WO2014125797A1 - Rigid sheet and process for manufacturing rigid sheet - Google Patents

Rigid sheet and process for manufacturing rigid sheet Download PDF

Info

Publication number
WO2014125797A1
WO2014125797A1 PCT/JP2014/000616 JP2014000616W WO2014125797A1 WO 2014125797 A1 WO2014125797 A1 WO 2014125797A1 JP 2014000616 W JP2014000616 W JP 2014000616W WO 2014125797 A1 WO2014125797 A1 WO 2014125797A1
Authority
WO
WIPO (PCT)
Prior art keywords
hardness
fiber
elastic body
hard sheet
polymer elastic
Prior art date
Application number
PCT/JP2014/000616
Other languages
French (fr)
Japanese (ja)
Inventor
目黒 将司
励 永山
高岡 信夫
林 浩一
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN201480007963.2A priority Critical patent/CN105008614B/en
Priority to KR1020157023576A priority patent/KR102136441B1/en
Priority to EP14752242.9A priority patent/EP2957672B1/en
Priority to JP2015500137A priority patent/JP6220378B2/en
Priority to US14/767,115 priority patent/US20160002835A1/en
Publication of WO2014125797A1 publication Critical patent/WO2014125797A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/22Lapping pads for working plane surfaces characterised by a multi-layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/4383Composite fibres sea-island
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0004Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using ultra-fine two-component fibres, e.g. island/sea, or ultra-fine one component fibres (< 1 denier)
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0011Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using non-woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/35Abrasion, pilling or fibrillation resistance
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/08Cleaning articles

Definitions

  • Patent Documents 5 to 14 disclose a nonwoven fabric type polishing pad obtained by impregnating a nonwoven fabric with wet-coagulated porous polyurethane. Since the nonwoven fabric type polishing pad is excellent in flexibility, the polishing pad is easily deformed. For this reason, since it is difficult for the load to be selectively applied to the abrasive grains agglomerated on the polished surface, scratches are hardly generated. However, since the non-woven polishing pad is flexible, the polishing rate is low. Moreover, since the nonwoven fabric type polishing pad deforms following the surface shape of the substrate to be polished, the flattening performance, which is a property of flattening the substrate to be polished, was low.
  • Patent Documents 15 to 18 below disclose polishing pads having a high leveling performance including a nonwoven fabric of ultrafine fibers.
  • Patent Document 15 discloses a polishing pad made of a sheet-like material obtained by impregnating a non-woven fabric obtained by entanglement of polyester microfiber bundles having an average fineness of 0.0001 to 0.01 dtex with a polymer elastic body mainly composed of polyurethane. Is disclosed. This document discloses that such a polishing pad achieves a polishing process with higher accuracy than before.
  • a polishing pad having a high polishing rate and having a polishing rate that hardly changes over time is provided.
  • thermoplastic resin that forms the island component a thermoplastic resin that is not dissolved or removed by water, an alkaline aqueous solution, an acidic aqueous solution, or the like and that can be melt-spun is used.
  • the water-insoluble thermoplastic resin include the above-described various resins that form ultrafine fibers, preferably the thermoplastic resin having a Tg of 50 ° C. or more and a water absorption of 4% by mass or less.
  • Non-water-soluble thermoplastic resins include, for example, catalysts, anti-coloring agents, heat-resistant agents, flame retardants, lubricants, antifouling agents, fluorescent whitening agents, matting agents, coloring agents, gloss improvers, antistatic agents, You may contain additives, such as a fragrance
  • a silicone-based oil agent or a mineral oil-based oil agent such as a needle breakage preventing oil agent, an antistatic oil agent, or an entanglement improving oil agent is applied to the web.
  • a web is entangled with a needle punch.
  • the basis weight of the entangled web is preferably in the range of 100 to 1500 g / m 2 from the viewpoint of excellent handleability.
  • a non-porous polymer elastic body can be formed.
  • the polymer elastic body is preferably a hydrogen-bonding polymer elastic body from the viewpoint of high adhesion to fibers.
  • the hydrogen-bonding polymer elastic body is an elastic body made of a polymer that crystallizes or aggregates by hydrogen bonding, such as polyurethane, polyamide-based elastic body, and polyvinyl alcohol-based elastic body.
  • polyurethane examples include various polyurethanes obtained by reacting a polymer polyol having an average molecular weight of 200 to 6000, an organic polyisocyanate, and a chain extender in a predetermined molar ratio.
  • organic polyisocyanate examples include, for example, non-yellowing diisocyanates such as aliphatic or alicyclic diisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, 4,4′-dicyclohexylmethane diisocyanate; 2,4-tri Examples thereof include aromatic diisocyanates such as diisocyanate, 2,6-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, and xylylene diisocyanate polyurethane.
  • non-yellowing diisocyanates such as aliphatic or alicyclic diisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, 4,4′-dicyclohexylmethane diisocyanate
  • 2,4-tri Examples thereof include aromatic diisocyanates such as
  • chain extender examples include, for example, diamines such as hydrazine, ethylenediamine, propylenediamine, hexamethylenediamine, nonamethylenediamine, xylylenediamine, isophoronediamine, piperazine and derivatives thereof, adipic acid dihydrazide, and isophthalic acid dihydrazide; Triamines such as diethylenetriamine; tetramines such as triethylenetetramine; ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-bis ( ⁇ -hydroxyethoxy) benzene, 1,4 -Diols such as cyclohexanediol; Triols such as trimethylolpropane; Pentaols such as pentaerythritol; Aminoethyl alcohol, Aminopropyl alcohol It includes amino alcohols such as and the like
  • a carbodiimide group and / or an oxazoline group are particularly preferable because they are excellent in crosslinking performance and pot life of the emulsion, and have no problem in safety.
  • the crosslinking agent having a carbodiimide group include water-dispersed carbodiimide compounds such as “Carbodilite E-01”, “Carbodilite E-02”, and “Carbodilite V-02” manufactured by Nisshinbo Industries, Ltd.
  • the content of the polymer polyol component in the polyurethane is preferably 65% by mass or less, and more preferably 60% by mass or less. Moreover, it is preferable from the point which can suppress generation
  • the method for preparing the polyurethane emulsion is not particularly limited, and a known method can be used. Specifically, for example, by using a monomer having a hydrophilic group such as a carboxyl group, a sulfonic acid group, and a hydroxyl group as a copolymerization component, a method of imparting self-emulsifying property to water to a polyurethane, or a polyurethane A method of emulsifying by adding a surfactant is mentioned. Since the polymer elastic body containing a monomer unit having a hydrophilic group as a copolymerization component is excellent in water wettability, it can hold a large amount of slurry.
  • a monomer having a hydrophilic group such as a carboxyl group, a sulfonic acid group, and a hydroxyl group
  • the surfactant used for emulsification include, for example, sodium lauryl sulfate, ammonium lauryl sulfate, polyoxyethylene tridecyl ether sodium acetate, sodium dodecylbenzene sulfonate, alkyl diphenyl ether sodium disulfonate, sodium dioctyl sulfosuccinate and the like.
  • Anionic surfactants; nonionic surfactants such as polyoxyethylene nonylphenyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene-polyoxypropylene block copolymer Etc.
  • heat-sensitive gelation property can also be provided to an emulsion by selecting suitably the cloud point of surfactant.
  • the solid content concentration of the emulsion is preferably 15 to 40% by mass, and more preferably 25 to 35% by mass, from the viewpoint that the polymer entangled sheet can be uniformly filled with a polymer elastic body in the thickness direction.
  • the particle size of the emulsion is preferably 0.01 to 1 ⁇ m, more preferably 0.03 to 0.5 ⁇ m.
  • the first emulsion contains a gelling agent containing ions that cause a pH change of water.
  • the gelling agent is used to gel emulsion particles by heating by changing the pH of the emulsion.
  • the moisture in the emulsion impregnated in the nonwoven fabric dries from the surface. Therefore, it is easy to cause migration in which the emulsion in the nonwoven fabric moves to the surface layer as the evaporation of moisture proceeds.
  • the polymer elastic body migrates, the polymer elastic body is unevenly distributed in the vicinity of the surface layer of the nonwoven fabric, the polymer elastic body in the vicinity of the middle layer is reduced, and voids are likely to remain in the vicinity of the middle layer.
  • the gelling agent is not particularly limited as long as it is a water-soluble salt that changes the pH of the emulsion to such an extent that the emulsion particles are gelled by heating.
  • Specific examples thereof are monovalent or divalent inorganic salts such as sodium sulfate, ammonium sulfate, sodium carbonate, calcium chloride, calcium sulfate, calcium nitrate, zinc oxide, zinc chloride, magnesium chloride, potassium chloride, potassium carbonate.
  • sodium nitrate, lead nitrate and the like are monovalent or divalent inorganic salts such as sodium sulfate, ammonium sulfate, sodium carbonate, calcium chloride, calcium sulfate, calcium nitrate, zinc oxide, zinc chloride, magnesium chloride, potassium chloride, potassium carbonate. Sodium nitrate, lead nitrate and the like.
  • the content ratio of the gelling agent in the first emulsion is 0.5 to 5 parts by mass, more preferably 0.6 to 4 parts by mass with respect to 100 parts by mass of the elastic polymer. It is preferable from the viewpoint that it can be imparted moderately.
  • the first emulsion is a penetrant, an antifoaming agent, a lubricant, a water repellent, an oil repellent, a thickener, a bulking agent, a curing accelerator, an antioxidant, an ultraviolet absorber, a fluorescent agent, an antifungal agent, and a foaming agent.
  • Water-soluble polymer compounds such as polyvinyl alcohol and carboxymethyl cellulose, dyes, pigments, inorganic fine particles and the like may be further contained.
  • the method of impregnating the fiber emulsion sheet with the first emulsion is not particularly limited, and for example, a method such as dip nip, knife coating, bar coating, or roll coating may be used.
  • the first emulsion gels in the fiber entangled sheet by heating.
  • a heating condition for gelation for example, a condition of holding at 40 to 90 ° C., further 50 to 80 ° C. for about 0.5 to 5 minutes, is preferably used.
  • the polymer elastic body is solidified by heating and drying.
  • Examples of heat drying include a method of heat drying in a drying apparatus such as a hot air dryer, a method of heat drying in a dryer after infrared heating, and the like.
  • Examples of the heating and drying conditions include conditions in which heating is performed for 2 to 10 minutes so that the maximum temperature is 130 to 160 ° C., further 135 to 150 ° C.
  • the sea-island type composite fiber contained in the fiber entangled sheet impregnated with the polymer elastic body is subjected to ultrafine fiber treatment to form a first composite containing a nonwoven fabric of ultrafine fibers and a polymer elastic body.
  • ultrafine fibers are formed from a sea-island composite fiber containing a water-soluble thermoplastic resin that is an island component and a water-insoluble thermoplastic resin that is a sea component, by ultrafine fiber removal treatment that removes the water-soluble thermoplastic resin. It is a process.
  • the ultra-fine fiber treatment is performed by dissolving and removing the water-soluble thermoplastic resin forming the sea component by subjecting the fiber entangled sheet containing the sea-island type composite fiber to hydrothermal heating treatment with water, an alkaline aqueous solution, an acidic aqueous solution, or the like. This is a process of disassembling and removing.
  • the fiber entangled sheet is immersed in hot water of 65 to 90 ° C. for 5 to 300 seconds as the first step, and then further 85 to 100 ° C. as the second step.
  • a method of treating in hot water for 100 to 600 seconds is preferably used.
  • the water-soluble thermoplastic resin is dissolved from the sea-island composite fiber to form ultrafine fibers.
  • the ultrafine fibers are greatly crimped.
  • the fiber density of the ultrafine fibers becomes dense.
  • a void is formed in the portion where the water-soluble thermoplastic resin was present. This void is filled with a polymer elastic body in a later step.
  • the gelling agent contained in the fiber entangled sheet is dissolved and removed in the hot water by subjecting the fiber entangled sheet to hot water heating treatment. In this way, the first complex is formed.
  • the second emulsion After impregnating the first composite with the second emulsion containing the gelling agent and the polymer elastic body, the second emulsion is gelled and further heated and dried to obtain the polymer elastic body. Solidifying to form a second composite
  • the voids in the first composite are filled with a polymer elastic body to restrain the ultrafine fibers.
  • the fine fibers can be focused and the porosity of the hard sheet can be reduced.
  • the ultrafine fibers form a fiber bundle, the emulsion is easily impregnated by capillary action.
  • each layer in order from any one of the surface sides, becomes the first surface layer, the middle layer, and the second surface layer, It is preferable that the second emulsion is applied for gelation so that the difference in porosity between the surface layer and the middle layer is 5% or less, further 3% or less.
  • the porosity of each layer is obtained as follows. A cross section in the thickness direction of the second composite is photographed with a scanning electron microscope at a magnification of 30 times. Then, using the image analysis software Popimaging (manufactured by Digital being kids. Co), the obtained photograph is binarized by a dynamic threshold method to identify the void. Then, an inscribed circle is drawn in each void portion, and the total area of the inscribed circle is defined as the total layer void amount.
  • the total area of the inscribed circle was determined for each layer, and the amount of voids in each layer was obtained.
  • the porosity of each layer the amount of voids of each layer / the amount of voids of all layers ⁇ 100 (%).
  • the method of impregnating the first emulsion into the first composite, the method of gelation, and the method of heat drying are the same as the method of impregnation of the first emulsion, the method of gelation, and the method of heat drying.
  • a method may be used. In this way, a second complex is formed.
  • the hard sheet of the present embodiment uses an emulsion containing a gelling agent in order to suppress migration of the emulsion to the surface layer when a polymer elastic body is applied to the nonwoven fabric.
  • the present inventors have found that when a large amount of ions contained in the gelling agent remains in the obtained hard sheet, the polishing rate is reduced during polishing. And it discovered that the fall of a grinding
  • the step of washing with water is carried out so that the total content of ions causing the pH change of the water contained in the hard sheet is 400 ⁇ g / cm 3 or less, preferably 350 ⁇ g / cm 3 , more preferably 100 ⁇ g / cm 3 or less. It is a process to do.
  • a heated water washing treatment is preferable from the viewpoint of high water washing efficiency.
  • the second composite is immersed in hot water of 80 ° C. or higher. Specifically, for example, as a first step, after being immersed in hot water at 65 to 90 ° C. for 5 to 300 seconds, and further as a second step, treatment is performed in hot water at 85 to 100 ° C. for 100 to 600 seconds. Conditions.
  • the void existing inside the hard sheet reduces the hardness and hardness uniformity.
  • the voids are reduced by hot pressing the first composite, the second composite, and / or the hard sheet.
  • the hot press treatment conditions are preferably such that the ultrafine fibers and the polymer elastic body are pressed at a linear pressure of 30 to 100 kg / cm with a metal roll heated to 160 to 180 ° C., for example.
  • the hard sheet of this embodiment is preferably used as a polishing layer of a polishing pad.
  • the polishing layer can be formed by performing desired processing on the hard sheet as necessary. For example, brushing with sandpaper or needle cloth, diamond, reverse brushing, hot pressing or embossing is performed.
  • grooves, holes such as lattices, concentric circles, and spirals may be formed on the surface of the hard sheet.
  • an elastic body layer such as a knitted fabric, a woven fabric, a nonwoven fabric, an elastic resin film, or an elastic sponge body may be laminated with the hard sheet as a polishing layer.
  • elastic films and elastic sponge bodies non-woven fabrics impregnated with polyurethane currently used for general purposes (for example, “Suba400” (manufactured by Nitta Haas Co., Ltd.)), natural rubber, nitrile rubber, polybutadiene rubber, Examples thereof include rubbers such as silicone rubbers; thermoplastic elastomers such as polyester-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, and fluorine-based thermoplastic elastomers; foamed plastics; polyurethanes and the like.
  • the polishing pad is one in which the polishing layer and the elastic body layer are directly bonded by fusion bonding or the like, in which both layers are bonded by an adhesive or a double-sided adhesive tape, or between the two layers. In addition, those having another layer are also included.
  • the polishing pad using the hard sheet of the present embodiment is a chemical mechanical polishing (CMP) in which a known CMP apparatus is used and the surface to be polished and the polishing pad are brought into contact with each other at a constant speed under a pressure through a slurry.
  • CMP chemical mechanical polishing
  • the slurry contains components such as a liquid medium such as water and oil; an abrasive such as silica, aluminum oxide, cerium oxide, zirconium oxide, and silicon carbide; a base, an acid, and a surfactant.
  • the article to be polished is not particularly limited, and examples thereof include crystal, silicon, glass, an optical substrate, an electronic circuit substrate, a multilayer wiring substrate, and a hard disk.
  • the object to be polished is preferably a silicon wafer or a semiconductor wafer.
  • semiconductor wafers include, for example, insulating films such as silicon oxide, silicon oxyfluoride, and organic polymers, wiring metal films such as copper, aluminum, and tungsten, and barrier metals such as tantalum, titanium, tantalum nitride, and titanium nitride. Examples thereof include those having a film or the like on the surface.
  • the apparent density (g / cm 3 ) was obtained by dividing the mass (g / cm 2 ) per unit area of the hard sheet by the thickness (cm). Then, the apparent density was measured at any ten locations on the hard sheet, and the value obtained by arithmetic averaging was defined as the apparent density. The thickness was measured at a load of 240 gf / cm 2 according to JISL1096.
  • the D hardness of the surface of the hard sheet, the first surface layer and the middle layer was measured according to JIS K 7311. Specifically, the D hardness of the surface of the hard sheet is obtained by stacking eight hard sheets having a thickness of about 1.25 mm, measuring the hardness at three points evenly in the width direction, and calculating the average of the D hardness of the surface of the hard sheet. Hardness. The D hardness of the first surface layer was obtained by grinding a hard sheet having a thickness of about 1.25 mm from the second surface layer side to obtain a sheet of the first surface layer having a thickness of 0.40 mm.
  • the hardness at three points was measured uniformly in the width direction, and the average was defined as the JIS-D hardness of the first surface layer.
  • the D hardness of the middle layer was obtained by uniformly grinding the hard sheet from the first surface layer side and the second surface layer side to obtain a middle layer sheet having a thickness of 0.40 mm.
  • 25 sheets of the obtained middle layer were piled up, the hardness of 3 points
  • R (%) (D hardness maximum value ⁇ D hardness minimum value) / D hardness average value ⁇ 100.
  • Total ion content causing water pH change A piece of a hard sheet cut into a strip shape and 10 mL of water were cut and placed in a screw test tube. And the water-soluble substance in a hard sheet was hot-water-extracted by heating a screw opening test tube with a block heater at 90 degreeC for 2 hours. Then, ion components in the extract were detected using an ion chromatograph (ICS-1600). In this, the total amount of sulfate ions and ammonium ions, which are ions that cause the pH change of water, was measured and converted to the amount of ions contained in the hard sheet per unit volume.
  • ICS-1600 ion chromatograph
  • the hard sheet was cut into a circular shape having a diameter of 51 cm, and grooves having a width of 1.0 mm and a depth of 0.5 mm were formed on the surface in a lattice pattern at intervals of 15.0 mm to prepare a polishing pad. Then, after sticking an adhesive tape on the back surface of the polishing pad, it was mounted on a CMP polishing apparatus (“PP0-60S” manufactured by Nomura Seisakusho Co., Ltd.).
  • slurry (SHOROXA-31 manufactured by Showa Denko KK) was supplied at a rate of 100 ml / min under the conditions of a platen rotation rate of 70 rpm, a head rotation rate of 69 rpm, and a polishing pressure of 40 g / cm 2.
  • synthetic quartz having a diameter of 4 inches was polished for 3 hours.
  • polishing was measured, and the grinding
  • Example 1 Water-soluble PVA was used as the sea component, and isophthalic acid-modified PET having a modification degree of 6 mol% was used as the island component.
  • Water-soluble PVA and isophthalic acid-modified PET were discharged from a melt compound spinning die (number of islands: 25 islands / fiber) at 260 ° C. so as to be 25/75 (mass ratio). Then, the ejector pressure was adjusted so that the spinning speed was 3700 m / min, and long fibers having a fineness of 3 dtex were collected on a net to obtain a web having a basis weight of 35 g / m 2 .
  • the entangled web was steamed for 70 seconds at 110 ° C. and 23.5% RH.
  • the area shrinkage rate at this time was 44%.
  • a fiber entangled sheet having a basis weight of 1312 g / m 2 , an apparent density of 0.544 g / cm 3 , and a thickness of 2.41 mm Got.
  • Polyurethane is a mixture of polycarbonate polyol and polyalkylene glycol having 2 to 3 carbon atoms in a ratio of 99.8: 0.2 (molar ratio) as a polyol component, and 1.5% by mass of a carboxyl group-containing monomer. It is a non-yellowing polyurethane contained. Polyurethane is a non-porous polyurethane that forms a crosslinked structure by heat treatment.
  • the first emulsion contains 4.6 parts by mass of a carbodiimide-based crosslinking agent and 1.8 parts by mass of ammonium sulfate as a gelling agent with respect to 100 parts by mass of polyurethane, and is adjusted so that the solid content of polyurethane is 20%. It is.
  • the fiber entangled sheet impregnated with the first emulsion was heated at 90 ° C. in a 30% RH atmosphere to gel the first emulsion, and further dried at 150 ° C. Further, by hot pressing at 140 ° C., the basis weight was adjusted to 1403 g / m 2 , the apparent density 0.716 g / cm 3 , and the thickness 1.96 mm.
  • the fiber-entangled sheet provided with polyurethane is immersed in hot water at 95 ° C. for 10 minutes to dissolve and remove the water-soluble PVA, and have a fineness of 0.09 dtex. It was converted to ultrafine fibers and further dried. In this way, a first composite having a basis weight of 1009 g / m 2 , an apparent density of 0.538 g / cm 3 , and a thickness of 1.87 mm was obtained.
  • the first composite was impregnated with a polyurethane emulsion (solid content 30% by mass) as the second emulsion.
  • the polyurethane is the same as the previously impregnated polyurethane.
  • the second emulsion contains 4.6 parts by mass of a carbodiimide-based crosslinking agent and 1.0 part by mass of ammonium sulfate with respect to 100 parts by mass of polyurethane, and is adjusted so that the solid content of polyurethane is 30%.
  • the first composite impregnated with the second emulsion was heated at 90 ° C. in a 60% RH atmosphere to gel the second emulsion, and further dried at 150 ° C. In this way, a second composite having a basis weight of 1245 g / m 2 , an apparent density of 0.748 g / cm 3 and a thickness of 1.66 mm was obtained. The difference in porosity between the first surface layer and the middle layer of the second composite was 1.8%.
  • the second composite was washed with water by immersing it in hot water at 95 ° C. for 10 minutes using nip treatment and high-pressure water flow treatment. And it dried at 180 degreeC.
  • seat which is 1212 g / m ⁇ 2 > of fabric weights, the apparent density of 0.795 g / cm ⁇ 3 >, and the thickness of 1.53 mm was obtained by carrying out the hot press process on linear pressure of 100 kg / cm and 160 degreeC conditions.
  • the surface layers on both sides of the intermediate of the hard sheet are ground by 0.15 mm each using # 100 paper to obtain a hard sheet having a basis weight of 994 g / m 2 , an apparent density of 0.788 g / cm 3 and a thickness of 1.26 mm. Finished.
  • the JIS-D hardness of the hard sheet was 52, and R% of the JIS-D hardness was 11.3%.
  • the total amount of sulfate ions and ammonium ions, which are ions that cause pH change, contained in the hard sheet was 26.9 ⁇ g / cm 3 .
  • Example 2 A hard sheet was produced and evaluated in the same manner as in Example 1 except that the first composite before applying the second emulsion was subjected to hot press treatment under the conditions of a linear pressure of 100 kg / cm and a temperature of 160 ° C.
  • the obtained hard sheet had a basis weight of 996 g / m 2 , an apparent density of 0.808 g / cm 3 , and a thickness of 1.23 mm. The results are shown in Table 1.
  • Example 3 In Example 1, a hard sheet was produced and evaluated in the same manner as in Example 1 except that the water washing degree of the second composite was lowered. The total amount of sulfate ions and ammonium ions, which are ions that cause pH change, contained in the hard sheet was 300 ⁇ g / cm 3 . The results are shown in Table 1.
  • Example 1 In Example 1, instead of washing the second composite by immersing it in 95 ° C. hot water for 10 minutes, it was the same as in Example 1 except that the second composite was not washed with water. Were manufactured and evaluated. The results are shown in Table 1.
  • Example 2 In Example 1, the first composite was further hot-pressed under the conditions of a linear pressure of 100 kg / cm and a temperature of 160 ° C. Then, instead of impregnating the second emulsion containing the gelling agent, a hard sheet was produced and evaluated in the same manner as in Example 1 except that the emulsion having the same composition not containing the gelling agent was impregnated.
  • the obtained hard sheet had a basis weight of 969 g / m 2 , an apparent density of 0.817 g / cm 3 , and a thickness of 1.19 mm. The results are shown in Table 1.
  • Example 4 In Example 1, a hard sheet was produced and evaluated in the same manner as in Example 1 except that the water washing degree of the second composite was lowered. The total amount of sulfate ions and ammonium ions, which are ions that cause pH change, contained in the hard sheet was 504 ⁇ g / cm 3 . The results are shown in Table 1.
  • the hard sheet of Comparative Example 2 is obtained by homogenizing the hard sheet by hot pressing instead of blending the second emulsion with a gelling agent and uniformly filling the polymer elastic body.
  • the polishing pad of Comparative Example 2 had a small total content of ions, but was inhomogeneous with an R% of 30.2%. As a result, only 89% of the initial polishing rate was maintained on average after 5 hours. Further, the total content of ions Comparative Example 4 Comparative Example 3, and 504 ⁇ g / cm 3 of 404 ⁇ g / cm 3 were not only able to maintain about 84% of the initial polishing rate either an average of up to 5 hours .

Abstract

A rigid sheet which comprises both a nonwoven fabric made of ultrafine fibers and a polymeric elastomer applied to the nonwoven fabric, exhibiting a JIS-D hardness of 45 or more, an R% of 0 to 20%, and a total content of ions causing a change in the pH of water of 400μg/cm3 or less. The R% is calculated from six D hardness values according to the formula: R(%) = (maximum D hardness value - minimum D hardness value)/average D hardness value × 100. The six D hardness values are determined by: dividing the thicknesswise cross section of the sheet equally into three layers; taking the layers as a first surface layer, an intermediate layer and a second surface layer respectively from one surface side of the sheet; and measuring JIS-D hardness at three arbitrary points in each of the first surface and intermediate layers.

Description

硬質シート及び硬質シートの製造方法Hard sheet and method for manufacturing hard sheet
 本発明は、研磨パッド、詳しくは、半導体ウエハ,半導体デバイス,シリコンウエハ,ハードディスク,ガラス基板,光学製品,または、各種金属等を研磨するための研磨パッドの研磨層として好ましく用いられる硬質シートに関する。 The present invention relates to a polishing pad, and more particularly to a hard sheet preferably used as a polishing layer of a polishing pad for polishing a semiconductor wafer, a semiconductor device, a silicon wafer, a hard disk, a glass substrate, an optical product, or various metals.
 半導体ウエハに形成される集積回路は、高集積化及び多層配線化されている。このような半導体ウエハには、高い平坦性が求められている。 An integrated circuit formed on a semiconductor wafer is highly integrated and multi-layered. Such a semiconductor wafer is required to have high flatness.
 半導体ウエハを研磨するための研磨方法として、ケミカルメカニカル研磨(CMP)が知られている。CMPは、被研磨基材表面を、砥粒を含む研磨スラリー(以下、単にスラリーとも称する)を滴下しながら、研磨パッドで研磨する方法である。 Chemical mechanical polishing (CMP) is known as a polishing method for polishing a semiconductor wafer. CMP is a method of polishing a surface of a substrate to be polished with a polishing pad while dropping a polishing slurry containing abrasive grains (hereinafter also simply referred to as slurry).
 下記特許文献1~4は、CMPに用いられる独立発泡構造を有する高分子発泡体からなる研磨パッドを開示する。高分子発泡体は、2液硬化型ポリウレタンを注型発泡形成して製造される。高分子発泡体から製造された研磨パッドは、後述する不織布タイプの研磨パッドに比べて剛性が高い。そのために、高い平坦性が要求される半導体ウエハの研磨に好ましく用いられている。 The following Patent Documents 1 to 4 disclose a polishing pad made of a polymer foam having an independent foam structure used for CMP. The polymer foam is produced by casting and foaming a two-component curable polyurethane. A polishing pad manufactured from a polymer foam has higher rigidity than a non-woven fabric type polishing pad described later. Therefore, it is preferably used for polishing a semiconductor wafer that requires high flatness.
 高分子発泡体からなる研磨パッドは剛性が高い。そのために、被研磨基材の凸部に選択的に荷重が掛かる。その結果、比較的高い研磨レートが得られる。しかしながら、凝集した砥粒が研磨面に存在する場合、凝集した砥粒にも荷重が選択的に掛かる。そのために、研磨面にスクラッチが発生しやすかった。特に、銅配線を有する基材や、界面の接着性が弱い低誘電率材料を研磨する場合、スクラッチや界面剥離が発生しやすくなる(例えば、非特許文献1参照)。また、注型発泡成形においては、高分子弾性体が不均質に発泡しやすいために、被研磨基材の平坦性や研磨時の研磨レートが不均質になりやすい。さらに、高分子発泡体の独立孔に砥粒や研磨屑が徐々に目詰まりすることにより、研磨レートが徐々に低下する。 Polishing pad made of polymer foam has high rigidity. Therefore, a load is selectively applied to the convex portion of the substrate to be polished. As a result, a relatively high polishing rate can be obtained. However, when agglomerated abrasive grains are present on the polishing surface, a load is selectively applied to the agglomerated abrasive grains. Therefore, scratches were likely to occur on the polished surface. In particular, when polishing a substrate having copper wiring or a low dielectric constant material having weak interface adhesion, scratches and interface peeling are likely to occur (see, for example, Non-Patent Document 1). In cast foam molding, the polymer elastic body tends to foam inhomogeneously, so that the flatness of the substrate to be polished and the polishing rate at the time of polishing tend to be inhomogeneous. Further, the abrasive rate gradually decreases due to the clogging of abrasive grains and polishing scraps in the independent holes of the polymer foam.
 下記特許文献5~14は、不織布に湿式凝固された多孔性のポリウレタンを含浸させて得られる不織布タイプの研磨パッドを開示する。不織布タイプの研磨パッドは、柔軟性に優れているために研磨パッドが変形しやすい。そのために、研磨面に凝集した砥粒に荷重が選択的に掛かりにくいために、スクラッチが発生しにくい。しかし、不織布タイプの研磨パッドは柔軟であるために、研磨レートが低い。また、不織布タイプの研磨パッドは、被研磨基材の表面形状に追従して変形するために、被研磨基材を平坦にする特性である平坦化性能が低かった。 The following Patent Documents 5 to 14 disclose a nonwoven fabric type polishing pad obtained by impregnating a nonwoven fabric with wet-coagulated porous polyurethane. Since the nonwoven fabric type polishing pad is excellent in flexibility, the polishing pad is easily deformed. For this reason, since it is difficult for the load to be selectively applied to the abrasive grains agglomerated on the polished surface, scratches are hardly generated. However, since the non-woven polishing pad is flexible, the polishing rate is low. Moreover, since the nonwoven fabric type polishing pad deforms following the surface shape of the substrate to be polished, the flattening performance, which is a property of flattening the substrate to be polished, was low.
 また、下記特許文献15~18は、極細繊維の不織布を含む高い平坦化性能を有する研磨パッドを開示する。例えば特許文献15は、平均繊度が0.0001~0.01dtexのポリエステル極細繊維束が絡合してなる不織布にポリウレタンを主成分とした高分子弾性体を含浸させたシート状物からなる研磨パッドを開示する。同文献は、このような研磨パッドが従来よりも高精度な研磨加工を実現したことを開示する。 Further, Patent Documents 15 to 18 below disclose polishing pads having a high leveling performance including a nonwoven fabric of ultrafine fibers. For example, Patent Document 15 discloses a polishing pad made of a sheet-like material obtained by impregnating a non-woven fabric obtained by entanglement of polyester microfiber bundles having an average fineness of 0.0001 to 0.01 dtex with a polymer elastic body mainly composed of polyurethane. Is disclosed. This document discloses that such a polishing pad achieves a polishing process with higher accuracy than before.
 一般的な極細繊維の不織布を用いた研磨パッドには、短繊維の極細繊維をニードルパンチ処理して得られる不織布が広く用いられていた。このような不織布は、見掛け密度が低く、空隙率が高いために剛性が低かった。そのために、研磨面の表面形状に追従して変形するために、平坦化性能が低かった。 For a polishing pad using a general ultrafine fiber nonwoven fabric, a nonwoven fabric obtained by needle punching a short ultrafine fiber has been widely used. Such a nonwoven fabric has a low apparent density and a high porosity, and thus has a low rigidity. For this reason, the flattening performance is low because of deformation following the surface shape of the polished surface.
 特許文献19は、極細単繊維の繊維束から形成された繊維絡合体と、高分子弾性体とを含有し、高分子弾性体の一部が繊維束の内部に存在して、極細単繊維を集束しており、空隙を除いた部分の体積割合が55~95%の範囲である研磨パッドを開示する。 Patent Document 19 includes a fiber entangled body formed from a fiber bundle of ultrafine single fibers and a polymer elastic body, and a part of the polymer elastic body exists inside the fiber bundle, Disclosed is a polishing pad that is focused and has a volume fraction in the range of 55-95% excluding voids.
 また、特許文献20は、研磨層と、下地層とを持つ研磨パッドにおいて、吸水率が1%以下である中間層を研磨層と下地層との間に含み、研磨層のD硬度と中間層のD硬度の差が20以下である研磨パッドを開示する。 Patent Document 20 discloses that a polishing pad having a polishing layer and an underlayer includes an intermediate layer having a water absorption of 1% or less between the polishing layer and the underlayer. A polishing pad having a D hardness difference of 20 or less is disclosed.
特開2000-178374号公報JP 2000-178374 A 特開2000-248034号公報Japanese Patent Laid-Open No. 2000-248034 特開2001-89548号公報JP 2001-89548 A 特開平11-322878号公報Japanese Patent Laid-Open No. 11-322878 特開2002-9026号公報JP 2002-9026 A 特開平11-99479号公報Japanese Patent Laid-Open No. 11-99479 特開2005-212055号公報Japanese Patent Laid-Open No. 2005-212055 特開平3-234475号公報JP-A-3-234475 特開平10-128674号公報JP-A-10-128674 特開2004-311731号公報JP 2004-311731 A 特開平10-225864号公報JP-A-10-225864 特表2005-518286号公報JP 2005-518286 特開2003-201676号公報JP 2003-201676 A 特開2005-334997号公報JP 2005-334997 A 特開2007-54910号公報JP 2007-54910 A 特開2003-170347号公報JP 2003-170347 A 特開2004-130395号公報JP 2004-130395 A 特開2002-172555号公報JP 2002-172555 A 特開2008―207323号公報JP 2008-207323 A 特開2011-200984号公報JP 2011-200904 A
 高い研磨レートを有し、且つ研磨レートが経時的に変化しにくい研磨パッドを提供する。 A polishing pad having a high polishing rate and having a polishing rate that hardly changes over time is provided.
 本発明の一局面は、0.0001~0.5dtexの繊度を有する極細繊維の不織布と、不織布に付与された高分子弾性体とを含む硬質シートであって、JIS-D硬度が45以上であり、厚み方向の断面において、均等に3分割したときの各層を、何れか一方の表面側から順に、第1表層、中層及び第2表層とした場合、第1表層及び中層のJIS-D硬度を任意の点でそれぞれ3点ずつで計6点測定し、計6点のD硬度を用いて、下記式:
R(%)=(D硬度最大値―D硬度最小値)/D硬度平均値×100、から算出されるR%が0~20%であり、かつ、水のpH変化を生じさせるイオンの総含有量が400μg/cm3以下である硬質シートである。
One aspect of the present invention is a hard sheet including a non-woven fabric of ultrafine fibers having a fineness of 0.0001 to 0.5 dtex, and a polymer elastic body imparted to the non-woven fabric, and has a JIS-D hardness of 45 or more. Yes, in the cross section in the thickness direction, when each layer is equally divided into three, the first surface layer, the middle layer, and the second surface layer in order from either surface side, the JIS-D hardness of the first surface layer and the middle layer Are measured at three arbitrary points at a total of 6 points, and using the D hardness of 6 points in total, the following formula:
R% calculated from R (%) = (D hardness maximum value−D hardness minimum value) / D hardness average value × 100, and R% is 0 to 20%, and the total number of ions causing pH change of water It is a hard sheet having a content of 400 μg / cm 3 or less.
 また、本発明の他の一局面は、上記硬質シートを研磨層として備える研磨パッドである。 Further, another aspect of the present invention is a polishing pad comprising the hard sheet as a polishing layer.
 また、本発明の他の一局面は、(1)0.5dtex以下の繊度を有する極細繊維の見掛け密度0.35g/cm3以上の不織布を極細繊維化処理により形成しうる、極細繊維発生型繊維の長繊維の繊維絡合シートを準備する工程と、(2)繊維絡合シートに、水のpH変化を生じさせるイオンを含むゲル化剤及び高分子弾性体を含む第1のエマルジョンを含浸させた後、第1のエマルジョンをゲル化させ、さらに、加熱乾燥することにより高分子弾性体を凝固させる工程と、(3)極細繊維発生型繊維を極細繊維化処理することにより、不織布と高分子弾性体とを含有する第1の複合体を形成する工程と、(4)第1の複合体にゲル化剤及び高分子弾性体を含む第2のエマルジョンを含浸させ、さらに、加熱乾燥することにより高分子弾性体を凝固させて、厚み方向に均等に3分割したときの各層を、何れか一方の表面側から順に、第1表層、中層及び第2表層とした場合、第1表層と中層との空隙率の差が5%以下である第2の複合体を形成する工程と、(5)第2の複合体をイオンの総含有量が400μg/cm3以下になるように水洗することにより硬質シートを得る工程と、(6)硬質シートの表面硬度をJIS-D硬度45以上にするために、第1の複合体、第2の複合体、及び硬質シートから選ばれる少なくとも一つを熱プレスする工程と、を備える。 In addition, another aspect of the present invention is (1) an ultrafine fiber generation type capable of forming a non-woven fabric having an apparent density of 0.35 g / cm 3 or more of ultrafine fibers having a fineness of 0.5 dtex or less by ultrafine fiberization treatment. A step of preparing a fiber entangled sheet of long fibers of fiber, and (2) impregnating the fiber entangled sheet with a first emulsion containing a gelling agent containing an ion that causes a pH change of water and a polymer elastic body. Then, the first emulsion is gelled, and the polymer elastic body is solidified by heating and drying, and (3) the ultrafine fiber-generating fiber is treated with ultrafine fiber to increase the non-woven fabric. A step of forming a first complex containing a molecular elastic body; and (4) impregnating the first complex with a second emulsion containing a gelling agent and a polymer elastic body, and further drying by heating. High polymer elasticity When the respective layers when uniformly divided into three in the thickness direction are the first surface layer, the middle layer and the second surface layer in order from any one of the surface sides, the porosity of the first surface layer and the middle layer A step of forming a second composite having a difference of 5% or less; and (5) a hard sheet is obtained by washing the second composite with water so that the total ion content is 400 μg / cm 3 or less. And (6) a step of hot pressing at least one selected from the first composite, the second composite, and the hard sheet in order to set the surface hardness of the hard sheet to JIS-D hardness 45 or more. .
 高い研磨レートを有し、且つ研磨レートが経時的に変化しにくい研磨パッドを得るための硬質シートが得られる。 A hard sheet for obtaining a polishing pad having a high polishing rate and the polishing rate hardly changing with time can be obtained.
図1は硬質シートの一実施形態の模式断面図である。FIG. 1 is a schematic cross-sectional view of an embodiment of a hard sheet.
 本発明に係る硬質シートの一実施形態を以下に詳しく説明する。図1は本実施形態の硬質シート10の模式断面図である。図1には、円で囲んだ領域に、その一部分の拡大模式図も併せて示している。 An embodiment of the hard sheet according to the present invention will be described in detail below. FIG. 1 is a schematic cross-sectional view of a hard sheet 10 of the present embodiment. FIG. 1 also shows an enlarged schematic view of a part of the region surrounded by a circle.
 図1に示すように、硬質シート10は、極細繊維1aの絡合体である不織布1と、不織布1に付与された高分子弾性体2とを含む硬質シートである。硬質シート10は、JIS-D硬度が45以上であり、厚み方向に均等に3分割したときの各層を、表面側から順に、第1表層3、中層4及び第2表層5とした場合、第1表層3及び中層4のJIS-D硬度を任意の点でそれぞれ3点ずつ計6点測定し、計6点のD硬度を用いて、下記式:
R(%)=(6点中のD硬度最大値-6点中のD硬度最小値)/6点のD硬度平均値×100、から算出されるR%が0~20%である。また、好ましくは、第2表層5及び中層4のJIS-D硬度を任意の点でそれぞれ3点ずつ計6点測定し、計6点のD硬度を用いて上記式から算出されるR%も0~20%である。そして、水のpH変化を生じさせるイオンの総含有量が400μg/cm3以下である硬質シートである。
As shown in FIG. 1, the hard sheet 10 is a hard sheet that includes a nonwoven fabric 1 that is an entangled body of ultrafine fibers 1 a and a polymer elastic body 2 that is imparted to the nonwoven fabric 1. The hard sheet 10 has a JIS-D hardness of 45 or more, and when each layer is divided into three equally in the thickness direction, the first surface layer 3, the middle layer 4 and the second surface layer 5 are sequentially formed from the surface side. (1) JIS-D hardness of the surface layer 3 and the middle layer 4 is measured at three points each at arbitrary points for a total of 6 points, and the following formula is used by using the D hardness of 6 points in total:
R% calculated from R (%) = (D hardness maximum value in 6 points−D hardness value in 6 points) / 6 D hardness average value of 6 points × 100 is 0 to 20%. Preferably, the JIS-D hardness of the second surface layer 5 and the middle layer 4 is measured at three arbitrary points at a total of 6 points, and the R% calculated from the above formula using the total 6 points of D hardness is also given. 0 to 20%. And it is a hard sheet | seat whose total content of the ion which causes the pH change of water is 400 microgram / cm < 3 > or less.
 硬質シート10においては、不織布1を形成する極細繊維1aは、複数本の極細繊維1aが束となった繊維束1bを形成している。また、複数の繊維束1b同士は高分子弾性体2で結着されている。好ましくは、複数の繊維束1bの半数以上が高分子弾性体2で結着されている。さらに、繊維束1bを形成する極細繊維1a同士も高分子弾性体2で結着されている。好ましくは、極細繊維1aの半数以上が高分子弾性体2で結着されている。このような不織布1と高分子弾性体2とを含む不織布と高分子弾性体との複合体が、空隙が少なく、硬度の高い緻密な硬質シート10である。このような硬質シート10は、繊維束1bによる補強効果と、硬質シートの高い充填率(すなわち低い空隙率)のために、高い剛性を有する。 In the hard sheet 10, the ultrafine fibers 1a forming the nonwoven fabric 1 form a fiber bundle 1b in which a plurality of ultrafine fibers 1a are bundled. Further, the plurality of fiber bundles 1 b are bound by a polymer elastic body 2. Preferably, more than half of the plurality of fiber bundles 1 b are bound by the polymer elastic body 2. Further, the ultrafine fibers 1 a forming the fiber bundle 1 b are also bound by the polymer elastic body 2. Preferably, more than half of the ultrafine fibers 1 a are bound by the polymer elastic body 2. A composite of a nonwoven fabric and a polymer elastic body including such a nonwoven fabric 1 and a polymer elastic body 2 is a dense hard sheet 10 having a small amount of voids and a high hardness. Such a hard sheet 10 has high rigidity because of the reinforcing effect of the fiber bundle 1b and the high filling rate (that is, low porosity) of the hard sheet.
 硬質シート10は、繊維束を形成している極細繊維の不織布1を含有する。表面に存在する不織布中の繊維束は、研磨の際に分繊またはフィブリル化する。その結果、研磨面に高い繊維密度の極細繊維が露出する。露出した極細繊維は、広い面積で被研磨基材と接触し、また、多量のスラリーを保持できる。さらに、露出した極細繊維は、研磨パッドの表面をソフトにするために、砥粒の凝集物に荷重が選択的に掛かることを抑制する。その結果、スクラッチの発生が抑制される。 The hard sheet 10 contains a nonwoven fabric 1 of ultrafine fibers forming a fiber bundle. The fiber bundle in the non-woven fabric existing on the surface is split or fibrillated during polishing. As a result, ultrafine fibers having a high fiber density are exposed on the polished surface. The exposed ultrafine fibers are in contact with the substrate to be polished over a large area and can hold a large amount of slurry. Further, the exposed ultrafine fibers suppress a load from being selectively applied to the aggregate of abrasive grains in order to make the surface of the polishing pad soft. As a result, the occurrence of scratches is suppressed.
 また、硬質シート10は、JIS-D硬度が45以上であり、第1表層3及び中層2のJIS-D硬度をそれぞれ3点ずつ計6点測定し、計6点のD硬度を用いて、下記式:
R(%)=(D硬度最大値―D硬度最小値)/D硬度平均値×100、から算出されるR%が0~20%になるように、厚み方向に均質になるように調整されている。また、好ましくは、第2表層5及び中層2のJIS-D硬度をそれぞれ3点ずつ計6点測定し、計6点のD硬度を用いて、算出されたR%も0~20%になるように、厚み方向に均質になるように調整されていることが好ましい。このように、硬度が均質になるように調整されていることにより、均質な研磨が可能になる。
Further, the hard sheet 10 has a JIS-D hardness of 45 or more, and the JIS-D hardness of the first surface layer 3 and the middle layer 2 is measured at a total of 6 points, respectively, for a total of 6 points. Following formula:
R (%) = (D hardness maximum value−D hardness minimum value) / D hardness average value × 100, adjusted so that the R% calculated from R is 0 to 20% and is uniform in the thickness direction. ing. Preferably, the JIS-D hardness of each of the second surface layer 5 and the middle layer 2 is measured at a total of 6 points for a total of 6 points, and the calculated R% is also 0 to 20% using the total D hardness of 6 points. Thus, it is preferable to adjust so that it may become uniform in the thickness direction. Thus, by adjusting the hardness to be uniform, uniform polishing becomes possible.
 そして、硬質シート10は、水のpH変化を生じさせるイオンの総含有量が400μg/cm3以下になるように調整されている。上述したような厚み方向に高分子弾性体を均質に付与するために、一般的には、ゲル化剤が用いられる。硬質シート中に含まれるイオンは、研磨の際にスラリーのpHを変化させることがある。スラリーのpHが変化した場合には、研磨レートを低下させたり、砥粒を凝集させやすくする。このような場合において、硬質シート中に含まれるイオン性化合物を水洗すること等により低減させることにより、スラリーのpHの変化により生じる研磨レートの低下を抑制できる。なお、水のpH変化を生じるイオンとは、水に溶解させたときに、pHを変化させる全てのイオンである。 The hard sheet 10 is adjusted so that the total content of ions that cause the pH change of water is 400 μg / cm 3 or less. Generally, a gelling agent is used in order to uniformly apply the polymer elastic body in the thickness direction as described above. The ions contained in the hard sheet may change the pH of the slurry during polishing. When the pH of the slurry changes, the polishing rate is lowered or the abrasive grains are easily aggregated. In such a case, the reduction of the polishing rate caused by the change in pH of the slurry can be suppressed by reducing the ionic compound contained in the hard sheet by washing with water or the like. The ions that cause the pH change of water are all ions that change the pH when dissolved in water.
 本実施形態の硬質シートは、後に詳しく説明するように、極細繊維の緻密な不織布に、厚み方向に均質に高い含有率で高分子弾性体を含浸付与することにより製造される。また、このような硬質シートの製造において、不織布に高い含有率で高分子弾性体を含浸付与するためには、ゲル化剤を含む高分子弾性体のエマルジョンを用いることが好ましい。そして、硬質シートの製造工程において、ゲル化剤に含まれている水のpH変化を生じさせるイオンの総含有量を400μg/cm3以下になるように水洗することにより製造できる。 As will be described in detail later, the hard sheet of the present embodiment is produced by impregnating a dense nonwoven fabric of ultrafine fibers with a polymer elastic body at a high content uniformly in the thickness direction. In the production of such a hard sheet, it is preferable to use an emulsion of a polymer elastic body containing a gelling agent in order to impregnate the nonwoven fabric with a high content of the polymer elastic body. And in the manufacturing process of a hard sheet, it can manufacture by washing with water so that the total content of the ion which causes the pH change of the water contained in a gelatinizer may be 400 microgram / cm < 3 > or less.
 以下、本実施形態の硬質シートの各要素について、さらに詳しく説明する。 Hereinafter, each element of the hard sheet of the present embodiment will be described in more detail.
 本実施形態における不織布は極細繊維から形成されており、極細繊維は好ましくは繊維束を形成している。 The nonwoven fabric in the present embodiment is formed from ultrafine fibers, and the ultrafine fibers preferably form a fiber bundle.
 極細繊維は、0.0001~0.5dtexの繊度を有し、好ましくは0.001~0.01dtexの繊度を有する。極細繊維の繊度が0.0001dtex未満の場合には、研磨の際に表面近傍の極細繊維が充分に分繊しにくくなり、その結果、スラリー保持量が低下する。極細繊維の繊度が0.5dtexを超える場合には、表面が粗くなりすぎることにより研磨レートが低下し、また、極細繊維の表面で砥粒が凝集しやすくなる。 The ultrafine fiber has a fineness of 0.0001 to 0.5 dtex, preferably 0.001 to 0.01 dtex. When the fineness of the ultrafine fibers is less than 0.0001 dtex, the ultrafine fibers in the vicinity of the surface are hardly sufficiently separated during polishing, and as a result, the slurry holding amount decreases. When the fineness of the ultrafine fiber exceeds 0.5 dtex, the polishing rate is lowered due to the surface becoming too rough, and the abrasive grains easily aggregate on the surface of the ultrafine fiber.
 極細繊維は長繊維(フィラメント)であること、具体的には平均繊維長が100mm以上、さらには、200mm以上であることが好ましい。平均繊維長の上限は、特に限定されないが、後述する絡合工程で切断されない限り、例えば、数m、数百m、数kmあるいはそれ以上の長さの繊維を含んでもよい。極細繊維の長繊維は、繊維密度が高められることにより、硬質シートの剛性を高める。また、長繊維は研磨の際に脱落しにくい。なお、極細繊維の短繊維は、繊維密度を高めにくく、剛性の高い硬質シートが得られない。また、短繊維は研磨の際に脱落しやすい。 It is preferable that the ultrafine fiber is a long fiber (filament), specifically, the average fiber length is 100 mm or more, and more preferably 200 mm or more. The upper limit of the average fiber length is not particularly limited, but may include, for example, fibers having a length of several meters, several hundreds of meters, several kilometers, or more as long as it is not cut in the entanglement step described later. The ultrafine fiber long fibers increase the rigidity of the hard sheet by increasing the fiber density. Further, long fibers are difficult to fall off during polishing. In addition, the short fiber of an ultrafine fiber is hard to raise fiber density, and a rigid sheet with high rigidity cannot be obtained. Moreover, short fibers are easy to fall off during polishing.
 不織布を形成する極細繊維は、複数本の極細繊維が束となって繊維束を形成していることが好ましい。厚み方向の断面に存在する繊維束の平均断面積としては80μm2以上、さらには、100μm2以上、とくには、120μm2以上であることが、とくに剛性の高い硬質シートが得られる点から好ましい。 The ultrafine fibers forming the nonwoven fabric are preferably a bundle of a plurality of ultrafine fibers forming a fiber bundle. The average cross-sectional area of the fiber bundles present in the cross section in the thickness direction is preferably 80 μm 2 or more, more preferably 100 μm 2 or more, and particularly preferably 120 μm 2 or more from the viewpoint of obtaining a hard sheet having particularly high rigidity.
 また、厚み方向の断面に存在する繊維束は、所定の厚み方向の断面の繊維束の合計束数に対して、40μm2以上の断面積を有する繊維束が25%以上であることが好ましい。特に高い平坦性が要求されるシリコンウエハ用、半導体ウエハ用、半導体デバイス用の研磨パッドに用いられる場合には、40μm2以上の断面積を有する繊維束が40%以上、さらには、50%以上、とくには、100%であることが好ましい。40μm2以上である繊維束の割合が低すぎる場合には、研磨レートが低下したり、平坦化性能が低くなる傾向がある。 Moreover, it is preferable that the fiber bundle which exists in the cross section of the thickness direction is 25% or more of fiber bundles which have a cross-sectional area of 40 μm 2 or more with respect to the total number of fiber bundles of the cross section in the predetermined thickness direction. When used for polishing pads for silicon wafers, semiconductor wafers, and semiconductor devices that require particularly high flatness, fiber bundles having a cross-sectional area of 40 μm 2 or more are 40% or more, and further 50% or more. In particular, 100% is preferable. When the proportion of fiber bundles of 40 μm 2 or more is too low, the polishing rate tends to decrease or the planarization performance tends to be low.
 また、本実施形態の硬質シートにおいては、厚み方向の断面の単位面積当たりの繊維束の束密度が、600束/mm2以上、さらには1000束/mm2以上で、4000束/mm2以下、さらには、3000束/mm2以下であることが好ましい。このような束密度の場合には、研磨の際に表面の繊維束が分繊またはフィブリル化して多くの極細繊維を形成し、スラリーの保持量を向上させる。また、繊維束が分繊またはフィブリル化することにより、研磨面の表面がソフトになってスクラッチの発生を抑制する。束密度が低すぎる場合には、表面に形成される極細繊維の繊維密度が低くなり、研磨レートが低下したり、平坦化性能が低下したりする傾向がある。また繊維束の密度が高すぎる場合には、表面が緻密になりすぎることによりスラリーの保持量や研磨レートが低下する傾向がある。なお、本実施形態の硬質シートにおいては、厚み方向及び面方向において繊維束の密度斑が少ないことが、研磨安定性が高くなる点から好ましい。 In the hard sheet of the present embodiment, the bundle density of the fiber bundle per unit area of the cross section in the thickness direction is 600 bundles / mm 2 or more, further 1000 bundles / mm 2 or more, and 4000 bundles / mm 2 or less. Furthermore, it is preferably 3000 bundles / mm 2 or less. In the case of such a bundle density, the fiber bundle on the surface is split or fibrillated at the time of polishing to form many ultrafine fibers and improve the amount of slurry retained. Further, when the fiber bundle is split or fibrillated, the surface of the polished surface becomes soft and the generation of scratches is suppressed. When the bundle density is too low, the fiber density of the ultrafine fibers formed on the surface tends to be low, and the polishing rate tends to decrease or the flattening performance tends to decrease. In addition, when the density of the fiber bundle is too high, the amount of slurry retained and the polishing rate tend to decrease due to the surface becoming too dense. In addition, in the hard sheet | seat of this embodiment, it is preferable from the point from which polishing stability becomes high that there are few density spots of a fiber bundle in a thickness direction and a surface direction.
 極細繊維は、ガラス転移温度(Tg)が50℃以上、さらには60℃以上の熱可塑性樹脂から形成されていることが好ましい。熱可塑性樹脂のTgが低すぎる場合には、研磨の際に、剛性が不足して平坦化性能が低下し、また、経時的に剛性が低下して研磨安定性や研磨均一性が低下する傾向がある。Tgの上限は特に限定されないが、工業的な製造上、300℃、さらには、150℃であることが好ましい。なお、研磨過程では吸水状態となることから、Tgは50℃の温水に処理した後、濡れたままの状態で測定したTgが50℃以上であることが、さらに好ましい。また、熱可塑性樹脂の吸水率は、4質量%以下、さらには2質量%以下であることが好ましい。吸水率が4質量%を超える場合には、研磨の際に、スラリー中の水分を徐々に吸収することにより剛性が経時的に低下する。このような場合には、平坦化性能が経時的に低下したり、研磨レートや研磨均一性が変動したりしやすくなる。吸水率は0~2質量%であることが好ましい。 The ultrafine fibers are preferably formed from a thermoplastic resin having a glass transition temperature (T g ) of 50 ° C. or higher, more preferably 60 ° C. or higher. If the T g of the thermoplastic resin is too low, the time of polishing, rigid planarization performance is reduced insufficient, also, over time the rigidity is lowered polishing stability and polishing uniformity decreases Tend. The upper limit of T g is not particularly limited, but is preferably 300 ° C., and more preferably 150 ° C. for industrial production. Incidentally, since the the water state in the polishing process, T g is that after processing the of 50 ° C. Hot water, T g, as measured in the wet state is 50 ° C. or higher, more preferably. The water absorption of the thermoplastic resin is preferably 4% by mass or less, and more preferably 2% by mass or less. When the water absorption rate exceeds 4% by mass, the rigidity decreases with time by gradually absorbing the water in the slurry during polishing. In such a case, the planarization performance is likely to deteriorate with time, and the polishing rate and polishing uniformity are likely to fluctuate. The water absorption is preferably 0 to 2% by mass.
 熱可塑性樹脂の具体例としては、例えば、ポリエチレンテレフタレート(PET、Tg77℃、吸水率1質量%),イソフタル酸変性ポリエチレンテレフタレート(Tg67~77℃、吸水率1質量%),スルホイソフタル酸変性ポリエチレンテレフタレート(Tg67~77℃、吸水率1~4質量%),ポリブチレンナフタレート(Tg85℃、吸水率1質量%),ポリエチレンナフタレート(Tg124℃、吸水率1質量%)等の芳香族ポリエステル系樹脂;テレフタル酸とノナンジオールとメチルオクタンジオール共重合ナイロン(Tg125~140℃、吸水率1~4質量%)等の半芳香族ポリアミド系樹脂等が挙げられる。これらはそれぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中では、ポリエチレンテレフタレート(PET)、イソフタル酸変性ポリエチレンテレフタレート、ポリブチレンナフタレート、ポリエチレンナフタレートが、剛性、耐水性、及び耐磨耗性を充分に維持しうる点からも好ましい。特に、PETおよびイソフタル酸変性PET等の変性PETは、後述する海島型複合繊維のウェブ絡合シートから極細繊維を形成する湿熱処理工程において大幅に捲縮するために、緻密で高密度の繊維絡合体を形成することができること、硬質シートの剛性を高めやすいこと、及び、研磨の際に水分による経時変化を発生しにくいこと、等の点から好ましい。 Specific examples of the thermoplastic resin include, for example, polyethylene terephthalate (PET, T g 77 ° C., water absorption 1% by mass), isophthalic acid-modified polyethylene terephthalate (T g 67-77 ° C., water absorption 1% by mass), sulfoisophthalate. acid-modified polyethylene terephthalate (T g 67 ~ 77 ℃, water absorption 1 to 4 mass%), polybutylene naphthalate (T g 85 ° C., water absorption 1 wt%), polyethylene naphthalate (T g 124 ° C., water absorption 1 They include terephthalic acid, nonanediol and methyl octanediol copolymer nylon (T g 125 ~ 140 ℃, water absorption 1-4 wt%) semi-aromatic polyamide resins such as is; mass%) aromatic polyester resin such as It is done. These may be used alone or in combination of two or more. Among these, polyethylene terephthalate (PET), isophthalic acid-modified polyethylene terephthalate, polybutylene naphthalate, and polyethylene naphthalate are preferable because they can sufficiently maintain rigidity, water resistance, and abrasion resistance. In particular, modified PET, such as PET and isophthalic acid-modified PET, has a dense and high-density fiber entanglement in order to greatly crimp in a wet heat treatment process for forming ultrafine fibers from a web-entangled sheet of sea-island type composite fibers described later. It is preferable from the viewpoints of being able to form a coalescence, easily increasing the rigidity of the hard sheet, and being less likely to change with time due to moisture during polishing.
 また、本発明の効果を損なわない範囲で、必要に応じて、その他の熱可塑性樹脂からなる極細繊維を含有してもよい。このような熱可塑性樹脂としては、ポリ乳酸,ポリブチレンテレフタレート,ポリヘキサメチレンテレフタレート,ポリエチレンサクシネート,ポリブチレンサクシネート,ポリブチレンサクシネートアジペート,ポリヒドロキシブチレート-ポリヒドロキシバリレート共重合体等の芳香族ポリエステルや脂肪族ポリエステルおよびその共重合体;ナイロン6,ナイロン66,ナイロン10,ナイロン11,ナイロン12などの脂肪族ナイロンおよびその共重合体;ポリエチレン,ポリプロピレンなどのポリオレフィン類;エチレン単位を25~70モル%含有する変性ポリビニルアルコール;ポリウレタン系エラストマー,ナイロン系エラストマー,ポリエステル系エラストマー等のエラストマーなどを併用してもよい。 In addition, as long as the effects of the present invention are not impaired, ultrafine fibers made of other thermoplastic resins may be included as necessary. Examples of such thermoplastic resins include polylactic acid, polybutylene terephthalate, polyhexamethylene terephthalate, polyethylene succinate, polybutylene succinate, polybutylene succinate adipate, and polyhydroxybutyrate-polyhydroxyvalylate copolymer. Aromatic polyesters and aliphatic polyesters and copolymers thereof; aliphatic nylons such as nylon 6, nylon 66, nylon 10, nylon 11 and nylon 12, and copolymers thereof; polyolefins such as polyethylene and polypropylene; 25 ethylene units Modified polyvinyl alcohol containing 70 mol%; elastomers such as polyurethane elastomers, nylon elastomers, polyester elastomers, etc. may be used in combination.
 硬質シートは極細繊維の不織布に付与された高分子弾性体を含む。 The hard sheet contains a polymer elastic body applied to a nonwoven fabric of ultrafine fibers.
 高分子弾性体の具体例としては、例えば、ポリウレタン、ポリアミド系弾性体、(メタ)アクリル酸エステル系弾性体、(メタ)アクリル酸エステル-スチレン系弾性体、(メタ)アクリル酸エステル-アクリロニトリル系弾性体、(メタ)アクリル酸エステル-オレフィン系弾性体、(メタ)アクリル酸系エステル-(水添)イソプレン系弾性体、(メタ)アクリル酸エステル-ブタジエン系弾性体、スチレン-ブタジエン系弾性体、スチレン-水添イソプレン系弾性体、アクリロニトリル-ブタジエン系弾性体、アクリロニトリルーブタジエンースチレン系弾性体、酢酸ビニル系弾性体、(メタ)アクリル酸エステル-酢酸ビニル系弾性体、エチレン-酢酸ビニル系弾性体、エチレン-オレフィン系弾性体、シリコーン系弾性体、フッ素系弾性体、及び、ポリエステル系弾性体等が挙げられる。 Specific examples of the polymer elastic body include, for example, polyurethane, polyamide-based elastic body, (meth) acrylic ester-based elastic body, (meth) acrylic ester-styrene-based elastic body, (meth) acrylic ester-acrylonitrile-based Elastic body, (meth) acrylic ester-olefin elastic body, (meth) acrylic ester- (hydrogenated) isoprene elastic body, (meth) acrylic ester-butadiene elastic body, styrene-butadiene elastic body Styrene-hydrogenated isoprene elastic body, acrylonitrile-butadiene elastic body, acrylonitrile-butadiene-styrene elastic body, vinyl acetate elastic body, (meth) acrylate ester-vinyl acetate elastic body, ethylene-vinyl acetate system Elastic bodies, ethylene-olefin elastic bodies, silicone elastic bodies, System elastic body, and, a polyester-based elastic material or the like.
 高分子弾性体は非多孔質状であることが好ましい。なお、非多孔質状とは、多孔質状、または、スポンジ状の高分子弾性体が有するような空隙(独立気泡)を実質的に有さないことを意味する。例えば、溶剤系ポリウレタンを凝固させて得られるような、独立気泡を多数有するような高分子弾性体ではないことを意味する。 The polymer elastic body is preferably non-porous. In addition, the non-porous form means that it does not substantially have voids (closed cells) that a porous or sponge-like polymer elastic body has. For example, it means that it is not a polymer elastic body having many closed cells, which is obtained by coagulating solvent-based polyurethane.
 高分子弾性体が非多孔質状である場合には、高い研磨安定性が得られ、摩耗しにくく、また、スラリー屑やパッド屑が空隙に残りにくくなる。そのために、高い研磨レートを長時間維持することができる。また、極細繊維に対する接着性が高いために繊維の抜けが起こりにくくなる。さらに、高い剛性が得られるために平坦化性能が優れる。 When the polymer elastic body is non-porous, high polishing stability is obtained, it is difficult to wear, and slurry waste and pad waste are less likely to remain in the voids. Therefore, a high polishing rate can be maintained for a long time. Moreover, since the adhesiveness to the ultrafine fibers is high, the fibers are less likely to come off. Furthermore, since high rigidity is obtained, the planarization performance is excellent.
 高分子弾性体の吸水率は、0.5~8質量%、さらには1~6質量%であることが好ましい。高分子弾性体の吸水率が低すぎる場合にはスラリーに対する濡れ性が低下する。その結果、研磨レート,研磨均一性,研磨安定性が低下したり、砥粒が凝集しやすくなる傾向がある。高分子弾性体の吸水率が高すぎる場合には、研磨の際に硬質シートの剛性が経時的に低下して平坦化性能が低下する。また、研磨レートや研磨均一性が変動しやすくなる。なお、高分子弾性体の吸水率とは、乾燥処理した高分子弾性体のフィルムを室温の水に浸漬して飽和膨潤させたときの吸水率である。なお、2種以上の高分子弾性体を含有する場合には各高分子弾性体の吸水率に質量分率を乗じた値の和としても理論上算出される。 The water absorption of the polymer elastic body is preferably 0.5 to 8% by mass, more preferably 1 to 6% by mass. When the water absorption rate of the polymer elastic body is too low, the wettability with respect to the slurry is lowered. As a result, the polishing rate, polishing uniformity, and polishing stability tend to decrease, and the abrasive grains tend to aggregate. When the water absorption of the polymer elastic body is too high, the rigidity of the hard sheet decreases with time during polishing, and the planarization performance decreases. Also, the polishing rate and polishing uniformity are likely to fluctuate. The water absorption rate of the polymer elastic body is the water absorption rate when the dried polymer elastic body film is immersed in water at room temperature and saturated and swollen. In addition, when it contains two or more kinds of polymer elastic bodies, it is theoretically calculated as the sum of values obtained by multiplying the water absorption of each polymer elastic body by the mass fraction.
 高分子弾性体の吸水率は、親水性の官能基を導入したり、架橋度を調整したりすることにより調整できる。親水性の官能基としては、例えば、カルボキシル基,スルホン酸基,及び、炭素数3以下のポリアルキレングリコール基等が挙げられる。親水性基は親水性基を有する単量体を共重合することにより導入することができる。親水性基を有する単量体単位の共重合割合としては、0.1~20質量%、さらには、0.5~10質量%であることが好ましい。 The water absorption of the polymer elastic body can be adjusted by introducing a hydrophilic functional group or adjusting the degree of crosslinking. Examples of the hydrophilic functional group include a carboxyl group, a sulfonic acid group, and a polyalkylene glycol group having 3 or less carbon atoms. The hydrophilic group can be introduced by copolymerizing a monomer having a hydrophilic group. The copolymerization ratio of the monomer unit having a hydrophilic group is preferably 0.1 to 20% by mass, and more preferably 0.5 to 10% by mass.
 高分子弾性体は、150℃における貯蔵弾性率[E’(150℃、dry)]が0.1~100MPa、さらには、1~80MPaであることが好ましい。高分子弾性体の貯蔵弾性率は、架橋度を調整することにより調整できる。なお、2種以上の高分子弾性体を含有する場合には、各高分子弾性体の[E’(150℃、dry)]に質量分率を乗じた値の和としても理論上算出される。 The polymer elastic body preferably has a storage elastic modulus [E ′ (150 ° C., dry)] at 150 ° C. of 0.1 to 100 MPa, more preferably 1 to 80 MPa. The storage elastic modulus of the polymer elastic body can be adjusted by adjusting the degree of crosslinking. When two or more kinds of polymer elastic bodies are contained, it is theoretically calculated as the sum of the values obtained by multiplying [E ′ (150 ° C., dry)] of each polymer elastic body by the mass fraction. .
 高分子弾性体は、単独で用いても2種以上を組み合わせて用いてもよい。これらの中では、ポリウレタンが、極細繊維に対する結着性に優れている点から好ましい。 The polymer elastic body may be used alone or in combination of two or more. Among these, polyurethane is preferable from the viewpoint of excellent binding properties to ultrafine fibers.
 繊維束を形成する極細繊維は、高分子弾性体で集束されていること、さらには極細繊維の半数以上の本数が高分子弾性体で集束されていることが好ましい。
 また、複数の繊維束同士は、繊維束の外側に存在する高分子弾性体により結着され、さらには繊維束の半数以上の束が高分子弾性体で結着されて、塊(バルク)状に存在していることが好ましい。繊維束同士が結着されることにより、硬質シートの形態安定性が向上して研磨安定性が向上する。高分子弾性体で極細繊維を集束したり、繊維束同士を結着したりすることにより、硬度が均質に高い硬質シートが得られる。
The ultrafine fibers forming the fiber bundle are preferably bundled with a polymer elastic body, and more than half of the ultrafine fibers are preferably bundled with a polymer elastic body.
In addition, a plurality of fiber bundles are bound by a polymer elastic body existing outside the fiber bundle, and more than half of the fiber bundles are bound by a polymer elastic body to form a bulk shape. It is preferable that it exists in. By binding the fiber bundles, the form stability of the hard sheet is improved and the polishing stability is improved. A hard sheet having a uniform high hardness can be obtained by bundling ultrafine fibers with a polymer elastic body or binding fiber bundles together.
 繊維束を形成する極細繊維が集束されていない場合には、極細繊維が柔軟性を帯びるために高い平坦化性能が得られにくくなる。また、研磨中に極細繊維が抜けやすくなり、抜けた繊維に砥粒が凝集してスクラッチを発生させやすくする。極細繊維が高分子弾性体で集束されているとは、繊維束内部に存在する極細繊維が、繊維束内部に存在する高分子弾性体で接着されて拘束されていることを意味する。 When the ultrafine fibers forming the fiber bundle are not converged, the ultrafine fibers are flexible, so that it is difficult to obtain high planarization performance. In addition, the ultrafine fibers are easily removed during polishing, and the abrasive grains are aggregated on the removed fibers to easily generate scratches. The fact that the ultrafine fibers are focused by the polymer elastic body means that the ultrafine fibers existing inside the fiber bundle are bonded and restrained by the polymer elastic body existing inside the fiber bundle.
 硬質シート中の不織布と高分子弾性体との比率(不織布/高分子弾性体)は、質量比で、90/10~55/45、さらには85/15~65/35であることが好ましい。不織布と高分子弾性体との比率が上記範囲である場合には、硬質シートの剛性を高めやすくなる。また、硬質シートの表面に表出する極細繊維の密度を充分に高めることができる。その結果、研磨安定性、研磨レート、及び、平坦化性能を充分に高めることができる。 The ratio of the nonwoven fabric to the polymer elastic body (nonwoven fabric / polymer elastic body) in the hard sheet is preferably 90/10 to 55/45, more preferably 85/15 to 65/35, in mass ratio. When the ratio of the nonwoven fabric to the polymer elastic body is within the above range, the rigidity of the hard sheet can be easily increased. Moreover, the density of the ultrafine fibers exposed on the surface of the hard sheet can be sufficiently increased. As a result, polishing stability, polishing rate, and planarization performance can be sufficiently enhanced.
 硬質シートの見掛け密度は、0.5~1.2g/cm3、さらには、0.6~1.2g/cm3であることが高い剛性を保持する点から好ましい。 The apparent density of the hard sheet is preferably 0.5 to 1.2 g / cm 3 , and more preferably 0.6 to 1.2 g / cm 3 from the viewpoint of maintaining high rigidity.
 本実施形態の硬質シートはJIS-D硬度が45以上であり、厚み方向の断面において、均等に3分割したときの各層を、何れか一方の表面側から順に、第1表層、中層及び第2表層とした場合、第1表層及び中層のJIS-D硬度を任意の点でそれぞれ3点ずつ計6点測定し、計6点のD硬度を用いて、下記式:R(%)=(D硬度最大値-D硬度最小値)/6点のD硬度の平均値×100、から算出されるR%が0~20%である。また、好ましくは、第2表層及び中層のJIS-D硬度を任意の点でそれぞれ3点ずつ計6点測定し、計6点のD硬度を用いて上記式から算出されるR%も0~20%である。 The hard sheet of the present embodiment has a JIS-D hardness of 45 or more, and in the cross section in the thickness direction, each layer is divided into three equal parts, and the first surface layer, middle layer, In the case of the surface layer, the JIS-D hardness of the first surface layer and the middle layer was measured at three points each at arbitrary points for a total of 6 points, and the following formula: R (%) = (D R% calculated from (hardness maximum value−D hardness minimum value) / 6 average value of D hardness at 6 points × 100 is 0 to 20%. Preferably, the JIS-D hardness of the second surface layer and the middle layer is measured at three arbitrary points at a total of 6 points, and the R% calculated from the above formula using the total 6 points of D hardness is also 0 to 20%.
 硬質シートのJIS-D硬度は、45以上であり、45~75、さらには50~70であることが好ましい。第1表層の硬度をJIS-D硬度で45以上に調整することにより、高い平坦化性能が得られる。JIS-D硬度が高すぎる場合には、スクラッチが発生しやすくなる。なお、本実施形態の硬質シートは、表面に高い繊維密度の極細繊維を露出させるために、硬質であるにもかかわらず、表面がソフトである。そのためにスクラッチが発生しにくい。 The JIS-D hardness of the hard sheet is 45 or more, preferably 45 to 75, more preferably 50 to 70. By adjusting the hardness of the first surface layer to 45 or more in JIS-D hardness, high planarization performance can be obtained. If the JIS-D hardness is too high, scratches are likely to occur. Note that the hard sheet of the present embodiment has a soft surface despite being hard in order to expose ultrafine fibers with a high fiber density on the surface. Therefore, it is difficult for scratches to occur.
 硬質シートの第1表層及び中層のJIS-D硬度を任意の点でそれぞれ3点ずつ計6点測定し、計6点のD硬度を用いて、上記式から算出されるR%は、0~20%であり、0~15%であることが好ましい。第1表層及び中層のR%がこのような範囲である場合には、研磨パッドとして用いた場合に、第1表層及び中層での研磨レートの変化が小さくなり、安定した研磨性能が得られる。R%が20%を超える場合には、研磨中に研磨レートの変化が大きくなり、安定した研磨性能が得られない。なお、JIS-D硬度を測定する任意の点とは、その層のいずれの点で測定するかは任意であり、偏りなくどこの点で測定してもR%が0~20%になることを意味する。このような場合には、厚み方向だけではなく、幅方向においても硬度に偏りがなくなるために、平面方向においても、研磨レートが均質であるために、安定した研磨性能が得られる。同様に、硬質シートの第2表層及び中層のJIS-D硬度を任意の点でそれぞれ3点ずつ計6点測定し、計6点のD硬度を用いて、上記式から算出されるR%は、好ましくは0~20%、さらに好ましくは0~15%である。 The JIS-D hardness of the first surface layer and the middle layer of the hard sheet is measured at 6 points in total at 6 points in total, and the R% calculated from the above formula using the 6 points of D hardness is 0 to 20%, preferably 0 to 15%. When the R% of the first surface layer and the intermediate layer is in such a range, when used as a polishing pad, the change in the polishing rate in the first surface layer and the intermediate layer is reduced, and stable polishing performance is obtained. When R% exceeds 20%, a change in the polishing rate becomes large during polishing, and stable polishing performance cannot be obtained. In addition, the arbitrary point for measuring JIS-D hardness is arbitrary at which point of the layer, and R% is 0 to 20% regardless of where it is measured. Means. In such a case, since there is no deviation in hardness not only in the thickness direction but also in the width direction, the polishing rate is uniform in the planar direction, and thus stable polishing performance can be obtained. Similarly, the JIS-D hardness of the second surface layer and the middle layer of the hard sheet is measured at three arbitrary points at a total of 6 points, and using the total 6 points of D hardness, R% calculated from the above formula is It is preferably 0 to 20%, more preferably 0 to 15%.
 本実施形態の硬質シートは、水のpH変化を生じさせるイオンの総含有量が、400μg/cm3以下である。本実施形態の硬質シートは、後述するように、例えば、不織布に高分子弾性体のエマルジョンを含浸させた後、高分子弾性体を加熱乾燥して凝固させることにより、不織布中に高分子弾性体を付与して製造される。このような工程においては、不織布中に含浸されたエマルジョン中の水分は表面から乾燥する。そのために、水分の蒸発の進行に伴い、不織布中のエマルジョンが表層に移動するマイグレーションを引き起こす。マイグレーションを起こした場合には、不織布の表層付近に高分子弾性体が偏在し、中層付近の高分子弾性体が少なくなり、中層付近に空隙が残りやすい。このようなマイグレーションは、エマルジョンにゲル化剤を配合して、乾燥前にエマルジョンをゲル化させることにより抑制される。本発明者らは、得られるゲル化剤に含まれている、水のpH変化を生じさせるイオンが硬質シート中に所定量以上残留した場合には、研磨の際に研磨レートを低下させることを見出した。 In the hard sheet of this embodiment, the total content of ions that cause the pH change of water is 400 μg / cm 3 or less. As will be described later, the hard sheet of the present embodiment is obtained by, for example, impregnating a nonwoven fabric with an emulsion of a polymer elastic body, and then heating and drying the polymer elastic body to solidify the polymer elastic body in the nonwoven fabric. Is manufactured. In such a process, moisture in the emulsion impregnated in the nonwoven fabric is dried from the surface. For this reason, as the water evaporates, the emulsion in the nonwoven fabric undergoes migration that moves to the surface layer. When migration occurs, the polymer elastic body is unevenly distributed in the vicinity of the surface layer of the nonwoven fabric, the polymer elastic body in the vicinity of the middle layer is reduced, and voids are likely to remain in the vicinity of the middle layer. Such migration is suppressed by adding a gelling agent to the emulsion and gelling the emulsion before drying. The inventors of the present invention are to reduce the polishing rate during polishing when a predetermined amount or more of ions that cause pH change of water contained in the obtained gelling agent remain in the hard sheet. I found it.
 硬質シート中に含まれる、水のpH変化を生じさせるイオンの総含有量は400μg/cm3以下であり、好ましくは350μg/cm3、さらには100μg/cm3以下である。また、イオンの総含有量は0μg/cm3であることが好ましいが、工業的な水洗効率から、1~100μg/cm3、さらには10~50μg/cm3程度であることが好ましい。硬質シート中に含まれる、水のpH変化を生じさせるイオンの総含有量が400μg/cm3を超える場合には、スラリーがpH変化を起こして研磨レートが低下し、さらに砥粒が凝集しやすくなる。 The total content of ions that cause a change in the pH of water contained in the hard sheet is 400 μg / cm 3 or less, preferably 350 μg / cm 3 , more preferably 100 μg / cm 3 or less. The total content of ions is preferably a 0 Pg / cm 3, from an industrial washing efficiency, 1 ~ 100μg / cm 3, more is preferably about 10 ~ 50μg / cm 3. When the total content of ions that cause the pH change of water contained in the hard sheet exceeds 400 μg / cm 3 , the slurry undergoes a pH change, the polishing rate decreases, and the abrasive grains tend to aggregate. Become.
 なお、水のpH変化を生じさせるイオンとは、水に溶解させたときにpHを変化させる全てのイオンであり、具体的には、例えば、一般的なゲル化剤に含まれる、硫酸イオン,硝酸イオン、炭酸イオン、アンモニウムイオン,ナトリウムイオン、カルシウムイオン、カリウムイオン、等が挙げられる。 The ions that cause the pH change of water are all ions that change the pH when dissolved in water. Specifically, for example, sulfate ions contained in a general gelling agent, Nitrate ions, carbonate ions, ammonium ions, sodium ions, calcium ions, potassium ions, and the like.
[研磨パッドの製造方法]
 次に、硬質シートの製造方法の一例について詳しく説明する。硬質シートは、例えば、次のような工程を経て製造することができる。
[Production method of polishing pad]
Next, an example of a manufacturing method of a hard sheet will be described in detail. A hard sheet | seat can be manufactured through the following processes, for example.
(1)極細繊維発生型繊維の長繊維の繊維絡合シートを準備する工程
 本工程においては、極細繊維発生型繊維の長繊維の繊維絡合シートを準備する。極細繊維発生型繊維の長繊維の繊維絡合シートは、例えば、次のように製造できる。
(1) Step of preparing a fiber entangled sheet of long fibers of ultrafine fiber generating fibers In this step, a fiber entangled sheet of long fibers of ultrafine fiber generating fibers is prepared. The fiber entangled sheet of ultrafine fiber-generating fibers can be produced, for example, as follows.
 はじめに、水溶性熱可塑性樹脂を海成分とし、非水溶性熱可塑性樹脂を島成分とする海島型複合繊維からなる長繊維ウェブを製造する。海島型複合繊維は海成分を溶解することにより、島成分の樹脂からなる極細繊維を発生させる極細繊維発生型繊維である。なお、本実施形態においては、極細繊維発生型繊維として海島型複合繊維を用いる例について説明するが、海島型複合繊維の代わりに多層積層型断面繊維等の公知の極細繊維発生型繊維を用いてもよい。 First, a long fiber web made of sea-island composite fibers having a water-soluble thermoplastic resin as a sea component and a water-insoluble thermoplastic resin as an island component is manufactured. The sea-island type composite fiber is an ultra-fine fiber generating fiber that generates an ultra-fine fiber made of an island component resin by dissolving a sea component. In this embodiment, an example of using a sea-island composite fiber as an ultra-fine fiber generating fiber will be described. However, a known ultra-fine fiber generating fiber such as a multilayer laminated cross-section fiber is used instead of a sea-island composite fiber. Also good.
 水溶性熱可塑性樹脂としては、水,アルカリ性水溶液,酸性水溶液等により溶解除去または分解除去できる熱可塑性樹脂であり、溶融紡糸が可能な樹脂が用いられる。水溶性熱可塑性樹脂の具体例としては、例えば、ポリビニルアルコール(PVA),PVA共重合体等のPVA系樹脂;ポリエチレングリコール及び/又はスルホン酸アルカリ金属塩を共重合成分として含有する変性ポリエステル;ポリエチレンオキシド等が挙げられる。これらの中ではPVA系樹脂が好ましく用いられる。 The water-soluble thermoplastic resin is a thermoplastic resin that can be dissolved or removed by water, an alkaline aqueous solution, an acidic aqueous solution, or the like, and a resin that can be melt-spun. Specific examples of the water-soluble thermoplastic resin include, for example, PVA resins such as polyvinyl alcohol (PVA) and PVA copolymer; modified polyester containing polyethylene glycol and / or alkali metal sulfonate as a copolymer component; Examples thereof include ethylene oxide. Of these, PVA resins are preferably used.
 海成分としてPVA系樹脂を含む海島型複合繊維からPVA系樹脂を溶解させるとき、島成分である極細繊維が大きく捲縮する。その結果、繊維密度の高い不織布が得られる。また、PVA系樹脂を含む海島型複合繊維からPVA系樹脂を溶解させるとき、島成分である極細繊維や高分子弾性体は分解も溶解もしないために、極細繊維や高分子弾性体の物性低下が起こりにくい。 When the PVA-based resin is dissolved from the sea-island type composite fiber containing the PVA-based resin as the sea component, the ultrafine fiber that is the island component is greatly crimped. As a result, a nonwoven fabric with a high fiber density is obtained. In addition, when PVA resin is dissolved from sea-island type composite fiber containing PVA resin, physical properties of ultrafine fiber and polymer elastic body are deteriorated because ultrafine fiber and polymer elastic body that are island components do not decompose or dissolve. Is unlikely to occur.
 PVA系樹脂としては、エチレン単位を4~15モル%、さらには6~13モル%含有するエチレン変性PVAが海島型複合繊維の物性が高くなる点から好ましく用いられる。 As the PVA-based resin, ethylene-modified PVA containing 4 to 15 mol%, more preferably 6 to 13 mol% of ethylene units is preferably used from the viewpoint of improving the physical properties of the sea-island composite fibers.
 PVA系樹脂の粘度平均重合度は、200~500、さらには、230~470、とくには、250~450の範囲であることが好ましい。また、PVA系樹脂の融点としては、160~250℃、さらには175~224℃、とくには180~220℃の範囲であることが、機械的特性及び熱安定性に優れる点、及び溶融紡糸性に優れる点から好ましい。 The viscosity average degree of polymerization of the PVA resin is preferably in the range of 200 to 500, more preferably 230 to 470, and particularly preferably 250 to 450. The melting point of the PVA resin is 160 to 250 ° C., more preferably 175 to 224 ° C., particularly 180 to 220 ° C., and excellent mechanical properties and thermal stability, and melt spinnability. From the point which is excellent in it.
 島成分を形成する非水溶性熱可塑性樹脂としては、水、アルカリ性水溶液、酸性水溶液等により、溶解除去または分解除去されない熱可塑性樹脂であって、溶融紡糸が可能な樹脂が用いられる。非水溶性熱可塑性樹脂の具体例としては、上述した、極細繊維を形成する各種樹脂、好ましくは、Tgが50℃以上で、且つ、吸水率が4質量%以下の熱可塑性樹脂が用いられる。 As the water-insoluble thermoplastic resin that forms the island component, a thermoplastic resin that is not dissolved or removed by water, an alkaline aqueous solution, an acidic aqueous solution, or the like and that can be melt-spun is used. Specific examples of the water-insoluble thermoplastic resin include the above-described various resins that form ultrafine fibers, preferably the thermoplastic resin having a Tg of 50 ° C. or more and a water absorption of 4% by mass or less.
 また、非水溶性熱可塑性樹脂は、例えば、触媒、着色防止剤、耐熱剤、難燃剤、滑剤、防汚剤、蛍光増白剤、艶消剤、着色剤、光沢改良剤、制電剤、芳香剤、消臭剤、抗菌剤、防ダニ剤、無機微粒子等の添加剤を含有してもよい。 Non-water-soluble thermoplastic resins include, for example, catalysts, anti-coloring agents, heat-resistant agents, flame retardants, lubricants, antifouling agents, fluorescent whitening agents, matting agents, coloring agents, gloss improvers, antistatic agents, You may contain additives, such as a fragrance | flavor, a deodorant, an antibacterial agent, an acaricide, and inorganic fine particles.
 海島型複合繊維は、水溶性熱可塑性樹脂と、水溶性熱可塑性樹脂と相溶性が低い非水溶性熱可塑性樹脂とを、それぞれ溶融紡糸した後、複合化させる複合紡糸法を用いて製造できる。そして、海島型複合繊維は、好ましくは長繊維のままウェブ化される。 Sea-island type composite fibers can be produced by using a composite spinning method in which a water-soluble thermoplastic resin and a water-insoluble thermoplastic resin having low compatibility with the water-soluble thermoplastic resin are melt-spun and then combined. The sea-island type composite fiber is preferably formed into a web as a long fiber.
 海島型複合繊維の長繊維のウェブは、例えば、スパンボンド法により、水溶性熱可塑性樹脂と非水溶性熱可塑性樹脂とを溶融紡糸した後、複合化し、さらに、延伸後、堆積させることにより得られる。なお、長繊維とは、短繊維を製造するときのような切断工程を経ずに製造された連続的な繊維である。海島型複合繊維の長繊維のウェブの製造方法の一例について、以下に詳しく説明する。 A long-fiber web of sea-island type composite fibers can be obtained, for example, by melt-spinning a water-soluble thermoplastic resin and a water-insoluble thermoplastic resin by a spunbond method, then compounding, and stretching and depositing. It is done. In addition, a long fiber is a continuous fiber manufactured without passing through a cutting process like manufacturing a short fiber. An example of a method for producing a long-fiber web of sea-island type composite fibers will be described in detail below.
 はじめに、水溶性熱可塑性樹脂及び非水溶性熱可塑性樹脂をそれぞれ別々の押出機により溶融混練し、それぞれ異なる紡糸口金から溶融樹脂のストランドを同時に吐出させる。そして、吐出されたストランドを複合ノズルで複合させた後、紡糸ヘッドのノズル孔から吐出させることにより海島型複合繊維を形成する。 First, a water-soluble thermoplastic resin and a water-insoluble thermoplastic resin are melt-kneaded with separate extruders, and molten resin strands are simultaneously discharged from different spinnerets. Then, after the discharged strands are combined with the composite nozzle, the sea-island type composite fibers are formed by discharging from the nozzle holes of the spinning head.
 海島型複合繊維中の水溶性熱可塑性樹脂と非水溶性熱可塑性樹脂との質量比は特に限定されないが、5/95~50/50、さらには、10/90~40/60であることが好ましい。水溶性熱可塑性樹脂と非水溶性熱可塑性樹脂との質量比がこのような範囲である場合には、高密度の不織布が得られ、極細繊維の形成性にも優れる点から好ましい。また、溶融複合紡糸においては、海島型複合繊維中の島数は4~4000島/繊維、さらには10~1000島/繊維にすることが好ましい。また、海島型複合繊維の繊度は特に限定されないが、工業性の観点から0.5~3dtex程度であることが好ましい。 The mass ratio of the water-soluble thermoplastic resin to the water-insoluble thermoplastic resin in the sea-island composite fiber is not particularly limited, but is 5/95 to 50/50, more preferably 10/90 to 40/60. preferable. When the mass ratio between the water-soluble thermoplastic resin and the water-insoluble thermoplastic resin is within such a range, a high-density nonwoven fabric is obtained, which is preferable from the viewpoint of excellent formability of ultrafine fibers. In the melt composite spinning, the number of islands in the sea-island type composite fiber is preferably 4 to 4000 islands / fiber, more preferably 10 to 1000 islands / fiber. The fineness of the sea-island type composite fiber is not particularly limited, but is preferably about 0.5 to 3 dtex from the viewpoint of industrial properties.
 海島型複合繊維は冷却装置で冷却された後、エアジェット・ノズルなどの吸引装置を用いて目的の繊度となるように1000~6000m/分の引き取り速度に相当する速度の高速気流により延伸される。その後、延伸された複合繊維を移動式の捕集面の上に堆積することにより長繊維のウェブが形成される。このとき、堆積された長繊維ウェブを、必要に応じて部分的に圧着してもよい。 After the sea-island type composite fiber is cooled by a cooling device, it is drawn by a high-speed air flow at a speed corresponding to a take-up speed of 1000 to 6000 m / min so as to obtain a desired fineness using a suction device such as an air jet nozzle. . Thereafter, a stretched composite fiber is deposited on a movable collection surface to form a long fiber web. At this time, the deposited long fiber web may be partially crimped as necessary.
 次に、ウェブを複数枚重ねて絡合させる。ウェブの絡合処理は、ニードルパンチや高圧水流処理等を用いて行うことができる。代表例として、ニードルパンチによる絡合処理について詳しく説明する。 Next, several webs are stacked and intertwined. The web entanglement process can be performed using a needle punch or a high-pressure water flow process. As a representative example, the entanglement process by the needle punch will be described in detail.
 はじめに、針折れ防止油剤、帯電防止油剤、絡合向上油剤などのシリコーン系油剤または鉱物油系油剤をウェブに付与する。そして、ニードルパンチによりウェブを絡合させる。絡合されたウェブの目付は、100~1500g/m2の範囲であることが取扱い性に優れる点から好ましい。 First, a silicone-based oil agent or a mineral oil-based oil agent such as a needle breakage preventing oil agent, an antistatic oil agent, or an entanglement improving oil agent is applied to the web. And a web is entangled with a needle punch. The basis weight of the entangled web is preferably in the range of 100 to 1500 g / m 2 from the viewpoint of excellent handleability.
 次に、絡合された長繊維のウェブを収縮させることにより繊維密度を高くする。長繊維のウェブを収縮させることにより、短繊維のウェブを収縮させる場合に比べて大きく収縮させることができる。収縮処理は、スチーム加熱などの湿熱収縮処理を行うことが好ましい。スチーム加熱条件としては、例えば、雰囲気温度が60~130℃の範囲で、相対湿度75%以上、さらには相対湿度90%以上で、60~600秒間加熱処理する条件が挙げられる。 Next, the fiber density is increased by shrinking the entangled long fiber web. By contracting the long-fiber web, the web can be greatly contracted as compared with the case of contracting the short-fiber web. The shrinkage treatment is preferably performed by wet heat shrinkage treatment such as steam heating. Examples of the steam heating conditions include conditions in which the heat treatment is performed for 60 to 600 seconds at an ambient temperature of 60 to 130 ° C. and a relative humidity of 75% or more, and further a relative humidity of 90% or more.
 湿熱収縮処理は、絡合された長繊維のウェブを面積収縮率が35%以上、さらには、40%以上になるように収縮させることが好ましい。このように高い収縮率で収縮させることにより、繊維密度が極めて高くなる。面積収縮率の上限は、収縮の限度や処理効率の点から80%以下程度であることが好ましい。なお、面積収縮率(%)は、下記式により計算される。
(収縮処理前の絡合されたウェブの面積-収縮処理後の絡合されたウェブの面積)/収縮処理前の絡合されたウェブの面積×100
In the wet heat shrinkage treatment, it is preferable to shrink the entangled long fiber web so that the area shrinkage rate is 35% or more, and further 40% or more. By shrinking at such a high shrinkage rate, the fiber density becomes extremely high. The upper limit of the area shrinkage rate is preferably about 80% or less from the viewpoint of shrinkage limit and processing efficiency. The area shrinkage rate (%) is calculated by the following formula.
(Area of entangled web before shrinking process−area of entangled web after shrinking process) / area of entangled web before shrinking process × 100
 このように湿熱収縮処理された絡合されたウェブには、さらに、加熱ロールや加熱プレスすることにより、繊維密度をさらに高めてもよい。湿熱収縮処理前後における絡合されたウェブの目付量の変化としては、収縮処理後の目付量が、収縮処理前の目付量に比べて、1.2倍(質量比)以上、さらには、1.5倍以上で、4倍以下、さらには3倍以下であることが好ましい。このようにして、海島型複合繊維の長繊維のウェブ(以下、繊維絡合シートと称する)が得られる。 In this way, the entangled web that has been subjected to the wet heat shrinkage treatment may be further increased in fiber density by heating rolls or hot pressing. As a change in the basis weight of the entangled web before and after the wet heat shrinkage treatment, the basis weight after the shrinkage treatment is 1.2 times (mass ratio) or more compared to the basis weight before the shrinkage treatment. It is preferably 5 times or more, 4 times or less, and more preferably 3 times or less. In this way, a long fiber web of sea-island type composite fibers (hereinafter referred to as a fiber entangled sheet) is obtained.
 このような繊維絡合シートは、後の海島型複合繊維の極細繊維化により、見掛け密度が0.35~0.90g/cm3である不織布に変換される。 Such a fiber entangled sheet is converted into a non-woven fabric having an apparent density of 0.35 to 0.90 g / cm 3 by making the sea-island type composite fiber ultrafine.
 長繊維を含有する絡合されたウェブは、短繊維を含有する絡合されたウェブに比べて、極細繊維化により大きく湿熱収縮する。そのために、極細繊維の繊維密度がより緻密になる。そして、海島型複合繊維の水溶性熱可塑性樹脂を選択的に除去することにより、極細繊維の繊維束を含む不織布が形成される。このとき、水溶性熱可塑性樹脂が溶解抽出された部分に空隙が形成される。この空隙に高分子弾性を高い含有率になるように付与することにより、繊維束を構成する極細繊維が集束されるとともに、繊維束同士が結着される。このようにして、繊維密度が高く、空隙率が低く、剛性が高い硬質シートが得られる。 The entangled web containing long fibers shrinks greatly by wet heat due to the formation of ultrafine fibers compared to the entangled web containing short fibers. Therefore, the fiber density of the ultrafine fibers becomes denser. And the nonwoven fabric containing the fiber bundle of an ultrafine fiber is formed by selectively removing the water-soluble thermoplastic resin of a sea-island type composite fiber. At this time, voids are formed in the portion where the water-soluble thermoplastic resin is dissolved and extracted. By imparting high polymer elasticity to the voids so as to have a high content, the ultrafine fibers constituting the fiber bundle are focused and the fiber bundles are bound together. In this way, a hard sheet having high fiber density, low porosity, and high rigidity can be obtained.
(2)繊維絡合シートに、水のpH変化を生じさせるイオンを含むゲル化剤及び高分子弾性体を含む第1のエマルジョンを含浸させた後、第1のエマルジョンをゲル化させ、さらに、加熱乾燥することにより高分子弾性体を凝固させる工程 (2) The fiber entangled sheet is impregnated with a first emulsion containing a gelling agent containing an ion that causes a pH change of water and a polymer elastic body, and then the first emulsion is gelled. The process of solidifying the polymer elastic body by heating and drying
 本工程においては、繊維絡合シートに高分子弾性体を厚み方向に均質に充填する。高分子弾性体のエマルジョンは、高濃度で粘度が低く含浸浸透性にも優れているために、繊維絡合シートに高充填しやすい。また、高分子弾性体のエマルジョン中にゲル化剤を含有させることにより、エマルジョンが乾燥時に厚み方向に偏在するマイグレーションを抑制することができる。 In this step, the fiber entangled sheet is uniformly filled with a polymer elastic body in the thickness direction. The polymer elastic emulsion has a high concentration, a low viscosity, and an excellent impregnation permeability. Further, by including a gelling agent in the emulsion of the polymer elastic body, migration in which the emulsion is unevenly distributed in the thickness direction at the time of drying can be suppressed.
 従来一般的に用いられていた高分子弾性体の溶液を用いる場合とは異なり、高分子弾性体のエマルジョンを用いた場合には、非多孔質状の高分子弾性体を形成させることができる。 Unlike the case of using a polymer elastic body solution that has been generally used conventionally, when a polymer elastic body emulsion is used, a non-porous polymer elastic body can be formed.
 高分子弾性体としては、繊維に対する接着性が高い点から、水素結合性の高分子弾性体が好ましい。水素結合性の高分子弾性体とは、例えば、ポリウレタン、ポリアミド系弾性体、ポリビニルアルコール系弾性体等のように、水素結合により結晶化あるいは凝集する高分子からなる弾性体である。 The polymer elastic body is preferably a hydrogen-bonding polymer elastic body from the viewpoint of high adhesion to fibers. The hydrogen-bonding polymer elastic body is an elastic body made of a polymer that crystallizes or aggregates by hydrogen bonding, such as polyurethane, polyamide-based elastic body, and polyvinyl alcohol-based elastic body.
 以下に、高分子弾性体としてポリウレタンを用いる場合について、代表例として詳しく説明する。 Hereinafter, the case where polyurethane is used as the polymer elastic body will be described in detail as a representative example.
 ポリウレタンとしては、平均分子量200~6000の高分子ポリオールと有機ポリイソシアネ-トと、鎖伸長剤とを、所定のモル比で反応させることにより得られる各種のポリウレタンが挙げられる。 Examples of the polyurethane include various polyurethanes obtained by reacting a polymer polyol having an average molecular weight of 200 to 6000, an organic polyisocyanate, and a chain extender in a predetermined molar ratio.
 高分子ポリオールの具体例としては、例えば、ポリエチレングリコール,ポリプロピレングリコール,ポリテトラメチレングリコール,ポリ(メチルテトラメチレングリコール)などのポリエーテル系ポリオールおよびその共重合体;ポリブチレンアジペートジオール,ポリブチレンセバケートジオール,ポリヘキサメチレンアジペートジオール,ポリ(3-メチル-1,5-ペンチレンアジペート)ジオール,ポリ(3-メチル-1,5-ペンチレンセバケート)ジオール,ポリカプロラクトンジオールなどのポリエステル系ポリオールおよびその共重合体;ポリヘキサメチレンカーボネートジオール,ポリ(3-メチル-1,5-ペンチレンカーボネート)ジオール,ポリペンタメチレンカーボネートジオール,ポリテトラメチレンカーボネートジオールなどのポリカーボネート系ポリオールおよびその共重合体;ポリエステルカーボネートポリオール等が挙げられる。また、必要に応じて、トリメチロールプロパン等の3官能アルコールやペンタエリスリトール等の4官能アルコールなどの多官能アルコール、又は、エチレングリコール,プロピレングリコール,1,4-ブタンジオール,1,6-ヘキサンジオール等の短鎖アルコールを併用してもよい。これらは単独で用いても2種以上を組み合わせて用いてもよい。特に、非晶性のポリカーボネート系ポリオール、脂環式ポリカーボネート系ポリオール、直鎖状ポリカーボネート系ポリオール、及び、これらのポリカーボネート系ポリオールとポリエーテル系ポリオール又はポリエステル系ポリオールとの混合物を用いることが、耐加水分解性や耐酸化性等の耐久性に優れた硬質シートが得られる点から好ましい。また、炭素数5以下、特には炭素数3以下のポリアルキレングリコール基を含有するポリウレタンが、水に対する濡れ性がとくに良好になる点から好ましい。 Specific examples of the polymer polyol include, for example, polyether polyols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, poly (methyltetramethylene glycol), and copolymers thereof; polybutylene adipate diol, polybutylene sebacate Polyester polyols such as diol, polyhexamethylene adipate diol, poly (3-methyl-1,5-pentylene adipate) diol, poly (3-methyl-1,5-pentylene sebacate) diol, polycaprolactone diol, and the like Copolymers; polyhexamethylene carbonate diol, poly (3-methyl-1,5-pentylene carbonate) diol, polypentamethylene carbonate diol, polytetramethylene carbonate Polycarbonate polyols and copolymers thereof, such as borate sulfonate diol; polyester carbonate polyols and the like. If necessary, a trifunctional alcohol such as trimethylolpropane, a polyfunctional alcohol such as a tetrafunctional alcohol such as pentaerythritol, or ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol. Etc. You may use together short chain alcohols, such as. These may be used alone or in combination of two or more. In particular, the use of amorphous polycarbonate polyols, alicyclic polycarbonate polyols, linear polycarbonate polyols, and mixtures of these polycarbonate polyols with polyether polyols or polyester polyols are resistant to water. This is preferable because a hard sheet having excellent durability such as decomposability and oxidation resistance can be obtained. A polyurethane containing a polyalkylene glycol group having 5 or less carbon atoms, particularly 3 or less carbon atoms is preferred from the viewpoint of particularly good wettability with water.
 有機ポリイソシアネートの具体例としては、例えば、ヘキサメチレンジイソシアネート,イソホロンジイソシアネート,ノルボルネンジイソシアネート,4,4’-ジシクロヘキシルメタンジイソシアネート等の脂肪族あるいは脂環族ジイソシアネート等の無黄変型ジイソシアネート;2,4-トリレンジイソシアネート,2,6-トリレンジイソシアネート,4,4’-ジフェニルメタンジイソシアネート,キシリレンジイソシアネートポリウレタン等の芳香族ジイソシアネート、等が挙げられる。また、必要に応じて、3官能イソシアネートや4官能イソシアネートなどの多官能イソシアネートを併用してもよい。これらは単独で用いても、2種以上を組み合わせて用いてもよい。これらの中では、4,4’-ジシクロヘキシルメタンジイソシアネート,2,4-トリレンジイソシアネート,2,6-トリレンジイソシアネート,4,4’-ジフェニルメタンジイソシアネート,キシリレンジイソシアネートが、繊維に対する接着性が高く、また、硬度が高い硬質シートが得られる点から好ましい。 Specific examples of the organic polyisocyanate include, for example, non-yellowing diisocyanates such as aliphatic or alicyclic diisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, 4,4′-dicyclohexylmethane diisocyanate; 2,4-tri Examples thereof include aromatic diisocyanates such as diisocyanate, 2,6-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, and xylylene diisocyanate polyurethane. Moreover, you may use together polyfunctional isocyanates, such as trifunctional isocyanate and tetrafunctional isocyanate, as needed. These may be used alone or in combination of two or more. Among these, 4,4′-dicyclohexylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, and xylylene diisocyanate have high adhesion to fibers, Moreover, it is preferable from the point from which the hard sheet | seat with high hardness is obtained.
 鎖伸長剤の具体例としては、例えば、ヒドラジン,エチレンジアミン,プロピレンジアミン,ヘキサメチレンジアミン,ノナメチレンジアミン,キシリレンジアミン,イソホロンジアミン,ピペラジンおよびその誘導体,アジピン酸ジヒドラジド,イソフタル酸ジヒドラジドなどのジアミン類;ジエチレントリアミンなどのトリアミン類;トリエチレンテトラミンなどのテトラミン類;エチレングリコール,プロピレングリコール,1,4-ブタンジオール,1,6-ヘキサンジオール,1,4-ビス(β-ヒドロキシエトキシ)ベンゼン,1,4-シクロヘキサンジオールなどのジオール類;トリメチロールプロパンなどのトリオール類;ペンタエリスリトールなどのペンタオール類;アミノエチルアルコール,アミノプロピルアルコールなどのアミノアルコール類等が挙げられる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。これらの中では、ヒドラジン、ピペラジン、ヘキサメチレンジアミン、イソホロンジアミンおよびその誘導体、エチレントリアミンなどのトリアミンの中から2種以上組み合わせて用いることが、短時間で硬化反応が完了する点から好ましい。また、鎖伸長反応時に、鎖伸長剤とともに、エチルアミン,プロピルアミン,ブチルアミンなどのモノアミン類;4-アミノブタン酸,6-アミノヘキサン酸などのカルボキシル基含有モノアミン化合物;メタノール、エタノール、プロパノール,ブタノールなどのモノオール類を併用してもよい。 Specific examples of the chain extender include, for example, diamines such as hydrazine, ethylenediamine, propylenediamine, hexamethylenediamine, nonamethylenediamine, xylylenediamine, isophoronediamine, piperazine and derivatives thereof, adipic acid dihydrazide, and isophthalic acid dihydrazide; Triamines such as diethylenetriamine; tetramines such as triethylenetetramine; ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-bis (β-hydroxyethoxy) benzene, 1,4 -Diols such as cyclohexanediol; Triols such as trimethylolpropane; Pentaols such as pentaerythritol; Aminoethyl alcohol, Aminopropyl alcohol It includes amino alcohols such as and the like. These may be used alone or in combination of two or more. Among these, it is preferable to use a combination of two or more of hydrazine, piperazine, hexamethylenediamine, isophoronediamine and derivatives thereof, and triamines such as ethylenetriamine from the viewpoint of completing the curing reaction in a short time. In addition, during the chain extension reaction, together with the chain extender, monoamines such as ethylamine, propylamine and butylamine; carboxyl group-containing monoamine compounds such as 4-aminobutanoic acid and 6-aminohexanoic acid; methanol, ethanol, propanol, butanol, etc. Monools may be used in combination.
 また、2,2-ビス(ヒドロキシメチル)プロピオン酸、2,2-ビス(ヒドロキシメチル)ブタン酸、2,2-ビス(ヒドロキシメチル)吉草酸などのカルボキシル基含有ジオール等を併用して、ポリウレタンの骨格にカルボキシル基などのイオン性基を導入することにより、水に対する濡れ性をさらに向上させることができる。 In addition, a polyurethane containing a carboxyl group-containing diol such as 2,2-bis (hydroxymethyl) propionic acid, 2,2-bis (hydroxymethyl) butanoic acid, 2,2-bis (hydroxymethyl) valeric acid, etc. By introducing an ionic group such as a carboxyl group into the skeleton, water wettability can be further improved.
 また、ポリウレタンの吸水率や貯蔵弾性率を制御するために、ポリウレタンを形成するモノマー単位が有する官能基と反応し得る官能基を分子内に2個以上含有する架橋剤や、ポリイソシアネート系化合物、多官能ブロックイソシアネート系化合物等の自己架橋性の化合物を添加することにより、架橋構造を形成することが好ましい。 Moreover, in order to control the water absorption rate and storage elastic modulus of polyurethane, a crosslinking agent containing two or more functional groups capable of reacting with the functional group of the monomer unit forming the polyurethane, a polyisocyanate compound, It is preferable to form a crosslinked structure by adding a self-crosslinking compound such as a polyfunctional blocked isocyanate compound.
 モノマー単位の官能基と架橋剤の官能基との組み合わせとしては、カルボキシル基とオキサゾリン基、カルボキシル基とカルボジイミド基、カルボキシル基とエポキシ基、カルボキシル基とシクロカーボネート基、カルボキシル基とアジリジン基、カルボニル基とヒドラジン誘導体、ヒドラジド誘導体などが挙げられる。これらの中では、カルボキシル基を有するモノマー単位とオキサゾリン基、カルボジイミド基またはエポキシ基を有する架橋剤と組み合わせ、水酸基またはアミノ基を有するモノマー単位とブロックイソシアネート基を有する架橋剤との組み合わせ、およびカルボニル基を有するモノマー単位とヒドラジン誘導体またはヒドラジド誘導体との組み合わせが、架橋形成が容易であり、硬質シートの剛性や耐磨耗性が優れる点から、特に好ましい。なお、架橋構造は、繊維絡合シートにポリウレタンを付与した後の熱処理工程において形成することが、高分子弾性体のエマルジョンの安定性を維持できる点から好ましい。これらの中でも、架橋性能やエマルジョンのポットライフ性が優れ、また安全面でも問題のないカルボジイミド基および/またはオキサゾリン基が特に好ましい。カルボジイミド基を有する架橋剤としては、例えば日清紡績株式会社製「カルボジライトE-01」、「カルボジライトE-02」、「カルボジライトV-02」などの水分散カルボジイミド系化合物を挙げることができる。また、オキサゾリン基を有する架橋剤としては、例えば日本触媒株式会社製「エポクロスK-2010E」、「エポクロスK-2020E」、「エポクロスWS-500」などの水分散オキサゾリン系化合物を挙げることができる。架橋剤の配合量としては、ポリウレタンに対して、架橋剤の有効成分が1~20質量%であることが好ましく、1.5~1質量%であることがより好ましく、2~10質量%であることがさらに好ましい。 The combination of the functional group of the monomer unit and the functional group of the crosslinking agent includes a carboxyl group and an oxazoline group, a carboxyl group and a carbodiimide group, a carboxyl group and an epoxy group, a carboxyl group and a cyclocarbonate group, a carboxyl group and an aziridine group, and a carbonyl group. And hydrazine derivatives and hydrazide derivatives. Among these, a monomer unit having a carboxyl group and a crosslinking agent having an oxazoline group, a carbodiimide group or an epoxy group, a combination of a monomer unit having a hydroxyl group or an amino group and a crosslinking agent having a blocked isocyanate group, and a carbonyl group A combination of a monomer unit having a hydrazine derivative or a hydrazide derivative is particularly preferred from the viewpoint of easy crosslinking and excellent rigidity and wear resistance of the hard sheet. The cross-linked structure is preferably formed in the heat treatment step after applying polyurethane to the fiber entangled sheet from the viewpoint of maintaining the stability of the polymer elastic body emulsion. Among these, a carbodiimide group and / or an oxazoline group are particularly preferable because they are excellent in crosslinking performance and pot life of the emulsion, and have no problem in safety. Examples of the crosslinking agent having a carbodiimide group include water-dispersed carbodiimide compounds such as “Carbodilite E-01”, “Carbodilite E-02”, and “Carbodilite V-02” manufactured by Nisshinbo Industries, Ltd. Examples of the crosslinking agent having an oxazoline group include water-dispersed oxazoline compounds such as “Epocross K-2010E”, “Epocross K-2020E”, and “Epocross WS-500” manufactured by Nippon Shokubai Co., Ltd. The blending amount of the crosslinking agent is preferably 1 to 20% by mass, more preferably 1.5 to 1% by mass, and more preferably 2 to 10% by mass of the active ingredient of the crosslinking agent with respect to the polyurethane. More preferably it is.
 また、極細繊維に対する接着性を高めて繊維束の剛性を高める点から、ポリウレタン中の高分子ポリオールの成分の含有率としては、65質量%以下、さらには、60質量%以下であることが好ましい。また、40質量%以上、さらには、45質量%以上であることが適度な弾性を付与することにより、スクラッチの発生を抑制することができる点から好ましい。 In addition, from the viewpoint of enhancing the adhesiveness to the ultrafine fibers and increasing the rigidity of the fiber bundle, the content of the polymer polyol component in the polyurethane is preferably 65% by mass or less, and more preferably 60% by mass or less. . Moreover, it is preferable from the point which can suppress generation | occurrence | production of a scratch by providing moderate elasticity that it is 40 mass% or more, and also 45 mass% or more.
 ポリウレタンのエマルジョンを調製する方法は、特に限定されず、公知の方法を用いることができる。具体的には、例えば、カルボキシル基、スルホン酸基、水酸基などの親水性基を有する単量体を共重合成分として用いることにより、水に対する自己乳化性をポリウレタンに付与する方法、または、ポリウレタンに界面活性剤を添加して乳化させる方法が挙げられる。親水性基を有する単量体単位を共重合成分として含む高分子弾性体は、水に対する濡れ性に優れるために、多量のスラリーを保持できる。 The method for preparing the polyurethane emulsion is not particularly limited, and a known method can be used. Specifically, for example, by using a monomer having a hydrophilic group such as a carboxyl group, a sulfonic acid group, and a hydroxyl group as a copolymerization component, a method of imparting self-emulsifying property to water to a polyurethane, or a polyurethane A method of emulsifying by adding a surfactant is mentioned. Since the polymer elastic body containing a monomer unit having a hydrophilic group as a copolymerization component is excellent in water wettability, it can hold a large amount of slurry.
 乳化に用いられる界面活性剤の具体例としては、例えば、ラウリル硫酸ナトリウム,ラウリル硫酸アンモニウム,ポリオキシエチレントリデシルエーテル酢酸ナトリウム,ドデシルベンゼンスルフォン酸ナトリウム,アルキルジフェニルエーテルジスルフォン酸ナトリウム,ジオクチルスルホコハク酸ナトリウムなどのアニオン性界面活性剤;ポリオキシエチレンノニルフェニルエーテル,ポリオキシエチレンオクチルフェニルエーテル,ポリオキシエチレンラウリルエーテル,ポリオキシエチレンステアリルエーテル,ポリオキシエチレン-ポリオキシプロピレンブロック共重合体などのノニオン性界面活性剤などが挙げられる。また、反応性を有する、いわゆる反応性界面活性剤を用いてもよい。また、界面活性剤の曇点を適宜選ぶことにより、エマルジョンに感熱ゲル化性を付与することもできる。 Specific examples of the surfactant used for emulsification include, for example, sodium lauryl sulfate, ammonium lauryl sulfate, polyoxyethylene tridecyl ether sodium acetate, sodium dodecylbenzene sulfonate, alkyl diphenyl ether sodium disulfonate, sodium dioctyl sulfosuccinate and the like. Anionic surfactants; nonionic surfactants such as polyoxyethylene nonylphenyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene-polyoxypropylene block copolymer Etc. Moreover, you may use what is called reactive surfactant which has reactivity. Moreover, heat-sensitive gelation property can also be provided to an emulsion by selecting suitably the cloud point of surfactant.
 エマルジョンの固形分濃度としては、15~40質量%、さらには、25~35質量%であることが、繊維絡合シートに高分子弾性体を厚み方向に均質に高充填できる点から好ましい。また、エマルジョンの粒子径としては、0.01~1μm、さらには、0.03~0.5μmであることが好ましい。 The solid content concentration of the emulsion is preferably 15 to 40% by mass, and more preferably 25 to 35% by mass, from the viewpoint that the polymer entangled sheet can be uniformly filled with a polymer elastic body in the thickness direction. The particle size of the emulsion is preferably 0.01 to 1 μm, more preferably 0.03 to 0.5 μm.
 第1のエマルジョンは、水のpH変化を生じさせるイオンを含むゲル化剤を含む。ゲル化剤は、エマルジョンのpHを変化させることにより、エマルジョン粒子を加熱によりゲル化させるために用いられる。不織布中に含浸されたエマルジョン中の水分は表面から乾燥する。そのために、水分の蒸発の進行に伴い、不織布中のエマルジョンが表層に移動するマイグレーションを引き起こしやすい。不織布中のエマルジョンがマイグレーションした場合には、不織布の表層付近に高分子弾性体が偏在し、中層付近の高分子弾性体が少なくなり、中層付近に空隙が残りやすい。中層付近に空隙が残った場合には中層における硬度が低下し、また、硬度が不均質になる。このようなマイグレーションは、エマルジョンにゲル化剤を配合して乾燥前にエマルジョンをゲル化させることにより抑制される。 The first emulsion contains a gelling agent containing ions that cause a pH change of water. The gelling agent is used to gel emulsion particles by heating by changing the pH of the emulsion. The moisture in the emulsion impregnated in the nonwoven fabric dries from the surface. Therefore, it is easy to cause migration in which the emulsion in the nonwoven fabric moves to the surface layer as the evaporation of moisture proceeds. When the emulsion in the nonwoven fabric migrates, the polymer elastic body is unevenly distributed in the vicinity of the surface layer of the nonwoven fabric, the polymer elastic body in the vicinity of the middle layer is reduced, and voids are likely to remain in the vicinity of the middle layer. When voids remain in the vicinity of the middle layer, the hardness in the middle layer decreases and the hardness becomes inhomogeneous. Such migration is suppressed by adding a gelling agent to the emulsion and allowing the emulsion to gel before drying.
 ゲル化剤としては、エマルジョン粒子が加熱によりゲル化する程度に、エマルジョンのpHを変化させる水溶性の塩であれば特に限定なく用いられる。その具体例としては、一価または二価の無機塩類である、例えば、硫酸ナトリウム、硫酸アンモニウム、炭酸ナトリウム、塩化カルシウム、硫酸カルシウム、硝酸カルシウム、酸化亜鉛、塩化亜鉛、塩化マグネシウム、塩化カリウム、炭酸カリウム、硝酸ナトリウム、硝酸鉛等が挙げられる。 The gelling agent is not particularly limited as long as it is a water-soluble salt that changes the pH of the emulsion to such an extent that the emulsion particles are gelled by heating. Specific examples thereof are monovalent or divalent inorganic salts such as sodium sulfate, ammonium sulfate, sodium carbonate, calcium chloride, calcium sulfate, calcium nitrate, zinc oxide, zinc chloride, magnesium chloride, potassium chloride, potassium carbonate. Sodium nitrate, lead nitrate and the like.
 第1のエマルジョン中のゲル化剤の含有割合としては、高分子弾性体100質量部に対して0.5~5質量部、さらには0.6~4質量部であることがゲル化性を適度に付与することができる点から好ましい。 The content ratio of the gelling agent in the first emulsion is 0.5 to 5 parts by mass, more preferably 0.6 to 4 parts by mass with respect to 100 parts by mass of the elastic polymer. It is preferable from the viewpoint that it can be imparted moderately.
 第1のエマルジョンは、浸透剤,消泡剤,滑剤,撥水剤,撥油剤,増粘剤,増量剤,硬化促進剤,酸化防止剤,紫外線吸収剤,蛍光剤,防黴剤,発泡剤,ポリビニルアルコールやカルボキシメチルセルロースなどの水溶性高分子化合物,染料,顔料,無機微粒子などをさらに含有してもよい。 The first emulsion is a penetrant, an antifoaming agent, a lubricant, a water repellent, an oil repellent, a thickener, a bulking agent, a curing accelerator, an antioxidant, an ultraviolet absorber, a fluorescent agent, an antifungal agent, and a foaming agent. Water-soluble polymer compounds such as polyvinyl alcohol and carboxymethyl cellulose, dyes, pigments, inorganic fine particles and the like may be further contained.
 繊維絡合シートに第1のエマルジョンを含浸させる方法は特に限定されず、例えば、ディップ・ニップ、ナイフコート、バーコート、又はロールコート等の方法が用いられうる。 The method of impregnating the fiber emulsion sheet with the first emulsion is not particularly limited, and for example, a method such as dip nip, knife coating, bar coating, or roll coating may be used.
 そして、繊維絡合シートに第1のエマルジョンを含浸させた後、加熱することにより、繊維絡合シート中で第1のエマルジョンがゲル化する。このようなゲル化のための加熱条件としては、例えば、40~90℃、さらには50~80℃で0.5~5分間程度保持するような条件が好ましく用いられる。また、表層からの急激な水分の蒸発によるエマルジョンのマイグレーションを抑制しながら、内層も均質に加熱することができる点から、スチームで加熱することが好ましい。 Then, after the fiber entangled sheet is impregnated with the first emulsion, the first emulsion gels in the fiber entangled sheet by heating. As such a heating condition for gelation, for example, a condition of holding at 40 to 90 ° C., further 50 to 80 ° C. for about 0.5 to 5 minutes, is preferably used. Moreover, it is preferable to heat with the steam from the point which can also heat an inner layer uniformly, suppressing the migration of the emulsion by rapid evaporation of a water | moisture content from a surface layer.
 そして第1のエマルジョンをゲル化させた後、加熱乾燥することにより高分子弾性体を凝固させる。 Then, after the first emulsion is gelled, the polymer elastic body is solidified by heating and drying.
 加熱乾燥としては、熱風乾燥機等の乾燥装置中で加熱乾燥する方法や、赤外線加熱の後に乾燥機中で加熱乾燥する方法等が挙げられる。加熱乾燥の条件としては、例えば、最高温度が130~160℃、さらには135~150℃になるように、2~10分間で加熱するような条件が挙げられる。加熱乾燥により、第1のエマルジョン中の水分を蒸発させて高分子弾性体を均一に凝集させることにより、繊維絡合シート中に高分子弾性体を厚み方向においても均質に付与することができる。 Examples of heat drying include a method of heat drying in a drying apparatus such as a hot air dryer, a method of heat drying in a dryer after infrared heating, and the like. Examples of the heating and drying conditions include conditions in which heating is performed for 2 to 10 minutes so that the maximum temperature is 130 to 160 ° C., further 135 to 150 ° C. By heating and drying, the water in the first emulsion is evaporated and the polymer elastic body is uniformly agglomerated, whereby the polymer elastic body can be uniformly applied in the thickness direction in the fiber entangled sheet.
(3)極細繊維発生型繊維を極細繊維化処理することにより、極細繊維の不織布と高分子弾性体とを含有する第1の複合体を形成する工程 (3) The process of forming the 1st composite_body | complex containing the nonwoven fabric and polymer elastic body of an ultrafine fiber by carrying out the ultrafine fiber process of an ultrafine fiber generation type | mold fiber
 高分子弾性体を含浸付与された繊維絡合シートに含まれる海島型複合繊維を極細繊維化処理することにより、極細繊維の不織布と高分子弾性体とを含有する第1の複合体が形成される。 The sea-island type composite fiber contained in the fiber entangled sheet impregnated with the polymer elastic body is subjected to ultrafine fiber treatment to form a first composite containing a nonwoven fabric of ultrafine fibers and a polymer elastic body. The
 本工程は、島成分である水溶性熱可塑性樹脂と海成分である非水溶性熱可塑性樹脂を含む海島型複合繊維から、水溶性熱可塑性樹脂を除去する極細繊維化処理により極細繊維を形成する工程である。 In this step, ultrafine fibers are formed from a sea-island composite fiber containing a water-soluble thermoplastic resin that is an island component and a water-insoluble thermoplastic resin that is a sea component, by ultrafine fiber removal treatment that removes the water-soluble thermoplastic resin. It is a process.
 極細繊維化処理は、海島型複合繊維を含む繊維絡合シートを、水,アルカリ性水溶液,酸性水溶液等で熱水加熱処理することにより、海成分を形成する水溶性熱可塑性樹脂を溶解除去、または、分解除去する処理である。 The ultra-fine fiber treatment is performed by dissolving and removing the water-soluble thermoplastic resin forming the sea component by subjecting the fiber entangled sheet containing the sea-island type composite fiber to hydrothermal heating treatment with water, an alkaline aqueous solution, an acidic aqueous solution, or the like. This is a process of disassembling and removing.
 熱水加熱処理の具体例としては、例えば、繊維絡合シートを、第1段階として65~90℃の熱水中に5~300秒間浸漬した後、さらに、第2段階として85~100℃の熱水中で100~600秒間処理するような方法が好ましく用いられる。また、溶解効率を高めるために、必要に応じて、ロールでのニップ処理、高圧水流処理、超音波処理、シャワー処理、攪拌処理、揉み処理等を行ってもよい。 As a specific example of the hot water heat treatment, for example, the fiber entangled sheet is immersed in hot water of 65 to 90 ° C. for 5 to 300 seconds as the first step, and then further 85 to 100 ° C. as the second step. A method of treating in hot water for 100 to 600 seconds is preferably used. Moreover, in order to improve dissolution efficiency, you may perform the nip process by a roll, a high pressure water flow process, an ultrasonic process, a shower process, a stirring process, a stagnation process, etc. as needed.
 繊維絡合シートを熱水加熱処理することにより、海島型複合繊維から水溶性熱可塑性樹脂が溶解されて極細繊維が形成される。なお、極細繊維が形成されるときに、極細繊維は大きく捲縮する。この捲縮により極細繊維の繊維密度が緻密になる。また、海島型複合繊維から水溶性熱可塑性樹脂が除去されることにより、水溶性熱可塑性樹脂が存在していた部分に空隙が形成される。この空隙には、後の工程で高分子弾性体が充填される。また、繊維絡合シートを熱水加熱処理することにより、繊維絡合シートに含まれているゲル化剤も熱水中に溶解されて除去される。このようにして、第1の複合体が形成される。 By subjecting the fiber entangled sheet to hot water heating treatment, the water-soluble thermoplastic resin is dissolved from the sea-island composite fiber to form ultrafine fibers. Note that when the ultrafine fibers are formed, the ultrafine fibers are greatly crimped. By this crimping, the fiber density of the ultrafine fibers becomes dense. Further, by removing the water-soluble thermoplastic resin from the sea-island type composite fiber, a void is formed in the portion where the water-soluble thermoplastic resin was present. This void is filled with a polymer elastic body in a later step. Moreover, the gelling agent contained in the fiber entangled sheet is dissolved and removed in the hot water by subjecting the fiber entangled sheet to hot water heating treatment. In this way, the first complex is formed.
(4)第1の複合体にゲル化剤及び高分子弾性体を含む第2のエマルジョンを含浸させた後、第2のエマルジョンをゲル化させ、さらに、加熱乾燥することにより高分子弾性体を凝固させて第2の複合体を形成する工程 (4) After impregnating the first composite with the second emulsion containing the gelling agent and the polymer elastic body, the second emulsion is gelled and further heated and dried to obtain the polymer elastic body. Solidifying to form a second composite
 上述したように、海島型複合繊維から水溶性熱可塑性樹脂が除去されることにより形成される第1の複合体には、水溶性熱可塑性樹脂が存在していた部分に空隙が形成される。本実施形態の、均質に高い硬度を有する硬質シートを得るために、第1の複合体中の空隙を高分子弾性体で充填して極細繊維を拘束する。 As described above, in the first composite formed by removing the water-soluble thermoplastic resin from the sea-island composite fiber, voids are formed in the portion where the water-soluble thermoplastic resin was present. In order to obtain a hard sheet having a high hardness uniformly in this embodiment, the voids in the first composite are filled with a polymer elastic body to restrain the ultrafine fibers.
 水溶性熱可塑性樹脂を除去して形成された空隙に高分子弾性体を充填することにより、極細繊維を集束し、硬質シートの空隙率を低下させることができる。極細繊維が繊維束を形成している場合には、毛細管現象によりエマルジョンが含浸されやすい。 ∙ By filling the gap formed by removing the water-soluble thermoplastic resin with the polymer elastic body, the fine fibers can be focused and the porosity of the hard sheet can be reduced. When the ultrafine fibers form a fiber bundle, the emulsion is easily impregnated by capillary action.
 第2のエマルジョンとしては、第1のエマルジョンと同様のエマルジョンが用いられる。なお、第2のエマルジョンと第1のエマルジョンとは同じ組成であっても、異なる組成であってもよい。 As the second emulsion, the same emulsion as the first emulsion is used. Note that the second emulsion and the first emulsion may have the same composition or different compositions.
 本工程においては、形成される第2の複合体を厚み方向に均等に3分割したときの各層を、何れか一方の表面側から順に、第1表層、中層及び第2表層とした場合、第1表層と中層との空隙率の差が5%以下、さらには3%以下になるように、第2のエマルジョンを付与してゲル化させることが好ましい。このように調整することにより、均質に硬度の高い硬質シートが得られる。 In this step, when the second composite formed is equally divided into three in the thickness direction, each layer, in order from any one of the surface sides, becomes the first surface layer, the middle layer, and the second surface layer, It is preferable that the second emulsion is applied for gelation so that the difference in porosity between the surface layer and the middle layer is 5% or less, further 3% or less. By adjusting in this way, a hard sheet with high hardness is obtained uniformly.
 なお、第1表層と中層との空隙率の差は下記式から算出される。
 第1表層と中層との空隙率の差(%)=絶対値(中層の空隙率(%)-第1表層の空隙率(%))
The difference in porosity between the first surface layer and the middle layer is calculated from the following formula.
Difference in porosity between first surface layer and middle layer (%) = absolute value (middle layer porosity (%) − first surface layer porosity (%))
 各層の空隙率は、次のようにして求められる。第2の複合体の厚み方向の断面を走査型電子顕微鏡で30倍で撮影する。そして、得られた写真を画像解析ソフトPopimaging(Digital being kids.Co製)を用い、動的閾値法で画像を二値化して空隙部を特定する。そして各空隙部に内接円を描き、その内接円の面積の合計を全層空隙量とする。そして、その写真を用いて第2の複合体の厚み方向の一方の表面から厚み方向に1/3に分割した部分を第1表層、他方の表面から厚み方向に1/3に分割した部分を第2表層、残りの層を中層として、各層ごとに内接円の面積の合計を求め、各層の空隙量とした。そして、各層の空隙率を、
 各層の空隙率=各層空隙量/全層空隙量×100(%)、の式により求める。
The porosity of each layer is obtained as follows. A cross section in the thickness direction of the second composite is photographed with a scanning electron microscope at a magnification of 30 times. Then, using the image analysis software Popimaging (manufactured by Digital being kids. Co), the obtained photograph is binarized by a dynamic threshold method to identify the void. Then, an inscribed circle is drawn in each void portion, and the total area of the inscribed circle is defined as the total layer void amount. And the part which divided | segmented 1/3 in the thickness direction from one surface of the thickness direction of the 2nd composite using the photograph to the 1st surface layer, and the part divided | segmented into 1/3 in the thickness direction from the other surface With the second surface layer and the remaining layers as the middle layer, the total area of the inscribed circle was determined for each layer, and the amount of voids in each layer was obtained. And the porosity of each layer,
The porosity of each layer = the amount of voids of each layer / the amount of voids of all layers × 100 (%).
 第2のエマルジョンを第1の複合体に含浸させる方法、ゲル化させる方法、及び加熱乾燥する方法としては、第1のエマルジョンを含浸させる方法、ゲル化させる方法、及び加熱乾燥する方法と同様の方法が用いられうる。このようにして第2の複合体が形成される。 The method of impregnating the first emulsion into the first composite, the method of gelation, and the method of heat drying are the same as the method of impregnation of the first emulsion, the method of gelation, and the method of heat drying. A method may be used. In this way, a second complex is formed.
(5)第2の複合体をpH変化を生じさせるイオンの総含有量が400μg/cm3以下になるように水洗する工程 (5) A step of washing the second complex with water so that the total content of ions causing a pH change is 400 μg / cm 3 or less.
 本実施形態の硬質シートは、上述のように、不織布に高分子弾性体を付与する際に、エマルジョンの表層へのマイグレーションを抑制するためにゲル化剤を含有するエマルジョンを用いた。本発明者らは、得られる硬質シート中にゲル化剤に含まれていたイオンが多く残留した場合には、研磨の際に研磨レートを低下させることを見出した。そして、水洗により、イオンの残留量400μg/cm3以下にすることにより、研磨レートの低下を抑制できることを見出した。 As described above, the hard sheet of the present embodiment uses an emulsion containing a gelling agent in order to suppress migration of the emulsion to the surface layer when a polymer elastic body is applied to the nonwoven fabric. The present inventors have found that when a large amount of ions contained in the gelling agent remains in the obtained hard sheet, the polishing rate is reduced during polishing. And it discovered that the fall of a grinding | polishing rate can be suppressed by making the residual amount of ion into 400 microgram / cm < 3 > or less by washing with water.
 水洗する工程は、硬質シート中に含有される水のpH変化を生じさせるイオンの総含有量が400μg/cm3以下、好ましくは350μg/cm3、さらには100μg/cm3以下になるように水洗する工程である。水洗方法としては、例えば、加熱水洗処理が水洗効率が高い点から好ましい。具体的な条件としては、例えば、80℃以上の熱水中に第2の複合体を浸漬する。詳しくは、例えば、第1段階として、65~90℃の熱水中に5~300秒間浸漬した後、さらに、第2段階として、85~100℃の熱水中で100~600秒間処理するような条件が挙げられる。また、水洗効率を高めるために、必要に応じて、ロールでのニップ処理、高圧水流処理、超音波処理、シャワー処理、攪拌処理、揉み処理等を行ってもよい。 The step of washing with water is carried out so that the total content of ions causing the pH change of the water contained in the hard sheet is 400 μg / cm 3 or less, preferably 350 μg / cm 3 , more preferably 100 μg / cm 3 or less. It is a process to do. As the water washing method, for example, a heated water washing treatment is preferable from the viewpoint of high water washing efficiency. As specific conditions, for example, the second composite is immersed in hot water of 80 ° C. or higher. Specifically, for example, as a first step, after being immersed in hot water at 65 to 90 ° C. for 5 to 300 seconds, and further as a second step, treatment is performed in hot water at 85 to 100 ° C. for 100 to 600 seconds. Conditions. Moreover, in order to improve the washing efficiency, you may perform the nip process by a roll, a high pressure water flow process, an ultrasonic process, a shower process, a stirring process, a stagnation process, etc. as needed.
(6)硬質シートの表面硬度をJIS-D硬度45以上にするために、第1の複合体、第2の複合体、及び硬質シートから選ばれる少なくとも一つを熱プレスする工程 (6) A step of hot pressing at least one selected from the first composite, the second composite, and the hard sheet so that the surface hardness of the hard sheet is JIS-D hardness 45 or more.
 硬質シートの内部に存在する空隙は、硬度や硬度の均質性を低下させる。本工程においては、上述した第1の複合体、第2の複合体、及び/または硬質シートを熱プレスすることにより、空隙を減少させる。このように空隙を減少させることにより、硬質シートの見掛け密度が高くなり、硬度や硬度の均質性及び剛性が高くなる。熱プレス処理条件としては、極細繊維及び高分子弾性体が分解しない温度として、例えば160~180℃に加熱された金属ロールで線圧30~100kg/cmでプレスするような条件が好ましい。 The void existing inside the hard sheet reduces the hardness and hardness uniformity. In this step, the voids are reduced by hot pressing the first composite, the second composite, and / or the hard sheet. By reducing the voids in this way, the apparent density of the hard sheet is increased, and the hardness and the homogeneity and rigidity of the hardness are increased. The hot press treatment conditions are preferably such that the ultrafine fibers and the polymer elastic body are pressed at a linear pressure of 30 to 100 kg / cm with a metal roll heated to 160 to 180 ° C., for example.
 以上のような工程を経て、本実施形態の硬質シートが得られる。本実施形態の硬質シートは研磨パッドの研磨層として好ましく用いられる。具体的には、硬質シートに必要に応じて所望の加工を施すことにより研磨層を形成することができる。例えば、サンドペーパーまたは針布、ダイヤモンド等によって起毛処理したり、逆シールのブラッシング処理、熱プレス処理やエンボス加工等が施される。また、硬質シートの表面に格子状、同心円状、渦巻き状などの溝や孔を形成してもよい。 Through the above-described steps, the hard sheet of this embodiment is obtained. The hard sheet of this embodiment is preferably used as a polishing layer of a polishing pad. Specifically, the polishing layer can be formed by performing desired processing on the hard sheet as necessary. For example, brushing with sandpaper or needle cloth, diamond, reverse brushing, hot pressing or embossing is performed. In addition, grooves, holes such as lattices, concentric circles, and spirals may be formed on the surface of the hard sheet.
 また、必要に応じて、硬質シートを研磨層とし、編物、織物、不織布、弾性樹脂フィルムまたは弾性スポンジ体等の弾性体層を積層してもよい。弾性フィルムや弾性スポンジ体としては、現在汎用的に使用されているポリウレタンを含浸した不織布(例えば、"Suba400"(ニッタ・ハース(株)製))の他、天然ゴム、ニトリルゴム、ポリブタジエンゴム、シリコーンゴムなどのゴム;ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、フッ素系熱可塑性エラストマーなどの熱可塑性エラストマー;発泡プラスチック;ポリウレタンなどが挙げられる。このように弾性体層を積層することにより、被研磨面のローカル平坦性(ウエハの局所的な平坦性)を向上させることもできる。なお、研磨パッドは、研磨層と弾性体層とが溶融接着等により直接接合しているものの他、接着剤や両面粘着テープ等により両層が接着されたものや、さらに、両層の間にさらに別の層が存在するものも含む。 If necessary, an elastic body layer such as a knitted fabric, a woven fabric, a nonwoven fabric, an elastic resin film, or an elastic sponge body may be laminated with the hard sheet as a polishing layer. As elastic films and elastic sponge bodies, non-woven fabrics impregnated with polyurethane currently used for general purposes (for example, “Suba400” (manufactured by Nitta Haas Co., Ltd.)), natural rubber, nitrile rubber, polybutadiene rubber, Examples thereof include rubbers such as silicone rubbers; thermoplastic elastomers such as polyester-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, and fluorine-based thermoplastic elastomers; foamed plastics; polyurethanes and the like. By laminating the elastic layer in this manner, the local flatness of the surface to be polished (local flatness of the wafer) can also be improved. In addition, the polishing pad is one in which the polishing layer and the elastic body layer are directly bonded by fusion bonding or the like, in which both layers are bonded by an adhesive or a double-sided adhesive tape, or between the two layers. In addition, those having another layer are also included.
 本実施形態の硬質シートを用いた研磨パッドは、公知のCMP用装置を使用し、スラリーを介して被研磨面と研磨パッドを、加圧下、一定速度で、一定時間接触させるケミカルメカニカル研磨(CMP)に使用することができる。スラリーは、例えば、水やオイルなどの液状媒体;シリカ、酸化アルミニウム、酸化セリウム、酸化ジルコニウム、炭化ケイ素などの研磨剤;塩基、酸、界面活性剤などの成分を含有している。また、CMPを行うに際し、必要に応じ、スラリーと共に、潤滑油、冷却剤などを併用してもよい。 The polishing pad using the hard sheet of the present embodiment is a chemical mechanical polishing (CMP) in which a known CMP apparatus is used and the surface to be polished and the polishing pad are brought into contact with each other at a constant speed under a pressure through a slurry. ) Can be used. The slurry contains components such as a liquid medium such as water and oil; an abrasive such as silica, aluminum oxide, cerium oxide, zirconium oxide, and silicon carbide; a base, an acid, and a surfactant. Moreover, when performing CMP, you may use lubricating oil, a coolant, etc. together with a slurry as needed.
 研磨の対象となる物品は特に限定されず、例えば、水晶、シリコン、ガラス、光学基板、電子回路基板、多層配線基板、ハードディスクなどが挙げられる。特に、研磨の対象としては、シリコンウエハや半導体ウエハであることが好ましい。半導体ウエハの具体例としては、例えば、酸化シリコン、酸化フッ化シリコン、有機ポリマーなどの絶縁膜、銅、アルミニウム、タングステンなどの配線材金属膜、タンタル、チタン、窒化タンタル、窒化チタンなどのバリアメタル膜等を表面に有するものが挙げられる。 The article to be polished is not particularly limited, and examples thereof include crystal, silicon, glass, an optical substrate, an electronic circuit substrate, a multilayer wiring substrate, and a hard disk. In particular, the object to be polished is preferably a silicon wafer or a semiconductor wafer. Specific examples of semiconductor wafers include, for example, insulating films such as silicon oxide, silicon oxyfluoride, and organic polymers, wiring metal films such as copper, aluminum, and tungsten, and barrier metals such as tantalum, titanium, tantalum nitride, and titanium nitride. Examples thereof include those having a film or the like on the surface.
 以下、本発明を実施例により具体的に説明する。なお、本発明は実施例により何ら限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. In addition, this invention is not limited at all by the Example.
 はじめに、本実施例で用いた評価方法を以下にまとめて説明する。 First, the evaluation method used in this example will be described below.
[硬質シートの見掛け密度]
 硬質シートの単位面積あたりの質量(g/cm2)を厚さ(cm)で除した値を見掛け密度(g/cm3)とした。そして、硬質シートの任意の10箇所について見掛け密度を測定して算術平均した値を見掛け密度とした。なお、厚さは、JISL1096に準じて荷重240gf/cm2で測定した。
[Apparent density of hard sheet]
The apparent density (g / cm 3 ) was obtained by dividing the mass (g / cm 2 ) per unit area of the hard sheet by the thickness (cm). Then, the apparent density was measured at any ten locations on the hard sheet, and the value obtained by arithmetic averaging was defined as the apparent density. The thickness was measured at a load of 240 gf / cm 2 according to JISL1096.
[硬質シートの表面、第1表層及び中層のJIS-D硬度の測定、及びR%の算出]
 JIS K 7311に準じて硬質シートの表面、第1表層及び中層のD硬度を測定した。具体的には、硬質シートの表面のD硬度は、厚さ約1.25mmの硬質シートを8枚重ね、幅方向に均等に3点の硬度を測定し、その平均を硬質シートの表面のD硬度とした。
 また、第1表層のD硬度は、厚さ約1.25mmの硬質シートを第2表層側から研削することにより、厚さ0.40mmの第1表層のシートを得た。そして、得られた第1表層のシートを25枚重ね、幅方向に均等に3点の硬度を測定し、その平均を第1表層のJIS-D硬度とした。さらに、中層のD硬度は、硬質シートを第1表層側及び第2表層側から均等に研削することにより厚さ0.40mmの中層のシートを得た。そして、得られた中層のシートを25枚重ね、幅方向に均等に3点の硬度を測定し、その平均を中層の硬度とした。そして、得られた第1表層の3点のD硬度と中層の3点のD硬度の計6点のJIS-D硬度の値を用いて以下の式:
R(%)=(D硬度最大値-D硬度最小値)/D硬度平均値×100、から、R(%)を求めた。
[Measurement of JIS-D hardness of hard sheet surface, first surface layer and middle layer, and calculation of R%]
The D hardness of the surface of the hard sheet, the first surface layer and the middle layer was measured according to JIS K 7311. Specifically, the D hardness of the surface of the hard sheet is obtained by stacking eight hard sheets having a thickness of about 1.25 mm, measuring the hardness at three points evenly in the width direction, and calculating the average of the D hardness of the surface of the hard sheet. Hardness.
The D hardness of the first surface layer was obtained by grinding a hard sheet having a thickness of about 1.25 mm from the second surface layer side to obtain a sheet of the first surface layer having a thickness of 0.40 mm. Then, 25 sheets of the obtained first surface layer were stacked, and the hardness at three points was measured uniformly in the width direction, and the average was defined as the JIS-D hardness of the first surface layer. Furthermore, the D hardness of the middle layer was obtained by uniformly grinding the hard sheet from the first surface layer side and the second surface layer side to obtain a middle layer sheet having a thickness of 0.40 mm. And 25 sheets of the obtained middle layer were piled up, the hardness of 3 points | pieces was measured equally in the width direction, and the average was made into the hardness of the middle layer. Then, using the obtained JIS-D hardness values of 6 points in total, that is, 3 points of D hardness of the first surface layer and 3 points of D hardness of the middle layer, the following formula:
R (%) was obtained from R (%) = (D hardness maximum value−D hardness minimum value) / D hardness average value × 100.
[水のpH変化を生じさせるイオンの総含有量]
 短冊状に切断した硬質シートの断片及び水10mLを切りネジ口試験管に入れた。そして、ネジ口試験管をブロックヒーターで90℃、2時間加熱することにより、硬質シート中の水溶性物質を熱水抽出した。そして、その抽出液中のイオン成分をイオンクロマトグラフ(ICS-1600)を用いて検出した。この中で水のpH変化を生じるイオンである硫酸イオン及びアンモニウムイオンの合計量を測定し、単位体積あたりの硬質シートに含まれるイオン量に換算した。
[Total ion content causing water pH change]
A piece of a hard sheet cut into a strip shape and 10 mL of water were cut and placed in a screw test tube. And the water-soluble substance in a hard sheet was hot-water-extracted by heating a screw opening test tube with a block heater at 90 degreeC for 2 hours. Then, ion components in the extract were detected using an ion chromatograph (ICS-1600). In this, the total amount of sulfate ions and ammonium ions, which are ions that cause the pH change of water, was measured and converted to the amount of ions contained in the hard sheet per unit volume.
[研磨レート]
 硬質シートを直径51cmの円形状に切断し、表面に幅1.0mm、深さ0.5mmの溝を格子状に15.0mm間隔で形成することにより研磨パッドを作成した。そして研磨パッドの裏面に粘着テープを貼り付けた後、CMP研磨装置((株)野村製作所製「PP0-60S」)に装着した。次に、プラテン回転数70回転/分、ヘッド回転数69回転/分、研磨圧力40g/cm2の条件で、スラリー(昭和電工(株)製のSHOROXA-31)を100ml/分の速度で供給しながら、直径4インチの合成石英を3時間研磨した。そして、研磨後の合成石英の面内の任意の25点の厚みを測定し、各点における研磨された厚さの平均を研磨時間で除することにより研磨レート(nm/分)を求めた。
 なお、厚さ約1.25mmの硬質シートの第1表層、及び、中層を露出させた厚さ0.70mmの硬質シートの研磨レートをそれぞれ測定した。
[Polishing rate]
The hard sheet was cut into a circular shape having a diameter of 51 cm, and grooves having a width of 1.0 mm and a depth of 0.5 mm were formed on the surface in a lattice pattern at intervals of 15.0 mm to prepare a polishing pad. Then, after sticking an adhesive tape on the back surface of the polishing pad, it was mounted on a CMP polishing apparatus (“PP0-60S” manufactured by Nomura Seisakusho Co., Ltd.). Next, slurry (SHOROXA-31 manufactured by Showa Denko KK) was supplied at a rate of 100 ml / min under the conditions of a platen rotation rate of 70 rpm, a head rotation rate of 69 rpm, and a polishing pressure of 40 g / cm 2. Then, synthetic quartz having a diameter of 4 inches was polished for 3 hours. And the thickness of arbitrary 25 points | pieces in the surface of the synthetic quartz after grinding | polishing was measured, and the grinding | polishing rate (nm / min) was calculated | required by remove | dividing the average of the grind | polished thickness in each point by grinding | polishing time.
In addition, the polishing rate of the 0.70 mm-thick hard sheet which exposed the 1st surface layer of the hard sheet about 1.25 mm thick and the middle layer was measured, respectively.
[実施例1]
 水溶性PVAを海成分、変性度6モル%のイソフタル酸変性PETを島成分として用いた。水溶性PVA及びイソフタル酸変性PETを25/75(質量比)になるように、260℃で溶融複合紡糸用口金(島数:25島/繊維)から吐出した。そして、紡糸速度が3700m/minとなるようにエジェクター圧力を調整し、繊度3dtexの長繊維をネット上に捕集し、目付35g/m2のウェブを得た。
[Example 1]
Water-soluble PVA was used as the sea component, and isophthalic acid-modified PET having a modification degree of 6 mol% was used as the island component. Water-soluble PVA and isophthalic acid-modified PET were discharged from a melt compound spinning die (number of islands: 25 islands / fiber) at 260 ° C. so as to be 25/75 (mass ratio). Then, the ejector pressure was adjusted so that the spinning speed was 3700 m / min, and long fibers having a fineness of 3 dtex were collected on a net to obtain a web having a basis weight of 35 g / m 2 .
 ウェブをクロスラッピングにより16枚重ねて、総目付480g/m2の重ね合わせウェブを作製した。そして、重ね合わせウェブに、針折れ防止油剤をスプレーした。そして、バーブ数1個でニードル番手42番のニードル針、及びバーブ数6個でニードル番手42番のニードル針を用いて、重ね合わせウェブを3150パンチ/cm2でニードルパンチ処理することにより絡合されたウェブを得た。絡合されたウェブの目付量は770g/m2、層間剥離力は9.6kg/2.5cmであった。また、ニードルパンチ処理による面積収縮率は25.8%であった。 Sixteen webs were overlapped by cross-wrapping to produce an overlapped web having a total basis weight of 480 g / m 2 . Then, the needle breakage preventing oil was sprayed on the overlapping web. Then, using a needle needle with a needle count of 42 with one barb and a needle needle with a needle number of 42 with six barbs, the overlapping web is entangled by needle punching at 3150 punch / cm 2. Got the web. The basis weight of the entangled web was 770 g / m 2 and the delamination force was 9.6 kg / 2.5 cm. Moreover, the area shrinkage rate by the needle punch process was 25.8%.
 次に、絡合されたウェブを110℃、23.5%RHの条件で70秒間スチーム処理した。このときの面積収縮率は44%であった。そして、90~110℃のオーブン中で乾燥させた後、さらに、115℃で熱プレスすることにより、目付1312g/m2、見掛け密度0.544g/cm3、厚み2.41mmの繊維絡合シートを得た。 Next, the entangled web was steamed for 70 seconds at 110 ° C. and 23.5% RH. The area shrinkage rate at this time was 44%. Then, after drying in an oven at 90 to 110 ° C., and further hot pressing at 115 ° C., a fiber entangled sheet having a basis weight of 1312 g / m 2 , an apparent density of 0.544 g / cm 3 , and a thickness of 2.41 mm Got.
 次に、繊維絡合シートに、第1のエマルジョンとして、ポリウレタンのエマルジョンを含浸させた。なお、ポリウレタンは、ポリカーボネート系ポリオールと炭素数2~3のポリアルキレングリコールとを99.8:0.2(モル比)で混合した混合物をポリオール成分とし、カルボキシル基含有モノマーを1.5質量%含有する無黄変型ポリウレタンである。また、ポリウレタンは熱処理することにより架橋構造を形成する非多孔性のポリウレタンである。第1のエマルジョンは、ポリウレタン100質量部に対してカルボジイミド系架橋剤4.6質量部及びゲル化剤として硫酸アンモニウム1.8質量部を含有し、ポリウレタンの固形分が20%となるよう調整したものである。 Next, the fiber entangled sheet was impregnated with a polyurethane emulsion as the first emulsion. Polyurethane is a mixture of polycarbonate polyol and polyalkylene glycol having 2 to 3 carbon atoms in a ratio of 99.8: 0.2 (molar ratio) as a polyol component, and 1.5% by mass of a carboxyl group-containing monomer. It is a non-yellowing polyurethane contained. Polyurethane is a non-porous polyurethane that forms a crosslinked structure by heat treatment. The first emulsion contains 4.6 parts by mass of a carbodiimide-based crosslinking agent and 1.8 parts by mass of ammonium sulfate as a gelling agent with respect to 100 parts by mass of polyurethane, and is adjusted so that the solid content of polyurethane is 20%. It is.
 第1のエマルジョンが含浸された繊維絡合シートを90℃、30%RH雰囲気下で加熱することにより第1のエマルジョンをゲル化させ、さらに、150℃で乾燥処理した。そして、さらに140℃で熱プレスすることにより、目付1403g/m2、見掛け密度0.716g/cm3、厚み1.96mmに調整した。 The fiber entangled sheet impregnated with the first emulsion was heated at 90 ° C. in a 30% RH atmosphere to gel the first emulsion, and further dried at 150 ° C. Further, by hot pressing at 140 ° C., the basis weight was adjusted to 1403 g / m 2 , the apparent density 0.716 g / cm 3 , and the thickness 1.96 mm.
 次に、ニップ処理及び高圧水流処理を用いて、ポリウレタンが付与された繊維絡合シートを95℃の熱水中に10分間浸漬することにより、水溶性PVAを溶解除去して繊度0.09dtexの極細繊維に変換し、さらに乾燥した。このようにして、目付1009g/m2、見掛け密度0.538g/cm3、厚み1.87mmである、第1の複合体を得た。 Next, by using a nip treatment and a high-pressure water treatment, the fiber-entangled sheet provided with polyurethane is immersed in hot water at 95 ° C. for 10 minutes to dissolve and remove the water-soluble PVA, and have a fineness of 0.09 dtex. It was converted to ultrafine fibers and further dried. In this way, a first composite having a basis weight of 1009 g / m 2 , an apparent density of 0.538 g / cm 3 , and a thickness of 1.87 mm was obtained.
 次に、第1の複合体に、第2のエマルジョンとして、ポリウレタンのエマルジョン(固形分30質量%)を含浸させた。なお、ポリウレタンは、先に含浸させたポリウレタンと同じものである。第2のエマルジョンは、ポリウレタン100質量部に対してカルボジイミド系架橋剤4.6質量部及び硫酸アンモニウム1.0質量部を含有し、ポリウレタンの固形分が30%となるよう調整したものである。 Next, the first composite was impregnated with a polyurethane emulsion (solid content 30% by mass) as the second emulsion. The polyurethane is the same as the previously impregnated polyurethane. The second emulsion contains 4.6 parts by mass of a carbodiimide-based crosslinking agent and 1.0 part by mass of ammonium sulfate with respect to 100 parts by mass of polyurethane, and is adjusted so that the solid content of polyurethane is 30%.
 第2のエマルジョンが含浸された第1の複合体を90℃、60%RH雰囲気下で加熱することにより第2のエマルジョンをゲル化させ、さらに、150℃で乾燥処理した。このようにして、目付1245g/m2、見掛け密度0.748g/cm3、厚み1.66mmの第2の複合体を得た。第2の複合体の第1表層と中層との空隙率の差は1.8%であった。 The first composite impregnated with the second emulsion was heated at 90 ° C. in a 60% RH atmosphere to gel the second emulsion, and further dried at 150 ° C. In this way, a second composite having a basis weight of 1245 g / m 2 , an apparent density of 0.748 g / cm 3 and a thickness of 1.66 mm was obtained. The difference in porosity between the first surface layer and the middle layer of the second composite was 1.8%.
 そして、ニップ処理及び高圧水流処理を用いて、第2の複合体を95℃の熱水中に10分間浸漬することにより水洗した。そして、180℃で乾燥した。そして、線圧100kg/cm、160℃条件で熱プレス処理することで、目付1212g/m2、見掛け密度0.795g/cm3、厚み1.53mmである硬質シートの中間体を得た。 Then, the second composite was washed with water by immersing it in hot water at 95 ° C. for 10 minutes using nip treatment and high-pressure water flow treatment. And it dried at 180 degreeC. And the intermediate body of the hard sheet | seat which is 1212 g / m < 2 > of fabric weights, the apparent density of 0.795 g / cm < 3 >, and the thickness of 1.53 mm was obtained by carrying out the hot press process on linear pressure of 100 kg / cm and 160 degreeC conditions.
 硬質シートの中間体の両面の表層を♯100ペーパーを用いて、それぞれ0.15mmずつ研削することにより、目付994g/m2、見掛け密度0.788g/cm3、厚み1.26mmの硬質シートに仕上げた。硬質シートのJIS-D硬度は52であり、JIS-D硬度のR%は11.3%であった。また、硬質シート中に含まれていた、pH変化を生じるイオンである硫酸イオン及びアンモニウムイオンを合計量は、26.9μg/cm3であった。 The surface layers on both sides of the intermediate of the hard sheet are ground by 0.15 mm each using # 100 paper to obtain a hard sheet having a basis weight of 994 g / m 2 , an apparent density of 0.788 g / cm 3 and a thickness of 1.26 mm. Finished. The JIS-D hardness of the hard sheet was 52, and R% of the JIS-D hardness was 11.3%. The total amount of sulfate ions and ammonium ions, which are ions that cause pH change, contained in the hard sheet was 26.9 μg / cm 3 .
 評価結果を表1に示す。 Evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例2]
 第2のエマルジョンを付与する前の第1の複合体を、線圧100kg/cm、160℃条件で熱プレス処理した以外は実施例1と同様して硬質シートを製造し、評価した。なお、得られた硬質シートは、目付996g/m2、見掛け密度0.808g/cm3、厚み1.23mmであった。結果を表1に示す。
[Example 2]
A hard sheet was produced and evaluated in the same manner as in Example 1 except that the first composite before applying the second emulsion was subjected to hot press treatment under the conditions of a linear pressure of 100 kg / cm and a temperature of 160 ° C. The obtained hard sheet had a basis weight of 996 g / m 2 , an apparent density of 0.808 g / cm 3 , and a thickness of 1.23 mm. The results are shown in Table 1.
[実施例3]
 実施例1において、第2の複合体の水洗度合いを低くした以外は実施例1と同様して硬質シートを製造し、評価した。硬質シート中に含まれていた、pH変化を生じるイオンである硫酸イオン及びアンモニウムイオンを合計量は、300μg/cm3であった。結果を表1に示す。
[Example 3]
In Example 1, a hard sheet was produced and evaluated in the same manner as in Example 1 except that the water washing degree of the second composite was lowered. The total amount of sulfate ions and ammonium ions, which are ions that cause pH change, contained in the hard sheet was 300 μg / cm 3 . The results are shown in Table 1.
[比較例1]
 実施例1において、第2の複合体を95℃の熱水中に10分間浸漬することにより水洗する代わりに、第2の複合体を水洗しなかった以外は実施例1と同様して硬質シートを製造し、評価した。結果を表1に示す。
[Comparative Example 1]
In Example 1, instead of washing the second composite by immersing it in 95 ° C. hot water for 10 minutes, it was the same as in Example 1 except that the second composite was not washed with water. Were manufactured and evaluated. The results are shown in Table 1.
[比較例2]
 実施例1において、第1の複合体をさらに線圧100kg/cm、160℃条件で熱プレス処理した。そして、ゲル化剤を含む第2のエマルジョンを含浸させる代わりに、ゲル化剤を含まない同様の組成のエマルジョンを含浸させた以外は実施例1と同様して硬質シートを製造し、評価した。なお、得られた硬質シートは、目付969g/m2、見掛け密度0.817g/cm3、厚み1.19mmであった。結果を表1に示す。
[Comparative Example 2]
In Example 1, the first composite was further hot-pressed under the conditions of a linear pressure of 100 kg / cm and a temperature of 160 ° C. Then, instead of impregnating the second emulsion containing the gelling agent, a hard sheet was produced and evaluated in the same manner as in Example 1 except that the emulsion having the same composition not containing the gelling agent was impregnated. The obtained hard sheet had a basis weight of 969 g / m 2 , an apparent density of 0.817 g / cm 3 , and a thickness of 1.19 mm. The results are shown in Table 1.
[比較例3]
 実施例1において、第2の複合体の水洗度合いを低くした以外は実施例1と同様して硬質シートを製造し、評価した。硬質シート中に含まれていた、pH変化を生じるイオンである硫酸イオン及びアンモニウムイオンを合計量は、404μg/cm3であった。結果を表1に示す。
[Comparative Example 3]
In Example 1, a hard sheet was produced and evaluated in the same manner as in Example 1 except that the water washing degree of the second composite was lowered. The total amount of sulfate ions and ammonium ions, which are ions that cause pH change, contained in the hard sheet was 404 μg / cm 3 . The results are shown in Table 1.
[比較例4]
 実施例1において、第2の複合体の水洗度合いを低くした以外は実施例1と同様して硬質シートを製造し、評価した。硬質シート中に含まれていた、pH変化を生じるイオンである硫酸イオン及びアンモニウムイオンを合計量は、504μg/cm3であった。結果を表1に示す。
[Comparative Example 4]
In Example 1, a hard sheet was produced and evaluated in the same manner as in Example 1 except that the water washing degree of the second composite was lowered. The total amount of sulfate ions and ammonium ions, which are ions that cause pH change, contained in the hard sheet was 504 μg / cm 3 . The results are shown in Table 1.
 表1の結果から、本発明に係る、JIS-D硬度が45以上であり、R%が0~20%であり、水のpH変化を生じさせるイオンの総含有量が400μg/cm3以下である実施例1~3で得られた硬質シートを用いた研磨パッドは、いずれも第1表層の研磨レート、すなわち初期の研磨レートが120nm/分であり、5時間後までの平均で初期の研磨レートの90%以上を維持した。一方、第2のエマルジョンにゲル化剤を配合し、充分な水洗をしなかった比較例1の硬質シートを用いた研磨パッドは、第1表層の研磨レートが93nm/分と著しく低かった。また、比較例2の硬質シートは、第2のエマルジョンにゲル化剤を配合して均質に高分子弾性体を充填する代わりに、熱プレスにより硬質シートの均質化を図ったものである。比較例2の研磨パッドは、イオンの総含有量は少なかったが、R%が30.2%と不均質なものであった。その結果、5時間後までの平均で初期の研磨レートの89%しか維持できなかった。また、イオンの総含有量が404μg/cm3の比較例3、及び504μg/cm3の比較例4は、いずれも5時間後までの平均で初期の研磨レートの約84%しか維持できなかった。 From the results of Table 1, when the JIS-D hardness according to the present invention is 45 or more, R% is 0 to 20%, and the total content of ions causing pH change of water is 400 μg / cm 3 or less. All of the polishing pads using the hard sheets obtained in Examples 1 to 3 had a polishing rate of the first surface layer, that is, an initial polishing rate of 120 nm / min, and an initial polishing averaged after 5 hours. Maintained over 90% of the rate. On the other hand, the polishing pad using the hard sheet of Comparative Example 1 in which the gelling agent was blended into the second emulsion and was not sufficiently washed with water, had a remarkably low polishing rate of 93 nm / min for the first surface layer. Further, the hard sheet of Comparative Example 2 is obtained by homogenizing the hard sheet by hot pressing instead of blending the second emulsion with a gelling agent and uniformly filling the polymer elastic body. The polishing pad of Comparative Example 2 had a small total content of ions, but was inhomogeneous with an R% of 30.2%. As a result, only 89% of the initial polishing rate was maintained on average after 5 hours. Further, the total content of ions Comparative Example 4 Comparative Example 3, and 504μg / cm 3 of 404μg / cm 3 were not only able to maintain about 84% of the initial polishing rate either an average of up to 5 hours .
 1  不織布
 1a 極細繊維
 1b 繊維束
 2  高分子弾性体
 3  第1表層
 4  中層
 5  第2表層
DESCRIPTION OF SYMBOLS 1 Nonwoven fabric 1a Extra fine fiber 1b Fiber bundle 2 Polymer elastic body 3 First surface layer 4 Middle layer 5 Second surface layer

Claims (16)

  1.  0.0001~0.5dtexの繊度を有する極細繊維の不織布と、前記不織布に付与された高分子弾性体とを含む硬質シートであって、
     JIS-D硬度が45以上であり、
     厚み方向の断面において、均等に3分割したときの各層を、何れか一方の表面側から順に、第1表層、中層及び第2表層とした場合、
     前記第1表層及び前記中層のJIS-D硬度を任意の点でそれぞれ3点ずつで計6点測定し、計6点のD硬度を用いて、下記式:
    R(%)=(D硬度最大値-D硬度最小値)/D硬度の平均値×100
    から算出されるR%が0~20%であり、
     かつ、水のpH変化を生じさせるイオンの総含有量が400μg/cm3以下であることを特徴とする硬質シート。
    A hard sheet comprising a nonwoven fabric of ultrafine fibers having a fineness of 0.0001 to 0.5 dtex, and a polymer elastic body imparted to the nonwoven fabric,
    JIS-D hardness is 45 or more,
    In the cross section in the thickness direction, when each layer is equally divided into three, in order from any one of the surface side, the first surface layer, the middle layer and the second surface layer,
    The JIS-D hardness of the first surface layer and the middle layer was measured at three arbitrary points at a total of 6 points, and a total of 6 points of D hardness was used.
    R (%) = (D hardness maximum value−D hardness minimum value) / D hardness average value × 100
    R% calculated from 0 to 20%,
    And the hard sheet | seat characterized by the total content of the ion which causes the pH change of water being 400 microgram / cm < 3 > or less.
  2.  前記イオンの総含有量が1~100μg/cm3である請求項1に記載の硬質シート。 The hard sheet according to claim 1, wherein the total content of the ions is 1 to 100 µg / cm 3 .
  3.  前記極細繊維は長繊維であり、且つ、繊維束を形成している請求項1に記載の硬質シート。 The hard sheet according to claim 1, wherein the ultrafine fibers are long fibers and form a fiber bundle.
  4.  前記不織布の見掛け密度が、0.35~0.90g/cm3である請求項3に記載の硬質シート。 The hard sheet according to claim 3 , wherein the apparent density of the nonwoven fabric is 0.35 to 0.90 g / cm 3 .
  5.  厚み方向の断面において、前記繊維束を形成する前記極細繊維の少なくとも一部分が前記高分子弾性体で集束されている請求項3に記載の硬質シート。 The hard sheet according to claim 3, wherein at least a part of the ultrafine fibers forming the fiber bundle are bundled by the polymer elastic body in a cross section in the thickness direction.
  6.  厚み方向の断面において、前記繊維束の少なくとも一部分が、互いに前記高分子弾性体で結着されている請求項5に記載の硬質シート。 The hard sheet according to claim 5, wherein at least a part of the fiber bundles are bound to each other by the polymer elastic body in a cross section in the thickness direction.
  7.  厚み方向の断面において、前記繊維束を形成する前記極細繊維の半数以上の本数が前記高分子弾性体で集束されている請求項3に記載の硬質シート。 The rigid sheet according to claim 3, wherein in the cross section in the thickness direction, more than half of the ultrafine fibers forming the fiber bundle are converged by the polymer elastic body.
  8.  厚み方向の断面において、前記繊維束の半数以上の束が互いに前記高分子弾性体で結着されている請求項7に記載の硬質シート。 The hard sheet according to claim 7, wherein more than half of the fiber bundles are bound to each other by the polymer elastic body in a cross section in the thickness direction.
  9.  前記高分子弾性体が、非多孔質の高分子弾性体である請求項1に記載の硬質シート。 The hard sheet according to claim 1, wherein the polymer elastic body is a non-porous polymer elastic body.
  10.  前記不織布と前記高分子弾性体との質量比率(不織布/高分子弾性体)が、90/10~55/45である請求項1に記載の硬質シート。 2. The hard sheet according to claim 1, wherein a mass ratio (nonwoven fabric / polymer elastic body) between the nonwoven fabric and the polymer elastic body is 90/10 to 55/45.
  11.  見掛け密度が0.50~1.2g/cm3である請求項10に記載の硬質シート。 The hard sheet according to claim 10, wherein the apparent density is 0.50 to 1.2 g / cm 3 .
  12.  前記第2表層のJIS-D硬度が45以上であり、
     前記第2表層及び前記中層のJIS-D硬度を任意の点でそれぞれ3点ずつで計6点測定し、計6点のD硬度を用いて、下記式:
    R(%)=(D硬度最大値―D硬度最小値)/D硬度平均値×100から
    算出されるR%が0~20%である請求項1に記載の硬質シート。
    The JIS-D hardness of the second surface layer is 45 or more,
    The JIS-D hardness of the second surface layer and the middle layer was measured at arbitrary points, 3 points each, for a total of 6 points, and using the 6 points of D hardness, the following formula:
    2. The hard sheet according to claim 1, wherein R% calculated from R (%) = (D hardness maximum value−D hardness minimum value) / D hardness average value × 100 is 0 to 20%.
  13.  請求項1~12のいずれか1項に記載の硬質シートを研磨層として備えることを特徴とする研磨パッド。 A polishing pad comprising the hard sheet according to any one of claims 1 to 12 as a polishing layer.
  14.  (1) 0.5dtex以下の繊度を有する極細繊維の見掛け密度0.35g/cm3以上の不織布を極細繊維化処理により形成しうる、極細繊維発生型繊維の長繊維の繊維絡合シートを準備する工程と、
     (2)前記繊維絡合シートに、水のpH変化を生じさせるイオンを含むゲル化剤及び高分子弾性体を含む第1のエマルジョンを含浸させた後、前記第1のエマルジョンをゲル化させ、さらに、加熱乾燥することにより前記高分子弾性体を凝固させる工程と、
     (3)前記極細繊維発生型繊維を極細繊維化処理することにより、前記不織布と前記高分子弾性体とを含有する第1の複合体を形成する工程と、
     (4)前記第1の複合体に前記ゲル化剤及び前記高分子弾性体を含む第2のエマルジョンを含浸させ、さらに、加熱乾燥することにより前記高分子弾性体を凝固させて、厚み方向に均等に3分割したときの各層を、何れか一方の表面側から順に、第1表層、中層及び第2表層とした場合、前記第1表層と前記中層との空隙率の差が5%以下である第2の複合体を形成する工程と、
     (5)前記第2の複合体を前記イオンの総含有量が400μg/cm3以下になるように水洗することにより硬質シートを得る工程と、
     (6)前記硬質シートの表面硬度をJIS-D硬度45以上にするために、前記第1の複合体、前記第2の複合体、及び前記硬質シートから選ばれる少なくとも一つを熱プレスする工程と、を備えることを特徴とする硬質シートの製造方法。
    (1) Prepare a fiber-entangled sheet of ultrafine fiber-generating fibers that can form a nonwoven fabric with an apparent density of 0.35 g / cm 3 or more of ultrafine fibers having a fineness of 0.5 dtex or less by ultrafine fiber treatment. And a process of
    (2) After impregnating the fiber entangled sheet with a first emulsion containing a gelling agent containing an ion that causes a pH change of water and a polymer elastic body, the first emulsion is gelled, A step of solidifying the polymer elastic body by heating and drying;
    (3) forming the first composite containing the nonwoven fabric and the polymer elastic body by subjecting the ultrafine fiber-generating fiber to an ultrafine fiber treatment;
    (4) The first composite is impregnated with the second emulsion containing the gelling agent and the polymer elastic body, and further heat-dried to solidify the polymer elastic body in the thickness direction. When each layer when equally divided into three is the first surface layer, the middle layer and the second surface layer in order from any one of the surface sides, the difference in porosity between the first surface layer and the middle layer is 5% or less. Forming a second complex,
    (5) A step of obtaining a hard sheet by washing the second complex with water so that the total content of ions is 400 μg / cm 3 or less;
    (6) a step of hot pressing at least one selected from the first composite, the second composite, and the hard sheet so that the surface hardness of the hard sheet is JIS-D hardness 45 or more. And a method for producing a hard sheet.
  15.  前記イオンの総含有量が1~100μg/cm3である請求項14に記載の硬質シートの製造方法。 The method for producing a hard sheet according to claim 14, wherein a total content of the ions is 1 to 100 µg / cm 3 .
  16.  前記極細繊維発生型繊維が、海成分として水溶性熱可塑性ポリビニルアルコール系樹脂、島成分として非水溶性熱可塑性樹脂を含む海島型複合繊維であり、
     前記工程(3)の極細繊維化処理が、前記水溶性熱可塑性ポリビニルアルコール系樹脂を温水に溶解させて選択的に除去する工程である請求項14に記載の硬質シートの製造方法。
    The ultrafine fiber-generating fiber is a sea-island composite fiber containing a water-soluble thermoplastic polyvinyl alcohol-based resin as a sea component and a water-insoluble thermoplastic resin as an island component,
    The method for producing a hard sheet according to claim 14, wherein the ultrafine fiberizing treatment in the step (3) is a step of selectively removing the water-soluble thermoplastic polyvinyl alcohol resin by dissolving it in warm water.
PCT/JP2014/000616 2013-02-12 2014-02-05 Rigid sheet and process for manufacturing rigid sheet WO2014125797A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480007963.2A CN105008614B (en) 2013-02-12 2014-02-05 The manufacture method of hard sheet and hard sheet
KR1020157023576A KR102136441B1 (en) 2013-02-12 2014-02-05 Rigid sheet and process for manufacturing rigid sheet
EP14752242.9A EP2957672B1 (en) 2013-02-12 2014-02-05 Hard sheet and method for producing the same
JP2015500137A JP6220378B2 (en) 2013-02-12 2014-02-05 Hard sheet and method for manufacturing hard sheet
US14/767,115 US20160002835A1 (en) 2013-02-12 2014-02-05 Hard sheet and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-024525 2013-02-12
JP2013024525 2013-02-12

Publications (1)

Publication Number Publication Date
WO2014125797A1 true WO2014125797A1 (en) 2014-08-21

Family

ID=51353810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000616 WO2014125797A1 (en) 2013-02-12 2014-02-05 Rigid sheet and process for manufacturing rigid sheet

Country Status (7)

Country Link
US (1) US20160002835A1 (en)
EP (1) EP2957672B1 (en)
JP (1) JP6220378B2 (en)
KR (1) KR102136441B1 (en)
CN (1) CN105008614B (en)
TW (1) TWI607832B (en)
WO (1) WO2014125797A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021897A1 (en) * 2017-07-25 2019-01-31 ニッタ・ハース株式会社 Polishing cloth
JP2020104197A (en) * 2018-12-27 2020-07-09 株式会社クラレ Fiber composite polishing pad and polishing method for glass-based substrate using the same
WO2021131590A1 (en) * 2019-12-26 2021-07-01 株式会社クラレ Full-grain-leather-like sheet

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107431467B (en) * 2015-04-17 2021-02-19 株式会社村田制作所 Resonance circuit, band elimination filter and band pass filter
DE102016222063A1 (en) * 2016-11-10 2018-05-17 Siltronic Ag Method for polishing both sides of a semiconductor wafer
US20180134918A1 (en) * 2016-11-11 2018-05-17 Jh Rhodes Company, Inc. Soft polymer-based material polishing media
KR102652060B1 (en) * 2018-08-27 2024-03-28 주식회사 쿠라레 Artificial leather base material, manufacturing method thereof, and napped artificial leather
JP6904493B1 (en) * 2019-12-20 2021-07-14 東レ株式会社 Sheet-shaped material and its manufacturing method
JP6904494B1 (en) * 2019-12-20 2021-07-14 東レ株式会社 Sheet-shaped material and its manufacturing method

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03234475A (en) 1990-02-08 1991-10-18 Kanebo Ltd Abrasive cloth
JPH10128674A (en) 1996-10-28 1998-05-19 Rooder Nitta Kk Polishing pad
JPH10225864A (en) 1997-02-17 1998-08-25 Sony Corp Polishing pad and manufacture thereof and polishing method of wafer using its
JPH1199479A (en) 1997-09-30 1999-04-13 Teijin Ltd Polishing pad
JPH11322878A (en) 1998-05-13 1999-11-26 Dainippon Ink & Chem Inc Production of foamed polyurethane molded product, urethane resin composition for producing the same and abrasive pad using the same
JP2000178374A (en) 1998-12-15 2000-06-27 Toyo Tire & Rubber Co Ltd Production of polyurethane foam and polishing sheet
JP2000248034A (en) 1999-03-02 2000-09-12 Mitsubishi Chemicals Corp Polyurethane-based resin composition for abrasive material and foam from the composition
US6130163A (en) * 1999-06-03 2000-10-10 Promos Technologies, Inc. Stabilization of slurry used in chemical mechanical polishing of semiconductor wafers by adjustment of PH of deionized water
JP2001089548A (en) 1999-09-22 2001-04-03 Toyo Tire & Rubber Co Ltd Method for producing polyurethane foam and polishing sheet
JP2002009026A (en) 2000-06-21 2002-01-11 Toray Ind Inc Polishing pad and polishing device and method using it
JP2002172555A (en) 2000-12-05 2002-06-18 Teijin Ltd Base cloth for polishing and polishing method
JP2003170347A (en) 2001-12-06 2003-06-17 Teijin Ltd Polishing ground fabric and polishing method
JP2003201676A (en) 2001-12-28 2003-07-18 Dainichiseika Color & Chem Mfg Co Ltd Fibrous sheet and method of producing the same
JP2004130395A (en) 2002-10-08 2004-04-30 Toray Ind Inc Abrasive cloth for glass texture working, and method of manufacturing magnetic recording medium using the same
JP2004311731A (en) 2003-04-08 2004-11-04 Hitachi Chem Co Ltd Polishing pad and method for polishing article using the same
JP2005518286A (en) 2001-10-29 2005-06-23 トーマス・ウエスト,インコーポレイテッド CMP and substrate polishing pad
JP2005212055A (en) 2004-01-30 2005-08-11 Kanebo Ltd Polishing cloth for nonwoven fabric base, and its fablication method
JP2005334997A (en) 2004-05-25 2005-12-08 Asahi Kasei Fibers Corp Nonwoven fabric for polishing pad, and polishing pad
JP2006036909A (en) * 2004-07-27 2006-02-09 Nicca Chemical Co Ltd Method for producing polishing sheet and polishing sheet
JP2007054910A (en) 2005-08-24 2007-03-08 Toray Ind Inc Abrasive cloth
JP2008207323A (en) 2007-02-01 2008-09-11 Kuraray Co Ltd Polishing pad and manufacturing method for the polishing pad
JP2010058170A (en) * 2008-08-08 2010-03-18 Kuraray Co Ltd Polishing pad
JP2011200984A (en) 2010-03-26 2011-10-13 Toray Ind Inc Polishing pad

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4356056B2 (en) * 2002-05-15 2009-11-04 東レ株式会社 Resin impregnated body, polishing pad, polishing apparatus and polishing method using the polishing pad
US7829486B2 (en) * 2003-02-06 2010-11-09 Kuraray Co., Ltd. Stretchable leather-like sheet substrate and process for producing same
TWI432285B (en) * 2007-02-01 2014-04-01 Kuraray Co Abrasive pad and process for manufacturing abrasive pad
KR100943244B1 (en) * 2007-12-28 2010-02-18 대원화성 주식회사 A polishing polyurethane pad and fabrication method theirof
JP2009241184A (en) * 2008-03-31 2009-10-22 Kuraray Co Ltd Polishing pad and polishing method using the same

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03234475A (en) 1990-02-08 1991-10-18 Kanebo Ltd Abrasive cloth
JPH10128674A (en) 1996-10-28 1998-05-19 Rooder Nitta Kk Polishing pad
JPH10225864A (en) 1997-02-17 1998-08-25 Sony Corp Polishing pad and manufacture thereof and polishing method of wafer using its
JPH1199479A (en) 1997-09-30 1999-04-13 Teijin Ltd Polishing pad
JPH11322878A (en) 1998-05-13 1999-11-26 Dainippon Ink & Chem Inc Production of foamed polyurethane molded product, urethane resin composition for producing the same and abrasive pad using the same
JP2000178374A (en) 1998-12-15 2000-06-27 Toyo Tire & Rubber Co Ltd Production of polyurethane foam and polishing sheet
JP2000248034A (en) 1999-03-02 2000-09-12 Mitsubishi Chemicals Corp Polyurethane-based resin composition for abrasive material and foam from the composition
US6130163A (en) * 1999-06-03 2000-10-10 Promos Technologies, Inc. Stabilization of slurry used in chemical mechanical polishing of semiconductor wafers by adjustment of PH of deionized water
JP2001089548A (en) 1999-09-22 2001-04-03 Toyo Tire & Rubber Co Ltd Method for producing polyurethane foam and polishing sheet
JP2002009026A (en) 2000-06-21 2002-01-11 Toray Ind Inc Polishing pad and polishing device and method using it
JP2002172555A (en) 2000-12-05 2002-06-18 Teijin Ltd Base cloth for polishing and polishing method
JP2005518286A (en) 2001-10-29 2005-06-23 トーマス・ウエスト,インコーポレイテッド CMP and substrate polishing pad
JP2003170347A (en) 2001-12-06 2003-06-17 Teijin Ltd Polishing ground fabric and polishing method
JP2003201676A (en) 2001-12-28 2003-07-18 Dainichiseika Color & Chem Mfg Co Ltd Fibrous sheet and method of producing the same
JP2004130395A (en) 2002-10-08 2004-04-30 Toray Ind Inc Abrasive cloth for glass texture working, and method of manufacturing magnetic recording medium using the same
JP2004311731A (en) 2003-04-08 2004-11-04 Hitachi Chem Co Ltd Polishing pad and method for polishing article using the same
JP2005212055A (en) 2004-01-30 2005-08-11 Kanebo Ltd Polishing cloth for nonwoven fabric base, and its fablication method
JP2005334997A (en) 2004-05-25 2005-12-08 Asahi Kasei Fibers Corp Nonwoven fabric for polishing pad, and polishing pad
JP2006036909A (en) * 2004-07-27 2006-02-09 Nicca Chemical Co Ltd Method for producing polishing sheet and polishing sheet
JP2007054910A (en) 2005-08-24 2007-03-08 Toray Ind Inc Abrasive cloth
JP2008207323A (en) 2007-02-01 2008-09-11 Kuraray Co Ltd Polishing pad and manufacturing method for the polishing pad
JP2010058170A (en) * 2008-08-08 2010-03-18 Kuraray Co Ltd Polishing pad
JP2011200984A (en) 2010-03-26 2011-10-13 Toray Ind Inc Polishing pad

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"CMP No Saiensu (The Science of CMP", 20 August 1997, SCIENCE FORUM INC., pages: 113 - 119

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021897A1 (en) * 2017-07-25 2019-01-31 ニッタ・ハース株式会社 Polishing cloth
JP2019025549A (en) * 2017-07-25 2019-02-21 ニッタ・ハース株式会社 Polishing cloth
JP2020104197A (en) * 2018-12-27 2020-07-09 株式会社クラレ Fiber composite polishing pad and polishing method for glass-based substrate using the same
JP7111609B2 (en) 2018-12-27 2022-08-02 株式会社クラレ Fiber composite polishing pad and method for polishing glass-based substrate using the same
WO2021131590A1 (en) * 2019-12-26 2021-07-01 株式会社クラレ Full-grain-leather-like sheet

Also Published As

Publication number Publication date
TW201440956A (en) 2014-11-01
JP6220378B2 (en) 2017-10-25
EP2957672B1 (en) 2018-05-02
KR102136441B1 (en) 2020-07-21
CN105008614B (en) 2017-06-13
TWI607832B (en) 2017-12-11
JPWO2014125797A1 (en) 2017-02-02
EP2957672A1 (en) 2015-12-23
EP2957672A4 (en) 2016-07-27
KR20150116876A (en) 2015-10-16
CN105008614A (en) 2015-10-28
US20160002835A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
JP6220378B2 (en) Hard sheet and method for manufacturing hard sheet
JP5411862B2 (en) Polishing pad and polishing pad manufacturing method
JP5204502B2 (en) Polishing pad and polishing pad manufacturing method
JP5289787B2 (en) Polishing pad and polishing pad manufacturing method
KR101146966B1 (en) Polishing pad and process for production of polishing pad
JP5629266B2 (en) Polishing pad and chemical mechanical polishing method
JP5143518B2 (en) Fiber composite polishing pad
JP6180873B2 (en) Fiber composite sheet, polishing pad and manufacturing method thereof
JP7111609B2 (en) Fiber composite polishing pad and method for polishing glass-based substrate using the same
JP2010064153A (en) Polishing pad
JP5356149B2 (en) Polishing pad surface processing method and polishing pad obtained thereby
JP5522929B2 (en) Polishing pad and polishing method
JP5551022B2 (en) Wrapping method of workpiece
JP5789557B2 (en) Method for polishing glass-based substrate
JP5502661B2 (en) Compound semiconductor wafer polishing method
JP2010058170A (en) Polishing pad
JP5415700B2 (en) Polishing pad and polishing pad manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14752242

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500137

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14767115

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014752242

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157023576

Country of ref document: KR

Kind code of ref document: A