JP2004244583A - High mannose type sugar compound, preparation process, and intermediate used for it - Google Patents

High mannose type sugar compound, preparation process, and intermediate used for it Download PDF

Info

Publication number
JP2004244583A
JP2004244583A JP2003038206A JP2003038206A JP2004244583A JP 2004244583 A JP2004244583 A JP 2004244583A JP 2003038206 A JP2003038206 A JP 2003038206A JP 2003038206 A JP2003038206 A JP 2003038206A JP 2004244583 A JP2004244583 A JP 2004244583A
Authority
JP
Japan
Prior art keywords
group
formula
compound
represented
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003038206A
Other languages
Japanese (ja)
Inventor
Yukinari Ito
幸成 伊藤
Ichiro Matsuo
一郎 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
RIKEN Institute of Physical and Chemical Research
Original Assignee
Japan Science and Technology Agency
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, RIKEN Institute of Physical and Chemical Research filed Critical Japan Science and Technology Agency
Priority to JP2003038206A priority Critical patent/JP2004244583A/en
Publication of JP2004244583A publication Critical patent/JP2004244583A/en
Pending legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new high mannose type sugar compound, its synthetic process, a sugar block compound used for the synthesis as an intermediate, and so forth. <P>SOLUTION: The high mannose type sugar compound is represented by formula (A), wherein R is a 1-26C alkyloxy or a fluorescent substituent; R<SP>1</SP>is a hydrogen atom or a group represented by formula R<SP>1-1</SP>or formula R<SP>1-2</SP>; and Ac is an acetyl group. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、新規高マンノース型糖化合物、その製造方法及びそれに用いる中間体に関する。より詳しくは、本発明は、ManGlcNAc(化合物1b)、α−GlcManGlcNAc(化合物2b)、β−GlcManGlcNAc(化合物3)などの新規高マンノース型糖化合物、それを合成する方法、及びその合成に用いる中間体となる糖ブロック化合物に関する。
【0002】
【従来の技術】
アスパラギンがリンクされたグリカン鎖の付加は、重要なタンパク質の翻訳後修飾の一つである。タンパク質の品質管理の種々の面において高マンノース型オリゴ糖の重要な役割の探索のため、その生物学的重要性が再度注目されている。この点について特に重要なのは、カルネキシン/カルレティキュリン−グルコシルトランスフェラーゼ・サイクルである。 カルネキシン(CNX)とカルレティキュリン(CRT)は小胞体(ER)のルーメン中に存在する分子シャペロンの同族体である。最近の研究によると、グリコタンパク質とCNX/CRTとの相互作用が末端モノグルコシル化高マンノース型グリカン鎖、特にGlcManGlcNAc(2a)によって媒介されることが明らかになってきた。
【0003】
一方、UDP−グルコース:グリコタンパク・グリコシルトランスフェラーゼ(UGGT)はフォールディング・センサーとして機能し、それが不完全にフォールドされた、ManGlcNAc(1a)を有するグリコタンパク質をを検知し、それを前記GlcManGlcNAc(2a)に戻す。
しかしながら、シャペロンの認識におけるグリカン鎖の正確な役割についてはまだ議論がある。
【0004】
【発明が解決しようとする課題】
したがって、CNX/CRTの仮想的リガンドである高マンノース型糖化合物、その合成方法などを提供することができれば、上記研究の大きな助けとなる。しかしながら、従来、そのような合成方法などについては知られていない。
【0005】
【課題を解決するための手段】
本発明は上述のような状況を考慮してなされたもので、本発明によれば、下記式(A):
【化22】

Figure 2004244583
(式中、Rは、C1−26アルキルオキシ又は蛍光性置換基;Rは、水素原子又は下記式R1−1もしくはR1−2
【化23】
Figure 2004244583
で示される基;そしてAcはアセチル基である)
で表わされる高マンノース型糖化合物が提供される。この化合物は、天然型の高マンノース型糖化合物の類似体であり、本発明者らによって始めて合成された新規化合物である。本明細書中では、式(A)の化合物であって、Rがプロピルオキシ;そしてRが水素である化合物を「化合物1b」、RがR1−1である化合物を「化合物2b」、RがR1−2である化合物を「化合物3」という。
【0006】
上記高マンノース型糖化合物は、下記の如き製造方法によって合成することができる。
【0007】
(1)複数の糖ブロック化合物を組み合わせて、下記式(A’):
【化24】
Figure 2004244583
(式中、R’は、水酸基、C1−26アルキルオキシ、アスパラギン又は蛍光性置換;Rは、水素原子、又は下記式R1−1もしくはR1−2
【化25】
Figure 2004244583
で示される基;そしてAcはアセチル基である)で表される高マンノース型糖化合物を製造する方法であって、上記複数の糖ブロック化合物のうち少なくとも1種の化合物が下記式(I)、(II)及び(III):
式(I)の化合物
【化26】
Figure 2004244583
(式中、Rは水素原子又はアシル含有保護基(好ましくはアセチル基);Rはハロゲン原子又は下記式R3−1で示される基;Qは水素原子、シリル含有保護基(好ましくはTBDPS基)又は下記式Q’で示される基;Rは水素原子又はアシル含有保護基;Rは水素原子又は下記式R6−1で示される基;あるいはRとRは一緒になって環状アセタール系保護基又は環状ケタール系保護基(好ましくはシクロヘキシリデン基);Bn’はアリールアルキル含有保護基(好ましくはベンジル基);そしてPhth’はアミノ保護基(好ましくはフタロイル基)である)
【化27】
Figure 2004244583
(式中、Bn’及びPhth’は上記と同義;Qはシリル含有保護基(好ましくはTBDPS)、水素原子、又は上記式:Qa−1もしくはQa−2示される基;Phはフェニル基;Piv’はアシル含有保護基(好ましくはピバロイル基);PMB’は置換ベンジル含有保護基(好ましくはp−メトキシベンジル基);Ac’はアシル含有保護基(好ましくはアセチル基);そしてAll’はアリル基又はC6−20アリールC1−26アルキルオキシ基である)
式(II)の化合物
【化28】
Figure 2004244583
(式中、Yはアシル含有保護基(好ましくはアセチル基)、水素原子又は下記式:Y1−1で示される基;
は反応性置換基;そしてBn’は上記と同義である)
【化29】
Figure 2004244583
(式中、Bn’は上記と同義;Y’は水素原子又はシリル含有保護基(好ましくはTBDPS)である)
式(III)の化合物
【化30】
Figure 2004244583
(式中、Zは反応性置換基;Zはシリル含有保護基(好ましくはTBDPS)又は下記式:Z’で示される基;Zはアリールアルキル含有保護基(好ましくはベンジル基)又は下記式Z’で示される基;そしてBn’は上記と同義である)
【化31】
Figure 2004244583
(式中、Ac’は上記と同義である)
で表される化合物群から選択される高マンノース型糖化合物を製造する方法;
【0008】
(2)式(A)の化合物であって、Rがプロピルオキシ;そしてRが水素原子である化合物(化合物1b)を製造する方法であって、下記式6’:
【化32】
Figure 2004244583
(式中、Bn’、Phth’は上記と同義;そしてAllはアリル基である)
で表される化合物と下記式7’:
【化33】
Figure 2004244583
(式中、Bn’及びYは上記と同意義である)
で表される化合物とを反応させて、式(I)の化合物であって、Rが水素原子;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式Q’中のQがシリル含有保護基;そしてRとRが一緒になってシクロヘキシリデン基である化合物(化合物22a’)を得る工程を含む前記請求項2に記載の方法;
(3)前記化合物22a’をアセチル化処理及びシクロヘキシリデン基の脱離処理に供し、式(I)の化合物であって、Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式:Q’中のQがシリル含有保護基;そしてRとRが水素原子である化合物(化合物22c’)を調製し、化合物22c’と下記式8’:
【化34】
Figure 2004244583
(式中、Ac’、Bn’及びZは上記と同義である)
で表されるペンタサッカライド(化合物8’)とを反応させて、式(I)の化合物であって、Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式Q’中のQがシリル含有保護基;そしてRが水素原子;そしてRが式R6−1で示される基である化合物(化合物23a’)を調製する工程を含む前記請求項2又は3に記載の方法;
(4)前記化合物23a’をアセチル化して、式(I)の化合物であって、Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式Q’中のQがシリル含有保護基;そしてRがアセチル基;そしてRが式R6−1で示される基である化合物(化合物23b’)を調製し、その後、得られた化合物23b’中のシリル含有保護基を脱離する工程を含む上記請求項2〜4のいずれかに記載の方法(化合物23cの製法);
(5)式(A)の化合物であって、Rがプロピルオキシ;そしてRがR1−1で示される基である化合物(化合物2b)を製造する方法であって、式(I)の化合物であって、Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式:Q’中のQが水素原子;そしてRがアセチル基;そしてRが式R6−1で示される基である化合物(化合物23c)と、下記式4’:
【化35】
Figure 2004244583
(式中、Ph、Piv’、PMB’は上記と同義;そしてYは反応性置換基)で表される化合物とを反応させる工程を含む上記請求項2に記載の方法(化合物24’の製法);及び
(6)式(A)の化合物であって、Rがプロピルオキシ;そしてRがR1−2で示される基である化合物(化合物3)を製造する方法であって、式(I)の化合物であって、Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式:Q’中のQが水素原子;そしてRがアセチル基;そしてRが式R6−1で示される基である化合物(化合物23c’)と、下記式5’:
【化36】
Figure 2004244583
(式中、Ph,Piv’、PMB’は上記と同義;そしてYは反応性置換基)で表される化合物とを反応させる工程を含む上記請求項2に記載の方法(化合物25’の製法)。
【0009】
次に、本発明によれば、上記高マンノース型糖化合物の製造に用いる糖ブロック化合物が提供され、例えば、下記の如き糖ブロック化合物が提供される。
【0010】
(1)次式(I)
【化37】
Figure 2004244583
(式中、Rは水素原子又はアシル含有保護基;Rはハロゲン原子又は下記式R3−1で示される基;Qは水素原子、シリル含有保護基又は下記式Q’で示される基;Rは水素原子又はアシル含有保護基;Rは水素原子又は下記式R6−1で示される基;あるいはRとRは一緒になって環状アセタール系保護基又は環状ケタール系保護基;Bn’はアリールアルキル含有保護基;そしてPhth’はアミノ保護基である)
【化38】
Figure 2004244583
(式中、Bn’及びPhth’は上記と同義;Qはシリル含有保護基、水素原子、又は上記式:Qa−1もしくはQa−2示される基;Phはフェニル基;Piv’はアシル含有保護基;PMB’は置換ベンジル含有保護基;Ac’はアシル含有保護基;そしてAll’はアリル基又はC6−20アリールC1−26アルキルオキシ基である)
で示される化合物;
【0011】
(2)Rが水素原子;Rがフッ素原子;QがTBDPS;そしてRとRが一緒になってシクロヘキシリデン基である、前記(1)に記載の化合物(化合物12a);
(3)Rがアセチル基;Rがフッ素原子;QがTBDPS;そしてRとRが一緒になってシクロヘキシリデン基である、前記(1)に記載の化合物(化合物12b);
(4)Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基QがTBDPS;そしてRとRが一緒になってシクロヘキシリデン基である、前記(1)に記載の化合物(化合物14);
(5)Rが水素原子;Rが式R3−1で示される基;R3−1中のAll’がアリル基Qが水素原子;そしてRとRが一緒になってシクロヘキシリデン基である、前記(1)に記載の化合物(化合物6);
(6)Rが水素原子;Rが式R3−1で示される基;R3−1中のAll’がアリル基Qが式Q’で示される基;式Q’中のQがTBDPS;そしてRとRが一緒になってシクロヘキシリデン基である、前記(1)に記載の化合物(化合物22a);
【0012】
(7)Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基Qが式Q’で示される基;式Q’中のQがTBDPS;そしてRとRが一緒になってシクロヘキシリデン基である、前記(1)に記載の化合物(化合物22b);
(8)Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基Qが式Q’で示される基;式:Q’中のQがTBDPS;そしてRとRが水素原子である、前記(1)に記載の化合物(化合物22c);
(9) Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基Qが式Q’で示される基;式Q’中のQがTBDPS;そしてRが水素原子;そしてRが式R6−1で示される基である、前記(1)に記載の化合物(化合物23a);
(10) Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式Q’中のQがTBDPS;そしてRがアセチル基;そしてRが式R6−1で示される基である、前記(1)に記載の化合物(化合物23b);
【0013】
(11) Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基Qが式Q’で示される基;式:Q’中のQが水素原子;そしてRがアセチル基;そしてRが式R6−1で示される基である、前記(1)に記載の化合物(化合物23c);
(12) Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基Qが式Q’で示される基で、式Q’中のQがQa−1;そしてRがアセチル基;そしてRが式R6−1で示される基である、前記(1)に記載の化合物(化合物24);
(13) Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基Qが式Q’で示される基で、式Q’中のQがQa−2;そしてRがアセチル基;そしてRが式R6−1で示される基である、前記(1)に記載の化合物(化合物25);
【0014】
(14)次式(II)
【化39】
Figure 2004244583
(式中、Yはアシル含有保護基、水素原子又は下記式:Y1−1で示される基;
は反応性置換基;そしてBn’は上記と同義である)
【化40】
Figure 2004244583
(式中、Bn’は上記と同義;Y’は水素原子又はシリル含有保護基である)
で表される化合物;
【0015】
(15) Yはアセチル基;そしてYはメチルチオ基である前記(14)に記載の化合物(化合物17a);
(16) Yは水素原子;そしてYはメチルチオ基である前記(14)に記載の化合物(化合物17b);
(17) Yは式Y1−1で示される基;式Y1−1中のY’はTBDPS;そしてYはメチルチオ基である前記(14)に記載の化合物(化合物7);
【0016】
(18) 次式(III)
【化41】
Figure 2004244583
(式中、Zは反応性置換基;Zはシリル含有保護基又は下記式:Z’で示される基;Zはアリールアルキル含有保護基又は下記式Z’で示される基;そしてBn’はアリールアルキル含有保護基である)
【化42】
Figure 2004244583
(式中、Ac’はアシル含有保護基である)
で表される化合物;
【0017】
(19) Zがフッ素原子;ZがTBDPS;そしてZがベンジルである前記(18)に記載の化合物(化合物18);
【0018】
(20) Zがフェニルチオ基;Z及びZがZ’で示される基である前記(18)に記載の化合物(化合物21);及び
(21) Zがフッ素原子;Z及びZがZ’で示される基である前記(18)に記載の化合物(化合物8)。
【0019】
なお、本明細書中で使用される置換基、保護基および試薬の略語は次の通りである。
Bn: ベンジル
Ac: アセチル
All: アリル(allyl)
Phth: フタロイル
Ph: フェニル
Piv: ピバロイル
PMB: p−メトキシベンジル
DTBMP: 2,6−ジ−t−ブチル−4−メチルピリジン
TBDPS: t−ブチルジフェニルシリル
Me: メチル
Et エチル
Bu ブチル
DDQ: 2,3−ジクロロ−5,6−ジシアノ−1,4−ベンゾキノン
MeOTf: メチルトリフラート(メタンスルホン酸メチル)
DMAP: 4−ジメチルアミノピリジン
AgOTf: 銀トリフラート
Cp: シクロペンタジエニル
DMF: N,N−ジメチルホルムアミド
THF: テトラヒドロフラン
TEA: トリエチルアミン
DAST: ジエチルアミノサルファトリフロリド
NIS: N−ヨウドスクシンイミド
pTos: p−トルエンスルホニル
MS4A: モレキュラーシーブ(4Å)
CSA: (1S)−(+)10−カンファ−スルホン酸
COD: 1,5−シクロオクタジエン
NBS: N−ブロモスクシンイミド
CpHfCl: シクロペンタジエニルハフノセンジクロリド
TBAF: テトラブチルアンモニウムフルオリド
【0020】
以下、本発明を詳細に説明する。
【0021】
本発明の高マンノース型糖化合物は、上記式(I)、(II)及び(III)で示した特定の糖ブロック化合物群から、目的とする最終生成物の糖鎖構造及びその糖鎖構造を構築するための反応ルートを考慮して、使用する糖ブロック化合物を少なくとも1種選択し、それらを適宜反応させることを含む方法である。本発明において使用する糖ブロック化合物は、最終生成物の糖鎖構造を構築するために、所定の位置に反応性置換基を有し、反応を避ける必要がある水酸基及びアミノ基については所定の保護基で保護してなる化合物である。
【0022】
水酸基の保護基としては、例えば、それぞれ置換基を有していてもよいC1−6アルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、tert−ブチルなど)、フェニル、C7−11アリールアルキル(例えば、ベンジルなど)、ホルミル、C1−6アルキル−カルボニル(例えば、アセチル、プロピオニルなど)、フェニルオキシカルボニル、C7−11アラルキルオキシ−カルボニル(例えば、ベンジルオキシカルボニルなど)、テトラヒドロピラニル、テトラヒドロフラニル、シリルなどが用いられる。これらの置換基としては、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素など)、C1−6アルキル(例えば、メチル、エチル、tert−ブチルなど)、C7−11アラルキル(例えば、ベンジルなど)、C6−10アリール(例えば、フェニル、ナフチルなど)、ニトロなどが用いられる。
【0023】
本明細書中、「アシル含有保護基」とは、アシル基を有する水酸基の保護基をいい、例えば、アセチル、プロピオニル、ベンゾイルなどが挙げられる。「アリールアルキル含有保護基」とは、アリールアルキルを有する水酸基の保護基をいい、例えば、ベンジルなどが挙げられる。「置換アリールアルキル含有保護基」とは、アリールアルキル含有保護基が1〜3個の置換基(例えば、C1−3アルコキシ)によって置換されたものをいい、例えば、p−メトキシベンジルが挙げられる。「シリル含有保護基」とは、シリル基を有する水酸基の保護基をいい、例えば、トリメチルシリル、トリエチルシリル、t−ブチルジメチルシリル、t−ブチルジフェニルシリルなどが挙げられる。「環状アセタール系保護基」とは環状アセタール残基を有する水酸基の保護基をいい、例えば、イソプロピリデンアセタール、ベンジリデンアセタールなどが挙げられる。「環状ケタール系保護基」とは、環状ケタール残基を有する水酸基の保護基をいい、例えば、シクロヘキシリデンが挙げられる。本発明の方法において好ましく用いられる水酸基の保護基としては、ベンジル基、t−ブチル基、p−メトキシベンジル基、トリチル基、t−ブチルジメチルシリル基、トリエチルシリル基、t−ブチルジフェニルシリル基、メタンスルホニル基、アセチル基、ピバロイル基などが挙げられる。
【0024】
本明細書中、「アミノ保護基」とは、反応中にアミノ基を保護する置換基をいい、例えば、アセトアミド、トリクロロアセトアミド等のアミド含有保護基、フタロイル等のイミド含有保護基、C1−6アルキル−カルボニル(例えばアセチル、プロピオニルなど)、アリルカーバメート、C7−20アラルキルカーバメート(例えば、ベンジルカーバメート)等のカーバメート含有保護基、トリチルなどが用いられる。これらの置換基としては、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素など)、C1−6アルキル−カルボニル(例えば、アセチル、プロピオニル、バレリルなど)、ニトロなどが用いられる。本発明で特に好ましく用いられるアミノ基の保護基はフタロイル基である。
【0025】
本明細書中、「反応性置換基」とは、2種の化合物を結合する反応をし得る置換基をいい、例えば、ハロゲン原子(例えば、塩素、臭素、フッ素、沃素)、C1−10アルキルチオ(好ましくはC1−5アルキルチオ)、C6−20アリールチオ、トリクロロアセトイミデート、ペンテニル基等が挙げられる。
本明細書中、「蛍光性置換基」とは、各種実験において標識となる蛍光を発し得る置換基をいい、例えば、フルオレシン、フルオレシンイソチオシアネート、ローダミンなどの蛍光物質の残基、あるいはこれらの蛍光物質の残基にリンカー(例えば、−NH−、−O−,C1−10アルキル及びこれらの組合せ)などを結合させた基が挙げられ、例えば、DANSYL基、BODIPY基、Fluorescein基(フナコシ社製)などが挙げられる。これらの蛍光性置換基、およびその導入方法については、フナコシ社カタログに詳細に記載されている。
【0026】
また、保護基の除去方法としては、例えば酸、塩基、紫外光、ヒドラジン、フェニルヒドラジン、N−メチルジチオカルバミン酸ナトリウム、テトラブチルアンモニウムフルオリド、酢酸パラジウムなどで処理する方法または還元反応等の公知の手法が用いられる。
【0027】
いずれの場合にも、さらに所望により、公知の脱保護反応、アシル化反応、アルキル化反応、水素添加反応、酸化反応、還元反応、炭素鎖延長反応、置換基交換反応を各々、単独あるいはその二つ以上を組み合わせて行うことにより、本発明の中間体及び最終生成物を製造することができる。これらの反応は、例えば、Protective groups in organic synthesis Jhon wiely & Sons Inc. 新実験化学講座 14[V] (丸善)などに記載されている。
【0028】
上記の通り、本発明の方法においては、適当な複数のオリゴ糖ブロック化合物を選択し、それらのオリゴ糖ブロック化合物を所望の位置において結合することによって、所望の糖鎖を構築していく。本発明において、特に好ましく用いられる糖ブロック化合物は、例えば、次のような化合物である。
【0029】
【化43】
Figure 2004244583
【0030】
また、本発明において好ましく用いられる糖ブロック化合物としては、次の化合物も挙げられる。
(1)式(I)中、Rが水素原子;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式Q’中のQがTBDPS;そしてRとRが一緒になってシクロヘキシリデン基である化合物(化合物22a);
(2)式(I)中、Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式Q’中のQがTBDPS;そしてRとRが一緒になってシクロヘキシリデン基である(化合物22b);
(3)式(I)中、Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式:Q’中のQがTBDPS;そしてRとRが水素原子である化合物(化合物22c);
(4)式(I)中、Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式Q’中のQがTBDPS;そしてRが水素原子;そしてRが式R6−1で示される基である化合物(化合物23a);
【0031】
(5)式(I)中、Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式Q’中のQがTBDPS;そしてRがアセチル基;そしてRが式R6−1で示される基である化合物(化合物23b);
(6)式(I)中、Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式:Q’中のQが水素原子;そしてRがアセチル基;そしてRが式R6−1で示される基である化合物(化合物23c);
(7)式(I)中、Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基で、式Q’中のQがQa−1;そしてRがアセチル基;そしてRが式R6−1で示される基である化合物(化合物24);及び
(8)式(I)中、Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基で、式Q’中のQがQa−2;そしてRがアセチル基;そしてRが式R6−1で示される基である化合物(化合物25)。
【0032】
本発明の製造方法においては、上記のような糖ブロック化合物から適当な化合物を選択し、適宜、保護基付加反応、保護基の脱離反応、複数の糖ブロック化合物のカップリング反応を含む糖鎖の延長反応などを組み合わせることによって目的とするManGlcNAc(化合物1b)、GlcManGlcNAc(化合物2b)又はβ−GlcManGlcNAc(化合物3)から選ばれる高マンノース型糖化合物を製造する。このような保護基付加反応、保護基の脱離反応、複数の糖ブロック化合物のカップリング反応を含む糖鎖の延長反応などは、例えば、Seifert, J. Lergenmuller, M. Ito, Y., Angew.Chem. Int. Ed. Engl. 2000, 39,531−4、第4版 実験化学講座 26 有機合成VIII(丸善)に記載されている。
以下、本発明の中間体、最終生成物である高マンノース型糖化合物、及びその製造方法について、具体的に説明する。
【0033】
本発明の中間体である糖ブロック化合物は、一般的には、次のようなグリコシルドナーとグリコシルアクセプターのカップリング反応によって合成することができる。
【0034】
スキーム1(化合物(I)の合成)
【化44】
Figure 2004244583
(式中、R、Q、R、R、R、Bn’、Phth’は上記と同義;そして
はハロゲン、チオアルキル、チオアリールなどの反応性置換基を示す;但し、所望の化合物を得るために所定の水酸基は適当な保護基で保護される)
【0035】
スキーム1において、グリコシルドナーである化合物(Ia)とグリコシルアクセプターである化合物(Ib)を、溶媒の存在下あるいは不存在下反応させて化合物(I)を得る。この反応は、好ましくは、メチルトリフラート、銀トリフラート、N−ヨウ化コハク酸イミドートリフルオロメタンスルホン酸、ジメチルメチルチオスルホニウムトリフラート等の反応活性化剤の存在下行われる。さらに好ましくは、この反応は、モレキュラーシーブ、硫酸カルシウム等の脱水剤の存在下行われる。また、この反応で使用される溶媒としては、反応が進行する限り特に限定されないが、例えば、ピリジン、ルチジン、キノリン等の芳香族アミン類;ジクロロメタン、クロロホルム、1,2−ジクロロエタン、四塩化炭素等のハロゲン化炭化水素類;ヘキサン、ペンタン、シクロヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、クロロベンゼン等の芳香族炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、ジオキサン、1,2−ジメトキシエタン等のエーテル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類またはこれら二種以上の混合物等が挙げられる。上記反応で特に好ましい溶媒は、ジクロロメタン等のハロゲン化炭化水素類である。このカップリング反応は、通常、−80〜100℃、より好ましくは、−20〜45℃で、0.1〜74時間、より好ましくは1〜12時間行われる。以下、このグリコシルドナー(GD)とグリコシルアクセプター(GA)との反応を「GD/GAカップリング反応」という。
【0036】
次に、上記に示した好ましい糖ブロック化合物を例にして、その具体的な反応スキーム、反応条件などについて説明する。
【0037】
スキーム2(化合物6の合成)
【化45】
Figure 2004244583
【0038】
スキーム1において、まず、公知の化合物である化合物9と化合物10を、適当な溶媒の存在下あるいは不存在反応させて化合物12aを合成する。この反応においては、2,3−ジクロロ−5,6−ジシアノ−1,4−ベンゾキノン(DDQ)のような適当な酸化剤を用いてを用いて混合アセタール化を行う。ここで溶媒としては、上述の溶媒から選択されるが、特に好ましい溶媒は、ジクロロメタン等のハロゲン化炭化水素類である。この処理は、通常、−78〜100℃、より好ましくは、0〜25℃で、0.1〜12時間、より好ましくは1〜2時間行われる。さらに、このように処理して得られた化合物に、適当な溶媒及び2,6−ジ−tert−ブチル−4−メチルピリジンなどの塩基の存在下、メチルトリフラート(MeOTf)などのアルキルトリフラートを反応させて、化合物12aを得る。ここで用いられる適当な溶媒は、上記溶媒から選択されるが、特に好ましいのは、1,2−ジクロロエタン等のハロゲン化炭化水素類である。
【0039】
次に、化合物12aを、アセチル化反応に供して化合物12bを得る。アセチル化は、適当な溶媒の存在下あるいは不存在下、通常、塩基の存在下で、アセチル化剤を用いて行う。好ましいアセチル化剤は、塩化アセチル又は無水酢酸である。本発明で「塩基」が用いられる場合は、例えば、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、などの塩基性塩類、水酸化ナトリウム、水酸化カリウムなどの無機塩基類、ピリジン、ルチジンなどの芳香族アミン類、トリエチルアミン、トリプロピルアミン、トリブチルアミン、シクロヘキシルジメチルアミン、4−ジメチルアミノピリジン、N,N−ジメチルアニリン、N−メチルピペリジン、N−メチルピロリジン、N−メチルモルホリンなどの第3級アミン類、水素化ナトリウム、水素化カリウムなどのアルカリ金属水素化物類、ナトリウムアミド、リチウムジイソプロピルアミド、リチウムヘキサメチルジシラジドなどの金属アミド類、ナトリウムメトキシド、ナトリウムエトキシド、カリウム tert−ブトキシドなどの金属アルコキシド類などから選択される。上記アセチル化反応では、好ましくは、ピリジンが用いられる。このアセチル化反応は、0〜120℃、好ましくは、10〜60℃で、0.1〜24時間、好ましくは1〜6時間行われる。
【0040】
次に、グリコシルドナーである化合物12bとグリコシルアクセプターである化合物13を反応させて、化合物14を得る。この反応は、上記GD/GAカップリング反応であり、上記と同様の条件で行うことができる。なお、この反応は、好ましくは、ジクロロメタンなどのハロゲン系溶媒、ジシクロペンタジエニル−ハフノセンジクロリド(CpHfCl)−銀トリフラートなどの触媒、及びモレキュラーシーブ等の脱水剤の存在下行われる。
【0041】
スキーム3(化合物7の合成)
【化46】
Figure 2004244583
【0042】
まず、グリコシルアクセプターである化合物15とグリコシルドナーである化合物16を反応させて化合物17aを得、ついでグリコシルアクセプターである化合物17bとグリコシルドナーである化合物18を反応させて、化合物7を得る。これらの一連の反応も「GD/GAカップリング反応」であり、上記と同様の条件で行うことができる。
【0043】
スキーム4(化合物8の合成)
【化47】
Figure 2004244583
【0044】
まず、グリコシルアクセプターである化合物19とグリコシルドナーである化合物20を反応させて、化合物21を得る。この反応は、「GD/GAカップリング反応」であり、上記と同様の条件で行うことができる。次いで、得られた化合物21を、N−ブロモスクシンイミドとジエチルアミノサルファトリフロリド(DAST)の存在下、処理して化合物8を得る。この処理は、例えば、−60℃〜50℃、より好ましくは−40〜30℃で、0.1〜24時間、より好ましくは0.5〜12時間行われる。以下、この処理を「アリールチオ/ハロ変換反応」という。
【0045】
スキーム5(化合物18の合成)
【化48】
Figure 2004244583
【0046】
化合物32を上記した「アリールチオ/ハロ変換反応」に供することによって化合物18を得る。
【0047】
スキーム6(化合物22 〜22cの合成)
【化49】
Figure 2004244583
【0048】
化合物22aは、化合物6と化合物7をDG/DAカップリング反応に供することによって合成することができる。化合物22bは、化合物22aをアセチル化処理することによって得ることができる。化合物22cは、化合物22bからシクロヘキシリデン基を除去することによって得ることができる。そのようなシクロヘキシリデン基の除去は、化合物22bを、例えば、p−トルエンスルホン酸(pTosOH)一水和物などの酸で処理することによって行うことができる。この処理は、通常、0〜100℃、好ましくは10〜30℃で、0.1〜12時間、好ましくは0.5〜6時間行われる。
【0049】
スキーム7(化合物23の合成)
【化50】
Figure 2004244583
【0050】
化合物23aはグリコシルドナーである化合物8とグリコシルアクセプターである化合物22cを、GD/GAカップリング反応に供することによって得ることができる。化合物23bは化合物23aをアセチル化処理に供することによって得ることができる。化合物23cは、化合物23b中のTBDPS基を除去することによって得ることができる。TBDPS基の除去は、例えば、テフロン(登録商標)反応容器などの耐圧容器に、化合物23bを仕込み、これを10%HF/ピリジンを含むDMFなどの溶媒に溶解し、その容器内の圧力を、例えば、0.1〜1.5GPa、好ましくは0.5〜1.2GPaにして、25〜100℃で、1〜2時間処理することによって行うことができる。
【0051】
(化合物24及び25の合成)
なお、化合物24は、化合物23cと化合物4を、DA/DGカップリング反応に供することによって得ることができる。化合物25は、化合物23cと化合物5を、DA/DGカップリング反応に供することによって得ることができる。
【0052】
化合物1b、2b及び3の合成
目的化合物である、ManGlcNAc(化合物1b)、GlcManGlcNAc(化合物2b)又はβ−GlcManGlcNAc(化合物3)は、化合物23c、化合物24及び化合物25の保護基全て除去することによって、それぞれ得ることができる。この保護基の除去は、公知の方法を利用することができる(Protective groups in organic synthesis Jhon wiely & Sons Inc. 新実験化学講座 14[V] (丸善)参照)。具体的には、化合物23c、24又は25について、次のような処理を行う。
(1)エチレンジアミンを含むn−ブタノールでの処理(例えば、0〜120℃、好ましくは50〜90℃で、1〜100時間、好ましくは10〜70時間)、
(2)ピリジン中で無水酢酸で処理(例えば、−20℃〜80℃、好ましくは−10℃〜50℃で、0.1〜48時間、好ましくは1〜30時間)、
(3)でPd(OH)等の還元剤の存在下水素添加処理(例えば、0〜100℃、好ましくは10〜40℃で、1〜48時間、好ましくは2〜30時間)、
(4)NaOMe/MeOH等による処理(例えば、−10℃〜120℃、好ましくは−5℃〜80℃で、1〜24時間、2〜10時間)
上記方法によると、式(A’)で、R’がプロピルオキシである化合物が得られる。式(A’)で、R’がその他の置換基である化合物を合成する場合は、R’を公知の手段を用いて水酸基に変換した後に、公知の手段を用いてC1−26アルキルオキシ、アスパラギン又は蛍光性置換基に変換する(N.K.Kochetkov et, al. Carbohydrate Research, 146 (1986) C1−C5, I. D. Manger et, al., Biochemistry, 31 (1992) 10733−10740 文献参照)。
【0053】
なお、その他の式(I)、(II)又は(III)に示される化合物は、当業者であれば上記反応の説明及び実施例の記載などを参照して合成することができる。また、上記の反応によって得られる中間体及び最終生成物は、濃縮、溶媒抽出、分溜、結晶化、再結晶、クロマトグラフィーなどの公知の手段によって反応混合物から単離、精製することができる。
【0054】
【実施例】
以下、本発明を実施例に基づいてより具体的に説明する。
【0055】
基本手順
Hおよび13C−NMRスペクトルは、JEOL EX−400のスペクトロメータを用いて、特に明記しない場合は、CDCL、MeSiを基準にして測定した。シリカゲルカラムクロマトラフィーは、シリカゲル−60(E Merck)を用いて行った。分析TLC(薄層クロマトグラフィー)は、シリカゲル60F254(E Merck)を塗布したガラスプレート上で行った。MALDI−TOF MSスペクトルは、発光波長337 nmの窒素レーザーを備えたKOMPACT MALDI IV tDE(島津社製KARATOS)により陽イオンモードにおいて測定した。
【0056】
実施例1(化合物12 の合成)
【化51】
Figure 2004244583
【0057】
2,3−ジクロロー5,6−ジシアノー1,4−ベンゾキノン(DDQ:67.8mg、0.229mmol)のジクロロメタン(CHCl:1.2mL)溶液中とモレキュラシーブ4A(0.3g)の混合物をアルゴンガス下、氷水中で冷やしながら攪拌した。この混合溶液に化合物10(100.0 mg, 0.203 mmol)と化合物9(181.8 mg, 0.280 mmol)のジクロロメタン溶液を添加した。この混合物を室温で2時間撹拌し、アスコルビン酸(0.7%)−クエン酸(1.3%)−NaOH(0.9%)水溶液により反応を停止させ、5分間撹拌し、酢酸エチル(EtOAc)で希釈し、そして、セライトを通して濾過した。その濾過液を炭酸水素ナトリウム(NaHCO)と塩水で洗浄した。有機層を硫酸ナトリウム(NaSO)で乾燥させ、減圧下揮発成分を蒸発させた。その残留物(12)を、1,2−ジクロロエタン(CHClCHCl:3.5 mL)中で2,6−ジ−tert−ブチル−4−メチルピリジン(160 mg, 0.81 mmol)及びモレキュラシーブ4A(0.6g)と混合し、室温で撹拌した。次にメチルトリフラート(MeOTf)CHClCHCl溶液(1 M, 20 mL, 20 mol)を0℃で添加した。
【0058】
その混合物を45℃で12時間撹拌した後、トリエチルアミン(EtN)により反応を停止させ、EtOAc、NaHCO水溶液で希釈し、セルライトを通して濾過した。その濾過液を水と塩水で洗浄し、硫酸マグネシウム(MgSO)で乾燥させ,揮発成分を減圧下蒸発させた。その残留物を、シリカゲルカラムクロマトグラフィー(トルエン:EtOAc,13:1)で精製し、化合物12a (164.0 mg, 83%)を得た。以下、得られた化合物の物理化学的性状を示す。
【0059】
H NMR (400MHz, CDCl) δ=7.83−6.83(m, 24H, Ar), 5.78(dd, J=8.0, 53.6 Hz, H−1), 4.79(d, J=12.4 Hz, PhCH−), 4.58(d, J=12.0 Hz, PhCH−), 4.42(d, J=12.4 Hz, PhCH−), 4.34−4.29(m, 2H, H−1, H−3), 4.22(m, H−2), 4.22(d, J=12.0, PhCH−), 4.04(t, J=9.6 Hz, H−4), 3.95(t, J=9.2 Hz, H−4), 3.72(dd, J=5.2, 10.8 Hz, H−6), 3.64(m, 3H, H−3, H−5, H−6), 3.53(t, J=10.4, H−6), 3.41(m, 2H, H−2,H−6), 2.83(m, H−5), 2.57(s, −OH), 2.04−1.25(m, 10H, cyclohexylidene), 1.10(s, 9H, t−Bu); HRMS (FAB) C5662FNO11SiNa: calcd 994.3974, found m/z 994.4001(M+Na)
実施例2(化合物12bの合成)
【化52】
Figure 2004244583
【0060】
化合物12a(1.293 g, .327 mmol)と4−ジメチルアミノピリジン(DMAP:16.5 mg)を含むピリジン(4.3 mL)溶液に、撹拌下、無水酢酸(2.5 mL)を加えた。この混合物を40℃で2時間撹拌した。この反応混合物をメタノールに加えた。溶媒を減圧下で蒸発させた。残留物をEtOAcで希釈し、硫酸銅(CuSO)、水、塩水、NaHCO飽和水溶液、塩水で洗浄し、乾燥させ(NaSO)、そして揮発成分を減圧下蒸発させた。この残留物を、シリカゲルクロマトグラフィー(トルエン:EtOAc、20:1)で精製し、化合物12b(1.299g、96%)を得た。
【0061】
[α]=+25.4 (c=1.1 in chloroform); H NMR (400MHz, CDCl) δ=7.75−6.86(m, 28H, Ar), 5.76(dd, J=7.2, 54.0 Hz, H−1), 4.94(d, J=2.8 Hz, H−2), 4.76(d, J=12.0 Hz, PhCH−), 4.59(d, J=12.0 Hz, PhCH−), 4.37(s, H−1), 4.32(d, J=12.4 Hz, PhCH−), 4.24(d, J=12.0 Hz, PhCH−), 4.21−4.16(m, 2H, H−2, H−3), 3.91(t, J=9.6 Hz, H−4), 3.71−3.64(m, 3H, H−3, H−6, H−6), 3.54−3.46(m, 3H, H−5, H−6, H−6), 2.80(m,H−5), 2.14(s,3H, Ac), 1.58−1.24(m, 10H, cyclohexylidene), 1.05(s, 9H, t−Bu); 13C NMR(CDCl) δ=104.61(d, J=212 Hz, C−1), 99.76(cyclohexylidene), 98.96(C−1), 77.93(C−4), 77.32, 77.20, 77.00, 76.68, 75.78(CH), 75.68(CH), 74.48(PhCH−), 74.37(CH), 74.32(CH), 73.50(PhCH), 71.99(C−2), 71.57(C−3), 70.14(C−4), 67.86(C−5), 67.63(C−6), 61.07(C−6), 37.83(CH), 27.75(CH), 25.70(CH), 22.67(CH), 22.46(CH), 26.84(Me), 21.26(Me), 19.35(SiCMe); HRMS (FAB) C5864FNO12SiNa: calcd 1036.4080, found m/z 1036.4131 (M+Na)
【0062】
実施例3(化合物14の合成)
【化53】
Figure 2004244583
【0063】
CpHfCl(26.3 mg, 0.069 mmol)、銀トリフラート(35.9 mg, 0.139 mmol)及びモレキュラシーブ(1g, タイプ4A)を無水CHCl(3 mL)中、撹拌した。この混合物に、グリコシルドナー12b(135.2 mg, 0.133 mmol)とグリコシルアクセプター13(84.5 mg, 0.160 mmol)の無水CHCl(6mL)溶液を−45℃で添加した。この混合物を、徐々に−10℃まで暖め、そして4時間撹拌した。不溶性物質はセライトを通すことによって除去し、濾過液をEtOAcで希釈し、塩水、NaHCO水溶液、塩水で順次洗浄した。
その溶液はNaSOで乾燥させ、減圧下で濃縮した。残留物をシリカゲルクロマトグラフィー(トルエン:EtOAc, 12:1)で精製し、化合物14(173.3 mg, 85%)を得た。
【0064】
Rf 0.13(3:1 hexane−EtOAc) [α]=+2.3(c 0.55 in chloroform); H NMR (400MHz, CDCl) δ=7.76−6.71(m, 38H, Ar), 5.58(m, CH=CHCH−), 5.16(d, J=7.8 Hz, H−11or2), 4.97(m, CH=CHCH−), 4.95(d, J=7.3 Hz, H−11or2), 4.94(m, H−2), 4.91(ddd, J=1.4, 1.4, 10.5 Hz, CH=CHCH−), 4.79(d, J=12.9 Hz, PhCH),4.78(d, J=12.2 Hz, PhCH), 4.47(s, 2H, PhCH), 4.41(d, J=12.4 Hz, PhCH), 4.41(s, H−1), 4.40(d, J=11.9 Hz, PhCH), 4.32(d, J=12.2 Hz, PhCH), 4.19(d, J=11.9 Hz, PhCH), 4.14−4.07(m, 6H, H−21,2, H−31,2, H−41or2, CH=CHCH−), 3.99(t, J=9.7 Hz, H−41or2), 3.89(t, J=9.5 Hz, H−4), 3.86(ddd, J=6.3, 1.4, 14.6 Hz, CH=CHCH−), 3.70−3.63(m, 2H, H−3, H−6), 3.53−3.42(m, 3H, H−61,2, H−6), 3.36(dd, J=3.9, 10.9 Hz, H−61or2), 3.27−3.24(m, 2H, H−51or2, H−61or2), 3.05(dd, J=10.0 Hz, H−51or2), 2.78(m, H−5), 2.15(s, 3H, Ac), 1.56(m, 10H, cyclohexylidene), 1.05(s, 9H, t−Bu) ; 13C NMR(CDCl) δ=99.63(cyclohexylidene), 98.79(C−1), 96.96(C−11or2), 96.76(C−11or2), 78.36(C−41or2), 77.20, 76.51, 75.67, 74.43, 74.32, 74.20, 72.87(PhCH), 72.72(PhCH), 72.03(−OCHCH=CH), 71.65(C−3), 70.15(C−4), 69.42(−OCHCH=CH), 68.10(C−61or2), 67.80(C−5), 67.34(C−61or2), 61.06(C−6), 56.46(CH), 55.63(CH), 37.77(CH), 27.73(CH), 26.81(CH), 25.65(CH), 22.61(CH), 22.40(CH), 21.23(Me), 19.30(SiCMe) ; C899419Si: calcd C 70.15 H 6.22, found C70.30 H 6.23.
【0065】
実施例4(化合物6の合成)
【化54】
Figure 2004244583
【0066】
化合物14(201.9 mg, 0.132 mmol)と酢酸(16 μL)を含むDMF(1.6 mL)溶液に、撹拌下、THF中の1M TBAF(264μL)を添加した。
この混合物を室温で12時間撹拌した。反応混合物をEtOAcで希釈し、塩水で洗浄し、乾燥させ(NaSO)、そして揮発成分を減圧下蒸発させた。残留物をTLC(ヘキサン:EtOAc, 1:1)で分離精製し、3位がアセチル化した化合物(54.3mg, 32%)及び2位がアセチル化した化合物(85.7 mg, 50%)を得た。THF/MeOH(1/1, 10mL)中の3位がアセチル化した化合物(406.0 mg, 0.315 mmol)溶液に0℃で1N NaOMe/MeOH (0.1mL)を添加した。この混合物を12時間室温で撹拌し、アンバーライト15(H)樹脂で中和し、揮発性分を減圧下で蒸発させた。その残留物をシリカゲルクロマトグラフィー(ヘキサン:EtOAc, 2:1)によって精製し、化合物6(293.4mg, 75%)を得た。
H NMR (400MHz, CDCl) δ=7.69−6.76(m, 28H, Ar), 5.59(m, CH=CHCH−), 5.26(d, J=8.4Hz, H−11or2), 4.99(ddd, J=1.6, 1.6, 17.2Hz, CH=CHCH−), 4.97(d, J=8.4Hz, H−11or2), 4.68(s, H−1), 437(dd, J=8.4, 10.4Hz, H−31or2), 3.28(m, 2H, H−51,2), 2.95(m, H−5), 1.57(m, 10H, cyclohexylidene); 13C NMR(CDCl) δ=100.23(cyclohexylidene), 99.85(C−1), 97.05(C−1), 96.85(C−1), 75.57(C−5), 56.54, 55.70.; C717418 :calcd C 68.59 H 6.00, found C68.18 H 6.01.
【0067】
参考例1(化合物27の合成)
【化55】
Figure 2004244583
【0068】
化合物27(27.1 mg, 0.075 mmol)、BnBr(10 μL)、及びBuNHSOを含むCHCl(2 mL)溶液に、撹拌下、5%NaOH水溶液(0.1 mL)を添加した。その混合物を45℃で12時間撹拌した。その溶液をEtOAcで希釈し、NaCl飽和水溶液で洗浄し、乾燥させ(MgSO)そして揮発成分を減圧下で蒸発させた。残留物をシリカゲルクロマトグラフィー(トルエン:EtOAc、8:1)で精製し、化合物28(20.6mg, 61%)を得た。この化合物の物理的データはすでに報告された(Cherim, S.; Clavel, J.−M.; Monneret, C. J. Carbohydr. Chem. 1998, 17, 1203−1218) ものと完全に一致した。
【0069】
H NMR (400MHz, CDCl) δ=7.51−7.30 (m,15H, Ar), 5.59 (s, 1H, CH), 5.58 (s, 1H, H−1), 4.77−4.63 (m, 2H, PhCH−), 4.33 (m, H−5), 4.22 (dd, H−4), 4.21 (m, 2H, H−2, H−6e), 3.40 (t, 1H, H−6a), 3.84 (t, 1H, H−3).
【0070】
参考例2(化合物28の合成)
【化56】
Figure 2004244583
【0071】
化合物27(1.27 g, 2.83 mmol)とアリールブロマイド(490 μL)を含むDMF(26 mL)溶液に、撹拌下、0℃でNaH(170 mg, 4.24 mmol)を加えた。その混合物を室温で12時間撹拌した。反応混合物にTEA(1 mL)を加えて1時間撹拌し、NHCl飽和水溶液を加えた。その混合物をEtOAcで希釈し、塩水で洗浄して、乾燥し(NaSO)、揮発成分を減圧下蒸発させた。その残留物をシリカゲルクロマトグラフィー(ヘキサン:EtOAc、 10:1)で精製し、化合物28(1.32 g, 95%)を得た。
H NMR (400MHz, CDCl) δ=7.51−7.25 (m,15H, Ar), 5.90 (m, CH=CHCH−), 5.62 (s, 1H, PhCH), 5.52 (s, 1H, H−1), 4.76−4.75 (2H, PhCH−), 4.30−4.25 (4H, H−5, H−6, CH), 4.23−4.08 (2H, H−2, H−6), 3.91−3.85 (2H, H−3, H−4); 13C NMR(CDCl) δ= 101.45 (PhCH) 87.19 (C−1), 79.24(C−3), 79.05, 78.05, 75.88, 73.09, 71.94, 68.51, 65.40 ; C2930S: calcd C 71.00, H 6.16, found C 71.07, H 6.18.
【0072】
参考例3(化合物29)
【化57】
Figure 2004244583
【0073】
化合物28(750 mg, 1.54 mmol)のメタノール(24 mL)溶液に、CSA(35.9 mg, 0.15 mmol)を室温で3時間撹拌しながら加えた。その反応をTEA(1 mL)で反応停止させ、減圧下で濃縮した。残留物は、シリカゲルクロマトグラフィー(トルエン:EtOAc, 3:1)で精製し、化合物29(620 mg, 99 %)を得た。
【0074】
Rf 0.33(1:1 toluene−EtOAc).
H NMR (400MHz, CDCl) δ=7.43−7.44(m,10H, Ar), 5.83(m, CH=CHCH−), 5.51(d, J=1.6Hz, H−1), 5.24(ddd, J=17.2 1.6 3.2 Hz, CH=CHCH−), 5.17(ddd, J=10.4 1.6 2.8 Hz, CH=CHCH−), 4.61(d, 2H, J=12.4 Hz, PhCH−), 4.06(m, H−5), 4.02(dd, H−4), 3.98(m, H−2), 3.98(ddd, J=1.6 Hz, CH=CHCH−), 3.89(ddd, J=1.2, 5.6 12.4 Hz, CH=CHCH−), 3.83(dd, J=3.6, 11.6 Hz, H−6), 3.77(dd, J=5.2 11.6 Hz, H−6), 3.56(dd, J=3.2 9.2 Hz, H−3); 13C NMR(CDCl) δ= 86.05(C−1), 79.24(C−3), 75.17(C−2), 73.19(C−5), 67.31(C−4), 62.78(C−6) ; C2226S: calcd C 65.65, H 6.51, found C 65.34, H 6.60.
【0075】
参考例4(化合物30の合成)
【化58】
Figure 2004244583
【0076】
化合物29(620 mg, 1.54 mmol)とBnBr(910 μL, 7.70 mmol)を含むDMF(10 mL)溶液に、撹拌下、0℃でNaH(220 mg, 5.58mmol)を加えた。その混合物を室温で12時間撹拌した。反応混合物にTEA(1 mL)を加え、1時間撹拌後、NHCl飽和水溶液を加えた。その混合物をEtOAcで希釈し、塩水で洗浄、乾燥させ(NaSO)、揮発成分を減圧下で蒸発させた。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン:EtOAc, 20:1)で精製し、化合物30(0.72g, 80%)を得た。
【0077】
Rf 0.18(20:1 hexane−EtOAc); [α]=+92.9(c=0.96 in chloroform); H NMR (400MHz, CDCl) δ=7.46−7.22(m, 20H, Ar), 5.92(m, CH=CHCH−), 5.61(d, J=1.2Hz, H−1), 5.32(ddd, J=1.4, 3.1, 14.3 Hz, CH=CHCH−), 5.19(ddd, J=1.7, 10.2 Hz, CH=CHCH−), 4.89(d, J=10.7 Hz, PhCH−), 4.76(d, J=12.4 Hz, PhCH−), 4.67(d, J=11.9 Hz, PhCH−), 4.64(d, J=11.7 Hz, PhCH−), 4.52(d, J=10.7 Hz, PhCH−), 4.48(d, J=11.9 Hz, PhCH−), 4.27(m, H−5), 4.04−3.99(m, 4H, H−2, H−4, CH=CHCH−), 3.83(dd, J=5.1, 10.7 Hz, H−6), 3.76(dd, J=3.1, 9.2 Hz, H−6), 3.74(dd, J=1.9, 10.9 Hz, H=3); 13C NMR(CDCl) δ=85.78(C−1), 79.87(C−3), 76.19(C−2), 75.20(PhCH−), 74.94(C−4), 73.26(PhCH−), 72.70(C−5), 71.89(PhCH−), 71.03(CH=CHCH−), 69.21(C−6); C3638S:calcd C 74.20, H 6.57, found C 74.06, H 6.56
【0078】
参考例5(化合物31の合成)
【化59】
Figure 2004244583
【0079】
1,5シクロオクタジエン ビスメチルジフェニルホスフィン イリジウム ヘキサフルオロホスフェート([Ir(COD)[PCH(C]]PF:10.4 mg, 0.012mmol)の無水THF(10 mL)中溶液を、周囲の雰囲気をHに変換しながら色が消えるまで撹拌した。この溶液を5mLに濃縮し、そしてフラスコをNでパージした。その後、化合物30(398.3 mg, 0.683 mmol)溶液を加え、この混合物を1時間撹拌し、EtOAcで希釈し、そして減圧下で濃縮した。残留物を90%アセトン水溶液中に溶解し、HgCl(463.9 mg, 1.709 mmol): HgO(59.2 mg, 0.273 mmol)で2時間処理した。その混合物をCHClで希釈後、10%KI水溶液と塩水で洗浄した。その溶液をMgSOで乾燥し、減圧下で濃縮した。残留物をシリカゲルクロマトグラフィー(ヘキサン:EtOAc, 7:1)で精製し、化合物31(300.1 mg, 80%)を得た。
【0080】
Rf 0.18(10:1 hexane−EtOAc);H NMR (400MHz, CDCl) δ=7.49−7.22(m, 20H, Ar), 5.67(s, H−1), 4.86(d, J=11.2, PhCH−), 4.76(d, J=11.6, PhCH−), 4.65(d, J=11.6, PhCH−), 4.55(d, J=10.8, PhCH−), 4.51(d, J=12.0, PhCH−), 4.48(d, J=12.0, PhCH−), 4.28(ddd, J=2.4, 4.8, 10.0 Hz, H−5), 4.00(s, H−2), 3.99(dd, J=3.6, H−3), 3.84(dd, J=4.8, 11.2 Hz, H−6), 3.80(dd, J=8.4, 9.6 Hz, H−4), 3.74(dd, J=2.0, 10.8 Hz, H−6); 13C NMR (CDCl) δ=84.95(C−1), 79.67(C−2), 76.75(C−4), 74.87(PhCH−), 73.30(PhCH−), 72.28(C−3), 72.17(PhCH−), 71.99(C−5), 69.07(C−6); C3334S:calcd C 73.04, H 6.31, found C 72.70 H 6.52.
【0081】
参考例6(化合物32)
【化60】
Figure 2004244583
【0082】
化合物31(300.1 mg, 0.553mmol)とTBDPSCI(280μL, 1.10 mmol)の無水アセトニトリル(CHCN:8 mL)溶液に、撹拌下、室温でイミダゾール(110 mg, 1.65 mmol)を添加した。反応混合物を12時間撹拌し、EtOAcで希釈後、2NのHClと塩水、NaHCO水溶液、塩水で洗浄した。その溶液をMgSOで乾燥し、減圧下で濃縮した。残留物をシリカゲルクロマトグラフィーで(ヘキサン:EtOAc, 20:1)で精製し、化合物32(431.9 mg, quant)を得た。
【0083】
Rf 0.46 (20:1 hexane−EtOAc); [α]=+113.9(c=0.81 in chloroform); H NMR (400MHz, CDCl) δ=7.79−7.15(m, 30H, Ar), 5.29(s, H−1), 4.60(d, J=12.0, PhCH−), 4.45(d, J=12.0, PhCH−), 4.32(d, J=11.6, PhCH−), 4.32(m, H−3), 4.25(d, J=11.2, PhCH−), 1.20(m, H−5), 4.08(m, H−4), 3.83(dd, J=5.2, 10.8 Hz, H−6), 3.69(d, J=10.0Hz, H−6), 3.29(s, H−2), 1.22(s, 9H, t−Bu−) ; 13C NMR(CDCl) δ=85.37(C−1), 79.79(C−2), 76.34(C−4), 75.08(PhCH−), 74.10(C−3), 73.19(PhCH−), 72.84(C−5), 71.85(PhCH−). 69.40(C−6), 27.28(MeC−), 19.46(MeC−); HRMS (FAB) C4952SSiNa: calcd 803.3202, found: m/z 803.3210 (M+Na)
【0084】
実施例5(化合物18の合成)
【化61】
Figure 2004244583
【0085】
化合物32(1.099g, 1.407mmol)とNBS(0.501g, 2.811mmol)のCHCl溶液に、−40℃でDAST(370 μL, 2.800mmol)を加えた。この混合物を徐々に−15℃まで暖め、12時間撹拌した。反応混合物はEtOAcで希釈後、NaHCO飽和水溶液と塩水で洗浄した。その溶液をMgSOで乾燥させ、減圧下で濃縮した。その残留物をシリカゲルクロマトグラフィー(ヘキサン:トルエン, 1:1)で精製し、化合物18(0.485 g, 50%)を得た。
【0086】
Rf 0.47 (20:1 hexane−EtOAc); [α]=+113.9(c=0.81 in chloroform); H NMR (400MHz, CDCl) δ=7.79−7.15(m, 30H, Ar), 5.29(s, H−1), 4.60(d, J=12.0, PhCH−), 4.45(d, J=12.0, PhCH−), 4.32(d, J=11.6, PhCH−), 4.32(m, H−3), 4.25(d, J=11.2, PhCH−), 1.20(m, H−5), 4.08(m, H−4), 3.83(dd, J=5.2, 10.8 Hz, H−6), 3.69(d, J=10.0Hz, H−6), 3.29(s, H−2), 1.22(s, 9H, t−Bu−) ; 13C NMR(CDCl) δ=85.37(C−1), 79.79(C−2), 76.34(C−4), 75.08(PhCH−), 74.10(C−3), 73.19(PhCH−), 72.84(C−5), 71.85(PhCH−). 69.40(C−6), 27.28(MeC−), 19.46(MeC−); HRMS (FAB) C4952SSiNa: calcd 803.3202, found: m/z 803.3210 (M+Na)
【0087】
実施例6(化合物17 の合成)
【化62】
Figure 2004244583
【0088】
AgOTf(3.30 g, 12.85 mmol)とモレキュラシーブ(15 g, タイプ4A)を無水トルエン(10 mL)中、0℃で30分撹拌後、−30℃で冷やした。これに、ドナー16(3.00 mg, 5.87 mmol)とアクセプター15(2.00 g, 4.6 1mmol)を含む無水ClCHCHCl(40 mL)溶液を5分間滴下して加えた。反応混合物を−30℃で1時間撹拌し、周辺温度にした(12時間)。その反応をTEA(1 mL)で反応停止させた。その反応混合物はEtOAcで希釈後、セルライトを通して濾過した。その濾過液をNaHCO飽和水溶液、塩水で洗浄した。その溶液をNaSOで乾燥させ、減圧下で濃縮した。残留物をシリカゲルクロマトグラフィー(トルエン:EtOAc, 50:1〜15/1)で精製し、化合物17a(3.22 g, 8.1%)を得た。
【0089】
H NMR (400MHz, CDCl) δ=5.51(d, J=2.0 Hz), 5.26, 5.04(d, J=1.6 Hz), 4.84(d, 2H, J=10.8 Hz), 2.12(s, 3H, SMe), 2.00(s, 3H, Ac). 13C NMR(CDCl) δ= 169.87 (C=O), 99.52 (C−1), 84.74 (C−1), 68.70 (C−2), 21.24 (Ac), 13.91 (SMe). MS (MALDI−TOF) C576211SK: calcd 994.2, Found: 995.1 (M+K).HRMS (FAB) C576211SNa: calcd 977.3911, found: m/z 977.3958 (M+Na)
【0090】
実施例7(化合物17 の合成)
【化63】
Figure 2004244583
【0091】
化合物17a(0.94 g, 0.946mmol)のTHF:MeOH(1:1, 10 mL)溶液に、撹拌下、室温で28% NaOMe/MeOH(300 μL)を加えた。その混合物を12時間撹拌後、アンバーライト15(H)樹脂で中和し、不溶性物質を除去し、その濾過液の揮発成分を減圧下で蒸発させた。残留物をシリカゲルクロマトグラフィー(トルエン:EtOAc, 10:1)で精製し、17b(0.904mg, quant)を得た。
H NMR (400MHz, CDCl) δ= 7.51−7.16 (m, 30H, arom,), 5.31(s, 1H, H−1), 5.12(s, 1H, H−1), 1.93 (s, 3H, SMe). 13C NMR(CDCl) δ= 101.05 (C−1), 84.95 (C−1), 13.95 (SMe). MS (MALDI−TOF): calcd for C556010SNa, 936.1 Found: 936.1 (M+Na).; HRMS (FAB) C556010SNa: calcd 935.3805, found: m/z 935.3857 (M+Na)
【0092】
実施例8(化合物7の合成)
【化64】
Figure 2004244583
【0093】
CpHfCl(319.7 mg, 0.842 mmol)、銀トリフラート(661.5 mg 1.685mmol)及びモレキュラーシーブ(10g, タイプ4A)の無水CHCl(15 mL)混合溶液に、撹拌下、−45℃で、グリコシルドナー18(485.0 mg, 0.702 mmol)とグリコシルアクセプタ−17b(622.2 mg, 0.681 mmol)を含む無水CHCl(6 mL)溶液を加えた。この混合物を徐々に周囲温度にまで暖め、1時間撹拌した。不溶性物質をセライトを通して除去し、その濾過液をEtOAcで希釈し、塩水とNaHCO水溶液、塩水で洗浄した。この溶液をNaSOで乾燥させ減圧下で濃縮させた。その残留物をシリカゲルカラムクロマトグラフィー(ヘキサン:EtOAc, 10:1)で精製し化合物7を(979.1 mg, 91%)得た。
【0094】
H NMR (400MHz, C, 25℃) δ=5.88(s, C−1), 5.05(d, J=11.2 Hz, PhCH), 5.00(d, J=11.2 Hz, PhCH), 4.74(d, J=11.2 Hz, PhCH), 4.69(d, J=12.4 Hz, PhCH), 4.59(d, J=11.2 Hz, PhCH), 4.51, 4.48, 4.47, 4.42, 4.39, 4.34, 4.33, 4.31, 4.24, 4.22, 4.05, 3.97, 3.95, 3.92, 3.91, 3.89, 3.87, 3.76, 3.68, 3.65, 1.86(s, 3H, SMe), 1.27(s, 9H, t−Bu).13C NMR (100MHz, C, 25℃) δ=102.02(C−1), 85.34(C−1), 80.17, 80.10, 78.91, 78.24, 75.96, 75.29(CH), 75.09(CH), 73.34, 73.23, 72.71, 72.69, 72.38, 71.89, 71.43, 71.43, 70.32, 69.53, 59.86, 30.06, 27.43(CH), 20.47(CH), 19.62(MeC−), 14.16(CH), 13.72(CH
【0095】
実施例9(化合物21の合成)
【化65】
Figure 2004244583
【0096】
AgOTf(14.8 g, 0.058 mol)、モレキュラシーブ(100 g, タイプ4A)及びアクセプタ−19(5.64 g, 0.0128 mol)を無水ClCHCHCl(100 mL)中、0℃で30分間撹拌後、−30℃に冷やした。その混合物にドナー20(20.2 g, 0.0289 mol)の無水ClCHCHCl(100 mL)溶液を15分間かけて滴下して加えた。反応混合物を−30℃で1時間、そして周囲の温度(12時間)で撹拌した。この反応をTEA(1 mL)によって反応停止させた。この反応混合物をEtOAcで希釈しセルライトを通して濾過した。この濾過液をNaHCO飽和水溶液、塩水で洗浄した。この溶液をNaSOで乾燥させ、減圧下で濃縮した。残留物をシリカゲルクロマトグラフィー(ヘキサン:EtOAc、2:1〜1/3)で精製し、化合物21(21.0 g, 72 %)を得た。
【0097】
H NMR (400MHz, C, 70℃) δ=5.75(s, H−1), 5.54(s, H−1), 5.21(s, C
−1), 4.88(dd, J=8.8 Hz), 4.78, 4.71(d, J=11.2 Hz, PhCH), 4.65(d, J=12.0 Hz, PhCH), 4.63(d, J=11.2 Hz, PhCH), 4.55, 3.93, 3.91, 3.90, 3.85, 3.81, 3.77, 3.74, 3.70, 3.67, 1.86(s, 3H, SMe), 1.25(S, 9H, t−Bu), 13C NMR (100MHz, C, 70℃) δ=102.21(C−1), 100.85(C−1), 85.76(C−1), 80.55, 80.50, 79.39, 78.55,
77.98, 76.43, 76.01, 75.68, 75.47(CH), 75.26(CH), 74.61, 74.09, 73.74(CH), 73.63(CH), 73.28, 73.21, 72.77(CH), 72.54(CH), 72.02(CH), 70.92(CH), 70.75, 70.04, 27.80(CH), 21.48(CH), 19.93(MeC−), 13.92(CH) HRMS (FAB) C9810615SNa: calcd 1605.6979, found: m/z 1605.6919 (M+Na), C9810615S; calcd C, 74.31; H, 6.74. found; C, 73.84; H, 6.78.
【0098】
実施例10(化合物8の合成)
【化66】
Figure 2004244583
【0099】
化合物21(50.1 mg, 0.030 mmol)とNBS(7.5 mg, 0.042 mmol)のCHCl(2mL)溶液に、−40℃で、DAST(4.7 μL, 0.036 mmol)を加えた。反応混合物を−30℃で1時間、さらに周囲温度(12時間)で撹拌した。この反応混合物をEtOAcで希釈しNaHCO飽和水溶液、塩水で洗浄した。その溶液をNaSOで乾燥させ減圧下で濃縮した。残留物をシリカゲルクロマトグラフィー(ヘキサン:EtOAc、2/3)で精製し、化合物8(40.8 mg, 85%)を得た。
H NMR (400MHz, CDCl) δ=7.38−7.29(m, 10H, arom), 5.66 (d, H, H−1), 2.15−2.00(Ac). 13C NMR(CDCl) δ= 170.73−169.10 (C=O), 105.51, 100.08, 99.25, 99.14, 99.08 (C−1) MS (MALDI−TOF) C7291FO39Na: calcd 1622.5, found: 1622.2 (M+Na)
【0100】
実施例11(化合物22 の合成)
【化67】
Figure 2004244583
【0101】
化合物7(65.5 mg, 0.041 mmol)、化合物6(34.3 mg 0.028 mmol)及びモレキュラシーブ(200 mg, タイプ4A)の混合物を無水CHCl(2 ml)中、−40℃で30分間撹拌し、その後、1M メチルトリフラート(MeOTf:0.26 mL, 0.26 mmol)ClCHCHCl溶液を加えた。反応混合物を−40℃で30分間、周囲温度(12時間)で撹拌した。その反応をTEA(0.1 mL)で反応停止させた。その反応混合物をEtOAcで希釈し、セライトを通し濾過した。その濾過液をNaHCO飽和水溶液、及び塩水で洗浄した。その溶液をNaSOで乾燥させ、そして減圧下で濃縮した。残留物をシリカゲルクロマトグラフィー(トルエン:EtOAc, 30:1)で精製し、化合物22a(58.9 mg, 77%)と化合物22aの位置異性体(10.3 mg 13%)を得た。
H NMR(400MHz, CDCl) δ=7.68−6.66(m, arom), 5.53 (m, 1H, CH=CH), 1.16 (s, 9H, t−Bu), 13C NMR(CDCl) δ= 100.00, 99.81, 99.55, 99.02, 97.03, 96.88, 56.58, 55.68; C16817633S: calcd C, 72.60; H, 6.38. found C, 72.51; H, 6.45.
【0102】
実施例12(化合物22 の合成)
【化68】
Figure 2004244583
【0103】
化合物22a(100.0 mg, 0.036mmol)とDMAP(0.5 mg)を含むピリジン(0.12 mL)溶液に、撹拌下、無水酢酸(0.07 mL)を添加した。その混合物を室温で12時間撹拌した。反応混合物にメタノールを添加した。その溶液の揮発成分を減圧下で蒸発させた。その残留物をEtOAcで希釈し、CuSO水溶液、塩水、NaHCO飽和水溶液、塩水で順次洗浄し、乾燥させ(MgSO)そして揮発成分を減圧下蒸発させた。その残留物(化合物22b)は無水CHCNで希釈し、3時間室温でpTosOH一水和物(17.2 mg, 0.09 mmol)を加えた。その反応をTEA (0.1 mL)で反応停止させ、減圧下で濃縮した。残留物をシリカゲルカラムクロマトグラフィー(トルエン:EtOAc、10:1)で精製し化合22c(55.2 mg, 56%)を得た。
H NMR (400MHz, CDCl) δ=7.86−6.74 (m, arom), 5.59 (m, 1H, CH=CH2), 1.95 (s, 3H, Ac), 1.08 (s, 9H, t−Bu), 13C NMR(CDCl) δ= 100.5999.50, 98.04, 97.02, 96.92 (C−1), 56.49, 55.64, 27.20. MS (MALDI−TOF) C164170NaO34: calcd 2763.2, found: 2763.7 (M+Na)
【0104】
実施例13(化合物2 3a の合成)
【化69】
Figure 2004244583
【0105】
AgOTf (74.3 mg, 0.289 mmol)、CpHfCl(54.4 mg, 0.143 mmol) 及びモレキュラシーブ(2 g タイプ4A)の無水トルエン(3 mL)混合溶液を室温で30分撹拌した後、−30℃で冷やした。これを、ドナー8(331.2mg, 0.206 mmol)とアクセプター22c(377.5 mg, 0.138 mmol)を含む無水トルエン(27 mL)溶液を5分間かけて滴下して加えた。反応混合物を3時間−10℃で撹拌した。その反応をTEA(1 mL)で反応停止させた。その反応混合物を、EtOAcで希釈し、そしてセライトを通して濾過した。この濾過液をNaHCO飽和水溶液、塩水で洗浄し、NaSOで乾燥し、そして減圧下で濃縮した。残留物はシリカゲルクロマトグラフィー(ヘキサン:EtOAc、1:1)によって精製し、化合物23a(510.1 mg, 87%)を得た。
H NMR (400MHz, CDCl) δ= 7.75−6.70 (m, arom,), 5.56(m, 1H, CH=CH2), 2.10−1.90(s, 3H*15, Ac), 1.05 (.s, 9H, tBu) 13C NMR(CDCl) δ= 101.119, 9.90, 99.31, 99.08, 98.62, 96.91 (C−1); C23626073S: calcd C, 65.60; H, 6.07, N, 0.65, found; C, 65.56; H, 6.12, N, 0.56.
【0106】
実施例14(化合物23 の合成)
【化70】
Figure 2004244583
【0107】
化合物23a(176.6 mg, 0.041 mmol)とDMAP(1.0 mg)を含むピリジン(1 mL)溶液に、撹拌下、無水酢酸(0.5 mL)を加えた。その混合物を50℃で12時間撹拌した。反応混合物にメタノールを加えた。その溶液の揮発成分を減圧下で蒸発させた。残留物をEtOAcで希釈し、CuSO水溶液、塩水、NaHCO飽和水溶液、塩水で順次洗浄し、乾燥させ(MgSO)そして揮発成分を減圧下蒸発させた。この残留物をシリカゲルクロマトグラフィー(ヘキサン−EtOAc 5:1〜1:3)から精製し、化合物23b(174.0 mg, 98%)を得た。
H NMR (400MHz, CDCl) δ= 7.75−6.70 (m, arom,) 5.58(m, 1H, C=CH), 2.10−1.90(s, 3H×16, Ac), 1.07 (.s, 9H, tBu) MS(MALDI−TOF) C23826274SNa: calcd. 4382.6, found; 4381.3.
【0108】
実施例15(化合物23 の合成)
【化71】
Figure 2004244583
【0109】
1 mLテフロン(登録商標)反応容器に、化合物23b(96.9 mg, 0.022 mmol)をいれ、10%HF/ピリジンを含んだDMF(0.8 mL)中で溶解した。1.0GPaの圧力をかけ、30℃で12時間放置し、得られた混合物をEtOAcで希釈し、続いて、NaHCO飽和水溶液と塩水で洗浄した。有機層をMgSOで乾燥し、そして揮発成分を減圧下蒸発させた。その残留物をシリカゲルクロマトグラフィー(ヘキサン−EtOAc、10:1〜1:2)で精製し、化合物23c(78.9 mg 86%)を得た。
Rf 0.28 (1:1 toluene−EtOAc); H NMR (400 MHz, CDCl) δ: 7.79−6.71 (m, Ar), 5.65−5.54 (1H, m, CH=C), 2.10−1.88 (48H, s (16, Ac); MS(MALDI−TOF) C22224474Na: calcd 4144.5, found: 4144.2 (M+Na), C22224474: calcd C, 64.65; H, 5.96; N, 0.68, found: C, 64.44; H, 5.97; N, 0.65.
【0110】
実施例16(化合物1 の合成)
【化72】
Figure 2004244583
【0111】
化合物23c(28.7 mg, 0.0070mmol)を含む0.5 mL エチレンジアミン含有n−ブタノール(2 mL)溶液を90℃で15時間撹拌した。揮発性物質は減圧下で蒸発することによって除去し、残留物をピリジン(0.3 mL)中に溶解した。この溶液に無水酢酸0.2mLを加えて24時間攪拌したのちに、発性物質は減圧下で蒸発することによって除去した。残留物をMeOH(5 mL)に溶解した後、1N NaOMe/MeOH(0.1 mL)を0℃で添加した。この混合物を60℃で12時間撹拌した後、アンバーライト15(H)樹脂で中和し、揮発成分を減圧下で蒸発させた。残留物をゲル濾過(セファデックスLH20、CHCl:MeOH, 1:1)で精製し、脱アセチル化した化合物を回収し、そして揮発成分を減圧下蒸発させた。残留物を60% AcOH水溶液(5 mL)中で、Pd(OH)(5 mg)の存在下、室温で24時間水素添化した。その混合物をセルライトを通して濾過した。その濾過液を減圧下で濃縮した。残留物をゲル濾過(セファデックスLH20、HO)で精製し、化合物1b(7.3 mg, 54%)を得た。
H NMR (400 MHz, DO) δ5.27, 5.20, 5.17, 5.01, 4.92,4.90, 4.73, 4.45(d, 1H, H−1), 4.36(d, 1H, H−1), 1.93 and 1.88 (s, 3H×2, s, Ac), 1.40 (m, 2H, CH), 0.72 (t, 3H, Me).
【0112】
参考例7(化合物4の合成)
【化73】
Figure 2004244583
【0113】
化合物33(73.0 mg, 0.245mmol)、pMBnCl(41 μL)及びBuNHSO(40 mg)を含むCHCl(4 mL)溶液に、撹拌下、5% NaOH(0.5 mL)水溶液を加えた。この混合物を45℃で12時間撹拌した。反応混合物をCHClで希釈し、NaCl飽和水溶液で洗浄し、乾燥し(NaSO)、そして揮発成分を減圧下で蒸発させた。残留物をPTLC(トルエン:EtOAc、8:1)で精製し、化合物34(53.2mg, 52%)と、レジオ異性体(33.0 mg, 32%)を得た。ピリジン(3 mL)中の化合物34(327.3 mg, 0.782 mmol)溶液に、撹拌下、PivCl(0.57 mL)を加えた。その混合物を室温で12時間撹拌した。反応混合物をMeOH(1 mL)に加えて、揮発成分を減圧下蒸発させた。残留物をEtOAcで希釈し、CuSO水溶液、塩水、NaHCO飽和水溶液で洗浄して、乾燥させ(NaSO)、揮発成分を減圧下で蒸発させた。残留物を2−プロパノール中で結晶化し、化合物4(238 mg, 61%)を得た。
H NMR; (400MHz, CDCl) δ7.42−6.85 (m, 9H, arom), 5.58 (1H, s, benzylidene C), 5.41(t, 1H, H−3) 4.52 (d, 1H, H−1), 3.97(s, 3H, OMe), 2.26(s, 3H, SMe), 1.22(s, 9H, Me); 13C NMR; (100MHz, CDCl) δ100.97(benzylidene), 86.31(C−1), 74.73(C−3), 68.63(C−6), 55.31(OMe), 27.23(tBu), 13.46(SMe); C2734S: calcd C, 64.52; H, 6.92; S, 6.38, found: C, 64.26; H, 6.77,
N, 6.20.
【0114】
実施例17(化合物24)
【化74】
Figure 2004244583
【0115】
化合物23c(44.3 mg, 0.0107 mmol)、化合物4(20.9 mg, 0.0416 mmol)、DTBMP(10.0 mg, 0.049 mmol)及びモレキュラシーブ(500 mg、タイプ4A)を無水ClCHCHCl(1 mL)とシクロへキサン(5 mL)の混合溶液中、室温で1時間、氷冷で30分撹拌し、その後1M MeOTf(0.06 mL, 0.06 mmol)ClCHCHCl溶液を加えた。反応混合物を50℃で12時間撹拌した。その反応をTEA(0.1 mL)で反応停止させた。反応混合物をEtOAcで希釈し、セライトを通して濾過した。その濾過液をNaHCO飽和水溶液、及び塩水で洗浄した。この溶液をNaSOで乾燥させ、減圧下で濃縮した。残留物はPTLC(トルエン:EtOAc、1:2)で精製し、化合物24(41.7 mg, 85%)を得た。
H NMR (400MHz, CDCl) δ=5.74(t, 1H, H−3), 5.58 (m, 1H, C=CH) 3.68 (s, OMe), 2.10−1.88(Ac), 1.71 (s, 9H, Me); C24827481: calcd C, 65.05; H, 6.03; N, 0.61, found: C, 64.51; H, 5.97; N, 0.58.
【0116】
実施例18(化合物2 の合成)
【化75】
Figure 2004244583
【0117】
化合物24(34.7 mg, 0.0076 mmol)の0.5 mL エチレンジアミンを含有したn−ブタノール(5 mL)溶液を80℃で48時間撹拌した。揮発性物質を減圧下で蒸発させることによって除去し、残留物をピリジン(2 mL)中に溶解した。この溶液をAcO(1 mL)で0℃、24時間処理し、揮発成分を減圧下で蒸発させた。残留物をMeOH(5 mL)に溶解し、0℃で1N NaOMe/MeOH(0.1mL)を添加した。この混合物を50℃で12時間撹拌後、アンバーライト15(H)樹脂で中和し、揮発成分を減圧下で蒸発させた。残留物をゲル濾過(セファデックスLH20、CHCl:MeOH, 1:1)によって精製し、脱アセチル化した化合物を回収して、揮発成分を減圧下で蒸発させた。残留物を50% AcOH水溶液中(5 mL)でPd (OH)(10 mg)存在下、室温で24時間水素添化した。この混合物をセルライトで濾過した。この濾過液を減圧下で濃縮した。残留物をゲル濾過(セファデックスLH20、HO)で精製し、化合物2b(8.5 mg, 54%)を得た。
H NMR (400 MHz, DO) δ5.27, 5.20, 5.17, 5.11 (d, 1H, H−1),5.01, 4.92, 4.90, 4.73, 4.45(d, 1H, H−1), 4.36(d, 1H, H−1), 1.93 and 1.89 (s, 3H×2, s, Ac), 1.40 (m, 2H, CH), 0.72 (t, 3H, Me).
【0118】
参考例8(化合物5の合成)
【化76】
Figure 2004244583
【0119】
1 mLテフロン(登録商標)反応容器に化合物33(51.0 mg, 0.171 mol)を入れ、ピリジン(0.75 mL)中に溶解し、PivCl(50 μL)を加えた。1.0Gpaに加圧し、25℃で4時間放置した。得られた混合物をEtOAcで希釈し、CuSO水溶液、塩水、NaHCO飽和水溶液、塩水で順次洗浄し、乾燥させ(NaSO)、そして、揮発成分を減圧下で蒸発させた。残留物をシリカゲルクロマトグラフィー(トルエン/AcOEt=50:1〜10:1)で精製し、75.2 mg (98%)の化合物5を得た。
H NMR; (400MHz, CDCl) δ7.42−7.32 (m, 5H, arom), 5.54 (1H, s, benzylodenC), 5.39(t, 1H, H−3), 5.13(t, 1H, H−2) 4.51 (d, 1H, H−1), 3.60(m, 1H, H−5), 2.20(s, 3H, SMe), 1.19, 1.14(s×2, 18H, Me); 13C NMR; (125MHz, CDCl) δ176.79, 176.52 (C=O), 101.00(benzylidene), 83.84(C−1), 27.22, 27.18(tBu), 11.60 (SMe); HRMS (FAB) C2434S: calcd 489.1923, found: m/z 489.1924 (M+H)
【0120】
実施例19(化合物25の合成)
【化77】
Figure 2004244583
【0121】
化合物23c(37.3 mg, 0.0090 mmol)、化合物5(24.1 mg, 0.0517 mmol)、DTBMP(22.0 mg, 0.1073 mmol)及びモレキュラシーブ(500 mg, タイプ4A)の無水ClCHCHCl(1 mL)混合物を室温で1時間、0℃で30分撹拌し、その後、1M MeOTf(0.09 mL、0.09mmol)ClCHCHCl溶液を加えた。反応混合物を室温で12時間撹拌した。この反応をTEA (0.1 mL)で停止させた。反応混合物をEtOAcで希釈しセルライトを通して濾過した。この濾過液はNaHCO飽和水溶液及び塩水で洗浄した。この溶液をNaSOで乾燥させ、減圧下で濃縮した。残留物をPTLC(トルエン:EtOAc、1:1)で精製し、化合物25(32.9 mg, 81%)を得た。
H NMR (400MHz, CDCl) δ=5.58(m, 1H, C=CH), 5.05 (dd, 1H, H−2G 11−2 7.6Hz) 2.10−1.88(Ac), 1.15, 1.12 (s(2 18H, Me). MS (MALDI−TOF) C24527481: calcd 4565.7. found: 4565.3 (M+Na); C24527481: calcd C, 64.78; H, 6.08; N, 0.62, found: C, 64.32; H, 6.05; N, 0.59.
【0122】
実施例20(化合物3の合成)
【化78】
Figure 2004244583
【0123】
化合物25(34.7 mg, 0.0067 mmol)の0.3mLエチレンジアミンを含んだn−ブタノール(2 mL)溶液を、80℃で60時間撹拌した。揮発性物質を減圧下で蒸発させることによって除去し、この残留物をピリジン(2 mL)に溶解した。この溶液を0℃でAcO(1 mL)を用いて処理し、40℃、24時間撹拌し、揮発成分を減圧下で蒸発させた。残留物をEtOAcで希釈後、CuSO水溶液、塩水、NaHCO飽和水溶液、塩水で順次洗浄し、乾燥させ(NaSO)、揮発成分を減圧下で蒸発させた。残留物を50% AcOH水溶液中(5 mL)でPd(OH)(20 mg)存在下、室温で24時間水素添化した。この混合物をセルライトを通して濾過した。濾過液を減圧下で濃縮した。残留物をMeOH(20 mL)で溶解し、0℃で1N NaOMe/MeOH(0.1mL)を添加した。この混合物を70℃で3時間撹拌し、アンバーライト15(H)樹脂で中和した。樹脂を除去した後に、揮発成分を減圧下で蒸発させた。残留物をゲル濾過(セファデックスLH20、HO)で精製し、化合物3(12.9mg, 92%)を得た。
H NMR (400 MHz, DO) δ5.29, 5.22, 5.20, 5.03, 4.99, 4.95, 4.93, 4.76, 4.51 (d, 1H, H−1), 4.48 (d, 1H, H−1), 4.39 (d, 1H, H−1), 1.96 and 1.92 (s, 3H×2, s, Ac), 1.43 (m, 2H, CH2), 0.75 (t, 3H, Me), MS (MALDI−TOF) C7913461Na, calcd 2110.8, found:.2110.1 (M+Na)
【0124】
実験例( CRT の発現)
ヒトカルレティキュリン(CRT)をコードするDNAのN末端にGSTの一部分をコードしたDNA断片を持つ遺伝子を、pGEX−6P−1プラスミドベクター(Amersham Pharmacia Biotech, Piscataway, NJ)に導入した。このプラスミドを用いて、BL21(DE3)株(Stratagene, La Jolla, CA)を形質転換しタンパク質発現用の形質転換体を得た。タンパク質産生のため、細胞をLB培地で培養した。GST融合タンパク質を、グルタチオンセファロースカラムを用いて細胞溶解物から精製した。この融合タンパク質を、GST融合タンパク質1 mgあたり、3ユニットのプレシジョンプロテアーゼ (Amersham Pharmacia BioTech)を用いて16時間、4℃でインキュベートすることにより切断した。その融合タンパク質分解産物を、第2のグルタチオンセファロースカラムに通すことによってGSTを除去した。このタンパク質はBio−Scale Q2アニオン交換樹脂カラム(Bio Rad)を用いてさらに精製した。
【0125】
【発明の効果】
本発明によれば、ManGlcNAc(化合物1b)、α−GlcManGlcNAc(化合物2b)及びβ−GlcManGlcNAc(化合物3)などの新規高マンノース型糖化合物、あるいはこれに蛍光標識した化合物、その合成方法、その合成において用いられる中間体となる糖ブロック化合物などを提供することができる。このような高マンノース型糖化合物は、生体内におけるタンパク質の品質管理において重要な役割を有していると考えられていることから、その機能の解明に有意義に用いることができる。また、本発明において提供される糖ブロック化合物は、他の多糖化合物の合成にも有用に用いることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel high mannose type sugar compound, a method for producing the same, and an intermediate used for the method. More specifically, the present invention relates to Man9GlcNAc2(Compound 1b), α-Glc1Man9GlcNAc2(Compound 2b), β-Glc1Man9GlcNAc2The present invention relates to a novel high mannose type sugar compound such as (Compound 3), a method for synthesizing the same, and a sugar block compound serving as an intermediate used for the synthesis.
[0002]
[Prior art]
The addition of asparagine-linked glycan chains is one of the important post-translational modifications of proteins. To explore the important role of high mannose oligosaccharides in various aspects of protein quality control, their biological importance is regaining attention. Of particular interest in this regard is the calnexin / calreticulin-glucosyltransferase cycle. Calnexin (CNX) and calreticulin (CRT) are homologs of molecular chaperones that are present in the lumen of the endoplasmic reticulum (ER). Recent studies have shown that the interaction of glycoproteins with CNX / CRT can result in terminal monoglucosylated high mannose glycan chains, especially Glc1Man9GlcNAc2It has become clear that it is mediated by (2a).
[0003]
On the other hand, UDP-glucose: glycoprotein glycosyltransferase (UGGT) functions as a folding sensor, which is incompletely folded, Man-9GlcNAc2Glycoprotein having (1a) is detected and the Glc is detected.1Man9GlcNAc2Return to (2a).
However, the exact role of glycan chains in chaperone recognition is still controversial.
[0004]
[Problems to be solved by the invention]
Therefore, if a high-mannose type sugar compound which is a hypothetical ligand of CNX / CRT, a method for synthesizing the compound, and the like can be provided, the above research will be greatly assisted. However, conventionally, such a synthesis method and the like have not been known.
[0005]
[Means for Solving the Problems]
The present invention has been made in view of the above situation, and according to the present invention, the following formula (A):
Embedded image
Figure 2004244583
(Where R is C1-26Alkyloxy or fluorescent substituent; R1Is a hydrogen atom or a formula R1-1Or R1-2:
Embedded image
Figure 2004244583
And Ac is an acetyl group)
Is provided. This compound is an analog of a natural high-mannose type sugar compound, and is a novel compound synthesized for the first time by the present inventors. As used herein, a compound of formula (A) wherein R is propyloxy;1Is a compound represented by "compound 1b", R1Is R1-1Is represented by "Compound 2b", R1Is R1-2Is referred to as "compound 3."
[0006]
The high mannose type sugar compound can be synthesized by the following production method.
[0007]
(1) By combining a plurality of sugar block compounds, the following formula (A ′):
Embedded image
Figure 2004244583
(Wherein R ′ is a hydroxyl group, C1-26Alkyloxy, asparagine or fluorescent substitutionBaseR1Is a hydrogen atom or the following formula R1-1Or R1-2:
Embedded image
Figure 2004244583
And Ac is an acetyl group), wherein at least one of the plurality of sugar block compounds is represented by the following formula (I): (II) and (III):
Compounds of formula (I)
Embedded image
Figure 2004244583
(Where R2Is a hydrogen atom or an acyl-containing protecting group (preferably an acetyl group);3Is a halogen atom or the following formula R3-1R represents a hydrogen atom, a silyl-containing protecting group (preferably a TBDPS group) or a group represented by the following formula Q ′;4Is a hydrogen atom or an acyl-containing protecting group;6Is a hydrogen atom or the following formula R6-1Or a group represented by R4And R6Are taken together to form a cyclic acetal or cyclic ketal protecting group (preferably a cyclohexylidene group); Bn 'is an arylalkyl-containing protecting group (preferably a benzyl group); and Phth' is an amino protecting group (preferably Phthaloyl group)
Embedded image
Figure 2004244583
(Wherein Bn ′ and Phth ′ are as defined above; QaIs a silyl-containing protecting group (preferably TBDPS), a hydrogen atom, or the above formula: Qa-1Or Qa-2Ph is a phenyl group; Piv 'is an acyl-containing protecting group (preferably a pivaloyl group); PMB' is a substituted benzyl-containing protecting group (preferably a p-methoxybenzyl group); Ac 'is an acyl-containing protecting group (preferably Is an acetyl group); and All ′ is an allyl group or C6-20Aryl C1-26An alkyloxy group)
Compounds of formula (II)
Embedded image
Figure 2004244583
(Where Y1Is an acyl-containing protecting group (preferably an acetyl group), a hydrogen atom, or the following formula:1-1A group represented by;
Y2Is a reactive substituent; and Bn 'is as defined above.
Embedded image
Figure 2004244583
(Wherein Bn 'is as defined above; Y' is a hydrogen atom or a silyl-containing protecting group (preferably TBDPS))
Compound of formula (III)
Embedded image
Figure 2004244583
(Where Z1Is a reactive substituent; Z2Is a silyl-containing protecting group (preferably TBDPS) or a group represented by the following formula: Z ′; Z3Is an arylalkyl-containing protecting group (preferably a benzyl group) or a group represented by the following formula Z ′; and Bn ′ is as defined above.
Embedded image
Figure 2004244583
(In the formula, Ac ′ is as defined above.)
A method for producing a high mannose type sugar compound selected from the group of compounds represented by:
[0008]
(2) a compound of formula (A), wherein R is propyloxy;1Is a hydrogen atom (Compound 1b).
Embedded image
Figure 2004244583
(Wherein Bn 'and Phth' are as defined above; and All is an allyl group)
And a compound represented by the following formula 7 ':
Embedded image
Figure 2004244583
(Where Bn ′ and Y2Is as defined above)
By reacting with a compound represented by the formula (I)2Is a hydrogen atom; R3Is the formula R3-1A group represented by R3-1All 'is an allyl group; Q is a group represented by the formula Q'; Q in the formula Q 'aIs a silyl-containing protecting group; and R4And R63. The method according to claim 2, comprising the step of obtaining a compound that is a cyclohexylidene group (compound 22a ');
(3) The compound 22a 'is subjected to an acetylation treatment and a cyclohexylidene group elimination treatment to obtain a compound of the formula (I) wherein R2Is an acetyl group; R3Is the formula R3-1A group represented by R3-1All 'is an allyl group; Q is a group represented by the formula Q'; Q in the formula: Q 'aIs a silyl-containing protecting group; and R4And R6Is a hydrogen atom (compound 22c '), and compound 22c' is represented by the following formula 8 ':
Embedded image
Figure 2004244583
(Where Ac ′, Bn ′ and Z1Is the same as above)
With a pentasaccharide (compound 8 ') represented by the formula (I)2Is an acetyl group; R3Is the formula R3-1A group represented by R3-1All 'is an allyl group; Q is a group represented by the formula Q'; Q in the formula Q 'aIs a silyl-containing protecting group; and R4Is a hydrogen atom; and R6Is the formula R6-14. The method according to claim 2 or 3, comprising preparing a compound (compound 23a ') which is a group represented by the formula:
(4) The compound of formula (I) is obtained by acetylating the compound 23a '2Is an acetyl group; R3Is the formula R3-1A group represented by R3-1All 'is an allyl group; Q is a group represented by the formula Q'; Q in the formula Q 'aIs a silyl-containing protecting group; and R4Is an acetyl group; and R6Is the formula R6-1The method according to any one of claims 2 to 4, which comprises preparing a compound (compound 23b ') which is a group represented by the formula, and then removing the silyl-containing protecting group in the obtained compound 23b'. (Preparation method of compound 23c);
(5) a compound of formula (A), wherein R is propyloxy;1Is R1-1A method for producing a compound (Compound 2b), which is a group represented by the formula:2Is an acetyl group; R3Is the formula R3-1A group represented by R3-1All 'is an allyl group; Q is a group represented by the formula Q'; Q in the formula: Q 'aIs a hydrogen atom; and R4Is an acetyl group; and R6Is the formula R6-1And a compound represented by the formula (compound 23c):
Embedded image
Figure 2004244583
(Where Ph, Piv 'and PMB' are as defined above; and Y3Is a reactive substituent), the method according to claim 2, comprising a step of reacting with a compound represented by the formula (a method for producing compound 24 ');
(6) a compound of the formula (A), wherein R is propyloxy;1Is R1-2The method for producing a compound (Compound 3) which is a group represented by the formula (I):2Is an acetyl group; R3Is the formula R3-1A group represented by R3-1All 'is an allyl group; Q is a group represented by the formula Q'; Q in the formula: Q 'aIs a hydrogen atom; and R4Is an acetyl group; and R6Is the formula R6-1A compound represented by the formula (compound 23c ') and the following formula 5':
Embedded image
Figure 2004244583
(Where Ph, Piv 'and PMB' are as defined above; and Y33. The method according to claim 2, comprising reacting the compound represented by the formula (1) with a reactive substituent.
[0009]
Next, according to the present invention, a sugar block compound used for producing the high mannose type sugar compound is provided. For example, the following sugar block compound is provided.
[0010]
(1) The following equation (I)
Embedded image
Figure 2004244583
(Where R2Is a hydrogen atom or an acyl-containing protecting group;3Is a halogen atom or the following formula R3-1R represents a hydrogen atom, a silyl-containing protecting group or a group represented by the following formula Q ′;4Is a hydrogen atom or an acyl-containing protecting group;6Is a hydrogen atom or the following formula R6-1Or a group represented by R4And R6Are together a cyclic acetal protecting group or a cyclic ketal protecting group; Bn 'is an arylalkyl-containing protecting group; and Phth' is an amino protecting group.
Embedded image
Figure 2004244583
(Wherein Bn ′ and Phth ′ are as defined above; QaIs a silyl-containing protecting group, a hydrogen atom, or the above formula: Qa-1Or Qa-2Pv 'is an acyl-containing protecting group; PMB' is a substituted benzyl-containing protecting group; Ac 'is an acyl-containing protecting group; and All' is an allyl group or C.6-20Aryl C1-26An alkyloxy group)
A compound represented by the formula:
[0011]
(2) R2Is a hydrogen atom; R3Is a fluorine atom; Q is TBDPS; and R4And R6Is a cyclohexylidene group together (compound 12a);
(3) R2Is an acetyl group; R3Is a fluorine atom; Q is TBDPS; and R4And R6Is a cyclohexylidene group together (compound 12b);
(4) R2Is an acetyl group; R3Is the formula R3-1A group represented by R3-1All 'is an allyl group Q is TBDPS;4And R6Is a cyclohexylidene group together (compound 14);
(5) R2Is a hydrogen atom; R3Is the formula R3-1A group represented by R3-1All 'is an allyl group Q is a hydrogen atom;4And R6Is a cyclohexylidene group together (compound 6) according to the above (1);
(6) R2Is a hydrogen atom; R3Is the formula R3-1A group represented by R3-1Wherein All 'is an allyl group Q is a group represented by the formula Q';aIs TBDPS; and R4And R6Is a cyclohexylidene group together (compound 22a);
[0012]
(7) R2Is an acetyl group; R3Is the formula R3-1A group represented by R3-1Wherein All 'is an allyl group Q is a group represented by the formula Q';aIs TBDPS; and R4And R6Is a cyclohexylidene group together (compound 22b);
(8) R2Is an acetyl group; R3Is the formula R3-1A group represented by R3-1All 'is a group wherein allyl group Q is represented by the formula Q'; Q in the formula: Q 'aIs TBDPS; and R4And R6Is a hydrogen atom (compound 22c);
(9) R2Is an acetyl group; R3Is the formula R3-1A group represented by R3-1Wherein All 'is an allyl group Q is a group represented by the formula Q';aIs TBDPS; and R4Is a hydrogen atom; and R6Is the formula R6-1A compound represented by the formula (1) (compound 23a);
(10) R2Is an acetyl group; R3Is the formula R3-1A group represented by R3-1All 'is an allyl group; Q is a group represented by the formula Q'; Q in the formula Q 'aIs TBDPS; and R4Is an acetyl group; and R6Is the formula R6-1The compound according to the above (1) (compound 23b), which is a group represented by:
[0013]
(11) R2Is an acetyl group; R3Is the formula R3-1A group represented by R3-1All 'is a group wherein allyl group Q is represented by the formula Q'; Q in the formula: Q 'aIs a hydrogen atom; and R4Is an acetyl group; and R6Is the formula R6-1The compound according to the above (1), which is a group represented by the formula (compound 23c);
(12) R2Is an acetyl group; R3Is the formula R3-1A group represented by R3-1In the formula, All 'is an allyl group Q is a group represented by the formula Q';aIs Qa-1And R4Is an acetyl group; and R6Is the formula R6-1The compound according to the above (1) (compound 24), which is a group represented by:
(13) R2Is an acetyl group; R3Is the formula R3-1A group represented by R3-1In the formula, All 'is an allyl group Q is a group represented by the formula Q';aIs Qa-2And R4Is an acetyl group; and R6Is the formula R6-1A compound (compound 25) according to the above (1), which is a group represented by:
[0014]
(14) The following formula (II)
Embedded image
Figure 2004244583
(Where Y1Is an acyl-containing protecting group, a hydrogen atom or the following formula: Y1-1A group represented by;
Y2Is a reactive substituent; and Bn 'is as defined above.
Embedded image
Figure 2004244583
(Wherein, Bn 'is as defined above; Y' is a hydrogen atom or a silyl-containing protecting group)
A compound represented by the formula:
[0015]
(15) Y1Is an acetyl group; and Y2Is a compound according to the above (14), which is a methylthio group (compound 17a);
(16) Y1Is a hydrogen atom; and Y2Is a compound according to the above (14), which is a methylthio group (compound 17b);
(17) Y1Is the formula Y1-1A group represented by the formula: Y1-1Y 'in TBDPS; and Y2Is a compound (compound 7) according to the above (14), which is a methylthio group;
[0016]
(18) The following formula (III)
Embedded image
Figure 2004244583
(Where Z1Is a reactive substituent; Z2Is a silyl-containing protecting group or a group represented by the following formula: Z ′; Z3Is an arylalkyl-containing protecting group or a group represented by the following formula Z '; and Bn' is an arylalkyl-containing protecting group.
Embedded image
Figure 2004244583
(Where Ac 'is an acyl-containing protecting group)
A compound represented by the formula:
[0017]
(19) Z1Is a fluorine atom; Z2Is TBDPS; and Z3Is the benzyl compound (compound 18);
[0018]
(20) Z1Is a phenylthio group; Z2And Z3Is a group represented by Z '(compound 21);
(21) Z1Is a fluorine atom; Z2And Z3Is the group represented by Z '(compound 8).
[0019]
The abbreviations for the substituents, protecting groups and reagents used in the present specification are as follows.
Bn: benzyl
Ac: acetyl
All: allyl
Phth: Phthaloyl
Ph: phenyl
Piv: Pivaloyl
PMB: p-methoxybenzyl
DTBMP: 2,6-di-t-butyl-4-methylpyridine
TBDPS: t-butyldiphenylsilyl
Me: methyl
Et ethyl
Bu butyl
DDQ: 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
MeOTf: methyl triflate (methyl methanesulfonate)
DMAP: 4-dimethylaminopyridine
AgOTf: silver triflate
Cp: cyclopentadienyl
DMF: N, N-dimethylformamide
THF: tetrahydrofuran
TEA: Triethylamine
DAST: diethylaminosulfur trifluoride
NIS: N-iodosuccinimide
pTos: p-toluenesulfonyl
MS4A: Molecular sieve (4Å)
CSA: (1S)-(+) 10-camphor-sulfonic acid
COD: 1,5-cyclooctadiene
NBS: N-bromosuccinimide
Cp2HfCl2: Cyclopentadienyl hafnocene dichloride
TBAF: Tetrabutylammonium fluoride
[0020]
Hereinafter, the present invention will be described in detail.
[0021]
The high-mannose type sugar compound of the present invention is obtained by converting the specific sugar block compound group represented by the above formulas (I), (II) and (III) into the sugar chain structure of the desired final product and the sugar chain structure thereof. This is a method including selecting at least one sugar block compound to be used in consideration of a reaction route for construction, and appropriately reacting them. The sugar block compound used in the present invention has a reactive substituent at a predetermined position in order to construct the sugar chain structure of the final product, and has a predetermined protection for a hydroxyl group and an amino group which need to avoid a reaction. A compound protected by a group.
[0022]
Examples of the hydroxyl-protecting group include, for example, C 5 which may have a substituent.1-6Alkyl (e.g., methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, etc.), phenyl, C7-11Arylalkyl (eg, benzyl, etc.), formyl, C1-6Alkyl-carbonyl (eg, acetyl, propionyl, etc.), phenyloxycarbonyl, C7-11Aralkyloxy-carbonyl (e.g., benzyloxycarbonyl), tetrahydropyranyl, tetrahydrofuranyl, silyl and the like are used. These substituents include a halogen atom (eg, fluorine, chlorine, bromine, iodine, etc.),1-6Alkyl (eg, methyl, ethyl, tert-butyl, etc.), C7-11Aralkyl (eg, benzyl, etc.), C6-10Aryl (eg, phenyl, naphthyl, etc.), nitro and the like are used.
[0023]
In the present specification, the term "acyl-containing protecting group" refers to a protecting group for a hydroxyl group having an acyl group, and includes, for example, acetyl, propionyl, benzoyl and the like. The “arylalkyl-containing protecting group” refers to a protecting group for a hydroxyl group having an arylalkyl, such as benzyl. The term "substituted arylalkyl-containing protecting group" means that an arylalkyl-containing protecting group has 1 to 3 substituents (for example, C1-3Alkoxy) and includes, for example, p-methoxybenzyl. The “silyl-containing protecting group” refers to a protecting group for a hydroxyl group having a silyl group, and includes, for example, trimethylsilyl, triethylsilyl, t-butyldimethylsilyl, t-butyldiphenylsilyl and the like. The “cyclic acetal-based protecting group” refers to a protecting group for a hydroxyl group having a cyclic acetal residue, and examples thereof include isopropylidene acetal and benzylidene acetal. The “cyclic ketal-based protecting group” refers to a protecting group for a hydroxyl group having a cyclic ketal residue, and includes, for example, cyclohexylidene. Hydroxyl protecting groups preferably used in the method of the present invention include benzyl, t-butyl, p-methoxybenzyl, trityl, t-butyldimethylsilyl, triethylsilyl, t-butyldiphenylsilyl, Examples thereof include a methanesulfonyl group, an acetyl group, and a pivaloyl group.
[0024]
As used herein, the term "amino protecting group" refers to a substituent that protects an amino group during the reaction, for example, an amide-containing protecting group such as acetamide and trichloroacetamide, an imide-containing protecting group such as phthaloyl,1-6Alkyl-carbonyl (eg, acetyl, propionyl, etc.), allyl carbamate, C7-20Carbamate-containing protecting groups such as aralkyl carbamates (eg, benzyl carbamate), trityl and the like are used. These substituents include a halogen atom (eg, fluorine, chlorine, bromine, iodine, etc.),1-6Alkyl-carbonyl (eg, acetyl, propionyl, valeryl, etc.), nitro and the like are used. The amino-protecting group particularly preferably used in the present invention is a phthaloyl group.
[0025]
As used herein, the term "reactive substituent" refers to a substituent capable of reacting to bind two kinds of compounds, for example, a halogen atom (eg, chlorine, bromine, fluorine, iodine), C1-10Alkylthio (preferably C1-5Alkylthio), C6-20Arylthio, trichloroacetimidate, pentenyl group and the like.
In the present specification, the term "fluorescent substituent" refers to a substituent capable of emitting fluorescence that serves as a label in various experiments, for example, fluorescin, fluorescin isothiocyanate, a residue of a fluorescent substance such as rhodamine, or (E.g., -NH-, -O-, C)1-10Alkyl and a combination thereof), and examples thereof include a DANSYL group, a BODIPY group, and a Fluorescein group (manufactured by Funakoshi). These fluorescent substituents and the method of introducing them are described in detail in the Funakoshi catalog.
[0026]
Examples of the method for removing the protecting group include known methods such as a method of treating with an acid, a base, ultraviolet light, hydrazine, phenylhydrazine, sodium N-methyldithiocarbamate, tetrabutylammonium fluoride, palladium acetate, or a reduction reaction. A technique is used.
[0027]
In any case, if desired, a known deprotection reaction, acylation reaction, alkylation reaction, hydrogenation reaction, oxidation reaction, reduction reaction, carbon chain extension reaction, and substituent exchange reaction may be used alone or in combination with each other. The intermediate and the final product of the present invention can be produced by performing a combination of two or more. These reactions are described, for example, in Protective groups in organic synthesis Jhon wirey & Sons Inc. New experimental chemistry course 14 [V] (Maruzen).
[0028]
As described above, in the method of the present invention, a desired plurality of oligosaccharide block compounds are selected, and the oligosaccharide block compounds are bonded at desired positions to construct a desired sugar chain. In the present invention, the sugar block compounds particularly preferably used are, for example, the following compounds.
[0029]
Embedded image
Figure 2004244583
[0030]
Further, as the sugar block compound preferably used in the present invention, the following compounds are also exemplified.
(1) In the formula (I), R2Is a hydrogen atom; R3Is the formula R3-1A group represented by R3-1All 'is an allyl group; Q is a group represented by the formula Q'; Q in the formula Q 'aIs TBDPS; and R4And R6Are together a cyclohexylidene group (compound 22a);
(2) In the formula (I), R2Is an acetyl group; R3Is the formula R3-1A group represented by R3-1All 'is an allyl group; Q is a group represented by the formula Q'; Q in the formula Q 'aIs TBDPS; and R4And R6Are together a cyclohexylidene group (compound 22b);
(3) In the formula (I), R2Is an acetyl group; R3Is the formula R3-1A group represented by R3-1All 'is an allyl group; Q is a group represented by the formula Q'; Q in the formula: Q 'aIs TBDPS; and R4And R6Is a hydrogen atom (compound 22c);
(4) In the formula (I), R2Is an acetyl group; R3Is the formula R3-1A group represented by R3-1All 'is an allyl group; Q is a group represented by the formula Q'; Q in the formula Q 'aIs TBDPS; and R4Is a hydrogen atom; and R6Is the formula R6-1A compound represented by the formula (compound 23a);
[0031]
(5) In the formula (I), R2Is an acetyl group; R3Is the formula R3-1A group represented by R3-1All 'is an allyl group; Q is a group represented by the formula Q'; Q in the formula Q 'aIs TBDPS; and R4Is an acetyl group; and R6Is the formula R6-1A compound represented by the formula (compound 23b);
(6) In the formula (I), R2Is an acetyl group; R3Is the formula R3-1A group represented by R3-1All 'is an allyl group; Q is a group represented by the formula Q'; Q in the formula: Q 'aIs a hydrogen atom; and R4Is an acetyl group; and R6Is the formula R6-1A compound which is a group represented by (compound 23c);
(7) In the formula (I), R2Is an acetyl group; R3Is the formula R3-1A group represented by R3-1All 'is an allyl group; Q is a group represented by the formula Q';aIs Qa-1And R4Is an acetyl group; and R6Is the formula R6-1A compound which is a group represented by (compound 24); and
(8) In the formula (I), R2Is an acetyl group; R3Is the formula R3-1A group represented by R3-1All 'is an allyl group; Q is a group represented by the formula Q';aIs Qa-2And R4Is an acetyl group; and R6Is the formula R6-1(Compound 25).
[0032]
In the production method of the present invention, a suitable compound is selected from the above sugar block compounds, and a sugar chain including a protecting group addition reaction, a protecting group elimination reaction, and a coupling reaction of a plurality of sugar block compounds is appropriately selected. Man by combining the extension reaction of9GlcNAc2(Compound 1b), Glc1Man9GlcNAc2(Compound 2b) or β-Glc1Man9GlcNAc2A high mannose type sugar compound selected from (Compound 3) is produced. Such a protective group addition reaction, a protective group elimination reaction, a sugar chain elongation reaction including a coupling reaction of a plurality of sugar block compounds, and the like are described in, for example, Seifert, J. Am. Lengenmuller, M.A. Ito, Y .; Angew. Chem. Int. Ed. Engl. 2000, 39, 531-4, 4th edition Experimental Chemistry Course 26 Organic Synthesis VIII (Maruzen).
Hereinafter, the intermediate of the present invention, the high-mannose type sugar compound as a final product, and the method for producing the same will be specifically described.
[0033]
The sugar block compound as an intermediate of the present invention can be generally synthesized by the following coupling reaction between a glycosyl donor and a glycosyl acceptor.
[0034]
Scheme 1 (Synthesis of Compound (I))
Embedded image
Figure 2004244583
(Where R2, Q, R3, R4, R6, Bn ', Phth' are as defined above; and
Y4Represents a reactive substituent such as halogen, thioalkyl, or thioaryl; provided that a given hydroxyl group is protected with an appropriate protecting group to obtain a desired compound.
[0035]
In Scheme 1, compound (Ia) which is a glycosyl donor and compound (Ib) which is a glycosyl acceptor are reacted in the presence or absence of a solvent to obtain compound (I). This reaction is preferably carried out in the presence of a reaction activator such as methyl triflate, silver triflate, N-iodosuccinimide-trifluoromethanesulfonic acid, dimethylmethylthiosulfonium triflate. More preferably, this reaction is performed in the presence of a dehydrating agent such as molecular sieve, calcium sulfate, and the like. The solvent used in this reaction is not particularly limited as long as the reaction proceeds. Examples thereof include aromatic amines such as pyridine, lutidine, and quinoline; dichloromethane, chloroform, 1,2-dichloroethane, and carbon tetrachloride. Halogenated hydrocarbons; aliphatic hydrocarbons such as hexane, pentane and cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene and chlorobenzene; diethyl ether, diisopropyl ether, diphenyl ether, tetrahydrofuran, dioxane, 1,2 Ethers such as -dimethoxyethane; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; and mixtures of two or more thereof. Particularly preferred solvents in the above reaction are halogenated hydrocarbons such as dichloromethane. This coupling reaction is usually performed at -80 to 100C, more preferably -20 to 45C, for 0.1 to 74 hours, more preferably 1 to 12 hours. Hereinafter, the reaction between the glycosyl donor (GD) and the glycosyl acceptor (GA) is referred to as “GD / GA coupling reaction”.
[0036]
Next, specific reaction schemes, reaction conditions, and the like will be described using the preferred sugar block compounds shown above as examples.
[0037]
Scheme 2 (Synthesis of Compound 6)
Embedded image
Figure 2004244583
[0038]
In scheme 1, first, compound 9 and compound 10, which are known compounds, are reacted in the presence or absence of a suitable solvent to synthesize compound 12a. In this reaction, mixed acetalization is carried out using an appropriate oxidizing agent such as 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). Here, the solvent is selected from the above-mentioned solvents, and a particularly preferred solvent is a halogenated hydrocarbon such as dichloromethane. This treatment is usually performed at -78 to 100 ° C, more preferably 0 to 25 ° C, for 0.1 to 12 hours, more preferably for 1 to 2 hours. Further, an alkyl triflate such as methyl triflate (MeOTf) is reacted with the compound obtained by the treatment in the presence of a suitable solvent and a base such as 2,6-di-tert-butyl-4-methylpyridine. This gives compound 12a. Suitable solvents used here are selected from the above solvents, and particularly preferred are halogenated hydrocarbons such as 1,2-dichloroethane.
[0039]
Next, compound 12a is subjected to an acetylation reaction to obtain compound 12b. Acetylation is performed using an acetylating agent in the presence or absence of a suitable solvent, usually in the presence of a base. Preferred acetylating agents are acetyl chloride or acetic anhydride. When a "base" is used in the present invention, for example, basic salts such as sodium carbonate, potassium carbonate, cesium carbonate, etc., inorganic bases such as sodium hydroxide and potassium hydroxide, pyridine, aromatic amines such as lutidine Tertiary amines such as triethylamine, tripropylamine, tributylamine, cyclohexyldimethylamine, 4-dimethylaminopyridine, N, N-dimethylaniline, N-methylpiperidine, N-methylpyrrolidine, N-methylmorpholine, Alkali metal hydrides such as sodium hydride and potassium hydride; metal amides such as sodium amide, lithium diisopropylamide and lithium hexamethyldisilazide; metals such as sodium methoxide, sodium ethoxide and potassium tert-butoxide It is selected from such Rukokishido class. In the acetylation reaction, pyridine is preferably used. This acetylation reaction is performed at 0 to 120 ° C, preferably 10 to 60 ° C, for 0.1 to 24 hours, preferably 1 to 6 hours.
[0040]
Next, the compound 12b which is a glycosyl donor is reacted with the compound 13 which is a glycosyl acceptor to obtain a compound 14. This reaction is the above GD / GA coupling reaction and can be performed under the same conditions as described above. This reaction is preferably carried out using a halogen-based solvent such as dichloromethane, dicyclopentadienyl-hafnocene dichloride (Cp2HfCl2)-In the presence of a catalyst such as silver triflate and a dehydrating agent such as molecular sieves.
[0041]
Scheme 3 (Synthesis of Compound 7)
Embedded image
Figure 2004244583
[0042]
First, the compound 15 which is a glycosyl acceptor is reacted with the compound 16 which is a glycosyl donor to obtain a compound 17a, and then the compound 17b which is a glycosyl acceptor is reacted with the compound 18 which is a glycosyl donor to obtain a compound 7. These series of reactions are also “GD / GA coupling reactions” and can be performed under the same conditions as described above.
[0043]
Scheme 4 (Synthesis of Compound 8)
Embedded image
Figure 2004244583
[0044]
First, a compound 21 which is a glycosyl acceptor is reacted with a compound 20 which is a glycosyl donor to obtain a compound 21. This reaction is a “GD / GA coupling reaction” and can be performed under the same conditions as described above. Next, the obtained compound 21 is treated in the presence of N-bromosuccinimide and diethylaminosulfatrifluoride (DAST) to obtain compound 8. This treatment is performed, for example, at −60 ° C. to 50 ° C., more preferably −40 ° C. to 30 ° C., for 0.1 to 24 hours, more preferably 0.5 to 12 hours. Hereinafter, this treatment is referred to as “arylthio / halo conversion reaction”.
[0045]
Scheme 5 (Synthesis of Compound 18)
Embedded image
Figure 2004244583
[0046]
Compound 18 is obtained by subjecting compound 32 to the aforementioned “arylthio / halo conversion reaction”.
[0047]
Scheme 6 (Compound 22 a Synthesis of ~ 22c)
Embedded image
Figure 2004244583
[0048]
Compound 22a can be synthesized by subjecting compound 6 and compound 7 to a DG / DA coupling reaction. Compound 22b can be obtained by subjecting compound 22a to acetylation treatment. Compound 22c can be obtained by removing the cyclohexylidene group from compound 22b. Removal of such cyclohexylidene groups can be accomplished by treating compound 22b with an acid such as, for example, p-toluenesulfonic acid (pTosOH) monohydrate. This treatment is usually performed at 0 to 100 ° C, preferably 10 to 30 ° C, for 0.1 to 12 hours, preferably 0.5 to 6 hours.
[0049]
Scheme 7 (Synthesis of Compound 23)
Embedded image
Figure 2004244583
[0050]
Compound 23a can be obtained by subjecting compound 8 as a glycosyl donor and compound 22c as a glycosyl acceptor to a GD / GA coupling reaction. Compound 23b can be obtained by subjecting compound 23a to an acetylation treatment. Compound 23c can be obtained by removing the TBDPS group in compound 23b. To remove the TBDPS group, for example, compound 23b is charged into a pressure-resistant vessel such as a Teflon (registered trademark) reaction vessel, and the compound 23b is dissolved in a solvent such as DMF containing 10% HF / pyridine, and the pressure in the vessel is reduced. For example, it can be carried out by treating at 0.1 to 1.5 GPa, preferably 0.5 to 1.2 GPa, at 25 to 100 ° C. for 1 to 2 hours.
[0051]
(Synthesis of Compounds 24 and 25)
Compound 24 can be obtained by subjecting compound 23c and compound 4 to a DA / DG coupling reaction. Compound 25 can be obtained by subjecting compound 23c and compound 5 to a DA / DG coupling reaction.
[0052]
Synthesis of compounds 1b, 2b and 3
Man, the target compound9GlcNAc2(Compound 1b), Glc1Man9GlcNAc2(Compound 2b) or β-Glc1Man9GlcNAc2(Compound 3) can be obtained by removing all protecting groups of compound 23c, compound 24 and compound 25, respectively. This protective group can be removed by a known method (see Protective groups in organic synthesis Jhon wirely & Sons Inc. New Experimental Chemistry Course 14 [V] (Maruzen)). Specifically, the following treatment is performed on compound 23c, 24, or 25.
(1) treatment with n-butanol containing ethylenediamine (for example, at 0 to 120 ° C, preferably 50 to 90 ° C for 1 to 100 hours, preferably 10 to 70 hours);
(2) treatment with acetic anhydride in pyridine (for example, at -20 ° C to 80 ° C, preferably at -10 ° C to 50 ° C for 0.1 to 48 hours, preferably 1 to 30 hours);
Pd (OH) in (3)2Hydrogenation treatment (for example, at 0 to 100 ° C., preferably 10 to 40 ° C. for 1 to 48 hours, preferably 2 to 30 hours) in the presence of a reducing agent such as
(4) Treatment with NaOMe / MeOH or the like (for example, at -10 ° C to 120 ° C, preferably at -5 ° C to 80 ° C for 1 to 24 hours and 2 to 10 hours)
According to the above method, a compound of the formula (A ') wherein R' is propyloxy is obtained. In the case of synthesizing a compound in which R ′ is another substituent in the formula (A ′), R ′ is converted to a hydroxyl group using a known means, and then C is converted using a known means.1-26Convert to alkyloxy, asparagine or fluorescent substituents (NK Kochetkov et al., Carbohydrate Research, 146 (1986) C1-C5, ID Manger et al., Biochemistry, 31 (1992). -10740 reference).
[0053]
In addition, those skilled in the art can synthesize other compounds represented by the formulas (I), (II) and (III) by referring to the description of the above reaction and the description in Examples. The intermediates and final products obtained by the above reaction can be isolated and purified from the reaction mixture by known means such as concentration, solvent extraction, fractionation, crystallization, recrystallization, chromatography and the like.
[0054]
【Example】
Hereinafter, the present invention will be described more specifically based on examples.
[0055]
Basic procedure
1H andThirteenC-NMR spectra were measured using a JEOL EX-400 spectrometer, unless otherwise specified.3, Me4It was measured based on Si. Silica gel column chromatography was performed using silica gel-60 (E Merck). Analytical TLC (silica gel)254(E Merck) was performed on a glass plate coated. The MALDI-TOF MS spectrum was measured in the positive ion mode by KOMPACT MALDI IV tDE (KARATOS manufactured by Shimadzu Corporation) equipped with a nitrogen laser having an emission wavelength of 337 nm.
[0056]
Example 1 (Compound 12 a Synthesis)
Embedded image
Figure 2004244583
[0057]
2,3-Dichloro-5,6-dicyano 1,4-benzoquinone (DDQ: 67.8 mg, 0.229 mmol) in dichloromethane (CH2Cl2: 1.2 mL) The mixture of the solution and molecular sieve 4A (0.3 g) was stirred while cooling in ice water under argon gas. A dichloromethane solution of the compound 10 (100.0 mg, 0.203 mmol) and the compound 9 (181.8 mg, 0.280 mmol) was added to this mixed solution. The mixture was stirred at room temperature for 2 hours, quenched with an aqueous solution of ascorbic acid (0.7%)-citric acid (1.3%)-NaOH (0.9%), stirred for 5 minutes, and stirred with ethyl acetate ( (EtOAc) and filtered through celite. The filtrate is washed with sodium bicarbonate (NaHCO3) And washed with brine. The organic layer was washed with sodium sulfate (Na2SO4) And the volatile components were evaporated under reduced pressure. The residue (12) is converted to 1,2-dichloroethane (CH2ClCH2Cl: 3.5 mL), mixed with 2,6-di-tert-butyl-4-methylpyridine (160 mg, 0.81 mmol) and molecular sieve 4A (0.6 g) and stirred at room temperature. Next, methyl triflate (MeOTf) CH2ClCH2A Cl solution (1 M, 20 mL, 20 mol) was added at 0 ° C.
[0058]
After the mixture was stirred at 45 ° C. for 12 hours, triethylamine (Et.3N) to quench the reaction, EtOAc, NaHCO3Dilute with aqueous solution and filter through cellulite. The filtrate was washed with water and brine, and dried over magnesium sulfate (MgSO 4).4) And the volatile components were evaporated under reduced pressure. The residue was purified by silica gel column chromatography (toluene: EtOAc, 13: 1) to give compound 12a (164.0 mg, 83%). Hereinafter, the physicochemical properties of the obtained compound are shown.
[0059]
1H NMR (400 MHz, CDCl3) Δ = 7.83-6.83 (m, 24H, Ar), 5.78 (dd, J = 8.0, 53.6 Hz, H-1)1), 4.79 (d, J = 12.4 Hz, PhCH2−), 4.58 (d, J = 12.0 Hz, PhCH2−), 4.42 (d, J = 12.4 Hz, PhCH2−), 4.34−4.29 (m, 2H, H−1)2, H-31), 4.22 (m, H-21), 4.22 (d, J = 12.0, PhCH2−), 4.04 (t, J = 9.6 Hz, H-41), 3.95 (t, J = 9.2 Hz, H-42), 3.72 (dd, J = 5.2, 10.8 Hz, H-62), 3.64 (m, 3H, H-3)2, H-51, H-61), 3.53 (t, J = 10.4, H-62), 3.41 (m, 2H, H-2)2, H-61), 2.83 (m, H-52), 2.57 (s, -OH), 2.04-1.25 (m, 10H, cyclohexylidene), 1.10 (s, 9H, t-Bu); HRMS (FAB) C56H62FNO11SiNa: calcd 994.974, found m / z 994.4001 (M + Na)+.
Example 2 (Synthesis of Compound 12b)
Embedded image
Figure 2004244583
[0060]
Acetic anhydride (2.5 mL) was added to a pyridine (4.3 mL) solution containing compound 12a (1.293 g, .327 mmol) and 4-dimethylaminopyridine (DMAP: 16.5 mg) with stirring. added. The mixture was stirred at 40 ° C. for 2 hours. This reaction mixture was added to methanol. The solvent was evaporated under reduced pressure. The residue was diluted with EtOAc and copper sulfate (CuSO4), Water, brine, NaHCO3Wash with saturated aqueous solution, brine, dry (Na2SO4) And the volatile components were evaporated under reduced pressure. The residue was purified by silica gel chromatography (toluene: EtOAc, 20: 1) to give compound 12b (1.299 g, 96%).
[0061]
[Α]D= + 25.4 (c = 1.1 in chloroform);1H NMR (400 MHz, CDCl3) Δ = 7.75-6.86 (m, 28H, Ar), 5.76 (dd, J = 7.2, 54.0 Hz, H-1)1), 4.94 (d, J = 2.8 Hz, H-22), 4.76 (d, J = 12.0 Hz, PhCH2−), 4.59 (d, J = 12.0 Hz, PhCH2−), 4.37 (s, H−1)2), 4.32 (d, J = 12.4 Hz, PhCH2−), 4.24 (d, J = 12.0 Hz, PhCH2−), 4.21-4.16 (m, 2H, H-2)1, H-31), 3.91 (t, J = 9.6 Hz, H-42), 3.71-3.64 (m, 3H, H-3)2, H-61, H-62), 3.54-3.46 (m, 3H, H-5)1, H-61, H-62), 2.80 (m, H-5)2), 2.14 (s, 3H, Ac), 1.58-1.24 (m, 10H, cyclohexylidene), 1.05 (s, 9H, t-Bu);ThirteenC NMR (CDCl3) = 104.61 (d, J = 212 Hz, C-1)1), 99.76 (cyclohexylidene), 98.96 (C-12), 77.93 (C-41), 77.32, 77.20, 77.00, 76.68, 75.78 (CH2), 75.68 (CH2), 74.48 (PhCH2−), 74.37 (CH2), 74.32 (CH2), 73.50 (PhCH2), 71.99 (C-22), 71.57 (C-32), 70.14 (C-42), 67.86 (C-52), 67.63 (C-61), 61.07 (C-61), 37.83 (CH2), 27.75 (CH2), 25.70 (CH2), 22.67 (CH2), 22.46 (CH2), 26.84 (Me), 21.26 (Me), 19.35 (SiCMe)3); HRMS (FAB) C58H64FNO12SiNa: calcd 1036.4080, found m / z 1036.4131 (M + Na)+.
[0062]
Example 3 (Synthesis of Compound 14)
Embedded image
Figure 2004244583
[0063]
Cp2HfCl2(26.3 mg, 0.069 mmol), silver triflate (35.9 mg, 0.139 mmol) and molecular sieve (1 g, type 4A) in anhydrous CH.2Cl2(3 mL). To this mixture was added glycosyl donor 12b (135.2 mg, 0.133 mmol) and glycosyl acceptor 13 (84.5 mg, 0.160 mmol) in anhydrous CH.2Cl2(6 mL) solution was added at -45 ° C. The mixture was gradually warmed to -10 C and stirred for 4 hours. Insoluble material was removed by passing through celite, the filtrate was diluted with EtOAc, and brine, NaHCO 33Washed sequentially with an aqueous solution and brine.
The solution is Na2SO4And concentrated under reduced pressure. The residue was purified by silica gel chromatography (toluene: EtOAc, 12: 1) to give compound 14 (173.3 mg, 85%).
[0064]
Rf 0.13 (3: 1 hexane-EtOAc) [α]D= + 2.3 (c 0.55 in chloroform);1H NMR (400 MHz, CDCl3) Δ = 7.76-6.71 (m, 38H, Ar), 5.58 (m, CH2= CHCH2−), 5.16 (d, J = 7.8 Hz, H−1)1 or 2), 4.97 (m, CH2= CHCH2−), 4.95 (d, J = 7.3 Hz, H−11 or 2), 4.94 (m, H-2)3), 4.91 (ddd, J = 1.4, 1.4, 10.5 Hz, CH2= CHCH2−), 4.79 (d, J = 12.9 Hz, PhCH2), 4.78 (d, J = 12.2 Hz, PhCH2), 4.47 (s, 2H, PhCH2), 4.41 (d, J = 12.4 Hz, PhCH2), 4.41 (s, H-1).3), 4.40 (d, J = 11.9 Hz, PhCH2), 4.32 (d, J = 12.2 Hz, PhCH2), 4.19 (d, J = 11.9 Hz, PhCH2), 4.14-4.07 (m, 6H, H-2)1,2, H-31,2, H-41 or 2, CH2= CHCH2−), 3.99 (t, J = 9.7 Hz, H-41 or 2), 3.89 (t, J = 9.5 Hz, H-43), 3.86 (ddd, J = 6.3, 1.4, 14.6 Hz, CH2= CHCH2-), 3.70-3.63 (m, 2H, H-33, H-63), 3.53-3.42 (m, 3H, H-6)1,2, H-63), 3.36 (dd, J = 3.9, 10.9 Hz, H-61 or 2), 3.27-3.24 (m, 2H, H-5)1 or 2, H-61 or 2), 3.05 (dd, J = 10.0 Hz, H-51 or 2), 2.78 (m, H-53), 2.15 (s, 3H, Ac), 1.56 (m, 10H, cyclohexylidene), 1.05 (s, 9H, t-Bu);ThirteenC NMR (CDCl3) Δ = 99.63 (cyclohexylidene), 98.79 (C-1)3), 96.96 (C-11 or 2), 96.76 (C-11 or 2), 78.36 (C-41 or 2), 77.20, 76.51, 75.67, 74.43, 74.32, 74.20, 72.87 (PhCH2), 72.72 (PhCH2), 72.03 (-OCH2CH = CH2), 71.65 (C-33), 70.15 (C-43), 69.42 (-OCH2CH = CH2), 68.10 (C-61 or 2), 67.80 (C-53), 67.34 (C-61 or 2), 61.06 (C-63), 56.46 (CH2), 55.63 (CH2), 37.77 (CH2), 27.73 (CH2), 26.81 (CH2), 25.65 (CH2), 22.61 (CH2), 22.40 (CH2), 21.23 (Me), 19.30 (SiCMe)3); C89H94N2O19Si: calcd C 70.15 H 6.22, found C 70.30 H 6.23.
[0065]
Example 4 (Synthesis of Compound 6)
Embedded image
Figure 2004244583
[0066]
To a solution of compound 14 (201.9 mg, 0.132 mmol) and acetic acid (16 μL) in DMF (1.6 mL) was added, with stirring, 1M TBAF in THF (264 μL).
The mixture was stirred at room temperature for 12 hours. The reaction mixture was diluted with EtOAc, washed with brine, dried (Na2SO4) And the volatile components were evaporated under reduced pressure. The residue was separated and purified by TLC (hexane: EtOAc, 1: 1), and the acetylated compound at the 3-position (54.3 mg, 32%) and the acetylated compound at the 2-position (85.7 mg, 50%) Got. To a solution of the compound (406.0 mg, 0.315 mmol) at the 3-position acetylated in THF / MeOH (1/1, 10 mL) was added 1 N NaOMe / MeOH (0.1 mL) at 0 ° C. The mixture was stirred at room temperature for 12 hours and Amberlite 15 (H+) Neutralized with resin and volatiles were evaporated under reduced pressure. The residue was purified by silica gel chromatography (hexane: EtOAc, 2: 1) to give compound 6 (293.4 mg, 75%).
1H NMR (400 MHz, CDCl3) Δ = 7.69-6.76 (m, 28H, Ar), 5.59 (m, CH2= CHCH2−), 5.26 (d, J = 8.4 Hz, H−1)1 or 2), 4.99 (ddd, J = 1.6, 1.6, 17.2 Hz, CH2= CHCH2−), 4.97 (d, J = 8.4 Hz, H−1)1 or 2), 4.68 (s, H-1).3), 437 (dd, J = 8.4, 10.4 Hz, H-31 or 2), 3.28 (m, 2H, H-5)1,2), 2.95 (m, H-53), 1.57 (m, 10H, cyclohexylidene);ThirteenC NMR (CDCl3) Δ = 100.23 (cyclohexylidene), 99.85 (C-13), 97.05 (C-12), 96.85 (C-11), 75.57 (C-53), 56.54, 55.70. C71H74N2O18  : Calcd C 68.59 H 6.00, found C68.18 H 6.01.
[0067]
Reference Example 1 (Synthesis of Compound 27)
Embedded image
Figure 2004244583
[0068]
Compound 27 (27.1 mg, 0.075 mmol), BnBr (10 μL), and Bu4NHSO4CH containing2Cl2To the (2 mL) solution was added a 5% aqueous NaOH solution (0.1 mL) with stirring. The mixture was stirred at 45 ° C. for 12 hours. The solution is diluted with EtOAc, washed with a saturated aqueous solution of NaCl, dried (MgSO4) And the volatile components were evaporated under reduced pressure. The residue was purified by silica gel chromatography (toluene: EtOAc, 8: 1) to give compound 28 (20.6 mg, 61%). Physical data for this compound were completely consistent with those previously reported (Cherim, S .; Clavell, J.-M .; Monneret, CJ. Carbohydr. Chem. 1998, 17, 1203-1218).
[0069]
1H NMR (400 MHz, CDCl3) = 7.51-7.30 (m, 15H, Ar), 5.59 (s, 1H, CH), 5.58 (s, 1H, H-1), 4.77-4.63 ( m, 2H, PhCH2−), 4.33 (m, H-5), 4.22 (dd, H-4), 4.21 (m, 2H, H-2, H-6e), 3.40 (t, 1H, H-6a), 3.84 (t, 1H, H-3).
[0070]
Reference Example 2 (Synthesis of Compound 28)
Embedded image
Figure 2004244583
[0071]
To a DMF (26 mL) solution containing compound 27 (1.27 g, 2.83 mmol) and aryl bromide (490 μL), NaH (170 mg, 4.24 mmol) was added at 0 ° C. with stirring. The mixture was stirred at room temperature for 12 hours. TEA (1 mL) was added to the reaction mixture, and the mixture was stirred for 1 hour.4A saturated aqueous solution of Cl was added. The mixture was diluted with EtOAc, washed with brine, dried (Na2SO4), Volatile components were evaporated under reduced pressure. The residue was purified by silica gel chromatography (hexane: EtOAc, 10: 1) to give compound 28 (1.32 g, 95%).
1H NMR (400 MHz, CDCl3) Δ = 7.51-7.25 (m, 15H, Ar), 5.90 (m, CH2= CHCH2-), 5.62 (s, 1H, PhCH), 5.52 (s, 1H, H-1), 4.76-4.75 (2H, PhCH)2−), 4.30-4.25 (4H, H-5, H-6, CH2), 4.23-4.08 (2H, H-2, H-6), 3.91-3.85 (2H, H-3, H-4);ThirteenC NMR (CDCl3) = 101.45 (PhCH) 87.19 (C-1), 79.24 (C-3), 79.05, 78.05, 75.88, 73.09, 71.94, 68.51. , 65.40; C29H30O5S: calcd C 71.00, H 6.16, found C 71.07, H 6.18.
[0072]
Reference Example 3 (Compound 29)
Embedded image
Figure 2004244583
[0073]
To a solution of compound 28 (750 mg, 1.54 mmol) in methanol (24 mL) was added CSA (35.9 mg, 0.15 mmol) at room temperature with stirring for 3 hours. The reaction was quenched with TEA (1 mL) and concentrated under reduced pressure. The residue was purified by silica gel chromatography (toluene: EtOAc, 3: 1) to give compound 29 (620 mg, 99%).
[0074]
Rf 0.33 (1: 1 toluene-EtOAc).
1H NMR (400 MHz, CDCl3) Δ = 7.43-7.44 (m, 10H, Ar), 5.83 (m, CH2= CHCH2−), 5.51 (d, J = 1.6 Hz, H−1), 5.24 (ddd, J = 17.2 1.6 3.2 Hz, CH2= CHCH2−), 5.17 (ddd, J = 10.4 1.6 2.6 2.8 Hz, CH2= CHCH2−), 4.61 (d, 2H, J = 12.4 Hz, PhCH2−), 4.06 (m, H-5), 4.02 (dd, H-4), 3.98 (m, H-2), 3.98 (ddd, J = 1.6 Hz, CH)2= CHCH2−), 3.89 (ddd, J = 1.2, 5.6 12.4 Hz, CH2= CHCH2−), 3.83 (dd, J = 3.6, 11.6 Hz, H-6), 3.77 (dd, J = 5.2 11.6 Hz, H-6), 3.56 ( dd, J = 3.2 9.2 Hz, H-3);ThirteenC NMR (CDCl3) = 86.05 (C-1), 79.24 (C-3), 75.17 (C-2), 73.19 (C-5), 67.31 (C-4), 62. 78 (C-6); C22H26O5S: calcd C 65.65, H 6.51; found C 65.34, H 6.60.
[0075]
Reference Example 4 (Synthesis of Compound 30)
Embedded image
Figure 2004244583
[0076]
NaH (220 mg, 5.58 mmol) was added to a DMF (10 mL) solution containing compound 29 (620 mg, 1.54 mmol) and BnBr (910 μL, 7.70 mmol) at 0 ° C. with stirring. . The mixture was stirred at room temperature for 12 hours. TEA (1 mL) was added to the reaction mixture, and the mixture was stirred for 1 hour.4A saturated aqueous solution of Cl was added. The mixture was diluted with EtOAc, washed with brine, dried (Na2SO4), Volatile components were evaporated under reduced pressure. The residue was purified by silica gel column chromatography (hexane: EtOAc, 20: 1) to give compound 30 (0.72 g, 80%).
[0077]
Rf 0.18 (20: 1 hexane-EtOAc); [α]D= + 92.9 (c = 0.96 in chloform);1H NMR (400 MHz, CDCl3) Δ = 7.46-7.22 (m, 20H, Ar), 5.92 (m, CH2= CHCH2−), 5.61 (d, J = 1.2 Hz, H−1), 5.32 (ddd, J = 1.4, 3.1, 14.3 Hz, CH)2= CHCH2−), 5.19 (ddd, J = 1.7, 10.2 Hz, CH2= CHCH2−), 4.89 (d, J = 10.7 Hz, PhCH2−), 4.76 (d, J = 12.4 Hz, PhCH2−), 4.67 (d, J = 11.9 Hz, PhCH2−), 4.64 (d, J = 11.7 Hz, PhCH2−), 4.52 (d, J = 10.7 Hz, PhCH2−), 4.48 (d, J = 11.9 Hz, PhCH2−), 4.27 (m, H-5), 4.04 to 3.99 (m, 4H, H-2, H-4, CH2= CHCH2−), 3.83 (dd, J = 5.1, 10.7 Hz, H-6), 3.76 (dd, J = 3.1, 9.2 Hz, H-6), 3.74 (Dd, J = 1.9, 10.9 Hz, H = 3);ThirteenC NMR (CDCl3) = 85.78 (C-1), 79.87 (C-3), 76.19 (C-2), 75.20 (PhCH)2−), 74.94 (C-4), 73.26 (PhCH2−), 72.70 (C-5), 71.89 (PhCH2−), 71.03 (CH2= CHCH2-), 69.21 (C-6); C36H38O5S: calcd C 74.20, H 6.57, found C 74.06, H 6.56
[0078]
Reference Example 5 (Synthesis of Compound 31)
Embedded image
Figure 2004244583
[0079]
1,5 cyclooctadiene bismethyldiphenylphosphine iridium hexafluorophosphate ([Ir (COD) [PCH3(C6H5)2]] PF6: 10.4 mg, 0.012 mmol) in anhydrous THF (10 mL).2The mixture was stirred until the color disappeared. The solution is concentrated to 5 mL and the flask is2Purged. Thereafter, a solution of compound 30 (398.3 mg, 0.683 mmol) was added and the mixture was stirred for 1 hour, diluted with EtOAc and concentrated under reduced pressure. The residue was dissolved in 90% acetone aqueous solution and HgCl2(463.9 mg, 1.709 mmol): Treated with HgO (59.2 mg, 0.273 mmol) for 2 hours. The mixture is CHCl3And then washed with a 10% KI aqueous solution and brine. The solution was added to MgSO4And concentrated under reduced pressure. The residue was purified by silica gel chromatography (hexane: EtOAc, 7: 1) to give compound 31 (300.1 mg, 80%).
[0080]
Rf 0.18 (10: 1 hexane-EtOAc);1H NMR (400 MHz, CDCl3) Δ = 7.49-7.22 (m, 20H, Ar), 5.67 (s, H-1), 4.86 (d, J = 11.2, PhCH2−), 4.76 (d, J = 11.6, PhCH2−), 4.65 (d, J = 11.6, PhCH2−), 4.55 (d, J = 10.8, PhCH2−), 4.51 (d, J = 12.0, PhCH2−), 4.48 (d, J = 12.0, PhCH2−), 4.28 (ddd, J = 2.4, 4.8, 10.0 Hz, H-5), 4.00 (s, H-2), 3.99 (dd, J = 3. 6, H-3), 3.84 (dd, J = 4.8, 11.2 Hz, H-6), 3.80 (dd, J = 8.4, 9.6 Hz, H-4) , 3.74 (dd, J = 2.0, 10.8 Hz, H-6);ThirteenC NMR (CDCl3) = 84.95 (C-1), 79.67 (C-2), 76.75 (C-4), 74.87 (PhCH)2−), 73.30 (PhCH2−), 72.28 (C-3), 72.17 (PhCH2-), 71.99 (C-5), 69.07 (C-6); C33H34O5S: calcd C 73.04, H 6.31, found C 72.70 H 6.52.
[0081]
Reference Example 6 (Compound 32)
Embedded image
Figure 2004244583
[0082]
Compound 31 (300.1 mg, 0.553 mmol) and TBDPSCI (280 μL, 1.10 mmol) in anhydrous acetonitrile (CH3To the solution (CN: 8 mL) was added imidazole (110 mg, 1.65 mmol) at room temperature under stirring. The reaction mixture was stirred for 12 hours, diluted with EtOAc and then 2N HCl and brine, NaHCO3Washed with aqueous solution and brine. The solution was added to MgSO4And concentrated under reduced pressure. The residue was purified by silica gel chromatography (hexane: EtOAc, 20: 1) to give compound 32 (431.9 mg, quant).
[0083]
Rf 0.46 (20: 1 hexane-EtOAc); [α]D= + 113.9 (c = 0.81 in chloroform);1H NMR (400 MHz, CDCl3) Δ = 7.79-7.15 (m, 30H, Ar), 5.29 (s, H-1), 4.60 (d, J = 12.0, PhCH2−), 4.45 (d, J = 12.0, PhCH2−), 4.32 (d, J = 11.6, PhCH2−), 4.32 (m, H-3), 4.25 (d, J = 11.2, PhCH2−), 1.20 (m, H-5), 4.08 (m, H-4), 3.83 (dd, J = 5.2, 10.8 Hz, H-6), 3.69 (D, J = 10.0 Hz, H-6), 3.29 (s, H-2), 1.22 (s, 9H, t-Bu-);ThirteenC NMR (CDCl3) = 85.37 (C-1), 79.79 (C-2), 76.34 (C-4), 75.08 (PhCH)2−), 74.10 (C-3), 73.19 (PhCH2−), 72.84 (C-5), 71.85 (PhCH2−). 69.40 (C-6), 27.28 (Me3C-), 19.46 (Me3C-); HRMS (FAB) C49H52O5SSiNa: calcd 803.3322, found: m / z 803.3210 (M + Na)+.
[0084]
Example 5 (Synthesis of Compound 18)
Embedded image
Figure 2004244583
[0085]
CH of compound 32 (1.099 g, 1.407 mmol) and NBS (0.501 g, 2.811 mmol)2Cl2DAST (370 μL, 2.800 mmol) was added to the solution at −40 ° C. The mixture was gradually warmed to −15 ° C. and stirred for 12 hours. After the reaction mixture was diluted with EtOAc, NaHCO3Washed with saturated aqueous solution and brine. The solution was added to MgSO4And concentrated under reduced pressure. The residue was purified by silica gel chromatography (hexane: toluene, 1: 1) to give compound 18 (0.485 g, 50%).
[0086]
Rf 0.47 (20: 1 hexane-EtOAc); [α]D= + 113.9 (c = 0.81 in chloroform);1H NMR (400 MHz, CDCl3) Δ = 7.79-7.15 (m, 30H, Ar), 5.29 (s, H-1), 4.60 (d, J = 12.0, PhCH2−), 4.45 (d, J = 12.0, PhCH2−), 4.32 (d, J = 11.6, PhCH2−), 4.32 (m, H-3), 4.25 (d, J = 11.2, PhCH2−), 1.20 (m, H-5), 4.08 (m, H-4), 3.83 (dd, J = 5.2, 10.8 Hz, H-6), 3.69 (D, J = 10.0 Hz, H-6), 3.29 (s, H-2), 1.22 (s, 9H, t-Bu-);ThirteenC NMR (CDCl3) = 85.37 (C-1), 79.79 (C-2), 76.34 (C-4), 75.08 (PhCH)2−), 74.10 (C-3), 73.19 (PhCH2−), 72.84 (C-5), 71.85 (PhCH2−). 69.40 (C-6), 27.28 (Me3C-), 19.46 (Me3C-); HRMS (FAB) C49H52O5SSiNa: calcd 803.3322, found: m / z 803.3210 (M + Na)+.
[0087]
Example 6 (Compound 17 a Synthesis)
Embedded image
Figure 2004244583
[0088]
AgOTf (3.30 g, 12.85 mmol) and molecular sieve (15 g, type 4A) were stirred in anhydrous toluene (10 mL) at 0 ° C for 30 minutes, and then cooled at -30 ° C. Anhydrous ClCH containing donor 16 (3.00 mg, 5.87 mmol) and acceptor 15 (2.00 g, 4.61 mmol)2CH2A Cl (40 mL) solution was added dropwise for 5 minutes. The reaction mixture was stirred at −30 ° C. for 1 hour and brought to ambient temperature (12 hours). The reaction was quenched with TEA (1 mL). The reaction mixture was diluted with EtOAc and filtered through cellulite. The filtrate is washed with NaHCO3Washed with saturated aqueous solution and brine. The solution is2SO4And concentrated under reduced pressure. The residue was purified by silica gel chromatography (toluene: EtOAc, 50: 1 to 15/1) to give compound 17a (3.22 g, 8.1%).
[0089]
1H NMR (400 MHz, CDCl3) Δ = 5.51 (d, J = 2.0 Hz), 5.26, 5.04 (d, J = 1.6 Hz), 4.84 (d, 2H, J = 10.8 Hz) , 2.12 (s, 3H, SMe), 2.00 (s, 3H, Ac).ThirteenC NMR (CDCl3) Δ = 169.87 (C = O), 99.52 (C-1)2), 84.74 (C-11), 68.70 (C-22), 21.24 (Ac), 13.91 (SMe). MS (MALDI-TOF) C57H62O11SK: calcd 994.2, Found: 995.1 (M + K)+. HRMS (FAB) C57H62O11SNa: calcd 977.3911, found: m / z 977.3958 (M + Na)+.
[0090]
Example 7 (Compound 17 b Synthesis)
Embedded image
Figure 2004244583
[0091]
To a solution of compound 17a (0.94 g, 0.946 mmol) in THF: MeOH (1: 1, 10 mL) was added 28% NaOMe / MeOH (300 μL) at room temperature with stirring. After stirring the mixture for 12 hours, Amberlite 15 (H+) Neutralized with resin to remove insoluble material and the volatile components of the filtrate were evaporated under reduced pressure. The residue was purified by silica gel chromatography (toluene: EtOAc, 10: 1) to give 17b (0.904 mg, quant).
1H NMR (400 MHz, CDCl3) Δ = 7.51-7.16 (m, 30H, arom,), 5.31 (s, 1H, H-1).1), 5.12 (s, 1H, H-1)2), 1.93 (s, 3H, SMe).ThirteenC NMR (CDCl3) Δ = 101.05 (C-1)2), 84.95 (C-11), 13.95 (SMe). MS (MALDI-TOF): calcd for C55H60O10SNa, 936.1 Found: 936.1 (M + Na)+. HRMS (FAB) C55H60O10SNa: calcd 935.3805, found: m / z 935.3857 (M + Na)+.
[0092]
Example 8 (Synthesis of Compound 7)
Embedded image
Figure 2004244583
[0093]
Cp2HfCl2(319.7 mg, 0.842 mmol), silver triflate (661.5 mg 1.685 mmol) and molecular sieve (10 g, type 4A) in anhydrous CH2Cl2(15 mL) Anhydrous CH containing glycosyl donor 18 (485.0 mg, 0.702 mmol) and glycosyl acceptor-17b (622.2 mg, 0.681 mmol) was added to the mixed solution at −45 ° C. with stirring.2Cl2(6 mL) solution was added. The mixture was gradually warmed to ambient temperature and stirred for 1 hour. The insoluble material was removed through celite, the filtrate was diluted with EtOAc, and brine and NaHCO3Washed with aqueous solution and brine. This solution is2SO4And concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane: EtOAc, 10: 1) to give compound 7 (979.1 mg, 91%).
[0094]
1H NMR (400 MHz, C6D6, 25 ° C.) δ = 5.88 (s, C-1), 5.05 (d, J = 11.2 Hz, PhCH2), 5.00 (d, J = 11.2 Hz, PhCH2), 4.74 (d, J = 11.2 Hz, PhCH2), 4.69 (d, J = 12.4 Hz, PhCH2), 4.59 (d, J = 11.2 Hz, PhCH2), 4.51, 4.48, 4.47, 4.42, 4.39, 4.34, 4.33, 4.31, 4.24, 4.22, 4.05, 3.97, 3.95, 3.92, 3.91, 3.89, 3.87, 3.76, 3.68, 3.65, 1.86 (s, 3H, SMe), 1.27 (s, 9H) , T-Bu).ThirteenC NMR (100 MHz, C6D6, 25 ° C) δ = 102.02 (C-1), 85.34 (C-1), 80.17, 80.10, 78.91, 78.24, 75.96, 75.29 (CH2), 75.09 (CH2), 73.34, 73.23, 72.71, 72.69, 72.38, 71.89, 71.43, 71.43, 70.32, 69.53, 59.86, 30.06. 27.43 (CH3), 20.47 (CH3), 19.62 (Me3C-), 14.16 (CH3), 13.72 (CH3)
[0095]
Example 9 (Synthesis of Compound 21)
Embedded image
Figure 2004244583
[0096]
AgOTf (14.8 g, 0.058 mol), molecular sieve (100 g, type 4A) and acceptor-19 (5.64 g, 0.0128 mol) were treated with anhydrous ClCH.2CH2After stirring in Cl (100 mL) at 0 ° C for 30 minutes, it was cooled to -30 ° C. The mixture was mixed with donor 20 (20.2 g, 0.0289 mol) in anhydrous ClCH.2CH2A Cl (100 mL) solution was added dropwise over 15 minutes. The reaction mixture was stirred at −30 ° C. for 1 hour and at ambient temperature (12 hours). The reaction was quenched with TEA (1 mL). The reaction mixture was diluted with EtOAc and filtered through cellulite. The filtrate is washed with NaHCO3Washed with saturated aqueous solution and brine. This solution is2SO4And concentrated under reduced pressure. The residue was purified by silica gel chromatography (hexane: EtOAc, 2: 1 to 1/3) to give compound 21 (21.0 g, 72%).
[0097]
1H NMR (400 MHz, C6D6, 70 ° C) δ = 5.75 (s, H-1), 5.54 (s, H-1), 5.21 (s, C
-1), 4.88 (dd, J = 8.8 Hz), 4.78, 4.71 (d, J = 11.2 Hz, PhCH2), 4.65 (d, J = 12.0 Hz, PhCH2), 4.63 (d, J = 11.2 Hz, PhCH2), 4.55, 3.93, 3.91, 3.90, 3.85, 3.81, 3.77, 3.74, 3.70, 3.67, 1.86 (s, 3H, SMe), 1.25 (S, 9H, t-Bu),ThirteenC NMR (100 MHz, C6D6, 70 ° C) δ = 102.21 (C-1), 100.85 (C-1), 85.76 (C-1), 80.55, 80.50, 79.39, 78.55,
77.98, 76.43, 76.01, 75.68, 75.47 (CH2), 75.26 (CH2), 74.61, 74.09, 73.74 (CH2), 73.63 (CH2), 73.28, 73.21, 72.77 (CH2), 72.54 (CH2), 72.02 (CH2), 70.92 (CH2), 70.75, 70.04, 27.80 (CH3), 21.48 (CH3), 19.93 (Me3C-), 13.92 (CH3) HRMS (FAB) C98H106OFifteenSNa: calcd 1605.6799, found: m / z 1605.6919 (M + Na)+, C98H106OFifteenS; calcd C, 74.31; H, 6.74. found, C, 73.84; H, 6.78.
[0098]
Example 10 (Synthesis of Compound 8)
Embedded image
Figure 2004244583
[0099]
CH of compound 21 (50.1 mg, 0.030 mmol) and NBS (7.5 mg, 0.042 mmol)2Cl2To the (2 mL) solution was added DAST (4.7 μL, 0.036 mmol) at −40 ° C. The reaction mixture was stirred at −30 ° C. for 1 hour and further at ambient temperature (12 hours). The reaction mixture was diluted with EtOAc and NaHCO3Washed with saturated aqueous solution and brine. The solution is2SO4And concentrated under reduced pressure. The residue was purified by silica gel chromatography (hexane: EtOAc, 2/3) to give compound 8 (40.8 mg, 85%).
1H NMR (400 MHz, CDCl3) Δ = 7.38-7.29 (m, 10H, arom), 5.66 (d,1H, H-1), 2.15-2.00 (Ac).ThirteenC NMR (CDCl3) Δ = 170.73-169.10 (C = O), 105.51, 100.08, 99.25, 99.14, 99.08 (C-1) MS (MALDI-TOF) C72H91FO39Na: calcd 1622.5, found: 1622.2 (M + Na)+.
[0100]
Example 11 (Compound 22 a Synthesis)
Embedded image
Figure 2004244583
[0101]
A mixture of compound 7 (65.5 mg, 0.041 mmol), compound 6 (34.3 mg 0.028 mmol) and molecular sieve (200 mg, type 4A) was treated with anhydrous CH.2Cl2(2 ml) and stirred at −40 ° C. for 30 minutes, then 1M methyl triflate (MeOTf: 0.26 mL, 0.26 mmol) ClCH2CH2A Cl solution was added. The reaction mixture was stirred at −40 ° C. for 30 minutes at ambient temperature (12 hours). The reaction was quenched with TEA (0.1 mL). The reaction mixture was diluted with EtOAc and filtered through celite. The filtrate is washed with NaHCO3Washed with saturated aqueous solution and brine. The solution is2SO4And concentrated under reduced pressure. The residue was purified by silica gel chromatography (toluene: EtOAc, 30: 1) to give compound 22a (58.9 mg, 77%) and the positional isomer of compound 22a (10.3 mg 13%).
11 H NMR (400 MHz, CDCl3) Δ = 7.68-6.66 (m, arom), 5.53 (m, 1H, CH = CH)2), 1.16 (s, 9H, t-Bu),ThirteenC NMR (CDCl3) Δ = 100.00, 99.81, 99.55, 99.02, 97.03, 96.88, 56.58, 55.68; C168H176N2O33S: calcd C, 72.60; H, 6.38. found C, 72.51; H, 6.45.
[0102]
Example 12 (Compound 22 c Synthesis)
Embedded image
Figure 2004244583
[0103]
Acetic anhydride (0.07 mL) was added to a pyridine (0.12 mL) solution containing compound 22a (100.0 mg, 0.036 mmol) and DMAP (0.5 mg) with stirring. The mixture was stirred at room temperature for 12 hours. Methanol was added to the reaction mixture. The volatile components of the solution were evaporated under reduced pressure. The residue was diluted with EtOAc and CuSO4Aqueous solution, brine, NaHCO3Wash sequentially with saturated aqueous solution and brine, dry (MgSO 44) And the volatile components were evaporated under reduced pressure. The residue (compound 22b) is treated with anhydrous CH.3Dilute with CN and add pTosOH monohydrate (17.2 mg, 0.09 mmol) at room temperature for 3 hours. The reaction was quenched with TEA (0.1 mL) and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (toluene: EtOAc, 10: 1) to give compound 22c (55.2 mg, 56%).
1H NMR (400 MHz, CDCl3) Δ = 7.86-6.74 (m, arom), 5.59 (m, 1H, CH = CH2), 1.95 (s, 3H, Ac), 1.08 (s, 9H, t-) Bu),ThirteenC NMR (CDCl3) Δ = 100.59,99.50, 98.04, 97.02, 96.92 (C-1), 56.49, 55.64, 27.20. MS (MALDI-TOF) C164H170N2NaO34: Calcd 2763.2, found: 2763.7 (M + Na)+.
[0104]
Example 13 (Compound 2 3a Synthesis)
Embedded image
Figure 2004244583
[0105]
AgOTf (74.3 mg, 0.289 mmol), Cp2HfCl2(54.4 mg, 0.143 mmol) and a mixed solution of molecular sieve (2 g type 4A) in anhydrous toluene (3 mL) were stirred at room temperature for 30 minutes, and then cooled at -30 ° C. To this, an anhydrous toluene (27 mL) solution containing donor 8 (331.2 mg, 0.206 mmol) and acceptor 22c (377.5 mg, 0.138 mmol) was added dropwise over 5 minutes. The reaction mixture was stirred at -10 C for 3 hours. The reaction was quenched with TEA (1 mL). The reaction mixture was diluted with EtOAc and filtered through celite. The filtrate is washed with NaHCO3Wash with saturated aqueous solution, brine and Na2SO4And concentrated under reduced pressure. The residue was purified by silica gel chromatography (hexane: EtOAc, 1: 1) to give compound 23a (510.1 mg, 87%).
1H NMR (400 MHz, CDCl3) = 7.75-6.70 (m, arom,), 5.56 (m, 1H, CH = CH2), 2.10-1.90 (s, 3H * 15, Ac), 1.05 (.S, 9H, tBu)ThirteenC NMR (CDCl3) Δ = 101.119, 9.90, 99.31, 99.08, 98.62, 96.91 (C-1); C236H260N2O73S: calcd C, 65.60; H, 6.07, N, 0.65 found; C, 65.56; H, 6.12, N, 0.56.
[0106]
Example 14 (Compound 23 b Synthesis)
Embedded image
Figure 2004244583
[0107]
Acetic anhydride (0.5 mL) was added to a pyridine (1 mL) solution containing compound 23a (176.6 mg, 0.041 mmol) and DMAP (1.0 mg) with stirring. The mixture was stirred at 50 ° C. for 12 hours. Methanol was added to the reaction mixture. The volatile components of the solution were evaporated under reduced pressure. The residue was diluted with EtOAc and CuSO4Aqueous solution, brine, NaHCO3Wash sequentially with saturated aqueous solution and brine, dry (MgSO 44) And the volatile components were evaporated under reduced pressure. The residue was purified by silica gel chromatography (hexane-EtOAc 5: 1 to 1: 3) to give compound 23b (174.0 mg, 98%).
1H NMR (400 MHz, CDCl3) Δ = 7.75-6.70 (m, arom,) 5.58 (m, 1H, CH= CH2), 2.10-1.90 (s, 3H x 16, Ac), 1.07 (.s, 9H, tBu) MS (MALDI-TOF) C238H262N2O74SNa: calcd. 4382.6 found; 4381.3.
[0108]
Example 15 (Compound 23 c Synthesis)
Embedded image
Figure 2004244583
[0109]
Compound 23b (96.9 mg, 0.022 mmol) was placed in a 1 mL Teflon (registered trademark) reaction vessel, and dissolved in DMF (0.8 mL) containing 10% HF / pyridine. A pressure of 1.0 GPa was applied and left at 30 ° C. for 12 hours, the resulting mixture was diluted with EtOAc, followed by NaHCO 33Washed with saturated aqueous solution and brine. Organic layer MgSO4And the volatiles were evaporated under reduced pressure. The residue was purified by silica gel chromatography (hexane-EtOAc, 10: 1 to 1: 2) to give compound 23c (78.9 mg 86%).
Rf 0.28 (1: 1 toluene-EtOAc);1H NMR (400 MHz, CDCl3) Δ: 7.79-6.71 (m, Ar), 5.65-5.54 (1H, m, CH)2= CH), 2.10-1.88 (48H, s (16, Ac); MS (MALDI-TOF) C222H244N2O74Na: calcd 4144.5, found: 4144.2 (M + Na)+, C222H244N2O74: Calcd C, 64.65; H, 5.96; N, 0.68, found: C, 64.44; H, 5.97; N, 0.65.
[0110]
Example 16 (Compound 1 b Synthesis)
Embedded image
Figure 2004244583
[0111]
A 0.5 mL ethylenediamine-containing n-butanol (2 mL) solution containing the compound 23c (28.7 mg, 0.0070 mmol) was stirred at 90 ° C. for 15 hours. Volatiles were removed by evaporation under reduced pressure and the residue was dissolved in pyridine (0.3 mL). After 0.2 mL of acetic anhydride was added to this solution and stirred for 24 hours, the evolving substance was removed by evaporating under reduced pressure. After dissolving the residue in MeOH (5 mL), 1 N NaOMe / MeOH (0.1 mL) was added at 0 ° C. After the mixture was stirred at 60 ° C. for 12 hours, Amberlite 15 (H+) Neutralized with resin and volatile components were evaporated under reduced pressure. The residue was subjected to gel filtration (Sephadex LH20, CHCl3: MeOH, 1: 1), the deacetylated compound was recovered and the volatiles were evaporated under reduced pressure. The residue was dissolved in Pd (OH) in 60% aqueous AcOH (5 mL).2(5 mg) at room temperature for 24 hours. The mixture was filtered through cellulite. The filtrate was concentrated under reduced pressure. The residue was subjected to gel filtration (Sephadex LH20, H2O) to give compound 1b (7.3 mg, 54%).
1H NMR (400 MHz, D2O) δ 5.27, 5.20, 5.17, 5.01, 4.92, 4.90, 4.73, 4.45 (d, 1H, H-12), 4.36 (d, 1H, H-11), 1.93 and 1.88 (s, 3H × 2, s, Ac), 1.40 (m, 2H, CH)2), 0.72 (t, 3H, Me).
[0112]
Reference Example 7 (Synthesis of Compound 4)
Embedded image
Figure 2004244583
[0113]
Compound 33 (73.0 mg, 0.245 mmol), pMBnCl (41 μL) and BuNHSO4CH containing (40 mg)2Cl2To the (4 mL) solution was added a 5% NaOH (0.5 mL) aqueous solution with stirring. The mixture was stirred at 45 ° C. for 12 hours. The reaction mixture is CHCl3, Washed with a saturated aqueous solution of NaCl, dried (Na2SO4) And the volatile components were evaporated under reduced pressure. The residue was purified by PTLC (toluene: EtOAc, 8: 1) to give compound 34 (53.2 mg, 52%) and the regio isomer (33.0 mg, 32%). To a solution of compound 34 (327.3 mg, 0.782 mmol) in pyridine (3 mL) was added PivCl (0.57 mL) with stirring. The mixture was stirred at room temperature for 12 hours. The reaction mixture was added to MeOH (1 mL) and the volatile components were evaporated under reduced pressure. The residue was diluted with EtOAc and CuSO4Aqueous solution, brine, NaHCO3Wash with saturated aqueous solution, dry (Na2SO4), Volatile components were evaporated under reduced pressure. The residue was crystallized in 2-propanol to give compound 4 (238 mg, 61%).
1H NMR; (400 MHz, CDCl3) Δ 7.42-6.85 (m, 9H, arom), 5.58 (1H, s, benzylidene C)H), 5.41 (t, 1H, H-3) 4.52 (d, 1H, H-1), 3.97 (s, 3H, OMe), 2.26 (s, 3H, SMe), 1 .22 (s, 9H, Me);ThirteenC NMR; (100 MHz, CDCl3) 100.97 (benzylidene), 86.31 (C-1), 74.73 (C-3), 68.63 (C-6), 55.31 (OMe), 27.23 (tBu), 13 .46 (SMe); C27H34O7S: calcd C, 64.52; H, 6.92; S, 6.38, found: C, 64.26; H, 6.77,
N, 6.20.
[0114]
Example 17 (Compound 24)
Embedded image
Figure 2004244583
[0115]
Compound 23c (44.3 mg, 0.0107 mmol), compound 4 (20.9 mg, 0.0416 mmol), DTBMP (10.0 mg, 0.049 mmol) and molecular sieve (500 mg, type 4A) Anhydrous ClCH2CH2In a mixed solution of Cl (1 mL) and cyclohexane (5 mL), the mixture was stirred at room temperature for 1 hour and ice-cooled for 30 minutes, and then 1M MeOTf (0.06 mL, 0.06 mmol) ClCH2CH2A Cl solution was added. The reaction mixture was stirred at 50 ° C. for 12 hours. The reaction was quenched with TEA (0.1 mL). The reaction mixture was diluted with EtOAc and filtered through celite. The filtrate is washed with NaHCO3Washed with saturated aqueous solution and brine. This solution is2SO4And concentrated under reduced pressure. The residue was purified by PTLC (toluene: EtOAc, 1: 2) to give compound 24 (41.7 mg, 85%).
1H NMR (400 MHz, CDCl3) Δ = 5.74 (t, 1H, H-3)G), 5.58 (m, 1H, CH= CH2) 3.68 (s, OMe), 2.10-1.88 (Ac), 1.71 (s, 9H, Me); C248H274N2O81: Calcd C, 65.05; H, 6.03; N, 0.61, found: C, 64.51; H, 5.97; N, 0.58.
[0116]
Example 18 (Compound 2 b Synthesis)
Embedded image
Figure 2004244583
[0117]
A solution of Compound 24 (34.7 mg, 0.0076 mmol) in n-butanol (5 mL) containing 0.5 mL of ethylenediamine was stirred at 80 ° C for 48 hours. Volatiles were removed by evaporation under reduced pressure and the residue was dissolved in pyridine (2 mL). This solution is2Treated with O (1 mL) at 0 ° C. for 24 hours and the volatiles were evaporated under reduced pressure. The residue was dissolved in MeOH (5 mL) and at 0 ° C. 1N NaOMe / MeOH (0.1 mL) was added. After the mixture was stirred at 50 ° C. for 12 hours, Amberlite 15 (H+) Neutralized with resin and volatile components were evaporated under reduced pressure. The residue was subjected to gel filtration (Sephadex LH20, CHCl3: MeOH, 1: 1), the deacetylated compound was recovered and the volatile components were evaporated under reduced pressure. The residue was taken up in 50% aqueous AcOH (5 mL) with Pd (OH)2(10 mg) in the presence of hydrogen at room temperature for 24 hours. The mixture was filtered over cellulite. The filtrate was concentrated under reduced pressure. The residue was subjected to gel filtration (Sephadex LH20, H2O) to give compound 2b (8.5 mg, 54%).
1H NMR (400 MHz, D2O) δ 5.27, 5.20, 5.17, 5.11 (d, 1H, H-1G), 5.01, 4.92, 4.90, 4.73, 4.45 (d, 1H, H-1).2), 4.36 (d, 1H, H-11), 1.93 and 1.89 (s, 3H × 2, s, Ac), 1.40 (m, 2H, CH)2), 0.72 (t, 3H, Me).
[0118]
Reference Example 8 (Synthesis of Compound 5)
Embedded image
Figure 2004244583
[0119]
Compound 33 (51.0 mg, 0.171 mol) was placed in a 1 mL Teflon (registered trademark) reaction vessel, dissolved in pyridine (0.75 mL), and PivCl (50 μL) was added. It was pressurized to 1.0 Gpa and left at 25 ° C. for 4 hours. The resulting mixture was diluted with EtOAc and CuSO4Aqueous solution, brine, NaHCO3Wash sequentially with saturated aqueous solution and brine, dry (Na2SO4) And the volatile components were evaporated under reduced pressure. The residue was purified by silica gel chromatography (toluene / AcOEt = 50: 1 to 10: 1) to give 75.2 mg (98%) of compound 5.
1H NMR; (400 MHz, CDCl3) Δ 7.42-7.32 (m, 5H, arom), 5.54 (1H, s, benzyloxy C)H), 5.39 (t, 1H, H-3), 5.13 (t, 1H, H-2) 4.51 (d, 1H, H-1), 3.60 (m, 1H, H-). 5), 2.20 (s, 3H, SMe), 1.19, 1.14 (sx2, 18H, Me);ThirteenC NMR; (125 MHz, CDCl3) 176.79, 176.52 (C = O), 101.00 (benzylidene), 83.84 (C-1), 27.22, 27.18 (tBu), 11.60 (SMe); HRMS ( FAB) C24H34O7S: calcd 489.1923, found: m / z 489.1924 (M + H)+.
[0120]
Example 19 (Synthesis of Compound 25)
Embedded image
Figure 2004244583
[0121]
Compound 23c (37.3 mg, 0.0090 mmol), Compound 5 (24.1 mg, 0.0517 mmol), DTBMP (22.0 mg, 0.1073 mmol) and molecular sieve (500 mg, type 4A) Anhydrous ClCH2CH2The Cl (1 mL) mixture was stirred at room temperature for 1 hour and at 0 ° C. for 30 minutes before 1M MeOTf (0.09 mL, 0.09 mmol) ClCH2CH2A Cl solution was added. The reaction mixture was stirred at room temperature for 12 hours. The reaction was stopped with TEA (0.1 mL). The reaction mixture was diluted with EtOAc and filtered through cellulite. The filtrate is NaHCO3Washed with saturated aqueous solution and brine. This solution is2SO4And concentrated under reduced pressure. The residue was purified by PTLC (toluene: EtOAc, 1: 1) to give compound 25 (32.9 mg, 81%).
1H NMR (400 MHz, CDCl3) Δ = 5.58 (m, 1H, CH= CH2), 5.05 (dd, 1H, H-2)G 1J1-2  7.6 Hz) 2.10-1.88 (Ac), 1.15, 1.12 (s (218H, Me). MS (MALDI-TOF) C245H274N2O81: Calcd 4565.7. found: 4565.3 (M + Na)+C245H274N2O81: Calcd C, 64.78; H, 6.08; N, 0.62, found: C, 64.32; H, 6.05; N, 0.59.
[0122]
Example 20 (Synthesis of Compound 3)
Embedded image
Figure 2004244583
[0123]
A solution of compound 25 (34.7 mg, 0.0067 mmol) in 0.3 mL ethylenediamine in n-butanol (2 mL) was stirred at 80 ° C. for 60 hours. Volatiles were removed by evaporation under reduced pressure and the residue was dissolved in pyridine (2 mL). This solution was cooled to Ac at 0 ° C.2Treated with O (1 mL), stirred at 40 ° C. for 24 hours, and evaporated the volatiles under reduced pressure. After dilution of the residue with EtOAc, CuSO4Aqueous solution, brine, NaHCO3Wash sequentially with saturated aqueous solution and brine, dry (Na2SO4), Volatile components were evaporated under reduced pressure. Pd (OH) in 50% AcOH aqueous solution (5 mL)2(20 mg) at room temperature for 24 hours. The mixture was filtered through cellulite. The filtrate was concentrated under reduced pressure. The residue was dissolved with MeOH (20 mL) and at 0 ° C. 1N NaOMe / MeOH (0.1 mL) was added. The mixture was stirred at 70 ° C. for 3 hours and Amberlite 15 (H+) Neutralized with resin. After removing the resin, the volatile components were evaporated under reduced pressure. The residue was subjected to gel filtration (Sephadex LH20, H2O) to give compound 3 (12.9 mg, 92%).
1H NMR (400 MHz, D2O) δ 5.29, 5.22, 5.20, 5.03, 4.99, 4.95, 4.93, 4.76, 4.51 (d, 1H, H-1)G), 4.48 (d, 1H, H-1)2), 4.39 (d, 1H, H-1)1), 1.96 and 1.92 (s, 3H x 2, s, Ac), 1.43 (m, 2H, CH2), 0.75 (t, 3H, Me), MS (MALDI-TOF) C79H134N2O61Na, calcd 2110.8, found :. 2110.1 (M + Na)+.
[0124]
Experimental example ( CRT Expression)
A gene having a DNA fragment encoding a portion of GST at the N-terminus of DNA encoding human calreticulin (CRT) was introduced into a pGEX-6P-1 plasmid vector (Amersham Pharmacia Biotech, Piscataway, NJ). Using this plasmid, BL21 (DE3) strain (Stratagene, La Jolla, CA) was transformed to obtain a transformant for protein expression. Cells were cultured in LB medium for protein production. The GST fusion protein was purified from the cell lysate using a glutathione Sepharose column. The fusion protein was cleaved by incubation with 4 units of precision protease (Amersham Pharmacia BioTech) per mg of GST fusion protein for 16 hours at 4 ° C. GST was removed by passing the fusion protein degradation product over a second glutathione sepharose column. This protein was further purified using a Bio-Scale Q2 anion exchange resin column (Bio Rad).
[0125]
【The invention's effect】
According to the present invention, Man9GlcNAc2(Compound 1b), α-Glc1Man9GlcNAc2(Compound 2b) and β-Glc1Man9GlcNAc2It is possible to provide a novel high-mannose type sugar compound such as (Compound 3), or a compound labeled with the same, a method for synthesizing the compound, a sugar block compound serving as an intermediate used in the synthesis, and the like. Since such a high-mannose type sugar compound is considered to have an important role in quality control of proteins in a living body, it can be used significantly for elucidation of its function. Further, the sugar block compound provided in the present invention can be usefully used for synthesizing other polysaccharide compounds.

Claims (28)

下記式(A):
Figure 2004244583
(式中、Rは、C1−26アルキルオキシ又は蛍光性置換基;Rは、水素原子又は下記式R1−1もしくはR1−2
Figure 2004244583
で示される基;そしてAcはアセチル基である)
で表わされる高マンノース型糖化合物。
The following formula (A):
Figure 2004244583
(Wherein R is C 1-26 alkyloxy or a fluorescent substituent; R 1 is a hydrogen atom or the following formula R 1-1 or R 1-2 :
Figure 2004244583
And Ac is an acetyl group)
A high mannose type sugar compound represented by the formula:
複数の糖ブロック化合物を組み合わせて、下記式(A’):
Figure 2004244583
(式中、R’は、水酸基、C1−26アルキルオキシ、アスパラギン又は蛍光性置換;Rは、水素原子、又は下記式R1−1もしくはR1−2
Figure 2004244583
で示される基;そしてAcはアセチル基である)で表される高マンノース型糖化合物を製造する方法であって、上記複数の糖ブロック化合物のうち少なくとも1種の化合物が下記式(I)、(II)及び(III):
式(I)の化合物
Figure 2004244583
(式中、Rは水素原子又はアシル含有保護基;Rはハロゲン原子又は下記式R3−1で示される基;Qは水素原子、シリル含有保護基又は下記式Q’で示される基;Rは水素原子又はアシル含有保護基;Rは水素原子又は下記式R6−1で示される基;あるいはRとRは一緒になって環状アセタール系保護基又は環状ケタール系保護基;Bn’はアリールアルキル含有保護基;そしてPhth’はアミノ保護基である)
Figure 2004244583
(式中、Bn’及びPhth’は上記と同義;Qはシリル含有保護基、水素原子、又は上記式:Qa−1もしくはQa−2示される基;Phはフェニル基;Piv’はアシル含有保護基;PMB’は置換ベンジル含有保護基;Ac’はアシル含有保護基;そしてAll’はアリル基又はC6−20アリールC1−26アルキルオキシである)
式(II)の化合物
Figure 2004244583
(式中、Yはアシル含有保護基、水素原子又は下記式:Y1−1で示される基;
は反応性置換基;そしてBn’は上記と同義である)
Figure 2004244583
(式中、Bn’は上記と同義;Y’は水素原子又はシリル含有保護基である)
式(III)の化合物
Figure 2004244583
(式中、Zは反応性置換基;Zはシリル含有保護基又は下記式:Z’で示される基;Zはアリールアルキル含有保護基又は下記式Z’で示される基;そしてBn’は上記と同義である)
Figure 2004244583
(式中、Ac’は上記と同義である)
で表される化合物群から選択される高マンノース型糖化合物を製造する方法。
By combining a plurality of sugar block compounds, the following formula (A ′):
Figure 2004244583
(Wherein, R 'represents a hydroxyl group, C 1-26 alkyloxy, asparagine or fluorescent substituent; R 1 is hydrogen atom, or the following formula R 1-1 or R 1-2:
Figure 2004244583
And Ac is an acetyl group), wherein at least one of the plurality of sugar block compounds is represented by the following formula (I): (II) and (III):
Compounds of formula (I)
Figure 2004244583
(Wherein, R 2 is a hydrogen atom or an acyl-containing protecting group; R 3 is a halogen atom or a group represented by the following formula R 3-1 ; Q is a hydrogen atom, a silyl-containing protecting group, or a group represented by the following formula Q ′) R 4 is a hydrogen atom or an acyl-containing protecting group; R 6 is a hydrogen atom or a group represented by the following formula R 6-1 ; or R 4 and R 6 are taken together to form a cyclic acetal protecting group or a cyclic ketal protecting group. Bn 'is an arylalkyl-containing protecting group; and Phth' is an amino protecting group.
Figure 2004244583
(Wherein, Bn ′ and Phth ′ are as defined above; Qa is a silyl-containing protecting group, a hydrogen atom, or a group represented by the above formula: Qa -1 or Qa -2 ; Ph is a phenyl group; Piv ′ is An acyl-containing protecting group; PMB ′ is a substituted benzyl-containing protecting group; Ac ′ is an acyl-containing protecting group; and All ′ is an allyl group or a C 6-20 arylC 1-26 alkyloxy group.
Compounds of formula (II)
Figure 2004244583
(Wherein Y 1 is an acyl-containing protecting group, a hydrogen atom or a group represented by the following formula: Y 1-1 ;
Y 2 is a reactive substituent; and Bn ′ is as defined above.
Figure 2004244583
(Wherein, Bn ′ is as defined above; Y ′ is a hydrogen atom or a silyl-containing protecting group)
Compound of formula (III)
Figure 2004244583
(Wherein, Z 1 is a reactive substituent; Z 2 is a silyl-containing protecting group or a group represented by the following formula: Z ′; Z 3 is an arylalkyl-containing protecting group or a group represented by the following formula Z ′; and Bn 'Is the same as above)
Figure 2004244583
(Where Ac ′ is as defined above)
A method for producing a high mannose type sugar compound selected from the group of compounds represented by the formula:
式(A)の化合物であって、Rがプロピルオキシ;そしてRが水素原子である化合物(化合物1b)を製造する方法であって、下記式6’:
Figure 2004244583
(式中、Bn’、Phth’は上記と同義;そしてAllはアリル基である)
で表される化合物と下記式7’:
Figure 2004244583
(式中、Bn’及びYは上記と同意義である)
で表される化合物とを反応させて、式(I)の化合物であって、Rが水素原子;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式Q’中のQがシリル含有保護基;そしてRとRが一緒になってシクロヘキシリデン基である化合物(化合物22a’)を得る工程を含む前記請求項2に記載の方法。
A method for producing a compound of the formula (A), wherein R is propyloxy; and R 1 is a hydrogen atom (compound 1b), comprising the following formula 6 ′:
Figure 2004244583
(Wherein Bn ′ and Phth ′ are as defined above; and All is an allyl group)
And a compound represented by the following formula 7 ′:
Figure 2004244583
(Wherein Bn ′ and Y 2 are as defined above)
Is reacted with a compound represented by the formula (I), wherein R 2 is a hydrogen atom; R 3 is a group represented by the formula R 3-1 ; All ′ in R 3-1 is allyl groups; obtain compound is then R 4 and cyclohexylidene groups R 6 together (compound 22a '); Q a silyl containing protecting group in; Q is' wherein Q group represented by' the formula Q 3. The method of claim 2, comprising the steps of:
前記化合物22a’をアセチル化処理及びシクロヘキシリデン基の脱離処理に供し、式(I)の化合物であって、Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式:Q’中のQがシリル含有保護基;そしてRとRが水素原子である化合物(化合物22c’)を調製し、化合物22c’と下記式8’:
Figure 2004244583
(式中、Ac’、Bn’及びZは上記と同義である)
で表されるペンタサッカライド(化合物8’)とを反応させて、式(I)の化合物であって、Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式Q’中のQがシリル含有保護基;そしてRが水素原子;そしてRが式R6−1で示される基である化合物(化合物23a’)を調製する工程を含む前記請求項2又は3に記載の方法。
Subjecting the compound 22a 'desorption process acetylation process and cyclohexylidene group, a compound of formula (I), R 2 is an acetyl group; group R 3 of the formula R 3-1; R in 3-1 All 'is allyl; Q has the formula Q' group represented by; formula: Q a in Q 'is a silyl containing protecting group; and compound R 4 and R 6 is a hydrogen atom (compound 22c ') Was prepared by compound 22c' and the following formula 8 ':
Figure 2004244583
(Wherein, Ac ′, Bn ′ and Z 1 are as defined above)
By reacting with a pentasaccharide (compound 8 ′) represented by the formula (I), wherein R 2 is an acetyl group; R 3 is a group represented by the formula R 3-1 ; R 3-1 All 'allyl group; Q is wherein Q'in; Q a silyl containing protecting group in the formula Q '; and R 4 is a hydrogen atom; a group represented by and R 6 are represented by the formula R 6-1 The method according to claim 2 or 3, comprising a step of preparing a compound that is a group (compound 23a ′).
前記化合物23a’をアセチル化して、式(I)の化合物であって、Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式Q’中のQがシリル含有保護基;そしてRがアセチル基;そしてRが式R6−1で示される基である化合物(化合物23b’)を調製し、その後、得られた化合物23b’中のシリル含有保護基を脱離する工程を含む上記請求項2〜4のいずれかに記載の方法。'By acetylation of a compound of formula (I), R 2 is an acetyl group All in R 3-1;; group represented by R 3 has the formula R 3-1' the compound 23a is allyl; Q a silyl containing protecting group in; and R 4 is an acetyl group;; Q is' wherein Q group represented by 'the formula Q is a group and R 6 is represented by the formula R 6-1 (compound 23b' The method according to any one of claims 2 to 4, which comprises the step of preparing the compound (23) and then removing the silyl-containing protecting group in the obtained compound 23b '. 式(A)の化合物であって、Rがプロピルオキシ;そしてRがR1−1で示される基である化合物(化合物2b)を製造する方法であって、式(I)の化合物であって、Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式:Q’中のQが水素原子;そしてRがアセチル基;そしてRが式R6−1で示される基である化合物(化合物23c)と、下記式4’:
Figure 2004244583
(式中、Ph、Piv’、PMB’は上記と同義;そしてYは反応性置換基)で表される化合物とを反応させる工程を含む上記請求項2に記載の方法。
A method for producing a compound of the formula (A), wherein R is propyloxy; and R 1 is a group represented by R 1-1 (compound 2b), which is a compound of the formula (I). R 2 is an acetyl group; R 3 is a group represented by the formula R 3-1 ; All ′ in R 3-1 is an allyl group; Q is a group represented by the formula Q ′; a is a hydrogen atom; and R 4 is an acetyl group; and R 6 is a group represented by the formula R 6-1 (compound 23c);
Figure 2004244583
(Wherein, Ph, Piv ', PMB' is as defined above; and Y 3 is reactive substituent) The method according to claim 2 comprising the step of reacting a compound represented by.
式(A)の化合物であって、Rがプロピルオキシ;そしてRがR1−2で示される基である化合物(化合物3)を製造する方法であって、式(I)の化合物であって、Rがアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式:Q’中のQが水素原子;そしてRがアセチル基;そしてRが式R6−1で示される基である化合物(化合物23c’)と、下記式5’:
Figure 2004244583
(式中、Ph,及びPiv’は上記と同義;そしてYは反応性置換基)
で表される化合物とを反応させる工程を含む上記請求項2に記載の方法。
A method for producing a compound of the formula (A), wherein R is propyloxy; and R 1 is a group represented by R 1-2 (compound 3), which is a compound of the formula (I). R 2 is an acetyl group; R 3 is a group represented by the formula R 3-1 ; All ′ in R 3-1 is an allyl group; Q is a group represented by the formula Q ′; a is a hydrogen atom; and R 4 is an acetyl group; and R 6 is a group represented by the formula R 6-1 (compound 23c ′);
Figure 2004244583
(Wherein Ph and Piv ′ are as defined above; and Y 3 is a reactive substituent)
The method according to claim 2, comprising a step of reacting with a compound represented by the formula:
次式(I)
Figure 2004244583
(式中、Rは水素原子又はアシル含有保護基;Rはハロゲン原子又は下記式R3−1で示される基;Qは水素原子、シリル含有保護基又は下記式Q’で示される基;Rは水素原子又はアシル含有保護基;Rは水素原子又は下記式R6−1で示される基;あるいはRとRは一緒になって環状アセタール系保護基又は環状ケタール系保護基;Bn’はアリールアルキル含有保護基;そしてPhth’はアミノ保護基である)
Figure 2004244583
(式中、Bn’及びPhth’は上記と同義;Qはシリル含有保護基、水素原子、又は上記式:Qa−1もしくはQa−2示される基;Phはフェニル基;Piv’はアシル含有保護基;PMB’は置換ベンジル含有保護基;Ac’はアシル含有保護基;そしてAll’はアリル基又はC6−20アリールC1−26アルキルオキシ基である)
で示される化合物。
The following formula (I)
Figure 2004244583
(Wherein, R 2 is a hydrogen atom or an acyl-containing protecting group; R 3 is a halogen atom or a group represented by the following formula R 3-1 ; Q is a hydrogen atom, a silyl-containing protecting group, or a group represented by the following formula Q ′) R 4 is a hydrogen atom or an acyl-containing protecting group; R 6 is a hydrogen atom or a group represented by the following formula R 6-1 ; or R 4 and R 6 are taken together to form a cyclic acetal protecting group or a cyclic ketal protecting group. Bn 'is an arylalkyl-containing protecting group; and Phth' is an amino protecting group.
Figure 2004244583
(Wherein, Bn ′ and Phth ′ are as defined above; Q a is a silyl-containing protecting group, a hydrogen atom, or a group represented by the above formula: Q a-1 or Q a-2 ; Ph is a phenyl group; Piv ′ is An acyl-containing protecting group; PMB ′ is a substituted benzyl-containing protecting group; Ac ′ is an acyl-containing protecting group; and All ′ is an allyl group or a C 6-20 arylC 1-26 alkyloxy group.
A compound represented by the formula:
が水素原子;Rがフッ素原子;QがTBDPS;そしてRとRが一緒になってシクロヘキシリデン基である、前記請求項8に記載の化合物(化合物12a)。The compound according to claim 8, wherein R 2 is a hydrogen atom; R 3 is a fluorine atom; Q is TBDPS; and R 4 and R 6 together are a cyclohexylidene group (compound 12a). がアセチル基;Rがフッ素原子;QがTBDPS;そしてRとRが一緒になってシクロヘキシリデン基である、前記請求項8に記載の化合物。The compound according to claim 8, wherein R 2 is an acetyl group; R 3 is a fluorine atom; Q is TBDPS; and R 4 and R 6 together are a cyclohexylidene group. がアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;QがTBDPS;そしてRとRが一緒になってシクロヘキシリデン基である、前記請求項8に記載の化合物。R 2 is an acetyl group; R 3 is a group represented by the formula R 3-1 ; All ′ in R 3-1 is an allyl group; Q is TBDPS; and R 4 and R 6 are taken together to form a cyclohexylidene group The compound according to claim 8, which is: が水素原子;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが水素原子;そしてRとRが一緒になってシクロヘキシリデン基である、前記請求項8に記載の化合物。R 2 is a hydrogen atom; R 3 is a group represented by the formula R 3-1; All in R 3-1 'allyl group; Q is a hydrogen atom; and cyclohexylidene R 4 and R 6 together 9. The compound according to claim 8, which is a group. が水素原子;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式Q’中のQがTBDPS;そしてRとRが一緒になってシクロヘキシリデン基である、前記請求項8に記載の化合物。R 2 is a hydrogen atom; R 3 is a group represented by the formula R 3-1; All 'is allyl; Q has the formula Q' in R 3-1 group represented by; Q a in the formula Q 'is TBDPS 9. The compound according to claim 8, wherein R 4 and R 6 together are a cyclohexylidene group. がアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式Q’中のQがTBDPS;そしてRとRが一緒になってシクロヘキシリデン基である、前記請求項8に記載の化合物。R 2 is an acetyl group; R 3 is a group represented by the formula R 3-1; All in R 3-1 'allyl group; Q is wherein Q' group represented by; Q a in the formula Q 'is TBDPS 9. The compound according to claim 8, wherein R 4 and R 6 together are a cyclohexylidene group. がアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式:Q’中のQがTBDPS;そしてRとRが水素原子である、前記請求項8に記載の化合物。R 2 is an acetyl group; group R 3 is represented by the formula R 3-1; All in R 3-1 'allyl group; Q is wherein Q' group represented by; formula: Q a in Q 'is TBDPS; and R 4 and R 6 is a hydrogen atom a compound according to claim 8. がアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式Q’中のQがTBDPS;そしてRが水素原子;そしてRが式R6−1で示される基である、前記請求項8に記載の化合物。R 2 is an acetyl group; R 3 is a group represented by the formula R 3-1; All in R 3-1 'allyl group; Q is wherein Q' group represented by; Q a in the formula Q 'is TBDPS And R 4 is a hydrogen atom; and R 6 is a group represented by formula R 6-1 ; がアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式Q’中のQがTBDPS;そしてRがアセチル基;そしてRが式R6−1で示される基である、前記請求項8に記載の化合物。R 2 is an acetyl group; R 3 is a group represented by the formula R 3-1 ; All ′ in R 3-1 is an allyl group; Q is a group represented by the formula Q ′; Q a in the formula Q ′ is TBDPS The compound according to claim 8, wherein R 4 is an acetyl group; and R 6 is a group represented by the formula R 6-1 ; がアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基;式:Q’中のQが水素原子;そしてRがアセチル基;そしてRが式R6−1で示される基である、前記請求項8に記載の化合物。R 2 is an acetyl group; group R 3 is represented by the formula R 3-1; All in R 3-1 'allyl group; Q is wherein Q' group represented by; formula: Q a in Q 'is The compound according to claim 8, wherein R 4 is an acetyl group; and R 6 is a group represented by the formula R 6-1 . がアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基で、式Q’中のQがQa−1;そしてRがアセチル基;そしてRが式R6−1で示される基である、前記請求項8に記載の化合物。R 2 is an acetyl group; R 3 is a group represented by the formula R 3-1 ; All ′ in R 3-1 is an allyl group; Q is a group represented by the formula Q ′, and Q a in the formula Q ′ is The compound according to claim 8, wherein Q a-1 ; and R 4 is an acetyl group; and R 6 is a group represented by the formula R 6-1 . がアセチル基;Rが式R3−1で示される基;R3−1中のAll’がアリル基;Qが式Q’で示される基で、式Q’中のQがQa−2;そしてRがアセチル基;そしてRが式R6−1で示される基である、前記請求項8に記載の化合物。R 2 is an acetyl group; R 3 is a group represented by the formula R 3-1 ; All ′ in R 3-1 is an allyl group; Q is a group represented by the formula Q ′, and Q a in the formula Q ′ is The compound according to claim 8, wherein Q a-2 ; and R 4 is an acetyl group; and R 6 is a group represented by the formula R 6-1 . 次式(II)
Figure 2004244583
(式中、Yはアシル含有保護基、水素原子又は下記式:Y1−1で示される基;
は反応性置換基;そしてBn’は上記と同義である)
Figure 2004244583
(式中、Bn’は上記と同義;Y’は水素原子又はシリル含有保護基である)
で表される化合物。
The following formula (II)
Figure 2004244583
(Wherein Y 1 is an acyl-containing protecting group, a hydrogen atom or a group represented by the following formula: Y 1-1 ;
Y 2 is a reactive substituent; and Bn ′ is as defined above.
Figure 2004244583
(Wherein, Bn ′ is as defined above; Y ′ is a hydrogen atom or a silyl-containing protecting group)
A compound represented by the formula:
はアセチル基;そしてYはメチルチオ基である前記請求項21に記載の化合物。22. The compound according to claim 21, wherein Y 1 is an acetyl group; and Y 2 is a methylthio group. は水素原子;そしてYはメチルチオ基である前記請求項21に記載の化合物。22. The compound according to claim 21, wherein Y 1 is a hydrogen atom; and Y 2 is a methylthio group. は式Y1−1で示される基;式Y1−1中のY’はTBDPS;そしてYはメチルチオ基である前記請求項21に記載の化合物。Y 1 is a group represented by the formula Y 1-1; Y in the formula Y 1-1 'is TBDPS; and Y 2 is The compound according to claim 21 which is a methylthio group. 次式(III)
Figure 2004244583
(式中、Zは反応性置換基;Zはシリル含有保護基又は下記式:Z’で示される基;Zはアリールアルキル含有保護基又は下記式Z’で示される基;そしてBn’はアリールアルキル含有保護基である)
Figure 2004244583
(式中、Ac’はアシル含有保護基である)
で表される化合物。
The following formula (III)
Figure 2004244583
(Wherein, Z 1 is a reactive substituent; Z 2 is a silyl-containing protecting group or a group represented by the following formula: Z ′; Z 3 is an arylalkyl-containing protecting group or a group represented by the following formula Z ′; and Bn 'Is an arylalkyl-containing protecting group)
Figure 2004244583
(Where Ac ′ is an acyl-containing protecting group)
A compound represented by the formula:
がフッ素原子;ZがTBDPS;そしてZがベンジルである前記請求項25に記載の化合物。26. The compound according to claim 25, wherein Z 1 is a fluorine atom; Z 2 is TBDPS; and Z 3 is benzyl. がフェニルチオ基;Z及びZがZ’で示される基である前記請求項25に記載の化合物。The compound according to claim 25, wherein Z 1 is a phenylthio group; Z 2 and Z 3 are groups represented by Z ′. がフッ素原子;Z及びZがZ’で示される基である前記請求項25に記載の化合物。The compound according to claim 25, wherein Z 1 is a fluorine atom; Z 2 and Z 3 are groups represented by Z ′.
JP2003038206A 2003-02-17 2003-02-17 High mannose type sugar compound, preparation process, and intermediate used for it Pending JP2004244583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038206A JP2004244583A (en) 2003-02-17 2003-02-17 High mannose type sugar compound, preparation process, and intermediate used for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038206A JP2004244583A (en) 2003-02-17 2003-02-17 High mannose type sugar compound, preparation process, and intermediate used for it

Publications (1)

Publication Number Publication Date
JP2004244583A true JP2004244583A (en) 2004-09-02

Family

ID=33022794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038206A Pending JP2004244583A (en) 2003-02-17 2003-02-17 High mannose type sugar compound, preparation process, and intermediate used for it

Country Status (1)

Country Link
JP (1) JP2004244583A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224055A (en) * 2013-05-15 2014-12-04 国立大学法人群馬大学 Novel sugar donors and methods of synthesizing sugar chains using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224055A (en) * 2013-05-15 2014-12-04 国立大学法人群馬大学 Novel sugar donors and methods of synthesizing sugar chains using the same

Similar Documents

Publication Publication Date Title
EP2417144B1 (en) Synthesis of 2&#39;-o-fucosyllactose
EP2382226B1 (en) Process for the synthesis of l-fucosyl di- or oligosaccharides and novel 2,3,4 tribenzyl-fucosyl derivatives intermediates thereof
Uhrig et al. Synthetic strategies for fluorination of carbohydrates
JP2004509902A5 (en)
NO173548B (en) ANALOGY PROCEDURE FOR THE PREPARATION OF THERAPRUTIC ACTIVE GLYCOCONJUGATES OF PHOSPHORAMIDE SNEP OR IFOSPHAMIDE SNEEP
Mohamed et al. Synthetic approaches to L-iduronic acid and L-idose: Key building blocks for the preparation of glycosaminoglycan oligosaccharides
Hanee et al. Synthesis, PASS, In Silico ADMET and Thermodynamic Studies of Some Galactopyranoside Esters
Li et al. Thio-arylglycosides with various aglycon para-substituents: A probe for studying chemical glycosylation reactions
Ohnishi et al. Synthesis of a novel asparagine-linked heptasaccharide structure via p-methoxybenzyl-assisted β-mannosylation
Sawant et al. Formal synthesis of a disaccharide repeating unit (IdoA–GlcN) of heparin and heparan sulfate
JP2004244583A (en) High mannose type sugar compound, preparation process, and intermediate used for it
US4871837A (en) Hydroxy protection groups
EP1829884B1 (en) Sugar donor
Amin et al. Synthesis of asparagine-linked bacillosamine
WO2005075490A2 (en) Synthesis of polysulfated uronic acid glycosides
US8445652B2 (en) 3, 6-O-bridged pyranose inversion compound and process for producing B-O-pyranoside
Praly et al. Stereocontrolled Access to Higher Sugars (Non‐1‐en‐4‐ulopyranosyl Derivatives) and Glycomimetics [3‐(β‐d‐Glycopyranosyl)‐1‐propenes and (3Z)‐4, 8‐Anhydro‐nona‐1, 3‐dienitols]
Kozikowski et al. Organometallics in organic synthesis. Applications of a new diorganozinc reaction to the synthesis of C-glycosyl compounds with evidence for an oxonium-ion mechanism
US20220081463A1 (en) Acidic dystroglycan oligosaccharide compound and method for making same
Tomida et al. Indirect synthetic route to α-l-fucosides via highly stereoselective construction of α-l-galactosides followed by C6-deoxygenation
Kuszmann et al. Two approaches to the synthesis of 3-β-d-glucopyranosyl-d-glucitol
WO2020248068A1 (en) Synthesis of 3-azido-3-deoxy-d-galactopyranose
Srivastava et al. Synthesis of guanidino sugar conjugates as GlcβArg analogs
Bozó et al. Synthesis of 4-cyano-and 4-nitrophenyl 2, 5-anhydro-1, 6-dithio-α-d-gluco-and-α-l-guloseptanosides carrying different substituents at C-3 and C-4
JP5004950B2 (en) Production of polysaccharides containing L-iduronate

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070814