WO2014126148A1 - 超音波骨折治療装置 - Google Patents

超音波骨折治療装置 Download PDF

Info

Publication number
WO2014126148A1
WO2014126148A1 PCT/JP2014/053319 JP2014053319W WO2014126148A1 WO 2014126148 A1 WO2014126148 A1 WO 2014126148A1 JP 2014053319 W JP2014053319 W JP 2014053319W WO 2014126148 A1 WO2014126148 A1 WO 2014126148A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
probe
fracture
fracture site
image
Prior art date
Application number
PCT/JP2014/053319
Other languages
English (en)
French (fr)
Inventor
信夫 新実
Original Assignee
日本シグマックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本シグマックス株式会社 filed Critical 日本シグマックス株式会社
Publication of WO2014126148A1 publication Critical patent/WO2014126148A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0875Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0004Applications of ultrasound therapy
    • A61N2007/0013Fracture healing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0052Ultrasound therapy using the same transducer for therapy and imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0086Beam steering

Definitions

  • the present invention relates to an ultrasonic fracture treatment apparatus.
  • An ultrasonic fracture treatment apparatus that treats a fracture by irradiating the fracture site with ultrasonic waves.
  • an ultrasonic fracture treatment apparatus as described in Non-Patent Document 1, it is known that the irradiation position and direction of ultrasonic waves affect the therapeutic effect. Therefore, development of an ultrasonic fracture treatment apparatus provided with means for identifying a treatment site (fracture site) is required.
  • Patent Document 1 describes an ultrasonic fracture treatment apparatus that includes means for identifying a treatment site based on the intensity of ultrasonic waves reflected from a target and adjusting the angle of a probe that oscillates ultrasonic waves.
  • an ultrasonic diagnostic apparatus that uses ultrasound to identify a disease site or a treatment site has been generally used.
  • an ultrasonic diagnostic apparatus as shown in Non-Patent Document 2, an apparatus that receives an ultrasonic wave reflected from a target and forms an ultrasonic image is known.
  • techniques using linear electronic scanning and sector electronic scanning using an array type probe are widely applied.
  • JP 2008-119238 A published May 29, 2008
  • ultrasonic fracture treatment method for example, a method of accelerating healing of a fracture site by irradiating a weak ultrasound to the treatment site once a day for 20 minutes is widely used.
  • weak ultrasonic waves used for this treatment ultrasonic waves having an ultrasonic output of 30 mW / cm 2 , a repetition frequency of 1 kHz, and a pulse duration of 200 microseconds are typically used.
  • Non-Patent Document 1 a high therapeutic effect can be obtained when ultrasonic waves are reliably irradiated to a treatment site.
  • the fracture position is confirmed by X-ray or the like, marked on the skin, and a probe (probe) equipped with a single vibrator (about 30 ⁇ ). ) Is attached to the marking area to treat.
  • a probe probe
  • part it is unknown whether the treatment can be performed reliably.
  • the ultrasonic intensity cannot be corrected appropriately.
  • the fracture site is identified based on the intensity of the received signal reflected from the object.
  • the intensity of the received signal varies depending on various conditions (contact between the probe and the patient). State, attenuation of ultrasonic wave in soft tissue, reflection condition of ultrasonic echo, etc.).
  • the reflected echo from the bone is strong, the reflected echo is greatly different only by slightly different reflection positions. Therefore, it is difficult to specify a treatment site stably and uniquely based on the intensity of the received signal, and it is difficult to put such a technique into practical use.
  • Non-Patent Document 2 Although it is possible to identify a treatment site by an ultrasonic image created by the ultrasonic diagnostic apparatus described in Non-Patent Document 2, in general, the ultrasonic diagnostic apparatus is large and expensive. In addition, the reflected echo from the bone is about several tens of dB stronger than the reflected echo from various soft tissues. Therefore, an image of the fracture site is mainly obtained using a conventional ultrasonic diagnostic apparatus for the purpose of depicting the soft tissues. If the pattern is formed, an optimal image of the fracture site cannot be obtained.
  • the probe of the ultrasonic diagnostic apparatus is usually manufactured so as to scan the body surface, and it is difficult to use it fixed on the skin. Since the ultrasonic treatment of the fracture site is performed with the probe fixed on the skin, the probe of the ultrasonic diagnostic apparatus cannot be used for the treatment of the fracture site. Even if the probe of such an ultrasonic diagnostic apparatus can be fixed on the skin, if it is found that the treatment site is not directly under the probe after fixing, it is necessary to change the fixing position. It is also difficult. Furthermore, the frequency of the ultrasonic wave for treatment of the fracture site is usually 1.5 MHz, but the frequency of the ultrasonic wave for ultrasonic imaging is different because it usually uses 3.5 MHz or more. Therefore, in addition to the ultrasonic diagnostic apparatus for identifying a fracture site, an ultrasonic therapy apparatus for treating the fracture site is required.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an ultrasonic fracture treatment apparatus capable of reliably irradiating a fracture site with ultrasonic waves.
  • an ultrasonic fracture treatment apparatus is an ultrasonic fracture treatment apparatus that treats a fracture site by irradiating ultrasonic waves, and a probe that oscillates ultrasonic waves, Control means for controlling the oscillation of ultrasonic waves from the probe, and the control means forms an image representing the fracture site when treating the fracture site and based on the ultrasound reflected at the fracture site In both cases, ultrasonic waves are oscillated from the probe.
  • the ultrasonic fracture treatment device is an ultrasonic fracture treatment apparatus for treating a fracture site and for forming an image representing the fracture site based on the ultrasound reflected at the fracture site. Since the sound wave is oscillated, it is possible to identify the fracture site based on the formed image, and to provide an ultrasonic fracture treatment device that can irradiate the fracture site more reliably with ultrasonic waves.
  • the ultrasonic fracture treatment apparatus is an ultrasonic fracture treatment apparatus that treats a fracture site by irradiating ultrasonic waves.
  • An embodiment of an ultrasonic fracture treatment apparatus will be described with reference to FIG.
  • FIG. 1 is a block diagram showing an outline of an ultrasonic fracture treatment apparatus according to an embodiment of the present invention.
  • an ultrasonic fracture treatment apparatus 100 includes a probe 10 that oscillates ultrasonic waves, and an ultrasonic control unit (control means) 30 that controls the oscillation of ultrasonic waves from the probe. I have.
  • the ultrasonic fracture treatment apparatus 100 further includes an ultrasonic transmission / reception unit 20, an image forming unit (image forming unit) 40, and an image display unit (image display unit) 50.
  • the image forming unit 40 and the image display unit 50 are provided in a portable terminal such as a smartphone or a computer, and are connected to the ultrasonic fracture treatment apparatus 100 by a wired connection such as a USB connection and a LAN connection, or a wireless connection (WiFi, UWB, etc.). ).
  • the probe 10 oscillates an ultrasonic wave based on the ultrasonic signal transmitted from the ultrasonic transmission / reception unit 20.
  • the ultrasonic wave oscillated from the probe 10 is applied to the fracture site. Further, the probe 10 receives the ultrasonic waves reflected at the fracture site and transmits them to the ultrasonic transmission / reception unit 20.
  • the probe 10 oscillates both an ultrasonic wave for forming an image of the fracture site and an ultrasonic wave for treating the fracture site. That is, the probe 10 functions as both a probe for image formation and a treatment for a fracture site. As described above, the probe for treating the fracture site and the probe for forming an image of the fracture site are the same.
  • Probe 10 is an array type probe.
  • the array pitch of the probe 10 fine.
  • the number of transmitters 22 and receivers 23 is increased, and the circuit scale and the image forming unit 40 are increased, resulting in higher costs.
  • the ultrasonic fracture treatment apparatus 100 spatial resolution can be achieved with a small number of elements by using the technique described in a reference document (Science Technical Report, US2010-86 (2012-12), p.7-12). High image quality can be formed. Thereby, cost reduction and size reduction of an apparatus are realizable.
  • an image forming technique using the array probe is an image representing the outline of the bone. Suitable for forming.
  • the ultrasonic fracture treatment apparatus 100 is preferably electronic scanning control that electronically controls the ultrasonic oscillation of the probe 10 by a linear scanning method or a sector scanning method. .
  • the probe 10 is preferably fixed to the body surface almost directly above the fracture site. However, even when the probe 10 is not fixed directly above the fracture site, the probe 10 is electrically connected to the probe 10 by sector electronic scanning. You may irradiate with an ultrasonic wave at an angle. Thereby, a fracture site
  • the probe 10 may be provided in a housing different from the main body (not shown) in which the ultrasonic transmission / reception unit 20, the ultrasonic control unit 30, and the image forming unit 40 are accommodated, or the main body. And may be provided in the same housing. Note that the probe 10 and the main body are cable-connected by a thin shield wire or the like.
  • the probe 10 is used by being fixed on the skin near the fracture site to be treated. Therefore, it is preferable that the probe 10 has a shape that can be easily fixed on the skin. That is, the probe 10 has a rectangular surface composed of sides of 25 mm or more and 35 mm or less, and preferably has a rectangular parallelepiped shape with a thickness of 1 mm or more and 20 mm or less. It is more preferable that The probe 10 has a circular surface with a diameter of about 30 mm, and may have a cylindrical shape with a thickness of 1 mm or more and 20 mm or less, or a cylindrical shape with a thickness of 10 mm or more and 20 mm or less. .
  • the probe 10 By forming the probe 10 as described above, the probe 10 is brought into contact with the skin surface of the treatment site on a rectangular surface having sides of 25 mm or more and 35 mm or less or a circular surface having a diameter of about 30 mm, and the probe 10 is placed in the treatment site. Can be fixed easily. Moreover, since it is the thin probe 10, even if it fixes to a treatment location for a fixed time, a patient's operation
  • the probe 10 has a thickness comparable to that of a probe of a general ultrasonic fracture treatment apparatus, so that a fixing method employed in a conventional ultrasonic fracture treatment apparatus and A fixture can be used. That is, it is possible to perform both fracture treatment and image formation using the probe 10, and a special fixing method and fixing device for fixing the probe 10 are not required.
  • FIG. 2 is a perspective view (a), a top view (b), and a side view (c) schematically showing the appearance of the probe.
  • the probe 200 includes a rectangular parallelepiped housing 201 and a connecting portion 202 for connecting the ultrasonic fracture treatment device 100.
  • the probe 200 may be fixed by bringing a rectangular surface including X and Y into contact with the skin surface of the treatment site.
  • the ultrasonic transmission / reception unit 20 includes a transmission beam forming unit 21, a transmitter 22, a receiver 23, and a reception beam forming unit 24.
  • the transmission beam forming unit 21 outputs a signal for forming an ultrasonic beam to the transmitter 22 based on the control by the ultrasonic control unit 30.
  • the transmission beam forming unit 21 may control electronic scanning of the probe 10.
  • the transmitter 22 transmits the transmission signal output from the transmission beam forming unit 21 to the probe 10.
  • the transmitter 22 may control the intensity of ultrasonic waves oscillated from the probe 10.
  • the receiver 23 receives the ultrasonic wave irradiated from the probe 10 and reflected from within the living body, and transmits the received reception signal to the reception beam forming unit 24.
  • the reception beam forming unit 24 forms an ultrasonic beam based on the reception signal transmitted from the receiver 23 and outputs the ultrasonic beam to the image forming unit 40.
  • transmission beam forming unit 21 As the transmission beam forming unit 21, the transmitter 22, the receiver 23, and the reception beam forming unit 24, conventionally known transmission beam forming units, transmitters, receivers, and reception beam forming units can be used. .
  • the ultrasonic control unit 30 oscillates ultrasonic waves from the probe 10 both when treating a fracture site and when forming an image representing the fracture site based on the ultrasound reflected at the fracture site. That is, the ultrasonic control unit 30 oscillates ultrasonic waves for treating a fracture site from the probe 10 and oscillates ultrasonic waves for forming an image representing the fracture site from the probe 10.
  • the ultrasonic wave is generated from the probe 10 to form an ultrasonic image of the fracture site, and the treatment site can be identified based on the formed image. Then, an ultrasonic wave is oscillated from the probe 10 so that the ultrasonic wave is reliably irradiated to the identified treatment site. Thereby, an ultrasonic wave can be reliably irradiated to a fracture site, and fracture healing can be promoted.
  • a conventional ultrasonic diagnostic apparatus is used to identify a fracture site, and then an ultrasonic wave is irradiated to the identified fracture site using a conventional ultrasonic fracture treatment apparatus, two devices are necessary. Since the probe that irradiates ultrasound differs between the ultrasonic diagnostic device and the ultrasonic fracture treatment device, the ultrasonic wave from the ultrasonic fracture treatment device is actually at the fracture position identified by the ultrasonic diagnostic device. It is not certain whether it has been irradiated. According to the ultrasonic fracture treatment apparatus 100, since the ultrasonic control unit 30 irradiates the ultrasonic wave for identifying the fracture position and the ultrasonic wave for treating the fracture from the same probe 10, the identification is performed. The ultrasonic wave can be reliably irradiated by the fracture position.
  • the ultrasonic fracture treatment apparatus 100 it is possible to reliably irradiate the fracture site with the ultrasonic wave every time during the treatment, so it is possible to establish evidence of the fracture treatment result by the ultrasonic irradiation. Furthermore, there is no need for X-ray irradiation for confirmation of the fracture position, and there is no patient exposure. In addition, by appropriately instructing the patient, the patient himself can confirm an appropriate treatment position and fix the probe at the time of treatment at home every day.
  • the ultrasonic control unit 30 controls each component of the probe 10, the ultrasonic transmission / reception unit 20, and the image forming unit 40.
  • the ultrasonic control unit 30 oscillates ultrasonic waves from the probe 10 based on a user input from a user interface (not shown). Further, the ultrasonic control unit 30 may display on the user interface the oscillation state of the ultrasonic wave from the probe 10.
  • the ultrasonic control unit 30 forms an ultrasonic beam in the ultrasonic transmission / reception unit 20 based on a user input or a pre-stored program, and outputs the ultrasonic beam to the probe 10 to oscillate ultrasonic waves from the probe 10.
  • the ultrasonic control unit 30 causes the ultrasonic transmission / reception unit 20 to form an ultrasonic beam from the ultrasonic wave received by the probe 10 based on a user input or a prestored program, and causes the image forming unit 40 to The image forming unit 40 forms an image of the ultrasonic irradiation region.
  • the ultrasonic control unit 30 adjusts the irradiation angle of the ultrasonic wave from the probe 10 so that the ultrasonic wave is irradiated to the fracture site identified based on the image formed by the image forming unit 40. It may be. At this time, the ultrasonic control unit 30 identifies the fracture site based on the image representing the fracture site formed by the image forming unit 40. Then, the ultrasonic control unit 30 adjusts the irradiation angle of the ultrasonic wave from the probe 10 so that the ultrasonic wave is reliably irradiated to the identified fracture site.
  • the ultrasonic control unit 30 may adjust the irradiation range of the ultrasonic wave from the probe so that the ultrasonic wave is irradiated to the entire identified fracture site.
  • adjustment of the irradiation angle or irradiation range of the ultrasonic wave from the probe 10 can be performed by a conventionally known method.
  • the ultrasonic control unit 30 calculates the attenuation amount of the ultrasonic wave by measuring the depth from the image formed based on the ultrasonic wave oscillated from the probe 10 and reflected at the fracture site to the fracture position, Based on the calculated attenuation, the output of the ultrasonic wave oscillated from the probe 10 when treating the fracture site may be controlled.
  • the ultrasonic control unit 30 calculates the attenuation amount of the ultrasonic wave oscillated from the probe 10 and applied to the fracture site based on the ultrasonic wave reflected at the fracture site. Based on the calculated attenuation, the output of the ultrasonic wave oscillated from the probe during fracture treatment is controlled.
  • the ultrasonic control unit 30 increases the ultrasonic output from the probe so as to compensate for the attenuation. Thereby, since the ultrasonic wave more suitable for treatment can be irradiated to a fracture site
  • the calculation of the attenuation amount of the ultrasonic wave and the output control of the ultrasonic wave from the probe can be performed by a conventionally known method.
  • the scan converter 42 described later measures the distance from the body surface to the fracture site on the image representing the fracture site formed by the image forming unit 40, and calculates the attenuation amount of the ultrasonic wave based on the measured distance. .
  • the output intensity of the ultrasonic wave oscillated from the probe 10 is corrected. It is known that the attenuation amount of ultrasonic waves in a living body is generally 0.7 dB / cm / MHz (reference: JEITA standard AE-6008 appendix A2 (p16)).
  • the ultrasonic control unit 30 sets the frequency of the ultrasonic wave oscillated from the probe 10 within the range of 0.5 to 10 MHz, preferably within the range of 1 to 3 MHz, and most preferably 1. Although you may control to 5 MHz, it is not limited to this.
  • the ultrasonic control unit 30 preferably controls the time for oscillating the ultrasonic wave from the probe 10 preferably once a day for 20 minutes. Control may be performed twice, every 20 minutes, once every two days, for 20 minutes, or twice every two days for 20 minutes (without irradiation for one day), but is not limited thereto.
  • the ultrasonic control unit 30 preferably outputs an ultrasonic wave oscillated from the probe 10 when treating a fracture site, preferably 5 to 60 mW / cm 2 , more preferably 15 to 45 mW / cm 2 , most preferably. May be controlled to 30 mW / cm 2 , but is not limited thereto.
  • the ultrasonic control unit 30 preferably sets the duty ratio of the ultrasonic wave oscillated from the probe 10 when treating a fracture site to 5 to 50%, more preferably 10 to 30%, and most preferably 20%.
  • the present invention is not limited to this.
  • the ultrasonic control unit 30 may control the PRF of the ultrasonic wave irradiated from the probe 10 when treating a fracture site to preferably 500 Hz to 10 kHz, more preferably 1 kHz, but is not limited thereto. Not.
  • the ultrasonic wave that the ultrasonic control unit 30 irradiates from the probe 10 has a high frequency as much as possible in order to improve time resolution.
  • the transmission frequency is limited by the band of the child 10. For this reason, for example, when a preferable frequency of ultrasonic waves for treating a fracture site is 1.5 MHz, when the band of a normal probe using PZT is 80%, an image representing the fracture site is formed. The frequency of the ultrasonic wave when doing this is 3.5 MHz.
  • the frequency of the ultrasonic wave oscillated from the probe 10 is not limited to the above range, and an image representing the fracture site based on the ultrasound reflected at the fracture site is used. Any frequency that can be formed may be used.
  • the ultrasonic irradiation time, output, duty ratio, and PRF may be controlled so that an image representing the fracture site can be formed based on the ultrasound reflected at the fracture site.
  • the ultrasonic control unit 30 outputs ultrasonic waves of a prescribed value, corrects variations in sensitivity of the probe 10, and keeps the ultrasonic output constant from the probe 10.
  • a feedback mechanism for monitoring the oscillation of ultrasonic waves may be provided.
  • the ultrasonic oscillation state is fed back from the probe 10 to the ultrasonic control unit 30, and based on this, the ultrasonic control unit 30 uses the ultrasonic transmission / reception unit 20 to perform appropriate treatment and image formation. Control ultrasonic beam formation.
  • the ultrasonic control unit 30 can be configured by dedicated hardware such as an embedded CPU, a computer, or an FPGA.
  • the image forming unit 40 forms an image representing the in vivo and the fracture site based on the ultrasonic wave oscillated from the probe 10 and reflected from the in vivo and the fracture site. Thereby, based on the image showing the fracture site
  • the image forming unit 40 includes a B-mode processing unit 41 and a scan converter unit 42.
  • the B-mode processing unit 41 converts the ultrasonic beam formed in the ultrasonic transmission / reception unit 20 based on the ultrasonic wave received by the probe 10 into a B-mode image signal representing the luminance information of the image, and the scan converter unit 42.
  • the scan converter unit 42 converts the image signal from the B mode processing unit into a format suitable for the image display unit 50 and displays an image.
  • the scan converter unit 42 may include a distance measurement function for measuring the distance from the body surface to the fracture site on the image representing the formed fracture site.
  • the image forming unit 40 may form an image representing a fracture site by a known image forming method different from the image forming method described above.
  • the image forming unit 40 can be configured by a known device such as a general-purpose computer system.
  • the image display unit 50 displays the image formed by the image forming unit 40.
  • the patient can confirm the image representing the fracture site displayed on the image display unit 50 and identify the fracture site.
  • the fixed position of the probe 10 can be changed so that an ultrasonic wave is reliably irradiated to the identified fracture site
  • the image display unit 50 can be configured by a known image display device such as a display device.
  • An ultrasonic fracture treatment program for causing a computer to function as the above-described ultrasonic fracture treatment apparatus, the ultrasonic fracture treatment program for causing the computer to function as an ultrasonic control means, an image forming means, and the like, and the program A recorded computer-readable recording medium is also included in the scope of the present invention.
  • the ultrasonic fracture treatment method according to the present invention is an ultrasonic fracture treatment method for irradiating an ultrasonic wave to treat the fracture site, and oscillates an ultrasonic wave from the probe and reflects the ultrasonic wave at the fracture site.
  • Forming process for forming an image representing a fracture site based on the image, an identification process for identifying the fracture site based on the formed image, and a treatment process for irradiating the identified fracture site by oscillating ultrasonic waves from the probe Including.
  • the ultrasonic fracture treatment apparatus 100 used in the ultrasonic fracture treatment method is the ultrasonic fracture treatment apparatus 100, the ultrasonic fracture treatment apparatus 100 described above will be described in detail for the ultrasonic fracture treatment method according to the present invention. According to the explanation of
  • An ultrasonic fracture treatment apparatus is an ultrasonic fracture treatment apparatus that treats a fracture site by irradiating ultrasonic waves, and includes a probe that oscillates ultrasonic waves, and an ultrasonic wave from the probe.
  • Control means for controlling oscillation, and the control means is used for both the treatment of the fracture site and the formation of an image representing the fracture site based on the ultrasound reflected at the fracture site. It is characterized by oscillating ultrasonic waves from the child.
  • the control means uses the same probe for both the ultrasound for treating the fracture site and the ultrasound for forming an image representing the fracture site. Oscillate from. Therefore, before the treatment of the fracture site by the ultrasonic wave, the ultrasonic wave is oscillated from the probe to form an ultrasonic image of the fracture site, and the treatment site can be identified based on the formed image. And an ultrasonic wave can be oscillated from a probe so that an ultrasonic wave may be reliably irradiated to the identified treatment site. Thereby, an ultrasonic wave can be reliably irradiated to a fracture site, and fracture healing can be promoted.
  • the ultrasonic wave for identifying the fracture position and the ultrasonic wave for treating the fracture are irradiated from the same probe. Ultrasonic waves can be reliably irradiated.
  • the ultrasonic fracture treatment apparatus it is possible to reliably irradiate the fracture site with the ultrasonic wave every time during the treatment, and thus the evidence of the fracture treatment result by the ultrasonic irradiation can be established. . Furthermore, there is no need for X-ray irradiation for confirmation of the fracture position, and there is no patient exposure. In addition, by appropriately instructing the patient, the patient himself can confirm an appropriate treatment position and fix the probe at the time of treatment at home every day.
  • the probe for treating a fracture site and the probe for forming an image of a fracture site are the same, so that it is compared with a general-purpose ultrasound diagnostic apparatus.
  • the ultrasonic fracture treatment device according to the present invention is smaller than a general-purpose ultrasonic fracture treatment device, the ultrasonic fracture treatment device is not only used in a hospital but also brought home to a patient's home. Is also suitable.
  • the ultrasonic fracture treatment apparatus includes an image forming unit that forms an image representing a fractured part based on an ultrasonic wave that is oscillated from the probe and reflected from the fractured part, and the image forming unit is formed by the image forming unit. It is preferable to further include image display means for displaying the processed image.
  • the image forming unit forms an image representing the fracture site based on the ultrasonic wave oscillated from the probe and reflected from the fracture site, and the image representing the fracture site formed by the image forming unit is obtained. It is displayed on the image display means.
  • part used as a treatment object can be identified reliably. Therefore, it is possible for the patient to check the image and identify the fracture site, or to change the probe fixing position so that the identified fracture site is irradiated with ultrasound. It is. Then, the healing of the fracture can be further promoted by irradiating the identified fracture site with the ultrasonic wave oscillated from the probe.
  • control means may be configured to output ultrasonic waves from the probe so that ultrasonic waves are irradiated to the fracture site identified based on the image formed by the image forming means. It is preferable to adjust the irradiation angle of the ultrasonic wave.
  • a control means identifies a fracture site
  • the control means calculates an attenuation amount of the ultrasonic wave from an image formed based on the ultrasonic wave oscillated from the probe and reflected at the fracture site. It is preferable to control the output of the ultrasonic wave oscillated from the probe when treating the fracture site based on the calculated attenuation.
  • the control unit forms the attenuation amount of the ultrasonic wave oscillated from the probe and applied to the fracture site based on the ultrasonic wave oscillated from the probe and reflected at the fracture site. Calculated from the obtained image. Based on the calculated attenuation, the output of the ultrasonic wave oscillated from the probe during fracture treatment is controlled. For example, the control means increases the ultrasonic output from the probe so as to compensate for the attenuation. Thereby, since the ultrasonic wave more suitable for treatment can be irradiated to a fracture site
  • the present invention can be used for an ultrasonic treatment apparatus.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Vascular Medicine (AREA)
  • Surgical Instruments (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 より確実に骨折部位に超音波を照射することが可能な超音波骨折治療装置を提供する。超音波骨折治療装置(100)は、探触子(10)と、超音波制御部(30)とを備えている。超音波制御部(30)は、骨折部位を治療するとき、及び、骨折部位において反射した超音波に基づいて骨折部位を表す画像を形成するときの両方において、探触子(10)から超音波を発振させる。

Description

超音波骨折治療装置
 本発明は、超音波骨折治療装置に関する。
 骨折部位に超音波を照射して骨折治療する超音波骨折治療装置が知られている。このような超音波骨折治療装置においては、非特許文献1に記載されているように、超音波の照射位置及び方向が治療効果に影響することが知られている。そのため、治療部位(骨折部位)を同定する手段を備えた超音波骨折治療装置の開発が求められている。特許文献1には、対象において反射した超音波の強度に基づいて治療部位を同定し、超音波を発振するプローブの角度を調整する手段を備えた超音波骨折治療装置が記載されている。
 従来、超音波を利用して疾患部位又は治療部位等を特定する超音波診断装置が一般に利用されている。このような超音波診断装置として、非特許文献2に示すように、対象において反射した超音波を受信して超音波画像を形成する装置が知られている。また、アレイ型探触子を用いたリニア電子走査及びセクタ電子走査を用いた技術が広く応用されている。
日本国公開特許公報「特開2008-119238号公報(2008年5月29日公開)」
骨折,第27巻,No.1,p.21-26,2005 医用超音波機器ハンドブック(コロナ社),p.93-95,p.102-109
 超音波骨折治療方法においては、例えば、1日1回、20分間、微弱な超音波を治療部位に照射することによって、骨折部位の治癒を促進する方法が広く利用されている。この治療に使用する微弱な超音波として、超音波出力30mW/cm、繰り返し周波数1kHz、パルス持続時間200マイクロ秒の超音波が標準的に用いられている。
 このような超音波骨折治療方法においては、非特許文献1に示すように、治療部位に超音波が確実に照射された場合に、高い治療効果が得られる。しかしながら、従来の超音波骨折治療装置を用いた骨折治療においては、X線等で骨折位置を確認して皮膚上にマーキングし、単一の振動子(Φ30程度)を搭載したプローブ(探触子)をマーキング箇所に取り付けて治療を行っている。そして、このような従来の超音波骨折治療装置においては、治療部位に超音波が照射されているか判定できないため、確実に治療が行えているのか不明である。また、従来の超音波骨折治療装置においては、体表面から治療部位までの距離を測定することができないため、超音波強度を適切に補正することができない。
 一方、特許文献1に記載の超音波骨折治療装置においては、対象において反射した受信信号の強度に基づいて骨折部位を同定しているが、受信信号の強度は各種条件(プローブと患者との接触状態、軟部組織における超音波の減衰、超音波エコーの反射条件等)により異なるものである。特に、骨からの反射エコーは強度が強いため、反射位置が少し異なるだけで反射エコーが大きく異なる。したがって、受信信号の強度に基づいて、安定的かつ一義的に治療部位を特定することは困難であり、このような技術を実用化することは困難である。
 非特許文献2に記載の超音波診断装置により作成した超音波画像により治療部位を同定することも可能であるが、一般に、超音波診断装置は本体が大きく且つ高価である。また、骨からの反射エコーは各種軟部組織からの反射エコーと比較して、数十dB程度強いため、主に軟部組織の描出を目的とした従来の超音波診断装置を用いて骨折部位の画像を形成すると、骨折部位の最適な画像が得られない。
 また、超音波診断装置のプローブは、通常、体表面をスキャニングするように作製されており、皮膚上に固定して使用することが困難である。骨折部位の超音波による治療は、プローブを皮膚上に固定した状態で超音波を照射するので、超音波診断装置のプローブを骨折部位の治療に用いることができない。また、このような超音波診断装置のプローブを皮膚上に固定できたとしても、固定後に治療部位がプローブの直下にないことが判明した場合、固定位置を変更する必要があり、固定位置の変更も困難である。さらに、骨折部位の治療のための超音波の周波数は通常1.5MHzであるが、超音波画像形成のための超音波の周波数は通常3.5MHz以上を使用するので異なる。したがって、骨折部位の同定のための超音波診断装置とは別に、骨折部位の治療のための超音波治療装置が必要になる。
 本発明は、上記問題点に鑑みてなされたものであり、その目的は、骨折部位に確実に超音波を照射することが可能な超音波骨折治療装置を提供することにある。
 上記の課題を解決するために、本発明に係る超音波骨折治療装置は、超音波を照射して骨折部位を治療する超音波骨折治療装置であって、超音波を発振する探触子と、上記探触子からの超音波の発振を制御する制御手段とを備え、上記制御手段は、骨折部位を治療するとき、及び、骨折部位において反射した超音波に基づいて骨折部位を表す画像を形成するときの両方において、上記探触子から超音波を発振させることを特徴としている。
 本発明に係る超音波骨折治療装置は、骨折部位を治療するとき、及び、骨折部位において反射した超音波に基づいて骨折部位を表す画像を形成するときの両方において、同一の探触子から超音波を発振させるので、形成した画像に基づいて骨折部位を同定することが可能であり、より確実に骨折部位に超音波を照射することが可能な超音波骨折治療装置を提供することができる。
本発明の一実施形態に係る超音波骨折治療装置の概略を示すブロック図である。 本発明の一実施形態に係る探触子の外観を模式的に示す、斜視図(a)、上面図(b)、及び、側面図(c)である。
 〔超音波骨折治療装置〕
 本発明に係る超音波骨折治療装置は、超音波を照射して骨折部位を治療する超音波骨折治療装置である。超音波骨折治療装置の一実施形態について、図1を参照して説明する。図1は、本発明の一実施形態に係る超音波骨折治療装置の概略を示すブロック図である。図1に示すように、超音波骨折治療装置100は、超音波を発振する探触子10と、上記探触子からの超音波の発振を制御する超音波制御部(制御手段)30とを備えている。
 超音波骨折治療装置100は、超音波送受信部20、画像形成部(画像形成手段)40、及び、画像表示部(画像表示手段)50をさらに備えている。なお、画像形成部40及び画像表示部50は、スマートフォン等の携帯端末又はコンピュータに設けられ、超音波骨折治療装置100に、USB接続及びLAN接続等の有線接続、又はワイヤレス接続(WiFi、UWB等)されていてもよい。
 (探触子10)
 探触子10は、超音波送受信部20から送信された超音波信号に基づいて超音波を発振する。探触子10から発振された超音波は、骨折部位に照射される。また、探触子10は、骨折部位において反射した超音波を受信して、超音波送受信部20に送信する。探触子10は、骨折部位の画像を形成するための超音波と、骨折部位を治療するための超音波との両方を発振する。すなわち、探触子10は、画像形成用と骨折部位の治療用との両方の探触子として機能する。このように、骨折部位の治療用の探触子と、骨折部位の画像形成用の探触子とが同一である。すなわち、既存の超音波診断装置と既存の超音波骨折治療装置とをそれぞれ用意する必要がなく、治療及び画像形成に必要な装置の小型化及び低コスト化を実現することができる。その結果、病院内での使用のみならず、患者が自宅等に持ち帰り、自宅において使用することにも適している。
 探触子10は、アレイ型探触子である。ここで、一般に、空間分解能の高い画像を形成するためには、探触子10のアレイピッチを細かくする必要がある。しかしながら、アレイピッチを細かくすると、送信器22及び受信器23の数が増大すると共に、回路規模及び画像形成部40の規模が大きくなり、コストが掛かる。
 そこで、超音波骨折治療装置100においては、参考文献(信学技報,US2010-86(2012-12),p.7-12)に記載された技術を用いることにより、少ない素子数で空間分解能の高い画像を形成することができる。これにより、コストの削減及び装置の小型化を実現することができる。また、骨において反射した超音波は、各軟部組織において反射した超音波よりも、数十dB程強いため、このような、アレイ型探触子を用いた画像形成技術は骨の輪郭を表す画像を形成するのに適している。
 探触子10としてアレイ型探触子を用いるため、後述する超音波送受信部20の送信ビーム形成部21、送信器22、受信器23及び受信ビーム形成部24は、それぞれ画像形成に必要な数が設けられている。骨折部位を表す画像を形成するために、超音波骨折治療装置100は、探触子10をリニア走査方式又はセクタ走査方式により超音波の発振を電子的に制御する電子走査制御であることが好ましい。
 探触子10は、概ね骨折部位の直上の体表面に固定することが好ましいが、探触子10を骨折部位の直上に固定しない場合でも、セクタ電子走査により電気的に、探触子10に対して角度をつけて超音波を照射してもよい。これにより、探触子10の固定位置を変更することなく骨折部位を治療することができる。
 探触子10は、超音波送受信部20、超音波制御部30及び画像形成部40が収容された本体部(図示せず)とは別のハウジング内に設けられていてもよいし、本体部と同一ハウジング内に設けられていてもよい。なお、探触子10と本体部とは、細いシールド線等により、ケーブル接続されている。
 探触子10は、治療対象となる骨折部位近傍の皮膚上に固定して使用する。したがって、探触子10は、皮膚上に固定しやすい形状であることが好ましい。すなわち、探触子10は、25mm以上、35mm以下の辺からなる長方形の面を有し、厚さが、1mm以上、20mm以下の直方体形状であることが好ましく、10mm以上、20mm以下の直方体形状であることがより好ましい。また、探触子10は、直径約30mmの円形の面を有し、厚さが、1mm以上、20mm以下の円筒形状であってもよく、10mm以上、20mm以下の円筒形状であってもよい。
 このように探触子10を形成することによって、25mm以上、35mm以下の辺からなる長方形の面又は直径約30mmの円形の面において治療箇所の皮膚表面に接触し、探触子10を治療箇所に容易に固定することができる。また、薄型の探触子10であるため、治療箇所に一定時間固定しても、患者の動作を妨げない。さらに、探触子10を小型化することによって、装置全体を小型化することができる。
 また、探触子10を、上述したように、一般的な超音波骨折治療装置の探触子と同程度の厚みにすることで、従来の超音波骨折治療装置において採用されている固定方法及び固定器具を利用することができる。すなわち、探触子10を用いて骨折治療及び画像形成の両方を行うことが可能である上に、探触子10を固定するための特殊な固定方法及び固定器具を必要としない。
 探触子10の形状の一実施形態について、図2を参照して説明する。図2は、探触子の外観を模式的に示す、斜視図(a)、上面図(b)、及び、側面図(c)である。図2中(a)~(c)に示すように、探触子200は、直方体形状の筐体部201と、超音波骨折治療装置100との接続部202とを備えている。探触子200は、例えば、X=35mmの辺とY=30mmの辺とを含む長方形の面を有し、厚さがZ=20mmの直方体であってもよい。探触子200から超音波を発振させて骨折治療するとき、XとYとを含む長方形の面を治療箇所の皮膚表面に接触させて、探触子200を固定すればよい。
 (超音波送受信部20)
 超音波送受信部20は、送信ビーム形成部21、送信器22、受信器23、及び、受信ビーム形成部24を備えている。送信ビーム形成部21は、超音波制御部30による制御に基づいて、超音波ビームを形成する信号を、送信器22に出力する。送信ビーム形成部21は、探触子10の電子走査を制御するようになっていてもよい。送信器22は、送信ビーム形成部21から出力された送信信号を探触子10に送信する。送信器22は、探触子10から発振される超音波の強度を制御するようになっていてもよい。
 受信器23は、探触子10から照射され、生体内から反射した超音波を受信し、受信した受信信号を受信ビーム形成部24に送信する。受信ビーム形成部24は、受信器23から送信された受信信号に基づいて超音波ビームを形成し、画像形成部40に出力する。
 送信ビーム形成部21、送信器22、受信器23、及び、受信ビーム形成部24としては、従来公知の送信ビーム形成部、送信器、受信器、及び、受信ビーム形成部を使用することができる。
 (超音波制御部30)
 超音波制御部30は、骨折部位を治療するとき、及び、骨折部位において反射した超音波に基づいて骨折部位を表す画像を形成するときの両方において、探触子10から超音波を発振させる。すなわち、超音波制御部30は、骨折部位を治療するための超音波を探触子10から発振させると共に、骨折部位を表す画像を形成するための超音波を探触子10から発振させる。
 したがって、超音波による骨折部位の治療の前に、探触子10から超音波を発振させて骨折部位の超音波画像を形成し、形成した画像に基づいて治療部位を同定することができる。そして、同定した治療部位に確実に超音波が照射されるように探触子10から超音波を発振させる。これにより、骨折部位に確実に超音波を照射し、骨折治癒を促進することができる。
 従来の超音波診断装置を使用して、骨折部位を同定した後に、同定した骨折部位に従来の超音波骨折治療装置を用いて超音波を照射する場合、装置が2つ必要である上に、超音波を照射する探触子が超音波診断装置のものと超音波骨折治療装置のものとで異なるため、超音波診断装置により同定した骨折位置に、超音波骨折治療装置からの超音波が実際に照射されているか確実ではない。超音波骨折治療装置100によれば、超音波制御部30が骨折位置を同定するための超音波と、骨折を治療するための超音波とを、同一の探触子10から照射するため、同定した骨折位置により確実に超音波を照射することができる。
 また、超音波骨折治療装置100によれば、治療時に毎回確実に骨折部位に超音波を照射することが可能であるため、超音波照射による骨折治療成績のエビデンスを確立することができる。さらに、骨折位置の確認のためにX線照射する必要がなく、患者の被爆がない。また、患者に適切に指導することによって、毎日家庭での治療時に患者自身が適切な治療位置を確認し、探触子を固定することができる。
 超音波制御部30は、探触子10、超音波送受信部20、及び、画像形成部40の各構成要素を制御するようになっている。超音波制御部30は、ユーザインターフェース(図示せず)からのユーザの入力に基づいて、探触子10から超音波を発振させる。また、超音波制御部30は、探触子10からの超音波の発振状態等をユーザインターフェースに表示させるようになっていてもよい。
 超音波制御部30は、ユーザの入力又は予め記憶されたプログラムに基づいて、超音波送受信部20に超音波ビームを形成させて探触子10に出力させ、探触子10から超音波を発振させる。また、超音波制御部30は、ユーザの入力又は予め記憶されたプログラムに基づいて、超音波送受信部20に探触子10が受信した超音波から超音波ビームを形成させて画像形成部40に出力させ、画像形成部40に超音波照射部位の画像を形成させる。
 また、超音波制御部30は、画像形成部40が形成した画像に基づいて同定された骨折部位に超音波が照射されるように、探触子10からの超音波の照射角度を調節するようになっていてもよい。このとき超音波制御部30は、画像形成部40が形成した骨折部位を表す画像に基づいて骨折部位を同定する。そして、超音波制御部30は、同定した骨折部位に確実に超音波が照射されるように、探触子10からの超音波の照射角度を調節する。
 これにより、骨折部位に、より確実に超音波が照射されるため、骨折治癒をより促進することができる。また、超音波制御部30は、同定した骨折部位全体に超音波が照射されるように、探触子からの超音波の照射範囲を調節するようになっていてもよい。なお、探触子10からの超音波の照射角度又は照射範囲の調節は、従来公知の方法により行うことができる。
 さらに、超音波制御部30は、探触子10から発振されて骨折部位において反射した超音波に基づいて形成した画像から骨折位置までの深さを計測して超音波の減衰量を算出し、算出した減衰量に基づいて骨折部位を治療するときに探触子10から発振させる超音波の出力を制御するようになっていてもよい。超音波制御部30は、探触子10から発振されて骨折部位に照射される超音波の減衰量を、骨折部位において反射した超音波に基づいて算出する。そして、算出した減衰量に基づいて、骨折治療時に探触子から発振させる超音波の出力を制御する。例えば、超音波制御部30は、減衰量を補うように、探触子からの超音波出力を増大させる。これにより、骨折部位に、より治療に適した超音波を照射することができるので、骨折治癒をより促進することができる。
 なお、超音波の減衰量の算出、及び、探触子からの超音波の出力制御は、従来公知の方法により行うことができる。例えば、後述するスキャンコンバータ部42に、画像形成部40が形成した骨折部位を表す画像上における体表から骨折部位までの距離を計測させ、計測した距離に基づいて超音波の減衰量を算出する。そして、算出した減衰量に基づいて、探触子10から発振させる超音波の出力強度を補正する。なお、生体内における超音波の減衰量は、一般に0.7dB/cm/MHzであることが知られている(参考文献:JEITA規格 AE-6008付属書A2(p16))。
 超音波制御部30は、骨折部位を治療するとき、探触子10から発振させる超音波の周波数を、0.5~10MHzの範囲内、好ましくは1~3MHzの範囲内、最も好ましくは1.5MHzに制御してもよいが、これに限定されない。
 また、超音波制御部30は、骨折部位を治療するとき、探触子10から超音波を発振させる時間を、好ましくは1日に1回、20分間に制御することが好ましいが、1日に2回、20分間づつ、2日に1回、20分間、又は、2日に2回、20分間ずつ(1日は照射せず)に制御してもよいが、これに限定されない。
 さらに、超音波制御部30は、骨折部位を治療するとき、探触子10から発振させる超音波の出力を、好ましくは5~60mW/cm、より好ましくは15~45mW/cm、最も好ましくは30mW/cmに制御してもよいが、これに限定されない。
 また、超音波制御部30は、骨折部位を治療するとき、探触子10から発振させる超音波のduty比を、好ましくは5~50%、より好ましくは10~30%、最も好ましくは20%に制御してもよいが、これに限定されない。
 さらに、超音波制御部30は、骨折部位を治療するとき、探触子10から照射させる超音波のPRFを、好ましくは500Hz~10kHz、より好ましくは1kHzに制御してもよいが、これに限定されない。
 なお、骨折部位を表す画像を形成するときに、超音波制御部30が探触子10から照射させる超音波は、時間分解能の向上のためにできるだけ高周波であることが好ましいが、通常、探触子10の帯域により送信周波数が制限される。このため、例えば、骨折部位を治療するときの超音波の好ましい周波数が1.5MHzであるときに、PZTを使用した通常の探触子における帯域が80%の場合、骨折部位を表す画像を形成するときの超音波の周波数は、3.5MHzである。
 なお、骨折部位を表す画像を形成するとき、探触子10から発振させる超音波の周波数は、上記の範囲内に限定されず、骨折部位において反射した超音波に基づいて骨折部位を表す画像を形成することが可能な周波数であればよい。また、超音波の照射時間、出力、duty比、及び、PRFについても、骨折部位において反射した超音波に基づいて骨折部位を表す画像を形成することが可能なように制御すればよい。
 超音波制御部30は、規定の値の超音波を出力するため、探触子10の感度のばらつきを補正するために、及び、超音波出力を一定に保つために、探触子10からの超音波の発振をモニタリングするフィードバック機構を備えていてもよい。これにより、探触子10から超音波の発振状態が超音波制御部30にフィードバックされ、これに基づいて超音波制御部30は超音波送受信部20による、治療時と画像形成時のおける適切な超音波ビーム形成を制御する。超音波制御部30は、具体的には、組み込み型CPU、コンピュータまたはFPGA等による専用ハードウェアにより構成することができる。
 (画像形成部40)
 画像形成部40は、探触子10から発振されて生体内及び骨折部位において反射した超音波に基づいて生体内及び骨折部位を表す画像を形成する。これにより、画像形成部40が作成した骨折部位を表す画像に基づいて、治療対象となる骨折部位を確実に同定することができる。そして、同定した骨折部位に探触子10から発振された超音波を照射することによって、骨折治癒をより促進することができる。
 画像形成部40は、Bモード処理部41とスキャンコンバータ部42とを備えている。Bモード処理部41は、探触子10が受信した超音波に基づいて超音波送受信部20において形成された超音波ビームを、画像の輝度情報を表すBモード画像信号に変換し、スキャンコンバータ部42に送信する。スキャンコンバータ部42は、Bモード処理部からの画像信号を画像表示部50に適応した形式に変換して、画像を表示する。スキャンコンバータ部42は、形成した骨折部位を表す画像上において、体表から骨折部位までの距離を計測する距離計測機能を備えていてもよい。
 なお、画像形成部40は、上述した画像形成方法とは異なる公知の画像形成方法により骨折部位を表す画像を形成するようになっていてもよい。画像形成部40は、具体的には、汎用コンピュータシステム等の公知の装置により構成することができる。
 (画像表示部50)
 画像表示部50は、画像形成部40が形成した画像を表示する。画像形成部40が形成した骨折部位を表す画像を画像表示部50に表示させることによって、患者が画像表示部50に表示された骨折部位を表す画像を確認して骨折部位を同定することができる。そして、同定した骨折部位に確実に超音波が照射されるように、探触子10の固定位置を変更することができる。画像表示部50は、ディスプレイ装置等の公知の画像表示装置により構成することができる。
 〔他の構成〕
 上述した超音波骨折治療装置としてコンピュータを機能させるための超音波骨折治療プログラムであって、コンピュータを超音波制御手段、画像形成手段等として機能させるための超音波骨折治療プログラム、及び、当該プログラムを記録したコンピュータ読み取り可能な記録媒体も本発明の範疇に含まれる。
 また、上述した超音波骨折治療装置を用いて骨折部位を治療する超音波骨折治療方法についても、本発明の範疇に含まれる。すなわち、本発明に係る超音波骨折治療方法は、超音波を照射して骨折部位を治療する超音波骨折治療方法であって、探触子から超音波を発振させ、骨折部位において反射した超音波に基づいて骨折部位を表す画像を形成する画像形成工程と、形成した画像に基づいて骨折部位を同定する同定工程と、探触子から超音波を発振させて同定した骨折部位に照射する治療工程とを包含する。
 超音波骨折治療方法において用いられる超音波骨折治療装置の一実施形態が超音波骨折治療装置100であるため、本発明に係る超音波骨折治療方法の詳細については、上述した超音波骨折治療装置100の説明に準じる。
 〔本発明に係る具体的な態様の例示〕
 本発明に係る超音波骨折治療装置は、超音波を照射して骨折部位を治療する超音波骨折治療装置であって、超音波を発振する探触子と、上記探触子からの超音波の発振を制御する制御手段とを備え、上記制御手段は、骨折部位を治療するとき、及び、骨折部位において反射した超音波に基づいて骨折部位を表す画像を形成するときの両方において、上記探触子から超音波を発振させることを特徴としている。
 上記の構成によれば、超音波骨折治療装置において、制御手段は、骨折部位を治療するための超音波と、骨折部位を表す画像を形成するための超音波との両方を同一の探触子から発振させる。したがって、超音波による骨折部位の治療の前に、探触子から超音波を発振させて骨折部位の超音波画像を形成し、形成した画像に基づいて治療部位を同定することができる。そして、同定した治療部位に確実に超音波が照射されるように探触子から超音波を発振させることができる。これにより、骨折部位に確実に超音波を照射し、骨折治癒を促進することができる。
 従来の超音波診断装置を使用して、骨折部位を同定した後に、同定した骨折部位に従来の超音波骨折治療装置を用いて超音波を照射する場合、装置が2つ必要である上に、超音波を照射する探触子が超音波診断装置のものと超音波骨折治療装置のものとで異なるため、超音波診断装置により同定した骨折位置に、超音波骨折治療装置からの超音波が実際に照射されているか確実ではない。本発明に係る超音波骨折治療装置によれば、骨折位置を同定するための超音波と、骨折を治療するための超音波とを、同一の探触子から照射するため、同定した骨折位置により確実に超音波を照射することができる。
 また、本発明に係る超音波骨折治療装置によれば、治療時に毎回確実に骨折部位に超音波を照射することが可能であるため、超音波照射による骨折治療成績のエビデンスを確立することができる。さらに、骨折位置の確認のためにX線照射する必要がなく、患者の被爆がない。また、患者に適切に指導することによって、毎日家庭での治療時に患者自身が適切な治療位置を確認し、探触子を固定することができる。
 さらに、本発明に係る超音波治療装置によれば、骨折部位の治療用の探触子と、骨折部位の画像形成用の探触子とが同一であるため、汎用の超音波診断装置と比較して小型化できると共に、安価に製造することが可能である。このように、本発明に係る超音波骨折治療装置は、汎用の超音波骨折治療装置と比較して小型であるため、病院内での使用のみならず、患者の自宅等に持ち帰って使用するにも適している。
 また、本発明に係る超音波骨折治療装置は、上記探触子から発振されて骨折部位において反射した超音波に基づいて骨折部位を表す画像を形成する画像形成手段と、上記画像形成手段が形成した画像を表示する画像表示手段とをさらに備えていることが好ましい。
 上記の構成によれば、画像形成手段が、探触子から発振されて骨折部位において反射した超音波に基づいて骨折部位を表す画像を形成し、画像形成手段が形成した骨折部位を表す画像が画像表示手段に表示される。これにより、画像形成手段が作成し画像表示手段に表示された骨折部位を表す画像に基づいて、治療対象となる骨折部位を確実に同定することができる。したがって、患者自身が画像を確認して骨折部位を同定することも可能であるし、同定した骨折部位に確実に超音波が照射されるように、探触子の固定位置を変更することも可能である。そして、同定した骨折部位に探触子から発振された超音波を照射することによって、骨折治癒をより促進することができる。
 また、本発明に係る超音波骨折治療装置において、上記制御手段は、上記画像形成手段が形成した画像に基づいて同定された骨折部位に超音波が照射されるように、上記探触子からの超音波の照射角度を調節することが好ましい。
 上記の構成によれば、制御手段は、骨折部位を表す画像に基づいて骨折部位を同定し、同定した骨折部位に確実に超音波が照射されるように、探触子からの超音波の照射角度を調節する。これにより、骨折部位により確実に超音波が照射されるため、骨折治癒をより促進することができる。
 また、本発明に係る超音波骨折治療装置において、上記制御手段は、上記探触子から発振されて骨折部位において反射した超音波に基づいて形成された画像から、超音波の減衰量を算出し、算出した減衰量に基づいて骨折部位を治療するときに上記探触子から発振させる超音波の出力を制御することが好ましい。
 上記の構成によれば、制御手段は、探触子から発振されて骨折部位に照射される超音波の減衰量を、上記探触子から発振されて骨折部位において反射した超音波に基づいて形成された画像から算出する。そして、算出した減衰量に基づいて、骨折治療時に探触子から発振させる超音波の出力を制御する。例えば、制御手段は、減衰量を補うように、探触子からの超音波出力を増大させる。これにより、骨折部位に、より治療に適した超音波を照射することができるので、骨折治癒をより促進することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、超音波による治療装置に利用することができる。
 10  探触子
 20  超音波送受信部
 30  超音波制御部(制御手段)
 40  画像形成部(画像形成手段)
 50  画像表示部(画像表示手段)
 100 超音波骨折治療装置
 

Claims (4)

  1.  超音波を照射して骨折部位を治療する超音波骨折治療装置であって、
     超音波を発振する探触子と、
     上記探触子からの超音波の発振を制御する制御手段とを備え、
     上記制御手段は、骨折部位を治療するとき、及び、骨折部位において反射した超音波に基づいて骨折部位を表す画像を形成するときの両方において、上記探触子から超音波を発振させることを特徴とする超音波骨折治療装置。
  2.  上記探触子から発振されて骨折部位において反射した超音波に基づいて骨折部位を表す画像を形成する画像形成手段と、
     上記画像形成手段が形成した画像を表示する画像表示手段と
    をさらに備えていることを特徴とする請求項1に記載の超音波骨折治療装置。
  3.  上記制御手段は、上記画像形成手段が形成した画像に基づいて同定された骨折部位に超音波が照射されるように、上記探触子からの超音波の照射角度を調節することを特徴とする請求項2に記載の超音波骨折治療装置。
  4.  上記制御手段は、上記探触子から発振されて骨折部位において反射した超音波に基づいて形成された画像から、超音波の減衰量を算出し、算出した減衰量に基づいて骨折部位を治療するときに上記探触子から発振させる超音波の出力を制御することを特徴とする請求項1~3のいずれか1項に記載の超音波骨折治療装置。
PCT/JP2014/053319 2013-02-13 2014-02-13 超音波骨折治療装置 WO2014126148A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-025911 2013-02-13
JP2013025911A JP2014151123A (ja) 2013-02-13 2013-02-13 超音波骨折治療装置

Publications (1)

Publication Number Publication Date
WO2014126148A1 true WO2014126148A1 (ja) 2014-08-21

Family

ID=51354147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053319 WO2014126148A1 (ja) 2013-02-13 2014-02-13 超音波骨折治療装置

Country Status (2)

Country Link
JP (1) JP2014151123A (ja)
WO (1) WO2014126148A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2603325C1 (ru) * 2015-06-23 2016-11-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Устройство активации репаративного остеогенеза

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3544497A4 (en) * 2016-11-22 2020-08-05 Cedars-Sinai Medical Center NOVEL TRANSFECTION AND ACTIVE SUBSTANCE RELEASE DEVICE
JP7506953B2 (ja) 2021-07-21 2024-06-27 公立大学法人公立諏訪東京理科大学 骨の治療装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509605A (ja) * 1994-10-25 1998-09-22 オーソロジック・コーポレーション 超音波による骨治療装置および方法
JP2000325383A (ja) * 1999-05-20 2000-11-28 Hitachi Ltd 骨の治療・治癒診断方法及び治療・治癒診断装置
JP2001231788A (ja) * 2000-02-22 2001-08-28 Hitachi Ltd 骨の治療・治癒診断方法及び治療・治癒診断装置
JP2001258898A (ja) * 2000-03-23 2001-09-25 Teijin Ltd 超音波骨折治療装置
WO2008018612A1 (fr) * 2006-08-07 2008-02-14 Teijin Pharma Limited Dispositif de cicatrisation d'une fracture osseuse par ultrasons, récepteur de cicatrisation d'une fracture osseuse, et dispositif d'examen de la position d'une fracture osseuse
JP2008119238A (ja) * 2006-11-13 2008-05-29 Teijin Pharma Ltd トランスデューサ角度調節機構を有する超音波骨折治療器
WO2011016586A1 (ja) * 2009-08-05 2011-02-10 帝人ファーマ株式会社 照射位置確認機能を有する超音波検出装置及びその方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509605A (ja) * 1994-10-25 1998-09-22 オーソロジック・コーポレーション 超音波による骨治療装置および方法
JP2000325383A (ja) * 1999-05-20 2000-11-28 Hitachi Ltd 骨の治療・治癒診断方法及び治療・治癒診断装置
JP2001231788A (ja) * 2000-02-22 2001-08-28 Hitachi Ltd 骨の治療・治癒診断方法及び治療・治癒診断装置
JP2001258898A (ja) * 2000-03-23 2001-09-25 Teijin Ltd 超音波骨折治療装置
WO2008018612A1 (fr) * 2006-08-07 2008-02-14 Teijin Pharma Limited Dispositif de cicatrisation d'une fracture osseuse par ultrasons, récepteur de cicatrisation d'une fracture osseuse, et dispositif d'examen de la position d'une fracture osseuse
JP2008119238A (ja) * 2006-11-13 2008-05-29 Teijin Pharma Ltd トランスデューサ角度調節機構を有する超音波骨折治療器
WO2011016586A1 (ja) * 2009-08-05 2011-02-10 帝人ファーマ株式会社 照射位置確認機能を有する超音波検出装置及びその方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2603325C1 (ru) * 2015-06-23 2016-11-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Устройство активации репаративного остеогенеза

Also Published As

Publication number Publication date
JP2014151123A (ja) 2014-08-25

Similar Documents

Publication Publication Date Title
JP4944795B2 (ja) 照射位置確認機能を有する医療用超音波装置
US10413756B2 (en) Ultrasound treatment device and control method thereof
KR101583302B1 (ko) 진단 치료 겸용 광융합형 초음파기기
EP1919563A1 (en) Method and system for the enhancement and monitoring of the healing process of bones
WO2014126148A1 (ja) 超音波骨折治療装置
US20190059739A1 (en) Photoacoustic apparatus
KR20140090349A (ko) Rf 치료장치 및 rf 치료장치의 제어방법
CN108351394B (zh) 用于避免对同时使用的rf系统的源自mri的干扰的系统和方法
JP2001231788A (ja) 骨の治療・治癒診断方法及び治療・治癒診断装置
JP2017023498A (ja) 超音波医用装置
JPWO2008018612A1 (ja) 超音波骨折治療器、骨折治療用受信装置及び骨折位置検査器
JP2001299772A (ja) 超音波治療装置
US20150335918A1 (en) Ultrasonic probe having gradient information and device for ultrasonic diagnosis and treatment using same
KR20230100686A (ko) 치료 및 이미징 동시 수행방법 및 이를 위한 다기능 초음파 프로브
JPWO2007023878A1 (ja) 治療システム
JP2009183454A (ja) 周波数減衰特性を利用した超音波検査装置又は超音波照射位置検査方法
JP2000325383A (ja) 骨の治療・治癒診断方法及び治療・治癒診断装置
JP4567649B2 (ja) トランスデューサ角度調節機構を有する超音波骨折治療器
US11083914B2 (en) Ultrasonic treatment device
JP7170359B1 (ja) 超音波画像処理装置
JP2016179125A (ja) 超音波画像表示装置
KR20120049682A (ko) 초음파 진단장치
JP2023079320A (ja) 超音波治療装置
JP2014023680A (ja) 被検体情報取得装置およびその制御方法ならびに提示方法
JP2009183453A (ja) 超音波伝搬速度を利用した超音波検査装置又は超音波照射位置検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751406

Country of ref document: EP

Kind code of ref document: A1