WO2021054474A1 - Repeating disaccharide for oligosaccharide synthesis and method for producing oligomer thereof - Google Patents

Repeating disaccharide for oligosaccharide synthesis and method for producing oligomer thereof Download PDF

Info

Publication number
WO2021054474A1
WO2021054474A1 PCT/JP2020/035624 JP2020035624W WO2021054474A1 WO 2021054474 A1 WO2021054474 A1 WO 2021054474A1 JP 2020035624 W JP2020035624 W JP 2020035624W WO 2021054474 A1 WO2021054474 A1 WO 2021054474A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
derivative
represented
hydroxyl
Prior art date
Application number
PCT/JP2020/035624
Other languages
French (fr)
Japanese (ja)
Inventor
田村 純一
敬裕 田村
Original Assignee
国立大学法人鳥取大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人鳥取大学 filed Critical 国立大学法人鳥取大学
Priority to JP2021547006A priority Critical patent/JPWO2021054474A1/ja
Publication of WO2021054474A1 publication Critical patent/WO2021054474A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H7/00Compounds containing non-saccharide radicals linked to saccharide radicals by a carbon-to-carbon bond
    • C07H7/02Acyclic radicals
    • C07H7/033Uronic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a synthetic intermediate for sugar chains and a method for producing the same.
  • Abnormal muscular dystrophy which is a type of muscular dystrophy, is caused by abnormal biosynthesis of dystroglycan, which is a glycoprotein, and is accompanied by central nervous system disorders such as brain malformations and mental retardation, including muscle cell damage.
  • dystroglycan sugar chain abnormalities present in muscle cells are the cause of sugar chain abnormal muscular dystrophy.
  • the sugar chain portion that has an affinity for laminin is called matriglican.
  • Matriglycan binds muscle cells to the basement membrane via laminin, and abnormal biosynthesis occurs in this sugar chain, resulting in the development of abnormal sugar chain muscular dystrophy.
  • Matriglican contains a sugar chain having a repeating disaccharide consisting of ⁇ -xylose and ⁇ -glucuronic acid at its non-reducing terminal portion (Non-Patent Document 1), and the sugar chain having repeating this disaccharide is laminin. It is known that it is necessary for the binding of (Non-Patent Document 2).
  • the problem to be solved by the present invention is to reconstruct the matrix glycan.
  • the present inventors have conducted intensive studies to solve the above problems, and synthesized a disaccharide unit (Xyl ⁇ 1-3GlcA ⁇ ) for synthesizing a sugar chain having a repeating disaccharide consisting of ⁇ -xylose and ⁇ -glucuronic acid. , Succeeded in the synthesis of tetrasaccharides in which the disaccharide units are bound to each other, and the synthesis of the tetrasaccharide moiety that connects the sugar chain having the repetition and the sugar chain extending from the ⁇ -dystroglycan, and showed the possibility of reconstructing the matrix. It was. The present inventors have completed the present invention from these findings.
  • Equation (1) [In the formula, X 1 is a leaving group or a protected hydroxyl group, Y 1 is a carboxyl group or a hydroxymethyl group or a group that is a precursor thereof, and R 1 to R 5 are independently hydrogen. Is or is a hydroxyl-protecting group] A disaccharide derivative represented by.
  • X 1 is a group selected from the group consisting of trichloroacetimideyloxy, alkylthio, arylthio, halogen, pentenyloxy, alkoxy and phenoxy
  • Y 1 is COOZ 1 or CH 2 OZ 2
  • Z 1 Is an alkyl group
  • Z 2 is a protecting group for hydroxyl groups
  • R 1 to R 5 are independently substituted benzyl-containing benzyl, allyl, levulinoyl, substituted benzoyl-containing benzoyl, substituted acetyl-containing acetyl, and allyloxy.
  • Step 1) By reacting the xylose derivative represented by the formula (2) with the glucose derivative or the glucuronic acid derivative represented by the formula (3), the OR 6 group of the xylose derivative and the glucose derivative or the glucuronic acid derivative are not protected.
  • Step 2 Mixed acetal derivative obtained with step 1) is reacted to produce [alpha] 1 ⁇ 3 disaccharide derivative by activating the leaving group X 2, then, Step 3) A method comprising deprotecting the disaccharide derivative obtained in Step 2) and inducing it into the formula (4).
  • X 2 is a group selected from the group consisting of trichloroacetimideyloxy, alkylthio, halogen, arylthio, and pentenyloxy
  • Y is selected from the group consisting of acetal, carbonate, silylene acetal, and stanilen acetal.
  • R 6 is a group selected from the group consisting of p-methoxybenzyl and naphthylmethyl
  • X 3 is composed of trichloroacetimideyloxy, alkylthio, arylthio, halogen, pentenyloxy, alkoxy and phenoxy.
  • Step 1) The xylose derivative represented by the formula (2') and the glucose derivative or the glucuronic acid derivative represented by the formula (3') are directly condensed to obtain a mixture of ⁇ 1 ⁇ 3 glycoside and ⁇ 1 ⁇ 3 glycoside.
  • Step 2) Deprotect the mixture obtained in Step 1) and then Step 3) A method comprising separating the ⁇ -glycoside from the deprotected mixture in Step 2).
  • [7] The method according to [6], wherein the condensation in step 1) is carried out using NIS-AgOTf, NIS-TfOH, MeOTf, CuBr 2 -AgOTf-nBu 4 NI, or NBS-AgOTf as a condensing agent.
  • step 2 The deprotection in step 2) is to form triol having hydroxyl groups at the 2-, 3- and 4-positions of the xylose residue by hydrolysis using trifluoroacetic acid (TFA) [6]. ] Or the method according to [7]. [9] The method according to any one of [6] to [8], wherein the separation in step 3) is carried out by dissolving ⁇ -glycoside in chloroform to remove ⁇ -glycoside.
  • TFA trifluoroacetic acid
  • the formula (5) including the use of the disaccharide derivative represented by the formula (1) as an intermediate (referred to as an XG unit): [In the formula, X 4 is a leaving group or a protected hydroxyl group, and n is an integer greater than or equal to 1.] A method for producing an XG unit oligomer represented by. [11]
  • the disaccharide derivative represented by the formula (1) is used as a sugar donor, and the formula (1'): [In the formula, Y 5 is a group that is a precursor of a carboxyl group or a hydroxymethyl group, X 5 is a leaving group or a protected hydroxyl group, and R 9 to R 12 are a protecting group of a hydroxyl group].
  • Y 5 is COOZ 3 or CH 2 OZ 4
  • Z 3 is an alkyl group
  • Z 4 is a hydroxyl group protective group
  • X 5 is trichloroacetimideyloxy, alkylthio, arylthio, halogen, pentenyl.
  • R 9 to R 12 are independently benzyl containing a substituted benzyl, allyl, levulinoyl, benzoyl containing a substituted benzoyl, acetyl containing a substituted acetyl, and allyl.
  • R 9 is a group selected from the group consisting of acetyl and levulinoyl including benzoyl including substituted benzoyl, substituted acetyl [12] The method according.
  • Equation (9) Tetrasaccharides or derivatives thereof.
  • Equation (7) [In the formula, X 1 is a leaving group or a protected hydroxyl group, X 2 to X 6 are hydroxyl protecting groups, and X 7 is an alkyl group].
  • the tetrasaccharide derivative is obtained by reacting with the disaccharide receptor represented by, and then the tetrasaccharide derivative is deprotected to obtain the formula (9) :.
  • X 1 is trichloroacetimideyloxy
  • X 2 to X 6 are acetyl
  • X 7 is methyl
  • X 8 is allyl
  • X 9 and X 10 are benzyl
  • X 11 is TBDPS
  • X 12 and X 13 are together.
  • a disaccharide unit consisting of ⁇ -xylose, which may be derivatized, and ⁇ -glucuronic acid, which may be derivatized, is provided.
  • the disaccharide unit can be used to reconstruct the postphosphate sugar chain. This makes it possible to suppress the onset of sugar chain abnormal muscular dystrophy.
  • the present invention has the formula (1): [In the formula, X 1 is a leaving group or a protected hydroxyl group, Y 1 is a carboxyl group or a hydroxymethyl group or a group that is a precursor thereof, and R 1 to R 5 are independently hydrogen. Is or is a hydroxyl-protecting group]
  • the disaccharide derivative represented by is provided.
  • a known leaving group or protected hydroxyl group can be used as X 1, and it is generally used for sugar chain synthesis such as trichloroacetimideyloxy, alkylthio, arylthio, halogen, and pentenyloxy (4-pentenyloxy). Leaving groups are exemplified, but not limited to these. The same applies to leaving groups at other points in the present disclosure.
  • Preferred leaving groups X 1 include, but are not limited to, those that form thioglycosides such as trichloroacetimideyloxy, alkylthio and phenylthio. Hydroxyl protecting groups are well known to those of skill in the art. That is, protected hydroxyl groups are well known to those of skill in the art. X 1 may be alkoxy or phenoxy.
  • Y 1 is a carboxyl group or a hydroxymethyl group or a group which is a precursor thereof.
  • Groups that are precursors of carboxyl or hydroxymethyl groups are well known to those skilled in the art and are typically carboxyled in one step through reactions such as oxidation / reduction reactions, hydrolysis reactions, heating and the like. Represents a group that can be converted to a group or a hydroxymethyl group. Precursors of carboxyl or hydroxymethyl groups are also usually derivatives of carboxyl or hydroxymethyl groups.
  • Examples of one Y unit include, but are not limited to , COOZ 1 or CH 2 OZ 2.
  • Z 1 is an alkyl group, preferably an alkyl group having 1 to 3 carbon atoms. A more preferred Z 1 group is methyl.
  • Z 2 is a commonly used hydroxyl protecting group. Hydroxyl protecting groups are known and specific examples thereof are described herein.
  • R 1 to R 5 are each independently hydrogen or a hydroxyl-protecting group.
  • the protecting group in the present disclosure is preferably a group that can be removed after sugar chain formation.
  • the plurality of protecting groups may be of different types from each other or may be of the same type as each other. Selective deprotection can be facilitated by using different types of protecting groups.
  • Such hydroxyl protecting groups are known and include, for example, the protecting groups described in Chapter 2 of Greene's Protective Groups in Organic Synthesis, 5th Edition (Wiley).
  • a benzyl group, a p-methoxybenzyl group, a p-methoxyphenyl group, a p-nitrobenzyl group, a benzoyl group, a p-methylbenzoyl group, a benzylidene group, an acetyl group, a pivaloyl group, a lebrinoyl group, an allyl group examples thereof include, but are not limited to, a methoxymethyl group, a tert-butyldimethylsilyl group, a triisopropylsilyl group, an isopropylidene, a benzylidene, an allyloxycarbonyl, and a trialkylsilyl.
  • R 1 groups benzoyl including substituted benzoyl with neighboring group participation ability, acetyl including substituted acetyl, including but levulinoyl, without limitation. Additional examples of protecting groups which neighboring group participation ability has been described for R 7 'group, which will be described later, they can be used in 1 group R.
  • the formula (2) [In the formula, X 2 is a leaving group, Y is a group that fixes the coordination of xylose residues, and R 6 is p-alkyloxybenzyl, 3,4-dialkyloxybenzyl, immobilized.
  • Equation (3) With the xylose derivative represented by Equation (3): [In the formula, X 3 is a leaving group or a protected hydroxyl group, R 7 and R 8 are a protecting group for a hydroxyl group, and Y 4 is a group that is a precursor of a carboxyl group or a hydroxymethyl group].
  • Step 1) By reacting the xylose derivative represented by the formula (2) with the glucose derivative or the glucuronic acid derivative represented by the formula (3), the OR 6 group of the xylose derivative and the glucose derivative or the glucuronic acid derivative are not protected.
  • Step 2 Mixed acetal derivative obtained with step 1) is reacted to produce [alpha] 1 ⁇ 3 disaccharide derivative by activating the leaving group X 2, then, Step 3) Provided is a method comprising deprotecting the disaccharide derivative obtained in Step 2) and inducing it into the formula (4).
  • the compound of the formula (2) is a sugar donor and the compound of the formula (3) is a sugar receptor.
  • X 2 is a leaving group.
  • X 2 is the same as the leaving group X 1 described above, and is a leaving group commonly used for sugar chain synthesis such as trichloroacetimideyloxy, alkylthio, arylthio, phenylsulfinyl, halogen, pentenyloxy and the like. Is exemplified, but the present invention is not limited to these.
  • Trichloroacetimidate yl oxy Preferred X 2 as leaving groups, but which forms a thioglycoside such as alkylthio or arylthio is exemplified, without limitation.
  • the alkylthio group described as a leaving group in the present disclosure may be, for example, an alkylthio having 1 to 20 carbon atoms, but is not limited thereto.
  • the arylthio group described as a leaving group in the present disclosure can be, but is not limited to, for example, phenylthio or trilthio.
  • Y is a group capable of immobilizing the xylose residue in the notation conformation and preventing ring inversion.
  • the two oxygen atoms displayed on the left side are included in the Y group.
  • Y can be an acetal, carbonate, silylene acetal, or stanilen acetal.
  • Acetals include diacetals. It should be understood that the oxygen atoms that define these structures correspond to the two oxygen atoms displayed on the left side of equation (2) above. More specifically, Y may have a structure represented by the following formula (2a).
  • Alkyl groups in alkyl and alkyloxy can be, for example, alkyl groups having 1 to 6 carbon atoms, but are not limited thereto.
  • Preferred specific examples of the sugar donor of the formula (2) are shown below.
  • the L group shown here is an example, and the L group is not limited thereto.
  • R 6 are, IAD: 2-position of the sugar donor by (intramolecular aglycon delivery intramolecular aglycon transfer) method and the 3-position of the glycosyl acceptor (the only unprotected hydroxyl group) group to produce a mixed acetal connecting between the Is.
  • the IAD method itself is known to those of skill in the art and is reviewed by Cumspstey in Carbohydrate Research, 343, 1553-1573 (2008).
  • R 6 is p-alkyloxybenzyl, 3,4-dialkyloxybenzyl, immobilized p-alkyloxybenzyl, immobilized 3,4-dialkyloxybenzyl, naphthyl, or naphthylmethyl.
  • DDQ 2,3-dichloro-5,6-dicyano-p-benzoquinone
  • N- Examples include, but are not limited to, iodosuccinimide (NIS) and base catalysts such as, but not limited to, imidazole and 4-dimethylaminopyridine (DMAP).
  • R 6 when R 6 is hydrogen, Me 2 SiCl 2 can be added to the reaction with the sugar receptor to participate in the formation of a silylene mixed acetal.
  • specific reagents for producing mixed acetals by the IAD method are known to those skilled in the art and can be appropriately selected by those skilled in the art.
  • Alkyl group in the R 6 groups described above may for example those having 1 to 6 carbon atoms but not limited thereto. Preferred R 6 p-methoxybenzyl, naphthylmethyl and the like, without limitation.
  • X 3 is a leaving group or a protected hydroxyl group, and R 7 and R 8 are hydroxyl protecting groups.
  • X 3 is similar to X 1 described above, and R 7 and R 8 are similar to R 1 to R 5 described above, especially R 1 and R 2 .
  • Preferred X 3 as a leaving group, trichloroacetimidate benzyloxy, alkylthio, arylthio, halogen, such as pentenyloxy, leaving group commonly used in the sugar chain synthesis.
  • R 7 and R 8 are generally used for the synthesis of sugar chains such as benzyl containing substituted benzyl, allyl, lebrinoyl, benzoyl containing substituted benzoyl, acetyl containing substituted acetyl, allyloxycarbonyl, trialkylsilyl and the like.
  • Protecting groups can be mentioned.
  • Particularly preferred R 7, benzoyl including substituted benzoyl with neighboring group participation ability, acetyl including substituted acetyl, although such levulinoyl include, but are not limited to. Additional examples of protecting groups which neighboring group participation ability has been described for R 7 'group, which will be described later, they may be used in the R 7 groups.
  • Y 4 is similar to Y 1 described above, and examples thereof include, but are not limited to, COOZ 2 or CH 2 OZ 3.
  • Z 2 is an alkyl group, preferably an alkyl group having 1 to 3 carbon atoms. More preferred Z 2 groups are methyl.
  • Z 3 is a commonly used hydroxyl protecting group. Hydroxy group protecting groups are known.
  • the xylose derivative (sugar donor) represented by the formula (2) is condensed with the glucose derivative or glucuronic acid derivative (sugar receptor) represented by the formula (3) to obtain the ⁇ -glycoside represented by the formula (4).
  • the steps for obtaining the ⁇ -glycoside include the following 1) to 3). Steps 1) to 3), particularly steps 1) and 2), are based on the IAD method. Step 1)
  • the xylose derivative represented by the formula (2) is reacted with the glucose derivative or the glucuronic acid derivative represented by the formula (3), and the OR 6 group at the 2-position of the xylose derivative is reacted with the glucose derivative or the glucuronic acid derivative.
  • Step 2 A mixed acetal derivative via an unprotected hydroxyl group at the 3-position of Step 2)
  • Step 1 mixed acetal derivative obtained with were reacted to produce [alpha] 1 ⁇ 3 disaccharide derivative by causing activation of leaving groups X 2, then, Step 3)
  • the disaccharide derivative obtained in Step 2) is deprotected and induced into the formula (4).
  • the reaction of step 1) can be carried out, for example, in the presence of 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ).
  • DDQ 2,3-dichloro-5,6-dicyano-p-benzoquinone
  • the mixed acetal derivative produced in step 1) is a mixed acetal in which the 2-position carbon of the sugar donor and the 3-position carbon of the sugar receptor are bonded to two oxygen atoms of the acetal, respectively.
  • the disaccharide derivative obtained in step 2) is a disaccharide in which the 1-position carbon of the sugar donor and the 3-position carbon of the sugar receptor are linked to the same one oxygen atom, as in the formula (4). is there.
  • Step 2 can activate (glycosylation promoter) it is known to those skilled in the art and are described in more detail in Cumpstey review as part of the IAD process.
  • the reaction of step 2) can be carried out in the presence of a condensing agent (glycosylation promoter) such as NIS-AgOTf, NIS-TfOH, MeOTf, CuBr 2 -AgOTf-nBu 4 NI, NBS-AgOTf.
  • Step 3 is a deprotection step. Although the deprotection method differs depending on the type of protecting group, various deprotecting methods of the protecting group are known.
  • deprotection may be performed by hydrolysis with an acid or alkali.
  • Trifluoroacetic acid is particularly preferably used for deprotection.
  • the Y group is also removed by deprotection, and a hydroxyl group can be left at the 3rd and 4th positions of xylose.
  • the xylose derivative represented by the above formula (2) and the glucose derivative or the glucuronic acid derivative represented by the above formula (3) are combined with 2,3-dichloro-5,6-dicyano-p.
  • -A disaccharide comprising reacting in the presence of benzoquinone (DDQ) or the like to obtain a mixed acetal derivative, condensing the mixed acetal derivative in the presence of a condensing agent, and then deprotecting the condensate, if desired.
  • DDQ benzoquinone
  • Xylose ⁇ 1-3 glucuronic acid, in the disaccharide, the xylose residue and the glucuronic acid residue may be derivatized).
  • Deprotection means removing some (at least one) or all of the protecting groups.
  • Derivatization of sugars is known to those of skill in the art.
  • the disaccharide may contain a known protecting group or may contain a known leaving group. Examples of the disaccharide protecting group and leaving group include those described above, but are not limited thereto.
  • the reaction between the xylose derivative (sugar donor) corresponding to the formula (2) and the glucose derivative or the glucuronic acid derivative (sugar receptor) corresponding to the formula (3) had the following problems: -Since adjacent group involvement cannot be used for ⁇ -xylose, it is difficult to control the anomeric position. -Xylose is easy to flip the ring. Due to these problems, ⁇ -glycosidic bonds may not be formed. Therefore, the present inventors protect the hydroxyl group at the 2-position of xylose with a protecting group that causes an intramolecular aglycon transfer and condense it with a glycosyl acceptor (glucuronic acid derivative) to cause an intramolecular aglycon transfer reaction.
  • the protecting group that causes an intramolecular aglycone transfer include a p-methoxybenzyl group and a naphthyl group as described above.
  • the present inventors have decided to prevent the ring inversion of xylose by protecting the 3rd and 4th positions of xylose with hydroxyl groups such as diacetylate using 2,3-butandion and ring-fixing them. Through these measures, the present inventors have solved the above problems and succeeded in stereoselectively synthesizing the ⁇ -glycoside represented by the formula (4).
  • the disaccharide derivative of the present invention represented by the formula (1) can be obtained by appropriately protecting the hydroxyl groups of the disaccharide of the formula (4) obtained by the above method.
  • the selection and attachment / detachment of protecting groups is within the skill of those skilled in the art.
  • the present inventors combine a xylose derivative (sugar donor) represented by the formula (2') and a glucose derivative or a glucuronic acid derivative (sugar acceptor) represented by the formula (3') in a mixed acetal (intramolecular).
  • a mixture containing ⁇ -glycoside and ⁇ -glycoside represented by the formula (4') was obtained by direct condensation without a method via aglycon transfer). Isolation of the desired ⁇ -glycoside was difficult.
  • Equation (2') Wherein, X 2 'is a leaving group, Y' is a group for fixing the conformation of xylose residues, R 6 'is a protecting group for a hydroxyl group]
  • Equation (3') With the xylose derivative represented by Equation (3'): Wherein, X 3 'is a leaving group or a protected hydroxyl group, R 7' is a protecting group for a hydroxyl group, R 8 'is a protecting group for a hydroxyl group, Y 4' represents a carboxyl group or hydroxymethyl A group that is a precursor of a group] From the glucose derivative or glucuronic acid derivative indicated by Equation (4'): Wherein, X 3 ', R 7' , R 8 ' and Y 4' are the same as defined above A method for producing an ⁇ -glycoside represented by the following steps 1) to 3) :.
  • Step 1) The xylose derivative represented by the formula (2') and the glucose derivative or the glucuronic acid derivative represented by the formula (3') are directly condensed to obtain a mixture of ⁇ 1 ⁇ 3 glycoside and ⁇ 1 ⁇ 3 glycoside.
  • Step 2) Deprotect the mixture obtained in Step 1) and then Step 3) Provided is a method comprising separating ⁇ -glycoside from the mixture deprotected in step 2).
  • the sugar donor 103 used for condensation gives the products 208a and 208b in the same yield in any configuration of ⁇ (Method 1 and Method 2 in Scheme 2 below). Therefore, the stereochemistry of the sugar donor 103 used is not limited and may be a mixture thereof (Method 3 of Scheme 2 below).
  • R 6 ' is a protecting group for a hydroxyl group.
  • R 6 ' is more preferably adjacent groups is a protecting group with no involvement ability hydroxyl, acyl group which neighboring group participation ability may occur exclusively ⁇ - glycoside.
  • R 6 ' is benzyl, p- methoxybenzyl group, p- methoxyphenyl group, p- nitrobenzyl group, an allyl group, a methoxymethyl group, tert- butyldimethylsilyl group, triisopropylsilyl Examples include, but are not limited to these.
  • the oxygen atom attacks and forms a carbocation generated on the 1-position carbon atom after the 1-position leaving group (X 2') is eliminated.
  • the ring structure to be formed covers the same plane (cis plane) as the hydroxyl group at the 2-position, so that it is a protecting group having a function of exclusively attacking the receptor from the opposite side (trans side).
  • Protecting groups that do not fall under this description are interpreted as protecting groups that are not capable of involving adjacent groups.
  • R 7 Equation (3)' is a protecting group for a hydroxyl group, in order to form the ⁇ - glycoside in the condensation between sugar, R 7 'is a neighboring group participation ability It is preferably a hydroxyl-protecting group.
  • Preferred R 7's are acetyl groups, acetyl groups substituted with 1 to 3 halogen atoms, benzoyl groups, 1 to 5 halogens, nitro groups and / or alkyl groups with 1 to 3 carbon atoms. Examples include, but are not limited to, benzoyl groups.
  • X 3 ', R 8' and Y 4 ' are respectively the same as X 3, R 8 and Y 4 which has been described with respect to equation (3).
  • X 3 'hydroxyl group is protected with p- methoxyphenyl
  • R 7' and R 8 ' is acetyl group
  • Y 4' may be a carboxylate group.
  • the condensation reaction in step 1) can be carried out using a known condensing agent (glycosylation promoter).
  • known condensing agents include NIS-AgOTf, NIS-TfOH, MeOTf, CuBr 2 -AgOTf-nBu 4 NI, NBS-AgOTf and the like, but NIS-AgOTf is preferable.
  • NIS-AgOTf is preferable.
  • Direct condensation means that a substituent of a sugar donor and a substituent of a sugar acceptor form a bond without interposing another compound or group.
  • direct condensation refers to condensation that forms a 1 ⁇ 3 glycosidic bond from the beginning, as opposed to an embodiment mediated by an intracellular aglycone transfer.
  • Deprotection in step 2) can be performed by a known method.
  • the 2-, 3-, and 4-positions of xylose residues are deprotected to triol.
  • ⁇ -glycoside is a disaccharide derivative of the formula (4').
  • the disaccharide derivative of the formula (4') can be easily separated by using a solvent described later.
  • Acid is used as the drug used for such deprotection.
  • trifluoroacetic acid (TFA), trichloroacetic acid and the like are preferable, and TFA is particularly preferable.
  • step 3 ⁇ -glycoside is separated from the deprotected glycoside mixture (diastereomeric mixture of deprotected triol) obtained in step 2).
  • a method for separating diastereomers a method using chromatography, a solvent extraction method, or the like can be used. If the separated ⁇ -glycoside is different from the disaccharide derivative of the formula (4'), it may be protected and / or deprotected by a known method to obtain the disaccharide derivative of the formula (4'). Good.
  • the ⁇ -glycoside (disaccharide derivative of formula (4')) obtained as a triol by deprotecting the 2-, 3-, and 4-positions of xylose residues is insoluble in chloroform but in methanol. It is soluble and ⁇ -glycoside is soluble in chloroform (relatively low solubility in methanol).
  • the desired ⁇ -glycoside can be separated by treating the diastereomeric mixture with chloroform to remove the dissolved ⁇ -glycoside.
  • the desired ⁇ -glycoside may be separated by treating the diastereomer mixture with methanol to recover the dissolved ⁇ -glycoside.
  • the present invention directly condenses the xylose derivative represented by the above formula (2') with the glucose derivative or glucuronic acid derivative represented by the above formula (3') to form an ⁇ -glycoside and a ⁇ -glycoside.
  • Disaccharides xylose ⁇ 1-3 glucuronic acid, in the disaccharides, xylose residues and glucurons
  • the acid residue may be derivatized).
  • Deprotection if desired, means removing some (at least one) or all of the protecting groups.
  • Derivatization of sugars is known to those of skill in the art.
  • the disaccharide may contain a known protecting group or may contain a known leaving group. Examples of the disaccharide protecting group and leaving group include those described above, but are not limited thereto.
  • the disaccharide derivative of the present invention is a structural unit for the synthesis of postphosphate sugar chains on dystroglycan that anchors muscle cells and basement membrane via laminin (referred to as XG unit in the present specification). Can be used as). By oligomerizing the disaccharide derivative, the postphosphate sugar chain can be reconstructed.
  • the disaccharide derivative of the present invention is an essential synthetic unit for reconstructing a postphosphate sugar chain.
  • a tetrasaccharide derivative can be obtained by condensing disaccharide derivatives with each other.
  • a hexasaccharide derivative can be obtained by condensing a tetrasaccharide derivative and a disaccharide derivative and, if desired, deprotecting the tetrasaccharide derivative.
  • the hexasaccharide derivative and the disaccharide derivative can be condensed and deprotected if desired to obtain a octasaccharide derivative.
  • the tetrasaccharide derivatives can be condensed with each other and deprotected if desired to obtain a tetrasaccharide derivative. In this way, the oligomer of the disaccharide derivative can be synthesized.
  • the present invention comprises using the disaccharide derivative represented by the formula (1) as an intermediate (XG unit).
  • X 4 is a leaving group or a protected hydroxyl group, and n is an integer greater than or equal to 1.
  • a method for producing an oligomer of the XG unit represented by It will be understood by those skilled in the art that the upper limit of n is not particularly limited because the oligomeric linking reaction can be simply repeated. n can be, for example, 300 or less, 200 or less, 100 or less, 50 or less, 20 or less, and the like.
  • X 4 of the compound represented by the formula (5) is a leaving group
  • X 4 is a leaving group similar to X 1 and the like described above.
  • X 4 may contain the same protecting groups as R 1 and the like described above.
  • the disaccharide derivative represented by the formula (1) is used as a sugar donor, and the formula (1'): [In the formula, Y 5 is a group that is a precursor of a carboxyl group or a hydroxymethyl group, X 5 is a leaving group or a protected hydroxyl group, and R 9 to R 12 are a protecting group of a hydroxyl group].
  • a tetrasaccharide derivative can be obtained by using the disaccharide derivative represented by (1) as a sugar receptor and condensing them.
  • the tetrasaccharide derivatives are condensed with each other, or the disaccharide derivative represented by the formula (1) and the tetrasaccharide derivative are condensed, or the tetrasaccharide derivative and the disaccharide derivative represented by the formula (1') are condensed. Or by repeating the condensation of these oligomers with the oligomer and / or the disaccharide derivative, an oligomer derivative having a longer chain length can be obtained. These oligomer derivatives can be deprotected by a known method to obtain an oligomer represented by the formula (5) having a longer chain length.
  • Y 5 is a group similar to Y 1 etc. described above.
  • Examples of Y 5 include, but are not limited to, COOZ 3 or CH 2 OZ 4.
  • Z 3 is an alkyl group, preferably an alkyl group having 1 to 3 carbon atoms. More preferred Z 3 groups are methyl.
  • Z 4 is a normal hydroxyl group protecting group.
  • X 5 is a leaving group or a protected hydroxyl group.
  • R 9 to R 12 are hydroxyl-protecting groups, which are the same groups as R 1 and the like described above.
  • Preferred X 5, trichloroacetimidate benzyloxy, alkylthio, arylthio, halogen, such as pentenyloxy, although leaving groups include, but are not limited to commonly used in sugar chain synthesis.
  • Preferred R 9 to R 12 are generally used for the synthesis of sugar chains such as benzyl containing a substituted benzyl, allyl, lebrinoyl, benzoyl containing a substituted benzoyl, acetyl containing a substituted acetyl, allyloxycarbonyl, and trialkylsilyl.
  • Protecting groups include, but are not limited to.
  • R 9 benzoyl including substituted benzoyl with neighboring group participation ability, acetyl including substituted acetyl, although such levulinoyl include, but are not limited to. Additional examples of protecting groups which neighboring group participation ability has been described for R 7 'groups to the aforementioned, they can be used in R 9 groups.
  • a base such as an aqueous sodium hydroxide solution
  • the disaccharide derivative represented by the above formula (1) is used as a sugar donor, the disaccharide derivative represented by the above formula (1') is reacted as a sugar acceptor, and then, if desired, the disaccharide derivative is reacted.
  • a method for producing a tetrasaccharide represented by the formula (5) which may be derivatized, which comprises deprotecting the obtained tetrasaccharide derivative. Deprotection, if desired, means removing some (at least one) or all of the protecting groups. Derivatization of sugars is known to those of skill in the art.
  • the tetrasaccharide may contain a known protecting group or may contain a known leaving group. Examples of the tetrasaccharide protecting group and leaving group include those described above, but are not limited thereto.
  • the present invention has a further embodiment of the formula (9): Provided are tetrasaccharides or derivatives thereof.
  • the tetrasaccharide of the formula (9) is a portion that binds the xylose-glucuronic acid repeating structure of the postolinate sugar chain to the sugar chain extended from ⁇ -dystroglycan.
  • the postphosphate sugar chain can be reconstructed using the above disaccharide derivative, its oligomer, and the tetrasaccharide of the formula (9).
  • the reconstructed sugar chain can be used as a medicine for the treatment and prevention of sugar chain abnormal muscular dystrophy.
  • the derivative of the formula (9) include a compound in which at least a part or all of the hydroxyl groups in the formula (9) are protected by a protecting group, and a carboxyl group in the formula (9) is alkyl esterified. Examples include, but are not limited to, compounds. Specific examples of the tetrasaccharide derivative of the formula (9) include, but are not limited to, compounds 404 and 405 in the scheme below.
  • the formula (7) [In the formula, X 1 is a leaving group or a protected hydroxyl group, X 2 to X 6 are hydroxyl protecting groups, and X 7 is an alkyl group].
  • the tetrasaccharide derivative is obtained by reacting with the disaccharide receptor represented by, and then the tetrasaccharide derivative is deprotected to obtain the formula (9) :.
  • Provided is a method for producing the tetrasaccharide shown by.
  • Compound can be used and known as a leaving group X 1 in (7), trichloroacetimidate benzyloxy, alkylthio, arylthio, halogen, a leaving group is exemplified commonly used in the sugar chain synthesis such pentenyloxy However, it is not limited to these.
  • Preferred leaving groups X 1 include, but are not limited to, those that form thioglycosides such as trichloroacetimideyloxy, alkylthio and phenylthio.
  • the alkyl group in compound (7) is preferably an alkyl group having 1 to 3 carbon atoms, and is typically a methyl group.
  • X 1 of compound (7) is trichloroacetimideyloxy
  • X 2 to X 6 are acetyl
  • X 7 is methyl.
  • protecting group X 8 ⁇ X 13 2,3-position hydroxyl group of xylose is protected, as long as the protecting group of ribitol side is not no or changed is removed, commonly used in the sugar chain synthesis Protecting groups can be used.
  • protecting groups include, but are not limited to, benzyl containing substituted benzyl, allyl, lebrinoyl, benzoyl containing substituted benzoyl, acetyl containing substituted acetyl, allyloxycarbonyl, trialkylsilyl and the like.
  • the hydroxyl groups at the 2- and 3-positions of compound (8) may be protected by acetals.
  • compound (8) X 8 is protected by allyl, X 9 and X 10 are protected by benzyl, X 11 is protected by TBDPS, and the hydroxyl groups at the 2- and 3-positions are protected by isopropyrine acetals (ie,). X 12 and X 13 together form an isopropyrine acetal).
  • the compound of formula (7) may be derived from the disaccharide derivative of formula (1) using a known method.
  • CSA camphor sulfonic acid
  • DMF is dimethylformamide
  • THF is -Si (C 6 H 5 ) 2 tert-C 4 H 9
  • THF is tetrahydrofuran
  • TMSOTf is trimethylsilyl trifluoromethanesulfonate
  • TBAF is tetrabutyl.
  • Ammonium fluoride
  • the compound represented by the formula (7) is obtained by introducing a leaving group such as -OC (NH) CCl 3 into the 1-position of glucuronic acid of the compound having the protecting group of the hydroxyl group of the disaccharide derivative of the formula (1) as an acetyl group. You may get it.
  • the compound represented by the formula (10) may be derived from xylose. The lebrinoyl protecting groups at the 2-, 3- and 4-positions of the compound represented by the formula (10) are deprotected, and then a ring is formed between the hydroxyl groups at the 2- and 3-positions and 2-methoxypropene. Obtain the compound shown in (8).
  • the compound (sugar donor) represented by the formula (7) is reacted with the compound (sugar acceptor) represented by the formula (8), and then deprotection is performed by a known method to obtain the tetrasaccharide represented by the formula (9). obtain.
  • the disaccharide donor represented by the above formula (7) is reacted with the disaccharide receptor represented by the above formula (8), and then, if desired, the obtained tetrasaccharide derivative is obtained.
  • Deprotection if desired, means removing some (at least one) or all of the protecting groups.
  • Derivatization of sugars is known to those of skill in the art.
  • the tetrasaccharide may contain a known protecting group or may contain a known leaving group. Examples of the tetrasaccharide protecting group and leaving group include those described above, but are not limited thereto.
  • reaction conditions shown in the above description and scheme are examples, and those skilled in the art can appropriately change these reaction conditions.
  • reaction mixture was neutralized with saturated brine, extracted with CHCl 3 and post-treated by a conventional method.
  • the present invention can be used in the fields of pharmaceutical manufacturing, sugar chain engineering, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Saccharide Compounds (AREA)

Abstract

In the present invention, a disaccharide unit for synthesizing a useful sugar chain for suppressing the development of dystroglycanopathy is obtained and used to reconstitute a post-phosphoryl sugar chain. Provided are: a disaccharide derivative represented by formula (1) [wherein X1 is a leaving group or a protected hydroxyl group, Y1 is a carboxyl group, a hydroxymethyl group, or a precursor group thereof, and R1 to R5 are independently hydrogen or a protecting group for a hydroxyl group]; a production method for the same; and a method for producing an oligomer of the disaccharide derivative using the disaccharide derivative as an intermediate.

Description

オリゴ糖合成にかかる繰り返し二糖とそのオリゴマーの製造法Repetitive disaccharides involved in oligosaccharide synthesis and methods for producing their oligomers
 本発明は、糖鎖の合成中間体およびその製造方法に関する。 The present invention relates to a synthetic intermediate for sugar chains and a method for producing the same.
 筋ジストロフィーの一種である糖鎖異常型筋ジストロフィーは、糖タンパクであるジストログリカンの生合成異常によって引き起こされ、筋細胞の傷害をはじめ、脳奇形や精神発達遅滞などの中枢神経障害を伴う。最近の研究により、筋細胞に存在するジストログリカンの糖鎖異常が糖鎖異常型筋ジストロフィーの原因であることがわかってきた。ジストログリカンの糖鎖のうち、ラミニンと親和性のある糖鎖部分をマトリグリカンという。マトリグリカンは、ラミニンを介して筋細胞と基底膜とを繋ぎとめるものであり、この糖鎖に生合成異常が生じることにより糖鎖異常型筋ジストロフィーが発症する。 Abnormal muscular dystrophy, which is a type of muscular dystrophy, is caused by abnormal biosynthesis of dystroglycan, which is a glycoprotein, and is accompanied by central nervous system disorders such as brain malformations and mental retardation, including muscle cell damage. Recent studies have revealed that dystroglycan sugar chain abnormalities present in muscle cells are the cause of sugar chain abnormal muscular dystrophy. Of the sugar chains of dystroglycan, the sugar chain portion that has an affinity for laminin is called matriglican. Matriglycan binds muscle cells to the basement membrane via laminin, and abnormal biosynthesis occurs in this sugar chain, resulting in the development of abnormal sugar chain muscular dystrophy.
 マトリグリカンを含むSer/Thr以降の糖鎖の全体構造について研究が進められ、リビトールリン酸を介してマトリグリカンが伸長するO-マンノシルグリカンであることがわかっている。マトリグリカンはその非還元末端部分にα-キシロースとβ-グルクロン酸からなる二糖の繰り返しを有する糖鎖を含んでおり(非特許文献1)、この二糖の繰り返しを有する糖鎖がラミニンとの結合に必要であることがわかっている(非特許文献2)。 Research has been carried out on the overall structure of sugar chains after Ser / Thr containing matriglycan, and it is known that it is an O-mannosylglycan in which matriglican is elongated via ribitol phosphate. Matriglican contains a sugar chain having a repeating disaccharide consisting of α-xylose and β-glucuronic acid at its non-reducing terminal portion (Non-Patent Document 1), and the sugar chain having repeating this disaccharide is laminin. It is known that it is necessary for the binding of (Non-Patent Document 2).
 糖鎖異常型筋ジストロフィーの治療には、O-マンノシルグリカンの生合成に関与する糖鎖生合成酵素を規定する遺伝子の改善が有望視されている。しかし、関与する遺伝子の種類は多く、過剰発現した場合は病状が悪化することも報告されており、糖鎖異常型筋ジストロフィーの遺伝子治療は容易ではない。 For the treatment of sugar chain abnormal muscular dystrophy, improvement of the gene that regulates the sugar chain biosynthesis enzyme involved in the biosynthesis of O-mannosyl glycan is expected. However, there are many types of genes involved, and it has been reported that the condition worsens when overexpressed, and gene therapy for sugar chain abnormal muscular dystrophy is not easy.
 ラミニンを介して筋細胞と基底膜とを繋ぎとめているジストログリカン上のマトリグリカンを再構築できれば、糖鎖異常型筋ジストロフィーの発症を抑制することができる。したがって、本発明が解決すべき課題は、マトリグリカンを再構築することである。 If the matrix on the dystroglycan that connects the muscle cells and the basement membrane via laminin can be reconstructed, the onset of sugar chain abnormal muscular dystrophy can be suppressed. Therefore, the problem to be solved by the present invention is to reconstruct the matrix glycan.
 本発明者らは、上記課題を解決せんと鋭意研究を重ね、α-キシロースとβ-グルクロン酸からなる二糖の繰り返しを有する糖鎖を合成するための二糖ユニット(Xylα1-3GlcAβ)の合成、該二糖ユニット同士を結合した四糖の合成、ならびに該繰り返しを有する糖鎖とαジストログリカンから伸長する糖鎖をつなぐ四糖部分の合成に成功し、マトリグリカンの再構築可能性を示した。本発明者らは、これらの知見から本発明を完成するに至った。 The present inventors have conducted intensive studies to solve the above problems, and synthesized a disaccharide unit (Xylα1-3GlcAβ) for synthesizing a sugar chain having a repeating disaccharide consisting of α-xylose and β-glucuronic acid. , Succeeded in the synthesis of tetrasaccharides in which the disaccharide units are bound to each other, and the synthesis of the tetrasaccharide moiety that connects the sugar chain having the repetition and the sugar chain extending from the α-dystroglycan, and showed the possibility of reconstructing the matrix. It was. The present inventors have completed the present invention from these findings.
 したがって、本発明は以下のものを提供する。
 [1]式(1):
Figure JPOXMLDOC01-appb-C000014
 
[式中、Xは脱離基または保護された水酸基であり、Yはカルボキシル基もしくはヒドロキシメチル基またはそれらの前駆体である基であり、R~Rはそれぞれ独立して水素であるかまたは水酸基の保護基である]
で表される二糖誘導体。
 
 [2]Xがトリクロロアセトイミドイルオキシ、アルキルチオ、アリールチオ、ハロゲン、ペンテニルオキシ、アルコキシおよびフェノキシからなる群より選択される基であり、YがCOOZまたはCHOZであり、Zがアルキル基であり、Zは水酸基の保護基であり、R~Rがそれぞれ独立して置換ベンジルを含むベンジル、アリル、レブリノイル、置換ベンゾイルを含むベンゾイル、置換アセチルを含むアセチル、アリルオキシカルボニル、イソプロピリデン、ベンジリデンおよびトリアルキルシリルからなる群より選択される基である[1]記載の二糖誘導体。
 
 [3]式(2):
Figure JPOXMLDOC01-appb-C000015
 
[式中、Xは脱離基であり、Yはキシロース残基の配座を固定する基であり、Rは、p-アルキルオキシベンジル、3,4-ジアルキルオキシベンジル、固相化されたp-アルキルオキシベンジル、固相化された3,4-ジアルキルオキシベンジル、ナフチル、ナフチルメチル、-CH=CH、-C(CH)=CH、-CH-CH=CH、-CH=CH-CH、-CH=C=CH、および水素からなる群から選択される基である]
で表されるキシロース誘導体と、
 式(3):
Figure JPOXMLDOC01-appb-C000016
 
[式中、Xは脱離基または保護された水酸基であり、RおよびRは水酸基の保護基であり、Yはカルボキシル基またはヒドロキシメチル基の前駆体である基である]
で示されるグルコース誘導体またはグルクロン酸誘導体から、
式(4):
Figure JPOXMLDOC01-appb-C000017
 
[式中、X、R、RおよびYは上記定義と同じである]
で表されるα-グリコシドを製造する方法であって、下記工程1)~3):
 工程1) 式(2)で表されるキシロース誘導体と式(3)で表されるグルコース誘導体またはグルクロン酸誘導体とを反応させて、キシロース誘導体のOR基とグルコース誘導体またはグルクロン酸誘導体の非保護水酸基とを介した混合アセタール誘導体を製造し、
 工程2) 工程1)で得られた混合アセタール誘導体を、脱離基Xを活性化させることにより反応させてα1→3二糖誘導体を製造し、次いで、
 工程3) 工程2)で得られた二糖誘導体を脱保護して式(4)に誘導する
を含む方法。
 
 [4]Xがトリクロロアセトイミドイルオキシ、アルキルチオ、ハロゲン、アリールチオ、およびペンテニルオキシからなる群より選択される基であり、Yがアセタール、カーボネート、シリレンアセタール、およびスタニレンアセタールからなる群より選択される基であり、Rがp-メトキシベンジルおよびナフチルメチルからなる群より選択される基であり、Xがトリクロロアセトイミドイルオキシ、アルキルチオ、アリールチオ、ハロゲン、ペンテニルオキシ、アルコキシおよびフェノキシからなる群より選択される基であり、RおよびRがそれぞれ独立して置換ベンジルを含むベンジル、アリル、レブリノイル、置換ベンゾイルを含むベンゾイル、置換アセチルを含むアセチル、アリルオキシカルボニルおよびトリアルキルシリルからなる群より選択される基であり、YがCOOZまたはCHOZであり、Zがアルキル基であり、Zは水酸基の保護基である[3]記載の方法。
 
 [5]R、Rが置換ベンゾイルを含むベンゾイル、置換アセチルを含むアセチルおよびレブリノイルからなる群より選択される基である[4]記載の方法。
 
 [6]式(2’):
Figure JPOXMLDOC01-appb-C000018
 
[式中、X’は脱離基であり、Y’はキシロース残基の配座を固定する基であり、R’は隣接基関与能のない水酸基の保護基である]
で表されるキシロース誘導体と、
式(3’):
Figure JPOXMLDOC01-appb-C000019
 
[式中、X’は脱離基または保護された水酸基であり、R’は隣接基関与能のある水酸基の保護基、R’は水酸基の保護基であり、Y’はカルボキシル基またはヒドロキシメチル基の前駆体である基である]
で示されるグルコース誘導体またはグルクロン酸誘導体から、
式(4’):
Figure JPOXMLDOC01-appb-C000020
 
[式中、X’、R’、R’およびY’は上記定義と同じである]
で表されるα-グリコシドを製造する方法であって、下記工程1)~3):
 工程1) 式(2’)で表されるキシロース誘導体と式(3’)で表されるグルコース誘導体またはグルクロン酸誘導体とを直接縮合させてα1→3グリコシドおよびβ1→3グリコシドの混合物を得て、
 工程2) 工程1)で得られた混合物を脱保護し、次いで、
 工程3) 工程2)で脱保護された混合物からα-グリコシドを分離する
を含む方法。
 
 [7]工程1)の縮合が、NIS-AgOTf、NIS-TfOH、MeOTf、CuBr-AgOTf-nBuNI、またはNBS-AgOTfを縮合剤として用いて行われる、[6]記載の方法。
 
 [8]工程2)の脱保護が、トリフルオロ酢酸(TFA)を用いる加水分解により、キシロース残基の2-、3-および4-位に水酸基を有するトリオールを形成させるものである、[6]または[7]記載の方法。
 
 [9]工程3)の分離が、β-グリコシドをクロロホルムに溶解させてβ-グリコシドを除去することにより行われる、[6]~[8]のいずれかに記載の方法。
 
 [10]式(1)で示される二糖誘導体を中間体(XGユニットという)として用いることを含む、式(5):
Figure JPOXMLDOC01-appb-C000021
 
[式中、Xは脱離基であるかまたは保護された水酸基であり、nは1以上の整数である]
で示されるXGユニットオリゴマーを製造する方法。
 
 [11]式(1)で示される二糖誘導体を糖供与体とし、式(1’):
Figure JPOXMLDOC01-appb-C000022
 
[式中、Yはカルボキシル基またはヒドロキシメチル基の前駆体である基であり、Xは脱離基または保護された水酸基であり、R~R12は水酸基の保護基である]
で示される二糖誘導体を糖受容体として反応させることを含む[10]記載の方法。
 
 [12]YがCOOZまたはCHOZであり、Zがアルキル基であり、Zは水酸基の保護基であり、Xがトリクロロアセトイミドイルオキシ、アルキルチオ、アリールチオ、ハロゲン、ペンテニルオキシ、アルコキシおよびフェノキシからなる群より選択される基であり、R~R12はそれぞれ独立して、置換ベンジルを含むベンジル、アリル、レブリノイル、置換ベンゾイルを含むベンゾイル、置換アセチルを含むアセチル、アリルオキシカルボニルおよびトリアルキルシリルからなる群より選択される基である[11]記載の方法。
 
 [13]Rが置換ベンゾイルを含むベンゾイル、置換アセチルを含むアセチルおよびレブリノイルからなる群より選択される基である[12]記載の方法。
 
 [14]式(9):
Figure JPOXMLDOC01-appb-C000023
 
で示される四糖またはその誘導体。
 
 [15]式(7):
Figure JPOXMLDOC01-appb-C000024
 
[式中、Xは脱離基または保護された水酸基、X~Xは水酸基の保護基、Xはアルキル基である]
で示される二糖供与体を、式(8):
Figure JPOXMLDOC01-appb-C000025
 
[式中、X~X13は水酸基の保護基である、たたしX12およびX13は一緒になってアセタールを形成してもよい]
で示される二糖受容体と反応させることにより四糖誘導体を得て、次いで、四糖誘導体を脱保護することにより式(9):
Figure JPOXMLDOC01-appb-C000026
 
で示される四糖を得ることを特徴とする、式(9)で示される四糖の製造方法。
 
 [16]Xはトリクロロアセトイミドイルオキシ、X~Xはアセチル、Xはメチル、Xはアリル、XおよびX10はベンジル、X11はTBDPS、X12およびX13は一緒になってイソプロピリデンアセタールを形成している、[15]記載の方法。
Therefore, the present invention provides the following.
[1] Equation (1):
Figure JPOXMLDOC01-appb-C000014

[In the formula, X 1 is a leaving group or a protected hydroxyl group, Y 1 is a carboxyl group or a hydroxymethyl group or a group that is a precursor thereof, and R 1 to R 5 are independently hydrogen. Is or is a hydroxyl-protecting group]
A disaccharide derivative represented by.

[2] X 1 is a group selected from the group consisting of trichloroacetimideyloxy, alkylthio, arylthio, halogen, pentenyloxy, alkoxy and phenoxy, Y 1 is COOZ 1 or CH 2 OZ 2 , and Z 1 Is an alkyl group, Z 2 is a protecting group for hydroxyl groups, and R 1 to R 5 are independently substituted benzyl-containing benzyl, allyl, levulinoyl, substituted benzoyl-containing benzoyl, substituted acetyl-containing acetyl, and allyloxy. The disaccharide derivative according to [1], which is a group selected from the group consisting of carbonyl, isopropylidene, benzylidene and trialkylsilyl.

[3] Equation (2):
Figure JPOXMLDOC01-appb-C000015

[In the formula, X 2 is a leaving group, Y is a group that fixes the configuration of the xylose residue, and R 6 is immobilized with p-alkyloxybenzyl, 3,4-dialkyloxybenzyl. P-alkyloxybenzyl, immobilized 3,4-dialkyloxybenzyl, naphthyl, naphthylmethyl, -CH = CH 2 , -C (CH 3 ) = CH 2 , -CH 2 -CH = CH 2 , -CH = CH-CH 3 , -CH = C = CH 2 , and a group selected from the group consisting of hydrogen]
With the xylose derivative represented by
Equation (3):
Figure JPOXMLDOC01-appb-C000016

[In the formula, X 3 is a leaving group or a protected hydroxyl group, R 7 and R 8 are a protecting group for a hydroxyl group, and Y 4 is a group that is a precursor of a carboxyl group or a hydroxymethyl group].
From the glucose derivative or glucuronic acid derivative indicated by
Equation (4):
Figure JPOXMLDOC01-appb-C000017

[In the equation, X 3 , R 7 , R 8 and Y 4 are the same as the above definitions]
A method for producing an α-glycoside represented by the following steps 1) to 3) :.
Step 1) By reacting the xylose derivative represented by the formula (2) with the glucose derivative or the glucuronic acid derivative represented by the formula (3), the OR 6 group of the xylose derivative and the glucose derivative or the glucuronic acid derivative are not protected. Manufacture mixed acetal derivatives via hydroxyl groups
Step 2) mixed acetal derivative obtained with step 1) is reacted to produce [alpha] 1 → 3 disaccharide derivative by activating the leaving group X 2, then,
Step 3) A method comprising deprotecting the disaccharide derivative obtained in Step 2) and inducing it into the formula (4).

[4] X 2 is a group selected from the group consisting of trichloroacetimideyloxy, alkylthio, halogen, arylthio, and pentenyloxy, and Y is selected from the group consisting of acetal, carbonate, silylene acetal, and stanilen acetal. R 6 is a group selected from the group consisting of p-methoxybenzyl and naphthylmethyl, and X 3 is composed of trichloroacetimideyloxy, alkylthio, arylthio, halogen, pentenyloxy, alkoxy and phenoxy. A group selected from the group, each of which contains R 7 and R 8 independently of a substituted benzyl containing a benzyl, an allyl, a lebrinoyl, a substituted benzoyl containing a benzoyl, a substituted acetyl containing an acetyl, an allyloxycarbonyl and a trialkylsilyl. The method according to [3], wherein Y 4 is a COOZ 2 or CH 2 OZ 3 , Z 2 is an alkyl group, and Z 3 is a hydroxyl group protective group.

[5] The method according to [4], wherein R 7 and R 8 are groups selected from the group consisting of a benzoyl containing a substituted benzoyl, an acetyl containing a substituted acetyl and a lebrinoyl.

[6] Equation (2'):
Figure JPOXMLDOC01-appb-C000018

Wherein, X 2 'is a leaving group, Y' is a group for fixing the conformation of xylose residues, R 6 'is a protecting group with no neighboring group participation ability hydroxyl]
With the xylose derivative represented by
Equation (3'):
Figure JPOXMLDOC01-appb-C000019

Wherein, X 3 'is a leaving group or a protected hydroxyl group, R 7' is hydroxyl-protecting group with a neighboring group participation ability, R 8 'is a protecting group for a hydroxyl group, Y 4' represents a carboxyl A group that is a precursor of a group or a hydroxymethyl group]
From the glucose derivative or glucuronic acid derivative indicated by
Equation (4'):
Figure JPOXMLDOC01-appb-C000020

Wherein, X 3 ', R 7' , R 8 ' and Y 4' are the same as defined above
A method for producing an α-glycoside represented by the following steps 1) to 3) :.
Step 1) The xylose derivative represented by the formula (2') and the glucose derivative or the glucuronic acid derivative represented by the formula (3') are directly condensed to obtain a mixture of α1 → 3 glycoside and β1 → 3 glycoside. ,
Step 2) Deprotect the mixture obtained in Step 1) and then
Step 3) A method comprising separating the α-glycoside from the deprotected mixture in Step 2).

[7] The method according to [6], wherein the condensation in step 1) is carried out using NIS-AgOTf, NIS-TfOH, MeOTf, CuBr 2 -AgOTf-nBu 4 NI, or NBS-AgOTf as a condensing agent.

[8] The deprotection in step 2) is to form triol having hydroxyl groups at the 2-, 3- and 4-positions of the xylose residue by hydrolysis using trifluoroacetic acid (TFA) [6]. ] Or the method according to [7].

[9] The method according to any one of [6] to [8], wherein the separation in step 3) is carried out by dissolving β-glycoside in chloroform to remove β-glycoside.

[10] The formula (5): including the use of the disaccharide derivative represented by the formula (1) as an intermediate (referred to as an XG unit):
Figure JPOXMLDOC01-appb-C000021

[In the formula, X 4 is a leaving group or a protected hydroxyl group, and n is an integer greater than or equal to 1.]
A method for producing an XG unit oligomer represented by.

[11] The disaccharide derivative represented by the formula (1) is used as a sugar donor, and the formula (1'):
Figure JPOXMLDOC01-appb-C000022

[In the formula, Y 5 is a group that is a precursor of a carboxyl group or a hydroxymethyl group, X 5 is a leaving group or a protected hydroxyl group, and R 9 to R 12 are a protecting group of a hydroxyl group].
[10] The method according to [10], which comprises reacting the disaccharide derivative represented by (1) as a sugar receptor.

[12] Y 5 is COOZ 3 or CH 2 OZ 4 , Z 3 is an alkyl group, Z 4 is a hydroxyl group protective group, and X 5 is trichloroacetimideyloxy, alkylthio, arylthio, halogen, pentenyl. It is a group selected from the group consisting of oxy, alkoxy and phenoxy, and R 9 to R 12 are independently benzyl containing a substituted benzyl, allyl, levulinoyl, benzoyl containing a substituted benzoyl, acetyl containing a substituted acetyl, and allyl. The method according to [11], which is a group selected from the group consisting of oxycarbonyl and trialkylsilyl.

[13] R 9 is a group selected from the group consisting of acetyl and levulinoyl including benzoyl including substituted benzoyl, substituted acetyl [12] The method according.

[14] Equation (9):
Figure JPOXMLDOC01-appb-C000023

Tetrasaccharides or derivatives thereof.

[15] Equation (7):
Figure JPOXMLDOC01-appb-C000024

[In the formula, X 1 is a leaving group or a protected hydroxyl group, X 2 to X 6 are hydroxyl protecting groups, and X 7 is an alkyl group].
The disaccharide donor represented by the formula (8):
Figure JPOXMLDOC01-appb-C000025

Wherein, X 8 ~ X 13 is a hydroxyl-protecting group, nice contrast X 12 and X 13 may form acetal together]
The tetrasaccharide derivative is obtained by reacting with the disaccharide receptor represented by, and then the tetrasaccharide derivative is deprotected to obtain the formula (9) :.
Figure JPOXMLDOC01-appb-C000026

A method for producing a tetrasaccharide represented by the formula (9), which comprises obtaining the tetrasaccharide represented by the formula (9).

[16] X 1 is trichloroacetimideyloxy, X 2 to X 6 are acetyl, X 7 is methyl, X 8 is allyl, X 9 and X 10 are benzyl, X 11 is TBDPS, and X 12 and X 13 are together. [15]. The method according to [15], wherein the isopropyrine acetal is formed.
 本発明によれば、誘導体化されていてもよいα-キシロースと誘導体化されていてもよいβ-グルクロン酸からなる二糖ユニットが提供される。該二糖ユニットを用いて該ポストリン酸糖鎖を再構築することができる。このことは、糖鎖異常型筋ジストロフィーの発症抑制を可能にする。 According to the present invention, a disaccharide unit consisting of α-xylose, which may be derivatized, and β-glucuronic acid, which may be derivatized, is provided. The disaccharide unit can be used to reconstruct the postphosphate sugar chain. This makes it possible to suppress the onset of sugar chain abnormal muscular dystrophy.
 1.二糖誘導体
 本発明は、1の態様において、式(1):
Figure JPOXMLDOC01-appb-C000027
 
[式中、Xは脱離基または保護された水酸基であり、Yはカルボキシル基もしくはヒドロキシメチル基またはそれらの前駆体である基であり、R~Rはそれぞれ独立して水素であるかまたは水酸基の保護基である]
で表される二糖誘導体を提供する。
1. 1. Disaccharide Derivatives In one embodiment, the present invention has the formula (1):
Figure JPOXMLDOC01-appb-C000027

[In the formula, X 1 is a leaving group or a protected hydroxyl group, Y 1 is a carboxyl group or a hydroxymethyl group or a group that is a precursor thereof, and R 1 to R 5 are independently hydrogen. Is or is a hydroxyl-protecting group]
The disaccharide derivative represented by is provided.
 Xとしては公知の脱離基または保護された水酸基を使用でき、トリクロロアセトイミドイルオキシ、アルキルチオ、アリールチオ、ハロゲン、ペンテニルオキシ(4-ペンテニルオキシ)等の、糖鎖合成に一般的に使用される脱離基が例示されるが、これらに限定されない。本開示における他の箇所の脱離基も同様である。好ましい脱離基Xとしてはトリクロロアセトイミドイルオキシ、アルキルチオやフェニルチオなどのチオグリコシドを形成するものが例示されるが、これらに限定されない。水酸基の保護基は当業者によく知られている。すなわち、保護された水酸基は当業者によく知られている。Xはアルコキシまたはフェノキシであってもよい。 A known leaving group or protected hydroxyl group can be used as X 1, and it is generally used for sugar chain synthesis such as trichloroacetimideyloxy, alkylthio, arylthio, halogen, and pentenyloxy (4-pentenyloxy). Leaving groups are exemplified, but not limited to these. The same applies to leaving groups at other points in the present disclosure. Preferred leaving groups X 1 include, but are not limited to, those that form thioglycosides such as trichloroacetimideyloxy, alkylthio and phenylthio. Hydroxyl protecting groups are well known to those of skill in the art. That is, protected hydroxyl groups are well known to those of skill in the art. X 1 may be alkoxy or phenoxy.
 Yはカルボキシル基もしくはヒドロキシメチル基またはそれらの前駆体である基である。カルボキシル基またはヒドロキシメチル基の前駆体である基は、当業者によく知られており、例えば酸化/還元反応、加水分解反応のような反応、加熱などを経ることにより典型的に1ステップでカルボキシル基またはヒドロキシメチル基に転換できる基を表す。カルボキシル基またはヒドロキシメチル基の前駆体は通常はカルボキシル基またはヒドロキシメチル基の誘導体でもある。Y基の例としては、COOZまたはCHOZなどが挙げられるが、これらに限定されない。ここで、Zはアルキル基であり、好ましくは炭素数1~3個のアルキル基である。より好ましいZ基はメチルである。Zは通常用いられる水酸基の保護基である。水酸基の保護基は公知であり、その具体例は本明細書に記載されている。 Y 1 is a carboxyl group or a hydroxymethyl group or a group which is a precursor thereof. Groups that are precursors of carboxyl or hydroxymethyl groups are well known to those skilled in the art and are typically carboxyled in one step through reactions such as oxidation / reduction reactions, hydrolysis reactions, heating and the like. Represents a group that can be converted to a group or a hydroxymethyl group. Precursors of carboxyl or hydroxymethyl groups are also usually derivatives of carboxyl or hydroxymethyl groups. Examples of one Y unit include, but are not limited to , COOZ 1 or CH 2 OZ 2. Here, Z 1 is an alkyl group, preferably an alkyl group having 1 to 3 carbon atoms. A more preferred Z 1 group is methyl. Z 2 is a commonly used hydroxyl protecting group. Hydroxyl protecting groups are known and specific examples thereof are described herein.
 R~Rはそれぞれ独立して水素であるかまたは水酸基の保護基である。本開示における保護基は糖鎖形成後に除去可能な基であることが好ましい。本開示において、化合物中に複数の水酸基の保護基がある場合は、それら複数の保護基は互いに異なる種類であり得、または互いに同じ種類であり得る。互いに異なる種類の保護基を使用することにより、選択的な脱保護が促進され得る。このような水酸基の保護基は公知であり、例えば、Greene’s Protective Groups in Organic Synthesis, 5th Edition (Wiley)の第2章に記載されている保護基を挙げることができる。具体的には、ベンジル基、p-メトキシベンジル基、p-メトキシフェニル基、p-ニトロベンジル基、ベンゾイル基、p-メチルベンゾイル基、ベンジリデン基、アセチル基、ピバロイル基、レブリノイル基、アリル基、メトキシメチル基、tert-ブチルジメチルシリル基、トリイソプロピルシリル基、イソプロピリデン、ベンジリデン、アリルオキシカルボニル、トリアルキルシリルなどが挙げられるが、これらに限定されない。好ましいR基としては、隣接基関与能のある置換ベンゾイルを含むベンゾイル、置換アセチルを含むアセチル、レブリノイルが挙げられるが、これらに限定されない。隣接基関与能のある保護基のさらなる例は後述するR’基について記載されており、それらをR基に用いることができる。好ましいR~R基としては、置換ベンジルを含むベンジル、アリル、レブリノイル、置換ベンゾイルを含むベンゾイル、置換アセチルを含むアセチル、アリルオキシカルボニル、トリアルキルシリル等の糖鎖合成に一般的に使用される保護基が挙げられるが、これらに限定されない。R~Rのうちの少なくとも1つ(例えばR、またはR~Rのいずれか)が保護基であることが好ましく、その場合の残りの基は水素である。R~Rのすべてが保護基であってもよい。 R 1 to R 5 are each independently hydrogen or a hydroxyl-protecting group. The protecting group in the present disclosure is preferably a group that can be removed after sugar chain formation. In the present disclosure, when a compound contains a plurality of hydroxyl protecting groups, the plurality of protecting groups may be of different types from each other or may be of the same type as each other. Selective deprotection can be facilitated by using different types of protecting groups. Such hydroxyl protecting groups are known and include, for example, the protecting groups described in Chapter 2 of Greene's Protective Groups in Organic Synthesis, 5th Edition (Wiley). Specifically, a benzyl group, a p-methoxybenzyl group, a p-methoxyphenyl group, a p-nitrobenzyl group, a benzoyl group, a p-methylbenzoyl group, a benzylidene group, an acetyl group, a pivaloyl group, a lebrinoyl group, an allyl group, Examples thereof include, but are not limited to, a methoxymethyl group, a tert-butyldimethylsilyl group, a triisopropylsilyl group, an isopropylidene, a benzylidene, an allyloxycarbonyl, and a trialkylsilyl. Preferred R 1 groups, benzoyl including substituted benzoyl with neighboring group participation ability, acetyl including substituted acetyl, including but levulinoyl, without limitation. Additional examples of protecting groups which neighboring group participation ability has been described for R 7 'group, which will be described later, they can be used in 1 group R. Preferred R 2 ~ R 5 groups, benzyl including substituted benzyl, allyl, levulinoyl, benzoyl, including substituted benzoyl, acetyl including substituted acetyl, allyloxycarbonyl, commonly used in the sugar chain synthesis such as trialkylsilyl Protecting groups include, but are not limited to. At least one of R 1 to R 5 (eg, either R 1 or R 2 to R 5 ) is preferably a protecting group, in which case the remaining group is hydrogen. All of R 1 to R 5 may be protecting groups.
 本発明は、さらなる態様において、式(2):
Figure JPOXMLDOC01-appb-C000028
 
[式中、Xは脱離基であり、Yはキシロース残基の配座を固定する基であり、Rはp-アルキルオキシベンジル、3,4-ジアルキルオキシベンジル、固相化されたp-アルキルオキシベンジル、固相化された3,4-ジアルキルオキシベンジル、ナフチル、ナフチルメチル、-CH=CH、-C(CH)=CH、-CH-CH=CH、-CH=CH-CH、-CH=C=CH、および水素からなる群から選択される基である]
で表されるキシロース誘導体と、
 式(3):
Figure JPOXMLDOC01-appb-C000029
 
[式中、Xは脱離基または保護された水酸基であり、RおよびRは水酸基の保護基であり、Yはカルボキシル基またはヒドロキシメチル基の前駆体である基である]
で示されるグルコース誘導体またはグルクロン酸誘導体から、
式(4):
Figure JPOXMLDOC01-appb-C000030
 
[式中、X、R、RおよびYは上記定義と同じである]
で表されるα-グリコシドを製造する方法であって、下記工程1)~3):
 工程1) 式(2)で表されるキシロース誘導体と式(3)で表されるグルコース誘導体またはグルクロン酸誘導体とを反応させて、キシロース誘導体のOR基とグルコース誘導体またはグルクロン酸誘導体の非保護水酸基とを介した混合アセタール誘導体を製造し、
 工程2) 工程1)で得られた混合アセタール誘導体を、脱離基Xを活性化させることにより反応させてα1→3二糖誘導体を製造し、次いで、
 工程3) 工程2)で得られた二糖誘導体を脱保護して式(4)に誘導する
を含む方法を提供する。
In a further aspect of the present invention, the formula (2):
Figure JPOXMLDOC01-appb-C000028

[In the formula, X 2 is a leaving group, Y is a group that fixes the coordination of xylose residues, and R 6 is p-alkyloxybenzyl, 3,4-dialkyloxybenzyl, immobilized. p-alkyloxybenzyl, immobilized 3,4-dialkyloxybenzyl, naphthyl, naphthylmethyl, -CH = CH 2 , -C (CH 3 ) = CH 2 , -CH 2 -CH = CH 2 ,- A group selected from the group consisting of CH = CH-CH 3 , -CH = C = CH 2, and hydrogen]
With the xylose derivative represented by
Equation (3):
Figure JPOXMLDOC01-appb-C000029

[In the formula, X 3 is a leaving group or a protected hydroxyl group, R 7 and R 8 are a protecting group for a hydroxyl group, and Y 4 is a group that is a precursor of a carboxyl group or a hydroxymethyl group].
From the glucose derivative or glucuronic acid derivative indicated by
Equation (4):
Figure JPOXMLDOC01-appb-C000030

[In the equation, X 3 , R 7 , R 8 and Y 4 are the same as the above definitions]
A method for producing an α-glycoside represented by the following steps 1) to 3) :.
Step 1) By reacting the xylose derivative represented by the formula (2) with the glucose derivative or the glucuronic acid derivative represented by the formula (3), the OR 6 group of the xylose derivative and the glucose derivative or the glucuronic acid derivative are not protected. Manufacture mixed acetal derivatives via hydroxyl groups
Step 2) mixed acetal derivative obtained with step 1) is reacted to produce [alpha] 1 → 3 disaccharide derivative by activating the leaving group X 2, then,
Step 3) Provided is a method comprising deprotecting the disaccharide derivative obtained in Step 2) and inducing it into the formula (4).
 上記のα-グリコシドの製造方法において、式(2)の化合物が糖供与体、式(3)の化合物が糖受容体となる。 In the above method for producing an α-glycoside, the compound of the formula (2) is a sugar donor and the compound of the formula (3) is a sugar receptor.
 式(2)の化合物において、Xは脱離基である。Xは上で説明した脱離基Xと同様であり、トリクロロアセトイミドイルオキシ、アルキルチオ、アリールチオ、フェニルスルフィニル、ハロゲン、ペンテニルオキシ等の、糖鎖合成に一般的に使用される脱離基が例示されるが、これらに限定されない。脱離基として好ましいXとしてはトリクロロアセトイミドイルオキシ、アルキルチオやアリールチオなどのチオグリコシドを形成するものが例示されるが、これらに限定されない。本開示において脱離基として記載されるアルキルチオ基は、例えば炭素数1~20のアルキルチオであり得るが、これに限定されない。本開示において脱離基として記載されるアリールチオ基は、例えばフェニルチオまたはトリルチオであり得るがこれに限定されない。 In the compound of formula (2), X 2 is a leaving group. X 2 is the same as the leaving group X 1 described above, and is a leaving group commonly used for sugar chain synthesis such as trichloroacetimideyloxy, alkylthio, arylthio, phenylsulfinyl, halogen, pentenyloxy and the like. Is exemplified, but the present invention is not limited to these. Trichloroacetimidate yl oxy Preferred X 2 as leaving groups, but which forms a thioglycoside such as alkylthio or arylthio is exemplified, without limitation. The alkylthio group described as a leaving group in the present disclosure may be, for example, an alkylthio having 1 to 20 carbon atoms, but is not limited thereto. The arylthio group described as a leaving group in the present disclosure can be, but is not limited to, for example, phenylthio or trilthio.
 式(2)の糖供与体において、Yは、キシロース残基を表記の配座に固定し、環の反転を防止しうる基である。なお、式(2)において、左側に表示された2つの酸素原子はY基に含まれる。具体的には、Yは、アセタール、カーボネート、シリレンアセタール、またはスタニレンアセタールであり得る。アセタールはジアセタールを含む。これらの構造を定義づける酸素原子が、上記式(2)の左側に表示された2つの酸素原子に相当することが理解されるべきである。より具体的には、Yは下記式(2a)で表される構造であり得る。
Figure JPOXMLDOC01-appb-C000031
 
 式(2a)中、ZはC、Si、またはSnであり、Z=Cであり且つYがアセタールである場合にはnは0~2の整数(好ましくは0または1)でありそれ例外の場合はnは0である。各Zに結合する2つのLは、それぞれ独立してアルキル、フェニル、または水素である。2つのLのいずれか片方または両方がアルキルまたはフェニルであることが好ましい。nが1以上の場合は、各Zに結合する2つのLの片方はさらにアルキルオキシ(例えばメトキシ)またはフェニルオキシであり得る。あるいは、Z=Cであり且つYがカーボネートである場合には、Zに結合する2つのLは一緒になって「O=」を表す。アルキルおよびアルキルオキシにおけるアルキル基は、例えば炭素数1~6個のアルキル基であり得るが、これに限定されない。
 式(2)の糖供与体の好ましい具体例を下記に示す。下記の例において、(2-1)および(2-2)はYがn=0のアセタールである実施形態、(2-3)はYがn=1のアセタールである実施形態、(2-4)、(2-5)、および(2-6)はそれぞれYがカーボネート、シリレンアセタール、およびスタニレンアセタールである実施形態を表す。ここに示されるL基は例示であって、L基はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000032
 
In the sugar donor of formula (2), Y is a group capable of immobilizing the xylose residue in the notation conformation and preventing ring inversion. In the formula (2), the two oxygen atoms displayed on the left side are included in the Y group. Specifically, Y can be an acetal, carbonate, silylene acetal, or stanilen acetal. Acetals include diacetals. It should be understood that the oxygen atoms that define these structures correspond to the two oxygen atoms displayed on the left side of equation (2) above. More specifically, Y may have a structure represented by the following formula (2a).
Figure JPOXMLDOC01-appb-C000031

In formula (2a), Z is C, Si, or Sn, and when Z = C and Y is an acetal, n is an integer of 0 to 2 (preferably 0 or 1), with the exception of this. In the case, n is 0. The two Ls attached to each Z are independently alkyl, phenyl, or hydrogen. It is preferred that either or both of the two L's are alkyl or phenyl. When n is 1 or more, one of the two Ls attached to each Z can be further alkyloxy (eg, methoxy) or phenyloxy. Alternatively, when Z = C and Y is carbonate, the two Ls bound to Z together represent "O =". Alkyl groups in alkyl and alkyloxy can be, for example, alkyl groups having 1 to 6 carbon atoms, but are not limited thereto.
Preferred specific examples of the sugar donor of the formula (2) are shown below. In the examples below, (2-1) and (2-2) are embodiments in which Y is an acetal with n = 0, and (2-3) is an embodiment in which Y is an acetal with n = 1, (2-). 4), (2-5), and (2-6) represent embodiments in which Y is carbonate, silylene acetal, and stanilen acetal, respectively. The L group shown here is an example, and the L group is not limited thereto.
Figure JPOXMLDOC01-appb-C000032
 Rは、p-アルキルオキシベンジル、3,4-ジアルキルオキシベンジル、固相化されたp-アルキルオキシベンジル、固相化された3,4-ジアルキルオキシベンジル、ナフチル、ナフチルメチル、-CH=CH、-C(CH)=CH、-CH-CH=CH、-CH=CH-CH、-CH=C=CH、および水素からなる群から選択される。これらRは、IAD(intramolecular aglycon delivery:分子内アグリコン転移)法によりこの糖供与体の2位と糖受容体の3位(唯一の非保護水酸基)との間をつなぐ混合アセタールを生じさせる基である。IAD法自体は当業者に知られており、Carbohydrate Research, 343, 1553-1573 (2008)においてCumpsteyにより総説されている。例えば、Rがp-アルキルオキシベンジル、3,4-ジアルキルオキシベンジル、固相化されたp-アルキルオキシベンジル、固相化された3,4-ジアルキルオキシベンジル、ナフチル、またはナフチルメチルである場合に、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)を用いる酸化条件下で、式(3)に示す糖受容体との間に(該糖受容体の第3位非保護水酸基を介して)混合アセタールを生じせしめる。当業者には理解されているように、DDQの他にも、Rの種類に応じて、混合アセタールを生じさせるために異なる試薬が用いられ得る(例えば、トシル酸等の酸触媒、N-ヨードスクシンイミド(NIS)、およびイミダゾールと4-ジメチルアミノピリジン(DMAP)等の塩基触媒が挙げられるがこれらに限定されない)。特に、Rが水素である場合には、糖受容体との反応にMeSiClを加えてシリレン混合アセタール形成に関与させることができる。上記Cumpstey総説に記述されているように、IAD法により混合アセタールを生じさせるための具体的な試薬は当業者に知られており、当業者が適宜選択することができる。上述したR基中のアルキルオキシ基は例えば炭素数1~6のものであり得るがこれに限定されない。好ましいRとしてはp-メトキシベンジル、ナフチルメチルが挙げられるが、これらに限定されない。 R 6 is p-alkyloxybenzyl, 3,4-dialkyloxybenzyl, immobilized p-alkyloxybenzyl, immobilized 3,4-dialkyloxybenzyl, naphthyl, naphthylmethyl, -CH = It is selected from the group consisting of CH 2 , -C (CH 3 ) = CH 2 , -CH 2 -CH = CH 2 , -CH = CH-CH 3 , -CH = C = CH 2, and hydrogen. These R 6 are, IAD: 2-position of the sugar donor by (intramolecular aglycon delivery intramolecular aglycon transfer) method and the 3-position of the glycosyl acceptor (the only unprotected hydroxyl group) group to produce a mixed acetal connecting between the Is. The IAD method itself is known to those of skill in the art and is reviewed by Cumspstey in Carbohydrate Research, 343, 1553-1573 (2008). For example, R 6 is p-alkyloxybenzyl, 3,4-dialkyloxybenzyl, immobilized p-alkyloxybenzyl, immobilized 3,4-dialkyloxybenzyl, naphthyl, or naphthylmethyl. In the case of oxidative conditions using 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), between the sugar receptor represented by the formula (3) (the third position of the sugar receptor). It gives rise to mixed acetals (via unprotected hydroxyl groups). As is understood by those skilled in the art, in addition to the DDQ, according to the type of R 6, different reagents to produce a mixed acetal may be used (e.g., acid catalysts such as tosylate, N- Examples include, but are not limited to, iodosuccinimide (NIS) and base catalysts such as, but not limited to, imidazole and 4-dimethylaminopyridine (DMAP). In particular, when R 6 is hydrogen, Me 2 SiCl 2 can be added to the reaction with the sugar receptor to participate in the formation of a silylene mixed acetal. As described in the above Cumpstey review, specific reagents for producing mixed acetals by the IAD method are known to those skilled in the art and can be appropriately selected by those skilled in the art. Alkyl group in the R 6 groups described above may for example those having 1 to 6 carbon atoms but not limited thereto. Preferred R 6 p-methoxybenzyl, naphthylmethyl and the like, without limitation.
 式(3)の糖受容体において、Xは脱離基または保護された水酸基であり、RおよびRは水酸基の保護基である。Xは上で説明したXと同様であり、RおよびRは上で説明したR~Rと、特にRおよびRと同様である。脱離基として好ましいXとしては、トリクロロアセトイミドイルオキシ、アルキルチオ、アリールチオ、ハロゲン、ペンテニルオキシ等の、糖鎖合成に一般的に使用される脱離基が挙げられる。好ましいRおよびRとしては、置換ベンジルを含むベンジル、アリル、レブリノイル、置換ベンゾイルを含むベンゾイル、置換アセチルを含むアセチル、アリルオキシカルボニル、トリアルキルシリル等の糖鎖合成に一般的に使用される保護基が挙げられる。特に好ましいRとしては、隣接基関与能のある置換ベンゾイルを含むベンゾイル、置換アセチルを含むアセチル、レブリノイルなどが挙げられるが、これらに限定されない。隣接基関与能のある保護基のさらなる例は後述するR’基について記載されており、それらをR基に用いることができる。 In the sugar receptor of formula (3), X 3 is a leaving group or a protected hydroxyl group, and R 7 and R 8 are hydroxyl protecting groups. X 3 is similar to X 1 described above, and R 7 and R 8 are similar to R 1 to R 5 described above, especially R 1 and R 2 . Preferred X 3 as a leaving group, trichloroacetimidate benzyloxy, alkylthio, arylthio, halogen, such as pentenyloxy, leaving group commonly used in the sugar chain synthesis. Preferred R 7 and R 8 are generally used for the synthesis of sugar chains such as benzyl containing substituted benzyl, allyl, lebrinoyl, benzoyl containing substituted benzoyl, acetyl containing substituted acetyl, allyloxycarbonyl, trialkylsilyl and the like. Protecting groups can be mentioned. Particularly preferred R 7, benzoyl including substituted benzoyl with neighboring group participation ability, acetyl including substituted acetyl, although such levulinoyl include, but are not limited to. Additional examples of protecting groups which neighboring group participation ability has been described for R 7 'group, which will be described later, they may be used in the R 7 groups.
 Yは上で説明したYと同様であり、例えばCOOZまたはCHOZなどが挙げられるが、これらに限定されない。ここに、Zはアルキル基であり、好ましくは炭素数1~3個のアルキル基である。より好ましいZ基はメチルである。Zは通常用いられる水酸基の保護基である。水酸基の保護基は公知である。 Y 4 is similar to Y 1 described above, and examples thereof include, but are not limited to, COOZ 2 or CH 2 OZ 3. Here, Z 2 is an alkyl group, preferably an alkyl group having 1 to 3 carbon atoms. More preferred Z 2 groups are methyl. Z 3 is a commonly used hydroxyl protecting group. Hydroxy group protecting groups are known.
 式(2)で示されるキシロース誘導体(糖供与体)と式(3)で示されるグルコース誘導体またはグルクロン酸誘導体(糖受容体)を縮合させて式(4)で示されるα-グリコシドを得る。α-グリコシドを得るための工程は以下の1)~3)を含む。工程1)~3)、特に工程1)、2)は、IAD法に基づくものである。
 工程1) 式(2)で表されるキシロース誘導体と式(3)で表されるグルコース誘導体またはグルクロン酸誘導体とを反応させて、キシロース誘導体の2位のOR基とグルコース誘導体またはグルクロン酸誘導体の3位の非保護水酸基とを介した混合アセタール誘導体を製造し、
 工程2) 工程1)で得られた混合アセタール誘導体を、脱離基Xを活性化せることにより反応させてα1→3二糖誘導体を製造し、次いで、
 工程3) 工程2)で得られた二糖誘導体を脱保護して式(4)に誘導する。
The xylose derivative (sugar donor) represented by the formula (2) is condensed with the glucose derivative or glucuronic acid derivative (sugar receptor) represented by the formula (3) to obtain the α-glycoside represented by the formula (4). The steps for obtaining the α-glycoside include the following 1) to 3). Steps 1) to 3), particularly steps 1) and 2), are based on the IAD method.
Step 1) The xylose derivative represented by the formula (2) is reacted with the glucose derivative or the glucuronic acid derivative represented by the formula (3), and the OR 6 group at the 2-position of the xylose derivative is reacted with the glucose derivative or the glucuronic acid derivative. A mixed acetal derivative via an unprotected hydroxyl group at the 3-position of
Step 2) Step 1 mixed acetal derivative obtained with) were reacted to produce [alpha] 1 → 3 disaccharide derivative by causing activation of leaving groups X 2, then,
Step 3) The disaccharide derivative obtained in Step 2) is deprotected and induced into the formula (4).
 工程1)の反応は、例えば2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)の存在下で行い得る。工程1)で製造される混合アセタール誘導体は、糖供与体の2位炭素と糖受容体の3位炭素がアセタールの2つの酸素原子とそれぞれ結合した混合アセタールである。工程2)で得られる二糖誘導体は、式(4)と同様に、糖供与体の1位炭素と糖受容体の3位炭素が同じ1つの酸素原子に結合して連結された二糖である。異なる種類の脱離基Xを活性化しうる多様な縮合剤(グリコシル化プロモーター)が当業者に知られており、IAD法の一部としてCumpstey総説にも詳しく記述されている。工程2)の反応は、例えばNIS-AgOTf、NIS-TfOH、MeOTf、CuBr-AgOTf-nBuNI、NBS-AgOTfなどの縮合剤(グリコシル化プロモーター)の存在下で行い得る。工程3)は脱保護工程である。保護基の種類によって脱保護の方法が異なるが、様々な保護基の脱保護の方法が公知である。例えばベンジル基などの場合は酸やアルカリによる加水分解にて脱保護を行ってもよい。トリフルオロ酢酸は脱保護のために特に好ましく用いられる。脱保護によりY基も除去されて、キシロースの3,4位に水酸基を残すことができる。 The reaction of step 1) can be carried out, for example, in the presence of 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ). The mixed acetal derivative produced in step 1) is a mixed acetal in which the 2-position carbon of the sugar donor and the 3-position carbon of the sugar receptor are bonded to two oxygen atoms of the acetal, respectively. The disaccharide derivative obtained in step 2) is a disaccharide in which the 1-position carbon of the sugar donor and the 3-position carbon of the sugar receptor are linked to the same one oxygen atom, as in the formula (4). is there. Different types of various condensing agent leaving group X 2 can activate (glycosylation promoter) it is known to those skilled in the art and are described in more detail in Cumpstey review as part of the IAD process. The reaction of step 2) can be carried out in the presence of a condensing agent (glycosylation promoter) such as NIS-AgOTf, NIS-TfOH, MeOTf, CuBr 2 -AgOTf-nBu 4 NI, NBS-AgOTf. Step 3) is a deprotection step. Although the deprotection method differs depending on the type of protecting group, various deprotecting methods of the protecting group are known. For example, in the case of a benzyl group or the like, deprotection may be performed by hydrolysis with an acid or alkali. Trifluoroacetic acid is particularly preferably used for deprotection. The Y group is also removed by deprotection, and a hydroxyl group can be left at the 3rd and 4th positions of xylose.
 上記のα-グリコシドの製造方法の具体例を以下のスキーム1に示す。
Figure JPOXMLDOC01-appb-C000033
 
[上のスキーム中、Levは-C(=O)CC(=O)CHであり、Bzは-C(=O)Cであり、MBnは-CH4OCH3(p)であり、MPは-C4OCH3(p)であり、Meは-CHであり、Acは-C(=O)CHであり、MBzは-C(=O)C4CH3(p)である]
A specific example of the above method for producing an α-glycoside is shown in Scheme 1 below.
Figure JPOXMLDOC01-appb-C000033

[In the above scheme, Lev is -C (= O) C 2 H 4 C (= O) CH 3 , Bz is -C (= O) C 6 H 5 , and MBn is -CH 2 C 6 H 4 OCH 3 (p), MP is -C 6 H 4 OCH 3 (p), Me is -CH 3 , Ac is -C (= O) CH 3 , and MBz is -C. (= O) C 6 H 4 CH 3 (p)]
 本発明は、さらなる態様において、上記式(2)で示されるキシロース誘導体と、上記式(3)で示されるグルコース誘導体またはグルクロン酸誘導体とを、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)等の存在下で反応させて混合アセタール誘導体を得て、該混合アセタール誘導体を縮合剤の存在下で縮合させ、次いで、所望により縮合物を脱保護することを含む、二糖(キシロースα1-3グルクロン酸、該二糖において、キシロース残基およびグルクロン酸残基は誘導体化されていてもよい)の製造方法を提供する。
 所望により脱保護とは、保護基の一部(少なくとも1つ)または全部を除去することをいう。糖の誘導体化は当業者に公知である。例えば、上記二糖が公知の保護基を含んでいてもよく、公知の脱離基を含んでいてもよい。上記二糖の保護基および脱離基としては、上で説明したものが挙げられるが、これらに限定されない。
In a further aspect of the present invention, the xylose derivative represented by the above formula (2) and the glucose derivative or the glucuronic acid derivative represented by the above formula (3) are combined with 2,3-dichloro-5,6-dicyano-p. -A disaccharide comprising reacting in the presence of benzoquinone (DDQ) or the like to obtain a mixed acetal derivative, condensing the mixed acetal derivative in the presence of a condensing agent, and then deprotecting the condensate, if desired. (Xylose α1-3 glucuronic acid, in the disaccharide, the xylose residue and the glucuronic acid residue may be derivatized).
Deprotection, if desired, means removing some (at least one) or all of the protecting groups. Derivatization of sugars is known to those of skill in the art. For example, the disaccharide may contain a known protecting group or may contain a known leaving group. Examples of the disaccharide protecting group and leaving group include those described above, but are not limited thereto.
 式(2)に対応するキシロース誘導体(糖供与体)と式(3)に対応するグルコース誘導体またはグルクロン酸誘導体(糖受容体)との反応には以下の問題点があった:
 ・αキシロースには隣接基関与が利用できないため、アノマー位の立体制御が難しい。
 ・キシロースは環反転しやすい。
 これらの問題点により、α-グリコシド結合が形成されない場合がある。
 そこで、本発明者らは、分子内アグリコン転移を生ぜしめる保護基でキシロースの2位の水酸基を保護して糖受容体(グルクロン酸誘導体)と縮合させることにより、分子内アグリコン転移反応を生じさせ、α選択的なグリコシル化を可能とした。分子内アグリコン転移を生ぜしめる保護基としては上述したようにp-メトキシベンジル基、ナフチル基などが挙げられる。
 さらに、本発明者らは、キシロースの3位および4位を、2,3-ブタンジオンなどを用いてジアセタール等として水酸基保護すると共に環固定することにより、キシロースの環反転を防止することにした。
 これらの工夫により本発明者らは上記問題点を解決し、立体選択的に式(4)に示されるαグリコシドを合成することに成功した。
The reaction between the xylose derivative (sugar donor) corresponding to the formula (2) and the glucose derivative or the glucuronic acid derivative (sugar receptor) corresponding to the formula (3) had the following problems:
-Since adjacent group involvement cannot be used for α-xylose, it is difficult to control the anomeric position.
-Xylose is easy to flip the ring.
Due to these problems, α-glycosidic bonds may not be formed.
Therefore, the present inventors protect the hydroxyl group at the 2-position of xylose with a protecting group that causes an intramolecular aglycon transfer and condense it with a glycosyl acceptor (glucuronic acid derivative) to cause an intramolecular aglycon transfer reaction. , Allowed α-selective glycosylation. Examples of the protecting group that causes an intramolecular aglycone transfer include a p-methoxybenzyl group and a naphthyl group as described above.
Furthermore, the present inventors have decided to prevent the ring inversion of xylose by protecting the 3rd and 4th positions of xylose with hydroxyl groups such as diacetylate using 2,3-butandion and ring-fixing them.
Through these measures, the present inventors have solved the above problems and succeeded in stereoselectively synthesizing the α-glycoside represented by the formula (4).
 上記方法で得られた式(4)の二糖の水酸基を適宜保護して式(1)で示す本発明の二糖誘導体を得ることができる。保護基の選択および着脱は当業者の技量の範囲内である。 The disaccharide derivative of the present invention represented by the formula (1) can be obtained by appropriately protecting the hydroxyl groups of the disaccharide of the formula (4) obtained by the above method. The selection and attachment / detachment of protecting groups is within the skill of those skilled in the art.
 上記段落0014~0025に記載した方法では、立体選択的に二糖生成物が得られるものの、その収率が低い難点があった。そこで、本発明者らは、式(2’)で示されるキシロース誘導体(糖供与体)と式(3’)で示されるグルコース誘導体またはグルクロン酸誘導体(糖受容体)を、混合アセタール(分子内アグリコン転移)を経る方法によらないで直接縮合させて式(4’)で示されるα-グリコシドとβ-グリコシドを含む混合物を得た。所望のα-グリコシドの単離は困難であった。しかしながら、下のスキーム2に示すトリフルオロ酢酸(TFA)による加水分解で保護基を除去して得られた所望のα-グリコシドを含むジアステレオマー混合物の溶解性を鋭意検討した結果、所望のα-グリコシドはメタノールに可溶であるがクロロホルムには不溶である一方、副生成物であるβ-グリコシドは、逆にクロロホルムに可溶である事実を発見するに至った。この特性を利用して所望のα-グリコシドのみを上記段落0014~0025に記載した方法よりも高い収率で得ることに成功した。 Although the disaccharide products can be obtained stereoselectively by the methods described in paragraphs 0014 to 0025 above, there is a problem that the yield is low. Therefore, the present inventors combine a xylose derivative (sugar donor) represented by the formula (2') and a glucose derivative or a glucuronic acid derivative (sugar acceptor) represented by the formula (3') in a mixed acetal (intramolecular). A mixture containing α-glycoside and β-glycoside represented by the formula (4') was obtained by direct condensation without a method via aglycon transfer). Isolation of the desired α-glycoside was difficult. However, as a result of diligent studies on the solubility of the desired α-glycoside-containing diastereomeric mixture obtained by removing the protecting group by hydrolysis with trifluoroacetic acid (TFA) shown in Scheme 2 below, the desired α was obtained. -While glycosides are soluble in methanol but insoluble in chloroform, the by-product β-glycosids, on the contrary, have led to the discovery of the fact that they are soluble in chloroform. Utilizing this property, we succeeded in obtaining only the desired α-glycoside in a higher yield than the methods described in paragraphs 0014 to 0025 above.
 したがって、本発明は、さらなる態様において、
式(2’):
Figure JPOXMLDOC01-appb-C000034
 
 
[式中、X’は脱離基であり、Y’はキシロース残基の配座を固定する基であり、R’は水酸基の保護基である]
で表されるキシロース誘導体と、
式(3’):
Figure JPOXMLDOC01-appb-C000035
 
[式中、X’は脱離基または保護された水酸基であり、R’は水酸基の保護基であり、R’は水酸基の保護基であり、Y’はカルボキシル基またはヒドロキシメチル基の前駆体である基である]
で示されるグルコース誘導体またはグルクロン酸誘導体から、
式(4’):
Figure JPOXMLDOC01-appb-C000036
 
[式中、X’、R’、R’およびY’は上記定義と同じである]
で表されるα-グリコシドを製造する方法であって、下記工程1)~3):
 工程1) 式(2’)で表されるキシロース誘導体と式(3’)で表されるグルコース誘導体またはグルクロン酸誘導体とを直接縮合させてα1→3グリコシドおよびβ1→3グリコシドの混合物を得て、
 工程2) 工程1)で得られた混合物を脱保護し、次いで、
 工程3) 工程2)で脱保護された混合物からα-グリコシドを分離する
を含む方法を提供する。
Therefore, the present invention, in a further aspect,
Equation (2'):
Figure JPOXMLDOC01-appb-C000034


Wherein, X 2 'is a leaving group, Y' is a group for fixing the conformation of xylose residues, R 6 'is a protecting group for a hydroxyl group]
With the xylose derivative represented by
Equation (3'):
Figure JPOXMLDOC01-appb-C000035

Wherein, X 3 'is a leaving group or a protected hydroxyl group, R 7' is a protecting group for a hydroxyl group, R 8 'is a protecting group for a hydroxyl group, Y 4' represents a carboxyl group or hydroxymethyl A group that is a precursor of a group]
From the glucose derivative or glucuronic acid derivative indicated by
Equation (4'):
Figure JPOXMLDOC01-appb-C000036

Wherein, X 3 ', R 7' , R 8 ' and Y 4' are the same as defined above
A method for producing an α-glycoside represented by the following steps 1) to 3) :.
Step 1) The xylose derivative represented by the formula (2') and the glucose derivative or the glucuronic acid derivative represented by the formula (3') are directly condensed to obtain a mixture of α1 → 3 glycoside and β1 → 3 glycoside. ,
Step 2) Deprotect the mixture obtained in Step 1) and then
Step 3) Provided is a method comprising separating α-glycoside from the mixture deprotected in step 2).
 縮合に用いる糖供与体103はαβいずれの立体配置でも生成物208aと208bを同じ収率で与える(下のスキーム2のMethod 1, Method 2)。したがって、使用する糖供与体103の立体化学は限定されないし、その混合物でも良い(下のスキーム2のMethod 3)。 The sugar donor 103 used for condensation gives the products 208a and 208b in the same yield in any configuration of αβ (Method 1 and Method 2 in Scheme 2 below). Therefore, the stereochemistry of the sugar donor 103 used is not limited and may be a mixture thereof (Method 3 of Scheme 2 below).
 式(2’)で示される糖供与体において、X’およびY’は式(2)に関して説明したXおよびYとそれぞれ同じである。式(2’)において、左側に表示された2つの酸素原子はY’基に含まれる。R’は水酸基の保護基である。R’は隣接基関与能のない水酸基の保護基であることがより好ましく、隣接基関与能のあるアシル基はもっぱらβ-グリコシドを生じうる。特に適切なR’の具体例としては、ベンジル基、p-メトキシベンジル基、p-メトキシフェニル基、p-ニトロベンジル基、アリル基、メトキシメチル基、tert-ブチルジメチルシリル基、トリイソプロピルシリル基などが挙げられるが、これらに限定されない。好ましいR’としてはp-メトキシベンジル基が挙げられるが、これに限定されない。
 本開示において、隣接基関与(化学大辞典 共立出版)能のある水酸基の保護基とは、当業者に理解されるように、水酸基の保護基で-C(=O)Rとして一般化されるものをいい、式(2’)の例に沿っていうと、1位の脱離基(X’)が脱離した後に1位炭素原子上に生じるカルボカチオンを上記酸素原子が攻撃して形成される環構造が2位の水酸基と同じ面(cis面)を覆うことにより、反対側(trans側)からの受容体の攻撃を専らにさせる機能を持つ保護基である。この記述に該当しない保護基は、隣接基関与能のない保護基と解される。
'In the sugar donor represented by, X 2 Equation (2)' and Y 'are respectively the same as X 2 and Y have been described with respect to Formula (2). In formula (2'), the two oxygen atoms displayed on the left side are included in the Y'group. R 6 'is a protecting group for a hydroxyl group. R 6 'is more preferably adjacent groups is a protecting group with no involvement ability hydroxyl, acyl group which neighboring group participation ability may occur exclusively β- glycoside. Especially Examples of suitable R 6 'is benzyl, p- methoxybenzyl group, p- methoxyphenyl group, p- nitrobenzyl group, an allyl group, a methoxymethyl group, tert- butyldimethylsilyl group, triisopropylsilyl Examples include, but are not limited to these. Preferred R 6 'include p- methoxybenzyl group, but is not limited thereto.
In the present disclosure, a hydroxyl-protecting group capable of involving an adjacent group (Kyoritsu Publishing, Chemistry Encyclopedia) is a hydroxyl-protecting group generalized as -C (= O) R, as understood by those skilled in the art. According to the example of the formula (2'), the oxygen atom attacks and forms a carbocation generated on the 1-position carbon atom after the 1-position leaving group (X 2') is eliminated. The ring structure to be formed covers the same plane (cis plane) as the hydroxyl group at the 2-position, so that it is a protecting group having a function of exclusively attacking the receptor from the opposite side (trans side). Protecting groups that do not fall under this description are interpreted as protecting groups that are not capable of involving adjacent groups.
 式(3’)で示される糖受容体において、R’は水酸基の保護基であるが、糖間の縮合においてβ-グリコシドを形成させるためには、R’は隣接基関与能のある水酸基の保護基であることが好ましい。隣接基関与能のある水酸基の保護基としては、-C(=O)Rとしてアシル基を形成するもの、例えばRがアルキルまたはアリールであるアセチル基、1~3個のハロゲン原子で置換されたアセチル基、ベンゾイル基、1~5個のハロゲン、ニトロ基および/または炭素数1~3個のアルキル基で置換されたベンゾイル基、およびレブリノイル基、ならびにベンジルオキシカルボニル基、アリルオキシカルボニル基、2,2,2-トリクロロエトキシカルボニル基などが挙げられるがこれらに限定されない。好ましいR’としてはアセチル基、1~3個のハロゲン原子で置換されたアセチル基、ベンゾイル基、1~5個のハロゲン、ニトロ基および/または炭素数1~3個のアルキル基で置換されたベンゾイル基などが挙げられるがこれらに限定されない。X’、R’およびY’は式(3)に関して説明したX、RおよびYとそれぞれ同じである。例えば、X’がp-メトキシフェニルで保護された水酸基、R’およびR’がアセチル基、Y’がカルボン酸メチル基であってもよい。 'In sugar acceptor represented by, R 7 Equation (3)', but is a protecting group for a hydroxyl group, in order to form the β- glycoside in the condensation between sugar, R 7 'is a neighboring group participation ability It is preferably a hydroxyl-protecting group. As a protective group for a hydroxyl group capable of involving an adjacent group, a group forming an acyl group as -C (= O) R, for example, an acetyl group in which R is an alkyl or an aryl, is substituted with 1 to 3 halogen atoms. Acetyl group, benzoyl group, benzoyl group substituted with 1-5 halogen, nitro group and / or alkyl group with 1-3 carbon atoms, and lebrinoyl group, and benzyloxycarbonyl group, allyloxycarbonyl group, 2 , 2,2-Trichloroethoxycarbonyl group and the like, but are not limited thereto. Preferred R 7's are acetyl groups, acetyl groups substituted with 1 to 3 halogen atoms, benzoyl groups, 1 to 5 halogens, nitro groups and / or alkyl groups with 1 to 3 carbon atoms. Examples include, but are not limited to, benzoyl groups. X 3 ', R 8' and Y 4 'are respectively the same as X 3, R 8 and Y 4 which has been described with respect to equation (3). For example, X 3 'hydroxyl group is protected with p- methoxyphenyl, R 7' and R 8 'is acetyl group, Y 4' may be a carboxylate group.
 工程1)の縮合反応は、公知の縮合剤(グリコシル化プロモーター)を用いて行うことができる。公知の縮合剤としては、NIS-AgOTf、NIS-TfOH、MeOTf、CuBr-AgOTf-nBuNI、NBS-AgOTfなどが挙げられるが、NIS-AgOTfが好ましい。これらの縮合剤の存在下で脱離基X’が活性化する。直接縮合とは、糖供与体の置換基と糖受容体の置換基が、他の化合物または基を介さずに結合を生じさせることをいう。本開示では特に、直接縮合は、分子内アグリコン転移を介する態様と対照的に、はじめから1→3グリコシド結合を形成させる縮合を指す。 The condensation reaction in step 1) can be carried out using a known condensing agent (glycosylation promoter). Examples of known condensing agents include NIS-AgOTf, NIS-TfOH, MeOTf, CuBr 2 -AgOTf-nBu 4 NI, NBS-AgOTf and the like, but NIS-AgOTf is preferable. In the presence of these condensing agents is a leaving group X 2 'activates. Direct condensation means that a substituent of a sugar donor and a substituent of a sugar acceptor form a bond without interposing another compound or group. In particular, in the present disclosure, direct condensation refers to condensation that forms a 1 → 3 glycosidic bond from the beginning, as opposed to an embodiment mediated by an intracellular aglycone transfer.
 工程2)の脱保護は、公知の方法にて行うことができる。好ましくは、キシロース残基の2-、3-、および4-位を脱保護してトリオールとする。このようなトリオールのうち、α-グリコシドは式(4’)の二糖誘導体である。しかも、後で述べる溶媒を用いて簡単に式(4’)の二糖誘導体を分離することができる。かかる脱保護に使用される薬剤としては酸が用いられる。このような酸としてはトリフルオロ酢酸(TFA)、トリクロロ酢酸などが好ましく、TFAが特に好ましい。 Deprotection in step 2) can be performed by a known method. Preferably, the 2-, 3-, and 4-positions of xylose residues are deprotected to triol. Among such triols, α-glycoside is a disaccharide derivative of the formula (4'). Moreover, the disaccharide derivative of the formula (4') can be easily separated by using a solvent described later. Acid is used as the drug used for such deprotection. As such an acid, trifluoroacetic acid (TFA), trichloroacetic acid and the like are preferable, and TFA is particularly preferable.
 工程3)において、工程2)で得られた脱保護されたグリコシド混合物(脱保護されたトリオールのジアステレオマー混合物)からα-グリコシドを分離する。ジアステレオマー(α-グリコシドとβ-グリコシド)の分離方法としては、クロマトグラフィーを用いる方法、溶媒抽出法などが用いられ得る。分離されたα-グリコシドが式(4’)の二糖誘導体と異なる場合は、公知の方法にて保護および/または脱保護などを行って、式(4’)の二糖誘導体を得てもよい。とりわけ、キシロース残基の2-、3-、および4-位を脱保護してトリオールとして得られたα-グリコシド(式(4’)の二糖誘導体)はクロロホルムには不溶であるがメタノールに可溶であり、β-グリコシドはクロロホルムに可溶である(メタノールへの溶解性は比較的低い)。この性質を利用して、ジアステレオマー混合物をクロロホルムで処理して、溶解したβ-グリコシドを除去することにより、所望のα-グリコシドを分離することができる。あるいはジアステレオマー混合物をメタノールで処理して溶解したα-グリコシドを回収することを経て、所望のα-グリコシドを分離してもよい。 In step 3), α-glycoside is separated from the deprotected glycoside mixture (diastereomeric mixture of deprotected triol) obtained in step 2). As a method for separating diastereomers (α-glycoside and β-glycoside), a method using chromatography, a solvent extraction method, or the like can be used. If the separated α-glycoside is different from the disaccharide derivative of the formula (4'), it may be protected and / or deprotected by a known method to obtain the disaccharide derivative of the formula (4'). Good. In particular, the α-glycoside (disaccharide derivative of formula (4')) obtained as a triol by deprotecting the 2-, 3-, and 4-positions of xylose residues is insoluble in chloroform but in methanol. It is soluble and β-glycoside is soluble in chloroform (relatively low solubility in methanol). Taking advantage of this property, the desired α-glycoside can be separated by treating the diastereomeric mixture with chloroform to remove the dissolved β-glycoside. Alternatively, the desired α-glycoside may be separated by treating the diastereomer mixture with methanol to recover the dissolved α-glycoside.
 上記のα-グリコシドの新しい製造方法の具体例を以下のスキーム2に示す。
Figure JPOXMLDOC01-appb-C000037
 
[上のスキーム中、MBnは-CH4OCH3(p)であり、MPは-C4OCH3(p)であり、Meは-CHであり、Acは-C(=O)CHであり、NISはN-ヨードコハク酸イミドであり、AgOTfはトリフルオロメタンスルホン酸銀であり、TFAはトリフルオロ酢酸である]
A specific example of the above-mentioned new method for producing α-glycoside is shown in Scheme 2 below.
Figure JPOXMLDOC01-appb-C000037

[In the above scheme, MBn is -CH 2 C 6 H 4 OCH 3 (p), MP is -C 6 H 4 OCH 3 (p), Me is -CH 3 , and Ac is -C. (= O) CH 3 , NIS is N-iodosuccinate imide, AgOTf is silver trifluoromethanesulfonate, TFA is trifluoroacetic acid]
 本発明は、さらなる態様において、上記式(2’)で示されるキシロース誘導体と、上記式(3’)で示されるグルコース誘導体またはグルクロン酸誘導体とを直接縮合させて、α-グリコシドおよびβ-グリコシドの混合物を得て、所望により該混合物を脱保護し、次いで、該混合物からα-グリコシドを分離することを含む、二糖(キシロースα1-3グルクロン酸、該二糖において、キシロース残基およびグルクロン酸残基は誘導体化されていてもよい)の製造方法を提供する。
 所望により脱保護とは、保護基の一部(少なくとも1つ)または全部を除去することをいう。糖の誘導体化は当業者に公知である。例えば、上記二糖が公知の保護基を含んでいてもよく、公知の脱離基を含んでいてもよい。上記二糖の保護基および脱離基としては、上で説明したものが挙げられるが、これらに限定されない。
In a further embodiment, the present invention directly condenses the xylose derivative represented by the above formula (2') with the glucose derivative or glucuronic acid derivative represented by the above formula (3') to form an α-glycoside and a β-glycoside. Disaccharides (xylose α1-3 glucuronic acid, in the disaccharides, xylose residues and glucurons) comprising obtaining a mixture of, optionally deprotecting the mixture, and then separating the α-glycoside from the mixture. The acid residue may be derivatized).
Deprotection, if desired, means removing some (at least one) or all of the protecting groups. Derivatization of sugars is known to those of skill in the art. For example, the disaccharide may contain a known protecting group or may contain a known leaving group. Examples of the disaccharide protecting group and leaving group include those described above, but are not limited thereto.
 2.二糖誘導体のオリゴマー
 本発明の二糖誘導体は、ラミニンを介して筋細胞と基底膜とを繋ぎとめているジストログリカン上のポストリン酸糖鎖合成のための構成単位(本明細書においてXGユニットという場合がある)として使用することができる。二糖誘導体をオリゴマー化することにより、ポストリン酸糖鎖を再構築することができる。本発明の二糖誘導体は、ポストリン酸糖鎖を再構築するための必須合成単位である。
2. Disaccharide Derivative Oligomer The disaccharide derivative of the present invention is a structural unit for the synthesis of postphosphate sugar chains on dystroglycan that anchors muscle cells and basement membrane via laminin (referred to as XG unit in the present specification). Can be used as). By oligomerizing the disaccharide derivative, the postphosphate sugar chain can be reconstructed. The disaccharide derivative of the present invention is an essential synthetic unit for reconstructing a postphosphate sugar chain.
 二糖誘導体同士を縮合させることにより四糖誘導体を得ることができる。四糖誘導体と二糖誘導体を縮合させ、所望により脱保護を行って六糖誘導体を得ることができる。該六糖誘導体と二糖誘導体を縮合させ、所望により脱保護を行って八糖誘導体を得ることができる。あるいは四糖誘導体同士を縮合させ、所望により脱保護を行って八糖誘導体を得ることができる。このようにして、二糖誘導体のオリゴマーを合成することができる。 A tetrasaccharide derivative can be obtained by condensing disaccharide derivatives with each other. A hexasaccharide derivative can be obtained by condensing a tetrasaccharide derivative and a disaccharide derivative and, if desired, deprotecting the tetrasaccharide derivative. The hexasaccharide derivative and the disaccharide derivative can be condensed and deprotected if desired to obtain a octasaccharide derivative. Alternatively, the tetrasaccharide derivatives can be condensed with each other and deprotected if desired to obtain a tetrasaccharide derivative. In this way, the oligomer of the disaccharide derivative can be synthesized.
 したがって、本発明はさらなる態様において、式(1)で示される二糖誘導体を中間体(XGユニット)として用いることを含む、式(5):
Figure JPOXMLDOC01-appb-C000038
 
[式中、Xは脱離基であるかまたは保護された水酸基であり、nは1以上の整数である]
で示されるXGユニットのオリゴマーを製造する方法を提供する。オリゴマーの連結反応は単純に反復できるため、nの上限は特に制限されないことが当業者に理解される。nは例えば300以下、200以下、100以下、50以下、20以下等であり得る。
Therefore, in a further aspect, the present invention comprises using the disaccharide derivative represented by the formula (1) as an intermediate (XG unit).
Figure JPOXMLDOC01-appb-C000038

[In the formula, X 4 is a leaving group or a protected hydroxyl group, and n is an integer greater than or equal to 1.]
Provided is a method for producing an oligomer of the XG unit represented by. It will be understood by those skilled in the art that the upper limit of n is not particularly limited because the oligomeric linking reaction can be simply repeated. n can be, for example, 300 or less, 200 or less, 100 or less, 50 or less, 20 or less, and the like.
 式(5)で示される化合物のXが脱離基である場合、Xは上で説明したX等と同様の脱離基である。Xが保護された水酸基である場合、Xは上で説明したR等と同様の保護基を含み得る。 When X 4 of the compound represented by the formula (5) is a leaving group, X 4 is a leaving group similar to X 1 and the like described above. When X 4 is a protected hydroxyl group, X 4 may contain the same protecting groups as R 1 and the like described above.
 具体的には、式(1)で示される二糖誘導体を糖供与体とし、式(1’):
Figure JPOXMLDOC01-appb-C000039
 
[式中、Yはカルボキシル基またはヒドロキシメチル基の前駆体である基であり、Xは脱離基または保護された水酸基であり、R~R12は水酸基の保護基である]
で示される二糖誘導体を糖受容体として、これらを縮合させることにより四糖誘導体を得ることができる。同様の手法にて、四糖誘導体どうしを縮合させ、あるいは式(1)で示される二糖誘導体と四糖誘導体を縮合させ、あるいは四糖誘導体と式(1’)で示される二糖誘導体縮合させ、あるいはこれらのオリゴマーとオリゴマーおよび/または二糖誘導体との縮合を繰り返すことにより、より鎖長の長いオリゴマー誘導体を得ることができる。これらのオリゴマー誘導体を公知の方法により脱保護して、より鎖長の長い式(5)に示すオリゴマーを得ることができる。
Specifically, the disaccharide derivative represented by the formula (1) is used as a sugar donor, and the formula (1'):
Figure JPOXMLDOC01-appb-C000039

[In the formula, Y 5 is a group that is a precursor of a carboxyl group or a hydroxymethyl group, X 5 is a leaving group or a protected hydroxyl group, and R 9 to R 12 are a protecting group of a hydroxyl group].
A tetrasaccharide derivative can be obtained by using the disaccharide derivative represented by (1) as a sugar receptor and condensing them. By the same method, the tetrasaccharide derivatives are condensed with each other, or the disaccharide derivative represented by the formula (1) and the tetrasaccharide derivative are condensed, or the tetrasaccharide derivative and the disaccharide derivative represented by the formula (1') are condensed. Or by repeating the condensation of these oligomers with the oligomer and / or the disaccharide derivative, an oligomer derivative having a longer chain length can be obtained. These oligomer derivatives can be deprotected by a known method to obtain an oligomer represented by the formula (5) having a longer chain length.
 式(1’)において、Yは上で説明したY等と同様の基である。Yの例としてはCOOZまたはCHOZなどが挙げられるが、これらに限定されない。ここに、Zはアルキル基であり、好ましくは炭素数1~3個のアルキル基である。より好ましいZ基はメチルである。Zは通常の水酸基の保護基である。Xは脱離基または保護された水酸基である。R~R12は水酸基の保護基であり、これらは上で説明したR等と同様の基である。好ましいXとしては、トリクロロアセトイミドイルオキシ、アルキルチオ、アリールチオ、ハロゲン、ペンテニルオキシ等の、糖鎖合成に一般的に使用される脱離基が挙げられるがこれらに限定されない。好ましいR~R12としては、置換ベンジルを含むベンジル、アリル、レブリノイル、置換ベンゾイルを含むベンゾイル、置換アセチルを含むアセチル、アリルオキシカルボニル、トリアルキルシリル等の糖鎖合成に一般的に使用される保護基が挙げられるが、これらに限定されない。好ましいRとしては、隣接基関与能のある置換ベンゾイルを含むベンゾイル、置換アセチルを含むアセチル、レブリノイルなどが挙げられるが、これらに限定されない。隣接基関与能のある保護基のさらなる例は上述するR’基について記載されており、それらをR基に用いることができる。 In equation (1'), Y 5 is a group similar to Y 1 etc. described above. Examples of Y 5 include, but are not limited to, COOZ 3 or CH 2 OZ 4. Here, Z 3 is an alkyl group, preferably an alkyl group having 1 to 3 carbon atoms. More preferred Z 3 groups are methyl. Z 4 is a normal hydroxyl group protecting group. X 5 is a leaving group or a protected hydroxyl group. R 9 to R 12 are hydroxyl-protecting groups, which are the same groups as R 1 and the like described above. Preferred X 5, trichloroacetimidate benzyloxy, alkylthio, arylthio, halogen, such as pentenyloxy, although leaving groups include, but are not limited to commonly used in sugar chain synthesis. Preferred R 9 to R 12 are generally used for the synthesis of sugar chains such as benzyl containing a substituted benzyl, allyl, lebrinoyl, benzoyl containing a substituted benzoyl, acetyl containing a substituted acetyl, allyloxycarbonyl, and trialkylsilyl. Protecting groups include, but are not limited to. Preferred R 9, benzoyl including substituted benzoyl with neighboring group participation ability, acetyl including substituted acetyl, although such levulinoyl include, but are not limited to. Additional examples of protecting groups which neighboring group participation ability has been described for R 7 'groups to the aforementioned, they can be used in R 9 groups.
 式(1)で示される二糖誘導体を糖供与体とし、式(1’)で示される二糖誘導体を糖受容体として、これらを縮合させて四糖誘導体を合成する手順の具体例を以下のスキーム3に示す。下の具体例において得られたオリゴマー206bを、公知の方法で脱保護して式(5)に示すオリゴマー(n=1)を得ることができる。
Figure JPOXMLDOC01-appb-C000040
 
[上のスキーム中、Levは-C(=O)CC(=O)CHであり、Bzは-C(=O)Cであり、MPは-C4OCH3(p)であり、Meは-CHであり、MBzは-C(=O)C4CH3(p)である]
A specific example of a procedure for synthesizing a tetrasaccharide derivative by condensing the disaccharide derivative represented by the formula (1) as a sugar donor and the disaccharide derivative represented by the formula (1') as a sugar receptor is described below. Is shown in Scheme 3. The oligomer 206b obtained in the specific example below can be deprotected by a known method to obtain the oligomer (n = 1) represented by the formula (5).
Figure JPOXMLDOC01-appb-C000040

[In the above scheme, Lev is -C (= O) C 2 H 4 C (= O) CH 3 , Bz is -C (= O) C 6 H 5 , and MP is -C 6 H 4 OCH 3 (p), Me is -CH 3 , MBz is -C (= O) C 6 H 4 CH 3 (p)]
 上の具体例において得られたオリゴマー206bを、公知の方法、例えば水酸化ナトリウム水溶液のような塩基で処理することにより脱保護して、式(5)に示すオリゴマー(n=1)を得ることができる。 The oligomer 206b obtained in the above specific example is deprotected by treating it with a known method, for example, a base such as an aqueous sodium hydroxide solution to obtain the oligomer (n = 1) represented by the formula (5). Can be done.
 本発明は、さらなる態様において、上記式(1)で示される二糖誘導体を糖供与体とし、上記式(1’)で示される二糖誘導体を糖受容体として反応させ、次いで、所望により、得られた四糖誘導体を脱保護することを含む、誘導体化されていてもよい式(5)で示される四糖の製造方法を提供する。
 所望により脱保護とは、保護基の一部(少なくとも1つ)または全部を除去することをいう。糖の誘導体化は当業者に公知である。例えば、上記四糖が公知の保護基を含んでいてもよく、公知の脱離基を含んでいてもよい。上記四糖の保護基および脱離基としては、上で説明したものが挙げられるが、これらに限定されない。
In a further aspect of the present invention, the disaccharide derivative represented by the above formula (1) is used as a sugar donor, the disaccharide derivative represented by the above formula (1') is reacted as a sugar acceptor, and then, if desired, the disaccharide derivative is reacted. Provided is a method for producing a tetrasaccharide represented by the formula (5), which may be derivatized, which comprises deprotecting the obtained tetrasaccharide derivative.
Deprotection, if desired, means removing some (at least one) or all of the protecting groups. Derivatization of sugars is known to those of skill in the art. For example, the tetrasaccharide may contain a known protecting group or may contain a known leaving group. Examples of the tetrasaccharide protecting group and leaving group include those described above, but are not limited thereto.
 3.ポストリン酸糖鎖のキシロース-グルクロン酸繰り返し構造とαジストログリカンから伸びた糖鎖とを結合する四糖の合成
 本発明は、さらなる態様において、式(9):
Figure JPOXMLDOC01-appb-C000041
 
で示される四糖またはその誘導体を提供する。式(9)の四糖は、ポストリン酸糖鎖のキシロース-グルクロン酸繰り返し構造とαジストログリカンから伸びた糖鎖とを結合する部分である。上記二糖誘導体、そのオリゴマー、および式(9)の四糖を用いてポストリン酸糖鎖を再構築することができる。再構築された糖鎖を、糖鎖異常型筋ジストロフィーの治療および予防のための医薬として用いることができる。式(9)の誘導体の例としては、式(9)中の水酸基の少なくとも一部または全部が保護基にて保護されている化合物、および式(9)中のカルボキシル基がアルキルエステル化されている化合物などが挙げられるが、これらに限定されない。式(9)の四糖の誘導体の具体例としては、下のスキーム中の化合物404および405が挙げられるが、これらに限定されない。
3. 3. Synthesis of a tetrasaccharide that binds a xylose-glucuronic acid repeating structure of a postphosphate sugar chain to a sugar chain extended from α-dystroglycan The present invention has a further embodiment of the formula (9):
Figure JPOXMLDOC01-appb-C000041

Provided are tetrasaccharides or derivatives thereof. The tetrasaccharide of the formula (9) is a portion that binds the xylose-glucuronic acid repeating structure of the postolinate sugar chain to the sugar chain extended from α-dystroglycan. The postphosphate sugar chain can be reconstructed using the above disaccharide derivative, its oligomer, and the tetrasaccharide of the formula (9). The reconstructed sugar chain can be used as a medicine for the treatment and prevention of sugar chain abnormal muscular dystrophy. Examples of the derivative of the formula (9) include a compound in which at least a part or all of the hydroxyl groups in the formula (9) are protected by a protecting group, and a carboxyl group in the formula (9) is alkyl esterified. Examples include, but are not limited to, compounds. Specific examples of the tetrasaccharide derivative of the formula (9) include, but are not limited to, compounds 404 and 405 in the scheme below.
 本発明は、さらにもう1つの態様において、式(7):
Figure JPOXMLDOC01-appb-C000042
 
[式中、Xは脱離基または保護された水酸基、X~Xは水酸基の保護基、Xはアルキル基である]
で示される二糖供与体を、式(8):
Figure JPOXMLDOC01-appb-C000043
 
[式中、X~X13は水酸基の保護基である、たたしX12およびX13は一緒になってアセタールを形成してもよい]
で示される二糖受容体と反応させることにより四糖誘導体を得て、次いで、四糖誘導体を脱保護することにより式(9):
Figure JPOXMLDOC01-appb-C000044
 
で示される四糖を製造する方法を提供する。
In yet another aspect of the present invention, the formula (7):
Figure JPOXMLDOC01-appb-C000042

[In the formula, X 1 is a leaving group or a protected hydroxyl group, X 2 to X 6 are hydroxyl protecting groups, and X 7 is an alkyl group].
The disaccharide donor represented by the formula (8):
Figure JPOXMLDOC01-appb-C000043

Wherein, X 8 ~ X 13 is a hydroxyl-protecting group, nice contrast X 12 and X 13 may form acetal together]
The tetrasaccharide derivative is obtained by reacting with the disaccharide receptor represented by, and then the tetrasaccharide derivative is deprotected to obtain the formula (9) :.
Figure JPOXMLDOC01-appb-C000044

Provided is a method for producing the tetrasaccharide shown by.
 化合物(7)における脱離基Xとしては公知のものを使用でき、トリクロロアセトイミドイルオキシ、アルキルチオ、アリールチオ、ハロゲン、ペンテニルオキシ等の糖鎖合成に一般的に使用される脱離基が例示されるが、これらに限定されない。好ましい脱離基Xとしてはトリクロロアセトイミドイルオキシ、アルキルチオやフェニルチオなどのチオグリコシドを形成するものが例示されるが、これらに限定されない。化合物(7)における水酸基の保護基X~Xとしては、置換ベンジルを含むベンジル、アリル、レブリノイル、置換ベンゾイルを含むベンゾイル、置換アセチルを含むアセチル、アリルオキシカルボニル、トリアルキルシリル等の糖鎖合成に一般的に使用される保護基が挙げられるが、これらに限定されない。化合物(7)におけるアルキル基は、好ましくは炭素数1~3個のアルキル基であり、典型的にはメチル基である。1の具体例において、化合物(7)のXはトリクロロアセトイミドイルオキシ、X~Xはアセチル、Xはメチルである。 Compound can be used and known as a leaving group X 1 in (7), trichloroacetimidate benzyloxy, alkylthio, arylthio, halogen, a leaving group is exemplified commonly used in the sugar chain synthesis such pentenyloxy However, it is not limited to these. Preferred leaving groups X 1 include, but are not limited to, those that form thioglycosides such as trichloroacetimideyloxy, alkylthio and phenylthio. As the compound (7) protecting group X 2 ~ X 6 hydroxyl groups in benzyl including substituted benzyl, allyl, levulinoyl, benzoyl, including substituted benzoyl, acetyl including substituted acetyl, allyloxycarbonyl, sugar chain such as trialkylsilyl Protecting groups commonly used in synthesis include, but are not limited to. The alkyl group in compound (7) is preferably an alkyl group having 1 to 3 carbon atoms, and is typically a methyl group. In the specific example of 1 , X 1 of compound (7) is trichloroacetimideyloxy, X 2 to X 6 are acetyl, and X 7 is methyl.
 化合物(8)における水酸基の保護基X~X13としては、キシロースの2、3位水酸基が保護され、リビトール側の保護基が除去されないあるいは変化しないかぎり、糖鎖合成に一般的に使用される保護基を使用できる。そのような保護基の例としては、置換ベンジルを含むベンジル、アリル、レブリノイル、置換ベンゾイルを含むベンゾイル、置換アセチルを含むアセチル、アリルオキシカルボニル、トリアルキルシリル等が挙げられるがこれらに限定されない。化合物(8)の2-位および3-位の水酸基は、アセタールによって保護されていてもよい。1の具体例において、化合物(8)のXはアリル、XおよびX10はベンジル、X11はTBDPS、2-位および3-位の水酸基はイソプロピリデンアセタールによって保護されている(つまり、X12およびX13は一緒になってイソプロピリデンアセタールを形成している)。 As the compound (8) of the hydroxyl groups in the protecting group X 8 ~ X 13, 2,3-position hydroxyl group of xylose is protected, as long as the protecting group of ribitol side is not no or changed is removed, commonly used in the sugar chain synthesis Protecting groups can be used. Examples of such protecting groups include, but are not limited to, benzyl containing substituted benzyl, allyl, lebrinoyl, benzoyl containing substituted benzoyl, acetyl containing substituted acetyl, allyloxycarbonyl, trialkylsilyl and the like. The hydroxyl groups at the 2- and 3-positions of compound (8) may be protected by acetals. In one embodiment, compound (8) X 8 is protected by allyl, X 9 and X 10 are protected by benzyl, X 11 is protected by TBDPS, and the hydroxyl groups at the 2- and 3-positions are protected by isopropyrine acetals (ie,). X 12 and X 13 together form an isopropyrine acetal).
 式(7)の化合物は、公知の手法を用いて式(1)の二糖誘導体から誘導してもよい。 The compound of formula (7) may be derived from the disaccharide derivative of formula (1) using a known method.
 式(8)の化合物は、公知の手法を用いて、例えば式(10):
Figure JPOXMLDOC01-appb-C000045
 
[式中、Levは-C(=O)CC(=O)CHであり、Bnは-CHであり、Allは-CHCH=CHであり、TBDPSは-Si(Ctert-Cである]
で示される二糖誘導体から誘導してもよい。
The compound of formula (8) can be prepared using a known method, for example, of formula (10):
Figure JPOXMLDOC01-appb-C000045

[In the formula, Lev is -C (= O) C 2 H 4 C (= O) CH 3 , Bn is -CH 2 C 6 H 5 , All is -CH 2 CH = CH 2 . TBDPS is -Si (C 6 H 5 ) 2 tert-C 4 H 9 ]
It may be derived from the disaccharide derivative represented by.
 上記方法の具体例を以下のスキーム4に示す。
Figure JPOXMLDOC01-appb-C000046
 
[上のスキーム中、Levは-C(=O)CC(=O)CHであり、Etは-Cであり、Acは-C(=O)CHであり、MBzは-C(=O)C4CH3(p)であり、Allは-CHCH=CHであり、CSAはカンファースルホン酸であり、DMFはジメチルホルムアミドであり、TBDPSは-Si(Ctert-Cであり、THFはテトラヒドロフランであり、TMSOTfはトリフルオロメタンスルホン酸トリメチルシリルであり、Allは-CHCH=CHであり、TBAFはテトラブチルアンモニウムフルオリドである]
A specific example of the above method is shown in Scheme 4 below.
Figure JPOXMLDOC01-appb-C000046

[In the above scheme, Lev is -C (= O) C 2 H 4 C (= O) CH 3 , Et is -C 2 H 5 , and Ac is -C (= O) CH 3 . , MBz is -C (= O) C 6 H 4 CH 3 (p), All is -CH 2 CH = CH 2 , CSA is camphor sulfonic acid, DMF is dimethylformamide, and THF is -Si (C 6 H 5 ) 2 tert-C 4 H 9 , THF is tetrahydrofuran, TMSOTf is trimethylsilyl trifluoromethanesulfonate, All is -CH 2 CH = CH 2 , TBAF is tetrabutyl. Ammonium fluoride]
 式(1)の二糖誘導体の水酸基の保護基をアセチル基とした化合物のグルクロン酸の1位に-OC(NH)CClなどの脱離基を導入して式(7)に示す化合物を得てもよい。式(10)に示す化合物をキシロースから誘導してもよい。式(10)に示す化合物の2位、3位および4位のレブリノイル保護基を脱保護して、次いで、2位および3位の水酸基と2-メトキシプロペンとの間で環を形成させて式(8)に示す化合物を得る。式(7)に示す化合物(糖供与体)と式(8)に示す化合物(糖受容体)を反応させ、次いで、公知の方法により脱保護を行って、式(9)に示す四糖を得る。 The compound represented by the formula (7) is obtained by introducing a leaving group such as -OC (NH) CCl 3 into the 1-position of glucuronic acid of the compound having the protecting group of the hydroxyl group of the disaccharide derivative of the formula (1) as an acetyl group. You may get it. The compound represented by the formula (10) may be derived from xylose. The lebrinoyl protecting groups at the 2-, 3- and 4-positions of the compound represented by the formula (10) are deprotected, and then a ring is formed between the hydroxyl groups at the 2- and 3-positions and 2-methoxypropene. Obtain the compound shown in (8). The compound (sugar donor) represented by the formula (7) is reacted with the compound (sugar acceptor) represented by the formula (8), and then deprotection is performed by a known method to obtain the tetrasaccharide represented by the formula (9). obtain.
 本発明は、さらなる態様において、上記式(7)で示される二糖供与体を、上記式(8)で示される二糖受容体と反応させ、次いで、所望により、得られた四糖誘導体を脱保護することを含む、誘導体化されていてもよい式(9)で示される四糖の製造方法を提供する。
 所望により脱保護とは、保護基の一部(少なくとも1つ)または全部を除去することをいう。糖の誘導体化は当業者に公知である。例えば、上記四糖が公知の保護基を含んでいてもよく、公知の脱離基を含んでいてもよい。上記四糖の保護基および脱離基としては、上で説明したものが挙げられるが、これらに限定されない。
In a further aspect of the present invention, the disaccharide donor represented by the above formula (7) is reacted with the disaccharide receptor represented by the above formula (8), and then, if desired, the obtained tetrasaccharide derivative is obtained. Provided is a method for producing a tetrasaccharide represented by the formula (9), which may be derivatized, including deprotection.
Deprotection, if desired, means removing some (at least one) or all of the protecting groups. Derivatization of sugars is known to those of skill in the art. For example, the tetrasaccharide may contain a known protecting group or may contain a known leaving group. Examples of the tetrasaccharide protecting group and leaving group include those described above, but are not limited thereto.
 上記説明およびスキームに示した反応条件は例示であって、当業者はこれらの反応条件を適宜変更することができる。 The reaction conditions shown in the above description and scheme are examples, and those skilled in the art can appropriately change these reaction conditions.
 本明細書中の用語の意味は、特に断らない限り、生化学、生物学、化学、薬学、医学などの分野において通常に理解されている意味と同じである。 Unless otherwise specified, the meanings of the terms in this specification are the same as those commonly understood in fields such as biochemistry, biology, chemistry, pharmacy, and medicine.
 以下に実施例を示して本発明をさらに詳細かつ具体的に説明するが、実施例はあくまでも例示説明であり、本発明の範囲を限定するものではない。 The present invention will be described in more detail and concretely by showing examples below, but the examples are merely exemplary explanations and do not limit the scope of the present invention.
 実施例1 二糖誘導体の合成
 (1)Dodecyl 3,4-O-(2,3-dimethoxybutan-2,3-diyl)-1-thio-α-D-xylopyranoside (102a)の合成
 MeOH(94mL)に溶解した既知化合物(101a,6.19g,18.5mmol)にトリメチルオルトホルメート(18mL)、2,3-ブタンジオン(6.5mL)と触媒量のカンファースルホン酸を加え50℃で一晩攪拌した。トリエチルアミンを加え濃縮し、濃縮残渣をシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=20:1~5:1)で精製し、102a(2.97g,27%)を得た。
Example 1 Synthesis of disaccharide derivative (1) Synthesis of Dodecyl 3,4-O- (2,3-dimethoxybutan-2,3-diyl) -1-thio-α-D-xylopyranoside (102a) MeOH (94 mL) To a known compound (101a, 6.19 g, 18.5 mmol) dissolved in, trimethyl orthoformate (18 mL), 2,3-butandione (6.5 mL) and a catalytic amount of camphorsulfonic acid were added, and the mixture was stirred at 50 ° C. overnight. did. Triethylamine was added and concentrated, and the concentrated residue was purified by silica gel column chromatography (toluene: ethyl acetate = 20: 1 to 5: 1) to obtain 102a (2.97 g, 27%).
 (x)Dodecyl 3,4-O-(2,3-dimethoxybutan-2,3-diyl)-1-thio-β-D-xylopyranoside (102b)の合成
 MeOH(30mL)に溶解した既知化合物(101b,2.10g,6.28mmol)にトリメチルオルトホルメート(6mL)、2,3-ブタンジオン(2.4mL)と触媒量のカンファースルホン酸を加え40℃で一晩攪拌した。トリエチルアミンを加え濃縮し、濃縮残渣をシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=20:1~3:1)で精製し、102b(2.52g,89%)を得た。
(X) Synthesis of Dodecyl 3,4-O- (2,3-dimethoxybutan-2,3-diyl) -1-thio-β-D-xylopyranoside (102b) Known compound dissolved in MeOH (30 mL) (101b, To 2.10 g, 6.28 mmol) was added trimethyl orthoformate (6 mL), 2,3-butandione (2.4 mL) and a catalytic amount of camphorsulfonic acid, and the mixture was stirred at 40 ° C. overnight. Triethylamine was added and concentrated, and the concentrated residue was purified by silica gel column chromatography (toluene: ethyl acetate = 20: 1 to 3: 1) to obtain 102b (2.52 g, 89%).
 (2)3,4-O-(2,3-dimethoxybutan-2,3-diyl)-2-O-(4-methoxy)benzyl-1-thio-α-D-xylopyranoside (103a)の合成
 化合物(102a,941.9mg,2.099mmol)をジメチルホルムアミド(11mL)に溶解し、水素化ナトリウム(55%,106.3mg,2.44mmol)を加え2時間攪拌した.ここに4-メトキシベンジルクロリド(0.57mL,5.6mmol)を加え、4時間攪拌した.反応液に氷と1M 塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。濃縮残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=50:1~10:1)で精製し、103a(743.0mg,62%)を得た。
(2) Synthesis of 3,4-O- (2,3-dimethoxybutan-2,3-diyl) -2-O- (4-methoxy) benzyl-1-thio-α-D-xylopyranoside (103a) 102a, 941.9 mg, 2.099 mmol) was dissolved in dimethylformamide (11 mL), sodium hydride (55%, 106.3 mg, 2.44 mmol) was added, and the mixture was stirred for 2 hours. To this, 4-methoxybenzyl chloride (0.57 mL, 5.6 mmol) was added, and the mixture was stirred for 4 hours. Ice and 1M aqueous ammonium chloride solution were added to the reaction mixture, and the mixture was extracted with ethyl acetate. The concentrated residue was purified by silica gel column chromatography (n-hexane: ethyl acetate = 50: 1 to 10: 1) to obtain 103a (743.0 mg, 62%).
 (2)3,4-O-(2,3-dimethoxybutan-2,3-diyl)-2-O-(4-methoxy)benzyl-1-thio-β-D-xylopyranoside (103b)の合成
 化合物(102b,2.52g,5.62mmol)をジメチルホルムアミド(28mL)に溶解し、水素化ナトリウム(55%,0.50g,11.5mmol)を加え2時間攪拌した.ここに4-メトキシベンジルクロリド(1.6mL,8.9mmol)を加え、3時間攪拌した.反応液に氷と1M 塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。濃縮残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=8:1~6:1)で精製し、103b(2.43g,76%)を得た。
(2) Synthetic compound of 3,4-O- (2,3-dimethoxybutan-2,3-diyl) -2-O- (4-methoxy) benzyl-1-thio-β-D-xylopyranoside (103b) ( 102b, 2.52 g, 5.62 mmol) was dissolved in dimethylformamide (28 mL), sodium hydride (55%, 0.50 g, 11.5 mmol) was added, and the mixture was stirred for 2 hours. To this, 4-methoxybenzyl chloride (1.6 mL, 8.9 mmol) was added, and the mixture was stirred for 3 hours. Ice and 1M aqueous ammonium chloride solution were added to the reaction mixture, and the mixture was extracted with ethyl acetate. The concentrated residue was purified by silica gel column chromatography (n-hexane: ethyl acetate = 8: 1 to 6: 1) to obtain 103b (2.43 g, 76%).
 (3)Methyl (4-methoxyphenyl 2,4-di-O-acetyl-β-D-glucopyranoside) uronate (113a)の合成
 MeOH(120mL)に溶解した既知化合物(111,22.75g,51.66mmol)に1.0M NaOH(120mL)を加え室温で一晩攪拌した.その後、1.0M HClで中和し、濃縮、乾燥した。得られた乾燥物にAcO(500mL)とI(0.24g)を加えて室温で8時間撹拌した。適当量のMeOH、氷、1Mハイポ(チオ硫酸ナトリウム)を加え、酢酸エチルで抽出し、無水MgSOで乾燥した。不溶物をろ過、濃縮し、シリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=6:1)で精製し、生成物を得た。得られた生成物をMeOH 400mLに溶解し、一週間加熱還流した。反応液を濃縮しシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=4:1)で精製し、113aを3.56g(3工程収率17%)得た。
(3) Synthesis of Methyl (4-methoxyphenyl 2,4-di-O-acetyl-β-D-glucopyranoside) uronate (113a) Known compound (111, 22.75 g, 51.66 mmol) dissolved in MeOH (120 mL) 1.0 M NaOH (120 mL) was added to the mixture, and the mixture was stirred overnight at room temperature. Then, it was neutralized with 1.0 M HCl, concentrated and dried. Ac 2 O (500 mL) and I 2 (0.24 g) were added to the obtained dried product, and the mixture was stirred at room temperature for 8 hours. An appropriate amount of MeOH, ice and 1M hypo (sodium thiosulfate) were added, the mixture was extracted with ethyl acetate, and dried over anhydrous plate 4. The insoluble material was filtered and concentrated, and purified by silica gel column chromatography (toluene: ethyl acetate = 6: 1) to obtain a product. The obtained product was dissolved in MeOH 400 mL and heated to reflux for one week. The reaction mixture was concentrated and purified by silica gel column chromatography (toluene: ethyl acetate = 4: 1) to obtain 3.56 g (3 step yield 17%) of 113a.
 (4)Methyl (4-methoxyphenyl 2,4-di-O-benzoyl-β-D-glucopyranoside) uronate (113b)の合成
 THF(212mL)と水(31mL)の混合溶媒に溶解した既知化合物(111,23.92g,54.31mmol)に1.25M LiOH(296mL)を0℃で加え6時間攪拌した。その後、1.0M HClで中和し、濃縮、乾燥した。得られた乾燥物をDMF(550mL)に溶解し、無水安息香酸(172.24g,761.34mmol)を加えて79℃で3時間撹拌した。その後、ピリジン(226mL)とDMAP(3.40g,27.8mmol)を加えて室温で終夜撹拌した。適当量の氷を加え、酢酸エチルで抽出し、氷冷1M HClと飽和食塩水で洗浄し、有機層を無水MgSOで乾燥した。不溶物をろ過、濃縮し、生成物をMeOH(563mL)に溶解し、酢酸ナトリウム(7.86g,95.8mmol)を加えて5時間加熱攪拌した。反応液を濃縮し、クロロホルムで抽出して常法による後処理を行ったのち、残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=8:1~0:1)で精製し、113bを10.9g(3工程収率38%)を得た。
(4) Synthesis of Methyl (4-methoxyphenyl 2,4-di-O-benzoyl-β-D-glucopyranoside) uronate (113b) A known compound (111, 11) dissolved in a mixed solvent of THF (212 mL) and water (31 mL). 1.25 M LiOH (296 mL) was added to 23.92 g (54.31 mmol) at 0 ° C., and the mixture was stirred for 6 hours. Then, it was neutralized with 1.0 M HCl, concentrated and dried. The obtained dried product was dissolved in DMF (550 mL), benzoic anhydride (172.24 g, 761.34 mmol) was added, and the mixture was stirred at 79 ° C. for 3 hours. Then, pyridine (226 mL) and DMAP (3.40 g, 27.8 mmol) were added, and the mixture was stirred overnight at room temperature. Adding an appropriate amount of ice, and extracted with ethyl acetate, washed with saturated brine and ice-cold 1M HCl, and the organic layer was dried over anhydrous MgSO 4. The insoluble material was filtered and concentrated, the product was dissolved in MeOH (563 mL), sodium acetate (7.86 g, 95.8 mmol) was added, and the mixture was heated and stirred for 5 hours. The reaction mixture was concentrated, extracted with chloroform, post-treated by a conventional method, and then the residue was purified by silica gel column chromatography (n-hexane: ethyl acetate = 8: 1 to 0: 1) to obtain 113b at 10. 9.9 g (3 step yield 38%) was obtained.
 (5)Methyl (2,3,4-tri-O-acetyl-α-D-xylopyranosyl)-(1→3)-β-(4-methoxyphenyl2,4-di-O-acetyl-β-D-glucopyranosid)uronate (204a)の合成 
 DDQ(477.2mg,2.102mmol)のCHCl(5mL)溶液にモレキュラーシーブス4A(1.5g)を加え、113a(535.7mg,1.354mmol)のCHCl(10mL)溶液を加え、室温で1時間攪拌した。そこに103b(967.4mg,1.700mmol)のCHCl(7mL)溶液を攪拌しつつ0℃で加え、その後室温で4時間反応を継続した。反応液に0.1Mアスコルビン酸水溶液を加え、珪藻土濾過した濾液をクロロホルムで抽出した。有機層は0.1Mアスコルビン酸水溶液、飽和重曹水と飽和食塩水で洗浄し、無水MgSOで乾燥した。不溶物を濾別し、濾液の濃縮残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=6:1~1:10)で精製し、混合アセタール(201a)を1.074g(83%)得た。NIS(525.5mg,2.34mmol)とAgOTf(195.3mg,760μmol)をCHCl(22mL)に懸濁させ、モレキュラーシーブス4A(2.3g)存在下、遮光して1時間攪拌した。混合アセタール(201a,1.074g)のCHCl(220mL)溶液を-20℃で滴下し2時間攪拌を続けた。反応液に適当量の1Mハイポ、飽和重曹水と飽和食塩水を加え、珪藻土濾過した濾液をクロロホルムで抽出した。有機層は1Mハイポ、飽和重曹水と飽和食塩水で洗浄し、無水MgSOで乾燥した。不溶物を濾別し、濾液の濃縮残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=30:1~1:10~酢酸エチル:メタノール=30:1)で精製し、二糖画分(753.9mg)を得た。このうち299.7mgに0℃で90%トリフルオロ酢酸(15mL)を加え攪拌した。反応液は2時間かけて室温に戻し試薬を減圧留去した。濃縮残渣にピリジン(3mL)と無水酢酸(3mL)を加え3時間攪拌した。試薬を減圧留去し、濃縮残渣をシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=10:1~2:3)で精製し、204aを85.6mg(24%)得た。
(5) Methyl (2,3,4-tri-O-acetyl-α-D-xylopyranosyl)-(1 → 3) -β- (4-methoxyphenyl2,4-di-O-acetyl-β-D-glucopyranosid) ) Synthesis of uronate (204a)
Molecular Sieves 4A (1.5 g) was added to a CH 2 Cl 2 (5 mL) solution of DDQ (477.2 mg, 2.102 mmol), and a CH 2 Cl 2 (10 mL) solution of 113a (535.7 mg, 1.354 mmol) was added. Was added, and the mixture was stirred at room temperature for 1 hour. A solution of 103b (967.4 mg, 1.700 mmol) of CH 2 Cl 2 (7 mL) was added thereto at 0 ° C. with stirring, and then the reaction was continued at room temperature for 4 hours. A 0.1 M aqueous ascorbic acid solution was added to the reaction solution, and the filtrate filtered through diatomaceous earth was extracted with chloroform. The organic layer is aqueous 0.1M ascorbic acid, washed with a saturated aqueous sodium bicarbonate solution and saturated brine, and dried over anhydrous MgSO 4. The insoluble material was filtered off, and the concentrated residue of the filtrate was purified by silica gel column chromatography (n-hexane: ethyl acetate = 6: 1 to 1:10) to obtain 1.074 g (83%) of mixed acetal (201a). It was. NIS (525.5 mg, 2.34 mmol) and AgOTf (195.3 mg, 760 μmol) were suspended in CH 2 Cl 2 (22 mL), and stirred in the presence of molecular sieves 4A (2.3 g) for 1 hour in the dark. .. A CH 2 Cl 2 (220 mL) solution of the mixed acetal (201a, 1.074 g) was added dropwise at −20 ° C. and stirring was continued for 2 hours. An appropriate amount of 1M hypo, saturated aqueous sodium hydrogen carbonate and saturated brine were added to the reaction mixture, and the filtrate filtered through diatomaceous earth was extracted with chloroform. The organic layer was washed with 1M hypo, saturated aqueous sodium hydrogen carbonate and saturated brine, and dried over anhydrous plate 4 . The insoluble material was filtered off, and the concentrated residue of the filtrate was purified by silica gel column chromatography (n-hexane: ethyl acetate = 30: 1 to 1:10 to ethyl acetate: methanol = 30: 1), and the disaccharide fraction (disaccharide fraction) 753.9 mg) was obtained. Of this, 90% trifluoroacetic acid (15 mL) was added to 299.7 mg at 0 ° C., and the mixture was stirred. The reaction solution was returned to room temperature over 2 hours, and the reagent was distilled off under reduced pressure. Pyridine (3 mL) and acetic anhydride (3 mL) were added to the concentrated residue, and the mixture was stirred for 3 hours. The reagent was distilled off under reduced pressure, and the concentrated residue was purified by silica gel column chromatography (toluene: ethyl acetate = 10: 1 to 2: 3) to obtain 85.6 mg (24%) of 204a.
 (6)Methyl α-D-xylopyranosyl-(1→3)-β-(4-methoxyphenyl 2,4-di-O-benzoyl-β-D-glucopyranosid)uronate (202ba)の合成
 モレキュラーシーブス4A(1.74g)とDDQ(474.2mg,2.087mmol)のCHCl(3mL)懸濁液に113b(706.3mg,1.352mmol)のCHCl(7mL)溶液を加え、室温で1時間攪拌した。そこに103b(962.9mg,1.693mmol)のCHCl(8mL)溶液を攪拌しつつ0℃で加え、その後室温で一晩反応を継続した。反応液を再度0℃に冷却しDDQ(160.4mg,706μmol)を加え5時間攪拌した。室温に戻し204aの合成と同様の後処理を行い、濃縮残渣をゲル濾過カラムクロマトグラフィー(クロロホルム:メタノール=1:1)とシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=1:0~2:1)で精製し、混合アセタール(201b)を435.5mg(収率30%)得た。遮光してNIS(124.6mg,553.8μmol)とAgOTf(61.6mg,0.24mmol)をCHCl(4mL)に懸濁させ、モレキュラーシーブス4A(0.43g)存在下、混合アセタール(201b,232.9mg)のCHCl(40mL)溶液を-20℃で滴下し3時間攪拌を続けた。204aの合成と同様の後処理を行い、ゲル濾過カラムクロマトグラフィー(クロロホルム:メタノール=1:1)で精製し、生成物(156.7mg)を得た。これに0℃で90%トリフルオロ酢酸(8mL)を加え2.5時間攪拌した。室温に戻し試薬を減圧留去し、ゲル濾過カラムクロマトグラフィー(クロロホルム:メタノール=1:1)で精製し、202ba(49.4mg,75.5μmol,2工程収率35%)を得た。
(6) Synthesis of Methyl α-D-xylopyranosyl- (1 → 3) -β- (4-methoxyphenyl 2,4-di-O-benzoyl-β-D-glucopyranosid) uronate (202ba) Molecular Sieves 4A (1. To a suspension of CH 2 Cl 2 (3 mL) of 74 g) and DDQ (474.2 mg, 2.087 mmol) was added a solution of 113b (706.3 mg, 1.352 mmol) CH 2 Cl 2 (7 mL) and 1 at room temperature. Stirred for hours. A solution of 103b (962.9 mg, 1.693 mmol) of CH 2 Cl 2 (8 mL) was added thereto at 0 ° C. with stirring, and then the reaction was continued overnight at room temperature. The reaction mixture was cooled to 0 ° C. again, DDQ (160.4 mg, 706 μmol) was added, and the mixture was stirred for 5 hours. After returning to room temperature and performing the same post-treatment as the synthesis of 204a, the concentrated residue was subjected to gel filtration column chromatography (chloroform: methanol = 1: 1) and silica gel column chromatography (toluene: ethyl acetate = 1: 0 to 2: 1). To obtain 435.5 mg (yield 30%) of mixed acetal (201b). NIS (124.6 mg, 553.8 μmol) and AgOTf (61.6 mg, 0.24 mmol) were suspended in CH 2 Cl 2 (4 mL) in the presence of molecular sieves 4A (0.43 g) in the presence of light-shielded mixed acetal. A solution of CH 2 Cl 2 (40 mL) (201b, 232.9 mg) was added dropwise at −20 ° C., and stirring was continued for 3 hours. The same post-treatment as the synthesis of 204a was carried out and purified by gel filtration column chromatography (chloroform: methanol = 1: 1) to obtain a product (156.7 mg). 90% trifluoroacetic acid (8 mL) was added thereto at 0 ° C., and the mixture was stirred for 2.5 hours. The reagent was evaporated to room temperature under reduced pressure and purified by gel filtration column chromatography (chloroform: methanol = 1: 1) to obtain 202ba (49.4 mg, 75.5 μmol, 2-step yield 35%).
 (7)Methyl [2,4-di-O-(4-methyl)benzoyl-α-D-xylopyranosyl]-(1-3)-β-(4-methoxyphenyl 2,4-di-O-benzoyl-β-D-glucopyranosid)uronate (203b1), Methyl [3,4-di-O-(4-methyl)benzoyl-α-D-xylopyranosyl]-(1-3)-β-(4-methoxyphenyl 2,4-di-O-benzoyl-β-D-glucopyranosid)uronate (203b2)の合成
 化合物202ba(239.2mg,365.4μmol)をトルエン(13mL)に溶解し、酸化ジブチルすず(IV)(327.6mg,1.32mmol)を加えディーンスターク装置で2.5時間反応させた。反応液を氷冷し塩化4-メチルベンゾイル(122μL,923μmol)を加え室温で終夜攪拌した。反応液に飽和重曹水を加え、酢酸エチルで抽出し、常法により後処理を行った。濃縮残渣をゲル濾過カラムクロマトグラフィー(クロロホルム:メタノール=1:1)で精製し、生成物のクロロホルム溶液を1M HClと飽和食塩水で洗浄し、有機層の濃縮残渣(381.9mg)をトルエン(12.5mL)とメタノール(2.5mL)に溶解した。この溶液を氷冷し、2M TMS ジアゾメタン(660μL,11.6μmol)を加え、1時間後に減圧濃縮した。残渣をゲル濾過カラムクロマトグラフィー(クロロホルム:メタノール=1:1)とシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=10:0~0:1)で精製し、203b1(202.9mg)と203b2(42.6mg,)をそれぞれ収率62%と25%で得た。
203b1: ESI-HRMS m/z [(M+Na)+]: calcd. for C49H46NaO16: 913.2678; found, 913.2678.
203b2: ESI-HRMS m/z [(M+Na)+]: calcd. for C49H46NaO16: 913.2678; found, 913.2658.
(7) Methyl [2,4-di-O- (4-methyl) benzoyl-α-D-xylopyranosyl]-(1-3) -β- (4-methoxyphenyl 2,4-di-O-benzoyl-β -D-glucopyranosid) uronate (203b1), Methyl [3,4-di-O-(4-methyl) benzoyl-α-D-xylopyranosyl]-(1-3) -β- (4-methoxyphenyl 2,4- Synthesis of di-O-benzoyl-β-D-glucopyranosid) uronate (203b2) Compound 202ba (239.2 mg, 365.4 μmol) was dissolved in toluene (13 mL) to dissolve dibutyltin oxide (IV) (327.6 mg, 1). .32 mmol) was added and reacted in a Dean Stark apparatus for 2.5 hours. The reaction mixture was ice-cooled, 4-methylbenzoyl chloride (122 μL, 923 μmol) was added, and the mixture was stirred overnight at room temperature. Saturated aqueous sodium hydrogen carbonate was added to the reaction mixture, the mixture was extracted with ethyl acetate, and post-treated by a conventional method. The concentrated residue was purified by gel filtration column chromatography (chloroform: methanol = 1: 1), the chloroform solution of the product was washed with 1M HCl and saturated brine, and the concentrated residue (381.9 mg) of the organic layer was added to toluene (381.9 mg). It was dissolved in 12.5 mL) and methanol (2.5 mL). This solution was ice-cooled, 2M TMS diazomethane (660 μL, 11.6 μmol) was added, and the mixture was concentrated under reduced pressure after 1 hour. The residue was purified by gel filtration column chromatography (chloroform: methanol = 1: 1) and silica gel column chromatography (toluene: ethyl acetate = 10: 0-0: 1), and 203b1 (202.9 mg) and 203b2 (42. 6 mg,) were obtained in yields of 62% and 25%, respectively.
203b1: ESI-HRMS m / z [(M + Na) + ]: calcd. For C 49 H 46 NaO 16 : 913.2678; found, 913.2678.
203b2: ESI-HRMS m / z [(M + Na) + ]: calcd. For C 49 H 46 NaO 16 : 913.2678; found, 913.2658.
 (8)Methyl [3-O-levulynoyl-2,4-di-O-(4-methyl)benzoyl-α-D-xylopyranosyl]-(1→3)-β-(4-methoxyphenyl 2,4-di-O-benzoyl-β-D-glucopyranosid)uronate (204b)の合成
 化合物(203b1,111.4mg,125μmol)をピリジン(640μL)に溶解し、1M レブリン酸(325μl,0.313mmol)の1,2-ジクロロエタン溶液と、DMAPを少量加え、室温で2時間撹拌した。反応液を飽和食塩水で中和し、CHCl抽出と常法による後処理を行った。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=50:1~0:1)で精製し、204b(124.8mg)を定量的に得た。
(8) Methyl [3-O-levulynoyl-2,4-di-O- (4-methyl) benzoyl-α-D-xylopyranosyl]-(1 → 3) -β- (4-methoxyphenyl 2,4-di Synthesis of -O-benzoyl-β-D-glucopyranosid) uronate (204b) Compound (203b 1,111.4 mg, 125 μmol) was dissolved in pyridine (640 μL) and 1 and 2 of 1 M levulinic acid (325 μl, 0.313 mmol). -A small amount of dichloroethane solution and DMAP were added, and the mixture was stirred at room temperature for 2 hours. The reaction mixture was neutralized with saturated brine, extracted with CHCl 3 and post-treated by a conventional method. The obtained residue was purified by silica gel column chromatography (n-hexane: ethyl acetate = 50: 1 to 0: 1) to quantitatively obtain 204b (124.8 mg).
 (9)Methyl (2,3,4-tri-O-acetyl-α-D-xylopyranosyl)-(1→3)-β-(4-methoxyphenyl 2,4-di-O-acetyl-β-D- glucopyranosylimidate)uronate (205a)の合成
 化合物(204a,83.4mg,127μmol)をアセトニトリル(4mL)とHO(1mL)の混合溶液に溶解し、そこにCAN(203.6mg,371.4μmol)を加えて、室温で1.5時間撹拌した。反応液に0.1Mアスコルビン酸を加え、CHCl抽出と飽和食塩水による洗浄をし、常法による後処理を行った。得られた残渣をシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=5:1~2:3)で精製し、生成物(73.6mg)を得た。これをジクロロメタン(2mL)に溶解し、CClCN(127μL,1.25mmol)を加えて、0℃に冷却した。その後DBUを2滴加え、室温に戻して1時間撹拌した。反応液は、シリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=10:1~1:1)で精製し、205a(72.8mg)を収率82%(2工程)で得た。
1H-NMR δH(CDCl3): 8.72 (s, 1H, NH), 6.67 (d, 1H, J1,2=3.54 Hz, GlcA-1), 5.35 (brt, 1H,J=10.08 Hz, Xyl-3), 5.33 (d, 1H, J1,2=3.72 Hz, Xyl-1), 5.30 (dd, 1H,J3,4=9.37 Hz, J4,5=10.20 Hz, GlcA-4), 5.10 (dd, 1H, J2,3=9.90 Hz, GlcA-2), 4.95 (ddd, 1H,J3,4=10.14 Hz, J4,5a=6.42 Hz, J4,5e=9.60 Hz, Xyl-4), 4.72 (dd, 1H, J2,3=10.26 Hz, Xyl-2), 4.35 (brt, 1H,J=9.63 Hz, GlcA-3), 4.35 (d, 1H, GlcA-5), 3.76 (m, 2H, Xyl-5a,e), 3.73 (s, 3H, COOMe), 2.09, 2.04, 2.04, 2.02, 2.01 (each s, 3Hx5, 5Ac)
(9) Methyl (2,3,4-tri-O-acetyl-α-D-xylopyranosyl)-(1 → 3) -β- (4-methoxyphenyl 2,4-di-O-acetyl-β-D- Glucopyranosylimidate) compound of uronate (205a) (204a, 83.4mg , a 127Myumol) was dissolved in a mixed solution of acetonitrile (4 mL) and H 2 O (1mL), there the CAN (203.6mg, 371.4μmol) In addition, the mixture was stirred at room temperature for 1.5 hours. 0.1 M ascorbic acid was added to the reaction mixture, CHCl 3 extraction and washing with saturated brine were carried out, and post-treatment was carried out by a conventional method. The obtained residue was purified by silica gel column chromatography (toluene: ethyl acetate = 5: 1 to 2: 3) to obtain a product (73.6 mg). This was dissolved in dichloromethane (2 mL), CCl 3 CN (127 μL, 1.25 mmol) was added, and the mixture was cooled to 0 ° C. Then, 2 drops of DBU were added, the temperature was returned to room temperature, and the mixture was stirred for 1 hour. The reaction mixture was purified by silica gel column chromatography (toluene: ethyl acetate = 10: 1 to 1: 1) to obtain 205a (72.8 mg) in a yield of 82% (2 steps).
1 H-NMR δ H (CDCl 3 ): 8.72 (s, 1H, NH), 6.67 (d, 1H, J 1,2 = 3.54 Hz, GlcA-1), 5.35 (brt, 1H, J = 10.08 Hz, Xyl-3), 5.33 (d, 1H, J 1,2 = 3.72 Hz, Xyl-1), 5.30 (dd, 1H, J 3,4 = 9.37 Hz, J 4,5 = 10.20 Hz, GlcA-4) , 5.10 (dd, 1H, J 2,3 = 9.90 Hz, GlcA-2), 4.95 (ddd, 1H, J 3,4 = 10.14 Hz, J 4,5a = 6.42 Hz, J 4,5e = 9.60 Hz, Xyl-4), 4.72 (dd, 1H, J 2,3 = 10.26 Hz, Xyl-2), 4.35 (brt, 1H, J = 9.63 Hz, GlcA-3), 4.35 (d, 1H, GlcA-5) , 3.76 (m, 2H, Xyl-5a, e), 3.73 (s, 3H, COOMe), 2.09, 2.04, 2.04, 2.02, 2.01 (each s, 3Hx5, 5Ac)
 (10)Methyl [3-O-levulynoyl-2,4-di-O-(4-methyl)benzoyl-α-D-xylopyranosyl]-(1→3)-β-(4-methoxyphenyl 2,4-di-O-benzoyl-β-D-glucopyranosylimidate)uronate (205b)の合成
 化合物(204b,124.8mg,126.2μmol)をアセトニトリル(5.8mL)とHO(1.4mL)の混合溶液に溶解し、そこにCAN(362.2mg,660.7μmol)を加えて、室温で4.5時間撹拌した。反応液に0.1Mアスコルビン酸を加え、CHCl抽出と飽和食塩水による洗浄をし、常法による後処理をおこなった。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=50:1~0:1)で精製し、生成物(110.8mg)を得た。これをジクロロメタン(1mL)に溶解し、CClCN(125μL,1.25mmol)を加えて、0℃に冷却した。その後DBUを1滴加え、室温に戻して1時間撹拌した。反応液は、シリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=50:1~0:1)で精製し、205b(109.7mg)を収率80%(2工程)で得た。
1H-NMR δH(CDCl3): 8.70 (s, 1H, NH), 7.97-7.95 (m, 2H, Ar), 7.64-7.58 (m, 4H, Ar), 7.54-7.51 (m, 3H, Ar), 7.33-7.29 (m, 2H, Ar), 7.22 (brt, 1H, J=7.80 Hz, Ar), 7.16 (d, 1H, J=7.98 Hz, Ar), 7.11 (d, 1H, J=7.98 Hz, Ar), 6.84 (d, 1H, J1,2=3.78 Hz, GlcA-1), 5.60 (brt, 1H,J=9.90 Hz, Xyl-3), 5.59-5.56 (m, 2H, GlcA-2, 4), 5.50 (d, 1H, J1,2=3.90 Hz, Xyl-1), 5.00 (dd, 1H, J2,3=10.44 Hz, Xyl-2), 4.97 (m, 1H,Xyl-4), 4.72 (t, 1H, J2,3= J3,4=9.46 Hz, GlcA-3), 4.52 (d, 1H, J4,5=10.20 Hz, GlcA-5), 3.70 (brt, 1H, J=10.92 Hz, Xyl-5a), 3,63 (dd, 1H, J4,5e=6.18 Hz, J5a,5e=11.22 Hz, Xyl-5e), 3.52 (s, 3H, COOMe), 2.40 (s, 6H, 2PhMe), 2.39-2.16 (m, 4H, 2CH2), 1.86 (s, 3H, Lev).
(10) Methyl [3-O-levulynoyl-2,4-di-O- (4-methyl) benzoyl-α-D-xylopyranosyl]-(1 → 3) -β- (4-methoxyphenyl 2,4-di -O-benzoyl-β-D- glucopyranosylimidate) compound of uronate (205b) (204b, 124.8mg , dissolved 126.2Myumol) in a mixed solution of acetonitrile (5.8 mL) and H 2 O (1.4mL) Then, CAN (362.2 mg, 660.7 μmol) was added thereto, and the mixture was stirred at room temperature for 4.5 hours. 0.1 M ascorbic acid was added to the reaction mixture, CHCl 3 extraction and washing with saturated brine were carried out, and post-treatment was carried out by a conventional method. The obtained residue was purified by silica gel column chromatography (n-hexane: ethyl acetate = 50: 1 to 0: 1) to obtain a product (110.8 mg). This was dissolved in dichloromethane (1 mL), CCl 3 CN (125 μL, 1.25 mmol) was added, and the mixture was cooled to 0 ° C. Then, 1 drop of DBU was added, the temperature was returned to room temperature, and the mixture was stirred for 1 hour. The reaction mixture was purified by silica gel column chromatography (toluene: ethyl acetate = 50: 1 to 0: 1) to obtain 205b (109.7 mg) in a yield of 80% (2 steps).
1 H-NMR δ H (CDCl 3 ): 8.70 (s, 1H, NH), 7.97-7.95 (m, 2H, Ar), 7.64-7.58 (m, 4H, Ar), 7.54-7.51 (m, 3H, Ar) Ar), 7.33-7.29 (m, 2H, Ar), 7.22 (brt, 1H, J = 7.80 Hz, Ar), 7.16 (d, 1H, J = 7.98 Hz, Ar), 7.11 (d, 1H, J = 7.98 Hz, Ar), 6.84 (d, 1H, J 1,2 = 3.78 Hz, GlcA-1), 5.60 (brt, 1H, J = 9.90 Hz, Xyl-3), 5.59-5.56 (m, 2H, GlcA) -2, 4), 5.50 (d, 1H, J 1,2 = 3.90 Hz, Xyl-1), 5.00 (dd, 1H, J 2,3 = 10.44 Hz, Xyl-2), 4.97 (m, 1H, Xyl-4), 4.72 (t, 1H, J 2,3 = J 3,4 = 9.46 Hz, GlcA-3), 4.52 (d, 1H, J 4,5 = 10.20 Hz, GlcA-5), 3.70 ( brt, 1H, J = 10.92 Hz, Xyl-5a), 3,63 (dd, 1H, J 4,5e = 6.18 Hz, J 5a, 5e = 11.22 Hz, Xyl-5e), 3.52 (s, 3H, COOMe) ), 2.40 (s, 6H, 2Ph Me ), 2.39-2.16 (m, 4H, 2CH 2 ), 1.86 (s, 3H, Lev).
 (x)Methyl 3,4-O-(2,3-dimethoxybutan-2,3-diyl)-2-O-(4-methoxy)benzyl-α-D-xylopyranosyl-(1→3)-β-(4-methoxyphenyl 2,4-di-O-acetyl-α and β-D-glucopyranosid)uronate (208a, 208b)の合成
 
(αチオグリコシドを用いる縮合:Method 1)
 トルエン(3.0mL)とジオキサン(3.0mL)の混合溶媒中で103a(397.8mg、0.699mmol)と113a(183.5mg、0.461mmol)を、モレキュラーシーブ4A(0.64g)の存在下、室温で1時間攪拌した。そこにNIS(238.2mg、1.059mmol)とAgOTf(71.4mg、0.278mmol)を-20Cで加えた。1.5時間後、1M ハイポ、飽和NaHCOと飽和NaClを加えて反応を中止し、珪藻土ろ過した濾液をCHClで抽出し、有機層は飽和NaHCOと飽和NaClで洗浄し、無水MgSOで乾燥した。不溶物をろ別し、ろ液の濃縮残渣をゲルろ過カラムカラムクロマトグラフィー(クロロホルム:メタノール=1:1)で精製し、208aと208bの混合物(245.9mg、α58%、β12%)を得た。
 
(βチオグリコシドを用いる縮合:Method 2)
 トルエン(3.0mL)とジオキサン(3.0mL)の混合溶媒中で103b(184.7mg、0.325mmol)と113a(86.9mg、0.218mmol)を、モレキュラーシーブ4A(0.33g)の存在下、室温で2時間攪拌した。そこにNIS(110.1mg、0.489mmol)とAgOTf(38.4mg、0.150mmol)を-20℃で加えた。2時間後、1M ハイポ、飽和NaHCOと飽和NaClを加えて反応を中止し、珪藻土ろ過した濾液をCHClで抽出し、有機層は飽和NaHCOと飽和NaClで洗浄し、無水MgSOで乾燥した。不溶物をろ別し、ろ液の濃縮残渣をゲルろ過カラムクロマトグラフィー(クロロホルム:メタノール=1:1)で精製し、208aと208bの混合物(120.7mg、α60%、β12%)を得た。
 
(αとβチオグリコシドを用いる縮合:Method 3)
 トルエン(10.0mL)とジオキサン(10.0mL)の混合溶媒中で103aと103bの約1:1混合物(1.05g、1.85mmol)と113a(491.4mg、1.234mmol)を、モレキュラーシーブ4A(1.81g)の存在下、室温で1時間攪拌した。そこにNIS(588.3mg、2.615mmol)とAgOTf(191.6mg、0.7458mmol)を-20℃で加えた。2時間後、1M ハイポ、飽和NaHCOと飽和NaClを加えて反応を中止し珪藻土ろ過した濾液をCHClで抽出し、無水MgSOで乾燥した。不溶物をろ過、濃縮しゲルろ過カラムクロマトグラフィー(クロロホルム:メタノール=1:1)で精製し、208aと208bの混合物(754.4mg、α67%、β13%)を得た。
 
(X) Methyl 3,4-O- (2,3-dimethoxybutan-2,3-diyl) -2-O- (4-methoxy) benzyl-α-D-xylopyranosyl- (1 → 3) -β-( Synthesis of 4-methoxyphenyl 2,4-di-O-acetyl-α and β-D-glucopyranosid) uronate (208a, 208b)
(Condensation using α-thioglycoside: Method 1)
103a (397.8 mg, 0.699 mmol) and 113a (183.5 mg, 0.461 mmol) in a mixed solvent of toluene (3.0 mL) and dioxane (3.0 mL) of molecular sieve 4A (0.64 g). In the presence, the mixture was stirred at room temperature for 1 hour. NIS (238.2 mg, 1.059 mmol) and AgOTf (71.4 mg, 0.278 mmol) were added thereto at −20 o C. After 1.5 hours, 1M hypo, saturated NaCl 3 and saturated NaCl were added to terminate the reaction, the filtrate filtered through diatomaceous earth was extracted with CHCl 3 , and the organic layer was washed with saturated NaCl 3 and saturated NaCl, and anhydrous silyl 4 It was dried in. The insoluble material is filtered off, and the concentrated residue of the filtrate is purified by gel filtration column column chromatography (chloroform: methanol = 1: 1) to obtain a mixture of 208a and 208b (245.9 mg, α58%, β12%). It was.

(Condensation using β-thioglycoside: Method 2)
103b (184.7 mg, 0.325 mmol) and 113a (86.9 mg, 0.218 mmol) in a mixed solvent of toluene (3.0 mL) and dioxane (3.0 mL) of molecular sieve 4A (0.33 g). In the presence, the mixture was stirred at room temperature for 2 hours. NIS (110.1 mg, 0.489 mmol) and AgOTf (38.4 mg, 0.150 mmol) were added thereto at −20 ° C. After 2 hours, 1M hypo, saturated NaCl 3 and saturated NaCl were added to terminate the reaction, the filtrate filtered through diatomaceous earth was extracted with CHCl 3 , and the organic layer was washed with saturated NaCl 3 and saturated NaCl, and dried with anhydrous chloride 4 . did. The insoluble material was filtered off, and the concentrated residue of the filtrate was purified by gel filtration column chromatography (chloroform: methanol = 1: 1) to obtain a mixture of 208a and 208b (120.7 mg, α60%, β12%). ..

(Condensation using α and β thioglycosides: Method 3)
About 1: 1 mixture (1.05 g, 1.85 mmol) and 113a (491.4 mg, 1.234 mmol) of 103a and 103b in a mixed solvent of toluene (10.0 mL) and dioxane (10.0 mL) is molecular. The mixture was stirred at room temperature for 1 hour in the presence of sheave 4A (1.81 g). NIS (588.3 mg, 2.615 mmol) and AgOTf (191.6 mg, 0.7458 mmol) were added thereto at −20 ° C. After 2 hours, 1M hypo, saturated NaCl 3 and saturated NaCl were added to stop the reaction, and the filtrate filtered through diatomaceous earth was extracted with CHCl 3 and dried over anhydrous silyl 4. The insoluble material was filtered, concentrated and purified by gel filtration column chromatography (chloroform: methanol = 1: 1) to obtain a mixture of 208a and 208b (754.4 mg, α67%, β13%).
 (x)Methyl α-D-xylopyranosyl-(1→3)-β-(4-methoxyphenyl 2,4-di-O-acetyl-β-D-glucopyranosid)uronate (202aa)の合成
 化合物208aと208bの混合物(754.4mg、α:β=67:13)に90%トリフルオロ酢酸(10.0mL)を加え0℃で攪拌した。2.5時間後濃縮し、シリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=1:1~酢酸エチル:メタノール=10:1)で精製し202aaと202abの混合物(474.5mg、収率91%)を得た。これをクロロホルムに懸濁させ,ろ過した.不溶物を回収し,202aa(427.8mg)を得た(208aと208bの混合物からの収率82%)。1H-NMR δH(CD3OD):6.98-6.92(m,2H,Ar-H),6.84-6.82(m,2H,Ar-H),5.19-5.11(m,4H,Glc A-1,2,4),4.95(d,1H,J1,2=3.84Hz,Xyl-1),4.27(d,1H,J4,5=9.96Hz,Glc A-5),4.12(t,1H,J2,3=J3,4=9.24Hz,Glc A-3),3.74,3.69(2s,3H×2,2O C H3),3.53-3.39(m,4H,Xyl-3,4,5ab),2.12,2.07(2s,3H×2,2A c).
(X) Synthesis of Methyl α-D-xylopyranosyl- (1 → 3) -β- (4-methoxyphenyl 2,4-di-O-acetyl-β-D-glucopyranosid) uronate (202aa) Mixture of compounds 208a and 208b 90% trifluoroacetic acid (10.0 mL) was added to (754.4 mg, α: β = 67: 13), and the mixture was stirred at 0 ° C. After 2.5 hours, the mixture was concentrated and purified by silica gel column chromatography (n-hexane: ethyl acetate = 1: 1 to ethyl acetate: methanol = 10: 1) to obtain a mixture of 202aa and 202ab (474.5 mg, yield 91%). ) Was obtained. This was suspended in chloroform and filtered. The insoluble material was recovered to give 202aa (427.8 mg) (82% yield from a mixture of 208a and 208b). 1 H-NMR δ H (CD 3 OD): 6.98-6.92 (m, 2H, Ar-H), 6.84-6.82 (m, 2H, Ar-H), 5.19-5.11 (m, 4H, Glc A-1) , 2,4), 4.95 (d, 1H, J 1,2 = 3.84Hz, Xyl-1), 4.27 (d, 1H, J 4,5 = 9.96Hz, Glc A-5), 4.12 (t, 1H , J 2,3 = J 3,4 = 9.24Hz, Glc A-3), 3.74,3.69 (2s, 3H × 2,2O C H 3 ), 3.53-3.39 (m, 4H, Xyl-3,4,5ab ), 2.12, 2.07 (2s, 3H × 2,2A c).
実施例2 四糖誘導体(n=1である式(5)の化合物)の合成
 (1)Methyl [3-O-levulinoyl-2,4-di-O-(4-methyl)benzoyl-α-D-xylopyranosyl]-(1→3)-(methyl 2,4-di-O-benzoyl-β-D-glucopyranosyluronate)-(1→3)-[2,4-di-O-(4-methyl)benzoyl-α-D-xylopyranosyl]-(1→3)-(4-methoxyphenyl 2,4-di-O-benzoyl-β-D-glucopyranosid)uronate (206b)の合成 
 二糖供与体(205b,109.7mg,106.7μmol)と二糖受容体(203b1,90.2mg,101μmol)をジクロロメタン(3.5mL)に溶解し、MSAW300(0.31g)を加えて、30分撹拌した。これを-20℃に冷却し、TMSOTf(10μL,53.5μmol)を加えて3時間撹拌した。反応溶液に飽和重曹水を加え、セライトろ過を行った。常法による後処理を行い、ゲルろ過カラムクロマトグラフィー(CHCl:MeOH=1:1)で精製し、206b(56.3mg,32.1μmol)を収率32%で得た。[α]D +21.0°(c 0.66,CHCl3). 1H-NMR δH(CDCl3): 7.92-7.899 (m, 4H, Ar), 7.66-7.62 (m, 5H, Ar), 7.59 (d, 2H, J=8.16 Hz, Ar), 7.55-7.50 (m, 7H, Ar), 7.41 (d, 2H, J=7.44 Hz, Ar), 7.33-7.27 (m, 5H, Ar), 7.18 (m, 3H, Ar), 7.15 (d, 2H, J=8.04 Hz, Ar), 7.11 (d, 2H, J=7.75 Hz, Ar), 7.06 (d, 2H, J=7.92 Hz, Ar), 6.91-6.89 (m, 2H, Ar), 6.88-6.86 (m, 2H, Ar), 6.71-6.70 (m, 2H, Ar), 5.55 (dd, 1H, J1,2=7.26 Hz, J2,3=8.64 Hz, H-21), 5.50 (brt, 1H, J=8.94 Hz, H-41), 5.45 (t, 1H, J2,3= J3,4=9.78 Hz, H-34), 5.42 (brt, 1H, J=9.45 Hz, H-43), 5.34 (d, 1H, J1,2=3.60 Hz, H-12), 5.28 (d, 1H, J1,2=3.96 Hz, H-14), 5.25 (brt, 1H, J=8.52 Hz, H-23), 5.09 (d, 1H, H-11), 5.00 (dd, 1H, J1,2=7.98 Hz, H-13), 4.81-4.76 (m, 3H, H-42, 24, 44), 4.71 (dd, 1H, J2,3=9.60 Hz, H-23), 4.43 (brt, 1H, J=9.27 Hz, H-32), 4.33 (brt, 1H, J=8.73 Hz, H-31), 4.17 (brt, 1H, J=9.08 Hz, H-33), 4.12 (d, 1H, J4,5=9.84 Hz, H-53), 4.11 (d, 1H, J4,5=9.19 Hz, H-51), 3.70, 3.53, 3.44 (3s, 3Hx3, 3OMe), 3.66 (dd, 1H, J4,5e=5.93 Hz, J5a,5e=11.53 Hz, H-52e), 3.49 (brt, 1H, J=10.78 Hz, H-52a), 3.31 (brt, 1H, J=11.05 Hz, H-54a), 3.21 (dd, 1H, J4,5e=6.00 Hz, J5a,5e=11.33 Hz, H-54e), 2.50, 2.45, 2.39, 2.37 (4s, 12H, 4PhMe), 2.44-2.10 (m, 4H, 2CH2), 1.83 (s, 3H, Lev). ESI-HRMS m/z [(M+Na)+]: calcd. for C96H90NaO32: 1777.5307; found, 1777.5330.
Example 2 Synthesis of tetrasaccharide derivative (compound of formula (5) with n = 1) (1) Methyl [3-O-levulinoyl-2,4-di-O- (4-methyl) benzoyl-α-D -xylopyranosyl]-(1 → 3)-(methyl 2,4-di-O-benzoyl-β-D-glucopyranosyluronate)-(1 → 3)-[2,4-di-O-(4-methyl) benzoyl -Α-D-xylopyranosyl]-(1 → 3)-(4-methoxyphenyl 2,4-di-O-benzoyl-β-D-glucopyranosid) uronate (206b) synthesis
The disaccharide donor (205b, 109.7 mg, 106.7 μmol) and the disaccharide receptor (203b 1,90.2 mg, 101 μmol) were dissolved in dichloromethane (3.5 mL), and MSAW300 (0.31 g) was added. The mixture was stirred for 30 minutes. This was cooled to −20 ° C., TMSOTf (10 μL, 53.5 μmol) was added, and the mixture was stirred for 3 hours. Saturated aqueous sodium hydrogen carbonate was added to the reaction solution, and Celite filtration was performed. After treatment by a conventional method , the product was purified by gel filtration column chromatography (CHCl 3 : MeOH = 1: 1) to obtain 206b (56.3 mg, 32.1 μmol) in a yield of 32%. [α] D + 21.0 ° (c 0.66, CHCl 3 ). 1 H-NMR δ H (CDCl 3 ): 7.92-7.899 (m, 4H, Ar), 7.66-7.62 (m, 5H, Ar), 7.59 ( d, 2H, J = 8.16 Hz, Ar), 7.55-7.50 (m, 7H, Ar), 7.41 (d, 2H, J = 7.44 Hz, Ar), 7.33-7.27 (m, 5H, Ar), 7.18 ( m, 3H, Ar), 7.15 (d, 2H, J = 8.04 Hz, Ar), 7.11 (d, 2H, J = 7.75 Hz, Ar), 7.06 (d, 2H, J = 7.92 Hz, Ar), 6.91 -6.89 (m, 2H, Ar), 6.88-6.86 (m, 2H, Ar), 6.71-6.70 (m, 2H, Ar), 5.55 (dd, 1H, J 1,2 = 7.26 Hz, J 2,3 = 8.64 Hz, H-2 1 ), 5.50 (brt, 1H, J = 8.94 Hz, H-4 1 ), 5.45 (t, 1H, J 2,3 = J 3,4 = 9.78 Hz, H-3 4 ), 5.42 (brt, 1H, J = 9.45 Hz, H-4 3 ), 5.34 (d, 1H, J 1,2 = 3.60 Hz, H-1 2 ), 5.28 (d, 1H, J 1,2 = 3.96 Hz, H-1 4 ), 5.25 (brt, 1H, J = 8.52 Hz, H-2 3 ), 5.09 (d, 1H, H-1 1 ), 5.00 (dd, 1H, J 1,2 = 7.98 Hz, H-1 3 ), 4.81-4.76 (m, 3H, H-4 2 , 2 4 , 4 4 ), 4.71 (dd, 1H, J 2,3 = 9.60 Hz, H-2 3 ), 4.43 ( brt, 1H, J = 9.27 Hz, H-3 2 ), 4.33 (brt, 1H, J = 8.73 Hz, H-3 1 ), 4.17 (brt, 1H, J = 9.08 Hz, H-3 3 ), 4.12 (d, 1H, J 4,5 = 9.84 Hz, H-5 3 ), 4.11 (d, 1H, J 4,5 = 9.19 Hz, H-5 1 ), 3.70, 3.53, 3.44 (3s) , 3Hx3, 3OMe), 3.66 (dd, 1H, J 4,5e = 5.93 Hz, J 5a, 5e = 11.53 Hz, H-5 2 e), 3.49 (brt, 1H, J = 10.78 Hz, H-5 2 a), 3.31 (brt, 1H, J = 11.05 Hz, H-5 4 a), 3.21 (dd, 1H, J 4,5e = 6.00 Hz, J 5a, 5e = 11.33 Hz, H-5 4 e), 2.50, 2.45, 2.39, 2.37 (4s, 12H, 4Ph Me ), 2.44-2.10 (m, 4H, 2CH 2 ), 1.83 (s, 3H, Lev). ESI-HRMS m / z [(M + Na) + ]: calcd. for C 96 H 90 NaO 32 : 1777.5307; found, 1777.5330.
 (2)α-D-Xylopyranosyl-(1→3)-β-D-glucopyranosyluronic acid-(1→3)-α-D-xylopyranosyl-(1→3)-4-methoxyphenyl β-D-glucopyranosyluronic acid, disodium salt (207b)の合成
 化合物(206b,15.1mg,8.60μmol)をTHF(1.4ml)とHO(0.1ml)の混合溶液に溶解し、1.25M LiOH(70μL,86μmol)を加え2.5時間撹拌した。減圧留去後0℃に冷却しMeOHを1.0mL加え、0.5M NaOH(50μL)を加えて室温で16日間撹拌した。50%酢酸(2滴)を加えて減圧留去し、得られた残渣をゲルろ過カラムクロマトグラフィー(LH-20,1%酢酸)とBond Elut(C8)で精製し、207bを4.1mg(収率64%)得た。[α]D +18.3°(c 0.41,H2O). 1H-NMR δH(H2O) (DHO=4.70 ppm): 7.00-6.99 (m, 2H, Ar), 6.87-6.85 (m, 4H, Ar), 5.26 (d, 1H, J1,2=3.78 Hz, H-14or2), 5.22 (d, 1H, J1,2=3.84 Hz, H-12or4), 4.87 (d, 1H, J1,2=7.80 Hz, H-11), 4.63 (d, 1H, J1,2=8.00 Hz, H-13), 3.68 (s, 3H, OMe), 3.61 (m, 1H, H-24or2), 3.56 (m, 2H, H-33, 32or4), 3.55(m, 1H, H-21), 3.41 (dd, 1H, J2,3=9.72 Hz, H-22or4), 3.38 (dd, 1H, J2,3=9.12 Hz, H-23). ESI-HRMS m/z[(M+Na)+]: calcd. for C29H40NaO22: 763.1903; found, 763.1884.
(2) α-D-Xylopyranosyl- (1 → 3) -β-D-glucopyranosyluronic acid- (1 → 3) -α-D-xylopyranosyl- (1 → 3) -4-methoxyphenyl β-D-glucopyranosyluronic acid, disodium compound of salt (207b) (206b, 15.1mg , 8.60μmol) was dissolved in a mixed solution of THF (1.4 ml) and H 2 O (0.1ml), 1.25M LiOH (70μL, 86μmol ) Was added and the mixture was stirred for 2.5 hours. After distillation under reduced pressure, the mixture was cooled to 0 ° C., 1.0 mL of MeOH was added, 0.5 M NaOH (50 μL) was added, and the mixture was stirred at room temperature for 16 days. 50% acetic acid (2 drops) was added and distilled off under reduced pressure, and the obtained residue was purified by gel filtration column chromatography (LH-20, 1% acetic acid) and Bond Elut (C8) to obtain 4.1 mg (207b) of 207b. (Yield 64%) was obtained. [α] D + 18.3 ° (c 0.41, H 2 O). 1 H-NMR δ H (H 2 O) (DHO = 4.70 ppm): 7.00-6.99 (m, 2H, Ar), 6.87-6.85 (m) , 4H, Ar), 5.26 (d, 1H, J 1,2 = 3.78 Hz, H-1 4or2 ), 5.22 (d, 1H, J 1,2 = 3.84 Hz, H-1 2or4 ), 4.87 (d, 1H, J 1,2 = 7.80 Hz, H-1 1 ), 4.63 (d, 1H, J 1,2 = 8.00 Hz, H-1 3 ), 3.68 (s, 3H, OMe), 3.61 (m, 1H , H-2 4or2 ), 3.56 (m, 2H, H-3 3 , 3 2or4 ), 3.55 (m, 1H, H-2 1 ), 3.41 (dd, 1H, J 2,3 = 9.72 Hz, H- 2 2or4 ), 3.38 (dd, 1H, J 2,3 = 9.12 Hz, H-2 3 ). ESI-HRMS m / z [(M + Na) + ]: calcd. For C 29 H 40 NaO 22 : 763.1903 Found, 763.1884.
実施例3 式(9)に示す四糖誘導体の合成
 (1)化合物402の合成
 トルエン(6.0mL)とエタノール(3.0mL)の混合溶媒に溶解した式10、化合物401(273.6mg、0.2516mmol)にHNNH・AcOH(112.1mg)加え室温で一晩撹拌した。その後、反応液を濃縮しゲルろ過カラムクロマトグラフィー(CHCl:MeOH=1:1)とシリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=100:1)で精製し、化合物402を137.0mg、収率75%で得た。
Example 3 Synthesis of tetrasaccharide derivative shown in formula (9) (1) Synthesis of compound 402 Formula 10, compound 401 (273.6 mg, 273.6 mg, dissolved in a mixed solvent of toluene (6.0 mL) and ethanol (3.0 mL). H 2 NNH 2 · AcOH (112.1 mg) was added to (0.2516 mmol), and the mixture was stirred overnight at room temperature. Then, the reaction solution was concentrated and purified by gel filtration column chromatography (CHCl 3 : MeOH = 1: 1) and silica gel column chromatography (ethyl acetate: methanol = 100: 1) to obtain 137.0 mg of compound 402 in yield. Obtained at 75%.
 (2)化合物403(式8)の合成
 DMFに溶解させた化合物402(97.4mg、0.1340mmol)に、10-カンファースルホン酸(3.9mg)を加えて室温で撹拌させた。そこに、2-メトキシプロペン(14μL)を加えた。8時間後さらに2-メトキシプロペン(14μL)を加え一晩撹拌した。その後、さらに2-メトキシプロペン(28μL)を加え、2時間後、ジイソプロピルエチルアミンを加えて反応を停止させ、EtOAcで抽出し、無水MgSOで乾燥した。不溶物をろ過、濃縮しシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=6:1~4:1)で精製し、化合物403(式8)を70.2mg(収率68%)得た。
(2) Synthesis of Compound 403 (Formula 8) 10-Camphorsulfonic acid (3.9 mg) was added to Compound 402 (97.4 mg, 0.1340 mmol) dissolved in DMF, and the mixture was stirred at room temperature. 2-Methoxypropene (14 μL) was added thereto. After 8 hours, 2-methoxypropene (14 μL) was further added and the mixture was stirred overnight. Then, 2-methoxypropene (28 μL) was further added, and after 2 hours, diisopropylethylamine was added to stop the reaction, the mixture was extracted with EtOAc and dried over anhydrous sulfonyl 4. The insoluble material was filtered, concentrated, and purified by silica gel column chromatography (toluene: ethyl acetate = 6: 1 to 4: 1) to obtain 70.2 mg (yield 68%) of compound 403 (formula 8).
 (3)化合物404の合成
 MSAW300に、CHClに溶解させた式7、化合物205a(135.4mg、0.1948mmol)と式8,化合物403(110.0mg、0.1405mmol)を加え、-78℃で撹拌した。そこにTMSOTf(4.0μL)を加えた。1.5時間後、飽和NaHCOを加えて反応を停止させ、CHClで抽出し、無水MgSOで乾燥した。不溶物をろ過、濃縮しゲルろ過カラムクロマトグラフィー(CHCl:MeOH=1:1)で精製し、生成物(75.8mg)を得た。得られた生成物にAcO(3.0mL)とピリジン(3.0mL)を加え室温で一晩撹拌した。その後反応液を濃縮し、シリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=3:1)で精製し、化合物404を67.3mg(2工程収率35%)得た。
(3) Synthesis of Compound 404 To MSAW300, Formula 7, Compound 205a (135.4 mg, 0.1948 mmol) and Compound 403 (110.0 mg, 0.1405 mmol) dissolved in CH 2 Cl 2 were added. The mixture was stirred at −78 ° C. TMSOTf (4.0 μL) was added thereto. After 1.5 hours, saturated NaHCO 3 was added to stop the reaction, the mixture was extracted with CHCl 3 and dried over anhydrous plate 4. The insoluble material was filtered, concentrated and purified by gel filtration column chromatography (CHCl 3 : MeOH = 1: 1) to obtain a product (75.8 mg). Ac 2 O (3.0 mL) and pyridine (3.0 mL) were added to the obtained product, and the mixture was stirred overnight at room temperature. Then, the reaction mixture was concentrated and purified by silica gel column chromatography (toluene: ethyl acetate = 3: 1) to obtain 67.3 mg (2 step yield 35%) of compound 404.
 (4)化合物405の合成
 (1,5-cyclooctadiene)bis(methyldiphenylphosphine)iridium(I) hexafluorophosphateにTHF(1.0mL)を加えHで活性化させたのちに、Ar雰囲気にした。そこにTHF(5.0mL)に溶解させた化合物404(67.3mg、0.04950mmol)を加えて、室温で1.5時間撹拌した。その後、水を加え、0℃にし、炭酸水素ナトリウム(8.9mg)とヨウ素(26.2mg)を加えて2時間撹拌した。その後、1Mハイポを加えて反応を停止させCHClで抽出し、無水MgSOで乾燥した。不溶物をろ過、濃縮し、シリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=3:1~酢酸エチル:メタノール=10:1)で精製し、生成物(60.0mg)を得た。得られた生成物をTHF(4.0mL)に溶解しAcOH(25μL)と1M t-ブチルアンモニウムフルオリド(220μL)加え、室温で2日間撹拌した。その後、CHClで抽出し、無水MgSOで乾燥した。不溶物をろ過、濃縮し、シリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=1:1)で精製し、化合物405を29.1mg(2工程収率54%)得た。
(4) After activated with H 2 added THF (1.0 mL) in Synthesis (1,5-cyclooctadiene) bis (methyldiphenylphosphine ) iridium (I) hexafluorophosphate of Compound 405, it was Ar atmosphere. Compound 404 (67.3 mg, 0.04950 mmol) dissolved in THF (5.0 mL) was added thereto, and the mixture was stirred at room temperature for 1.5 hours. Then, water was added, the temperature was adjusted to 0 ° C., sodium hydrogen carbonate (8.9 mg) and iodine (26.2 mg) were added, and the mixture was stirred for 2 hours. Then, 1M hypo was added to stop the reaction, the mixture was extracted with CHCl 3 , and dried over anhydrous plate 4. The insoluble material was filtered and concentrated, and purified by silica gel column chromatography (toluene: ethyl acetate = 3: 1 to ethyl acetate: methanol = 10: 1) to obtain a product (60.0 mg). The obtained product was dissolved in THF (4.0 mL), AcOH (25 μL) and 1 Mt-butylammonium fluoride (220 μL) were added, and the mixture was stirred at room temperature for 2 days. Then, it was extracted with CHCl 3 and dried with anhydrous plate 4. The insoluble material was filtered and concentrated, and purified by silica gel column chromatography (toluene: ethyl acetate = 1: 1) to obtain 29.1 mg of compound 405 (2 step yield 54%).
 (5)化合物406(式9)の合成
 THF(4.0mL)と水(0.2mL)の混合溶媒に溶解した化合物405(29.1mg,0.0270mmol)に1.25M LiOH(210μL)を0℃で加え1時間攪拌した。反応液を濃縮し、メタノール(4.0mL)を加えて、0.1M NaOH(5滴)添加して一晩室温で撹拌した。AcOHを添加し反応を停止させ、反応液を濃縮し、ゲルろ過カラムクロマトグラフィー(LH-20,1%酢酸)で精製し生成物(20.0mg)を得た。得られた生成物をメタノール(2.0mL)と水(2.0mL)の混合溶媒に溶解し、パラジウム-カーボンを加えた。その後、フラスコ内をH雰囲気にし、一晩室温で撹拌した。反応液をセライトろ過したのちに、濃縮、乾燥させ、式9、化合物406を14.6mg(2工程収率92%)得た。
1H-NMR δH(D2O): 5.17(d, 1H, J1,2=3.84 Hz, Xyl2-1), 4.44(d, 1H, J1,2=7.86 Hz, Xyl1-1), 4.42(d, 1H, J1,2=8.22 Hz, GlcA-1), 3.94(dd, 1H, J=5.34, 11.88 Hz, Xyl-5a), 3.86-3.84(m, 1H, Rbo-4), 3.74-3.72(m, 4H, Xyl2-4, Rbo-3, 5a, 1a), 3.69-3.60(m, 5H, Xyl1-4, GlcA-5, Rbo-2, 5b, Xyl2-5a), 3.54-3.43(m, 6H, Xyl2-3, 5b, Xyl1-3, GlcA-3,4, Rbo-1b), 3.38(dd, 1H, J2,3=9.66 Hz Xyl2-2), 3.27(d, 1H, J2,3=9.12 Hz, GlcA-2), 3.24-3.20(m, 2H, Xyl1-2, Xyl1-5b).13C NMR δC (D2O): 105.46(Xyl1-1), 103.84(GlcA-1), 101.52(Xyl2-1), 83.51(GlcA-4), 83.33(Rbo-4), 79.48(Xyl1-4), 77.56(Rbo-3), 76.37(Xyl1-3), 75.67(Xyl1-2), 75.60(Xyl2-3), 74.60, 74.40(GlcA-5, Rbo-2), 74.20(Xyl2-2), 74.12(Xyl2-4), 73.85(GlcA-2), 71.95(GlcA-3), 65.53(Xyl1-5), 65.22(Xyl2-5), 64.03(Rbo-1), 62.77(Rbo-5). ESI-HRMS m/z[(M+Na)+]: calcd. for C21H36NaO19: 615.1748; found, 615.1744.
 
(5) Synthesis of Compound 406 (Formula 9) 1.25 M LiOH (210 μL) was added to Compound 405 (29.1 mg, 0.0270 mmol) dissolved in a mixed solvent of THF (4.0 mL) and water (0.2 mL). The mixture was added at 0 ° C. and stirred for 1 hour. The reaction mixture was concentrated, methanol (4.0 mL) was added, 0.1 M NaOH (5 drops) was added, and the mixture was stirred overnight at room temperature. AcOH was added to stop the reaction, the reaction mixture was concentrated, and purified by gel filtration column chromatography (LH-20, 1% acetic acid) to obtain a product (20.0 mg). The obtained product was dissolved in a mixed solvent of methanol (2.0 mL) and water (2.0 mL), and palladium-carbon was added. Then, the flask with a H 2 atmosphere and stirred at room temperature overnight. The reaction mixture was filtered through Celite, then concentrated and dried to obtain 14.6 mg of Compound 406 (formula 9, 92% yield in two steps).
1 H-NMR δ H (D 2 O): 5.17 (d, 1H, J 1,2 = 3.84 Hz, Xyl 2 -1), 4.44 (d, 1H, J 1,2 = 7.86 Hz, Xyl 1 -1 ), 4.42 (d, 1H, J 1,2 = 8.22 Hz, GlcA-1), 3.94 (dd, 1H, J = 5.34, 11.88 Hz, Xyl-5a), 3.86-3.84 (m, 1H, Rbo-4) ), 3.74-3.72 (m, 4H, Xyl 2 -4, Rbo-3, 5a, 1a), 3.69-3.60 (m, 5H, Xyl 1 -4, GlcA-5, Rbo-2, 5b, Xyl 2- 5a), 3.54-3.43 (m, 6H, Xyl 2 -3, 5b, Xyl 1 -3, GlcA-3,4, Rbo-1b), 3.38 (dd, 1H, J 2,3 = 9.66 Hz Xyl 2- 2), 3.27 (d, 1H, J 2,3 = 9.12 Hz, GlcA-2), 3.24-3.20 (m, 2H, Xyl 1 -2, Xyl 1 -5b). 13 C NMR δ C (D 2 O) ): 105.46 (Xyl 1 -1) , 103.84 (GlcA-1), 101.52 (Xyl 2 -1), 83.51 (GlcA-4), 83.33 (Rbo-4), 79.48 (Xyl 1 -4), 77.56 (Rbo -3), 76.37 (Xyl 1 -3), 75.67 (Xyl 1 -2), 75.60 (Xyl 2 -3), 74.60, 74.40 (GlcA-5, Rbo-2), 74.20 (Xyl 2 -2), 74.12 (Xyl 2 -4), 73.85 (GlcA-2), 71.95 (GlcA-3), 65.53 (Xyl 1 -5), 65.22 (Xyl 2 -5), 64.03 (Rbo-1), 62.77 (Rbo-5) . ESI-HRMS m / z [(M + Na) + ]: calcd. For C 21 H 36 NaO 19 : 615.1748; found, 615.1744.
 本発明は、医薬の製造分野、糖鎖工学の分野などにおいて利用可能である。 The present invention can be used in the fields of pharmaceutical manufacturing, sugar chain engineering, and the like.

Claims (16)

  1.  式(1):
    Figure JPOXMLDOC01-appb-C000001
     
    [式中、Xは脱離基または保護された水酸基であり、Yはカルボキシル基もしくはヒドロキシメチル基またはそれらの前駆体である基であり、R~Rはそれぞれ独立して水素であるかまたは水酸基の保護基である]
    で表される二糖誘導体。
    Equation (1):
    Figure JPOXMLDOC01-appb-C000001

    [In the formula, X 1 is a leaving group or a protected hydroxyl group, Y 1 is a carboxyl group or a hydroxymethyl group or a group that is a precursor thereof, and R 1 to R 5 are independently hydrogen. Is or is a hydroxyl-protecting group]
    A disaccharide derivative represented by.
  2.  Xがトリクロロアセトイミドイルオキシ、アルキルチオ、アリールチオ、ハロゲン、ペンテニルオキシ、アルコキシおよびフェノキシからなる群より選択される基であり、YがCOOZまたはCHOZであり、Zがアルキル基であり、Zは水酸基の保護基であり、R~Rがそれぞれ独立して置換ベンジルを含むベンジル、アリル、レブリノイル、置換ベンゾイルを含むベンゾイル、置換アセチルを含むアセチル、アリルオキシカルボニル、イソプロピリデン、ベンジリデンおよびトリアルキルシリルからなる群より選択される基である、請求項1記載の二糖誘導体。 X 1 is a group selected from the group consisting of trichloroacetimideyloxy, alkylthio, arylthio, halogen, pentenyloxy, alkoxy and phenoxy, Y 1 is COOZ 1 or CH 2 OZ 2 , and Z 1 is an alkyl group. Z 2 is a protective group for hydroxyl groups, and R 1 to R 5 are independently substituted benzyl-containing benzyl, allyl, levulinoyl, substituted benzoyl-containing benzoyl, substituted acetyl-containing acetyl, allyloxycarbonyl, and isopropi. The disaccharide derivative according to claim 1, which is a group selected from the group consisting of lidene, benzylidene and trialkylsilyl.
  3.  式(2):
    Figure JPOXMLDOC01-appb-C000002
     
    [式中、Xは脱離基であり、Yはキシロース残基の配座を固定する基であり、Rは、p-アルキルオキシベンジル、3,4-ジアルキルオキシベンジル、固相化されたp-アルキルオキシベンジル、固相化された3,4-ジアルキルオキシベンジル、ナフチル、ナフチルメチル、-CH=CH、-C(CH)=CH、-CH-CH=CH、-CH=CH-CH、-CH=C=CH、および水素からなる群から選択される基である]
    で表されるキシロース誘導体と、
     式(3):
    Figure JPOXMLDOC01-appb-C000003
     
    [式中、Xは脱離基または保護された水酸基であり、RおよびRは水酸基の保護基であり、Yはカルボキシル基またはヒドロキシメチル基の前駆体である基である]
    で示されるグルコース誘導体またはグルクロン酸誘導体から、
    式(4):
    Figure JPOXMLDOC01-appb-C000004
     
    [式中、X、R、RおよびYは上記定義と同じである]
    で表されるα-グリコシドを製造する方法であって、下記工程1)~3):
     工程1) 式(2)で表されるキシロース誘導体と式(3)で表されるグルコース誘導体またはグルクロン酸誘導体とを反応させて、キシロース誘導体のOR基とグルコース誘導体またはグルクロン酸誘導体の非保護水酸基とを介した混合アセタール誘導体を製造し、
     工程2) 工程1)で得られた混合アセタール誘導体を、脱離基Xを活性化させることにより反応させてα1→3二糖誘導体を製造し、次いで、
     工程3) 工程2)で得られた二糖誘導体を脱保護して式(4)に誘導する
    を含む方法。
    Equation (2):
    Figure JPOXMLDOC01-appb-C000002

    [In the formula, X 2 is a leaving group, Y is a group that fixes the configuration of the xylose residue, and R 6 is immobilized with p-alkyloxybenzyl, 3,4-dialkyloxybenzyl. P-alkyloxybenzyl, immobilized 3,4-dialkyloxybenzyl, naphthyl, naphthylmethyl, -CH = CH 2 , -C (CH 3 ) = CH 2 , -CH 2 -CH = CH 2 , -CH = CH-CH 3 , -CH = C = CH 2 , and a group selected from the group consisting of hydrogen]
    With the xylose derivative represented by
    Equation (3):
    Figure JPOXMLDOC01-appb-C000003

    [In the formula, X 3 is a leaving group or a protected hydroxyl group, R 7 and R 8 are a protecting group for a hydroxyl group, and Y 4 is a group that is a precursor of a carboxyl group or a hydroxymethyl group].
    From the glucose derivative or glucuronic acid derivative indicated by
    Equation (4):
    Figure JPOXMLDOC01-appb-C000004

    [In the equation, X 3 , R 7 , R 8 and Y 4 are the same as the above definitions]
    A method for producing an α-glycoside represented by the following steps 1) to 3) :.
    Step 1) By reacting the xylose derivative represented by the formula (2) with the glucose derivative or the glucuronic acid derivative represented by the formula (3), the OR 6 group of the xylose derivative and the glucose derivative or the glucuronic acid derivative are not protected. Manufacture mixed acetal derivatives via hydroxyl groups
    Step 2) mixed acetal derivative obtained with step 1) is reacted to produce [alpha] 1 → 3 disaccharide derivative by activating the leaving group X 2, then,
    Step 3) A method comprising deprotecting the disaccharide derivative obtained in Step 2) and inducing it into the formula (4).
  4.  Xがトリクロロアセトイミドイルオキシ、アルキルチオ、ハロゲン、アリールチオ、およびペンテニルオキシからなる群より選択される基であり、Yがアセタール、カーボネート、シリレンアセタール、およびスタニレンアセタールからなる群より選択される基であり、Rがp-メトキシベンジルおよびナフチルメチルからなる群より選択される基であり、Xがトリクロロアセトイミドイルオキシ、アルキルチオ、アリールチオ、ハロゲン、ペンテニルオキシ、アルコキシおよびフェノキシからなる群より選択される基であり、RおよびRがそれぞれ独立して置換ベンジルを含むベンジル、アリル、レブリノイル、置換ベンゾイルを含むベンゾイル、置換アセチルを含むアセチル、アリルオキシカルボニルおよびトリアルキルシリルからなる群より選択される基であり、YがCOOZまたはCHOZであり、Zがアルキル基であり、Zは水酸基の保護基である、請求項3記載の方法。 X 2 is a group selected from the group consisting of trichloroacetimideyloxy, alkylthio, halogen, arylthio, and pentenyloxy, and Y is a group selected from the group consisting of acetal, carbonate, silylene acetal, and stanilen acetal. R 6 is a group selected from the group consisting of p-methoxybenzyl and naphthylmethyl, and X 3 is selected from the group consisting of trichloroacetimideyloxy, alkylthio, arylthio, halogen, pentenyloxy, alkoxy and phenoxy. R 7 and R 8 are independently selected from the group consisting of benzyl containing a substituted benzyl, allyl, lebrinoyl, benzoyl containing a substituted benzoyl, acetyl containing a substituted acetyl, allyloxycarbonyl and trialkylsilyl. The method according to claim 3, wherein Y 4 is COOZ 2 or CH 2 OZ 3 , Z 2 is an alkyl group, and Z 3 is a hydroxyl group protective group.
  5.  Rが置換ベンゾイルを含むベンゾイル、置換アセチルを含むアセチルおよびレブリノイルからなる群より選択される基である、請求項4記載の方法。 The method of claim 4, wherein R 7 is a group selected from the group consisting of benzoyls containing substituted benzoyls, acetyls containing substituted acetyls and levulinoyles.
  6.  式(2’):
    Figure JPOXMLDOC01-appb-C000005
     
    [式中、X’は脱離基であり、Y’はキシロース残基の配座を固定する基であり、R’は隣接基関与能のない水酸基の保護基である]
    で表されるキシロース誘導体と、
    式(3’):
    Figure JPOXMLDOC01-appb-C000006
     
    [式中、X’は脱離基または保護された水酸基であり、R’は隣接基関与能のある水酸基の保護基であり、R’は水酸基の保護基であり、Y’はカルボキシル基またはヒドロキシメチル基の前駆体である基である]
    で示されるグルコース誘導体またはグルクロン酸誘導体から、
    式(4’):
    Figure JPOXMLDOC01-appb-C000007
     
    [式中、X’、R’、R’およびY’は上記定義と同じである]
    で表されるα-グリコシドを製造する方法であって、下記工程1)~3):
     工程1) 式(2’)で表されるキシロース誘導体と式(3’)で表されるグルコース誘導体またはグルクロン酸誘導体とを直接縮合させてα1→3グリコシドおよびβ1→3グリコシドの混合物を得て、
     工程2) 工程1)で得られた混合物を脱保護し、次いで、
     工程3) 工程2)で脱保護された混合物からα-グリコシドを分離する
    を含む方法。
    Equation (2'):
    Figure JPOXMLDOC01-appb-C000005

    Wherein, X 2 'is a leaving group, Y' is a group for fixing the conformation of xylose residues, R 6 'is a protecting group with no neighboring group participation ability hydroxyl]
    With the xylose derivative represented by
    Equation (3'):
    Figure JPOXMLDOC01-appb-C000006

    Wherein, X 3 'is a leaving group or a protected hydroxyl group, R 7' is a protecting group for a hydroxyl group with a neighboring group participation ability, R 8 'is a protecting group for a hydroxyl group, Y 4' Is a group that is a precursor of a carboxyl or hydroxymethyl group]
    From the glucose derivative or glucuronic acid derivative indicated by
    Equation (4'):
    Figure JPOXMLDOC01-appb-C000007

    Wherein, X 3 ', R 7' , R 8 ' and Y 4' are the same as defined above
    A method for producing an α-glycoside represented by the following steps 1) to 3) :.
    Step 1) The xylose derivative represented by the formula (2') and the glucose derivative or the glucuronic acid derivative represented by the formula (3') are directly condensed to obtain a mixture of α1 → 3 glycoside and β1 → 3 glycoside. ,
    Step 2) Deprotect the mixture obtained in Step 1) and then
    Step 3) A method comprising separating the α-glycoside from the deprotected mixture in Step 2).
  7.  工程1)の縮合が、NIS-AgOTf、NIS-TfOH、MeOTf、CuBr-AgOTf-nBuNI、またはNBS-AgOTfを縮合剤として用いて行われる、請求項6記載の方法。 The method according to claim 6, wherein the condensation in step 1) is carried out using NIS-AgOTf, NIS-TfOH, MeOTf, CuBr 2 -AgOTf-nBu 4 NI, or NBS-AgOTf as a condensing agent.
  8.  工程2)の脱保護が、トリフルオロ酢酸(TFA)を用いる加水分解により、キシロース残基の2-、3-および4-位に水酸基を有するトリオールを形成させるものである、請求項6または7記載の方法。 The deprotection of step 2) is to form triol having hydroxyl groups at the 2-, 3- and 4-positions of the xylose residue by hydrolysis using trifluoroacetic acid (TFA), claim 6 or 7. The method described.
  9.  工程3)の分離が、β-グリコシドをクロロホルムに溶解させてβ-グリコシドを除去することにより行われる、請求項6~8のいずれか1項記載の方法。 The method according to any one of claims 6 to 8, wherein the separation in step 3) is performed by dissolving β-glycoside in chloroform to remove β-glycoside.
  10.  式(1)で示される二糖誘導体を中間体(XGユニットという)として用いることを含む、式(5):
    Figure JPOXMLDOC01-appb-C000008
     
    [式中、Xは脱離基であるかまたは保護された水酸基であり、nは1以上の整数である]
    で示されるXGユニットオリゴマーを製造する方法。
    Formula (5): Containing the use of the disaccharide derivative represented by formula (1) as an intermediate (referred to as XG unit):
    Figure JPOXMLDOC01-appb-C000008

    [In the formula, X 4 is a leaving group or a protected hydroxyl group, and n is an integer greater than or equal to 1.]
    A method for producing an XG unit oligomer represented by.
  11.  式(1)で示される二糖誘導体を糖供与体とし、式(1’):
    Figure JPOXMLDOC01-appb-C000009
     
    [式中、Yはカルボキシル基またはヒドロキシメチル基の前駆体である基であり、Xは脱離基または保護された水酸基であり、R~R12は水酸基の保護基である]
    で示される二糖誘導体を糖受容体として反応させることを含む、請求項10記載の方法。
    The disaccharide derivative represented by the formula (1) is used as a sugar donor, and the formula (1'):
    Figure JPOXMLDOC01-appb-C000009

    [In the formula, Y 5 is a group that is a precursor of a carboxyl group or a hydroxymethyl group, X 5 is a leaving group or a protected hydroxyl group, and R 9 to R 12 are a protecting group of a hydroxyl group].
    The method according to claim 10, wherein the disaccharide derivative represented by the above is reacted as a sugar receptor.
  12.  YがCOOZまたはCHOZであり、Zがアルキル基であり、Zが水酸基の保護基であり、Xがトリクロロアセトイミドイルオキシ、アルキルチオ、アリールチオ、ハロゲン、ペンテニルオキシ、アルコキシおよびフェノキシからなる群より選択される基であり、R~R12はそれぞれ独立して、置換ベンジルを含むベンジル、アリル、レブリノイル、置換ベンゾイルを含むベンゾイル、置換アセチルを含むアセチル、アリルオキシカルボニルおよびトリアルキルシリルからなる群より選択される基である、請求項11記載の方法。 Y 5 is COOZ 3 or CH 2 OZ 4 , Z 3 is an alkyl group, Z 4 is a hydroxyl group protective group, and X 5 is trichloroacetimideyloxy, alkylthio, arylthio, halogen, pentenyloxy, alkoxy. And a group selected from the group consisting of phenoxy, R 9 to R 12 are independently benzyl containing a substituted benzyl, allyl, levulinoyl, benzoyl containing a substituted benzoyl, acetyl containing a substituted acetyl, allyloxycarbonyl and 11. The method of claim 11, which is a group selected from the group consisting of trialkylsilyls.
  13.  Rが置換ベンゾイルを含むベンゾイル、置換アセチルを含むアセチルおよびレブリノイルからなる群より選択される基である請求項12記載の方法。 12. The method of claim 12, wherein R 9 is a group selected from the group consisting of benzoyls containing substituted benzoyls, acetyls containing substituted acetyls and levulinoyles.
  14.  式(9):
    Figure JPOXMLDOC01-appb-C000010
     
    で示される四糖またはその誘導体。
    Equation (9):
    Figure JPOXMLDOC01-appb-C000010

    Tetrasaccharides or derivatives thereof.
  15.  式(7):
    Figure JPOXMLDOC01-appb-C000011
     
    [式中、Xは脱離基または保護された水酸基、X~Xは水酸基の保護基、Xはアルキル基である]
    で示される二糖供与体を、式(8):
    Figure JPOXMLDOC01-appb-C000012
     
    [式中、X~X13は水酸基の保護基である、たたしX12およびX13は一緒になってアセタールを形成してもよい]
    で示される二糖受容体と反応させることにより四糖誘導体を得て、次いで、四糖誘導体を脱保護することにより式(9):
    Figure JPOXMLDOC01-appb-C000013
     
    で示される四糖を得ることを特徴とする、式(9)で示される四糖の製造方法。
    Equation (7):
    Figure JPOXMLDOC01-appb-C000011

    [In the formula, X 1 is a leaving group or a protected hydroxyl group, X 2 to X 6 are hydroxyl protecting groups, and X 7 is an alkyl group].
    The disaccharide donor represented by the formula (8):
    Figure JPOXMLDOC01-appb-C000012

    Wherein, X 8 ~ X 13 is a hydroxyl-protecting group, nice contrast X 12 and X 13 may form acetal together]
    The tetrasaccharide derivative is obtained by reacting with the disaccharide receptor represented by, and then the tetrasaccharide derivative is deprotected to obtain the formula (9) :.
    Figure JPOXMLDOC01-appb-C000013

    A method for producing a tetrasaccharide represented by the formula (9), which comprises obtaining the tetrasaccharide represented by the formula (9).
  16.  Xはトリクロロアセトイミドイルオキシ、X~Xはアセチル、Xはメチル、Xはアリル、XおよびX10はベンジル、X11はTBDPS、X12およびX13は一緒になってイソプロピリデンアセタールを形成している、請求項15記載の方法。 X 1 is trichloroacetimideyloxy, X 2 to X 6 are acetyl, X 7 is methyl, X 8 is allyl, X 9 and X 10 are benzyl, X 11 is TBDPS, and X 12 and X 13 are together. The method of claim 15, wherein the isopropyridene acetal is formed.
PCT/JP2020/035624 2019-09-20 2020-09-18 Repeating disaccharide for oligosaccharide synthesis and method for producing oligomer thereof WO2021054474A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021547006A JPWO2021054474A1 (en) 2019-09-20 2020-09-18

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019171012 2019-09-20
JP2019-171012 2019-09-20
JP2020042193 2020-03-11
JP2020-042193 2020-03-11

Publications (1)

Publication Number Publication Date
WO2021054474A1 true WO2021054474A1 (en) 2021-03-25

Family

ID=74883628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035624 WO2021054474A1 (en) 2019-09-20 2020-09-18 Repeating disaccharide for oligosaccharide synthesis and method for producing oligomer thereof

Country Status (2)

Country Link
JP (1) JPWO2021054474A1 (en)
WO (1) WO2021054474A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019136399A1 (en) * 2018-01-05 2019-07-11 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Acidic dystroglycan oligosaccharide compound and method for making same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019136399A1 (en) * 2018-01-05 2019-07-11 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Acidic dystroglycan oligosaccharide compound and method for making same

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
DENG, S. ET AL.: "Synthesis of three diosgenyl saponins: dioscin, polyphyllin D, and balanitin 7", CARBOHYDRATE RESEARCH, vol. 317, 1999, pages 53 - 62, XP004179994, DOI: 10.1016/S0008-6215(99)00066-X *
DENG, SET ET AL.: "A Facile Synthetic Approach to a Group of Structurally Typical Diosgenyl Saponins", TETRAHEDRON LETTERS, vol. 39, 1998, pages 6511 - 6514, XP004132532, DOI: 10.1016/S0040-4039(98)01354-9 *
FUKASE, K. ET AL.: "Synthesis of New Serine-Linked Oligosaccharides in Blood-Clotting Factors VII and IX and Protein Z. The Syntheses of 0-a-D- Xylopyranosyl-(1-3)-D-glucopyranose, 0-a-D- Xylopyranosyl-(1?3)-0-alpha-D-xylopyranosyl-(1?3)-D- glucopyranose, and Their Conjugates with Serine", BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 65, 1992, pages 436 - 445 *
INAMORI, K. ET AL.: "Dystroglycan Function Requires Xylosyl-and Glucoronyltransferase Activities of LARGE", SCIENCE, vol. 335, 2012, pages 93 - 96 *
LOURENCO, E. C. ET AL.: "Synthesis of potassium (2R)-2-0-a-D-glucopyranosyl-(1-6)-a-D- glucopyranosyl-2,3-dihydroxypropanoate a natural compatible solute", CARBOHYDRATE RESEARCH, vol. 344, 2009, pages 2073 - 2078, XP026640231, DOI: 10.1016/j.carres.2009.06.037 *
TAMURA, T ET AL.: "Regio-and stereo-controlled synthesis of beta-Xyl(1-4)Rbo-5P1-Rbo, the partial structure of 0-mannosyl glycan", TETRAHEDRON LETTERS, vol. 60, 31 December 2018 (2018-12-31), pages 465 - 468, XP085581566, DOI: 10.1016/j.tetlet.2018.12.065 *
TAMURA, T. ET AL.: "Stereo-and regioselectiev Synthesis of 0-Mannosyl Glycan Containing Matriglycan and a part of Tandem Ribitol Phosphate", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 85, 15 September 2020 (2020-09-15), pages 12935 - 12946, XP055808035 *
TEJERANT, J.: "An approach to the synthesis of 0- glycopeptides", CHEMICAL 1, 2 COMMUNICATION S, 1992, pages 16 - 17 *
WINTER, H. C. ET AL.: "Banana lectin is unique in its recognition of the reducing unit of 3-0-beta- glucosyl/mannosyl disaccharides: a calorimetric study", GLYCOBIOLOGY, vol. 15, 2005, pages 1043 - 1050, XP055808032 *

Also Published As

Publication number Publication date
JPWO2021054474A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
WO2006012425A2 (en) Processes for the production of aminoalkyl glucosaminide phosphate and disaccharide immunoeffectors, and intermediates therefor
AU2009329067A1 (en) Process for the synthesis of L-fucosyl di- or oligosaccharides and novel 2,3,4 tribenzyl-fucosyl derivatives intermediates thereof
CN113527388B (en) Method for stereoselective synthesis of beta-2-deoxy sugar, 2-deoxy-2-azido sugar and glucosidic bond
JP2010285446A (en) Processes for producing aminoalkyl glucosaminide phosphate and disaccharide as immunoeffectors and intermediates therefor
FR2751334A1 (en) SYNTHETIC POLYSACCHARIDES, PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING SAME
Tokimoto et al. Stereoselective glycosylation using the long-range effect of a [2-(4-phenylbenzyl) oxycarbonyl] benzoyl group
Lindberg et al. Efficient routes to glucosamine-myo-inositol derivatives, key building blocks in the synthesis of glycosylphosphatidylinositol anchor substances
CN114163483B (en) Synthesis method of stereoselective alpha-glycosylation product
WO2021054474A1 (en) Repeating disaccharide for oligosaccharide synthesis and method for producing oligomer thereof
US6040433A (en) Sulfinyl hexose derivatives useful for glycosylation
JP5078108B2 (en) Sugar donor
Jabbari Selective Anomeric Deacetylation of Per-Acetylated Carbohydrates Using (i-Pr) 3Sn (OEt) and Synthesis of New Derivatives
Balasaria et al. Chemical synthesis of the pentasaccharide repeating unit of the O-antigen from Escherichia coli strain SDLZB008 in the form of its 2-aminoethyl glycoside
Van Straten et al. Synthesis of a trisaccharide fragment corresponding to the lipopolysaccharide region of Vibrio parahaemolyticus
Jain et al. Synthesis of the sodium salts of methyl 2-O-α-l-fucopyranosyl-α-l-fucopyranoside 3-and 4-sulfate
Liang et al. Efficient one-pot syntheses of α-D-arabinofuranosyl tri-and tetrasaccharides present in cell wall polysaccharide of Mycobacterium tuberculosis
JP2001512737A (en) Substituted tetrahydropyran derivatives, processes for their preparation, their use as medicaments or diagnostics and medicaments containing them
CN110041377B (en) Synthetic method of O-mannan core structure
JP2782345B2 (en) Method for producing sialic acid derivative
CN112266398B (en) Key disaccharide repeating unit of glucuronic acid mannan oligosaccharide and preparation method thereof
CN111018927B (en) O- (1-phenyl vinyl) benzoate glycosylation donor, and preparation method and application thereof
Hada et al. Syntheses of model compounds related to an antigenic epitope in pectic polysaccharides from Bupleurum falcatum L.
JP3265425B2 (en) Phosphorylated trisaccharide serine, sulfated / phosphorylated trisaccharide serine, and methods for their synthesis
Zegelaar-Jaarsveld et al. Synthesis of haptenic trimers corresponding to the cell wall glycopeptidolipids of Mycobacterium Avium serovar 12
JP2023063994A (en) O-mannosyl glycan-associated compound and its use as sugar chain elongation primer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021547006

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866294

Country of ref document: EP

Kind code of ref document: A1