551A (en) Gas turbine control device, and gas turbine control method
JP2014194175A (en) Method for calculating delay time, method for calculating output of engine, method for controlling state quantity and device for executing these methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157015369

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751036

Country of ref document: EP

Kind code of ref document: A1