WO2014125967A1 - 3,6-O-CROSSLINKED PYRANOSE COMPOUND, AND PRODUCTION METHOD FOR α-O-PYRANOSIDE - Google Patents

3,6-O-CROSSLINKED PYRANOSE COMPOUND, AND PRODUCTION METHOD FOR α-O-PYRANOSIDE Download PDF

Info

Publication number
WO2014125967A1
WO2014125967A1 PCT/JP2014/052564 JP2014052564W WO2014125967A1 WO 2014125967 A1 WO2014125967 A1 WO 2014125967A1 JP 2014052564 W JP2014052564 W JP 2014052564W WO 2014125967 A1 WO2014125967 A1 WO 2014125967A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
reaction
general formula
methylene
Prior art date
Application number
PCT/JP2014/052564
Other languages
French (fr)
Japanese (ja)
Inventor
英俊 山田
Original Assignee
学校法人関西学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人関西学院 filed Critical 学校法人関西学院
Priority to JP2015500200A priority Critical patent/JPWO2014125967A1/en
Publication of WO2014125967A1 publication Critical patent/WO2014125967A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/18Acyclic radicals, substituted by carbocyclic rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a process for producing 3,6-O-bridged pyranose compounds and ⁇ -O-pyranoside.
  • Non-patent Document 1 As a glycosylation method by highly alpha selective chemical synthesis, a chemical preparation method using a benzyl group in which adjacent group participation does not occur as a protecting group at the 2-position of pyranose is shown (Non-patent Document 1). However, this method is a method to prevent the occurrence of ⁇ -selective adjacent group participation when an acyl group is used as the 2-position protecting group, and therefore, a strict reaction is required to cause the reaction to proceed ⁇ -selectively. It is necessary to set conditions.
  • Non-patent Documents 2 and 3 chemical production methods have also been proposed that make use of ⁇ -selective neighboring group participation.
  • Non-patent Documents 2 and 3 chemical production methods have also been proposed that make use of ⁇ -selective neighboring group participation.
  • Non-patent Document 4 a method using a bicyclo compound of pyranose and 1,4-oxathiane ring has also been proposed (Non-patent Document 4). However, this method also has limitations in the 1- and 2-position protecting groups.
  • the object of the present invention is to provide a method for easily producing ⁇ -O-pyranoside with high selectivity and a pyranose donor used for the method, without setting highly versatile and strict reaction conditions. It is to be.
  • the present inventors succeeded in synthesizing a 3,6-O-bridged pyranose compound represented by the following general formula (1). It has been found that the -O-bridged pyranose compound can be the desired ⁇ -O-glycosylation agent. The present invention has been completed based on such findings.
  • the present invention provides a method for producing 3,6-O-bridged pyranose compounds shown in the following items 1 and 2 and ⁇ -O-pyranoside shown in the items 3.
  • R 1 represents a —SR 6 group (R 6 represents a lower alkyl group which may have a substituent or an aryl group which may have a substituent on the aromatic ring), —OR 7]
  • R 7 represents a hydrogen atom, a protecting group of a hydroxyl group or a group acting as a leaving group with a bonded oxygen atom) or a halogen atom.
  • R 2 represents a hydrogen atom or a hydroxyl protective group.
  • R 3 represents a hydrogen atom or a hydroxyl protective group.
  • R 4 and R 5 are the same or different and each represents a lower alkyl group which may be substituted by a halogen atom, a lower alkoxy group which may be substituted by a halogen atom, a nitro group or a halogen atom.
  • n represents an integer of 1 to 4;
  • p and q each represent an integer of 0 to 4;
  • the p R 4 s may be the same or different, and the q R 5 s may be the same or different.
  • the p adjacent R 4 groups may be bonded to each other to form a benzene ring, and the q adjacent R 5 groups may be bonded to each other to form a benzene ring.
  • Item 3. The 3,6-O-bridged pyranose compound according to Item 1, or an enantiomer thereof, wherein R 1 in the general formula (1) is a halogen atom.
  • Item 3. The 3,6-O-bridged pyranose compound according to item 2 is a compound represented by the general formula (2) R 8 OH (2) [Wherein, R 8 represents a residue of a primary, secondary or tertiary alcohol. ]
  • 3,6-O-Bridged Pyranose Compound The 3,6-O-bridged pyranose compound of the present invention is represented by the following general formula (1).
  • the lower alkyl group means an alkyl group having 1 to 6 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms, and examples thereof include methyl, ethyl, n-propyl and iso-propyl.
  • the lower alkoxy group is an alkoxy group having 1 to 6 carbon atoms, preferably an alkoxy group having 1 to 4 carbon atoms, and examples thereof include a methoxy group, an ethoxy group, an n-propoxy group, an iso-propoxy group and an n-butoxy group.
  • the lower alkanoyl group is an alkanoyl group having 1 to 6 carbon atoms, preferably an alkanoyl group having 1 to 4 carbon atoms, and examples thereof include an acetyl group, a propanoyl group, a butanoyl group, a 2-methylpropanoyl group and a pentanoyl group. Examples thereof include 2-methylbutanoyl group, 3-methylbutanoyl group, tert-butylcarbonyl group, hexanoyl group and the like.
  • aryl group a phenyl group, a naphthyl group, etc. are mentioned, for example.
  • aryloxy group a phenoxy group, a naphthyloxy group, etc. are mentioned, for example.
  • the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the protective group for hydroxyl group may be a conventional protective group for hydroxyl group widely known to date, for example, allyl group; methallyl group; a group comprising a halogen atom as a substituent, a lower alkoxy group and an aryloxy group Or lower alkyl group optionally having 1 to 5 at least one group selected from: at least one group selected from the group consisting of halogen atoms, lower alkyl groups and lower alkoxy groups as substituents, on an aromatic ring 1 to 3 phenyl groups which may be contained; 1 to 3 at least one group selected from the group consisting of halogen atoms, lower alkyl groups, lower alkoxy groups and nitro groups as substituents on aromatic rings Benzyl group which may be substituted; at least one group selected from the group consisting of halogen atoms, lower alkyl groups and lower alkoxy groups as substituents Triphenylmethyl group which may have 1 to 3 on an aromatic ring; formyl group; at least
  • allyl group methallyl group, methyl group, ethyl group, tert-butyl group, methoxymethyl group, 4-methoxyphenyl group, benzyl group, dimethylbenzyl group, 4-methoxybenzyl group, 2-nitrobenzyl group And triphenylmethyl group, formyl group, acetyl group, propionyl group, tert-butylcarbonyl group, benzoyl group, tri-lower alkylsilyl group, tert-butyldiphenylsilyl group and the like.
  • these protecting groups allyl, benzyl, dimethylbenzyl, 4-methoxybenzyl and tri-lower alkylsilyl are preferable.
  • R 6 represents a lower alkyl group
  • substituent on the alkyl include a lower alkoxy group, an aryl group, a halogen atom and the like, and more specifically, a methoxy group, an ethoxy group, a phenyl group, a halogen atom Etc.
  • R 6 represents an aryl group
  • substituent on the aromatic ring include a lower alkyl group, a lower alkoxy group, a halogen atom and the like, and more specifically, a methyl group, an ethyl group, a methoxy group , An ethoxy group, a halogen atom and the like.
  • the group represented by R 7 which acts as a leaving group together with the oxygen atom to be bound may be an existing group which is widely known to date, and has an imide group; 1 to 5 halogen atoms Lower alkylsulfonyl group which may be substituted; benzene which may have on the aromatic ring at least one group selected from the group consisting of halogen atoms, lower alkyl groups, lower alkoxy groups and nitro groups as substituents A sulfonyl group etc. are mentioned.
  • trichloroacetoimido group 4-trifluoromethylbenzylthio-N- (4-trifluoromethylphenyl) formimido group, methanesulfonyl group, trifluoromethanesulfonyl group, 4-toluenesulfonyl group, 2-nitrobenzene sulfonyl group And the like.
  • p adjacent R 4 's are bonded to each other to form a benzene ring, for example, benzene in which two adjacent R 4 ' s are bonded to each other and R 4 is bonded
  • a naphthalene ring is formed with a ring
  • R 2 in the general formula (1) is a hydrogen atom or a hydroxyl protecting group.
  • the protective group for hydroxyl group those similar to the protective group for hydroxyl group described above are used.
  • R 3 in the general formula (1) is a hydrogen atom or a hydroxyl protecting group.
  • the protective group for hydroxyl group those similar to the protective group for hydroxyl group described above are used.
  • n in the general formula (1) is an integer of 1 to 4, preferably an integer of 1 to 3, more preferably an integer of 2 to 3, and particularly preferably 2.
  • p and q in the general formula (1) are each an integer of 0 to 4, but both p and q are preferably an integer of 0 to 2, and particularly preferably 0 or 1.
  • the 3,6-O-bridged pyranose compound represented by the general formula (1) has a chemical structure in which two aromatic rings in the bridge portion thereof are linked via an alkylene group. Therefore, since the cross-linked part of the 3,6-O-crosslinked pyranose compound has an appropriate degree of freedom in structure, it has an advantage that the reaction of removing the cross-linked part from pyranose tends to progress.
  • the enantiomer of the 3,6-O-bridged pyranose compound represented by the general formula (1) means a 3,6-O-bridged pyranose compound represented by the following general formula (1 ').
  • R 1, R 2, R 3, R 4, R 5, n, p and q are as defined above.
  • the 3,6-O-bridged pyranose compound represented by the general formula (1) can also be represented as the following formula in consideration of its conformation.
  • the 3,6-O-bridged pyranose compounds represented by the general formula (1) include compounds represented by the following general formulas (1A), (1B) and (1C).
  • X represents a halogen atom.
  • R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , n, p and q are as defined above.
  • These compounds can also be represented as in the following formula in consideration of their conformations.
  • R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , X, n, p and q are as defined above.
  • preferred compounds are those represented by the following general formulas (1a), (1b), (1c), (1d) and (1e) It is a compound represented.
  • R 4 , R 5 , R 6 , n, p and q are as defined above.
  • R 2 ′ and R 3 ′ each represent a hydroxyl protecting group.
  • X 1 and X 2 each represent a halogen atom.
  • the reaction of the compound (4) with the compound (5) can be carried out, for example, by using a basic compound such as sodium hydride in a suitable solvent such as a mixed solvent of toluene and dimethylformamide (DMF) as shown in Example 1 later. It takes place in the presence.
  • the reaction is preferably carried out by dropping the solution of compound (4) and the solution of compound (5) at a suitable rate, respectively, into the solution or suspension of the basic compound.
  • the reaction should be stirred for 10 to 20 hours at a temperature between 70 ° C. and the boiling point of the solvent.
  • the compound (4) used as a starting material is a known compound
  • the compound (5) is a known compound or a compound which can be easily produced from a known compound.
  • the mixing ratio of toluene and DMF can be, for example, a mixed solvent of 0.1 to 1 DMF with 1 L of toluene.
  • the reaction for converting the compound (6) to the compound (1A-1) is carried out, for example, by two steps as shown in Example 1 described later.
  • R 6 SH (wherein R 6 is as defined above) is reacted with compound (6) in the presence of a Lewis acid such as trifluoromethanesulfonic acid trimethylsilyl and molecular sieves in a suitable solvent such as dichloromethane.
  • a Lewis acid such as trifluoromethanesulfonic acid trimethylsilyl and molecular sieves
  • a suitable solvent such as dichloromethane.
  • step A and the step of reacting the product obtained in step A with a basic compound such as sodium methoxide in an alcohol solvent such as methanol
  • the reaction in step A preferably has a reaction temperature of ⁇ 78 to 25 ° C. and a reaction time of 1 to 60 minutes.
  • the reaction in step B preferably has a reaction temperature of 0 to 65 ° C. (more preferably around room temperature) and a reaction time of 5 to 60 minutes.
  • the amount of the basic compound used can be, for example, 0.001 to 10 moles of the basic compound per 1 mole of the compound (6) used in the reaction of step A.
  • the reaction for converting the compound (1A-1) to the compound (1A-2) can be carried out in the presence of a basic compound under the general conditions for introducing a protecting group to a hydroxyl group.
  • a basic compound under the general conditions for introducing a protecting group to a hydroxyl group.
  • it can be carried out in a suitable solvent such as a mixed solvent of toluene and DMF in the presence of a basic compound such as sodium hydride.
  • the reaction is preferably carried out at a reaction temperature of 20 to 100 ° C. and a reaction time of 30 to 120 minutes.
  • the mixing ratio of toluene and DMF can be, for example, a solvent in which 0.2 to 2 L of DMF is mixed with 1 L of toluene in volume ratio.
  • the reaction is preferably carried out by adding copper (II) chloride to a stirred mixture solution of compound (1A-1) and a basic compound, and then adding R 2 ′ X 3 .
  • the desired compound (1A-2) can be obtained from the compound obtained under the general conditions for introducing a protective group to a hydroxyl group in the presence of a basic compound.
  • R 7 ′ represents a hydroxyl-protecting group or a group which acts as a leaving group together with the bonded oxygen atom.
  • the reaction for converting the compound (1A) to the compound (1B-1) is carried out, for example, as shown in Example 3 below, in a suitable solvent such as a mixed solvent of acetone and water, N-halosuccinimide such as N-bromosuccinimide In the presence of The reaction is preferably carried out at a reaction temperature of ⁇ 40 to 30 ° C. and a reaction time of 0.1 to 4 hours.
  • the mixing ratio of acetone and water may be, for example, a solvent in which 0.01 to 0.5 L of water is mixed with 1 L of acetone in volume ratio.
  • the reaction for introducing the compound (1B-1) into the compound (1B-2) is carried out under the general conditions of introducing a protecting group or a group acting as a leaving group together with an oxygen atom bonded to a hydroxyl group in the presence of a basic compound. To be done.
  • the reaction for converting the compound (1B-1) to the compound (1C) is carried out, for example, as described in Example 4 below, in a suitable solvent such as tetrahydrofuran, the presence of a halogenating agent such as diethylaminosulfur trifluoride (DAST) It takes place below.
  • a halogenating agent such as diethylaminosulfur trifluoride (DAST) It takes place below.
  • DAST diethylaminosulfur trifluoride
  • the reaction is preferably carried out at a reaction temperature of ⁇ 20 to 40 ° C. and a reaction time of 1 to 60 minutes. In the reaction, it is preferable to use 1 to 6 moles of a halogenating agent relative to 1 mole of a compound (1B-1).
  • the compounds represented by the general formula (1 ') can also be produced by carrying out the same reaction except that the corresponding enantiomer is used as the starting material in each of the above reaction formulas.
  • the compound represented by the general formula (1) obtained by the above reaction is separated from the reaction mixture by a conventional separation means and purified.
  • separation and purification means may include, for example, distillation, recrystallization, column chromatography, ion exchange chromatography, gel chromatography, affinity chromatography, preparative thin layer chromatography, solvent extraction, etc. it can.
  • the crosslinking portion can be removed from pyranose depending on the conditions of hydrogenation.
  • the reaction is carried out under a hydrogen atmosphere in the presence of a hydrogenation catalyst.
  • a hydrogenation catalyst an existing hydrogenation catalyst widely known to date may be used, and examples thereof include palladium / carbon, palladium hydroxide / carbon and the like.
  • the compounds represented by the general formula (1) of the present invention are suitable as glycosylation agents as an alpha selective sugar donor.
  • the reason why a glycosidic bond is formed ⁇ -selectively is not clear yet, but since the bridge portion has a shape covering one side of the pyranose ring, it is selected from the ⁇ -plane by steric repulsion on the ⁇ -plane It is presumed that the reaction proceeds in a
  • the compound represented by the general formula (1) of the present invention acts as an ⁇ -selective sugar donor, and then the reaction for removing the cross-linked portion as described above is represented by an ⁇ -O-pyranoside represented by the general formula (3)
  • the reaction for removing the cross-linked portion as described above is represented by an ⁇ -O-pyranoside represented by the general formula (3)
  • R 2 , R 3 , R 4 , R 5 , R 8 , X, n, p and q are as defined above.
  • the residue of the primary, secondary or tertiary alcohol represented by R 8 is the remaining group obtained by removing the hydroxyl group from the primary, secondary or tertiary alcohol.
  • the alcohol of the general formula (2) is a known compound and is not particularly limited, but lower alcohol having a cycloalkyl group having 3 to 8 carbon atoms such as cyclohexylmethanol or sugar having a hydroxyl group, glycolipid and Glycoprotein etc. are mentioned.
  • reaction of the compound of the general formula (1C) with the alcohol of the general formula (2) is carried out, for example, in a suitable solvent such as diethyl ether.
  • a suitable solvent such as diethyl ether.
  • solvents are preferably anhydrous solvents.
  • the proportion of the compound (1C) to the alcohol (2) used is usually 0.5 to 2 moles, preferably 1 to 1.2 moles of alcohol (2) per 1 mole of compound (1C). That's good.
  • an activating agent present in the reaction system.
  • the activating agent include combinations of dicyclopentadienyl zirconium dichloride (Cp 2 ZrCl 2 ) / silver (I) perchlorate (AgClO 4 ), and the like.
  • the amount of the activating agent used is usually about 1 to 5 moles, preferably about 1 to 3 moles of Cp 2 ZrCl 2 and preferably about 1 to 7 moles of AgClO 4 per 1 mole of the compound (1C). Is about 1 to 5 moles.
  • molecular sieves e.g, molecular sieves 4A
  • the presence of molecular sieves further improves the yield of the compound (3) which is the target compound.
  • This reaction usually proceeds suitably at about -90 to 0 ° C, preferably at -80 to -40 ° C.
  • the ⁇ -O-pyranoside obtained by the above reaction is separated from the reaction mixture by, for example, ordinary separation means and purified.
  • separation and purification means those described above can be mentioned.
  • the various ⁇ -O-pyranosides obtained by the above reaction can be used, for example, in important applications such as the synthesis of saccharides, glycolipids and glycoproteins.
  • the 3,6-O-bridged pyranose compound represented by the general formula (1) of the present invention or an enantiomer thereof can be suitably used as an ⁇ -O-glycosylation agent.
  • the invention will be further clarified by the following examples.
  • the reaction was carried out under an atmosphere of nitrogen or argon if necessary.
  • purification by silica gel chromatography used silica gel 60 N (granular, neutral, 40-50 ⁇ m) or silica gel 60 N (granular, neutral, 63-210 ⁇ m) (both manufactured by Kanto Chemical Co., Ltd.).
  • IR JASCO FT / IR-4200 (ATR; total internal reflection method)
  • Specific rotation JASCO DIP-370 (100 mm cell, wavelength: 589 nm, solvent: CHCl 3 )
  • NMR JEOL JNM-ECX-400 ( 1 H: 400 MHz, 13 C: 100 MHz)
  • the number of hydrogen atoms bonded to the carbon is measured by the DEPT method, and is indicated by C (s), CH (d), CH 2 (t), and CH 3 (q), respectively.
  • the HRMS JEOL JMS-700 (ionization method: ESI).
  • Ph represents a phenyl group.
  • the extract solution is dried over anhydrous magnesium sulfate and filtered through a cotton plug, and then the solvent is distilled off, and phenyl 3,6-O- [bibenzyl-2,2'-bis (methylene)]-1-thio-D- A crude product of glucopyranoside was obtained.
  • the physicochemical properties of each are as follows.
  • Ph is the same as above.
  • Bn represents a benzyl group.
  • phenyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-1-thio-D-glucopyranoside ⁇ -isomer and ⁇ -isomer are in Example 2, each separated phenyl 3,6-O- [bibenzyl-2,2'-bis (methylene)]-1-thio- ⁇ -D-glucopyranoside or phenyl 3,6-O- [bibenzyl-2 It was obtained by using 2,2'-bis (methylene)]-1-thio- ⁇ -D-glucopyranoside as a raw material.
  • the physicochemical properties of each are as follows.
  • 1 H-NMR 400 MHz, CDCl 3 ): ⁇ ppm 7.55-7.29 (m, 13 H), 7.25-7. 13 (m, 10 H), 5.
  • the resulting mixture was extracted with ethyl acetate (10 mL ⁇ 2), the extracts were combined, and this was washed with saturated brine (1 ⁇ 5 mL). Further, the extract solution was dried over anhydrous magnesium sulfate and filtered through a cotton plug, and then the solvent was distilled off to obtain a crude product.
  • the resulting mixture was diluted with diethyl ether (20 mL) and then filtered through cotton and celite to remove molecular sieves from the mixture. After separating the organic layer, the organic layer was washed with saturated brine (5 mL ⁇ 1). The organic layer was further dried over anhydrous magnesium sulfate, filtered through a cotton plug, and the solvent was evaporated to give a crude product as a mixture of anomeric isomers.
  • Examples 6-8 The reaction was carried out in the same manner as in Example 5 except that the reaction temperature and the reaction time were as shown in Table 1 below.
  • the yield and ratio of anomers of the obtained cyclohexylmethyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-D-glucopyranoside are shown in the following table. Shown in 1.
  • the yield and ratio of anomeric isomers in Examples 6 to 8 were determined from 1 H-NMR (solvent: CDCl 3 , standard substance: acetone, and ⁇ / ⁇ is the ratio of the integrated value of anomeric hydrogen peak).
  • Examples 10 to 18 The reaction was carried out in the same manner as in Example 5 except that the reaction temperature was 25 ° C., the reaction solvent and the reaction time were as shown in Table 2 below. Yield and anomer of cyclohexylmethyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-D-glucopyranoside determined by the same method as in Example 6. The proportions of the isomers are shown in Table 2 below. In Table 2, Et is ethyl, i-Pr is isopropyl, t-Bu is tertiary butyl, THF is tetrahydrofuran, and CPME is cyclopentyl methyl ether.
  • Example 3 The reaction was performed in the same manner as in Example 3 except that the alcohol described in Table 3 below was used instead of cyclohexylmethanol.
  • the yield of the resulting compound and the ratio of anomers are shown in Table 3 below.
  • Examples 20 to 23 are the yields determined using 1 H-NMR (solvent: CDCl 3 , standard substance: acetone), and
  • Example 24 is the isolated yield.
  • the resulting compound is subjected to catalytic hydrogenation to deprotect benzyl groups such as 2 and 4 and bibenzyl 2,2'-bismethylene groups at 3 and 6 and then using each alcohol with acetic anhydride and pyridine. Acetylation led to known compounds, and ⁇ / ⁇ isomers were identified.
  • N-bromosuccinimide N-bromosuccinimide
  • cyclohexylmethanol 3.7 mg, 33 ⁇ mol
  • the reaction mixture was then quenched with 10% aqueous sodium sulfite solution (10 mL) and filtered through cotton and celite to remove molecular sieves 4A.
  • the filtrate was extracted with ethyl acetate (20 mL ⁇ 2), the extracts were combined, and this was washed with 10% aqueous sodium sulfite solution (20 mL) and saturated brine (20 mL).
  • the washed extract was dried over anhydrous magnesium sulfate, filtered through a cotton plug, and the solvent was evaporated to give a crude product.
  • the yield and ratio of anomeric isomers of cyclohexylmethyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-D-glucopyranoside in the crude product are The yield is 71% as determined from 1 H-NMR (solvent: CDCl 3 , standard substance: acetone, ⁇ / ⁇ is the ratio of the integrated value of the OCH 2 hydrogen peaks of the cyclohexylmethoxy group), and the yield is 71%.
  • Example 26 ⁇ -Glycosylation reaction of phenyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-1-thio- ⁇ -D-glucopyranoside
  • Molecular sieves 4A (33.1 mg)
  • phenyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-1-thio- ⁇ -D-glucopyranoside 7.4 mg
  • a mixture of 11 ⁇ mol) and ethyl acetate (0.6 mL) was stirred at 0 ° C. for 5 minutes.
  • N-bromosuccinimide N-bromosuccinimide (NBS; 2.4 mg, 13 ⁇ mol) and cyclohexylmethanol (1.5 mg, 13 ⁇ mol) at 0 ° C. and stirred at 0 ° C. for 1 hour.
  • the reaction mixture was then quenched with 10% aqueous sodium sulfite solution (10 mL) and filtered through cotton and celite to remove molecular sieves 4A.
  • the filtrate was extracted with ethyl acetate (10 mL ⁇ 3), the extracts were combined, and this was washed with 10% aqueous sodium sulfite solution (10 mL) and saturated brine (10 mL).
  • the washed extract was dried over anhydrous magnesium sulfate, filtered through a cotton plug, and the solvent was evaporated to give a crude product.
  • the yield and ratio of anomeric isomers of cyclohexylmethyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-D-glucopyranoside in the crude product are The yield is 67% as determined from 1 H-NMR (solvent: CDCl 3 , standard substance: acetone, and ⁇ / ⁇ is the ratio of the integrated value of OCH 2 hydrogen peaks of cyclohexylmethoxy group), and the yield is 67%.
  • Activated molecular sieves 4A (85.3 mg), phenyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-1-thio- ⁇ -D- Glucopyranoside (18.4 mg, 27.9 ⁇ mol) and (+)-dihydrocholesterol (13.5 mg, 34.7 ⁇ mol) were added to ethyl acetate (1.4 mL) and stirred at 0 ° C. for 5 minutes. While cooling to 0 ° C., N-bromosuccinimide (NBS, 5.8 mg, 33 ⁇ mol) was added to the reaction solution, and the mixture was stirred for 2 hours while maintaining the temperature.
  • N-bromosuccinimide N-bromosuccinimide
  • the reaction was quenched by addition of 10% aqueous sodium sulfite solution.
  • the resulting reaction mixture was filtered through cotton and celite to remove molecular sieves 4A.
  • the filtrate was extracted with ethyl acetate (20 mL ⁇ 2), and the extracts were combined and washed with 10% aqueous sodium sulfite solution (20 mL) and saturated brine (20 mL). Further, the extract solution was dried over anhydrous magnesium sulfate and filtered through a cotton plug, and then the solvent was distilled off to obtain a crude product.
  • -O-benzyl-3,6-O- [bibenzylbis-2,2 '-(methylene)]-D-glucopyranoside (23.6 mg, 25.2 ⁇ mol, yield: 90%) was isolated as a colorless syrup .
  • the reaction mixture was filtered through cotton, Celite, SiO 2 and Celite to remove Cs 2 CO 3 from the reaction mixture.
  • the filtrate is concentrated to give 2,4-di-O- [bibenzylbis-2,2 '-(methylene)]-D-glucopyranosyl-trichloroacetimidate (128 mg, quantitative, 45: 55) as a crude product A mixture of diastereomers was obtained.
  • the resulting crude product was used in Example 29 without further purification.
  • Examples 30 to 39 A reaction was carried out in the same manner as in Example 29 except that TiCl 4 and molecular sieves 4A were replaced by the activators listed in Table 4 below, and the reaction temperature and reaction time were replaced by the ones listed in the following table. .
  • TMS is trimethylsilyl
  • TES is triethylsilyl
  • TBS is tributylsilyl
  • TIPS is triisopropylsilyl
  • Tf is trifluoromethylsulfonyl
  • MS stands for molecular sieves, and other abbreviations are as defined above. In Example 39, only molecular sieves 4A was used as an activating agent.
  • Examples 40 to 44 A reaction was carried out in the same manner as in Example 29 except that the reaction temperature was -10 ° C, TiCl 4 was TBSOTf, the reaction solvent and the reaction time were as described in Table 5 below.
  • the reaction was quenched by the addition of saturated aqueous NaHCO 3 (5 mL) to the reaction mixture. After further addition of diethyl ether (20 mL), the mixture was filtered through cotton and celite to remove molecular sieves 4A. Ethyl acetate (30 mL) was added to the filtrate, extraction was performed, and the organic layer was washed successively with water (5 mL) and saturated brine (5 mL). The organic layer was further dried over anhydrous magnesium sulfate, filtered through a cotton plug, and the solvent was evaporated to give a crude product as a mixture of anomeric isomers.

Abstract

The present invention addresses the problem of providing a highly-versatile method for easily producing α-O-pyranosides with a high degree of selectivity without establishing severe reaction conditions, and a pyranose donor used in said method. The 3,6-O-crosslinked pyranose compound according to the present invention is a compound represented by general formula (1) (therein, R1 represents a -SR6 group (R6 being an optionally-substituted lower alkyl group or the like) or the like, R2 represents a hydrogen atom or the like, R3 represents a hydrogen atom or the like, R4 and R5 each represent an optionally-halogenated lower alkyl group or the like, n represents an integer of 1-4, and p and q each represent an integer of 0-4), or an enantiomer thereof.

Description

3,6-O-架橋ピラノース化合物及びα-O-ピラノシドの製造方法Process for producing 3,6-O-bridged pyranose compound and α-O-pyranoside
 本発明は、3,6-O-架橋ピラノース化合物及びα-O-ピラノシドの製造方法に関する。 The present invention relates to a process for producing 3,6-O-bridged pyranose compounds and α-O-pyranoside.
 天然に存在するステロイド等のアルコールにピラノース(糖)がグリコシル結合した化合物(ピラノシド)には、α-O-ピラノシド及びβ-O-ピラノシドの2種の異性体が存在する。ピラノシドは、種々の生理活性を有する重要な化合物が知られており、これらの異性体を選択的に製造する方法が期待されている。グルコシル化法としては、酵素を利用した方法及び一般的な化学合成を利用した方法が知られている。 There are two isomers of α-O-pyranoside and β-O-pyranoside in a compound (pyranoside) in which pyranose (sugar) is glycosyl bonded to an alcohol such as naturally occurring steroid. For pyranosides, important compounds having various physiological activities are known, and methods for selectively producing these isomers are expected. As glucosylation methods, methods using enzymes and methods using general chemical synthesis are known.
 しかしながら、酵素を利用した方法では酵素の基質特異性のため限られた糖鎖しか合成できず、工業的な製造方法としては適していない。また、一般的な化学合成を利用した方法では、α-O-ピラノシドとβ-O-ピラノシドとの混合物が得られるに止まり、α-O-ピラノシドを高選択的に製造することは困難である。 However, in the method using an enzyme, only limited sugar chains can be synthesized due to the substrate specificity of the enzyme, which is not suitable as an industrial production method. In addition, it is difficult to produce α-O-pyranoside in a highly selective manner only by obtaining a mixture of α-O-pyranoside and β-O-pyranoside by a method using general chemical synthesis. .
 高α選択的な化学合成によるグリコシル化法として、ピラノースの2位の保護基として隣接基関与が起きないベンジル基を用いる化学的製造法が示されている(非特許文献1)。しかしながら、この方法は、2位の保護基としてアシル基を用いた場合にβ選択的な隣接基関与が起きることを防ぐ方法であり、そのためにα選択的に反応を進行させるために厳格な反応条件を設定する必要がある。 As a glycosylation method by highly alpha selective chemical synthesis, a chemical preparation method using a benzyl group in which adjacent group participation does not occur as a protecting group at the 2-position of pyranose is shown (Non-patent Document 1). However, this method is a method to prevent the occurrence of β-selective adjacent group participation when an acyl group is used as the 2-position protecting group, and therefore, a strict reaction is required to cause the reaction to proceed α-selectively. It is necessary to set conditions.
 また、α選択的な隣接基関与を利用する化学的製造法も提案されている(非特許文献2及び3)。しかしながら、これらの方法ではピラノースの2位の保護基として、窒素原子を有するアルキル基又はヘテロアリールアルキル基を導入する必要がある。 In addition, chemical production methods have also been proposed that make use of α-selective neighboring group participation (Non-patent Documents 2 and 3). However, in these methods, it is necessary to introduce an alkyl group having a nitrogen atom or a heteroarylalkyl group as a protecting group at the 2-position of pyranose.
 さらに、ピラノースと1,4-オキサチアン環とのビシクロ化合物を用いた方法も提案されている(非特許文献4)。しかしながら、この方法においても1位及び2位の保護基に制限がある。 Furthermore, a method using a bicyclo compound of pyranose and 1,4-oxathiane ring has also been proposed (Non-patent Document 4). However, this method also has limitations in the 1- and 2-position protecting groups.
 従って、十分な高α選択性並びに、反応条件及び適用できる基質の汎用性という観点から、決定的な高α選択的な化学合成方法が未だ見出されていないのが現状である。 Therefore, in view of sufficient high α selectivity and the versatility of the reaction conditions and applicable substrates, it is the present situation that a critical high α selective chemical synthesis method has not been found yet.
 本発明の課題は、汎用性が高く、厳格な反応条件を設定しなくても、α-O-ピラノシドを高い選択率で簡便に製造するための方法、及び該方法に用いるピラノース供与体を提供することである。 The object of the present invention is to provide a method for easily producing α-O-pyranoside with high selectivity and a pyranose donor used for the method, without setting highly versatile and strict reaction conditions. It is to be.
 本発明者は、上記課題を解決するために鋭意研究を重ねた結果、下記一般式(1)で表される3,6-O-架橋ピラノース化合物を合成することに成功し、該3,6-O-架橋ピラノース化合物が所望のα-O-グリコシル化剤になり得ることを見出した。本発明は、このような知見に基づき完成されたものである。 As a result of intensive studies to solve the above problems, the present inventors succeeded in synthesizing a 3,6-O-bridged pyranose compound represented by the following general formula (1). It has been found that the -O-bridged pyranose compound can be the desired α-O-glycosylation agent. The present invention has been completed based on such findings.
 本発明は、下記項1及び2に示す3,6-O-架橋ピラノース化合物及び項3に示すα-O-ピラノシドの製造方法を提供する。 The present invention provides a method for producing 3,6-O-bridged pyranose compounds shown in the following items 1 and 2 and α-O-pyranoside shown in the items 3.
 項1.一般式(1) Item 1. General formula (1)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[式中、Rは-SR基(Rは置換基を有していてもよい低級アルキル基又は芳香環上に置換基を有していてもよいアリール基を示す)、-OR基(Rは水素原子、水酸基の保護基又は結合する酸素原子とともに脱離基として作用する基を示す)又はハロゲン原子を示す。
は、水素原子又は水酸基の保護基を示す。
は、水素原子又は水酸基の保護基を示す。
及びRは同一又は異なって、ハロゲン原子で置換されていてもよい低級アルキル基、ハロゲン原子で置換されていてもよい低級アルコキシ基、ニトロ基又はハロゲン原子を示す。
nは1~4の整数を示し、p及びqは各々0~4の整数を示す。
p個のRは同一であっても異なっていてもよく、q個のRも同一であっても異なっていてもよい。
p個の互いに隣接するRは互いに結合してベンゼン環を形成してもよく、q個の互いに隣接するRは互いに結合してベンゼン環を形成してもよい。]
で表される3,6-O-架橋ピラノース化合物、又はその鏡像異性体。
項2.前記一般式(1)中のRがハロゲン原子である、前記項1に記載の3,6-O-架橋ピラノース化合物、又はその鏡像異性体。
項3.前記項2に記載の3,6-O-架橋ピラノース化合物を一般式(2)
  ROH    (2)
[式中、Rは、第1級、第2級又は第3級アルコールの残基を示す。]
で表されるアルコール化合物と反応させて、一般式(3)
[Wherein, R 1 represents a —SR 6 group (R 6 represents a lower alkyl group which may have a substituent or an aryl group which may have a substituent on the aromatic ring), —OR 7] Group (R 7 represents a hydrogen atom, a protecting group of a hydroxyl group or a group acting as a leaving group with a bonded oxygen atom) or a halogen atom.
R 2 represents a hydrogen atom or a hydroxyl protective group.
R 3 represents a hydrogen atom or a hydroxyl protective group.
R 4 and R 5 are the same or different and each represents a lower alkyl group which may be substituted by a halogen atom, a lower alkoxy group which may be substituted by a halogen atom, a nitro group or a halogen atom.
n represents an integer of 1 to 4; p and q each represent an integer of 0 to 4;
The p R 4 s may be the same or different, and the q R 5 s may be the same or different.
The p adjacent R 4 groups may be bonded to each other to form a benzene ring, and the q adjacent R 5 groups may be bonded to each other to form a benzene ring. ]
The 3,6-O-bridged pyranose compound represented by, or its enantiomer.
Item 2. Item 3. The 3,6-O-bridged pyranose compound according to Item 1, or an enantiomer thereof, wherein R 1 in the general formula (1) is a halogen atom.
Item 3. The 3,6-O-bridged pyranose compound according to item 2 is a compound represented by the general formula (2)
R 8 OH (2)
[Wherein, R 8 represents a residue of a primary, secondary or tertiary alcohol. ]
By reacting with an alcohol compound represented by the general formula (3)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[式中、R、R、R、R、R、n、p及びqは前記に同じ。]
で表されるα-O-ピラノシド又はその鏡像異性体を製造する方法。
[Wherein, R 2 , R 3 , R 4 , R 5 , R 8 , n, p and q are as defined above. ]
A method of producing α-O-pyranoside represented by or its enantiomer.
 3,6-O-架橋ピラノース化合物
 本発明の3,6-O-架橋ピラノース化合物は、下記一般式(1)で表される。
3,6-O-Bridged Pyranose Compound The 3,6-O-bridged pyranose compound of the present invention is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[式中、R、R、R、R、R、n、p及びqは前記に同じ。]
 本明細書において、低級アルキル基とは、炭素数1~6のアルキル基を、好ましくは炭素数1~4のアルキル基を示し、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、neo-ペンチル基、n-ヘキシル基、iso-ヘキシル基、3-メチルペンチル基等を挙げることができる。
Wherein, R 1, R 2, R 3, R 4, R 5, n, p and q are as defined above. ]
In the present specification, the lower alkyl group means an alkyl group having 1 to 6 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms, and examples thereof include methyl, ethyl, n-propyl and iso-propyl. Group, n-butyl group, iso-butyl group, tert-butyl group, sec-butyl group, n-pentyl group, neo-pentyl group, n-hexyl group, iso-hexyl group, 3-methylpentyl group, etc. be able to.
 低級アルコキシ基とは、炭素数1~6のアルコキシ基を、好ましくは炭素数1~4のアルコキシ基を示し、例えば、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、iso-ブトキシ基、tert-ブトキシ基、sec-ブトキシ基、n-ペントキシ基、neo-ペントキシ基、n-ヘキシルオキシ基、iso-ヘキシルオキシ基、3-メチルペントキシ基等を挙げることができる。 The lower alkoxy group is an alkoxy group having 1 to 6 carbon atoms, preferably an alkoxy group having 1 to 4 carbon atoms, and examples thereof include a methoxy group, an ethoxy group, an n-propoxy group, an iso-propoxy group and an n-butoxy group. Groups, iso-butoxy group, tert-butoxy group, sec-butoxy group, n-pentoxy group, neo-pentoxy group, n-hexyloxy group, iso-hexyloxy group, 3-methylpentoxy group, etc. it can.
 低級アルカノイル基とは、炭素数1~6のアルカノイル基を、好ましくは炭素数1~4のアルカノイル基を示し、例えば、アセチル基、プロパノイル基、ブタノイル基、2-メチルプロパノイル基、ペンタノイル基、2-メチルブタノイル基、3-メチルブタノイル基、tert-ブチルカルボニル基、ヘキサノイル基等が挙げられる。 The lower alkanoyl group is an alkanoyl group having 1 to 6 carbon atoms, preferably an alkanoyl group having 1 to 4 carbon atoms, and examples thereof include an acetyl group, a propanoyl group, a butanoyl group, a 2-methylpropanoyl group and a pentanoyl group. Examples thereof include 2-methylbutanoyl group, 3-methylbutanoyl group, tert-butylcarbonyl group, hexanoyl group and the like.
 アリール基としては、例えば、フェニル基、ナフチル基等が挙げられる。 As an aryl group, a phenyl group, a naphthyl group, etc. are mentioned, for example.
 アリールオキシ基としては、例えば、フェノキシ基、ナフチルオキシ基等が挙げられる。 As an aryloxy group, a phenoxy group, a naphthyloxy group, etc. are mentioned, for example.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 The halogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
 水酸基の保護基としては、今日までに広く知られている既存の水酸基の保護基であればよく、例えば、アリル基;メタリル基;置換基としてハロゲン原子、低級アルコキシ基及びアリールオキシ基からなる群より選ばれる少なくとも一種の基を1~5個有していてもよい低級アルキル基;置換基としてハロゲン原子、低級アルキル基及び低級アルコキシ基からなる群より選ばれる少なくとも一種の基を芳香環上に1~3個有していてもよいフェニル基;置換基としてハロゲン原子、低級アルキル基、低級アルコキシ基及びニトロ基からなる群より選ばれる少なくとも一種の基を芳香環上に1~3個有していてもよいベンジル基;置換基としてハロゲン原子、低級アルキル基及び低級アルコキシ基からなる群より選ばれる少なくとも一種の基を芳香環上に1~3個有していてもよいトリフェニルメチル基;ホルミル基;置換基としてハロゲン原子、低級アルコキシ基、アリール基及びアリールオキシ基からなる群より選ばれる少なくとも一種の基を1~5個有していてもよい低級アルカノイル基;置換基としてハロゲン原子、低級アルキル基及び低級アルコキシ基からなる群より選ばれる少なくとも一種の基を芳香環上に1~3個有していてもよいベンゾイル基;ケイ素原子上に低級アルキル基及びアリール基からなる群から選ばれる少なくとも一種の基が3個置換したシリル基等が挙げられる。具体的には、アリル基、メタリル基、メチル基、エチル基、tert-ブチル基、メトキシメチル基、4-メトキシフェニル基、ベンジル基、ジメチルベンジル基、4-メトキシベンジル基、2-ニトロベンジル基、トリフェニルメチル基、ホルミル基、アセチル基、プロピオニル基、tert-ブチルカルボニル基、ベンゾイル基、トリ低級アルキルシリル基、tert-ブチルジフェニルシリル基等が挙げられる。これらの保護基の中でも、アリル基、ベンジル基、ジメチルベンジル基、4-メトキシベンジル基、トリ低級アルキルシリル基が好ましい。 The protective group for hydroxyl group may be a conventional protective group for hydroxyl group widely known to date, for example, allyl group; methallyl group; a group comprising a halogen atom as a substituent, a lower alkoxy group and an aryloxy group Or lower alkyl group optionally having 1 to 5 at least one group selected from: at least one group selected from the group consisting of halogen atoms, lower alkyl groups and lower alkoxy groups as substituents, on an aromatic ring 1 to 3 phenyl groups which may be contained; 1 to 3 at least one group selected from the group consisting of halogen atoms, lower alkyl groups, lower alkoxy groups and nitro groups as substituents on aromatic rings Benzyl group which may be substituted; at least one group selected from the group consisting of halogen atoms, lower alkyl groups and lower alkoxy groups as substituents Triphenylmethyl group which may have 1 to 3 on an aromatic ring; formyl group; at least one group selected from the group consisting of halogen atoms, lower alkoxy groups, aryl groups and aryloxy groups as substituents A lower alkanoyl group which may have up to 5; at least one group selected from the group consisting of a halogen atom, a lower alkyl group and a lower alkoxy group as a substituent on the aromatic ring A benzoyl group; a silyl group in which at least one group selected from the group consisting of a lower alkyl group and an aryl group is substituted on the silicon atom by 3 groups, and the like. Specifically, allyl group, methallyl group, methyl group, ethyl group, tert-butyl group, methoxymethyl group, 4-methoxyphenyl group, benzyl group, dimethylbenzyl group, 4-methoxybenzyl group, 2-nitrobenzyl group And triphenylmethyl group, formyl group, acetyl group, propionyl group, tert-butylcarbonyl group, benzoyl group, tri-lower alkylsilyl group, tert-butyldiphenylsilyl group and the like. Among these protecting groups, allyl, benzyl, dimethylbenzyl, 4-methoxybenzyl and tri-lower alkylsilyl are preferable.
 Rが低級アルキル基を示す場合、該アルキル上の置換基としては、低級アルコキシ基、アリール基、ハロゲン原子等が挙げられ、より具体的には、メトキシ基、エトキシ基、フェニル基、ハロゲン原子等が挙げられる。 When R 6 represents a lower alkyl group, examples of the substituent on the alkyl include a lower alkoxy group, an aryl group, a halogen atom and the like, and more specifically, a methoxy group, an ethoxy group, a phenyl group, a halogen atom Etc.
 Rがアリール基を示す場合、該芳香環上の置換基としては、例えば、低級アルキル基、低級アルコキシ基、ハロゲン原子等が挙げられ、より具体的には、メチル基、エチル基、メトキシ基、エトキシ基、ハロゲン原子等が挙げられる。 When R 6 represents an aryl group, examples of the substituent on the aromatic ring include a lower alkyl group, a lower alkoxy group, a halogen atom and the like, and more specifically, a methyl group, an ethyl group, a methoxy group , An ethoxy group, a halogen atom and the like.
 Rで示される、結合する酸素原子とともに脱離基として作用する基としては、今日までに広く知られている既存の基であればよく、イミド基;ハロゲン原子を1~5個有していてもよい低級アルキルスルホニル基;置換基としてハロゲン原子、低級アルキル基、低級アルコキシ基及びニトロ基からなる群より選ばれる少なくとも一種の基を芳香環上に1~3個有していてもよいベンゼンスルホニル基等が挙げられる。具体的には、トリクロロアセトイミド基、4-トリフルオロメチルベンジルチオ-N-(4-トリフルオロメチルフェニル)ホルムイミド基、メタンスルホニル基、トリフルオロメタンスルホニル基、4-トルエンスルホニル基、2-ニトロベンゼンスルホニル基等が挙げられる。 The group represented by R 7 which acts as a leaving group together with the oxygen atom to be bound may be an existing group which is widely known to date, and has an imide group; 1 to 5 halogen atoms Lower alkylsulfonyl group which may be substituted; benzene which may have on the aromatic ring at least one group selected from the group consisting of halogen atoms, lower alkyl groups, lower alkoxy groups and nitro groups as substituents A sulfonyl group etc. are mentioned. Specifically, trichloroacetoimido group, 4-trifluoromethylbenzylthio-N- (4-trifluoromethylphenyl) formimido group, methanesulfonyl group, trifluoromethanesulfonyl group, 4-toluenesulfonyl group, 2-nitrobenzene sulfonyl group And the like.
 一般式(1)において、p個の互いに隣接するRは互いに結合してベンゼン環を形成するとは、例えば、互いに隣接する2個のRが互いに結合してRが結合しているベンゼン環と共にナフタレン環を形成する場合が挙げられる。 In the general formula (1), p adjacent R 4 's are bonded to each other to form a benzene ring, for example, benzene in which two adjacent R 4 ' s are bonded to each other and R 4 is bonded The case where a naphthalene ring is formed with a ring is mentioned.
 一般式(1)において、q個の互いに隣接するRは互いに結合してベンゼン環を形成するとは、例えば、互いに隣接する2個のRが互いに結合してRが結合しているベンゼン環と共にナフタレン環を形成する場合が挙げられる。 In the general formula (1), when q adjacent R 5 's are bonded to each other to form a benzene ring, for example, benzene in which two adjacent R 5 ' s are bonded to each other and R 5 is bonded The case where a naphthalene ring is formed with a ring is mentioned.
 一般式(1)におけるRは、水素原子又は水酸基の保護基である。ここで水酸基の保護基とは、上述した水酸基の保護基と同様のものが用いられる。 R 2 in the general formula (1) is a hydrogen atom or a hydroxyl protecting group. As the protective group for hydroxyl group, those similar to the protective group for hydroxyl group described above are used.
 一般式(1)におけるRは、水素原子又は水酸基の保護基である。ここで水酸基の保護基とは、上述した水酸基の保護基と同様のものが用いられる。 R 3 in the general formula (1) is a hydrogen atom or a hydroxyl protecting group. As the protective group for hydroxyl group, those similar to the protective group for hydroxyl group described above are used.
 一般式(1)におけるnの数値は1~4の整数であるが、1~3の整数が好ましく、2~3の整数がさらに好ましく、2が特に好ましい。 The value of n in the general formula (1) is an integer of 1 to 4, preferably an integer of 1 to 3, more preferably an integer of 2 to 3, and particularly preferably 2.
 一般式(1)におけるp及びqの値はそれぞれ0~4の整数であるが、p及びqは共に0~2の整数が好ましく、0又は1が特に好ましい。 The values of p and q in the general formula (1) are each an integer of 0 to 4, but both p and q are preferably an integer of 0 to 2, and particularly preferably 0 or 1.
 一般式(1)で表される3,6-O-架橋ピラノース化合物は、その架橋部における2個の芳香環がアルキレン基を介して結合している化学構造を有している。そのため、当該3,6-O-架橋ピラノース化合物の架橋部は構造上適度な自由度を有しているため、架橋部をピラノースから外す反応が進行しやすい利点を有している。 The 3,6-O-bridged pyranose compound represented by the general formula (1) has a chemical structure in which two aromatic rings in the bridge portion thereof are linked via an alkylene group. Therefore, since the cross-linked part of the 3,6-O-crosslinked pyranose compound has an appropriate degree of freedom in structure, it has an advantage that the reaction of removing the cross-linked part from pyranose tends to progress.
 一般式(1)で表される3,6-O-架橋ピラノース化合物の鏡像異性体とは、下記一般式(1’)で表される3,6-O-架橋ピラノース化合物を意味する。 The enantiomer of the 3,6-O-bridged pyranose compound represented by the general formula (1) means a 3,6-O-bridged pyranose compound represented by the following general formula (1 ').
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[式中、R、R、R、R、R、n、p及びqは前記に同じ。]
 一般式(1)で表される3,6-O-架橋ピラノース化合物は、その立体配座を考慮すると下記式のように表すこともできる。
Wherein, R 1, R 2, R 3, R 4, R 5, n, p and q are as defined above. ]
The 3,6-O-bridged pyranose compound represented by the general formula (1) can also be represented as the following formula in consideration of its conformation.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[式中、R、R、R、R、R、n、p及びqは前記に同じ。]
 一般式(1)で表される3,6-O-架橋ピラノース化合物には、下記一般式(1A)、(1B)及び(1C)で表される化合物が包含される。
Wherein, R 1, R 2, R 3, R 4, R 5, n, p and q are as defined above. ]
The 3,6-O-bridged pyranose compounds represented by the general formula (1) include compounds represented by the following general formulas (1A), (1B) and (1C).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[式中、Xはハロゲン原子を示す。R、R、R、R、R、R、n、p及びqは前記に同じ。]
 これらの化合物は、その立体配座を考慮すると下記式のように表すこともできる。
[Wherein, X represents a halogen atom. R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , n, p and q are as defined above. ]
These compounds can also be represented as in the following formula in consideration of their conformations.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[式中、R、R、R、R、R、R、X、n、p及びqは前記に同じ。]
 また、一般式(1)で表される3,6-O-架橋ピラノース化合物のうち、好ましい化合物は、下記一般式(1a)、(1b)、(1c)、(1d)及び(1e)で表される化合物である。
[Wherein, R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , X, n, p and q are as defined above. ]
Among the 3,6-O-bridged pyranose compounds represented by the general formula (1), preferred compounds are those represented by the following general formulas (1a), (1b), (1c), (1d) and (1e) It is a compound represented.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[式中、R、R、R、R、R及びnは前記に同じ。]
 本発明のR及びRが共に水素原子を示す一般式(1A)の3,6-O-架橋ピラノース化合物(一般式(1A-1)の化合物)並びにR及びRが共に水酸基の保護基を示す一般式(1A)の3,6-O-架橋ピラノース化合物(一般式(1A-2)の化合物)は、例えば、下記反応式-1に示すようにして製造される。
[Wherein, R 1 , R 2 , R 3 , R 4 , R 5 and n are as defined above. ]
3,6-O-bridged pyranose compounds of the general formula (1A) (compounds of the general formula (1A-1)) in which R 2 and R 3 of the present invention are both hydrogen atoms and R 2 and R 3 are both hydroxyl groups The 3,6-O-bridged pyranose compound (compound of the general formula (1A-2)) of the general formula (1A) showing a protective group is produced, for example, as shown in the following reaction formula-1.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[式中、R、R、R、n、p及びqは前記に同じ。R2’及びR3’は各々水酸基の保護基を示す。X及びXは、各々ハロゲン原子を示す。]
 化合物(4)と化合物(5)との反応は、例えば、後記実施例1に示すようにトルエン及びジメチルホルムアミド(DMF)の混合溶媒等の適当な溶媒中、水素化ナトリウム等の塩基性化合物の存在下で行われる。該反応は、好ましくは化合物(4)の溶液と化合物(5)の溶液とをそれぞれ適当な速度で、塩基性化合物の溶液又は懸濁液に滴下することにより行われる。この反応は、70℃~溶媒の沸点付近の温度で10~20時間撹拌するのがよい。
[Wherein, R 4 , R 5 , R 6 , n, p and q are as defined above. R 2 ′ and R 3 ′ each represent a hydroxyl protecting group. X 1 and X 2 each represent a halogen atom. ]
The reaction of the compound (4) with the compound (5) can be carried out, for example, by using a basic compound such as sodium hydride in a suitable solvent such as a mixed solvent of toluene and dimethylformamide (DMF) as shown in Example 1 later. It takes place in the presence. The reaction is preferably carried out by dropping the solution of compound (4) and the solution of compound (5) at a suitable rate, respectively, into the solution or suspension of the basic compound. The reaction should be stirred for 10 to 20 hours at a temperature between 70 ° C. and the boiling point of the solvent.
 この反応において、出発原料として用いられる化合物(4)は、公知の化合物であり、化合物(5)は公知の化合物であるか又は公知の化合物から容易に製造できる化合物である。溶媒にトルエンとDMFの混合溶媒を使用する場合のトルエン及びDMFの混合割合は、例えば体積比でトルエン1Lに対してDMF0.1~1Lを混合した溶媒を使用することができる。該反応では、化合物(4)1モルに対して、化合物(5)を1~3モル使用するのが好ましい。該反応では、化合物(4)1モルに対して、塩基性化合物を2~10モル使用するのが好ましい。 In this reaction, the compound (4) used as a starting material is a known compound, and the compound (5) is a known compound or a compound which can be easily produced from a known compound. When a mixed solvent of toluene and DMF is used as the solvent, the mixing ratio of toluene and DMF can be, for example, a mixed solvent of 0.1 to 1 DMF with 1 L of toluene. In the reaction, it is preferable to use 1 to 3 moles of the compound (5) per 1 mole of the compound (4). In the reaction, it is preferable to use 2 to 10 moles of the basic compound per 1 mole of the compound (4).
 化合物(6)を化合物(1A-1)に導く反応は、例えば、後記実施例1に示すように、2つの工程により行われる。この工程はジクロロメタン等の適当な溶媒中、トリフルオロメタンスルホン酸 トリメチルシリル等のルイス酸及びモレキュラーシーブスの存在下にRSH(式中、Rは前記に同じ。)と化合物(6)とを反応させる工程(A工程)及びA工程で得られる生成物とナトリウムメトキシド等の塩基性化合物とをメタノール等のアルコール溶媒中で反応させる工程(B工程)である。 The reaction for converting the compound (6) to the compound (1A-1) is carried out, for example, by two steps as shown in Example 1 described later. In this step, R 6 SH (wherein R 6 is as defined above) is reacted with compound (6) in the presence of a Lewis acid such as trifluoromethanesulfonic acid trimethylsilyl and molecular sieves in a suitable solvent such as dichloromethane. The step of reacting (step A) and the step of reacting the product obtained in step A with a basic compound such as sodium methoxide in an alcohol solvent such as methanol (step B).
 A工程の反応は、反応温度が-78~25℃で、反応時間が1~60分であることが好ましい。該前半の反応では、化合物(6)1モルに対して、RSHを0.8~1.5モル使用するのが好ましい。A工程の反応では、化合物(6)1モルに対して、ルイス酸を0.8~2モル使用するのが好ましい。 The reaction in step A preferably has a reaction temperature of −78 to 25 ° C. and a reaction time of 1 to 60 minutes. In the first half reaction, it is preferable to use 0.8 to 1.5 mol of R 6 SH relative to 1 mol of the compound (6). In the reaction of step A, it is preferable to use 0.8 to 2 moles of a Lewis acid per 1 mole of the compound (6).
 B工程の反応は、反応温度が0~65℃(さらに好ましくは室温付近)で、反応時間が5~60分であることが好ましい。該後半の反応では、使用する塩基性化合物の量は、例えば、A工程の反応で使用した化合物(6)1モルに対して、塩基性化合物を0.001~10モル使用することができる。 The reaction in step B preferably has a reaction temperature of 0 to 65 ° C. (more preferably around room temperature) and a reaction time of 5 to 60 minutes. In the latter reaction, the amount of the basic compound used can be, for example, 0.001 to 10 moles of the basic compound per 1 mole of the compound (6) used in the reaction of step A.
 化合物(1A-1)を化合物(1A-2)に導く反応は、塩基性化合物の存在下、水酸基に保護基を導入する一般的な条件で行うことができる。例えば、後記実施例2に示すように、トルエンとDMFの混合溶媒等の適当な溶媒中、水素化ナトリウム等の塩基性化合物の存在下で行うことができる。該反応は、反応温度が20~100℃で、反応時間が30~120分であることが好ましい。溶媒にトルエンとDMFの混合溶媒を使用する場合のトルエン及びDMFの混合割合は、例えば体積比でトルエン1Lに対してDMF0.2~2Lを混合した溶媒を使用することができる。該反応では、化合物(1A-1)1モルに対して、塩基性化合物を2~10モル使用することが好ましい。 The reaction for converting the compound (1A-1) to the compound (1A-2) can be carried out in the presence of a basic compound under the general conditions for introducing a protecting group to a hydroxyl group. For example, as shown in Example 2 below, it can be carried out in a suitable solvent such as a mixed solvent of toluene and DMF in the presence of a basic compound such as sodium hydride. The reaction is preferably carried out at a reaction temperature of 20 to 100 ° C. and a reaction time of 30 to 120 minutes. When a mixed solvent of toluene and DMF is used as the solvent, the mixing ratio of toluene and DMF can be, for example, a solvent in which 0.2 to 2 L of DMF is mixed with 1 L of toluene in volume ratio. In the reaction, it is preferable to use 2 to 10 moles of the basic compound per 1 mole of the compound (1A-1).
 化合物(1A-2)において、R2’及びR3’で示される水酸基の保護基が異なる場合、化合物(1A-1)を化合物(1A-2)に導く反応は2つの工程を経て、化合物(1A-2)を得ることができる。まず、第一の工程では、化合物(1A-1)とR2’(式中、R2’は前記に同じ。Xは、ハロゲン原子を示す。)とをテトラヒドロフラン等の適当な溶媒中、水素化ナトリウム等の塩基性化合物及び塩化銅(II)の存在下反応させることで、一般式(1A)においてRが水酸基の保護基、Rが水素原子を示す化合物を得ることができる。該反応は、好ましくは化合物(1A-1)及び塩基性化合物の混合溶液を撹拌したものに、塩化銅(II)を加え、その後R2’を加えることにより行われる。第二の工程では、得られた化合物を、塩基性化合物の存在下、水酸基に保護基を導入する一般的な条件により、所望の化合物(1A-2)を得ることができる。 When compound (1A-2) has a different hydroxy protecting group represented by R 2 ′ and R 3 ′ , the reaction for converting compound (1A-1) to compound (1A-2) proceeds through two steps. (1A-2) can be obtained. First, in the first step, a compound (1A-1) and R 2 ′ X 3 (wherein R 2 ′ is as defined above, and X 3 is a halogen atom) with an appropriate solvent such as tetrahydrofuran During the reaction in the presence of a basic compound such as sodium hydride and copper (II) chloride, it is possible to obtain a compound in which R 2 is a hydroxyl protecting group and R 3 is a hydrogen atom in General Formula (1A). it can. The reaction is preferably carried out by adding copper (II) chloride to a stirred mixture solution of compound (1A-1) and a basic compound, and then adding R 2 ′ X 3 . In the second step, the desired compound (1A-2) can be obtained from the compound obtained under the general conditions for introducing a protective group to a hydroxyl group in the presence of a basic compound.
 本発明のRが水素原子を示す一般式(1B)の3,6-O-架橋ピラノース化合物(一般式(1B-1)の化合物)、Rが水酸基の保護基又は結合する酸素原子とともに脱離基として作用する基を示す一般式(1B)の3,6-O-架橋ピラノース化合物(一般式(1B-2)の化合物)及び一般式(1C)の3,6-O-架橋ピラノース化合物は、例えば、下記反応式-2に示すようにして製造される。 3, 6-O-crosslinked pyranose compound of the general formula (1B) where R 7 of the present invention is a hydrogen atom (the compound of the general formula (1B-1)), R 7 together with the protecting group or bonded to an oxygen atom of the hydroxyl group 3,6-O-bridged pyranose compounds of the general formula (1B) (compounds of the general formula (1B-2)) exhibiting a group acting as a leaving group and 3,6-O-bridged pyranoses of the general formula (1C) The compound is produced, for example, as shown in the following Reaction formula-2.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[式中、R、R、R、R、R、X、n、p及びqは前記に同じ。R7’は水酸基の保護基又は結合する酸素原子とともに脱離基として作用する基を示す。]
 化合物(1A)を化合物(1B-1)に導く反応は、例えば、後記実施例3に示すように、アセトンと水の混合溶媒等の適当な溶媒中、N-ブロモスクシンイミド等のN-ハロスクシンイミドの存在下で行われる。該反応は、反応温度が-40~30℃で、反応時間が0.1~4時間であることが好ましい。溶媒にアセトンと水の混合溶媒を使用する場合のアセトン及び水の混合割合は、例えば体積比でアセトン1Lに対して水0.01~0.5Lを混合した溶媒を使用することができる。該反応では、化合物(1A)1モルに対して、N-ハロスクシンイミドを1~3モル使用することが好ましい。
[Wherein, R 2 , R 3 , R 4 , R 5 , R 6 , X, n, p and q are as defined above. R 7 ′ represents a hydroxyl-protecting group or a group which acts as a leaving group together with the bonded oxygen atom. ]
The reaction for converting the compound (1A) to the compound (1B-1) is carried out, for example, as shown in Example 3 below, in a suitable solvent such as a mixed solvent of acetone and water, N-halosuccinimide such as N-bromosuccinimide In the presence of The reaction is preferably carried out at a reaction temperature of −40 to 30 ° C. and a reaction time of 0.1 to 4 hours. When a mixed solvent of acetone and water is used as the solvent, the mixing ratio of acetone and water may be, for example, a solvent in which 0.01 to 0.5 L of water is mixed with 1 L of acetone in volume ratio. In the reaction, it is preferable to use 1 to 3 mol of N-halosuccinimide per 1 mol of compound (1A).
 化合物(1B-1)を化合物(1B-2)に導く反応は、塩基性化合物の存在下、水酸基に保護基又は結合する酸素原子とともに脱離基として作用する基を導入する一般的な条件で行われる。 The reaction for introducing the compound (1B-1) into the compound (1B-2) is carried out under the general conditions of introducing a protecting group or a group acting as a leaving group together with an oxygen atom bonded to a hydroxyl group in the presence of a basic compound. To be done.
 化合物(1B-1)を化合物(1C)に導く反応は、例えば、後記実施例4に示すように、テトラヒドロフラン等の適当な溶媒中、三フッ化ジエチルアミノ硫黄(DAST)等のハロゲン化剤の存在下で行われる。該反応は、反応温度が-20~40℃で、反応時間が1~60分であることが好ましい。該反応では、化合物(1B-1)1モルに対して、ハロゲン化剤を1~6モル使用することが好ましい。 The reaction for converting the compound (1B-1) to the compound (1C) is carried out, for example, as described in Example 4 below, in a suitable solvent such as tetrahydrofuran, the presence of a halogenating agent such as diethylaminosulfur trifluoride (DAST) It takes place below. The reaction is preferably carried out at a reaction temperature of −20 to 40 ° C. and a reaction time of 1 to 60 minutes. In the reaction, it is preferable to use 1 to 6 moles of a halogenating agent relative to 1 mole of a compound (1B-1).
 一般式(1’)で表される化合物についても、上記各反応式において、対応する鏡像異性体を出発原料とすること以外は同様の反応を行うことで製造することができる。 The compounds represented by the general formula (1 ') can also be produced by carrying out the same reaction except that the corresponding enantiomer is used as the starting material in each of the above reaction formulas.
 上記反応により得られる一般式(1)で表される化合物は、通常の分離手段により反応混合物より分離され、精製される。このような分離及び精製手段としては、例えば蒸留法、再結晶法、カラムクロマトグラフィー、イオン交換クロマトグラフィー、ゲルクロマトグラフィー、親和クロマトグラフィー、プレパラティブ薄層クロマトグラフィー、溶媒抽出法等を挙げることができる。 The compound represented by the general formula (1) obtained by the above reaction is separated from the reaction mixture by a conventional separation means and purified. Such separation and purification means may include, for example, distillation, recrystallization, column chromatography, ion exchange chromatography, gel chromatography, affinity chromatography, preparative thin layer chromatography, solvent extraction, etc. it can.
 一般式(1)で表される化合物は、水素化の条件により架橋部をピラノースから外すことができる。該反応は、水素化触媒存在下、水素雰囲気下で行われる。該反応において、水素化触媒としては、今日まで広く知られている既存の水素化触媒を用いればよく、例えば、パラジウム/炭素、水酸化パラジウム/炭素等が挙げられる。 In the compound represented by the general formula (1), the crosslinking portion can be removed from pyranose depending on the conditions of hydrogenation. The reaction is carried out under a hydrogen atmosphere in the presence of a hydrogenation catalyst. In the reaction, as a hydrogenation catalyst, an existing hydrogenation catalyst widely known to date may be used, and examples thereof include palladium / carbon, palladium hydroxide / carbon and the like.
 本発明の一般式(1)で表される化合物は、α選択的糖供与体として、グリコシル化剤に適したものである。α選択的にグリコシド結合が形成される理由は、未だ明確になっていないが、架橋部がピラノース環の一方の面を覆う形状をしているため、β面での立体反発によりα面から選択的に反応が進行するためであると推察される。本発明の一般式(1)で表される化合物は、α選択的糖供与体として作用した後、上記のように架橋部を外す反応を一般式(3)で表されるα-O-ピラノシド化合物に対して行うことで、α-O-グリコシル結合を有する種々の糖、糖蛋白質、糖脂質等を製造することが可能である。 The compounds represented by the general formula (1) of the present invention are suitable as glycosylation agents as an alpha selective sugar donor. The reason why a glycosidic bond is formed α-selectively is not clear yet, but since the bridge portion has a shape covering one side of the pyranose ring, it is selected from the α-plane by steric repulsion on the β-plane It is presumed that the reaction proceeds in a The compound represented by the general formula (1) of the present invention acts as an α-selective sugar donor, and then the reaction for removing the cross-linked portion as described above is represented by an α-O-pyranoside represented by the general formula (3) By carrying out the compound, it is possible to produce various sugars, glycoproteins, glycolipids and the like having an α-O-glycosyl bond.
 α-O-ピラノシドの製造方法
 一般式(1C)で表される3,6-O-架橋ピラノース化合物と一般式(2)であらわされるアルコールとを反応させることにより、一般式(3)で表されるα-O-ピラノシド化合物を選択的に合成することができる(下記反応式-3)。
Method of Producing α-O-Pyranoside By reacting the 3,6-O-bridged pyranose compound represented by the general formula (1C) with the alcohol represented by the general formula (2), a table of the general formula (3) is obtained. Can be selectively synthesized (the following reaction formula -3).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[式中、R、R、R、R、R、X、n、p及びqは前記に同じ。]
 一般式(2)において、Rで示される第1級、第2級又は第3級アルコールの残基とは、第1級、第2級又は第3級アルコールから水酸基を取り除いた残りの基を意味する。
[Wherein, R 2 , R 3 , R 4 , R 5 , R 8 , X, n, p and q are as defined above. ]
In the general formula (2), the residue of the primary, secondary or tertiary alcohol represented by R 8 is the remaining group obtained by removing the hydroxyl group from the primary, secondary or tertiary alcohol. Means
 一般式(2)のアルコールは、公知の化合物であり、特に限定されるものではないが、シクロヘキシルメタノール等の炭素数3~8のシクロアルキル基を有する低級アルコール又は水酸基を有する糖、糖脂質並びに糖蛋白質等が挙げられる。 The alcohol of the general formula (2) is a known compound and is not particularly limited, but lower alcohol having a cycloalkyl group having 3 to 8 carbon atoms such as cyclohexylmethanol or sugar having a hydroxyl group, glycolipid and Glycoprotein etc. are mentioned.
 一般式(1C)の化合物と一般式(2)のアルコールとの反応は、例えば、ジエチルエーテル等の適当な溶媒中で行われる。これらの溶媒は、無水溶媒であるのが好ましい。 The reaction of the compound of the general formula (1C) with the alcohol of the general formula (2) is carried out, for example, in a suitable solvent such as diethyl ether. These solvents are preferably anhydrous solvents.
 化合物(1C)とアルコール(2)との使用割合は、化合物(1C)1モルに対して、アルコール(2)を通常0.5~2モル程度、好ましくは1~1.2モル程度とするのがよい。 The proportion of the compound (1C) to the alcohol (2) used is usually 0.5 to 2 moles, preferably 1 to 1.2 moles of alcohol (2) per 1 mole of compound (1C). That's good.
 化合物(1C)とアルコール(2)との反応において、反応系内に活性化剤を存在させるのが好ましい。活性化剤としては、例えば、ジシクロペンタジエニルジルコニウムジクロリド(CpZrCl)/過塩素酸銀(I)(AgClO)の組み合わせ等を挙げることができる。活性化剤の使用量としては、化合物(1C)1モルに対して、CpZrClが通常1~5モル程度、好ましくは1~3モル程度、AgClOが通常1~7モル程度、好ましくは1~5モル程度である。 In the reaction of compound (1C) with alcohol (2), it is preferable to have an activating agent present in the reaction system. Examples of the activating agent include combinations of dicyclopentadienyl zirconium dichloride (Cp 2 ZrCl 2 ) / silver (I) perchlorate (AgClO 4 ), and the like. The amount of the activating agent used is usually about 1 to 5 moles, preferably about 1 to 3 moles of Cp 2 ZrCl 2 and preferably about 1 to 7 moles of AgClO 4 per 1 mole of the compound (1C). Is about 1 to 5 moles.
 また、該反応において、モレキュラーシーブス(例えば、モレキュラーシーブス4A)を存在させることにより、目的化合物である化合物(3)の収率がより一層向上する。 Further, in the reaction, the presence of molecular sieves (eg, molecular sieves 4A) further improves the yield of the compound (3) which is the target compound.
 この反応は、通常-90~0℃程度、好ましくは、-80~-40℃において好適に進行する。 This reaction usually proceeds suitably at about -90 to 0 ° C, preferably at -80 to -40 ° C.
 上記反応により得られるα-O-ピラノシドは、例えば、通常の分離手段により反応混合物より分離され、精製される。このような分離及び精製手段としては、上記したものを挙げることができる。 The α-O-pyranoside obtained by the above reaction is separated from the reaction mixture by, for example, ordinary separation means and purified. As such separation and purification means, those described above can be mentioned.
 上記反応により得られる各種のα-O-ピラノシドは、例えば、糖類、糖脂質、糖蛋白質の合成等の重要な用途に使用されうる。 The various α-O-pyranosides obtained by the above reaction can be used, for example, in important applications such as the synthesis of saccharides, glycolipids and glycoproteins.
 本発明の一般式(1)で表される3,6-O-架橋ピラノース化合物又はその鏡像異性体は、α-O-グリコシル化剤として好適に使用され得る。 The 3,6-O-bridged pyranose compound represented by the general formula (1) of the present invention or an enantiomer thereof can be suitably used as an α-O-glycosylation agent.
 本発明の一般式(1)で表される3,6-O-架橋ピラノース化合物又はその鏡像異性体を使用すれば、厳格な反応条件を設定しなくても、α-O-ピラノシドを高い選択率で簡便に製造することができる。 When the 3,6-O-bridged pyranose compound represented by the general formula (1) of the present invention or its enantiomer is used, high selection of α-O-pyranoside is possible without setting severe reaction conditions. It can be manufactured easily at a rate.
 以下に実施例を掲げて、本発明をより一層明らかにする。なお、以下において、必要な場合は窒素又はアルゴン雰囲気下で反応を行った。また、シリカゲルクロマトグラフィーによる精製はシリカゲル60N(粒状、中性、40-50μm)又はシリカゲル60N(粒状、中性、63-210μm)(共に関東化学社製)を用いた。 The invention will be further clarified by the following examples. In the following, the reaction was carried out under an atmosphere of nitrogen or argon if necessary. Further, purification by silica gel chromatography used silica gel 60 N (granular, neutral, 40-50 μm) or silica gel 60 N (granular, neutral, 63-210 μm) (both manufactured by Kanto Chemical Co., Ltd.).
 化合物の理化学的性質の測定にはそれぞれ以下の機器を使用した。
IR:JASCO FT/IR-4200(ATR;全反射法)
比旋光度:JASCO DIP-370(100mmセル、波長:589nm、溶媒:CHCl
NMR:JEOL JNM-ECX-400(H:400MHz、13C:100MHz)
 なお、13C-NMRの測定において、当該炭素に結合する水素原子の数をDEPT法により測定し、それぞれC(s)、CH(d)、CH(t)、CH(q)で示した。
HRMS:JEOL JMS-700(イオン化法:ESI)。
The following instruments were used to measure the physicochemical properties of the compounds.
IR: JASCO FT / IR-4200 (ATR; total internal reflection method)
Specific rotation: JASCO DIP-370 (100 mm cell, wavelength: 589 nm, solvent: CHCl 3 )
NMR: JEOL JNM-ECX-400 ( 1 H: 400 MHz, 13 C: 100 MHz)
In addition, in the measurement of 13 C-NMR, the number of hydrogen atoms bonded to the carbon is measured by the DEPT method, and is indicated by C (s), CH (d), CH 2 (t), and CH 3 (q), respectively. The
HRMS: JEOL JMS-700 (ionization method: ESI).
 実施例1 Example 1
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[式中、Phはフェニル基を示す。]
フェニル 3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-1-チオ-D-グルコピラノシドの製造
 トルエン(80mL)に60%油性水素化ナトリウム(585mg、水素化ナトリウムとして351mg、14.6mmol)を加え撹拌した。この懸濁液を80℃撹拌しているところに、2,2’-ビス(ブロモメチル)ビベンジル(934mg、2.53mmol)のトルエン溶液(40mL)及び1,2,4-オルトアセチル-α-D-グルコピラノース(500mg、2.44mmol)のジメチルホルムアミド溶液(40mL)を同時に滴下した。これら2つの溶液の滴下にはシリンジポンプを使用し、それぞれ1mL/分の滴下速度において、40分間かけて滴下した。滴下が終了した後、この混合物をさらに80℃において14時間撹拌した。その後、反応混合物を0℃に冷却下、水(20mL)を加えてクエンチした。得られた混合物を酢酸エチル(50mL×2回)によって抽出し、抽出物を合わせ、これを水(20mL×1回)で洗浄した。さらに抽出溶液を無水硫酸マグネシウムで乾燥し、綿栓濾過した後、溶媒を留去し、化合物3の粗生成物を得た。
[Wherein, Ph represents a phenyl group. ]
Preparation of phenyl 3,6-O- [bibenzyl-2,2'-bis (methylene)]-1-thio-D-glucopyranoside 60% oily sodium hydride (585 mg, 351 mg as sodium hydride) in toluene (80 mL) 14.6 mmol) was added and stirred. While stirring this suspension at 80 ° C., a solution of 2,2′-bis (bromomethyl) bibenzyl (934 mg, 2.53 mmol) in toluene (40 mL) and 1,2,4-orthoacetyl-α-D -A solution of glucopyranose (500 mg, 2.44 mmol) in dimethylformamide (40 mL) was simultaneously added dropwise. These two solutions were dropped using a syringe pump over 40 minutes at a dropping rate of 1 mL / min each. After the addition was complete, the mixture was further stirred at 80 ° C. for 14 hours. The reaction mixture was then quenched by the addition of water (20 mL) with cooling to 0 ° C. The resulting mixture was extracted with ethyl acetate (50 mL × 2) and the extracts combined, which was washed with water (20 mL × 1). Furthermore, the extract solution was dried over anhydrous magnesium sulfate and filtered through a cotton plug, and then the solvent was distilled off to obtain a crude product of compound 3.
 得られた化合物3の粗生成物、モレキュラーシーブス5A(7.29g)及びジクロロメタン(49mL)の混合物に、チオフェノール(269mg、2.44mmol)及びトリフルオロメタンスルホン酸 トリメチルシリル(644mg、2.90mmol)を-75℃において加えた。この混合物を-75℃において15分撹拌した後、さらに5分室温で撹拌した。反応混合物に飽和炭酸水素ナトリウム水溶液(5mL)を加えてクエンチし、得られた混合物を綿及びセライトにより濾過し、混合物からモレキュラーシーブスを除いた。その後、得られた混合物をクロロホルム(20mL×2回)によって抽出し、抽出物を合わせた。さらに抽出溶液を無水硫酸マグネシウムで乾燥し、綿栓濾過した後、溶媒を留去し、黄色アモルファスの粗生成物を得た。 In a mixture of the obtained crude product of compound 3, molecular sieves 5A (7.29 g) and dichloromethane (49 mL), thiophenol (269 mg, 2.44 mmol) and trimethylsilyl trifluoromethanesulfonate (644 mg, 2.90 mmol) Added at -75 ° C. The mixture was stirred at -75 ° C for 15 minutes and then at room temperature for another 5 minutes. The reaction mixture was quenched by addition of saturated aqueous sodium hydrogen carbonate solution (5 mL) and the resulting mixture was filtered through cotton and celite to remove molecular sieves from the mixture. The resulting mixture was then extracted with chloroform (20 mL × 2) and the extracts combined. Further, the extract solution was dried over anhydrous magnesium sulfate and filtered through a cotton plug, and then the solvent was distilled off to obtain a yellow amorphous crude product.
 得られた黄色アモルファスの粗生成物、ナトリウムメトキシド(380mg、7.03mmol)及びメタノール(48mL)の混合物を室温において30分撹拌した。その後、反応混合物に1規定塩酸(5mL)を加えてクエンチし、得られた混合物を酢酸エチル(15mL×2回)によって抽出し、抽出物を合わせ、これを水(5mL×1回)で洗浄した。さらに抽出溶液を無水硫酸マグネシウムで乾燥し、綿栓濾過した後、溶媒を留去し、フェニル 3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-1-チオ-D-グルコピラノシドの粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(SiO:8g、酢酸エチル/n-ヘキサン(体積比)=1/5→1/2)で精製し、フェニル 3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-1-チオ-D-グルコピラノシド(アノマー異性体の混合比α:β=1:1、419mg、0.875mmol、収率:36%)を白色アモルファス固体として得た。 A mixture of the obtained yellow amorphous crude product, sodium methoxide (380 mg, 7.03 mmol) and methanol (48 mL) was stirred at room temperature for 30 minutes. The reaction mixture is then quenched by addition of 1 N hydrochloric acid (5 mL), the resulting mixture is extracted with ethyl acetate (15 mL × 2), the extracts are combined, and this is washed with water (1 × 5 mL) did. Further, the extract solution is dried over anhydrous magnesium sulfate and filtered through a cotton plug, and then the solvent is distilled off, and phenyl 3,6-O- [bibenzyl-2,2'-bis (methylene)]-1-thio-D- A crude product of glucopyranoside was obtained. The obtained crude product is purified by silica gel column chromatography (SiO 2 : 8 g, ethyl acetate / n-hexane (volume ratio) = 1/5 → 1/2) to obtain phenyl 3,6-O- [bibenzyl- 2,2'-bis (methylene)]-1-thio-D-glucopyranoside (mixture ratio α of anomeric isomers α: β = 1: 1, 419 mg, 0.875 mmol, yield: 36%) as a white amorphous solid Obtained.
 上記過程において、化合物3は粗生成物をそのまま次の工程に使用したが、シリカゲルカラムクロマトグラフィー(SiO:8g、酢酸エチル/n-ヘキサン(体積比)=1/5→1/2)で精製することができた。化合物3の理化学的性質は以下の通りである。
mp:68-71℃
[α] 25=-24.3(c=1.00、CHCl
IR(ATR):2920, 2866, 1740, 1604, 1491, 1454, 1405, 1378, 1326, 1307, 1288, 1239, 1223, 1181, 1137, 1090, 1057, 1039, 1005, 949, 900, 882, 869, 847, 749, 670, 657, 634, 616, 603 cm-1
H-NMR(400MHz、CDCl):δppm
7.42-7.19 (m, 6H), 5.77 (d, J = 4.8 Hz, 1H), 4.69 (d, J= 11.4 Hz, 1H), 4.69 (m, 2H), 4.55-4.49 (m, 2H), 4.42-4.34 (m, 2H), 3.97 (s, J = 3.8 Hz, 2H), 3.72 (s, 1H), 3.69 (d, 1H), 3.15-3.00 (m, 4H), 1.61 (s, 3H)
13C-NMR(100MHz、CDCl):δppm
141.9 (s), 141.8 (s), 135.3 (s), 134.3 (s), 131.2 (d), 131.0 (d), 129.4 (d), 129.1 (d), 128.9 (d), 128.4 (d), 126.5 (d), 126.3 (d), 119.0 (d), 98.0 (d), 74.8 (d), 72.7 (d), 72.5 (t), 70.8 (t), 70.6 (d), 70.5 (d), 69.2 (t), 33.6 (t), 33.0 (t), 20.4 (q)
HRMS-ESI(m/z):[M+Na]
計算値(C2426 23NaOとして)433.1627、実測値433.1612。
In the above process, the crude product of Compound 3 was used as it was in the next step, but by silica gel column chromatography (SiO 2 : 8 g, ethyl acetate / n-hexane (volume ratio) = 1/5 → 1/2) It was possible to refine. The physicochemical properties of Compound 3 are as follows.
mp: 68-71 ° C
[Α] D 25 = -24.3 (c = 1.00, CHCl 3 )
IR (ATR): 2920, 2866, 1740, 1491, 1454, 1405, 1358, 1326, 1307, 1229, 1223, 1181, 1137, 1090, 1057, 1039, 1005, 949, 900, 882, 869 , 847, 749, 670, 657, 634, 616, 603 cm -1
1 H-NMR (400 MHz, CDCl 3 ): δ ppm
7.42-7.19 (m, 6H), 5.77 (d, J = 4.8 Hz, 1 H), 4.69 (d, J = 11.4 Hz, 1 H), 4.69 (m, 2 H), 4.55-4. 49 (m, 2 H), 4.42 -4.34 (m, 2H), 3.97 (s, J = 3.8 Hz, 2H), 3.72 (s, 1H), 3.69 (d, 1H), 3.15-3.00 (m, 4H), 1.61 (s, 3H)
13 C-NMR (100 MHz, CDCl 3 ): δ ppm
141.9 (s), 141.8 (s), 135.3 (s), 134.3 (s), 131.2 (d), 131.0 (d), 129.4 (d), 129.1 (d), 128.9 (d), 128.4 (d), 126.5 (d), 126.3 (d), 119.0 (d), 78.0 (d), 72.7 (d), 72.5 (t), 70.8 (t), 70.6 (d), 70.5 (d), 69.2 (t), 33.6 (t), 33.0 (t), 20.4 (q)
HRMS-ESI (m / z): [M + Na] +
Calculated (C 24 H 26 23 NaO 6 as) 433.1627, found 433.1612.
 フェニル 3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-1-チオ-D-グルコピラノシドのアノマー異性体混合物は、シリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン(体積比)=1/5→1/2)で精製し、それぞれα異性体及びβ異性体に分離することができた。それぞれの理化学的性質は以下の通りである。 The anomeric isomer mixture of phenyl 3,6-O- [bibenzyl-2,2'-bis (methylene)]-1-thio-D-glucopyranoside was subjected to silica gel column chromatography (ethyl acetate / n-hexane (volume ratio)) It could be purified by = 1/5 → 1/2) and separated into alpha and beta isomers, respectively. The physicochemical properties of each are as follows.
 フェニル 3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-1-チオ-α-D-グルコピラノシド
mp:76-80℃
[α] 25=+7.9(c=0.52、CHCl
IR(ATR):3424, 3060, 3022, 2868, 1733, 1604, 1584, 1492, 1481, 1452, 1438, 1405, 1373, 1323, 1248, 1074, 1046, 1024, 907, 847, 729, 691, 666, 647, 621, 609cm-1
H-NMR(400MHz、CDCl):δppm
7.56-7.48 (m, 3H), 7.40-7.26 (m, 7H), 7.25-7.18 (m, 3H), 5.36 (d, J = 2.1 Hz, 1H), 4.70 (d, J = 10.7 Hz, 1H), 4.47 (d, J = 10.7 Hz, 1H), 4.40 (s, 2H), 4.22 (ddd, J = 8.6, 4.9, 4.2 Hz, 1H), 4.15 (br s, 1H), 4.07 (br s, 1H), 3.99 (t, J= 8.9, 8.6 Hz, 1H), 3.86 (t, J = 3.4, 3.4 Hz, 1H), 3.70 (dd, J = 8.9, 4.9 Hz, 1H), 3.16-2.96 (m, 4H)
13C-NMR(100MHz、CDCl):δppm
141.9 (s), 141.3 (s), 135.5 (s), 135.1 (s), 134.8 (s), 129.6-126.5 (13個のダブレットが重複: 10個のピークを観測), 83.8 (d), 77.6 (d), 77.3 (d), 72.8 (t), 70.2 (t), 69.7 (d), 68.0 (t), 64.5 (d), 33.9 (t), 33.4 (t)
HRMS-ESI(m/z):[M+Na]
計算値(C2830 23NaOSとして)501.1712、実測値501.1692。
Phenyl 3,6-O- [bibenzyl-2,2'-bis (methylene)]-1-thio-α-D-glucopyranoside mp: 76-80 ° C.
[Α] D 25 = + 7.9 (c = 0.52, CHCl 3 )
IR (ATR): 3424, 3060, 3022, 2868, 1584, 1492, 1481, 1452, 1438, 1405, 1373, 1233, 1234, 1074, 1046, 1024, 907, 729, 691, 691, 666 , 647, 621, 609 cm -1
1 H-NMR (400 MHz, CDCl 3 ): δ ppm
7.56-7.48 (m, 3H), 7.40-7.26 (m, 7H), 7.25-7.18 (m, 3H), 5.36 (d, J = 2.1 Hz, 1H), 4.70 (d, J = 10.7 Hz, 1H) , 4.47 (d, J = 10.7 Hz, 1H), 4.40 (s, 2H), 4.22 (ddd, J = 8.6, 4.9, 4.2 Hz, 1H), 4.15 (br s, 1H), 4.07 (br s, 1H) ), 3.99 (t, J = 8.9, 8.6 Hz, 1H), 3.86 (t, J = 3.4, 3.4 Hz, 1 H), 3.70 (dd, J = 8.9, 4.9 Hz, 1 H), 3.16-2.96 (m, 4H)
13 C-NMR (100 MHz, CDCl 3 ): δ ppm
141.9 (s), 141.3 (s), 135.5 (s), 135.1 (s), 134.8 (s), 129.6-126.5 (13 doublets overlap: 10 peaks are observed), 83.8 (d), 77.6 (d), 77.3 (d), 72.8 (t), 70.2 (t), 69.7 (d), 68.0 (t), 64.5 (d), 33.9 (t), 33.4 (t)
HRMS-ESI (m / z): [M + Na] +
Calculated (C 28 H 30 23 NaO as 5 S) 501.1712, Found 501.1692.
 フェニル 3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-1-チオ-β-D-グルコピラノシド
mp:73-78℃
[α] 23=-45(c=0.53、CHCl
IR(ATR):3435, 3063, 3011, 2870, 1732, 1604, 1583, 1479, 1439, 1359, 1218, 1042, 809, 747 cm-1
H-NMR(400MHz、CDCl):δppm
7.62-7.58 (m, 1H), 7.47-7.40 (m, 3H), 7.38-7.35 (m, 1H), 7.31-7.27 (m, 4H), 7.25-7.19 (m, 2H), 7.17-7.11 (m, 2H), 4.63 (s, 2H), 4.59 (d, J = 8.6 Hz, 1H), 4.48 (d, J = 9.4 Hz, 1H), 4.40 (d, J = 9.4 Hz, 1H), 4.32 (ddd, J = 8.0, 7.7, 3.2 Hz, 1H), 3.91 (dd, J = 11,0, 3.2 Hz, 1H), 3.79 (dd, J = 11.0, 3.0 Hz, 1H), 3.74 (t, J = 8.2, 8.0 Hz, 1H), 3.60 (ddd, J = 7.7, 3.2, 3.0 Hz, 1H), 3.51 (ddd, J = 8.6, 8.2, 2.9 Hz, 1H), 3.04-2.82 (m, 4H), 2.65 (d, J = 2.9 Hz, 1H), 1.86 (d, J= 3.2 Hz, 1H)
13C-NMR(100MHz、CDCl):δppm
141.3 (s), 138.8 (s), 136.7 (s), 135.7 (s), 133.1 (d, 2 C), 132.0 (s), 131.4 (d), 130.2 (d), 129.3 (d), 129.2 (d), 129.0 (d, 2 C), 128.9 (d), 128.5 (d), 128.0 (d), 126.9 (d), 126.4 (d), 87.1 (d), 83.1 (d), 79.2 (d), 73.0 (t), 69.0 (t), 68.3 (d), 64.1 (d), 62.7 (t), 32.8 (t), 32.7 (t)
HRMS-ESI(m/z):[M+Na]
計算値(C2830 23NaOSとして)501.1712、実測値501.1711。
Phenyl 3,6-O- [bibenzyl-2,2'-bis (methylene)]-1-thio-β-D-glucopyranoside mp: 73-78 ° C.
[Α] D 23 = -45 (c = 0.53, CHCl 3 )
IR (ATR): 3435, 3063, 3011, 2870, 1732, 1604, 1583, 1479, 1439, 1359, 1218, 1042, 809, 747 cm -1
1 H-NMR (400 MHz, CDCl 3 ): δ ppm
7.62-7.58 (m, 1H), 7.47-7.40 (m, 3H), 7.38-7.35 (m, 1H), 7.31-7.27 (m, 4H), 7.25-7.19 (m, 2H), 7.17-7.11 (m , 2H), 4.63 (s, 2H), 4.59 (d, J = 8.6 Hz, 1H), 4.48 (d, J = 9.4 Hz, 1H), 4.40 (d, J = 9.4 Hz, 1H), 4.32 (ddd , J = 8.0, 7.7, 3.2 Hz, 1 H), 3.91 (dd, J = 11, 0, 3.2 Hz, 1 H), 3. 79 (dd, J = 11.0, 3.0 Hz, 1 H), 3.74 (t, J = 8.2 , 8.0 Hz, 1H), 3.60 (ddd, J = 7.7, 3.2, 3.0 Hz, 1H), 3.51 (ddd, J = 8.6, 8.2, 2.9 Hz, 1H), 3.04-28.2 (m, 4H), 2.65 ( d, J = 2.9 Hz, 1 H), 1. 86 (d, J = 3.2 Hz, 1 H)
13 C-NMR (100 MHz, CDCl 3 ): δ ppm
141.3 (s), 138.8 (s), 136.7 (s), 135.7 (s), 133.1 (d, 2 C), 132.0 (s), 131.4 (d), 130.2 (d), 129.3 (d), 129.2 ( d), 129.0 (d, 2 C), 128.9 (d), 128.5 (d), 128.0 (d), 126.9 (d), 126.4 (d), 87.1 (d), 83.1 (d), 79.2 (d) , 73.0 (t), 69.0 (t), 68.3 (d), 64.1 (d), 62.7 (t), 32.8 (t), 32.7 (t)
HRMS-ESI (m / z): [M + Na] +
Calculated (C 28 H 30 23 NaO as 5 S) 501.1712, Found 501.1711.
 実施例2 Example 2
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[式中、Phは前記に同じ。Bnはベンジル基を示す。]
フェニル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-1-チオ-D-グルコピラノシドの製造
 フェニル 3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-1-チオ-D-グルコピラノシド(39mg、81.5μmol、α/β異性体混合物)及びベンジルブロマイド(55mg、322μmol)をジメチルホルムアミドとトルエンの混合溶液(体積比で1:1、4mL)に溶解し、室温において撹拌しているところに、60%油性水素化ナトリウム(20mg、水素化ナトリウムとして12mg、0.50mmol)を加えた。これを75℃において1時間撹拌した後、反応混合物に飽和塩化アンモニウム水溶液(5mL)を0℃冷却下加え、クエンチした。得られた混合物を酢酸エチル(5mL×2回)によって抽出し、抽出物を合わせ、これを水(5mL×1回)及び飽和食塩水(5mL×1回)で洗浄した。さらに抽出溶液を無水硫酸マグネシウムで乾燥し、綿栓濾過した後、溶媒を留去し、粗生成物を得た。得られた粗生成物をシリカゲルクロマトグラフィー(SiO:500mg、酢酸エチル/n-ヘキサン(体積比)=1/30→1/10)で精製し、フェニル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-1-チオ-D-グルコピラノシド(アノマー異性体の混合比α:β=約50:50、43.1mg、65.3μmol、収率:80%)を白色アモルファス固体として得た。
[Wherein, Ph is the same as above. Bn represents a benzyl group. ]
Preparation of Phenyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-1-thio-D-glucopyranoside Phenyl 3,6-O- [bibenzyl- Mixed solution (volume) of 2,2'-bis (methylene)]-1-thio-D-glucopyranoside (39 mg, 81.5 μmol, α / β isomer mixture) and benzyl bromide (55 mg, 322 μmol) in dimethylformamide and toluene 60% oily sodium hydride (20 mg, 12 mg as sodium hydride, 0.50 mmol) was added while dissolving in a ratio 1: 1, 4 mL) and stirring at room temperature. After this was stirred at 75 ° C. for 1 hour, the reaction mixture was quenched by adding saturated aqueous ammonium chloride solution (5 mL) under cooling at 0 ° C. The resulting mixture was extracted with ethyl acetate (5 mL × 2), the extracts were combined, and this was washed with water (1 × 5 mL) and saturated brine (1 × 5 mL). Further, the extract solution was dried over anhydrous magnesium sulfate and filtered through a cotton plug, and then the solvent was distilled off to obtain a crude product. The obtained crude product is purified by silica gel chromatography (SiO 2 : 500 mg, ethyl acetate / n-hexane (volume ratio) = 1/30 → 1/10) to obtain phenyl 2,4-di-O-benzyl- 3,6-O- [bibenzyl-2,2'-bis (methylene)]-1-thio-D-glucopyranoside (mixing ratio α of anomeric isomers α: β = about 50: 50, 43.1 mg, 65.3 μmol , Yield: 80%) as a white amorphous solid.
 別途、フェニル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-1-チオ-D-グルコピラノシドα異性体及びβ異性体を、上記実施例2において、それぞれ分離したフェニル 3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-1-チオ-α-D-グルコピラノシド又はフェニル 3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-1-チオ-β-D-グルコピラノシドをそれぞれ原料として使用することで得た。それぞれの理化学的性質は以下の通りである。 Separately, phenyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-1-thio-D-glucopyranoside α-isomer and β-isomer are In Example 2, each separated phenyl 3,6-O- [bibenzyl-2,2'-bis (methylene)]-1-thio-α-D-glucopyranoside or phenyl 3,6-O- [bibenzyl-2 It was obtained by using 2,2'-bis (methylene)]-1-thio-β-D-glucopyranoside as a raw material. The physicochemical properties of each are as follows.
 フェニル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-1-チオ-α-D-グルコピラノシド
mp:50-55℃
[α] 25=+110(c=0.50、CHCl
IR(ATR):3063, 3027, 2867, 2244, 1603, 1584, 1494, 1481, 1454, 1438, 1392, 1362, 1326, 1250, 1208, 1072, 1026, 908, 820, 728cm-1
H-NMR(400MHz、CDCl):δppm
7.55-7.29 (m, 13H), 7.25-7.13 (m, 10H), 5.66 (d, J = 4.9 Hz, 1H), 4.85 (d, J= 10.1 Hz, 1H), 4.76 (d, J = 11.9 Hz, 1H), 4.73 (d, J = 11.7 Hz, 1H), 4.50 (d, J = 10.1 Hz, 1H), 4.38 (d, J = 11.7 Hz, 1H), 4.32-4.19 (m, 4H), 4.10 (br d, J = 7.6 Hz, 1H), 4.04 (ddd, J= 4.9, 3.6, 1.2 Hz, 1H), 3.92-3.80 (m), 3.20-2.85 (m, 4H)
13C-NMR(100MHz、CDCl):δppm
142.3 (s), 142.0 (s), 138.4 (s), 138.0 (s), 136.4 (s), 136.1 (s), 135.0 (s), 131.5-126.2 (23個のダブレットが重複: 18個のピークを観測), 86.4 (d), 76.3 (d), 74.6 (d), 73.5 (t), 73.1 (d), 73.1 (1個のダブレットと1個のトリプレット: 1個のピークを観測), 71.5 (t), 70.4 (t), 69.7 (t), 34.1 (t, 2 C)
HRMS-ESI(m/z):[M+Na]
計算値(C4242 23NaOSとして)681.2651、実測値681.2682。
Phenyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-1-thio-α-D-glucopyranoside mp: 50-55 ° C.
[Α] D 25 = + 110 (c = 0.50, CHCl 3 )
IR (ATR): 3063, 3027, 2867, 2243, 1604, 1494, 1481, 1438, 1392, 1362, 1326, 1250, 1208, 1072, 1026, 908, 820, 728 cm -1
1 H-NMR (400 MHz, CDCl 3 ): δ ppm
7.55-7.29 (m, 13 H), 7.25-7. 13 (m, 10 H), 5. 66 (d, J = 4.9 Hz, 1 H), 4. 85 (d, J = 10.1 Hz, 1 H), 4. 76 (d, J = 11.9 Hz) , 1H), 4.73 (d, J = 11.7 Hz, 1H), 4.50 (d, J = 10.1 Hz, 1H), 4.38 (d, J = 11.7 Hz, 1H), 4.32-4.19 (m, 4H), 4.10 (br d, J = 7.6 Hz, 1 H), 4.04 (ddd, J = 4.9, 3.6, 1.2 Hz, 1 H), 3.92-3.80 (m), 3.20-2.85 (m, 4 H)
13 C-NMR (100 MHz, CDCl 3 ): δ ppm
142.3 (s), 142.0 (s), 138.4 (s), 138.0 (s), 136.4 (s), 136.1 (s), 135.0 (s), 131.5-126.2 (23 doublets overlap: 18 peaks , 86.4 (d), 76.3 (d), 74.6 (d), 73.5 (t), 73.1 (d), 73.1 (1 doublet and 1 triplet: 1 peak observed), 71.5 (t), 70.4 (t), 69.7 (t), 34.1 (t, 2 C)
HRMS-ESI (m / z): [M + Na] +
Calculated (C 42 H 42 23 NaO as 5 S) 681.2651, Found 681.2682.
 フェニル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-1-チオ-β-D-グルコピラノシド
mp:35-38℃
[α] 22=-43(c=0.83、CHCl
IR(ATR):3063, 3032, 2907, 2871,1496, 1449, 1366, 1205, 1095, 1076, 1028, 913, 731cm-1
H-NMR(400MHz、CDCl):δppm
7.53-7.27 (m, 13H), 7.25-7.08 (m, 10H), 5.17 (d, J = 8.9 Hz, 1H), 4.78 (d, J= 11.9 Hz, 1H), 4.74 (d, J = 11.9 Hz, 1H), 4.49 (d, J = 10.3 Hz, 1H), 4.40 (d, J = 10.3 Hz, 1H), 4.37 (d, J = 11.9 Hz, 1H), 4.31 (d, J = 11.9 Hz, 1H), 4.20 (d, J = 10.3 Hz, 1H), 4.16 (d, J = 10.3 Hz, 1H), 4.13 (m, 1H), 3.89 (m, 1H), 3.86 (m, 1H), 3.68 (dd, J = 8.9, 2.3 Hz, 1H), 3.64 (dd, J = 9.4, 2.8 Hz, 1H), 3.60 (dd, J = 9.4, 8.2 Hz, 1H), 3.05-2.88 (m, 4H)
13C-NMR(100MHz、CDCl):δppm
141.9 (s), 141.6 (s), 138.4 (s), 137.8 (s), 135.7 (s), 135.0 (s), 134.1 (s), 131.9-126.1 (23個のダブレットが重複: 18個のピークを観測), 83.8 (d), 80.5 (d), 79.6 (d), 78.1 (d), 73.2 (t), 72.9 (d), 72.5 (t), 71.0 (t), 70.2 (t, 2C), 33.2 (t), 33.1 (t)
HRMS-ESI(m/z):[M+Na]
計算値(C4242 23NaOSとして)681.2651、実測値681.2668。
Phenyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-1-thio-β-D-glucopyranoside mp: 35-38 ° C.
[Α] D 22 =-43 (c = 0.83, CHCl 3 )
IR (ATR): 3063, 3032, 2907, 2871, 1496, 1449, 1366, 1205, 1095, 1076, 1028, 913, 731 cm -1
1 H-NMR (400 MHz, CDCl 3 ): δ ppm
7.53-7.27 (m, 13H), 7.25-7.08 (m, 10H), 5.17 (d, J = 8.9 Hz, 1 H), 4.78 (d, J = 11.9 Hz, 1 H), 4.74 (d, J = 11.9 Hz) , 1H), 4.49 (d, J = 10.3 Hz, 1H), 4.40 (d, J = 10.3 Hz, 1H), 4.37 (d, J = 11.9 Hz, 1H), 4.31 (d, J = 11.9 Hz, 1H) ), 4.20 (d, J = 10.3 Hz, 1H), 4.16 (d, J = 10.3 Hz, 1H), 4.13 (m, 1H), 3.89 (m, 1H), 3.86 (m, 1H), 3.68 (dd) , J = 8.9, 2.3 Hz, 1 H), 3.64 (dd, J = 9.4, 2.8 Hz, 1 H), 3. 60 (dd, J = 9.4, 8.2 Hz, 1 H), 3.05-2.88 (m, 4 H)
13 C-NMR (100 MHz, CDCl 3 ): δ ppm
141.9 (s), 141.6 (s), 138.4 (s), 137.8 (s), 135.7 (s), 135.0 (s), 134.1 (s), 131.9-126.1 (23 doublets overlap: 18 peaks , 83.8 (d), 80.5 (d), 79.6 (d), 78.1 (d), 73.2 (t), 72.9 (d), 72.5 (t), 71.0 (t), 70.2 (t, 2C) , 33.2 (t), 33.1 (t)
HRMS-ESI (m / z): [M + Na] +
Calculated value (as C 42 H 42 23 NaO 5 S) 681.2651, found 681.2668.
 実施例3 Example 3
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[式中、Ph及びBnは前記に同じ。]
2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-D-グルコピラノースの製造
 フェニル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-1-チオ-D-グルコピラノシド(258mg、0.392mmol)をアセトン(9mL)及び水(1mL)の混合溶媒に溶解した。この混合溶液を0℃において撹拌しているところに、N-ブロモスクシンイミド(105mg、0.587mmol)を加え、室温において1時間撹拌した。その後、0℃において反応混合物に飽和炭酸水素ナトリウム水溶液(5mL)を加えクエンチした。得られた混合物を酢酸エチル(10mL×2回)によって抽出し、抽出物を合わせ、これを水(5mL×1回)及び飽和食塩水(5mL×1回)で洗浄した。さらに抽出溶液を無水硫酸マグネシウムで乾燥し、綿栓濾過した後、溶媒を留去し、粗生成物を得た。得られた粗生成物をシリカゲルクロマトグラフィー(SiO:450mg、酢酸エチル/n-ヘキサン(体積比)=1/10→1/3)で精製し、2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-D-グルコピラノース(アノマー異性体の混合比1:1、185mg、0.326mmol、収率:83%)を白色アモルファス固体として得た。
[Wherein, Ph and Bn are as defined above. ]
Preparation of 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-D-glucopyranose Phenyl 2,4-di-O-benzyl-3,6 -O- [bibenzyl-2,2'-bis (methylene)]-1-thio-D-glucopyranoside (258 mg, 0.392 mmol) was dissolved in a mixed solvent of acetone (9 mL) and water (1 mL). While stirring the mixture solution at 0 ° C., N-bromosuccinimide (105 mg, 0.587 mmol) was added and stirred at room temperature for 1 hour. Then, saturated sodium hydrogencarbonate aqueous solution (5 mL) was added and quenched to the reaction mixture at 0 degreeC. The resulting mixture was extracted with ethyl acetate (10 mL × 2), the extracts were combined, and this was washed with water (1 × 5 mL) and saturated brine (1 × 5 mL). Further, the extract solution was dried over anhydrous magnesium sulfate and filtered through a cotton plug, and then the solvent was distilled off to obtain a crude product. The obtained crude product is purified by silica gel chromatography (SiO 2 : 450 mg, ethyl acetate / n-hexane (volume ratio) = 1/10 → 1/3), and 2,4-di-O-benzyl-3 , 6-O- [Bibenzyl-2,2'-bis (methylene)]-D-glucopyranose (mixing ratio of anomers: 1: 1, 185 mg, 0.326 mmol, yield: 83%) as white amorphous solid Got as.
 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-D-グルコピラノースの理化学的性質は以下の通りである。
IR(ATR):3397, 3041, 3029, 2868, 1731, 1604, 1494, 1454, 1366, 1252, 1216, 1069, 940, 914, 847, 814, 743cm-1
H-NMR(部分データ、400MHz、CDOD):δppm
4.48  , J = 3.9 Hz), 4.37 (d, J = 6.9 Hz)
HRMS-ESI(m/z):[M+Na]
計算値(C3638 23NaOとして)589.2566、実測値589.2551。
The physicochemical properties of 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-D-glucopyranose are as follows.
IR (ATR): 3397, 3041, 3029, 2868, 1731, 1604, 1494, 1454, 1366, 1252, 1216, 1069, 940, 914, 847, 814, 743 cm- 1
1 H-NMR (partial data, 400 MHz, CD 3 OD): δ ppm
4.48, J = 3.9 Hz), 4.37 (d, J = 6.9 Hz)
HRMS-ESI (m / z): [M + Na] +
Calculated (C 36 H 38 23 NaO 6 as) 589.2566, found 589.2551.
 実施例4 Example 4
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
[式中、Bnは前記に同じ。]
2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]グルコシルフルオライドの製造
 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-D-グルコピラノース(150mg、265μmol)及び三フッ化ジエチルアミノ硫黄(DAST、128mg、794μmol)をテトラヒドロフラン(5mL)に溶解し、室温において10分間撹拌した。反応混合物に飽和炭酸水素ナトリウム水溶液(1mL)を加えてクエンチした。得られた混合物を酢酸エチル(10mL×2回)によって抽出し、抽出物を合わせ、これを飽和食塩水(5mL×1回)で洗浄した。さらに抽出溶液を無水硫酸マグネシウムで乾燥し、綿栓濾過した後、溶媒を留去し、粗生成物を得た。得られた粗生成物をシリカゲルクロマトグラフィー(SiO:3g、酢酸エチル/n-ヘキサン(体積比)=1/15→1/5)で精製し、2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]グルコシルフルオライド(アノマー異性体の混合比7:3、120mg、211μmol、収率:80%)を無色のシロップとして得た。
[Wherein, B n is the same as above. ]
Preparation of 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)] glucosyl fluoride 2,4-di-O-benzyl-3,6-O- [Bibenzyl-2,2'-bis (methylene)]-D-glucopyranose (150 mg, 265 μmol) and diethylaminosulfur trifluoride (DAST, 128 mg, 794 μmol) are dissolved in tetrahydrofuran (5 mL) and stirred at room temperature for 10 minutes did. The reaction mixture was quenched by addition of saturated aqueous sodium hydrogen carbonate solution (1 mL). The resulting mixture was extracted with ethyl acetate (10 mL × 2), the extracts were combined, and this was washed with saturated brine (1 × 5 mL). Further, the extract solution was dried over anhydrous magnesium sulfate and filtered through a cotton plug, and then the solvent was distilled off to obtain a crude product. The resulting crude product is purified by silica gel chromatography (SiO 2 : 3 g, ethyl acetate / n-hexane (volume ratio) = 1/15 → 1/5) to give 2,4-di-O-benzyl-3 6,6-O- [bibenzyl-2,2'-bis (methylene)] glucosyl fluoride (mixture ratio of anomer: 7: 3, 120 mg, 211 μmol, yield: 80%) was obtained as a colorless syrup.
 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]グルコシルフルオライドは、高速液体クロマトグラフィー(カラム:YMC-Pack R&D SIL, R-SIL-5, 250 x 4.6 m,溶出液:酢酸エチル/n-ヘキサン(体積比)=92:8,流速:1 mL/min,検出:UV, 254 nm)で精製し、α異性体及びβ異性体に分離することができた。これら2種の異性体それぞれの理化学的性質は以下の通りである。
2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]グルコシルフルオライド(異性体1:上記高速液体クロマトグラフィーの条件で保持時間12分)
[α] 22=-47(c=0.17、CHCl
IR(ATR):3029, 2869, 1496, 1455, 1368, 1216, 1091, 948, 699, 609cm-1
H-NMR(400MHz、CDCl):δppm
7.44-7.27 (m, 10H), 7.25-7.09 (m, 8H), 5.76-5.58 (dd, J = 55.2, 3.4 Hz, 1H), 4.79 (d, J = 12.1 Hz, 1H), 4.69 (d, J = 11.9 Hz, 1H), 4.45 (d, J = 11.9 Hz, 1H), 4.42-4.36 (m, 3H), 4.33 (ddd, J = 11.0, 5.3, 0.9 Hz, 1H), 4.24 (s, 2H), 3.87-3.80 (m, 2H), 3.75 (br s, 1H), 3.73-3.65 (m, 2H), 3.10-2.97 (m, 1H), 2.92-2.81 (m, 3H)
13C-NMR(100MHz、CDCl):δppm
141.8 (s), 141.7 (s), 137.8 (s), 137.6 (s), 135.7 (s), 134.7 (s), 131.6-126.2 (d, 18C, 18個のダブレットが重複: 13個のピークを観測), 107.3 (d, J C-F = 218 Hz), 76.0 (d), 75.7 (d), 74.3 (d), 73.0 (t), 72.4 (t), 71.2 (t), 70.8 (t), 70.6 (d), 70.0 (t), 33.7 (t), 33.3 (t)
HRMS-ESI(m/z):[M+Na]
計算値(C3637 23NaFOとして)591.2523、実測値591.2525。
2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]グルコシルフルオライド(異性体2:上記高速液体クロマトグラフィーの条件で保持時間14分)
[α] 23=+24(c=0.050、CHCl
IR(ATR):3025, 2867, 1496, 1455, 1365, 1216, 1094, 754, 700cm-1
H-NMR(400MHz、CDCl):δppm
7.43-7.27 (m, 12H), 7.25-7.09 (m, 6H), 5.66 (dd, J = 58.2, 3.0 Hz, 1H), 4.76 (d, J = 11.9 Hz, 1H), 4.74-4.66 (m, 3H), 4.42 (s, 2H), 4.32 (br s, 1H), 4.25 (d, J= 10.0 Hz, 1H), 4.17 (d, J = 10.0 Hz, 1H), 4.05 (br d, J = 4.9 Hz, 1H), 4.01 (br d, J = 5.6 Hz, 1H), 3.87 (ddd, J = 14.4, 5.6, 3.0 Hz, 1H), 3.72-3.68 (m, 2H), 3.14-3.03 (m, 1 H), 2.95-2.83 (m, 3H)
13C-NMR(100MHz、CDCl):δppm
141.6 (s), 138.2 (s), 137.9 (s), 135.6 (s), 135.2 (s), 131.5-126.3 (d, 18C, 18個のダブレットが重複: 13個のピークを観測), 105.1 (d, 1JC-F = 225.0 Hz C-1), 78.5 (d), 75.1 (d, 2JC-F = 21.0 Hz C-2), 74.3 (d), 74.2 (d), 73.2 (t), 72.7 (t), 71.3 (t), 69.7 (t), 69.3 (t), 33.7 (t), 33.5 (t)
HRMS-ESI(m/z):[M+Na]
計算値(C3637 23NaFOとして)591.2523、実測値591.2540。
2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)] glucosyl fluoride is high performance liquid chromatography (column: YMC-Pack R & D SIL, R-SIL -5, 250 x 4.6 m, eluent: ethyl acetate / n-hexane (volume ratio) = 92: 8, flow rate: 1 mL / min, detection: UV, 254 nm), alpha isomer and beta isomer I was able to separate into the body. The physicochemical properties of each of these two isomers are as follows.
2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)] glucosyl fluoride (isomer 1: retention time 12 minutes under the conditions of the above high performance liquid chromatography)
[Α] D 22 = -47 (c = 0.17, CHCl 3 )
IR (ATR): 3029, 2869, 1496, 1455, 1368, 1216, 1091, 948, 699, 609 cm -1
1 H-NMR (400 MHz, CDCl 3 ): δ ppm
7.44-7.27 (m, 10H), 7.25-7.09 (m, 8H), 5.76-5.58 (dd, J = 55.2, 3.4 Hz, 1 H), 4.79 (d, J = 12.1 Hz, 1 H), 4.69 (d, J) J = 11.9 Hz, 1H), 4.45 (d, J = 11.9 Hz, 1H), 4.42-4.36 (m, 3H), 4.33 (ddd, J = 11.0, 5.3, 0.9 Hz, 1H), 4.24 (s, 2H) ), 3.87-3.80 (m, 2H), 3.75 (br s, 1H), 3.73-3.65 (m, 2H), 3.10-2.97 (m, 1H), 2.92- 2.81 (m, 3H)
13 C-NMR (100 MHz, CDCl 3 ): δ ppm
141.8 (s), 141.7 (s), 137.8 (s), 137.6 (s), 135.7 (s), 134.7 (s), 131.6-126.2 (d, 18 C, 18 doublets overlap: 13 peaks Observation), 107.3 (d, J CF = 218 Hz), 76.0 (d), 75.7 (d), 74.3 (d), 73.0 (t), 72.4 (t), 71.2 (t), 70.8 (t), 70.6 (d), 70.0 (t), 33.7 (t), 33.3 (t)
HRMS-ESI (m / z): [M + Na] +
Calculated (as C 36 H 37 23 NaFO 5 ) 591.223, found 591.225.
2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)] glucosyl fluoride (isomer 2: retention time 14 minutes under the conditions of the above high performance liquid chromatography)
[Α] D 23 = + 24 (c = 0.050, CHCl 3 )
IR (ATR): 3025, 2867, 1496, 1455, 1365, 1216, 1094, 754, 700 cm -1
1 H-NMR (400 MHz, CDCl 3 ): δ ppm
7.43-7.27 (m, 12H), 7.25-7.09 (m, 6H), 5.66 (dd, J = 58.2, 3.0 Hz, 1H), 4.76 (d, J = 11.9 Hz, 1H), 4.74-4.66 (m, 5H) 3H), 4.42 (s, 2H), 4.32 (br s, 1H), 4.25 (d, J = 10.0 Hz, 1 H), 4.17 (d, J = 10.0 Hz, 1 H), 4.05 (br d, J = 4.9 Hz, 1H), 4.01 (br d, J = 5.6 Hz, 1H), 3.87 (ddd, J = 14.4, 5.6, 3.0 Hz, 1H), 3.72-3.68 (m, 2H), 3.14-3.03 (m, 1 H), 2.95-2.83 (m, 3H)
13 C-NMR (100 MHz, CDCl 3 ): δ ppm
141.6 (s), 138.2 (s), 137.9 (s), 135.6 (s), 135.2 (s), 131.5-126.3 (d, 18 C, overlapping of 18 doublets: 13 peaks are observed), 105.1 (10 d, 1 J CF = 225.0 Hz C-1), 78.5 (d), 75.1 (d, 2 J CF = 21.0 Hz C-2), 74.3 (d), 74.2 (d), 73.2 (t), 72.7 (7 t), 71.3 (t), 69.7 (t), 69.3 (t), 33.7 (t), 33.5 (t)
HRMS-ESI (m / z): [M + Na] +
Calculated (C 36 H 37 23 as NaFO 5) 591.2523, Found 591.2540.
 実施例5 Example 5
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
[式中、Bnは前記に同じ。]
2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]グルコシルフルオライドのα-グリコシル化反応
 活性モレキュラーシーブス4A(105mg)、ジシクロペンタジエニルジルコニウムジクロリド(CpZrCl;26mg、88.9μmol)、過塩素酸銀(I)(AgClO;36mg、174μmol)及びジエチルエーテル(1.0mL)の混合物を室温において10分撹拌した。この混合物に-50℃において、シクロヘキシルメタノール(4.7mg、41.2μmol)のジエチルエーテル溶液(0.25mL)及び2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]グルコシルフルオライド(20.0mg、35.1μmol)のジエチルエーテル溶液(0.25mL)を加えた。その後、-50℃で14時間反応混合物を撹拌した後、反応混合物に飽和炭酸水素ナトリウム水溶液(5mL)を加えクエンチした。得られた混合物をジエチルエーテル(20mL)によって希釈した後、綿及びセライトにより濾過し、混合物からモレキュラーシーブスを除いた。有機層を分離した後、有機層を飽和食塩水(5mL×1回)で洗浄した。さらに有機層を無水硫酸マグネシウムで乾燥し、綿栓濾過した後、溶媒を留去し、粗生成物をアノマー異性体の混合物で得た。粗生成物のアノマー異性体の混合比をH-NMRのスペクトルデータ(400MHz、CDCl)のアノマー位水素ピークの積算値の比率より決定したところ、α:β=97:3であった。得られた粗生成物をシリカゲルクロマトグラフィー(SiO:2g、ジエチルエーテル/n-ヘキサン(体積比)=1/20→1/10)で精製し、シクロヘキシルメチル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-α-D-グルコピラノシド(16.1mg)及びシクロヘキシルメチル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-β-D-グルコピラノシド(0.3mg)を白色アモルファス状固体として得た。依って、異性体混合物としてシクロヘキシルメチル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-D-グルコピラノシド(アノマー異性体の混合比α:β=98:2、16.4mg、24.7μmol、収率:70%)を単離した。
[Wherein, B n is the same as above. ]
Α-Glycosylation reaction of 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)] glucosyl fluoride Molecular sieves 4A (105 mg), dicyclopentadi A mixture of enyl zirconium dichloride (Cp 2 ZrCl 2 ; 26 mg, 88.9 μmol), silver (I) perchlorate (AgClO 4 ; 36 mg, 174 μmol) and diethyl ether (1.0 mL) was stirred at room temperature for 10 minutes. To this mixture at −50 ° C., a solution of cyclohexylmethanol (4.7 mg, 41.2 μmol) in diethyl ether (0.25 mL) and 2,4-di-O-benzyl-3,6-O- [bibenzyl-2, A solution of 2′-bis (methylene)] glucosyl fluoride (20.0 mg, 35.1 μmol) in diethyl ether (0.25 mL) was added. After that, the reaction mixture was stirred at -50 ° C for 14 hours, and then the reaction mixture was quenched by adding a saturated aqueous solution of sodium hydrogen carbonate (5 mL). The resulting mixture was diluted with diethyl ether (20 mL) and then filtered through cotton and celite to remove molecular sieves from the mixture. After separating the organic layer, the organic layer was washed with saturated brine (5 mL × 1). The organic layer was further dried over anhydrous magnesium sulfate, filtered through a cotton plug, and the solvent was evaporated to give a crude product as a mixture of anomeric isomers. The mixing ratio of the anomeric isomers of the crude product was determined from the ratio of the integrated value of the anomeric hydrogen peak in 1 H-NMR spectral data (400 MHz, CDCl 3 ), and it was α: β = 97: 3. The obtained crude product is purified by silica gel chromatography (SiO 2 : 2 g, diethyl ether / n-hexane (volume ratio) = 1/20 → 1/10), and cyclohexylmethyl 2,4-di-O-benzyl -3,6-O- [Bibenzyl-2,2'-bis (methylene)]-α-D-glucopyranoside (16.1 mg) and cyclohexylmethyl 2,4-di-O-benzyl-3,6-O- [Bibenzyl-2,2′-bis (methylene)]-β-D-glucopyranoside (0.3 mg) was obtained as a white amorphous solid. Therefore, the mixture ratio of cyclohexylmethyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-D-glucopyranoside (anomer of anomeric isomers α) as an isomer mixture : .Beta. = 98: 2, 16.4 mg, 24.7 .mu.mol, yield: 70%) were isolated.
 シクロヘキシルメチル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-α-D-グルコピラノシドの理化学的性質は以下の通りである。
mp:32-35℃
[α] 25=+53.2(c=1.00、CHCl
IR(ATR):3063, 3028, 2921, 2854, 2245, 1604, 1494, 1452, 1363, 1260, 1270, 1151, 1070, 1043, 908, 845, 832, 808, 729cm-1
H-NMR(400MHz、CDCl):δppm
7.47-7.35 (m, 5 H), 7.34-7.27 (m, 5 H), 7.25-7.12 (m, 6 H), 7.01-7.08 (m, 2 H), 4.83 (d, J = 3.3 Hz, 1 H), 4.72 (d, J = 12.4 Hz, 1 H), 4.66 (d, J = 12.4 Hz, 1 H), 4.56 (d, J = 9.8 Hz, 1 H), 4.45 (d, J = 11.7 Hz, 1 H), 4.40 (d, J = 11.5 Hz, 1 H), 4.36 (d, J = 12.0 Hz, 1 H), 4.26 (d, J = 9.8 Hz, 1 H), 4.20 (d, J = 12.1 Hz, 1 H), 4.16 (dd, J = 7.1, 7.1 Hz, 1 H), 4.10 (dd, J = 6.8, 6.8 Hz, 1 H), 3.93 (ddd, J = 6.9, 3.4, 2.5 Hz, 1 H), 3.76 (dd, J = 10.5, 3.4 Hz, 1 H), 3.71 (dd, J = 7.1, 3.4 Hz, 1 H), 3.68 (dd, J = 10.8, 2.3 Hz, 1 H), 3.53 (dd, J = 9.4, 6.6 Hz, 1 H), 3.14 (dd, J = 9.4, 6.4 Hz, 1 H), 3.10-2.90 (m, 4 H), 1.85-1.73 (m, 2 H), 1.73-1.65 (m, 2 H), 1.65-1.57 (m, 1 H), 1.32-1.13 (m, 4 H), 1.02-0.88 (m, 2 H)
13C-NMR(100MHz、CDCl):δppm
141.7 (s), 140.0 (s), 138.9 (s), 138.7 (s), 136.3 (s), 135.6 (s), 131.5 (18個のダブレットが重複: 13個のピークを観測), 96.6 (d), 79.0 (d), 75.2 (d), 74.1 (t), 73.0 (d), 73.0 (t), 72.6 (t), 72.0 (d), 71.5 (t), 69.8 (t), 65.6 (t), 38.0 (d), 33.5 (t), 33.3 (t), 30.1 (t, 2C), 26.7 (t), 26.0 (t), 25.9 (t)
HRMS-ESI(m/z):[M+Na]
計算値(C4350 23NaOとして)685.3505、実測値685.3475。
The physicochemical properties of cyclohexylmethyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-α-D-glucopyranoside are as follows.
mp: 32-35 ° C
[Α] D 25 = + 53.2 (c = 1.00, CHCl 3 )
IR (ATR): 3063, 3028, 2921, 2245, 1604, 1452, 1362, 1260, 1270, 1151, 1070, 1043, 908, 845, 832, 808, 729 cm- 1
1 H-NMR (400 MHz, CDCl 3 ): δ ppm
7.47-7.35 (m, 5 H), 7.34-7.27 (m, 5 H), 7.25-7.12 (m, 6 H), 7.01-7.08 (m, 2 H), 4.83 (d, J = 3.3 Hz, 1 H), 4.72 (d, J = 12.4 Hz, 1 H), 4.66 (d, J = 12.4 Hz, 1 H), 4.56 (d, J = 9.8 Hz, 1 H), 4.45 (d, J = 11.7 Hz) , 1 H), 4.40 (d, J = 11.5 Hz, 1 H), 4.36 (d, J = 12.0 Hz, 1 H), 4.26 (d, J = 9.8 Hz, 1 H), 4.20 (d, J = 12.1 Hz, 1 H), 4.16 (dd, J = 7.1, 7.1 Hz, 1 H), 4.10 (dd, J = 6.8, 6.8 Hz, 1 H), 3.93 (ddd, J = 6.9, 3.4, 2.5 Hz, 1 H), 3.76 (dd, J = 10.5, 3.4 Hz, 1 H), 3.71 (dd, J = 7.1, 3.4 Hz, 1 H), 3.68 (dd, J = 10.8, 2.3 Hz, 1 H), 3.53 (dd, J = 9.4, 6.6 Hz, 1 H), 3.14 (dd, J = 9.4, 6.4 Hz, 1 H), 3.10-2.90 (m, 4 H), 1.85-1. 73 (m, 2 H), 1.73 -1.65 (m, 2 H), 1.65-1.57 (m, 1 H), 1.32-1.13 (m, 4 H), 1.02-0.88 (m, 2 H)
13 C-NMR (100 MHz, CDCl 3 ): δ ppm
141.7 (s), 140.0 (s), 138.9 (s), 138.7 (s), 136.3 (s), 135.6 (s), 131.5 (18 doublets overlap: 13 peaks observed), 96.6 (d ), 79.0 (d), 75.2 (d), 74.1 (t), 73.0 (d), 73.0 (t), 72.6 (t), 72.0 (d), 71.5 (t), 69.8 (t), 65.6 (t) ), 38.0 (d), 33.5 (t), 33.3 (t), 30.1 (t, 2C), 26.7 (t), 26.0 (t), 25.9 (t)
HRMS-ESI (m / z): [M + Na] +
Calculated (C 43 H 50 23 NaO 6 as) 685.3505, found 685.3475.
 シクロヘキシルメチル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-β-D-グルコピラノシドの理化学的性質は以下の通りである。
mp:30-33℃
[α] 25=-53.0(c=1.00、CHCl
IR(ATR):3062, 3027, 2922, 2855, 2361, 2337, 1605, 1495, 1453, 1371, 1218, 1092, 939, 910, 875, 862, 846, 831, 809, 774cm-1
H-NMR(400MHz、CDCl):δppm
7.45-7.41 (m, 2H), 7.39-7.27 (m, 8H), 7.25-7.08 (m, 8H), 4.86 (d, J = 12.1 Hz, 1H), 4.79 (d, J = 7.1 Hz, 1H), 4.71 (d, J = 12.1 Hz, 1H), 4.44 (d, J = 10.1 Hz, 1H), 4.38 (d, J = 10.3 Hz, 1H), 4.36 (d, J = 11.9 Hz, 1H), 4.29 (br d, J = 10.8 Hz, 2H), 4.20 (d, J = 10.6 Hz, 1H), 4.05 (br t, J = 7.9, 4.5 Hz, 1H), 3.85-3.78 (m, 2H), 3.70 (dd, J = 9.4, 6.2 Hz, 1H), 3.66-3.56 (m, 3H and H-6), 3.28 (dd, J = 9.4, 6.9 Hz, 1H), 3.06-2.83 (m, 4H), 1.87-1.57 (m, 6H), 1.31-1.09 (m, 3H), 1.03-0.87 (m, 2H)
13C-NMR(100MHz、CDCl):δppm
141.9 (s), 141.4 (s), 138.9 (s), 138.0 (s), 135.7 (s), 135.3 (s), 131.5-126.1 (18個のダブレットが重複: 13個のピークを観測), 101.4 (d), 81.1 (d), 80.6 (d), 76.1 (d), 75.3 (t), 73.3 (t), 73.2 (d), 72.5 (t), 71.1 (t), 70.3 (t), 69.9 (t), 38.2 (d), 33.2 (t, 2C), 30.3 (t), 30.0 (t), 26.8 (t), 26.0 (t), 26.0 (t)
HRMS-ESI(m/z):[M+Na]
計算値(C4350 23NaOとして)685.3505、実測値685.3517。
The physicochemical properties of cyclohexylmethyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-β-D-glucopyranoside are as follows.
mp: 30-33 ° C
[Α] D 25 = -53.0 (c = 1.00, CHCl 3 )
IR (ATR): 3062, 3027, 2922, 2855, 2605, 1405, 1453, 1311, 1218, 1092, 939, 910, 875, 862, 846, 831, 809, 774 cm -1
1 H-NMR (400 MHz, CDCl 3 ): δ ppm
7.45-7.41 (m, 2H), 7.39-7.27 (m, 8H), 7.25-7.08 (m, 8H), 4.86 (d, J = 12.1 Hz, 1H), 4.79 (d, J = 7.1 Hz, 1H) , 4.71 (d, J = 12.1 Hz, 1 H), 4.44 (d, J = 10.1 Hz, 1 H), 4.38 (d, J = 10.3 Hz, 1 H), 4.36 (d, J = 11.9 Hz, 1 H), 4.29 (br d, J = 10.8 Hz, 2 H), 4.20 (d, J = 10.6 Hz, 1 H), 4.05 (br t, J = 7.9, 4.5 Hz, 1 H), 3.85-3. 78 (m, 2 H), 3.70 ( dd, J = 9.4, 6.2 Hz, 1 H), 3.66-3.56 (m, 3 H and H-6), 3. 28 (dd, J = 9.4, 6.9 Hz, 1 H), 3.06-2.83 (m, 4 H), 1.87- 1.57 (m, 6H), 1.31-1.09 (m, 3H), 1.03-0.87 (m, 2H)
13 C-NMR (100 MHz, CDCl 3 ): δ ppm
141.9 (s), 141.4 (s), 138.9 (s), 138.0 (s), 135.7 (s), 135.3 (s), 131.5-126.1 (18 doublets overlap: 13 peaks observed), 101.4 (d), 81.1 (d), 80.6 (d), 76.1 (d), 75.3 (t), 73.3 (t), 73.2 (d), 72.5 (t), 71.1 (t), 70.3 (t), 69.9 (t), 38.2 (d), 33.2 (t, 2C), 30.3 (t), 30.0 (t), 26.8 (t), 26.0 (t), 26.0 (t)
HRMS-ESI (m / z): [M + Na] +
Calculated (C 43 H 50 23 NaO 6 as) 685.3505, found 685.3517.
 実施例6~8
 反応温度及び反応時間を下記表1に記載のものとする他は、実施例5と同様の方法により、反応を行った。得られたシクロヘキシルメチル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-D-グルコピラノシドの収率及びアノマー異性体の比率を下記表1に示す。なお、実施例6~8の収率及びアノマー異性体の比率はH-NMR(溶媒:CDCl、標準物質:アセトン、α/βはアノマー位水素ピークの積算値の比率)より求めた。
Examples 6-8
The reaction was carried out in the same manner as in Example 5 except that the reaction temperature and the reaction time were as shown in Table 1 below. The yield and ratio of anomers of the obtained cyclohexylmethyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-D-glucopyranoside are shown in the following table. Shown in 1. The yield and ratio of anomeric isomers in Examples 6 to 8 were determined from 1 H-NMR (solvent: CDCl 3 , standard substance: acetone, and α / β is the ratio of the integrated value of anomeric hydrogen peak).
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 実施例9
 CpZrClをSnClに代えた他は、実施例6と同様の方法により、反応を行った。実施例6と同様、H-NMRより求めたシクロヘキシルメチル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-D-グルコピラノシドの収率は63%であり、アノマー異性体の比率はα:β=93:7であった。
Example 9
Except that instead of CpZrCl 2 to SnCl 2, the same manner as in Example 6, the reaction was carried out. Similarly to Example 6, the collection of cyclohexylmethyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-D-glucopyranoside determined by 1 H-NMR The ratio was 63%, and the ratio of anomeric isomers was α: β = 93: 7.
 実施例10~18
 反応温度を25℃、反応溶媒及び反応時間を下記表2に記載のものとする他は、実施例5と同様の方法により、反応を行った。実施例6と同様の方法により求めたシクロヘキシルメチル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-D-グルコピラノシドの収率及びアノマー異性体の比率を下記表2に示す。なお、表2中、Etはエチル基、i-Prはイソプロピル基、t-Bu基はターシャリーブチル基、THFはテトラヒドロフラン、CPMEはシクロペンチルメチルエーテルを示す。
Examples 10 to 18
The reaction was carried out in the same manner as in Example 5 except that the reaction temperature was 25 ° C., the reaction solvent and the reaction time were as shown in Table 2 below. Yield and anomer of cyclohexylmethyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-D-glucopyranoside determined by the same method as in Example 6. The proportions of the isomers are shown in Table 2 below. In Table 2, Et is ethyl, i-Pr is isopropyl, t-Bu is tertiary butyl, THF is tetrahydrofuran, and CPME is cyclopentyl methyl ether.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 実施例19 Example 19
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 モレキュラーシーブス4A(52.8mg)、ジシクロペンタジエニルジルコニウムジクロリド(CpZrCl;12.9mg、44.1μmol)、過塩素酸銀(I)(AgClO;18.2mg、87.8μmol)及びジエチルエーテル(0.5mL)の混合物を室温において10分撹拌した。この混合物に室温において、(+)-ジヒドロコレステロール(8.2 mg、21μmol)並びに2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]グルコシルフルオライド(10.0mg、17.6μmol)のジエチルエーテル溶液(1.5mL)を加えた。その後、室温で10分間反応混合物を撹拌した後、反応混合物に飽和炭酸水素ナトリウム水溶液(5mL)を加えクエンチした。得られた混合物をジエチルエーテル(20mL)によって希釈した後、綿及びセライトにより濾過し、混合物からモレキュラーシーブスを除いた。濾液を酢酸エチル(30mL)で抽出し、抽出物を合わせ、これを飽和食塩水(5mL)で洗浄した。さらに有機層を無水硫酸マグネシウムで乾燥し、綿栓濾過した後、溶媒を留去し、粗生成物をアノマー異性体の混合物で得た。粗生成物中のジヒドロコレステリル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジルビス-2,2’-(メチレン)]-D-グルコピラノシドの収量をH-NMR(溶媒:CDCl、標準物質:アセトン)を用いて求めたところ、収率は74%であり、また、アノマー位水素ピークの積算値の比率から求めたアノマー異性体比率はα/β=96/4であった。 Molecular sieves 4A (52.8 mg), dicyclopentadienyl zirconium dichloride (Cp 2 ZrCl 2 ; 12.9 mg, 44.1 μmol), silver perchlorate (AgClO 4 ; 18.2 mg, 87.8 μmol) A mixture of and diethyl ether (0.5 mL) was stirred at room temperature for 10 minutes. To this mixture at room temperature (+)-dihydrocholesterol (8.2 mg, 21 μmol) and 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)] A solution of glucosyl fluoride (10.0 mg, 17.6 μmol) in diethyl ether (1.5 mL) was added. Then, after stirring the reaction mixture at room temperature for 10 minutes, the reaction mixture was quenched by adding a saturated aqueous solution of sodium hydrogen carbonate (5 mL). The resulting mixture was diluted with diethyl ether (20 mL) and then filtered through cotton and celite to remove molecular sieves from the mixture. The filtrate was extracted with ethyl acetate (30 mL), the extracts were combined, and this was washed with saturated brine (5 mL). The organic layer was further dried over anhydrous magnesium sulfate, filtered through a cotton plug, and the solvent was evaporated to give a crude product as a mixture of anomeric isomers. The yield of dihydrocholesteryl 2,4-di-O-benzyl-3,6-O- [bibenzylbis-2,2 '-(methylene)]-D-glucopyranoside in crude product is 1 H-NMR (solvent: CDCl The yield is 74% as determined using 3 , standard substance: acetone), and the anomeric isomer ratio determined from the ratio of the integrated value of the anomeric hydrogen peak is α / β = 96/4 The
 ジヒドロコレステリル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジルビス-2,2’-(メチレン)]-α-D-グルコピラノシドの理化学的性質は以下の通りである。
[α] 22=+41.8(c=0.15、CHCl
IR(ATR):3062, 3027, 2929, 2864, 1731, 1604, 1495, 1454, 1381, 1259, 1215, 1148, 1070, 1027, 954, 805, 750, 697cm-1
H-NMR(400MHz、CDCl):δppm
7.49-7.27 (m, 10 H), 7.25-7.02 (m, 8 H), 5.03 (d, J = 3.4 Hz, 1 H), 4.72 (d, J= 12.3 Hz, 1 H), 4.64 (d, J = 12.3 Hz, 1 H), 4.52 (d, J = 9.7 Hz, 1 H), 4.45 (s, 2 H), 4.35 (d, J = 12.2 Hz, 1 H), 4.27 (d, J = 9.7 Hz, 1 H), 4.20-4.16 (m, 2 H), 4.05 (dd, J = 6.9, 5.0 Hz, 1 H), 3.95 (br d, J = 6.6 Hz, 1 H), 3.75 (dd, J = 10.8, 3.2 Hz, 1 H), 3.69-3.66 (m, 2 H), 3.48 (dddd, J= 15.6, 9.6, 4.6, 4.6 Hz, 1 H), 3.05-2.96 (m, 4 H), 1.97-1.17 (m, 25 H), 1.16-0.85 (m, 15 H), 0.79 (s, 3 H), 0.64 (s, 3 H)
13C-NMR(100MHz、CDCl):δppm
141.8 (s), 139.7 (s), 138.9 (s), 138.8 (s), 136.6 (s), 135.7 (s), 131.6 (d), 130.9 (d), 129.1 (d), 129.0 (d), 128.8 (d), 129.1-127.9 (9個のダブレットが重複: 5個のピークを観測), 127.6 (d), 127.4 (d), 126.4 (d), 126.2 (d), 94.6 (d), 79.4 (d), 77.2 (d), 75.3 (d), 73.1 (d), 73.1 (t), 72.3 (t), 71.8 (d), 71.6 (t), 69.9 (t), 64.9 (t), 56.7 (d), 56.5 (d), 54.5 (d), 45.2 (d), 42.8 (s), 40.2 (t), 39.7 (t), 37.1 (t), 36.3 (t), 36.1 (t), 35.9 (d), 35.8 (s), 35.7 (d), 33.5 (t), 33.3 (t), 32.3 (t), 28.9 (t), 28.4 (t), 28.2 (d), 27.9 (t), 24.4 (t), 24.0 (t), 23.0 (q), 22.7 (q), 21.4 (t), 18.8 (q), 12.5 (q), 12.2 (q)
HRMS-ESI(m/z):[M+Na]
計算値(C6384 23NaOとして)959.6166、実測値959.6138。
ジヒドロコレステリル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジルビス-2,2’-(メチレン)]-β-D-グルコピラノシドの理化学的性質は以下の通りである。
[α] 23=+12.3(c=0.065、CHCl)、
IR (ATR):3036, 3027, 2925, 2853, 1729, 1604, 1494, 1454, 1377, 1261, 1214, 1151, 1071, 1029, 954, 804, 751, 698 cm-1
1H NMR (400 MHz, CDCl3):δppm
7.44-7.28 (m, 10 H), 7.23-7.08 (m, 8 H), 4.93 (d, J = 7.1 Hz, 1 H), 4.87 (d, J = 12.1 Hz, 1 H), 4.71 (d, J = 12.4 Hz, 1 H), 4.42 (d, J = 10.3 Hz, 1 H), 4.37 (d, J = 10.1 Hz, 1 H), 4.37 (d, J = 12.4 Hz, 1 H), 4.28 (d, J = 12.1 Hz, 1 H), 4.27 (d, J = 10.8 Hz, 1 H), 4.18 (d, J = 10.5 Hz, 1 H), 4.04 (m, 1 H), 3.82 (dd, J = 2.1, 1.8 Hz, 1 H), 3.79 (dd, J = 2.3, 2.1 Hz, 1 H), 3.65-3.55 (m, 4 H), 3.02-2.86 (m, 4 H), 2.09-1.62 (m, 7 H), 1.51-0.92 (m, 24 H), 0.90 (d, J = 6.6 Hz, 3 H), 0.86 (d, J = 8.2 Hz, 3 H), 0.86 (d, J = 6.6 Hz, 3 H), 0.79 (s, 3 H), 0.64 (s, 3 H)、
13C NMR (100 MHz, CDCl3):δppm
141.9 (s), 141.4 (s), 139.1 (s), 138.0 (s), 135.8 (s), 135.4 (s), 131.5 (d), 131.2 (d), 129.2 (d), 128.7 (d), 128.4-128.3 (8個のダブレットが重複: 4個のピークを観測), 128.1 (d, 2C), 127.6 (d, 2C), 126.3 (d), 126.1 (d), 99.4 (d), 81.4 (d), 81.0 (d), 78.6 (d), 76.1 (d), 73.5 (t), 73.3 (d), 72.5 (t), 71.1 (t), 70.4 (t), 69.9 (t), 54.6 (d), 56.4 (d), 54.5 (d), 44.9 (d), 42.7 (s), 40.2 (t), 39.7 (t), 37.2 (t), 36.3 (t), 36.0 (d), 35.8 (s), 35.6 (d), 34.9 (t), 33.2 (t, 2C), 32.3 (t), 29.8 (t), 29.0 (t), 28.4 (t), 28.2 (d), 24.4 (t), 24.0 (t), 23.0 (q), 22.7 (q), 21.4 (t), 18.8 (q), 12.5 (q), 12.2 (q)、
HRMS-ESI(m/z):[M+Na]
計算値(C63H84 23NaO6として)959.6166、実測値959.6145。
The physicochemical properties of dihydrocholesteryl 2,4-di-O-benzyl-3,6-O- [bibenzylbis-2,2 '-(methylene)]-α-D-glucopyranoside are as follows.
[Α] D 22 = + 41.8 (c = 0.15, CHCl 3 )
IR (ATR): 3062, 3027, 2929, 2864, 1731, 1604, 1495, 1454, 1381, 1259, 1215, 1148, 1070, 1027, 954, 805, 750, 697 cm -1
1 H-NMR (400 MHz, CDCl 3 ): δ ppm
7.49-7.27 (m, 10 H), 7.25-7.02 (m, 8 H), 5.03 (d, J = 3.4 Hz, 1 H), 4.72 (d, J = 12.3 Hz, 1 H), 4.64 (d, J) J = 12.3 Hz, 1 H), 4.52 (d, J = 9.7 Hz, 1 H), 4.45 (s, 2 H), 4.35 (d, J = 12.2 Hz, 1 H), 4.27 (d, J = 9.7) Hz, 1 H), 4.20-4.16 (m, 2 H), 4.05 (dd, J = 6.9, 5.0 Hz, 1 H), 3.95 (br d, J = 6.6 Hz, 1 H), 3.75 (dd, J = 10.8, 3.2 Hz, 1 H), 3.69-3.66 (m, 2 H), 3.48 (dddd, J = 15.6, 9.6, 4.6, 4.6 Hz, 1 H), 3.05-2.96 (m, 4 H), 1.97 -1.17 (m, 25 H), 1.16-0.85 (m, 15 H), 0.79 (s, 3 H), 0.64 (s, 3 H)
13 C-NMR (100 MHz, CDCl 3 ): δ ppm
141.8 (s), 139.7 (s), 138.9 (s), 136.6 (s), 135.7 (s), 131.6 (s), 131.6 (d), 130.9 (d), 129.1 (d), 129.0 (d), 128.8 (d), 129.1-127.9 (9 doublets overlap: 5 peaks are observed), 127.6 (d), 127.4 (d), 126.4 (d), 126.2 (d), 94.6 (d), 79.4 (d), 77.2 (d), 75.3 (d), 73.1 (d), 73.1 (t), 72.3 (t), 71.8 (d), 71.6 (t), 69.9 (t), 64.9 (t), 56.7 (d), 56.5 (d), 54.5 (d), 45.2 (d), 42.8 (s), 40.2 (t), 39.7 (t), 37.1 (t), 36.3 (t), 36.1 (t), 35.9 (d), 35.8 (s), 35.7 (d), 33.5 (t), 33.3 (t), 32.3 (t), 28.9 (t), 28.4 (t), 28.2 (d), 27.9 (t), 24.4 (t), 24.0 (t), 23.0 (q), 22.7 (q), 21.4 (t), 18.8 (q), 12.5 (q), 12.2 (q)
HRMS-ESI (m / z): [M + Na] +
Calculated (C 63 H 84 23 NaO 6 as) 959.6166, found 959.6138.
The physicochemical properties of dihydrocholesteryl 2,4-di-O-benzyl-3,6-O- [bibenzylbis-2,2 '-(methylene)]-β-D-glucopyranoside are as follows.
[Α] D 23 = +12.3 (c = 0.065, CHCl 3 ),
IR (ATR): 3036, 3027, 2925, 1729, 1604, 1454, 1377, 1261, 1214, 1151, 1071, 1029, 954, 804, 751, 698 cm -1 ,
1 H NMR (400 MHz, CDCl 3 ): δ ppm
7.44-7.28 (m, 10 H), 7.23-7.08 (m, 8 H), 4.93 (d, J = 7.1 Hz, 1 H), 4.87 (d, J = 12.1 Hz, 1 H), 4.71 (d, J) J = 12.4 Hz, 1 H), 4.42 (d, J = 10.3 Hz, 1 H), 4.37 (d, J = 10.1 Hz, 1 H), 4.37 (d, J = 12.4 Hz, 1 H), 4.28 ( d, J = 12.1 Hz, 1 H), 4.27 (d, J = 10.8 Hz, 1 H), 4.18 (d, J = 10.5 Hz, 1 H), 4.04 (m, 1 H), 3.82 (dd, J = 2.1, 1.8 Hz, 1 H), 3.79 (dd, J = 2.3, 2.1 Hz, 1 H), 3.65-3.55 (m, 4 H), 3.02-2.86 (m, 4 H), 2.09-1.62 (m , 7 H), 1.51-0.92 (m, 24 H), 0.90 (d, J = 6.6 Hz, 3 H), 0.86 (d, J = 8.2 Hz, 3 H), 0.86 (d, J = 6.6 Hz, 3 H), 0.79 (s, 3 H), 0.64 (s, 3 H),
13 C NMR (100 MHz, CDCl 3 ): δ ppm
141.9 (s), 141.4 (s), 139.1 (s), 138.0 (s), 135.8 (s), 135.4 (s), 131.5 (d), 131.2 (d), 129.2 (d), 128.7 (d), 128.4-128.3 (8 doublets overlap: 4 peaks are observed), 128.1 (d, 2C), 127.6 (d, 2C), 126.3 (d), 126.1 (d), 99.4 (d), 81.4 ( d), 81.0 (d), 78.6 (d), 76.1 (d), 73.5 (t), 73.3 (d), 72.5 (t), 71.1 (t), 70.4 (t), 69.9 (t), 54.6 ( d), 56.4 (d), 54.5 (d), 44.9 (d), 42.7 (s), 40.2 (t), 39.7 (t), 37.2 (t), 36.3 (t), 36.0 (d), 35.8 ( s), 35.6 (d), 34.9 (t), 33.2 (t, 2C), 32.3 (t), 29.8 (t), 29.0 (t), 28.4 (t), 28.2 (d), 24.4 (t), 24.0 (t), 23.0 (q), 22.7 (q), 21.4 (t), 18.8 (q), 12.5 (q), 12.2 (q),
HRMS-ESI (m / z): [M + Na] +
Calculated (C 63 H 84 23 NaO 6 as) 959.6166, found 959.6145.
 実施例20~24 Examples 20 to 24
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 シクロヘキシルメタノールに代えて、下記表3に記載のアルコールを用いた他は、実施例3と同様の方法により、反応を行った。得られた化合物の収率及びアノマー異性体の比率を下記表3に示す。実施例20~23はH-NMR(溶媒:CDCl、標準物質:アセトン)を用いて求めた収率であり、実施例24は単離収率である。なお、得られた化合物は接触水素添加により、2及び4位等のベンジル基、3及び6位のビベンジル2,2’-ビスメチレン基を脱保護した後、各アルコールを無水酢酸とピリジンを用いてアセチル化することで既知化合物へと誘導し、α/βの異性体を同定した。 The reaction was performed in the same manner as in Example 3 except that the alcohol described in Table 3 below was used instead of cyclohexylmethanol. The yield of the resulting compound and the ratio of anomers are shown in Table 3 below. Examples 20 to 23 are the yields determined using 1 H-NMR (solvent: CDCl 3 , standard substance: acetone), and Example 24 is the isolated yield. The resulting compound is subjected to catalytic hydrogenation to deprotect benzyl groups such as 2 and 4 and bibenzyl 2,2'-bismethylene groups at 3 and 6 and then using each alcohol with acetic anhydride and pyridine. Acetylation led to known compounds, and α / β isomers were identified.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 実施例20で得られた化合物の理化学的性質は以下の通りである。
・α体
[α] 24=+31.4(c=0.615、CHCl)、
IR (ATR):3041, 3027, 2922, 2868, 1733, 1605, 1540, 1495, 1455, 1368, 1216, 1095, 1028, 921, 850, 821 cm-1
1H NMR (400 MHz, CDCl3):δppm
7.44-7.27 (m, 11 H), 7.24-7.09 (m, 7 H), 5.06 (d, J = 4.1 Hz, 1 H), 4.82 (d, J = 12.1 Hz, 1 H), 4.75 (d, J = 10.1 Hz, 1 H), 4.62 (d, J = 12.1 Hz, 1 H), 4.49 (d, J = 10.8 Hz, 1 H), 4.35 (d, J = 11.9, 1 H), 4.3 (d, J = 10.8, 1 H), 4.23 (d, J = 10.1, 1 H), 4.21 (d, J = 11.9 Hz, 1 H), 4.07 (br d, J = 7.3 Hz, 1 H), 4.01 (m, 6.6 Hz, 2 H), 3.78-3.71 (m 3 H), 3.49 (dt, J = 10.5, 4.1 Hz, 1 H), 4.19-2.89 (m, 4 H), 2.38 (ddt, J = 16.5, 7.1, 2.5 Hz, 1 H), 2.00 (br d, J = 11.9 Hz, 1 H), 1.67-1.60 (m, 2 H), 1.35-1.26 (m, 3 H), 0.95-0.82 (m, 2 H, メチルと重複), 0.88 (d, J= 6.5 Hz, 3 H), 0.85 (d, J = 6.9 Hz, 3 H), 0.78 (d, J = 6.9 Hz, 3 H)、
13C NMR (100 MHz, CDCl3):δppm
142.1 (s), 141.3 (s), 139.2 (s), 138.7 (s), 136.0 (s), 135.9 (s), 131.5 (d), 131.3 (d), 129.3 (d, 2C), 128.7 (d), 128.6 (d), 128.3-128.2 (d, 4個のダブレットが重複: 3個のピークを観測), 127.9 (d, 2C), 127.7 (d, 2C), 127.5 (d), 127.4 (d), 126.3 (d), 126.2 (d), 92.9 (d), 78.0 (d), 75.6 (d), 75.1 (d), 73.6 (d), 73.4 (t), 73.1 (t), 72.4 (d), 71.2 (t), 69.9 (t), 67.8 (t), 48.2 (d), 40.4 (t), 34.6 (t), 33.8 (t), 33.7 (t), 31.5 (d), 25.1 (d), 23.2 (t), 22.5 (q), 21.3 (q), 16.1 (q)、
HRMS-ESI(m/z):[M+Na]
計算値(C46H56 23NaO6として)727.3975、実測値727.3983。
・β体
[α] 25=+1.3(c=0.59、CHCl)、
IR (ATR):3029, 2922, 2868, 1731, 1604, 1496, 1455, 1365, 1214, 1093, 849, 822, 752 cm-1
1H NMR (400 MHz, CDCl3):δppm
7.42-7.28 (m, 11 H), 7.25-7.11 (m, 7 H), 4.88 (d, J = 7.1 Hz, 1 H), 4.81 (d, J = 11.9 Hz, 1 H), 4.7 (d, J = 11.7 Hz, 1 H), 4.45 (d, J = 10.3 Hz, 1 H), 4.38 (d, J = 10.3 Hz, 1 H), 4.38 (d, J = 11.9 Hz, 1 H), 4.32 (d, J = 11.9 Hz, 1 H), 4.23 (d, J = 10.5 Hz, 1 H), 4.19 (d, J = 10.5 Hz, 1 H), 4.08 (br m, 1 H), 3.83 (br s, 1 H), 3.78 (br s, Hz, 1 H), 3.65 (dd, J = 9.4, 6.6 Hz, 1 H), 4.59 (dd, J = 7.1, 3.2 Hz, 1 H), 3.57 (dd, J = 6.6, 3.2 Hz, 1 H), 3.36 (dt, J = 10.6, 4.4 Hz, 1 H), 3.03-2.87 (m, 4 H), 2.37 (ddt, J = 16.0, 6.9, 2.1 Hz, 1 H), 2.16 (br d, J = 12.1 Hz, 1 H), 1.63-1.59 (m, 3 H), 1.47-1.25 (m, 3 H), 1.09-0.93 (m, 1 H), 0.9 (d, J = 6.4 Hz, 3 H), 0.85 (d, J= 7.1 Hz, 3 H), 0.72 (d, J = 7.1 Hz, 3 H)、
13C NMR (100 MHz, CDCl3):δppm
141.9 (s), 141.4 (s), 139.0 (s), 138.0 (s), 135.8 (s), 135.3 (s), 131.5 (d), 131.2 (d), 129.3 (d), 128.8 (d, 2C), 128.4 (d, 2C), 128.3-128.2 (5個のダブレットが重複: 3個のピークを観測), 128.1 (d, 2C), 127.7 (d, 2C), 126.3 (d), 126.1 (d), 101.7 (d), 81.8 (d), 81.5 (d), 81.4 (d), 76.0 (d), 73.5 (t), 73.2 (d), 72.4 (t), 71.0 (t), 70.6 (t), 69.9 (t), 48.8 (d), 43.5 (t), 34.5 (t), 33.2 (t, 2C), 31.9 (d), 25.0 (d), 23.1 (t), 22.5 (q), 21.4 (q), 16.1 (q)、
HRMS-ESI(m/z):[M+Na]
計算値(C46H56 23NaO6として)727.3975、実測値727.3986。
The physicochemical properties of the compound obtained in Example 20 are as follows.
Α form [α] D 24 = + 31.4 (c = 0.615, CHCl 3 ),
IR (ATR): 3041, 3027, 2922, 2868, 1735, 1540, 1455, 1368, 1216, 1095, 1028, 921, 850, 821 cm -1 ,
1 H NMR (400 MHz, CDCl 3 ): δ ppm
7.44-7.27 (m, 11 H), 7.24-7.09 (m, 7 H), 5.06 (d, J = 4.1 Hz, 1 H), 4.82 (d, J = 12.1 Hz, 1 H), 4.75 (d, J) J = 10.1 Hz, 1 H), 4.62 (d, J = 12.1 Hz, 1 H), 4.49 (d, J = 10.8 Hz, 1 H), 4.35 (d, J = 11.9, 1 H), 4.3 (d , J = 10.8, 1 H, 4.23 (d, J = 10.1, 1 H), 4.21 (d, J = 11.9 Hz, 1 H), 4.07 (br d, J = 7.3 Hz, 1 H), 4.01 ( m, 6.6 Hz, 2 H), 3.78-3.71 (m 3 H), 3.49 (dt, J = 10.5, 4.1 Hz, 1 H), 4.19-2.89 (m, 4 H), 2.38 (ddt, J = 16.5) , 7.1, 2.5 Hz, 1 H), 2.00 (br d, J = 11.9 Hz, 1 H), 1.67-1.60 (m, 2 H), 1.35-1.26 (m, 3 H), 0.95-0.82 (m, 2 H, overlapping with methyl), 0.88 (d, J = 6.5 Hz, 3 H), 0.85 (d, J = 6.9 Hz, 3 H), 0.78 (d, J = 6.9 Hz, 3 H),
13 C NMR (100 MHz, CDCl 3 ): δ ppm
142.1 (s), 141.3 (s), 139.2 (s), 138.7 (s), 136.0 (s), 135.9 (s), 131.5 (d), 131.3 (d), 129.3 (d, 2C), 128.7 (d) ), 128.6 (d), 128.3-128.2 (d, 4 doublets overlap: 3 peaks are observed), 127.9 (d, 2C), 127.7 (d, 2C), 127.5 (d), 127.4 (d ), 126.3 (d), 126.2 (d), 72.9 (d), 75.6 (d), 75.1 (d), 73.6 (d), 73.4 (t), 73.1 (t), 72.4 (d) ), 71.2 (t), 69.9 (t), 67.8 (t), 48.2 (d), 40.4 (t), 34.6 (t), 33.8 (t), 33.7 (t), 31.5 (d), 25.1 (d) ), 23.2 (t), 22.5 (q), 21.3 (q), 16.1 (q),
HRMS-ESI (m / z): [M + Na] +
Calc. (As C 46 H 56 23 NaO 6 ) 727.3975, found 727.3983.
Β body [α] D 25 = + 1.3 (c = 0.59, CHCl 3 ),
IR (ATR): 3029, 2922, 2868, 1731, 1604, 1496, 1455, 1365, 1214, 1093, 849, 822, 752 cm -1 ,
1 H NMR (400 MHz, CDCl 3 ): δ ppm
7.42-7.28 (m, 11 H), 7.25-7.11 (m, 7 H), 4.88 (d, J = 7.1 Hz, 1 H), 4.81 (d, J = 11.9 Hz, 1 H), 4.7 (d, J) J = 11.7 Hz, 1 H, 4.45 (d, J = 10.3 Hz, 1 H), 4.38 (d, J = 10.3 Hz, 1 H), 4.38 (d, J = 11.9 Hz, 1 H), 4.32 ( d, J = 11.9 Hz, 1 H), 4.23 (d, J = 10.5 Hz, 1 H), 4.19 (d, J = 10.5 Hz, 1 H), 4.08 (br m, 1 H), 3.83 (br s , 1 H), 3.78 (br s, Hz, 1 H), 3.65 (dd, J = 9.4, 6.6 Hz, 1 H), 4.59 (dd, J = 7.1, 3.2 Hz, 1 H), 3.57 (dd, J = 6.6, 3.2 Hz, 1 H, 3.36 (dt, J = 10.6, 4.4 Hz, 1 H), 3.03-2.87 (m, 4 H), 2.37 (ddt, J = 16.0, 6.9, 2.1 Hz, 1 H), 2.16 (br d, J = 12.1 Hz, 1 H), 1.63-1.59 (m, 3 H), 1.47-1.25 (m, 3 H), 1.09-0.93 (m, 1 H), 0.9 (d , J = 6.4 Hz, 3 H), 0.85 (d, J = 7.1 Hz, 3 H), 0.72 (d, J = 7.1 Hz, 3 H),
13 C NMR (100 MHz, CDCl 3 ): δ ppm
141.9 (s), 141.4 (s), 139.0 (s), 138.0 (s), 135.8 (s), 135.3 (s), 131.5 (d), 131.2 (d), 129.3 (d), 128.8 (d, 2C) ), 128.4 (d, 2C), 128.3-128.2 (five doublets overlap: three peaks are observed), 128.1 (d, 2C), 127.7 (d, 2C), 126.3 (d), 126.1 (d ), 101.7 (d), 81.8 (d), 81.5 (d), 81.4 (d), 76.0 (d), 73.5 (t), 73.2 (d), 72.4 (t), 71.0 (t), 70.6 (t) ), 69.9 (t), 48.8 (d), 43.5 (t), 34.5 (t), 33.2 (t, 2 C), 31.9 (d), 25.0 (d), 23.1 (t), 22.5 (q), 21.4 (q), 16.1 (q),
HRMS-ESI (m / z): [M + Na] +
Calculated (as C 46 H 56 23 NaO 6 ) 727.3975, found 727.3986.
 実施例21で得られた化合物の理化学的性質は以下の通りである。
・α体
[α] 23=+14.5(c=0.54、CHCl)、
IR (ATR):3063, 3026, 2951, 2921, 2867, 1735, 1604, 1495, 1454, 1366, 1239, 1216, 1071, 1037, 919, 848, 789 cm-1
1H NMR (400 MHz, CDCl3):δppm
7.52-7.58 (m, 11 H), 7.23-7.02 (m, 7 H), 5.05 (d, J = 3.43 Hz, 1 H), 4.73 (d, J = 11.9 Hz, 1 H), 4.58 (d, J = 11.9 Hz, 1 H), 4.53 (d, J = 9.9 Hz, 1 H), 4.44 (d, J = 11.9 Hz, 1 H), 4.38 (d, J = 11.9 Hz, 1 H), 4.33 (d, J = 11.7 Hz, 1 H), 4.28 (d, J = 9.9 Hz, 1 H), 4.21 (dd, J = 7.8, 4.4 Hz, 1 H), 4.15 (d, J = 11.9 Hz, 1 H), 4.06 (dd, J = 7.1, 4.4 Hz, 1 H), 4.02 (m, 1 H), 3.66 (dd, J = 10.3, 3.0 Hz, 1 H), 3.58 (dd, J = 7.8, 3.4 Hz, 1 H), 3.54 (dd, J = 10.3, 3.9 Hz, 1 H), 3.45 (dt, J = 10.5, 4.4 Hz, 1 H), 3.06-2.85 (m, 4 H), 2.27 (ddt, J = 13.5, 6.6, 1.6 Hz, 1 H), 2.15 (br d, J = 12.4 Hz, 1 H), 1.69-1.58 (m, 3 H), 1.36-1.23 (m, 3 H), 1.11-0.90 (m, 1 H, メチルと重複), 0.88 (d, J= 6.6 Hz, 3 H), 0.85 (d, J = 7.1 Hz, 3 H), 0.71 (d, J = 6.9 Hz, 3 H)、
13C NMR (100 MHz, CDCl3):δppm
141.7 (s), 139.6 (s), 138.7 (s), 138.6 (s), 136.7 (s), 135.7 (s), 131.6 (d), 130.1 (d), 129.0 (d), 129.0 (d), 128.8 (d), 128.4 (d, 2C), 128.2-128.1 (3個のダブレットが重複: 2個のピークを観測), 127.9-127.8 (4個のダブレットが重複: 2個のピークを観測), 127.6 (d), 127.4 (d), 126.4 (d), 126.2 (d), 98.0 (d), 81.6 (d), 79.4 (d), 75.4 (d), 73.2 (d), 73.1 (t), 72.4 (t), 71.8 (d), 71.7 (t), 70.0 (t), 64.6 (t), 48.6 (d), 43.1 (t), 34.5 (t), 33.5 (t), 33.2 (t), 31.8 (d), 25.0 (d), 23.2 (t), 22.5 (q), 21.3 (q), 16.3 (q)、
HRMS-ESI(m/z):[M+Na]
計算値(C46H56 23NaO6として)727.3975、実測値727.3987。
・β体
[α] 22=-26.3(c=0.76、CHCl)、
IR (ATR):3058, 3028, 2949, 2921, 2867, 1731, 1604, 1494, 1454, 1369, 1244, 1216, 1089, 1048, 991, 941, 846, 752 cm-1
1H NMR (400 MHz, CDCl3):δppm
7.44-7.28 (m, 11 H), 7.25-7.10 (m, 7 H), 4.87 (d, J = 7.1 Hz, 1 H), 4.85 (d, J = 12.2 Hz, 1 H), 4.68 (d, J = 12.2 Hz, 1 H), 4.52 (d, J = 10.8 Hz, 1 H), 4.38 (d, J = 11.9 Hz, 1 H), 4.35 (d, J = 10.8 Hz, 1 H), 4.32 (d, J = 11.9 Hz, 1 H), 4.26 (d, J = 10.5 Hz, 1 H), 4.2 (d, J = 10.5 Hz, 1 H), 3.99 (m, 1 H), 3.88 (dd, J = 2.7, 2.3 Hz, 1 H), 3.81 (dd, J = 2.8, 2.7 Hz, 1 H), 3.66 (dd, J = 9.6, 4.8 Hz, 1 H), 3.58 (dd, J = 9.6, 8.2 Hz, 1 H), 3.54 (dd, J = 7.1, 2.8 Hz, 1 H), 3.45 (dt, J = 10.6, 4.4 Hz, 1 H), 3.06-2.85 (m, 4 H), 2.27 (ddt, J = 13.7, 6.6, 2.5 Hz, 1 H), 2.15 (br d, J = 12.2 Hz, 1 H), 1.67-1.61 (m, 2 H), 1.38-1.18 (m, 3 H), 1.03-0.83 (m, 2 H,メチルと重複), 0.90 (d, J= 6.6 Hz, 3 H), 0.86 (d, J = 7.1 Hz, 3 H), 0.75 (d, J = 6.9 Hz, 3 H)、
13C NMR (100 MHz, CDCl3):δppm
141.9 (s), 141.3 (s), 139.2 (s), 138.0 (s), 136.0 (s), 135.6 (s), 131.4 (d), 131.2 (d), 129.4 (d), 128.7 (d), 128.7 (d), 128.4-128.3 (9個のダブレットが重複: 3個のピークを観測), 128.1 (d, 2C), 127.7 (d), 127.6 (d), 98.4 (d), 81.8 (d), 80.9 (d), 77.3 (d), 76.3 (d), 73.4 (t), 73.2 (d), 72.5 (t), 71.2 (t), 70.6 (t), 69.6 (t), 48.2 (d), 41.0 (t), 34.7 (t), 33.4 (t, 2C), 31.7 (d), 25.3 (d), 23.4 (t), 22.5 (q), 21.2 (q), 16.1 (q)、
HRMS-ESI(m/z):[M+Na]
計算値(C46H56 23NaO6として)727.3975、実測値727.3975。
The physicochemical properties of the compound obtained in Example 21 are as follows.
Α form [α] D 23 = + 14.5 (c = 0.54, CHCl 3 ),
IR (ATR): 3063, 3026, 2951, 2921, 2867, 1735, 1495, 1495, 1366, 1239, 1216, 1071, 1037, 919, 848, 789 cm -1 ,
1 H NMR (400 MHz, CDCl 3 ): δ ppm
7.52-7.58 (m, 11 H), 7.23-7.02 (m, 7 H), 5.05 (d, J = 3.43 Hz, 1 H), 4.73 (d, J = 11.9 Hz, 1 H), 4.58 (d, J) J = 11.9 Hz, 1 H), 4.53 (d, J = 9.9 Hz, 1 H), 4.44 (d, J = 11.9 Hz, 1 H), 4.38 (d, J = 11.9 Hz, 1 H), 4.33 ( d, J = 11.7 Hz, 1 H), 4.28 (d, J = 9.9 Hz, 1 H), 4.21 (dd, J = 7.8, 4.4 Hz, 1 H), 4.15 (d, J = 11.9 Hz, 1 H) ), 4.06 (dd, J = 7.1, 4.4 Hz, 1 H), 4.02 (m, 1 H), 3.66 (dd, J = 10.3, 3.0 Hz, 1 H), 3.58 (dd, J = 7.8, 3.4 Hz) , 1 H), 3.54 (dd, J = 10.3, 3.9 Hz, 1 H), 3.45 (dt, J = 10.5, 4.4 Hz, 1 H), 3.06-2.85 (m, 4 H), 2.27 (ddt, J = 13.5, 6.6, 1.6 Hz, 1 H), 2.15 (br d, J = 12.4 Hz, 1 H), 1.69-1.58 (m, 3 H), 1.36-12.23 (m, 3 H), 1.11-0.90 m, 1 H, overlapping with methyl), 0.88 (d, J = 6.6 Hz, 3 H), 0.85 (d, J = 7.1 Hz, 3 H), 0.71 (d, J = 6.9 Hz, 3 H),
13 C NMR (100 MHz, CDCl 3 ): δ ppm
141.7 (s), 139.6 (s), 138.7 (s), 138.6 (s), 135.7 (s), 135.7 (s), 131.6 (d), 130.1 (d), 129.0 (d), 129.0 (d), 128.8 (d), 128.4 (d, 2C), 128.2-128.1 (3 doublets overlap: 2 peaks are observed), 127.9-127.8 (4 doublets overlap: 2 peaks are observed), 127.6 (d), 127.4 (d), 126.4 (d), 126.2 (d), 98.0 (d), 81.6 (d), 79.4 (d), 75.4 (d), 73.2 (d), 73.1 (t), 72.4 (t), 71.8 (d), 71.7 (t), 70.0 (t), 64.6 (t), 48.6 (d), 43.1 (t), 34.5 (t), 33.5 (t), 33.2 (t), 31.8 (d), 25.0 (d), 23.2 (t), 22.5 (q), 21.3 (q), 16.3 (q),
HRMS-ESI (m / z): [M + Na] +
Calc. (As C 46 H 56 23 NaO 6 ) 727.3975, found 727.3987.
Β body [α] D 22 = −26.3 (c = 0.76, CHCl 3 ),
IR (ATR): 3058, 3028, 2949, 2921, 2867, 1731, 1604, 1454, 1364, 1244, 1216, 1089, 1048, 991, 941, 846, 752 cm -1 ,
1 H NMR (400 MHz, CDCl 3 ): δ ppm
7.44-7.28 (m, 11 H), 7.25-7.10 (m, 7 H), 4.87 (d, J = 7.1 Hz, 1 H), 4.85 (d, J = 12.2 Hz, 1 H), 4.68 (d, J) J = 12.2 Hz, 1 H), 4.52 (d, J = 10.8 Hz, 1 H), 4.38 (d, J = 11.9 Hz, 1 H), 4.35 (d, J = 10.8 Hz, 1 H), 4.32 ( d, J = 11.9 Hz, 1 H), 4.26 (d, J = 10.5 Hz, 1 H), 4.2 (d, J = 10.5 Hz, 1 H), 3.99 (m, 1 H), 3.88 (dd, J = 2.7, 2.3 Hz, 1 H), 3.81 (dd, J = 2.8, 2.7 Hz, 1 H), 3.66 (dd, J = 9.6, 4.8 Hz, 1 H), 3.58 (dd, J = 9.6, 8.2 Hz , 1 H), 3.54 (dd, J = 7.1, 2.8 Hz, 1 H), 3.45 (dt, J = 10.6, 4.4 Hz, 1 H), 3.06-2.85 (m, 4 H), 2.27 (ddt, J = 13.7, 6.6, 2.5 Hz, 1 H), 2.15 (br d, J = 12.2 Hz, 1 H), 1.67-1.61 (m, 2 H), 1.38-1.18 (m, 3 H), 1.03-0.83 ( m, 2 H, overlapping with methyl), 0.90 (d, J = 6.6 Hz, 3 H), 0.86 (d, J = 7.1 Hz, 3 H), 0.75 (d, J = 6.9 Hz, 3 H),
13 C NMR (100 MHz, CDCl 3 ): δ ppm
141.9 (s), 141.3 (s), 139.2 (s), 136.0 (s), 135.6 (s), 131.4 (s), 131.4 (d), 131.2 (d), 129.4 (d), 128.7 (d), 128.7 (d), 128.4-128.3 (9 doublets overlap: 3 peaks are observed), 128.1 (d, 2C), 127.7 (d), 127.6 (d), 98.4 (d), 81.8 (d) , 80.9 (d), 77.3 (d), 76.3 (d), 73.4 (t), 73.2 (d), 72.5 (t), 71.2 (t), 70.6 (t), 69.6 (t), 48.2 (d) , 41.0 (t), 34.7 (t), 33.4 (t, 2C), 31.7 (d), 25.3 (d), 23.4 (t), 22.5 (q), 21.2 (q), 16.1 (q),
HRMS-ESI (m / z): [M + Na] +
Calc. (As C 46 H 56 23 NaO 6 ) 727.3975, found 727.3975.
 実施例22で得られた化合物の理化学的性質は以下の通りである。
・α体
[α] 21=+17.3(c=0.5、CHCl)、
IR (ATR):3062, 3022, 2906, 2851, 1730, 1604, 1495, 1454, 1354, 1304, 1216, 1150, 1070, 1043, 982, 941, 909, 812, 754 cm-1
1H NMR (400 MHz, CDCl3):δppm
7.51-7.27 (m, 10 H), 7.24-7.02 (m, 8 H), 5.34 (d, J = 3.7 Hz, 1 H), 4.76 (d, J = 12.4 Hz, 1 H), 4.58 (d, J = 12.4 Hz, 1 H), 4.54 (d, J = 9.9 Hz, 1 H), 4.45 (d, J = 11.9 Hz, 1 H), 4.42 (d, J = 11.9 Hz, 1 H), 4.38 (d, J = 11.9 Hz, 1 H), 4.26 (d, J = 9.9 Hz, 1 H), 4.23 (dd, J = 7.8, 4.8 Hz, 1 H), 4.20 (d, J = 11.9 Hz, 1 H), 4.08-4.03 (m, 2 H), 3.76 (dd, J = 10.8, 2.8 Hz, 1 H), 3.71 (dd, J = 10.8, 2.0 Hz, 1 H), 3.64 (dd, J = 7.8, 3.7 Hz, 1 H), 3.06-2.94 (m, 4 H), 2.12 (br s, 3 H), 1.84 (br d, J = 11.7 Hz, 3 H), 1.79 (br d, J = 11.5 Hz, 3 H), 1.61 (s, 6 H)、
13C NMR (100 MHz, CDCl3):δppm
141.7 (s), 139.6 (s), 138.9 (s), 138.8 (s), 136.8 (s), 135.7 (s), 131.7 (d), 130.8 (d), 129.1 (d), 120.0 (d), 128.8 (d), 128.4 (d, 2C), 128.2 (d, 2C), 128.1 (d), 127.9 (d, 2C), 127.8 (d, 2C), 127.6 (d), 127.4 (d), 126.4 (d), 123.2 (d), 89.2 (d), 79.5 (d), 75.2 (d), 74.4 (s), 73.2 (t), 72.9 (d), 72.2 (t), 71.6 (t), 71.5 (d), 69.9 (t), 64.4 (t), 42.6 (t, 3C), 36.4 (t, 3C), 33.6 (t), 33.4 (t)、
HRMS-ESI(m/z):[M+Na]
計算値(C46H52 23NaO6として)723.3662、実測値723.3652。
・β体
[α] 21=-6.41(c=0.245、CHCl)、
IR (ATR):3062, 3027, 2905, 2852, 1951, 1728, 1604, 1494, 1454, 1354, 1305, 1215, 1071, 1048, 941, 844, 813, 749 cm-1
1H NMR (400 MHz, CDCl3):δppm
7.45-7.27 (m, 10 H), 7.23-7.08 (m, 8 H), 5.10 (d, J = 7.6 Hz, 1 H), 4.89 (d, J = 12.1 Hz, 1 H), 4.72 (d, J = 12.4 Hz, 1 H), 4.42 (d, J = 10.3 Hz, 1 H), 4.37 (d, J = 12.1 Hz, 1 H), 4.36 (d, J = 10.3 Hz, 1 H), 4.29 (d, J = 12.1 Hz, 1 H), 4.26 (d, J = 10.5 Hz, 1 H), 4.14 (d, J = 10.5 Hz, 1 H), 4.01 (m, 1 H), 3.82 (dd, J = 2.4, 2.1 Hz, 1 H), 3.78 (dd, J = 2.8, 2.4 Hz, 1 H), 3.62 (dd, J = 9.4, 5.0 Hz, 1 H), 3.56 (dd, J = 9.4, 6.0 Hz, 1 H), 3.55 (dd, J = 7.6, 2.4 Hz, 1 H), 3.04-2.84 (m, 4 H), 2.14 (br s, 3 H), 1.91 (br d, J = 11.7 Hz, 3 H), 1.8 (br d, J = 11.7 Hz, 3 H), 1.62 (br s, 6 H)、
13C NMR (100 MHz, CDCl3):δppm
141.9 (s), 141.3 (s), 139.2 (s), 138.1 (s), 135.8 (s), 135.5 (s), 131.4 (d), 131.2 (d), 129.2 (d), 128.7 (d), 128.6 (d), 128.4 (d, 2C), 128.3 (d, 3C), 128.2 (d, 4C), 127.6 (d), 127.5 (d), 126.3 (d), 126.1 (d), 93.7 (d), 81.9 (d), 81.0 (d), 75.9 (d), 74.9 (s), 73.5 (t), 73.3 (d), 72.5 (t), 71.0 (t), 70.5 (t), 69.6 (t), 42.9 (t, 3C), 36.5 (t, 3C), 33.1 (t, 2C), 30.8 (d, 3C)、
HRMS-ESI(m/z):[M+Na]
計算値(C46H52 23NaO6として)723.3662、実測値723.3652。
The physicochemical properties of the compound obtained in Example 22 are as follows.
Α form [α] D 21 = + 17.3 (c = 0.5, CHCl 3 ),
IR (ATR): 3062, 3022, 2906, 285, 1730, 1604, 1454, 1354, 1304, 1216, 1150, 1070, 1043, 982, 941, 909, 812, 754 cm- 1 ,
1 H NMR (400 MHz, CDCl 3 ): δ ppm
7.51-7.27 (m, 10 H), 7.24-7.02 (m, 8 H), 5.34 (d, J = 3.7 Hz, 1 H), 4. 76 (d, J = 12.4 Hz, 1 H), 4.58 (d, J) J = 12.4 Hz, 1 H), 4.54 (d, J = 9.9 Hz, 1 H), 4.45 (d, J = 11.9 Hz, 1 H), 4.42 (d, J = 11.9 Hz, 1 H), 4.38 ( d, J = 11.9 Hz, 1 H), 4.26 (d, J = 9.9 Hz, 1 H), 4.23 (dd, J = 7.8, 4.8 Hz, 1 H), 4.20 (d, J = 11.9 Hz, 1 H) ), 4.08-4.03 (m, 2 H), 3. 76 (dd, J = 10.8, 2.8 Hz, 1 H), 3.71 (dd, J = 10.8, 2.0 Hz, 1 H), 3.64 (dd, J = 7.8, 3.7 Hz, 1 H), 3.06-2.94 (m, 4 H), 2.12 (br s, 3 H), 1. 84 (br d, J = 11.7 Hz, 3 H), 1.79 (br d, J = 11.5 Hz, 3 H), 1.61 (s, 6 H),
13 C NMR (100 MHz, CDCl 3 ): δ ppm
141.7 (s), 139.6 (s), 138.9 (s), 136.8 (s), 135.7 (s), 131.7 (s), 131.7 (d), 130.8 (d), 129.1 (d), 120.0 (d), 128.8 (d), 128.4 (d, 2C), 128.2 (d, 2C), 128.1 (d), 127.9 (d, 2C), 127.8 (d, 2C), 127.6 (d), 127.4 (d), 126.4 ( d), 123.2 (d), 89.2 (d), 79.5 (d), 75.2 (d), 74.4 (s), 73.2 (t), 72.9 (d), 72.2 (t), 71.6 (t), 71.5 ( d), 69.9 (t), 64.4 (t), 42.6 (t, 3C), 36.4 (t, 3C), 33.6 (t), 33.4 (t),
HRMS-ESI (m / z): [M + Na] +
Calculated (C 46 H 52 23 NaO 6 as) 723.3662, found 723.3652.
Β body [α] D 21 = −6.41 (c = 0.245, CHCl 3 ),
IR (ATR): 3062, 3027, 2905, 2951, 1728, 1604, 1454, 1354, 1305, 1215, 1071, 1048, 941, 844, 813, 749 cm -1 ,
1 H NMR (400 MHz, CDCl 3 ): δ ppm
7.45-7.27 (m, 10 H), 7.23-7.08 (m, 8 H), 5.10 (d, J = 7.6 Hz, 1 H), 4.89 (d, J = 12.1 Hz, 1 H), 4.72 (d, J) J = 12.4 Hz, 1 H), 4.42 (d, J = 10.3 Hz, 1 H), 4.37 (d, J = 12.1 Hz, 1 H), 4.36 (d, J = 10.3 Hz, 1 H), 4.29 ( d, J = 12.1 Hz, 1 H), 4.26 (d, J = 10.5 Hz, 1 H), 4.14 (d, J = 10.5 Hz, 1 H), 4.01 (m, 1 H), 3.82 (dd, J = 2.4, 2.1 Hz, 1 H), 3. 78 (dd, J = 2.8, 2.4 Hz, 1 H), 3.62 (dd, J = 9.4, 5.0 Hz, 1 H), 3.56 (dd, J = 9.4, 6.0 Hz , 1 H), 3.55 (dd, J = 7.6, 2.4 Hz, 1 H), 3.04-2.84 (m, 4 H), 2.14 (br s, 3 H), 1.91 (br d, J = 11.7 Hz, 3 H), 1.8 (br d, J = 11.7 Hz, 3 H), 1.62 (br s, 6 H),
13 C NMR (100 MHz, CDCl 3 ): δ ppm
141.9 (s), 141.3 (s), 139.2 (s), 135.8 (s), 135.5 (s), 131.4 (s), 131.4 (d), 131.2 (d), 129.2 (d), 128.7 (d), 128.6 (d), 128.4 (d, 2C), 128.3 (d, 3C), 128.2 (d, 4C), 127.6 (d), 127.5 (d), 126.3 (d), 126.1 (d), 93.7 (d) , 81.9 (d), 81.0 (d), 75.9 (d), 74.9 (s), 73.5 (t), 73.3 (d), 72.5 (t), 71.0 (t), 70.5 (t), 69.6 (t) , 42.9 (t, 3C), 36.5 (t, 3C), 33.1 (t, 2C), 30.8 (d, 3C),
HRMS-ESI (m / z): [M + Na] +
Calculated (C 46 H 52 23 NaO 6 as) 723.3662, found 723.3652.
 実施例23で得られた化合物の理化学的性質は以下の通りである。
・α体
[α] 24=+29.6(c=0.48、CHCl)、
IR (ATR):3062, 3029, 2905, 2859, 1604, 1496, 1454, 1362, 1215, 1159, 1072, 1028, 912, 753, 698, 667, 630, 610 cm-1
1H NMR (400 MHz, CDCl3):δppm
7.41-7.27 (m, 21 H), 7.24-7.00 (m, 12 H), 5.01 (d, J = 3.2 Hz, 1 H), 4.94 (d, J = 11.0 Hz, 1 H), 4.82 (d, J = 11.0 Hz, 1 H), 4.81 (d, J = 11.0 Hz, 1 H), 4.75 (d, J = 11.7 Hz, 1 H), 4.72 (d, J = 11.7 Hz, 1 H), 4.68 (d, J = 11.0 Hz, 1 H), 4.6 (d, J = 12.4 Hz, 1 H), 4.59 (d, J = 12.4 Hz, 1 H), 4.56 (d, J = 11.2 Hz, 1 H), 4.55 (d, J = 3.4 Hz, 1 H H-1), 4.42 (d, J = 11.2 Hz, 1 H), 4.36 (d, J = 11.2 Hz, 1 H), 4.32 (d, J = 11.9 Hz, 1 H), 4.2 (d, J = 11.2 Hz, 1 H), 4.13 (d, J = 11.9 Hz, 1 H), 4.13 (dd, J = 7.0, 3.8 Hz, 1 H), 4.02 (dd, J = 3.8, 1.8 Hz, 1 H), 4 (dd, J = 3.2, 1.8 Hz, 1 H), 3.98-3.94 (m, 2 H), 3.76 (dd, J = 7.0, 3.2 Hz, 1 H), 3.76-3.73 (m, 1 H), 3.90-3.57 (m, 4 H), 3.43 (dd, J = 3.4, 9.6 Hz, 1 H), 3.32 (s, 3 H), 3.10-2.91 (m, 4 H)、
13C NMR (100 MHz, CDCl3):δppm
141.8 (s), 140.3 (s), 139.1 (s), 138.9 (s), 138.7 (s), 138.7 (s), 138.4 (s), 136.2 (s), 135.7 (s), 131.5 (d), 131.0 (d), 129.2 (d), 129.1 (d), 128.8 (d), 128.5-128.4 (10個のダブレットが重複: 3個のピークを観測), 128.2 (d, 2C), 128.2 (d, 2C), 127.9 (d, 2C), 127.9 (d, 2C), 127.8 (d, 2C), 127.7-127.6 (5個のダブレットが重複: 3個のピークを観測), 127.4 (d), 126.4 (d), 126.2 (d), 98.2 (d), 96.8 (d), 82.2 (d), 80.1 (d), 78.5 (d), 78.0 (d), 75.7 (t), 75.1 (t), 74.8 (d), 73.5 (t), 73.0 (1個のダブレット及び1個のトリプレット), 72.5 (t), 72.4 (d), 71.6 (t), 70.4 (d), 69.6 (t), 66.4 (t), 66.1 (t), 55.2 (q), 33.6 (t), 33.5 (t)、
HRMS-ESI(m/z):[M+Na]
計算値(C64H68 23NaO11として)1035.4659、実測値1035.4659。
The physicochemical properties of the compound obtained in Example 23 are as follows.
Α form [α] D 24 = +29.6 (c = 0.48, CHCl 3 ),
IR (ATR): 3062, 3029, 2905, 2859, 1604, 1496, 1362, 1215, 1159, 1072, 912, 753, 698, 667, 630, 610 cm -1 ,
1 H NMR (400 MHz, CDCl 3 ): δ ppm
7.41-7.27 (m, 21 H), 7.24-7.00 (m, 12 H), 5.01 (d, J = 3.2 Hz, 1 H), 4.94 (d, J = 11.0 Hz, 1 H), 4.82 (d, J) J = 11.0 Hz, 1 H), 4.81 (d, J = 11.0 Hz, 1 H), 4.75 (d, J = 11.7 Hz, 1 H), 4.72 (d, J = 11.7 Hz, 1 H), 4.68 ( d, J = 11.0 Hz, 1 H), 4.6 (d, J = 12.4 Hz, 1 H), 4.59 (d, J = 12.4 Hz, 1 H), 4.56 (d, J = 11.2 Hz, 1 H), 4.55 (d, J = 3.4 Hz, 1 H H-1), 4.42 (d, J = 11.2 Hz, 1 H), 4.36 (d, J = 11.2 Hz, 1 H), 4.32 (d, J = 11.9 Hz) , 1 H), 4.2 (d, J = 11.2 Hz, 1 H), 4. 13 (d, J = 11.9 Hz, 1 H), 4. 13 (dd, J = 7.0, 3.8 Hz, 1 H), 4.02 (dd, J J = 3.8, 1.8 Hz, 1 H, 4 (dd, J = 3.2, 1.8 Hz, 1 H), 3.98-3.94 (m, 2 H), 3.76 (dd, J = 7.0, 3.2 Hz, 1 H) , 3.76-3.73 (m, 1 H), 3.90-3.57 (m, 4 H), 3.43 (dd, J = 3.4, 9.6 Hz, 1 H), 3.32 (s, 3 H), 3.10-2.91 (m, 4 H),
13 C NMR (100 MHz, CDCl 3 ): δ ppm
141.8 (s), 140.3 (s), 139.1 (s), 138.9 (s), 138.7 (s), 138.7 (s), 138.4 (s), 136.2 (s), 135.7 (s), 131.5 (d), 131.0 (d), 129.2 (d), 129.1 (d), 128.8 (d), 128.5-128.4 (10 doublets overlap: 3 peaks are observed), 128.2 (d, 2C), 128.2 (d, 2C), 127.9 (d, 2C), 127.9 (d, 2C), 127.8 (d, 2C), 127.7-127.6 (5 doublets overlap: 3 peaks are observed), 127.4 (d), 126.4 (12 d), 126.2 (d), 98.2 (d), 96.8 (d), 82.2 (d), 80.1 (d), 78.5 (d), 78.0 (d), 75.7 (t), 75.1 (t), 74.8 ( d), 73.5 (t), 73.0 (one doublet and one triplet), 72.5 (t), 72.4 (d), 71.6 (t), 70.4 (d), 69.6 (t), 66.4 (t) , 66.1 (t), 55.2 (q), 33.6 (t), 33.5 (t),
HRMS-ESI (m / z): [M + Na] +
Calculated value (as C 64 H 68 23 NaO 11 ) 1035.4659, found 1035.4659.
 実施例24で得られた化合物の理化学的性質は以下の通りである。
・α体
[α] 23=-0.752(c=0.355、CHCl)、
IR (ATR):3055, 3020, 2980, 2936, 2901, 1495, 1454, 1381, 1256, 1212, 1167, 1071, 998, 910, 863, 734 cm-1
1H NMR (400 MHz, CDCl3):δppm
7.44-7.15 (m, 16 H), 7.06-7.04 (m, 2 H), 5.5 (d, J = 4.8 Hz, 1 H), 4.98 (d, J = 3.6 Hz, 1 H), 4.77 (d, J = 12.4 Hz, 1 H), 4.63 (d, J = 12.4 Hz, 1 H), 4.57-4.55 (m, 2 H), 4.41 (d, J = 11.6 Hz, 1 H), 4.37 (d, J = 11.6 Hz, 1 H), 4.34 (d, J = 12.0 Hz, 1 H), 4.32 (dd, J = 8.0, 2.0 Hz, 1 H), 4.31 (d, J = 11.6 Hz, 1 H), 4.28 (dd, J = 4.8, 2.8 Hz, 1 H), 4.28 (d, J = 12.0 Hz, 1 H), 4.14 (dd, J = 6.8, 3.6 Hz, 1 H), 4.07-4.01 (m, 3 H), 3.83 (dd, J = 10.8, 6.0 Hz, 1 H), 3.77 (dd, J = 10.8, 3.2 Hz, 1 H), 3.73-3.67 (m, 3 H), 3.09-2.91 (m, 4 H), 1.49 (s, 3 H), 1.43 (s, 3 H), 1.31 (s, 3 H), 1.28 (s, 3 H)、
13C NMR (100 MHz, CDCl3):δppm
141.7 (s), 140.1 (s), 138.8 (s), 138.7 (s), 136.3 (s), 135.7 (s), 131.6 (d), 131.0 (d), 129.2 (d), 129.0 (d), 128.8 (d), 128.4 (d, 2C), 128.4 (d), 128.2 (d, 2C), 127.8 (d, 2C), 127.8 (d, 2C), 127.6 (d), 127.4 (d), 126.4 (d), 126.3 (d), 109.2 (s), 108.7 (s), 96.8 (d), 96.4 (d), 78.8 (d), 74.9 (d), 73.0 (t), 72.8 (d), 72.4 (t), 72.1 (d), 71.4 (t), 70.9 (d), 70.8 (d), 70.7 (d), 69.7 (t), 66.7 (t), 66.2 (d), 65.7 (t), 33.5 (t), 33.3 (t), 26.3 (q), 26.2 (q), 25.1 (q), 24.6 (q)、
HRMS-ESI(m/z):[M+Na]
計算値(C48H56 23NaO11として)831.372、実測値831.3733。
The physicochemical properties of the compound obtained in Example 24 are as follows.
Α form [α] D 23 = −0.752 (c = 0.355, CHCl 3 ),
IR (ATR): 3055, 3020, 2980, 2936, 2901, 1495, 1454, 1381, 1256, 1212, 1167, 1071, 998, 910, 863, 734 cm -1 ,
1 H NMR (400 MHz, CDCl 3 ): δ ppm
7.44-7.15 (m, 16 H), 7.06-7.04 (m, 2 H), 5.5 (d, J = 4.8 Hz, 1 H), 4. 98 (d, J = 3.6 Hz, 1 H), 4.77 (d, J) J = 12.4 Hz, 1 H), 4.63 (d, J = 12.4 Hz, 1 H), 4.57-4.55 (m, 2 H), 4.41 (d, J = 11.6 Hz, 1 H), 4.37 (d, J = 11.6 Hz, 1 H), 4.34 (d, J = 12.0 Hz, 1 H), 4.32 (dd, J = 8.0, 2.0 Hz, 1 H), 4.31 (d, J = 11.6 Hz, 1 H), 4.28 (dd, J = 4.8, 2.8 Hz, 1 H), 4.28 (d, J = 12.0 Hz, 1 H), 4.14 (dd, J = 6.8, 3.6 Hz, 1 H), 4.07-4.01 (m, 3 H ), 3.83 (dd, J = 10.8, 6.0 Hz, 1 H), 3.77 (dd, J = 10.8, 3.2 Hz, 1 H), 3.73-3.67 (m, 3 H), 3.09-2.91 (m, 4 H) ), 1.49 (s, 3 H), 1.43 (s, 3 H), 1.31 (s, 3 H), 1.28 (s, 3 H),
13 C NMR (100 MHz, CDCl 3 ): δ ppm
141.7 (s), 140.1 (s), 138.8 (s), 138.7 (s), 136.3 (s), 135.7 (s), 131.6 (d), 131.0 (d), 129.2 (d), 129.0 (d), 128.8 (d), 128.4 (d, 2C), 128.4 (d), 128.2 (d, 2C), 127.8 (d, 2C), 127.8 (d, 2C), 127.6 (d), 127.4 (d), 126.4 ( d), 126.3 (d), 109.2 (s), 108.7 (s), 96.8 (d), 96.4 (d), 78.8 (d), 74.9 (d), 73.0 (t), 72.8 (d), 72.4 ( t), 72.1 (d), 71.4 (t), 70.9 (d), 70.8 (d), 70.7 (d), 69.7 (t), 66.7 (t), 66.2 (d), 65.7 (t), 33.5 ( t), 33.3 (t), 26.3 (q), 26.2 (q), 25.1 (q), 24.6 (q),
HRMS-ESI (m / z): [M + Na] +
Calculated value (as C 48 H 56 23 NaO 11 ) 831 .372, found 831.3733.
 実施例25 Example 25
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
フェニル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-1-チオ-β-D-グルコピラノシドのα-グリコシル化反応
 活性モレキュラーシーブス4A(82.8mg)、フェニル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-1-チオ-β-D-グルコピラノシド (17.9mg、 27.2μmol)、及び酢酸エチル(1.4mL)の混合物を、0℃で5分間攪拌した。この混合物にN-ブロモスクシンイミド(NBS;5.1mg、29μmol)及びシクロヘキシルメタノール(3.7mg、33μmol)を0℃で加え、0℃で2時間攪拌した。その後、反応混合物に10%亜硫酸ナトリウム水溶液(10mL)を加えて反応をクエンチし、綿及びセライトにより濾過することでモレキュラーシーブス4Aを除いた。濾液を酢酸エチル(20mL×2)で抽出し、抽出物を合わせ、これを10%亜硫酸ナトリウム水溶液(20mL)及び飽和食塩水(20mL)で洗浄した。洗浄した抽出物を無水硫酸マグネシウムで乾燥し、綿栓濾過した後、溶媒を留去し、粗生成物を得た。粗生成物中のシクロヘキシルメチル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-D-グルコピラノシドの収率及びアノマー異性体の比率はH-NMR(溶媒:CDCl、標準物質:アセトン、α/βはシクロヘキシルメトキシ基のOCHの水素ピークの積算値の比率)より求めたところ、収率は71%であり、また、アノマー異性体比率はα/β=96/4であった。
Α-Glycosylation reaction of phenyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-1-thio-β-D-glucopyranoside Molecular sieves 4A (82.8 mg), phenyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-1-thio-β-D-glucopyranoside (17.9 mg A mixture of 27.2 μmol) and ethyl acetate (1.4 mL) was stirred at 0 ° C. for 5 minutes. To this mixture was added N-bromosuccinimide (NBS; 5.1 mg, 29 μmol) and cyclohexylmethanol (3.7 mg, 33 μmol) at 0 ° C. and stirred at 0 ° C. for 2 hours. The reaction mixture was then quenched with 10% aqueous sodium sulfite solution (10 mL) and filtered through cotton and celite to remove molecular sieves 4A. The filtrate was extracted with ethyl acetate (20 mL × 2), the extracts were combined, and this was washed with 10% aqueous sodium sulfite solution (20 mL) and saturated brine (20 mL). The washed extract was dried over anhydrous magnesium sulfate, filtered through a cotton plug, and the solvent was evaporated to give a crude product. The yield and ratio of anomeric isomers of cyclohexylmethyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-D-glucopyranoside in the crude product are The yield is 71% as determined from 1 H-NMR (solvent: CDCl 3 , standard substance: acetone, α / β is the ratio of the integrated value of the OCH 2 hydrogen peaks of the cyclohexylmethoxy group), and the yield is 71%. The isomer ratio was α / β = 96/4.
 実施例26
フェニル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-1-チオ-α-D-グルコピラノシドのα-グリコシル化反応
 活性モレキュラーシーブス4A(33.1mg)、フェニル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-1-チオ-α-D-グルコピラノシド(7.4mg、11μmol)、及び酢酸エチル(0.6mL)の混合物を、0℃で5分間攪拌した。この混合物にN-ブロモスクシンイミド(NBS;2.4mg、13μmol)及びシクロヘキシルメタノール(1.5mg、13μmol)を0℃で加え、0℃で1時間攪拌した。その後、反応混合物に10%亜硫酸ナトリウム水溶液(10mL)を加えて反応をクエンチし、綿及びセライトにより濾過することでモレキュラーシーブス4Aを除いた。濾液を酢酸エチル(10mL×3)で抽出し、抽出物を合わせ、これを10%亜硫酸ナトリウム水溶液(10mL)及び飽和食塩水(10mL)で洗浄した。洗浄した抽出物を無水硫酸マグネシウムで乾燥し、綿栓濾過した後、溶媒を留去し、粗生成物を得た。粗生成物中のシクロヘキシルメチル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-D-グルコピラノシドの収率及びアノマー異性体の比率はH-NMR(溶媒:CDCl、標準物質:アセトン、α/βはシクロヘキシルメトキシ基のOCHの水素ピークの積算値の比率)より求めたところ、収率は67%であり、また、アノマー異性体比率はα/β=95/5であった。
Example 26
Α-Glycosylation reaction of phenyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-1-thio-α-D-glucopyranoside Molecular sieves 4A (33.1 mg), phenyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-1-thio-α-D-glucopyranoside (7.4 mg) A mixture of 11 μmol) and ethyl acetate (0.6 mL) was stirred at 0 ° C. for 5 minutes. To this mixture was added N-bromosuccinimide (NBS; 2.4 mg, 13 μmol) and cyclohexylmethanol (1.5 mg, 13 μmol) at 0 ° C. and stirred at 0 ° C. for 1 hour. The reaction mixture was then quenched with 10% aqueous sodium sulfite solution (10 mL) and filtered through cotton and celite to remove molecular sieves 4A. The filtrate was extracted with ethyl acetate (10 mL × 3), the extracts were combined, and this was washed with 10% aqueous sodium sulfite solution (10 mL) and saturated brine (10 mL). The washed extract was dried over anhydrous magnesium sulfate, filtered through a cotton plug, and the solvent was evaporated to give a crude product. The yield and ratio of anomeric isomers of cyclohexylmethyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-D-glucopyranoside in the crude product are The yield is 67% as determined from 1 H-NMR (solvent: CDCl 3 , standard substance: acetone, and α / β is the ratio of the integrated value of OCH 2 hydrogen peaks of cyclohexylmethoxy group), and the yield is 67%. The isomer ratio was α / β = 95/5.
 実施例27 Example 27
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 活性化モレキュラーシーブス4A(85.3mg)、フェニル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-1-チオ-β-D-グルコピラノシド(18.4 mg、27.9μmol)及び(+)-ジヒドロコレステロール(13.5 mg、34.7μmol)を酢酸エチル(1.4 mL)に加え、0℃で5分間攪拌した。0℃に冷却したまま、この反応液にN-ブロモスクシンイミド(NBS、 5.8 mg、 33μmol)を加え、温度を維持したまま2時間攪拌した。10%亜硫酸ナトリウム水溶液を加え、反応をクエンチした。得られた反応混合物から、綿及びセライトにより濾過して、モレキュラーシーブス4Aを除いた。この濾液を酢酸エチル(20mL×2)によって抽出し、抽出物を合わせ、これを10%亜硫酸ナトリウム水溶液(20mL)及び飽和食塩水(20mL)を用いて洗浄した。さらに抽出溶液を無水硫酸マグネシウムで乾燥し、綿栓濾過した後、溶媒を留去し、粗生成物を得た。粗生成物のアノマー異性体の混合比をH-NMRのスペクトルデータ(400MHz、CDCl)のアノマー位水素ピークの積算値の比率より決定したところ、α:β=98:2であった。得られた粗生成物をシリカゲルクロマトグラフィー(SiO:1g、n-ヘキサン/酢酸エチル(体積比)=1/0→14/1)で精製し、異性体混合物としてジヒドロコレステリル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジルビス-2,2’-(メチレン)]-D-グルコピラノシド(23.6mg、25.2μmol、収率:90%)を無色のシロップとして単離した。 Activated molecular sieves 4A (85.3 mg), phenyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-1-thio-β-D- Glucopyranoside (18.4 mg, 27.9 μmol) and (+)-dihydrocholesterol (13.5 mg, 34.7 μmol) were added to ethyl acetate (1.4 mL) and stirred at 0 ° C. for 5 minutes. While cooling to 0 ° C., N-bromosuccinimide (NBS, 5.8 mg, 33 μmol) was added to the reaction solution, and the mixture was stirred for 2 hours while maintaining the temperature. The reaction was quenched by addition of 10% aqueous sodium sulfite solution. The resulting reaction mixture was filtered through cotton and celite to remove molecular sieves 4A. The filtrate was extracted with ethyl acetate (20 mL × 2), and the extracts were combined and washed with 10% aqueous sodium sulfite solution (20 mL) and saturated brine (20 mL). Further, the extract solution was dried over anhydrous magnesium sulfate and filtered through a cotton plug, and then the solvent was distilled off to obtain a crude product. The mixing ratio of the anomeric isomers of the crude product was determined from the ratio of the integrated value of the anomeric hydrogen peak in the 1 H-NMR spectral data (400 MHz, CDCl 3 ) to be α: β = 98: 2. The obtained crude product is purified by silica gel chromatography (SiO 2 : 1 g, n-hexane / ethyl acetate (volume ratio) = 1/0 → 14/1) to obtain dihydrocholesteryl 2,4-di-isomer as a mixture of isomers. -O-benzyl-3,6-O- [bibenzylbis-2,2 '-(methylene)]-D-glucopyranoside (23.6 mg, 25.2 μmol, yield: 90%) was isolated as a colorless syrup .
 実施例28 Example 28
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
2,4-ジ-O-[ビベンジルビス-2,2’-(メチレン)]-D-グルコピラノシル-トリクロロアセトイミデートの製造
 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-D-グルコピラノース(100mg、0.177mmol)、炭酸セシウム(CsCO;58.0μg、0.177mmol)、及びトリクロロアセトニトリル(0.16mL、1.59mmol)を乾燥ジエチルエーテル(1mL)中で室温、2時間撹拌した。反応混合物を綿、セライト、SiO及びセライトにより濾過することにより、反応混合物からCsCOを除いた。濾液を濃縮して、粗生成物として、2,4-ジ-O-[ビベンジルビス-2,2’-(メチレン)]-D-グルコピラノシル-トリクロロアセトイミデート (128mg、定量的、45:55のジアステレオマー混合物)を得た。更なる精製を行わずに、得られた粗生成物を実施例29で用いた。
Preparation of 2,4-di-O- [bibenzylbis- 2,2 '-(methylene)]-D-glucopyranosyl-trichloroacetimidate 2,4-di-O-benzyl-3,6-O- [bibenzyl- 2,2′-bis (methylene)]-D-glucopyranose (100 mg, 0.177 mmol), cesium carbonate (Cs 2 CO 3 ; 58.0 μg, 0.177 mmol), and trichloroacetonitrile (0.16 mL, 59 mmol) was stirred in dry diethyl ether (1 mL) at room temperature for 2 hours. The reaction mixture was filtered through cotton, Celite, SiO 2 and Celite to remove Cs 2 CO 3 from the reaction mixture. The filtrate is concentrated to give 2,4-di-O- [bibenzylbis-2,2 '-(methylene)]-D-glucopyranosyl-trichloroacetimidate (128 mg, quantitative, 45: 55) as a crude product A mixture of diastereomers was obtained. The resulting crude product was used in Example 29 without further purification.
 2,4-ジ-O-[ビベンジルビス-2,2’-(メチレン)]-D-グルコピラノシル-トリクロロアセトイミデートの理化学的性質は以下の通りである。
IR (ATR):3333, 3064, 3029, 2941, 2907, 2869, 1732, 1670, 1496, 1455, 1363, 1289, 1217, 1075, 1030, 971, 834, 796, 755, 699, 648 cm-1
1H NMR (部分データ、400 MHz in CDCl3, α異性体とβ異性体の混合物):δppm
8.43 (s), 8.37 (s), 6.23 (d, J = 1.8 Hz), 6.18 (d, J = 4.7 Hz)、
13C NMR (部分データ、100 MHz in CDCl3, α異性体とβ異性体の混合物):δppm
161.5 (s), 161.1 (s), 97.0 (d), 95.1 (d), 91.6 (s), 91.3 (s)。
The physicochemical properties of 2,4-di-O- [bibenzylbis-2,2 '-(methylene)]-D-glucopyranosyl-trichloroacetimidate are as follows.
IR (ATR): 3333, 3064, 3029, 2941, 2869, 1732, 1726, 1496, 1456, 1289, 1217, 1075, 1030, 971, 834, 796, 755, 699, 648 cm- 1 ,
1 H NMR (partial data, 400 MHz in CDCl 3 , a mixture of α and β isomers): δ ppm
8.43 (s), 8.37 (s), 6.23 (d, J = 1.8 Hz), 6.18 (d, J = 4.7 Hz),
13 C NMR (partial data, 100 MHz in CDCl 3 , a mixture of α and β isomers): δ ppm
161.5 (s), 161.1 (s), 97.0 (d), 95.1 (d), 91.6 (s), 91.3 (s).
 実施例29 Example 29
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
2,4-ジ-O-[ビベンジルビス-2,2’-(メチレン)]-D-グルコピラノシル-トリクロロアセトイミデートのα-グリコシル化反応
 活性モレキュラーシーブス4A(150mg)、2,4-ジ-O-[ビベンジルビス-2,2’-(メチレン)]-D-グルコピラノシル-トリクロロアセトイミデート(20.1mg、44.1μmol)、及びシクロヘキシルメタノール(6.50μL、53.0μmol)を乾燥ジエチルエーテル(1mL)中で室温、15分間撹拌した。混合物を-40℃まで冷却した後、混合物にTiCl(5.80μL、53.0μmol)を加え、-40℃で1時間撹拌した。その後、反応混合物に飽和NaHCO水溶液(1mL)を加えて、クエンチした。クエンチした反応混合物を綿及びセライトにより濾過し、モレキュラーシーブス4Aを除いた。濾液をジエチルエーテルで抽出し、有機層を飽和NaHCO水溶液、水、飽和食塩水で順次洗浄した。さらに抽出溶液を無水硫酸マグネシウムで乾燥し、綿栓濾過した後、溶媒を留去し、粗生成物を得た。粗生成物中のシクロヘキシルメチル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-D-グルコピラノシドの収率及びアノマー異性体の比率はH-NMR(溶媒:CDCl、標準物質:アセトン、α/βはシクロヘキシルメトキシ基のOCHの水素ピークの積算値の比率)より求めたところ、収率は62%であり、また、アノマー異性体比率はα/β=94/6であった。
Α-Glycosylation reaction of 2,4-di-O- [bibenzylbis-2,2 '-(methylene)]-D-glucopyranosyl-trichloroacetimidate Molecular sieves 4A (150 mg), 2,4-di-O -[Bibenzylbis-2,2 '-(methylene)]-D-glucopyranosyl-trichloroacetimidate (20.1 mg, 44.1 μmol), and cyclohexylmethanol (6.50 μL, 53.0 μmol) in dry diethyl ether (1 mL) The mixture was stirred at room temperature for 15 minutes. The mixture was cooled to −40 ° C., then TiCl 4 (5.80 μL, 53.0 μmol) was added to the mixture and stirred at −40 ° C. for 1 hour. The reaction mixture was then quenched by the addition of saturated aqueous NaHCO 3 (1 mL). The quenched reaction mixture was filtered through cotton and celite to remove molecular sieves 4A. The filtrate was extracted with diethyl ether, and the organic layer was washed successively with saturated aqueous NaHCO 3 solution, water and saturated brine. Further, the extract solution was dried over anhydrous magnesium sulfate and filtered through a cotton plug, and then the solvent was distilled off to obtain a crude product. The yield and ratio of anomeric isomers of cyclohexylmethyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-D-glucopyranoside in the crude product are The yield is 62% as determined from 1 H-NMR (solvent: CDCl 3 , standard substance: acetone, and α / β is the ratio of the integrated value of the OCH 2 hydrogen peaks of the cyclohexylmethoxy group). The isomer ratio was α / β = 94/6.
 実施例30~39
 TiCl及びモレキュラーシーブス4Aを下記表4に記載の活性化剤に代え、反応温度及び反応時間を下記表に記載のものに代えた他は、実施例29と同様の方法により、反応を行った。得られたシクロヘキシルメチル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-D-グルコピラノシドの収率及びアノマー異性体の比率を実施例29と同様に求め、下記表4に示す。なお、表4中、TMSはトリメチルシリル、TESはトリエチルシリル、TBSはトリブチルシリル、TIPSはトリイソプロピルシリル、Tfはトリフルオロメチルスルホニル、Si-gelはシリカゲル 60(pH=6.8;メルク社製)、MSはモレキュラーシーブスを示し、その他の略称は上記と同様である。また、実施例39は活性化剤としてモレキュラーシーブス4Aのみを用いた。
Examples 30 to 39
A reaction was carried out in the same manner as in Example 29 except that TiCl 4 and molecular sieves 4A were replaced by the activators listed in Table 4 below, and the reaction temperature and reaction time were replaced by the ones listed in the following table. . The yield of the obtained cyclohexylmethyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-D-glucopyranoside and the ratio of anomers to the examples It is determined in the same manner as 29 and is shown in Table 4 below. In Table 4, TMS is trimethylsilyl, TES is triethylsilyl, TBS is tributylsilyl, TIPS is triisopropylsilyl, Tf is trifluoromethylsulfonyl, Si-gel is silica gel 60 (pH = 6.8; manufactured by Merck) MS stands for molecular sieves, and other abbreviations are as defined above. In Example 39, only molecular sieves 4A was used as an activating agent.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 実施例40~44
 反応温度を-10℃、TiClをTBSOTf、反応溶媒及び反応時間を下記表5に記載のものとする他は、実施例29と同様の方法により、反応を行った。得られたシクロヘキシルメチル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-D-グルコピラノシドの収率及びアノマー異性体の比率を実施例29と同様に求め、下記表5に示す。なお、表5中で用いた略称は上記と同様である。
Examples 40 to 44
A reaction was carried out in the same manner as in Example 29 except that the reaction temperature was -10 ° C, TiCl 4 was TBSOTf, the reaction solvent and the reaction time were as described in Table 5 below. The yield of the obtained cyclohexylmethyl 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-D-glucopyranoside and the ratio of anomers to the examples It is determined in the same manner as 29 and is shown in Table 5 below. The abbreviations used in Table 5 are the same as above.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 実施例45 Example 45
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-D-グルコピラノース(10.0mg、17.6μmol)をCHCl(0.5mL)及びDMF(50μL)の混合溶媒に溶かした溶液に、オキサリルクロライド(2.5mg、20μmol)を加え、混合物を室温で撹拌した。反応混合物を濃縮し、粗生成物を得た。得られた粗生成物とシクロヘキシルメタノール(2.4mg、21μm)及び活性モレキュラーシーブ4A(17.6mg)をジエチルエーテル(0.5mL)中、室温で1日撹拌した。反応混合物に飽和NaHCO水溶液(5mL)を加えて反応をクエンチした。ジエチルエーテル(20mL)をさらに加えた後、混合物を綿及びセライトにより濾過し、モレキュラーシーブス4Aを除いた。濾液に酢酸エチル(30mL)を加えて、抽出し、有機層を水(5mL)、飽和食塩水(5mL)で順次洗浄した。さらに有機層を無水硫酸マグネシウムで乾燥し、綿栓濾過した後、溶媒を留去し、粗生成物をアノマー異性体の混合物で得た。得られた粗生成物をシリカゲルクロマトグラフィー(SiO:200mg、酢酸エチル/n-ヘキサン(体積比)=1/10→1/1)で精製し、異性体混合物としてシクロヘキシルメチル 2,4-ジ-O-ベンジル-3,6-O-[ビベンジル-2,2’-ビス(メチレン)]-D-グルコピラノシド(アノマー異性体の混合比α:β=92:8、3.1mg、4.7μmol、収率:27%)及び未反応の原料(5.5mg、9.7μmol、回収率:55%)を単離した。また、アノマー異性体の混合比はH-NMRスペクトルにおけるシクロヘキシルメトキシ基のOCHの水素ピークの積算値の比率)より求めた。 2,4-di-O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-D-glucopyranose (10.0 mg, 17.6 μmol) in CH 2 Cl 2 (0 Oxalyl chloride (2.5 mg, 20 μmol) was added to a mixed solvent solution of .5 mL) and DMF (50 μL) and the mixture was stirred at room temperature. The reaction mixture was concentrated to give a crude product. The resulting crude product and cyclohexylmethanol (2.4 mg, 21 μm) and activated molecular sieve 4A (17.6 mg) were stirred in diethyl ether (0.5 mL) at room temperature for 1 day. The reaction was quenched by the addition of saturated aqueous NaHCO 3 (5 mL) to the reaction mixture. After further addition of diethyl ether (20 mL), the mixture was filtered through cotton and celite to remove molecular sieves 4A. Ethyl acetate (30 mL) was added to the filtrate, extraction was performed, and the organic layer was washed successively with water (5 mL) and saturated brine (5 mL). The organic layer was further dried over anhydrous magnesium sulfate, filtered through a cotton plug, and the solvent was evaporated to give a crude product as a mixture of anomeric isomers. The obtained crude product is purified by silica gel chromatography (SiO 2 : 200 mg, ethyl acetate / n-hexane (volume ratio) = 1/10 → 1/1) to obtain cyclohexylmethyl 2,4-di as an isomer mixture. -O-benzyl-3,6-O- [bibenzyl-2,2'-bis (methylene)]-D-glucopyranoside (mixture ratio of anomers of α: β = 92: 8, 3.1 mg, 4.7 μmol , Yield: 27%) and unreacted starting material (5.5 mg, 9.7 μmol, recovery: 55%) were isolated. Further, the mixing ratio of the anomeric isomers was determined from the ratio of the integrated value of the hydrogen peak of OCH 2 of the cyclohexylmethoxy group in the 1 H-NMR spectrum.

Claims (3)

  1. 一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは-SR基(Rは置換基を有していてもよい低級アルキル基又は芳香環上に置換基を有していてもよいアリール基を示す)、-OR基(Rは水素原子、水酸基の保護基又は結合する酸素原子とともに脱離基として作用する基を示す)又はハロゲン原子を示す。
    は、水素原子又は水酸基の保護基を示す。
    は、水素原子又は水酸基の保護基を示す。
    及びRは同一又は異なって、ハロゲン原子で置換されていてもよい低級アルキル基、ハロゲン原子で置換されていてもよい低級アルコキシ基、ニトロ基又はハロゲン原子を示す。
    nは1~4の整数を示し、p及びqは各々0~4の整数を示す。
    p個のRは同一であっても異なっていてもよく、q個のRも同一であっても異なっていてもよい。
    p個の互いに隣接するRは互いに結合してベンゼン環を形成してもよく、q個の互いに隣接するRは互いに結合してベンゼン環を形成してもよい。]
    で表される3,6-O-架橋ピラノース化合物、又はその鏡像異性体。
    General formula (1)
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, R 1 represents a —SR 6 group (R 6 represents a lower alkyl group which may have a substituent or an aryl group which may have a substituent on the aromatic ring), —OR 7] Group (R 7 represents a hydrogen atom, a protecting group of a hydroxyl group or a group acting as a leaving group with a bonded oxygen atom) or a halogen atom.
    R 2 represents a hydrogen atom or a hydroxyl protective group.
    R 3 represents a hydrogen atom or a hydroxyl protective group.
    R 4 and R 5 are the same or different and each represents a lower alkyl group which may be substituted by a halogen atom, a lower alkoxy group which may be substituted by a halogen atom, a nitro group or a halogen atom.
    n represents an integer of 1 to 4; p and q each represent an integer of 0 to 4;
    The p R 4 s may be the same or different, and the q R 5 s may be the same or different.
    The p adjacent R 4 groups may be bonded to each other to form a benzene ring, and the q adjacent R 5 groups may be bonded to each other to form a benzene ring. ]
    The 3,6-O-bridged pyranose compound represented by, or its enantiomer.
  2. 前記一般式(1)中のRがハロゲン原子である、請求項1に記載の3,6-O-架橋ピラノース化合物、又はその鏡像異性体。 The 3,6-O-bridged pyranose compound or the enantiomer thereof according to claim 1, wherein R 1 in the general formula (1) is a halogen atom.
  3. 請求項2に記載の3,6-O-架橋ピラノース化合物を一般式(2)
      ROH    (2)
    [式中、Rは、第1級、第2級又は第3級アルコールの残基を示す。]
    で表されるアルコール化合物と反応させて、一般式(3)
    Figure JPOXMLDOC01-appb-C000002
    [式中、R、R、R、R、R、n、p及びqは前記に同じ。]
    で表されるα-O-ピラノシド又はその鏡像異性体を製造する方法。
    The 3,6-O-bridged pyranose compound according to claim 2 is a compound represented by the general formula (2)
    R 8 OH (2)
    [Wherein, R 8 represents a residue of a primary, secondary or tertiary alcohol. ]
    By reacting with an alcohol compound represented by the general formula (3)
    Figure JPOXMLDOC01-appb-C000002
    [Wherein, R 2 , R 3 , R 4 , R 5 , R 8 , n, p and q are as defined above. ]
    A method of producing α-O-pyranoside represented by or its enantiomer.
PCT/JP2014/052564 2013-02-18 2014-02-04 3,6-O-CROSSLINKED PYRANOSE COMPOUND, AND PRODUCTION METHOD FOR α-O-PYRANOSIDE WO2014125967A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015500200A JPWO2014125967A1 (en) 2013-02-18 2014-02-04 Method for producing 3,6-O-bridged pyranose compound and α-O-pyranoside

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013028518 2013-02-18
JP2013-028518 2013-02-18

Publications (1)

Publication Number Publication Date
WO2014125967A1 true WO2014125967A1 (en) 2014-08-21

Family

ID=51353975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052564 WO2014125967A1 (en) 2013-02-18 2014-02-04 3,6-O-CROSSLINKED PYRANOSE COMPOUND, AND PRODUCTION METHOD FOR α-O-PYRANOSIDE

Country Status (2)

Country Link
JP (1) JPWO2014125967A1 (en)
WO (1) WO2014125967A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102022A1 (en) * 2008-02-15 2009-08-20 Kwansei Gakuin Educational Foundation 3,6-o-bridged pyranose inversion compound and process for producing β-o-pyranoside
JP2011037740A (en) * 2009-08-10 2011-02-24 Kwansei Gakuin Glucose compound, method for producing the same and method for producing davidiin
JP2013166740A (en) * 2012-02-17 2013-08-29 Kwansei Gakuin 2,4-o-bridged pyranose inversion compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102022A1 (en) * 2008-02-15 2009-08-20 Kwansei Gakuin Educational Foundation 3,6-o-bridged pyranose inversion compound and process for producing β-o-pyranoside
JP2011037740A (en) * 2009-08-10 2011-02-24 Kwansei Gakuin Glucose compound, method for producing the same and method for producing davidiin
JP2013166740A (en) * 2012-02-17 2013-08-29 Kwansei Gakuin 2,4-o-bridged pyranose inversion compound

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIDETOSHI YAMADA ET AL.: "2, 4-O-(2, 2'- Bibenzylbis(methylene)) Kakyo o Mochiita D- Glucose no Kan Rittai Haiza Seigyo", CSJ: THE CHEMICAL SOCIETY OF JAPAN KOEN YOKOSHU, vol. 92, no. 4, 2012, pages 1177 *
HIDETOSHI YAMADA ET AL.: "3, 6-O-(o-xylylene) Kakyoto o Mochiita Ko-a Rittai Sentakuteki Glucosyl-ka Hanno", CSJ: THE CHEMICAL SOCIETY OF JAPAN KOEN YOKOSHU, vol. 91, no. 4, 2011, pages 1147 *
HIDETOSHI YAMADA ET AL.: "Bibenzyl-2,2'-Bis (methylene) Kakyoto o Mochiita a Sentakuteki Glycosyl-ka Hanno", DAI 32 KAI THE JAPANESE SOCIETY OF CARBOHYDRATE RESEARCH NENKAI POSTER HAPPYO, 6 August 2013 (2013-08-06) *
HIDETOSHI YAMADA ET AL.: "Bibenzyl-2,2'-Bis (methylene) Kakyoto o Mochiita a Sentakuteki Glycosyl-ka Hanno", THE JAPANESE SOCIETY OF CARBOHYDRATE RESEARCH NENKAI YOSHISHU, vol. 32, 25 July 2013 (2013-07-25), pages 115 *

Also Published As

Publication number Publication date
JPWO2014125967A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
Groneberg et al. Total synthesis of calicheamicin. gamma. 1I. 1. Synthesis of the oligosaccharide fragment
Ohnishi et al. Synthesis of a novel asparagine-linked heptasaccharide structure via p-methoxybenzyl-assisted β-mannosylation
Borrachero et al. Rearrangement reactions in the fluorination of 3-deoxy-3-C-methyl-3-nitro-hexopyranosides (and hexo-1-thiopyranosides) of the d-and l-series by the DAST reagent
WO2014125967A1 (en) 3,6-O-CROSSLINKED PYRANOSE COMPOUND, AND PRODUCTION METHOD FOR α-O-PYRANOSIDE
US8524873B2 (en) Sugar donor
HU198505B (en) Process for producing antitumour anthracycline glycosides
DK169076B1 (en) Anthracycling Glycosides, Methods of Preparation and Pharmaceutical Preparations Containing the Glycosides
US8445652B2 (en) 3, 6-O-bridged pyranose inversion compound and process for producing B-O-pyranoside
US10640526B2 (en) Method of preparation of 6-azido-2,4-diacetamido-2,4,6-trideoxy-D-mannose
JP4762973B2 (en) Method for producing 1,2-transglycoside compound
Praly et al. Stereocontrolled Access to Higher Sugars (Non‐1‐en‐4‐ulopyranosyl Derivatives) and Glycomimetics [3‐(β‐d‐Glycopyranosyl)‐1‐propenes and (3Z)‐4, 8‐Anhydro‐nona‐1, 3‐dienitols]
JP5800729B2 (en) 2,4-O-bridged inverted pyranose compound
JP6198207B2 (en) Novel sugar donor and method for synthesizing sugar chain using the same
Moutel et al. Synthesis of novel analogues of the calicheamicin γ 1 I and esperamicin A 1B oligosaccharides
KR920000620B1 (en) New anthracycline glycosides derivatives
JP2832356B2 (en) Synthetic intermediates and production methods for hygromycins
Pfeiffer et al. 3′ and 4′ and equatorial amino and hydroxy derivatives of neamine
BG100466A (en) Anthracycline disaccharides, process for their preparation and pharmaceutical compositions containig them
WO2021054474A1 (en) Repeating disaccharide for oligosaccharide synthesis and method for producing oligomer thereof
US8212013B2 (en) Process for producing 1,2-trans-glycoside compound
Köver et al. A study of the oxepane synthesis by a 7-endo electrophile-induced cyclization reaction of alkenylsulfides. An approach towards the synthesis of septanosides
CA2433183A1 (en) Inositolglycans and their uses
JP2004244583A (en) High mannose type sugar compound, preparation process, and intermediate used for it
JPH0881490A (en) 3-o-(3-o-carbamoylmannopyranosyl) heptenol derivative, and method for producing mannogulose derivative
JPH0570473A (en) Production of beta-glucoside

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500200

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751972

Country of ref document: EP

Kind code of ref document: A1