WO2014122904A1 - Cell system - Google Patents

Cell system Download PDF

Info

Publication number
WO2014122904A1
WO2014122904A1 PCT/JP2014/000509 JP2014000509W WO2014122904A1 WO 2014122904 A1 WO2014122904 A1 WO 2014122904A1 JP 2014000509 W JP2014000509 W JP 2014000509W WO 2014122904 A1 WO2014122904 A1 WO 2014122904A1
Authority
WO
WIPO (PCT)
Prior art keywords
contactor
electrode side
side contactor
secondary battery
battery
Prior art date
Application number
PCT/JP2014/000509
Other languages
French (fr)
Japanese (ja)
Inventor
誠人 西川
公彦 古川
省吾 平原
横谷 和展
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2014560672A priority Critical patent/JP6279493B2/en
Publication of WO2014122904A1 publication Critical patent/WO2014122904A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6553Terminals or leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery system.
  • HV hybrid vehicles
  • PSV plug-in hybrid vehicles
  • EV electric vehicles
  • the in-vehicle secondary battery has a high output and requires input / output of a large current exceeding 100 A. Therefore, the secondary battery needs to be cooled.
  • a vehicle having an EV mode is equipped with a high-capacity secondary battery, so that heat generated by the secondary battery is likely to accumulate, and an excellent cooling capacity is required.
  • the cooling of the secondary battery is roughly classified into an air cooling type and a liquid cooling type (for example, refer to Patent Documents 1 and 2).
  • a flow path such as a coolant pipe is arranged in a battery case in which a secondary battery is accommodated, and a cooling liquid such as a coolant liquid circulates in the flow path.
  • a cooling structure for cooling the cooling liquid a configuration using various cooling devices such as a heat radiating fin and a compressor can be employed.
  • the battery is cooled by transferring the heat of the secondary battery to the cooling liquid flowing in the flow path.
  • the cooling efficiency of the secondary battery can be improved as the number of members interposed between the secondary battery and the flow path is smaller. Therefore, it is necessary to arrange the flow path close to the secondary battery, and the flow path and the secondary battery are often arranged in the battery case.
  • a battery case that houses a vehicle-mounted secondary battery may be a waterproof case or a sealed case to prevent water from entering or dust from entering from the outside.
  • the possibility that the secondary battery or the junction box in the battery case is immersed further increases.
  • a typical power supply device adopting an air cooling type arranges the secondary battery in the battery case in a state where a gap is formed so that the cooling air flows along the surface of the secondary battery.
  • a duct is formed that communicates with a gap formed along the surface of the secondary battery, and the cooling air is forced along the surface of the secondary battery by forcibly blowing air using a cooling fan. Configured to flow.
  • the air-cooled power supply device has an advantage that it can be manufactured at low cost, and the configuration of the battery case is often simplified. For this reason, it may not be possible to completely prevent water from entering or dust from entering from the outside, and the secondary battery or junction box in the battery case may be immersed.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a technique for ensuring safety against liquid intrusion into a battery case.
  • a battery system is a battery system including an external positive electrode terminal and an external negative electrode terminal, the secondary battery having a positive electrode terminal and a negative electrode terminal, and the positive electrode of the secondary battery.
  • a positive contactor inserted in a current path connecting the terminal and the external positive terminal, a negative contactor inserted in a current path connecting the negative electrode terminal of the secondary battery and the external negative terminal, a secondary battery, and a positive contactor A negative electrode side contactor and a case in which the flow path is accommodated.
  • the secondary battery, the positive electrode side contactor, and the negative electrode side contactor are installed such that at least one of the positive electrode side contactor and the negative electrode side contactor is disposed at a higher position than the secondary battery in a predetermined installation state of the battery system.
  • the object of the present invention is to improve safety while suppressing a decrease in cooling efficiency of the liquid-cooled battery system.
  • FIG. 1 is a schematic diagram for explaining the structure of a battery system 100 according to an embodiment of the present invention.
  • FIG. 1A shows a diagram viewed from above in a prescribed installation state
  • FIG. 1B shows a diagram seen from the side in a prescribed installation state. Specifically, the figure seen from the A direction of Fig.1 (a) is shown.
  • the battery system 100 is mounted on HV, PHV, and EV, and is used as a power supply device for supplying power to the traveling motor.
  • the battery system 100 includes a secondary battery 10, a cooling mechanism, and a junction box 50, which are housed in one battery case.
  • the battery case may be a waterproof case or a sealed case in order to prevent water from entering and dust from entering.
  • the battery case may be constituted by a case different from the vehicle-side frame, or the battery case may be constituted by the vehicle-side frame.
  • the battery system 100 can be configured such that the battery case containing the secondary battery 10, the cooling mechanism, and the junction box 50 is fixed to the vehicle-side frame, or the battery case is configured by the vehicle-side frame.
  • the secondary battery 10 is constituted by a series connection or a series-parallel connection of a plurality of battery cells.
  • a nickel hydride battery, a lithium ion battery, or the like can be used for the battery cell.
  • the secondary battery 10 is formed by serial connection of eight cell stacks 10a to 10h, and outputs a high voltage of 300V or more.
  • Each cell stack is formed by serial connection of a plurality of battery cells.
  • the cell stack 10a and the cell stack 10b are disposed with the cooling plate 20a interposed therebetween.
  • the cell stack 10c and the cell stack 10d are disposed with the cooling plate 20b interposed therebetween, and the cell stack 10e and the cell stack 10f have the cooling plate 20c interposed therebetween.
  • the cell stack 10g and the cell stack 10h are arranged with the cooling plate 20d interposed therebetween.
  • the cooling plates 20a to 20d are configured to be in thermal contact with the cell stacks 10a to 10h through an insulating heat conductive sheet (not shown). Since the outer can of the battery cell constituting the cell stack is made of aluminum or an aluminum alloy, and the cooling plate is also made of metal in order to increase thermal conductivity, the cooling plates 20a to 20d and the cell stacks 10a to 10h are It is necessary to insulate via an insulating heat conductive sheet or the like. Moreover, the heat conductive sheet has the objective of improving the contact property of a cell stack and a cooling plate. Note that when the outer can of the battery cell is formed of an insulating material, the heat conductive sheet is not necessarily used. As the number of members interposed between the cooling plate and the cell stack decreases, the cooling efficiency of the secondary battery can be improved.
  • a liquid cooling method is used as a cooling method.
  • a coolant pipe 30 is disposed as a flow path for flowing a cooling liquid (hereinafter referred to as a coolant liquid) for cooling the secondary battery 10.
  • the coolant pipe 30 for injection connected to the coolant inlet 30i and the coolant pipe 30 for discharge connected to the coolant outlet 30o are connected to the respective cooling plates 20a to 20d.
  • the coolant liquid is injected from the coolant inlet 30i, and the injected coolant liquid circulates in the coolant pipe 30 and the cooling plates 20a to 20d, and is discharged from the coolant outlet 30o.
  • the junction box 50 includes a positive contactor RYp and a negative contactor RYm.
  • the junction box 50 is covered with a resin case, for example.
  • the plus side contactor RYp and the minus side contactor RYm are constituted by large relays.
  • the plus side contactor RYp and the minus side contactor RYm are provided in a current path between the secondary battery 10 and a vehicle side load (specifically, a driving motor, an inverter, a precharge capacitor) (not shown). Used to electrically shut off.
  • the positive contactor RYp is inserted on the positive wiring 40p that connects the positive terminal of the secondary battery 10 and the external positive terminal in the high voltage (HV) interface T1.
  • HV high voltage
  • the negative contactor RYm is inserted on a negative wiring 40m that connects the negative terminal of the secondary battery 10 and the external negative terminal in the high voltage interface T1.
  • the high voltage interface T1 is an interface for energizing the battery system 100 with the vehicle side.
  • FIG. 2 is a diagram for explaining a circuit configuration of the battery system 100 according to the embodiment of the present invention.
  • Battery system 100 according to the embodiment is controlled by controller 200.
  • FIG. 2 shows the circuit elements in the junction box 50 in more detail.
  • a current sensor CT, a positive contactor RYp, and a fuse F1 are inserted between the positive terminal of the secondary battery 10 and the external positive terminal in the high voltage interface T1.
  • a negative contactor RYm is inserted between the negative terminal of the secondary battery 10 and the external negative terminal in the high voltage interface T1.
  • the current sensor CT detects the value of the current flowing through the plus wiring and outputs it to the controller 200.
  • a shunt resistor or a Hall element can be used as the current sensor CT.
  • the fuse F1 is blown when a large current of a specified value or more flows to disconnect the secondary battery 10 and the vehicle-side load.
  • a series circuit of a current limiting resistor R1 and a precharge contactor is connected in parallel with the plus side contactor RYp.
  • the controller 200 first closes the precharge contactor RYc before closing the plus side contactor RYp and the minus side contactor RYm.
  • charges are stored in a precharge capacitor (not shown) on the vehicle side.
  • the controller 200 closes the positive contactor RYp and the negative contactor RYm.
  • the controller 200 opens the plus-side contactor RYp and the minus-side contactor RYm so that the secondary battery 10 and the vehicle-side load Disconnect.
  • an abnormal current is detected by the current sensor CT
  • an abnormal voltage is detected by a voltage detection sensor (not shown)
  • an abnormal temperature is detected by a temperature sensor (not shown)
  • a leakage is detected by the leakage sensor that does not, or when a power supply stop instruction is received from the ECU on the vehicle side.
  • the battery case that houses the secondary battery 10 is generated in a waterproof specification. Thereby, it is possible to prevent water from entering from the outside. However, there is a possibility that the battery case may be submerged from the inside due to cracks in the coolant pipe 30, liquid leakage from a gap in the connection portion of the coolant pipe 30, and the like. As a result, the junction box 50 is immersed, and the plus-side contactor RYp and the minus-side contactor RYm enter an unintended passage state, and the high-voltage power supply line may be in liquid junction.
  • the plus-side contactor RYp and the minus-side contactor RYm are arranged at a higher position than the secondary battery 10 in the prescribed installation state of the battery system 100. More specifically, the junction box itself does not necessarily need to be arranged at a position higher than the secondary battery 10, and it is important that the plus side contactor RYp and the minus side contactor RYm be arranged at a position higher than the secondary battery 10. It is. According to this configuration, even if the junction box is immersed, if both the plus side contactor RYp and the minus side contactor RYm are not immersed, the liquid junction of the high voltage power supply line in the junction box can be prevented.
  • the junction box when the junction box is immersed, a liquid junction of the high-voltage power supply line is generated, but by immediately opening the positive-side contactor RYp or the negative-side contactor RYm, the high-voltage power supply line has a high voltage. Is not applied, and the liquid junction state of the high-voltage power supply line can be stopped.
  • the short circuit of the circuit due to the liquid junction suppresses the temperature rise to some extent until the liquid causing the liquid junction evaporates. Therefore, even if a liquid junction occurs, the positive contactor RYp or the negative contactor RYm is immediately opened. By doing so, the current path between the secondary battery and the high-voltage power supply line can be electrically cut off, and the power supply device can be safely stopped.
  • FIG. 3 is a flowchart for explaining control of the contactor in battery system 100 according to the embodiment of the present invention.
  • the controller 200 When the battery system 100 is powered on (Y in S10), the controller 200 first closes the precharge contactor RYc, and then closes the positive contactor RYp and the negative contactor RYm (S11).
  • the controller 200 opens the positive contactor RYp, the negative contactor RYm, and the precharge contactor RYc (S14). When they are opened, the controller 200 transmits an alert signal indicating power-off to the ECU (S15).
  • step S14 and step S15 are skipped.
  • the controller 200 opens the plus-side contactor RYp, the minus-side contactor RYm, and the precharge contactor RYc (S17).
  • FIG. 4 is a schematic diagram for explaining a contactor arrangement example 1 in the battery system 100 according to the embodiment of the present invention.
  • FIG. 4A shows a diagram viewed from above in a prescribed installation state
  • FIG. 4B shows a diagram seen from the side in a prescribed installation state. Specifically, the figure seen from the A direction of Fig.4 (a) is shown.
  • the plus-side contactor RYp and the minus-side contactor RYm are arranged at a higher position than the secondary battery 10 in the prescribed installation state of the battery system 100 as shown in FIGS. 1 (a) and 1 (b).
  • the precharge contactor RYc is omitted, but the precharge contactor RYc is disposed at a position adjacent to the plus-side contactor RYp.
  • FIG. 5 is a schematic diagram showing a state in which the battery system 100 of FIG. As shown in FIG. 5, when the battery system 100 rolls over and leaks from the coolant pipe 30, the junction box 50 is immersed first.
  • the liquid junction of the high-voltage power supply line located in the junction box is prevented when the vehicle rolls over. Is difficult.
  • the rollover state may continue for a long time, and the junction box 50 may be immersed even with a small amount of liquid leakage.
  • the battery system according to the embodiment of the present invention shown in FIG. 6 to FIG. 8 is an embodiment suitable particularly when the rollover of the vehicle is taken into consideration.
  • FIG. 6 is a schematic diagram for explaining a contactor arrangement example 2 in the battery system 100 according to the embodiment of the present invention.
  • FIG. 6A shows a diagram viewed from above in a prescribed installation state
  • FIG. 6B shows a diagram seen from the side in a prescribed installation state.
  • one of the positive side contactor RYp and the negative side contactor RYm is arranged at a position higher than the secondary battery 10 in the prescribed installation state of the battery system 100, and the other is set to be approximately the same height as the secondary battery 10. Place it at the position.
  • the contactor to which the precharge contactor RYc is connected in parallel is arranged at a position higher than the secondary battery 10.
  • the precharge contactor RYc is connected in parallel
  • the positive contactor RYp is arranged at a higher position than the secondary battery 10.
  • the power supply line can be in liquid junction when the battery system 100 as shown in FIG. 5 rolls over. Can be lowered. If either the plus-side contactor RYp or the minus-side contactor RYm is not immersed, the state where a high voltage is applied to the high-voltage power supply line in the junction box is stopped by opening the non-immersed contactor. It is possible to prevent liquid junction even if the power supply line is immersed.
  • the junction box 50 or the contactor all waterproof, but this increases the cost.
  • the arrangement example 2 while suppressing an increase in cost, the possibility of liquid junction due to internal water immersion can be reduced, and safety can be improved.
  • the design change is made when the arrangement example 1 is changed to the arrangement example 2 by moving the contactor to which the precharge contactor RYc is not connected in parallel downward. It can be kept light.
  • the minus-side contactor RYm may be disposed at a position higher than the secondary battery 10. Specifically, the minus-side contactor RYm is arranged at a position higher than the secondary battery 10, and the plus-side contactor RYp is arranged at a position lower than the minus-side contactor RYm.
  • FIG. 7 is a schematic diagram for explaining a contactor arrangement example 3 in the battery system 100 according to the embodiment of the present invention.
  • Fig.7 (a) shows the figure seen from the top in a regular installation state
  • FIG.7 (b) shows the figure seen from the side in a regular installation state.
  • a part of the plus wiring 40p and the minus wiring 40m is omitted. The same applies to FIG. 8 described later.
  • the positive contactor RYp and the negative contactor RYm are arranged at a higher position than the secondary battery 10 in the prescribed installation state of the battery system 100.
  • one of the plus side contactor RYp and the minus side contactor RYm is waterproof.
  • a concave waterproof wall 55 is placed over the minus-side contactor RYm to which the precharge contactor RYc is not connected in parallel.
  • the waterproof wall 55 covers the bottom and side surfaces of the negative contactor RYm, and exhibits a waterproof effect.
  • the lower surface of the negative contactor RYm is opened, but the lower surface serves as a wiring port.
  • the lower surface is closed and the negative contactor RYm is sealed, it is necessary to separately open a wiring port on either surface, which increases costs.
  • the arrangement example 3 by making one of the plus side contactor RYp and the minus side contactor RYm waterproof, it is possible to reduce the liquid junction due to internal flooding at a lower cost than when both are made waterproof. realizable. Further, by waterproofing the contactor having a smaller circuit scale, to which the precharge contactor RYc is not connected in parallel, the size and installation cost of the waterproof wall 55 can be suppressed.
  • FIG. 8 is a schematic diagram for explaining a contactor arrangement example 4 in the battery system 100 according to the embodiment of the present invention.
  • FIG. 8A shows a view seen from above in a prescribed installation state
  • FIG. 8B shows a view seen from the side in a prescribed installation state.
  • at least one of the plus side contactor RYp and the minus side contactor RYm is arranged at a higher position than the secondary battery 10 in the prescribed installation state of the battery system 100. Both of them may be arranged at a high position as in arrangement examples 1 and 3, or only one of them may be arranged at a high position as in arrangement example 2.
  • 8A and 8B illustrate an example in which both are arranged at a high position.
  • at least one of the plus-side contactor RYp and the minus-side contactor RYm arranged at a position higher than the secondary battery 10 is arranged at the central portion in the battery case.
  • the arrangement example 4 not the complete rollover as shown in FIG. 5 but the internal state that may occur when the vehicle and the battery system 100 are stationary for a long time in a state biased in any direction. It is possible to realize liquid junction countermeasures by flooding. For example, it may occur that the right side wall or the left side surface of the vehicle becomes a bottom surface due to an accident or a driving mistake. In some cases, the vehicle may ride on obstacles with the front wheels floating. In addition, a part of the vehicle body may be fitted in a groove or the like with the front facing.
  • the installation positions of the plus side contactor RYp and the minus side contactor RYm are avoided from being easily accumulated in the coolant liquid. it can. Further, by using in combination with the arrangement example 2 or the arrangement example 3, it is possible to realize a liquid junction countermeasure against a complete rollover state.
  • FIG. 9 is a flowchart for explaining contactor control in the battery system 100 according to the embodiment of the present invention in consideration of vehicle rollover.
  • the flow of detection of leakage by the leakage sensor is the same as that in FIG.
  • the ECU detects the vehicle rollover from the output value of a gyro sensor (not shown).
  • the ECU notifies the controller 200 of a power-off instruction.
  • the controller 200 receives a power-off instruction based on vehicle rollover from the ECU (Y in S13)
  • the controller 200 opens the plus-side contactor RYp, the minus-side contactor RYm, and the precharge contactor RYc (S14). When they are opened, the controller 200 transmits an alert signal indicating power-off to the ECU (S15).
  • Steps S14 and S15 are skipped.
  • the controller 200 opens the plus-side contactor RYp, the minus-side contactor RYm, and the precharge contactor RYc (S17).
  • the case where the liquid cooling method is used as the cooling method has been described.
  • an air cooling method can also be used.
  • the air-cooled power supply device has an advantage that it can be manufactured at low cost, and the configuration of the battery case is often simplified. For this reason, it may not be possible to completely prevent water from entering or dust from entering from outside. Even when the coolant pipe is not disposed in the battery case, there is a possibility that the secondary battery or the junction box in the battery case may be immersed in the case where water is generated in the battery case.
  • 100 battery system 10 secondary battery, 10a, 10b, 10c, 10d, 10e, 10f, 10g, 10h cell stack, 20a, 20b, 20c, 20d cold plate, 30 coolant pipe, 30i coolant inlet, 30o coolant outlet, 40p Positive wiring, 40m negative wiring, 50 junction box, CT current sensor, R1 current limiting resistor, RYp positive side contactor, RYm negative side contactor, RYc precharge contactor, F1 fuse, T1 high voltage interface, 200 controller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

Through the present invention, the safety of a cell system is improved, while mitigating increase in cost. In a secondary cell, a positive contact (RYp) and a negative contact (RYm) are housed in the same battery case. According to a prescribed arrangement of the cell system (100), the positive contact (RYp) and/or the negative contact (RYm) is arranged at a higher position than the secondary cell.

Description

電池システムBattery system
 本発明は、電池システムに関する。 The present invention relates to a battery system.
 近年、ハイブリッド車(HV)、プラグインハイブリッド車(PHV)、電気自動車(EV)が普及してきている。これらの車にはキーデバイスとして二次電池が搭載される。車載用二次電池としては主に、ニッケル水素電池およびリチウムイオン電池が普及している。今後、エネルギー密度が高いリチウムイオン電池の普及が加速すると予想される。 In recent years, hybrid vehicles (HV), plug-in hybrid vehicles (PHV), and electric vehicles (EV) have become widespread. These cars are equipped with secondary batteries as key devices. Nickel metal hydride batteries and lithium ion batteries are mainly used as in-vehicle secondary batteries. In the future, the spread of lithium ion batteries with high energy density is expected to accelerate.
 車載用二次電池は高出力であり、100Aを超える大電流の入出力が必要となるため、二次電池の冷却が必要となる。特にEVモードがある車両では高容量の二次電池が搭載されるため、二次電池の発熱が蓄積しやすく、優れた冷却能力が必要となる。二次電池の冷却には大別すると空冷式と液冷式がある(例えば、特許文献1、2参照)。 The in-vehicle secondary battery has a high output and requires input / output of a large current exceeding 100 A. Therefore, the secondary battery needs to be cooled. In particular, a vehicle having an EV mode is equipped with a high-capacity secondary battery, so that heat generated by the secondary battery is likely to accumulate, and an excellent cooling capacity is required. The cooling of the secondary battery is roughly classified into an air cooling type and a liquid cooling type (for example, refer to Patent Documents 1 and 2).
特開2011-100619号公報JP 2011-1000061 A 特開2009-134936号公報JP 2009-134936 A
 液冷式を採用した代表的な電源装置は、二次電池が収納されるバッテリケース内に、クーラントパイプ等の流路が配置され、流路内をクーラント液等の冷却用液体が循環するように構成される。冷却用液体を冷却する冷却構造としては、放熱フィンやコンプレッサ等の種々の冷却装置を用いた構成が採用できる。二次電池の熱がこの流路内を流れる冷却用液体へ伝熱されることで、電池が冷却される。このような構成では、二次電池と流路との間に介在する部材が少ないほど、二次電池の冷却効率を向上させることができる。そのため、流路は二次電池に近接して配置する必要があり、流路と二次電池とがバッテリケース内に配置されることが多い。 In a typical power supply device adopting a liquid cooling system, a flow path such as a coolant pipe is arranged in a battery case in which a secondary battery is accommodated, and a cooling liquid such as a coolant liquid circulates in the flow path. Configured. As a cooling structure for cooling the cooling liquid, a configuration using various cooling devices such as a heat radiating fin and a compressor can be employed. The battery is cooled by transferring the heat of the secondary battery to the cooling liquid flowing in the flow path. In such a configuration, the cooling efficiency of the secondary battery can be improved as the number of members interposed between the secondary battery and the flow path is smaller. Therefore, it is necessary to arrange the flow path close to the secondary battery, and the flow path and the secondary battery are often arranged in the battery case.
 しかしながら、この流路から、冷却媒体である液体が漏れた場合、バッテリケース内の二次電池やジャンクションボックスが浸漬する可能性がある。浸漬した液体により、二次電池の給電ラインが液絡する可能性がある。また、車載用二次電池を収容するバッテリケースは、外部からの浸水や塵埃の浸入を防ぐために防水ケースや密閉ケースとされることがある。特に、このような構造では、バッテリケース内に漏れた液体をバッテリケースから容易に排出することができないため、バッテリケース内の二次電池やジャンクションボックスが浸漬する可能性がさらに高まる。 However, when liquid as a cooling medium leaks from this flow path, there is a possibility that the secondary battery or junction box in the battery case may be immersed. There is a possibility that the power supply line of the secondary battery may be in liquid junction due to the immersed liquid. In addition, a battery case that houses a vehicle-mounted secondary battery may be a waterproof case or a sealed case to prevent water from entering or dust from entering from the outside. In particular, in such a structure, since the liquid leaking into the battery case cannot be easily discharged from the battery case, the possibility that the secondary battery or the junction box in the battery case is immersed further increases.
 一方、空冷式を採用した代表的な電源装置は、二次電池の表面に沿って冷却風が流れるように、隙間を形成した状態で二次電池をバッテリケース内に配置する。バッテリケース内には、二次電池の表面に沿って形成される隙間と連通するダクトが形成されており、冷却ファンを用いて強制送風することで、二次電池の表面に沿って冷却風が流れるように構成される。空冷式の電源装置は、低コストで製造することができるというメリットがあり、バッテリケースの構成も簡略化されることが多い。そのため、外部からの浸水や塵埃の浸入を完全に防ぐことはできない場合があり、バッテリケース内の二次電池やジャンクションボックスが浸漬する可能性がある。 On the other hand, a typical power supply device adopting an air cooling type arranges the secondary battery in the battery case in a state where a gap is formed so that the cooling air flows along the surface of the secondary battery. In the battery case, a duct is formed that communicates with a gap formed along the surface of the secondary battery, and the cooling air is forced along the surface of the secondary battery by forcibly blowing air using a cooling fan. Configured to flow. The air-cooled power supply device has an advantage that it can be manufactured at low cost, and the configuration of the battery case is often simplified. For this reason, it may not be possible to completely prevent water from entering or dust from entering from the outside, and the secondary battery or junction box in the battery case may be immersed.
 本発明はこうした状況に鑑みなされたものであり、その目的は、バッテリケース内への液体の浸入に対して、安全性を確保する技術を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a technique for ensuring safety against liquid intrusion into a battery case.
 上記課題を解決するために、本発明のある態様の電池システムは、外部正極端子及び外部負極端子を備える電池システムであって、正極端子及び負極端子を有する二次電池と、二次電池の正極端子と外部正極端子とを結ぶ電流経路に挿入された正極側コンタクタと、二次電池の負極端子と外部負極端子とを結ぶ電流経路に挿入された負極側コンタクタと、二次電池、正極側コンタクタ、負極側コンタクタ及び前記流路が収納されるケースと、を備える。本電池システムの規定の設置状態にて、正極側コンタクタ及び負極側コンタクタの少なくとも一方が二次電池より高い位置に配置されるよう二次電池、正極側コンタクタ及び負極側コンタクタが設置される。 In order to solve the above problems, a battery system according to an aspect of the present invention is a battery system including an external positive electrode terminal and an external negative electrode terminal, the secondary battery having a positive electrode terminal and a negative electrode terminal, and the positive electrode of the secondary battery. A positive contactor inserted in a current path connecting the terminal and the external positive terminal, a negative contactor inserted in a current path connecting the negative electrode terminal of the secondary battery and the external negative terminal, a secondary battery, and a positive contactor A negative electrode side contactor and a case in which the flow path is accommodated. The secondary battery, the positive electrode side contactor, and the negative electrode side contactor are installed such that at least one of the positive electrode side contactor and the negative electrode side contactor is disposed at a higher position than the secondary battery in a predetermined installation state of the battery system.
 本発明によれば、その目的は、液冷式のバッテリシステムの冷却効率の低下を抑制しつつ、安全性を向上させることができる。 According to the present invention, the object of the present invention is to improve safety while suppressing a decrease in cooling efficiency of the liquid-cooled battery system.
本発明の実施の形態に係る電池システムの構造を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the battery system which concerns on embodiment of this invention. 本発明の実施の形態に係る電池システムの回路構成を説明するための図である。It is a figure for demonstrating the circuit structure of the battery system which concerns on embodiment of this invention. 本発明の実施の形態に係る電池システムにおけるコンタクタの制御を説明するためのフローチャートである。It is a flowchart for demonstrating control of the contactor in the battery system which concerns on embodiment of this invention. 本発明の実施の形態に係る電池システムにおける、コンタクタの配置例1を説明するための模式図である。It is a schematic diagram for demonstrating the arrangement example 1 of a contactor in the battery system which concerns on embodiment of this invention. 図1(b)の電池システムが横転した状態を示す模式図である。It is a schematic diagram which shows the state which the battery system of FIG.1 (b) rolled over. 本発明の実施の形態に係る電池システムにおける、コンタクタの配置例2を説明するための模式図である。It is a schematic diagram for demonstrating the arrangement example 2 of a contactor in the battery system which concerns on embodiment of this invention. 本発明の実施の形態に係る電池システムにおける、コンタクタの配置例3を説明するための模式図である。It is a schematic diagram for demonstrating the arrangement example 3 of a contactor in the battery system which concerns on embodiment of this invention. 本発明の実施の形態に係る電池システムにおける、コンタクタの配置例4を説明するための模式図である。It is a schematic diagram for demonstrating the contactor arrangement example 4 in the battery system according to the embodiment of the present invention. 車両の横転を考慮した本発明の実施の形態に係る電池システムにおけるコンタクタの制御を説明するためのフローチャートである。It is a flowchart for demonstrating control of the contactor in the battery system which concerns on embodiment of this invention in consideration of rollover of a vehicle.
 図1は、本発明の実施の形態に係る電池システム100の構造を説明するための模式図である。図1(a)は、規定の設置状態にて上から見た図を示し、図1(b)は、規定の設置状態にて横から見た図を示す。具体的には図1(a)のA方向から見た図を示す。 FIG. 1 is a schematic diagram for explaining the structure of a battery system 100 according to an embodiment of the present invention. FIG. 1A shows a diagram viewed from above in a prescribed installation state, and FIG. 1B shows a diagram seen from the side in a prescribed installation state. Specifically, the figure seen from the A direction of Fig.1 (a) is shown.
 電池システム100はHV、PHV、EVに搭載され、走行用モータに給電するための電源装置として使用される。電池システム100は、二次電池10、冷却機構、ジャンクションボックス50を備え、それらは一つのバッテリケース内に収容される。バッテリケースは、外部からの浸水や塵埃の浸入を防ぐために防水ケースや密閉ケースとすることもできる。また、バッテリケースは、車両側のフレームとは別のケースで構成してもよいし、車両側のフレームでバッテリケースを構成してもよい。換言すると、電池システム100は、二次電池10、冷却機構、ジャンクションボックス50を収容したバッテリケースを車両側のフレームに固定する構成とすることもできるし、車両側のフレームでバッテリケースを構成し、車両側のフレームに、二次電池等を配置することで、バッテリケース内に二次電池10、冷却機構、ジャンクションボックス50を収容するように構成することもできる。 The battery system 100 is mounted on HV, PHV, and EV, and is used as a power supply device for supplying power to the traveling motor. The battery system 100 includes a secondary battery 10, a cooling mechanism, and a junction box 50, which are housed in one battery case. The battery case may be a waterproof case or a sealed case in order to prevent water from entering and dust from entering. Further, the battery case may be constituted by a case different from the vehicle-side frame, or the battery case may be constituted by the vehicle-side frame. In other words, the battery system 100 can be configured such that the battery case containing the secondary battery 10, the cooling mechanism, and the junction box 50 is fixed to the vehicle-side frame, or the battery case is configured by the vehicle-side frame. By arranging a secondary battery or the like in the vehicle-side frame, the secondary battery 10, the cooling mechanism, and the junction box 50 can be accommodated in the battery case.
 二次電池10は複数の電池セルの直列接続または直並列接続で構成される。例えば、電池セルにはニッケル水素電池、リチウムイオン電池などを用いることができる。本実施の形態では二次電池10は8個のセルスタック10a~10hの直列接続により形成され、300V以上の高電圧を出力する。各セルスタックは、複数の電池セルの直列接続により形成される。セルスタック10aとセルスタック10bは冷却板20aを挟んで配置され、同様にセルスタック10cとセルスタック10dは冷却板20bを挟んで配置され、セルスタック10eとセルスタック10fは冷却板20cを挟んで配置され、セルスタック10gとセルスタック10hは冷却板20dを挟んで配置される。 The secondary battery 10 is constituted by a series connection or a series-parallel connection of a plurality of battery cells. For example, a nickel hydride battery, a lithium ion battery, or the like can be used for the battery cell. In the present embodiment, the secondary battery 10 is formed by serial connection of eight cell stacks 10a to 10h, and outputs a high voltage of 300V or more. Each cell stack is formed by serial connection of a plurality of battery cells. The cell stack 10a and the cell stack 10b are disposed with the cooling plate 20a interposed therebetween. Similarly, the cell stack 10c and the cell stack 10d are disposed with the cooling plate 20b interposed therebetween, and the cell stack 10e and the cell stack 10f have the cooling plate 20c interposed therebetween. The cell stack 10g and the cell stack 10h are arranged with the cooling plate 20d interposed therebetween.
 冷却板20a~dは、図示しない絶縁性の熱伝導シートを介して、セルスタック10a~10hと熱的に接触するように構成されている。セルスタックを構成する電池セルの外装缶は、アルミニウムやアルミニウム合金で構成され、冷却板も熱伝導性を高めるために金属で形成されるため、冷却板20a~dとセルスタック10a~10hは、絶縁性の熱伝導シート等を介して絶縁する必要がある。また、熱伝導シートは、セルスタックと冷却板の接触性を向上させる目的も有している。なお、電池セルの外装缶が絶縁性材料で形成される場合は、必ずしも熱伝導シートを用いなくてもよい。冷却板とセルスタックの間に、介在する部材が少ないほど、二次電池の冷却効率を向上させることができる。 The cooling plates 20a to 20d are configured to be in thermal contact with the cell stacks 10a to 10h through an insulating heat conductive sheet (not shown). Since the outer can of the battery cell constituting the cell stack is made of aluminum or an aluminum alloy, and the cooling plate is also made of metal in order to increase thermal conductivity, the cooling plates 20a to 20d and the cell stacks 10a to 10h are It is necessary to insulate via an insulating heat conductive sheet or the like. Moreover, the heat conductive sheet has the objective of improving the contact property of a cell stack and a cooling plate. Note that when the outer can of the battery cell is formed of an insulating material, the heat conductive sheet is not necessarily used. As the number of members interposed between the cooling plate and the cell stack decreases, the cooling efficiency of the secondary battery can be improved.
 本実施の形態では冷却方式として液冷式を用いる。バッテリケース内には、二次電池10を冷却するための冷却用液体(以下、クーラント液という)を流す流路としてクーラントパイプ30が配設される。クーラントインレット30iに接続された注入用のクーラントパイプ30と、クーラントアウトレット30oに接続された排出用のクーラントパイプ30が、各冷却板20a~20dにそれぞれ接続される。クーラントインレット30iからクーラント液が注入され、注入されたクーラント液はクーラントパイプ30及び各冷却板20a~20d内を循環し、クーラントアウトレット30oから排出される。 In this embodiment, a liquid cooling method is used as a cooling method. In the battery case, a coolant pipe 30 is disposed as a flow path for flowing a cooling liquid (hereinafter referred to as a coolant liquid) for cooling the secondary battery 10. The coolant pipe 30 for injection connected to the coolant inlet 30i and the coolant pipe 30 for discharge connected to the coolant outlet 30o are connected to the respective cooling plates 20a to 20d. The coolant liquid is injected from the coolant inlet 30i, and the injected coolant liquid circulates in the coolant pipe 30 and the cooling plates 20a to 20d, and is discharged from the coolant outlet 30o.
 ジャンクションボックス50は、プラス側コンタクタRYp、マイナス側コンタクタRYmを含む。ジャンクションボックス50は例えば、樹脂ケースで覆われる。プラス側コンタクタRYp、マイナス側コンタクタRYmは大型のリレーで構成される。プラス側コンタクタRYp、マイナス側コンタクタRYmは二次電池10と、図示しない車両側の負荷(具体的には、走行用モータ、インバータ、プリチャージコンデンサ)との間の電流経路に設けられ、両者を電気的に遮断するために使用される。具体的には、プラス側コンタクタRYpは二次電池10のプラス端子と、高電圧(HV)インタフェースT1内の外部プラス端子を結ぶプラス配線40p上に挿入される。マイナス側コンタクタRYmは二次電池10のマイナス端子と、高電圧インタフェースT1内の外部マイナス端子を結ぶマイナス配線40m上に挿入される。高電圧インタフェースT1は電池システム100を、車両側と通電させるためのインタフェースである。 The junction box 50 includes a positive contactor RYp and a negative contactor RYm. The junction box 50 is covered with a resin case, for example. The plus side contactor RYp and the minus side contactor RYm are constituted by large relays. The plus side contactor RYp and the minus side contactor RYm are provided in a current path between the secondary battery 10 and a vehicle side load (specifically, a driving motor, an inverter, a precharge capacitor) (not shown). Used to electrically shut off. Specifically, the positive contactor RYp is inserted on the positive wiring 40p that connects the positive terminal of the secondary battery 10 and the external positive terminal in the high voltage (HV) interface T1. The negative contactor RYm is inserted on a negative wiring 40m that connects the negative terminal of the secondary battery 10 and the external negative terminal in the high voltage interface T1. The high voltage interface T1 is an interface for energizing the battery system 100 with the vehicle side.
 図2は、本発明の実施の形態に係る電池システム100の回路構成を説明するための図である。実施の形態に係る電池システム100はコントローラ200により制御される。図2ではジャンクションボックス50内の回路素子がより詳細に示されている。二次電池10のプラス端子と、高電圧インタフェースT1内の外部プラス端子の間には、電流センサCT、プラス側コンタクタRYp、ヒューズF1が挿入される。二次電池10のマイナス端子と、高電圧インタフェースT1内の外部マイナス端子の間には、マイナス側コンタクタRYmが挿入される。 FIG. 2 is a diagram for explaining a circuit configuration of the battery system 100 according to the embodiment of the present invention. Battery system 100 according to the embodiment is controlled by controller 200. FIG. 2 shows the circuit elements in the junction box 50 in more detail. A current sensor CT, a positive contactor RYp, and a fuse F1 are inserted between the positive terminal of the secondary battery 10 and the external positive terminal in the high voltage interface T1. A negative contactor RYm is inserted between the negative terminal of the secondary battery 10 and the external negative terminal in the high voltage interface T1.
 電流センサCTは、プラス配線に流れる電流の値を検出し、コントローラ200に出力する。電流センサCTには、シャント抵抗やホール素子を用いることができる。ヒューズF1は、規定値以上の大電流が流れると溶断し、二次電池10と車両側の負荷を切り離す。 The current sensor CT detects the value of the current flowing through the plus wiring and outputs it to the controller 200. As the current sensor CT, a shunt resistor or a Hall element can be used. The fuse F1 is blown when a large current of a specified value or more flows to disconnect the secondary battery 10 and the vehicle-side load.
 さらにプラス側コンタクタRYpと並列に、電流制限抵抗R1とプリチャージ用コンタクタの直列回路が接続される。二次電池10から車両側の負荷への通電を開始する際、コントローラ200は、プラス側コンタクタRYp及びマイナス側コンタクタRYmをクローズする前に、まずプリチャージ用コンタクタRYcをクローズする。これにより車両側の図示しないプリチャージコンデンサに電荷が蓄えられる。コントローラ200は、その後、プラス側コンタクタRYp及びマイナス側コンタクタRYmをクローズする。この制御手順により走行用モータへの突入電流を抑制できる。 Furthermore, a series circuit of a current limiting resistor R1 and a precharge contactor is connected in parallel with the plus side contactor RYp. When starting energization from the secondary battery 10 to the vehicle-side load, the controller 200 first closes the precharge contactor RYc before closing the plus side contactor RYp and the minus side contactor RYm. As a result, charges are stored in a precharge capacitor (not shown) on the vehicle side. Thereafter, the controller 200 closes the positive contactor RYp and the negative contactor RYm. By this control procedure, the inrush current to the traveling motor can be suppressed.
 コントローラ200は、二次電池10から車両側の負荷への給電を中止すべき事象が発生したとき、プラス側コンタクタRYp及びマイナス側コンタクタRYmをオープンして、二次電池10と車両側の負荷とを切り離す。給電を中止すべき事象としては例えば、電流センサCTにより異常電流が検出されたとき、図示しない電圧検出センサにより異常電圧が検出されたとき、図示しない温度センサにより異常温度が検出されたとき、図示しない漏電センサにより漏電が検出されたとき、車両側のECUから給電停止指示を受信したとき等が挙げられる。 When an event that should stop power supply from the secondary battery 10 to the vehicle-side load occurs, the controller 200 opens the plus-side contactor RYp and the minus-side contactor RYm so that the secondary battery 10 and the vehicle-side load Disconnect. For example, when an abnormal current is detected by the current sensor CT, an abnormal voltage is detected by a voltage detection sensor (not shown), or an abnormal temperature is detected by a temperature sensor (not shown) When a leakage is detected by the leakage sensor that does not, or when a power supply stop instruction is received from the ECU on the vehicle side.
 図1に戻る。二次電池10を収容しているバッテリケースは防水仕様で生成される。これにより外部からの浸水を防ぐことができる。しかしながらクーラントパイプ30の割れ、クーラントパイプ30の接続部の隙間からの液漏れ等により、バッテリケースが内部から浸水する可能性がある。これによりジャンクションボックス50が浸漬し、プラス側コンタクタRYp及びマイナス側コンタクタRYmが意図しない道通状態となり、高電圧の給電ラインが液絡する可能性がある。具体的には、コンタクタが導通状態となると、ジャンクションボックス内の高電圧の給電ラインに電圧が印加される状態となるため、ジャンクションボックス内に侵入した液体を介して、高電圧の給電ラインが液絡するおそれがある。 Return to Figure 1. The battery case that houses the secondary battery 10 is generated in a waterproof specification. Thereby, it is possible to prevent water from entering from the outside. However, there is a possibility that the battery case may be submerged from the inside due to cracks in the coolant pipe 30, liquid leakage from a gap in the connection portion of the coolant pipe 30, and the like. As a result, the junction box 50 is immersed, and the plus-side contactor RYp and the minus-side contactor RYm enter an unintended passage state, and the high-voltage power supply line may be in liquid junction. Specifically, when the contactor is in a conductive state, a voltage is applied to the high voltage power supply line in the junction box, so that the high voltage power supply line is liquidated via the liquid that has entered the junction box. There is a risk of entanglement.
 そこで図1(a)、(b)に示すように、電池システム100の規定の設置状態にて、プラス側コンタクタRYp及びマイナス側コンタクタRYmを、二次電池10より高い位置に配置する。詳細に説明すると、ジャンクションボックス自体は、必ずしも二次電池10より高い位置に配置する必要はなく、プラス側コンタクタRYp及びマイナス側コンタクタRYmが、二次電池10より高い位置に配置されることが重要である。この構成によれば、仮にジャンクションボックスが浸漬したとしても、プラス側コンタクタRYp及びマイナス側コンタクタRYmの両方が浸漬されなければ、ジャンクションボックス内の高電圧の給電ラインの液絡を防止できる。厳密には、ジャンクションボックスが浸漬されると、高電圧の給電ラインの液絡が生じるが、すぐにプラス側コンタクタRYpまたはマイナス側コンタクタRYmをオープンにすることで、高電圧の給電ラインに高電圧が印加されなくなり、高電圧の給電ラインの液絡状態を停止することができる。液絡による回路の短絡は、液絡を引き起こしている液体が蒸発するまでの間、ある程度温度上昇が抑制されるため、液絡が生じてもすぐにプラス側コンタクタRYpまたはマイナス側コンタクタRYmをオープンにすることで、二次電池と高電圧の給電ラインとの間の電流経路を電気的に遮断し、電源装置を安全に停止させることができる。 Therefore, as shown in FIGS. 1A and 1B, the plus-side contactor RYp and the minus-side contactor RYm are arranged at a higher position than the secondary battery 10 in the prescribed installation state of the battery system 100. More specifically, the junction box itself does not necessarily need to be arranged at a position higher than the secondary battery 10, and it is important that the plus side contactor RYp and the minus side contactor RYm be arranged at a position higher than the secondary battery 10. It is. According to this configuration, even if the junction box is immersed, if both the plus side contactor RYp and the minus side contactor RYm are not immersed, the liquid junction of the high voltage power supply line in the junction box can be prevented. Strictly speaking, when the junction box is immersed, a liquid junction of the high-voltage power supply line is generated, but by immediately opening the positive-side contactor RYp or the negative-side contactor RYm, the high-voltage power supply line has a high voltage. Is not applied, and the liquid junction state of the high-voltage power supply line can be stopped. The short circuit of the circuit due to the liquid junction suppresses the temperature rise to some extent until the liquid causing the liquid junction evaporates. Therefore, even if a liquid junction occurs, the positive contactor RYp or the negative contactor RYm is immediately opened. By doing so, the current path between the secondary battery and the high-voltage power supply line can be electrically cut off, and the power supply device can be safely stopped.
 図3は、本発明の実施の形態に係る電池システム100におけるコンタクタの制御を説明するためのフローチャートである。電池システム100の電源がオンされると(S10のY)、コントローラ200は、まずプリチャージ用コンタクタRYcをクローズし、次いでプラス側コンタクタRYp及びマイナス側コンタクタRYmをクローズする(S11)。クーラント液漏れが発生し、図示しない漏電センサにより漏電が検知されると(S12のY)、コントローラ200はプラス側コンタクタRYp、マイナス側コンタクタRYm、プリチャージ用コンタクタRYcをオープンする(S14)。それらがオープンするとコントローラ200は、電源遮断を示すアラート信号をECUに送信する(S15)。漏電が検知されない場合(S12のN)、ステップS14及びステップS15をスキップする。電池システム100の電源がオフされると(S16のY)、コントローラ200は、プラス側コンタクタRYp、マイナス側コンタクタRYm、プリチャージ用コンタクタRYcをオープンする(S17)。 FIG. 3 is a flowchart for explaining control of the contactor in battery system 100 according to the embodiment of the present invention. When the battery system 100 is powered on (Y in S10), the controller 200 first closes the precharge contactor RYc, and then closes the positive contactor RYp and the negative contactor RYm (S11). When leakage of coolant occurs and leakage is detected by a leakage sensor (not shown) (Y in S12), the controller 200 opens the positive contactor RYp, the negative contactor RYm, and the precharge contactor RYc (S14). When they are opened, the controller 200 transmits an alert signal indicating power-off to the ECU (S15). When the leakage is not detected (N in S12), step S14 and step S15 are skipped. When the power supply of the battery system 100 is turned off (Y in S16), the controller 200 opens the plus-side contactor RYp, the minus-side contactor RYm, and the precharge contactor RYc (S17).
 図4は、本発明の実施の形態に係る電池システム100における、コンタクタの配置例1を説明するための模式図である。図4(a)は、規定の設置状態にて上から見た図を示し、図4(b)は、規定の設置状態にて横から見た図を示す。具体的には図4(a)のA方向から見た図を示す。配置例1では、図1(a)、(b)に示したように電池システム100の規定の設置状態にて、プラス側コンタクタRYp及びマイナス側コンタクタRYmを、二次電池10より高い位置に配置する。なお図面を簡略化するため、プリチャージ用コンタクタRYcを省略して描いているが、プリチャージ用コンタクタRYcはプラス側コンタクタRYpに隣接した位置に配置される。 FIG. 4 is a schematic diagram for explaining a contactor arrangement example 1 in the battery system 100 according to the embodiment of the present invention. FIG. 4A shows a diagram viewed from above in a prescribed installation state, and FIG. 4B shows a diagram seen from the side in a prescribed installation state. Specifically, the figure seen from the A direction of Fig.4 (a) is shown. In the arrangement example 1, the plus-side contactor RYp and the minus-side contactor RYm are arranged at a higher position than the secondary battery 10 in the prescribed installation state of the battery system 100 as shown in FIGS. 1 (a) and 1 (b). To do. In order to simplify the drawing, the precharge contactor RYc is omitted, but the precharge contactor RYc is disposed at a position adjacent to the plus-side contactor RYp.
 図5は、図1(b)の電池システム100が横転した状態を示す模式図である。図5に示すように電池システム100が横転し、クーラントパイプ30から液漏れした場合、ジャンクションボックス50が先に浸漬することになる。図1や図4に示される実施の形態に係る電池システム100の構成では、図5に例示されるように、車両横転時にジャンクションボックス内に位置する高電圧の給電ラインの液絡を防止することが難しい。事故や運転ミスなどに車両が横転した場合、横転した状態が長時間継続する可能性があり、微量の液漏れであってもジャンクションボックス50が浸漬する可能性がある。図6乃至図8に示す本発明の実施の形態に係る電池システムは、特に車両の横転を考慮する場合に好適な実施形態である。 FIG. 5 is a schematic diagram showing a state in which the battery system 100 of FIG. As shown in FIG. 5, when the battery system 100 rolls over and leaks from the coolant pipe 30, the junction box 50 is immersed first. In the configuration of the battery system 100 according to the embodiment shown in FIG. 1 and FIG. 4, as illustrated in FIG. 5, the liquid junction of the high-voltage power supply line located in the junction box is prevented when the vehicle rolls over. Is difficult. When the vehicle rolls over due to an accident or a driving mistake, the rollover state may continue for a long time, and the junction box 50 may be immersed even with a small amount of liquid leakage. The battery system according to the embodiment of the present invention shown in FIG. 6 to FIG. 8 is an embodiment suitable particularly when the rollover of the vehicle is taken into consideration.
 図6は、本発明の実施の形態に係る電池システム100における、コンタクタの配置例2を説明するための模式図である。図6(a)は、規定の設置状態にて上から見た図を示し、図6(b)は、規定の設置状態にて横から見た図を示す。配置例2では、電池システム100の規定の設置状態にて、プラス側コンタクタRYp及びマイナス側コンタクタRYmの一方を、二次電池10より高い位置に配置し、他方を二次電池10と略同じ高さの位置に配置する。プラス側コンタクタRYp及びマイナス側コンタクタRYmの内、プリチャージ用コンタクタRYcが並列接続されているほうのコンタクタを、二次電池10より高い位置に配置している。本実施の形態ではプリチャージ用コンタクタRYcが並列接続されてプラス側コンタクタRYpを、二次電池10より高い位置に配置する。 FIG. 6 is a schematic diagram for explaining a contactor arrangement example 2 in the battery system 100 according to the embodiment of the present invention. FIG. 6A shows a diagram viewed from above in a prescribed installation state, and FIG. 6B shows a diagram seen from the side in a prescribed installation state. In the arrangement example 2, one of the positive side contactor RYp and the negative side contactor RYm is arranged at a position higher than the secondary battery 10 in the prescribed installation state of the battery system 100, and the other is set to be approximately the same height as the secondary battery 10. Place it at the position. Of the plus side contactor RYp and the minus side contactor RYm, the contactor to which the precharge contactor RYc is connected in parallel is arranged at a position higher than the secondary battery 10. In the present embodiment, the precharge contactor RYc is connected in parallel, and the positive contactor RYp is arranged at a higher position than the secondary battery 10.
 以上説明したように配置例2によれば、プラス側コンタクタRYpとマイナス側コンタクタRYmを上下にずらして配置することにより、図5に示すような電池システム100の横転時に給電ラインが液絡する可能性を低くできる。プラス側コンタクタRYp及びマイナス側コンタクタRYmのいずれかが浸漬しなければ、浸漬していないほうのコンタクタをオープンすることにより、ジャンクションボックス内の高電圧の給電ラインに高電圧が印加される状態を停止でき、給電ラインが浸漬されても液絡を阻止できる。 As described above, according to the arrangement example 2, by arranging the plus-side contactor RYp and the minus-side contactor RYm so as to be shifted up and down, the power supply line can be in liquid junction when the battery system 100 as shown in FIG. 5 rolls over. Can be lowered. If either the plus-side contactor RYp or the minus-side contactor RYm is not immersed, the state where a high voltage is applied to the high-voltage power supply line in the junction box is stopped by opening the non-immersed contactor. It is possible to prevent liquid junction even if the power supply line is immersed.
 ジャンクションボックス50自体またはコンタクタを全て防水仕様とすることも考えられるがコスト増になる。配置例2によればコスト増を抑えながら、内部浸水による液絡の可能性を低減でき、安全性を向上できる。また図4の配置例1と比較して、プリチャージ用コンタクタRYcが並列接続されていないほうのコンタクタを下に移動させることにより、配置例1から配置例2への変更の際、設計変更を軽微にとどめることができる。 It is possible to make the junction box 50 or the contactor all waterproof, but this increases the cost. According to the arrangement example 2, while suppressing an increase in cost, the possibility of liquid junction due to internal water immersion can be reduced, and safety can be improved. Compared with the arrangement example 1 of FIG. 4, the design change is made when the arrangement example 1 is changed to the arrangement example 2 by moving the contactor to which the precharge contactor RYc is not connected in parallel downward. It can be kept light.
 以上の説明では、プラス側コンタクタRYpを、二次電池10より高い位置に配置する構成について説明したが、マイナス側コンタクタRYmを二次電池10より高い位置に配置する構成とすることもできる。具体的には、マイナス側コンタクタRYmを二次電池10より高い位置に配置すると共に、プラス側コンタクタRYpを、マイナス側コンタクタRYmより低い位置に配置する。 In the above description, the configuration in which the plus-side contactor RYp is disposed at a position higher than the secondary battery 10 has been described. However, the minus-side contactor RYm may be disposed at a position higher than the secondary battery 10. Specifically, the minus-side contactor RYm is arranged at a position higher than the secondary battery 10, and the plus-side contactor RYp is arranged at a position lower than the minus-side contactor RYm.
 図7は、本発明の実施の形態に係る電池システム100における、コンタクタの配置例3を説明するための模式図である。図7(a)は、規定の設置状態にて上から見た図を示し、図7(b)は、規定の設置状態にて横から見た図を示す。なお図7では図面を簡素化するため、プラス配線40p、マイナス配線40mの一部を省略して描いている。後述する図8でも同様である。 FIG. 7 is a schematic diagram for explaining a contactor arrangement example 3 in the battery system 100 according to the embodiment of the present invention. Fig.7 (a) shows the figure seen from the top in a regular installation state, and FIG.7 (b) shows the figure seen from the side in a regular installation state. In FIG. 7, in order to simplify the drawing, a part of the plus wiring 40p and the minus wiring 40m is omitted. The same applies to FIG. 8 described later.
 配置例3では配置例1と同様に、電池システム100の規定の設置状態にて、プラス側コンタクタRYp及びマイナス側コンタクタRYmを、二次電池10より高い位置に配置する。配置例3ではプラス側コンタクタRYp及びマイナス側コンタクタRYmの一方を防水仕様とする。 In the third arrangement example, as in the first arrangement example, the positive contactor RYp and the negative contactor RYm are arranged at a higher position than the secondary battery 10 in the prescribed installation state of the battery system 100. In the arrangement example 3, one of the plus side contactor RYp and the minus side contactor RYm is waterproof.
 図7(a)、(b)では、プリチャージ用コンタクタRYcが並列接続されていないほうのマイナス側コンタクタRYmに、凹部状の防水壁55を上から被せている。電池システム100が横転すると、防水壁55がマイナス側コンタクタRYmの底面および側面を覆うことになり、防水作用を発揮する。規定の設置状態ではマイナス側コンタクタRYmの下面が開放されるが、その下面は配線口となる。下面を閉じてマイナス側コンタクタRYmを密閉すると、いずれかの面に配線口を別途に開ける必要が生じ、コスト増となる。 7 (a) and 7 (b), a concave waterproof wall 55 is placed over the minus-side contactor RYm to which the precharge contactor RYc is not connected in parallel. When the battery system 100 rolls over, the waterproof wall 55 covers the bottom and side surfaces of the negative contactor RYm, and exhibits a waterproof effect. In the specified installation state, the lower surface of the negative contactor RYm is opened, but the lower surface serves as a wiring port. When the lower surface is closed and the negative contactor RYm is sealed, it is necessary to separately open a wiring port on either surface, which increases costs.
 以上説明したように配置例3によれば、プラス側コンタクタRYp及びマイナス側コンタクタRYmの一方を防水仕様にすることにより、両方を防水仕様にする場合より低コストで、内部浸水による液絡対策を実現できる。またプリチャージ用コンタクタRYcが並列接続されていない、回路規模が小さいほうのコンタクタを防水することにより、防水壁55のサイズ及び設置コストを抑えることができる。 As described above, according to the arrangement example 3, by making one of the plus side contactor RYp and the minus side contactor RYm waterproof, it is possible to reduce the liquid junction due to internal flooding at a lower cost than when both are made waterproof. realizable. Further, by waterproofing the contactor having a smaller circuit scale, to which the precharge contactor RYc is not connected in parallel, the size and installation cost of the waterproof wall 55 can be suppressed.
 図8は、本発明の実施の形態に係る電池システム100における、コンタクタの配置例4を説明するための模式図である。図8(a)は、規定の設置状態にて上から見た図を示し、図8(b)は、規定の設置状態にて横から見た図を示す。配置例4では、電池システム100の規定の設置状態にて、プラス側コンタクタRYp及びマイナス側コンタクタRYmの少なくとも一方を、二次電池10より高い位置に配置する。配置例1、3のように両方を高い位置に配置してもよいし、配置例2のように一方のみを高い位置に配置してもよい。図8(a)、(b)では両方を高い位置に配置する例を描いている。配置例4では、二次電池10より高い位置に配置されるプラス側コンタクタRYp及びマイナス側コンタクタRYmの少なくとも一方を、バッテリケース内の中央部に配置する。 FIG. 8 is a schematic diagram for explaining a contactor arrangement example 4 in the battery system 100 according to the embodiment of the present invention. FIG. 8A shows a view seen from above in a prescribed installation state, and FIG. 8B shows a view seen from the side in a prescribed installation state. In the arrangement example 4, at least one of the plus side contactor RYp and the minus side contactor RYm is arranged at a higher position than the secondary battery 10 in the prescribed installation state of the battery system 100. Both of them may be arranged at a high position as in arrangement examples 1 and 3, or only one of them may be arranged at a high position as in arrangement example 2. 8A and 8B illustrate an example in which both are arranged at a high position. In Arrangement Example 4, at least one of the plus-side contactor RYp and the minus-side contactor RYm arranged at a position higher than the secondary battery 10 is arranged at the central portion in the battery case.
 以上説明したように配置例4によれば、図5に示すような完全な横転ではなく、車両および電池システム100がいずれかの方向に偏った状態で長期間静止することにより発生し得る、内部浸水による液絡対策を実現できる。例えば、事故や運転ミスにより車両の右側壁または左側面を底面として静止することが発生し得る。また前輪が浮いた状態で障害物に乗り上げることもある。また溝などに前のめりの状態で車体の一部が嵌ることもある。配置例4によれば、電池システム100がいずれの方向に偏った場合でも、バッテリケース内において、プラス側コンタクタRYp及びマイナス側コンタクタRYmの設置位置が、クーラント液が溜まりやすい位置になることを回避できる。また配置例2または配置例3と組み合わせて使用することにより、完全な横転状態に対する、液絡対策も実現できる。 As described above, according to the arrangement example 4, not the complete rollover as shown in FIG. 5 but the internal state that may occur when the vehicle and the battery system 100 are stationary for a long time in a state biased in any direction. It is possible to realize liquid junction countermeasures by flooding. For example, it may occur that the right side wall or the left side surface of the vehicle becomes a bottom surface due to an accident or a driving mistake. In some cases, the vehicle may ride on obstacles with the front wheels floating. In addition, a part of the vehicle body may be fitted in a groove or the like with the front facing. According to the arrangement example 4, even if the battery system 100 is biased in any direction, in the battery case, the installation positions of the plus side contactor RYp and the minus side contactor RYm are avoided from being easily accumulated in the coolant liquid. it can. Further, by using in combination with the arrangement example 2 or the arrangement example 3, it is possible to realize a liquid junction countermeasure against a complete rollover state.
 図9は、車両の横転を考慮した本発明の実施の形態に係る電池システム100におけるコンタクタの制御を説明するためのフローチャートである。なお、漏電センサによる漏電の検知のフローは、図4と同一であるため、説明を省略する。 FIG. 9 is a flowchart for explaining contactor control in the battery system 100 according to the embodiment of the present invention in consideration of vehicle rollover. The flow of detection of leakage by the leakage sensor is the same as that in FIG.
 車両が横転すると、ECUは図示しないジャイロセンサ等の出力値から車両の横転を検知する。車両の横転を検知するとECUは、電源遮断指示をコントローラ200に通知する。コントローラ200はECUから車両横転に基づく電源遮断指示を受信すると(S13のY)、プラス側コンタクタRYp、マイナス側コンタクタRYm、プリチャージ用コンタクタRYcをオープンする(S14)。それらがオープンするとコントローラ200は、電源遮断を示すアラート信号をECUに送信する(S15)。 When the vehicle rolls over, the ECU detects the vehicle rollover from the output value of a gyro sensor (not shown). When detecting the rollover of the vehicle, the ECU notifies the controller 200 of a power-off instruction. When the controller 200 receives a power-off instruction based on vehicle rollover from the ECU (Y in S13), the controller 200 opens the plus-side contactor RYp, the minus-side contactor RYm, and the precharge contactor RYc (S14). When they are opened, the controller 200 transmits an alert signal indicating power-off to the ECU (S15).
 漏電および車両の横転が検知されない場合(S12のN、S13のN)、ステップS14及びステップS15をスキップする。電池システム100の電源がオフされると(S16のY)、コントローラ200は、プラス側コンタクタRYp、マイナス側コンタクタRYm、プリチャージ用コンタクタRYcをオープンする(S17)。 If no electric leakage or vehicle rollover is detected (N in S12, N in S13), Steps S14 and S15 are skipped. When the power supply of the battery system 100 is turned off (Y in S16), the controller 200 opens the plus-side contactor RYp, the minus-side contactor RYm, and the precharge contactor RYc (S17).
 以上、本発明を実施の形態をもとに説明した。こられ実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. Those skilled in the art will understand that these embodiments are exemplifications, and that various modifications can be made to the combinations of the respective constituent elements and processing processes, and such modifications are also within the scope of the present invention. By the way.
 なお、本発明を実施の形態では、冷却方式として液冷式を用いる場合について説明したが、空冷式を用いることもできる。上述の通り、空冷式の電源装置は、低コストで製造することができるというメリットがあり、バッテリケースの構成も簡略化されることが多い。そのため、外部からの浸水や塵埃の浸入を完全に防ぐことはできない場合がある。バッテリケース内にクーラントパイプを配置しない構成であっても、バッテリケース内に浸水が生じた場合には、バッテリケース内の二次電池やジャンクションボックスが浸漬する可能性がある。 In the embodiment of the present invention, the case where the liquid cooling method is used as the cooling method has been described. However, an air cooling method can also be used. As described above, the air-cooled power supply device has an advantage that it can be manufactured at low cost, and the configuration of the battery case is often simplified. For this reason, it may not be possible to completely prevent water from entering or dust from entering from outside. Even when the coolant pipe is not disposed in the battery case, there is a possibility that the secondary battery or the junction box in the battery case may be immersed in the case where water is generated in the battery case.
 従って、冷却方式として空冷式を用いる電源装置においても、本願発明は、有効に機能すること、また、そうした変形例も本発明の範囲にあることは当業者に理解されるところである。 Accordingly, it is understood by those skilled in the art that the present invention functions effectively even in a power supply apparatus that uses an air cooling system as a cooling system, and that such modifications are within the scope of the present invention.
 100 電池システム、 10 二次電池、 10a,10b,10c,10d,10e,10f,10g,10h セルスタック、 20a,20b,20c,20d 冷却板、 30 クーラントパイプ、 30i クーラントインレット、 30o クーラントアウトレット、 40p プラス配線、 40m マイナス配線、 50 ジャンクションボックス、 CT 電流センサ、 R1 電流制限抵抗、 RYp プラス側コンタクタ、 RYm マイナス側コンタクタ、 RYc プリチャージ用コンタクタ、 F1 ヒューズ、 T1 高電圧インタフェース、 200 コントローラ。
 
100 battery system, 10 secondary battery, 10a, 10b, 10c, 10d, 10e, 10f, 10g, 10h cell stack, 20a, 20b, 20c, 20d cold plate, 30 coolant pipe, 30i coolant inlet, 30o coolant outlet, 40p Positive wiring, 40m negative wiring, 50 junction box, CT current sensor, R1 current limiting resistor, RYp positive side contactor, RYm negative side contactor, RYc precharge contactor, F1 fuse, T1 high voltage interface, 200 controller.

Claims (9)

  1.  外部正極端子及び外部負極端子を備える電池システムであって、
     正極端子及び負極端子を有する二次電池と、
     前記二次電池の正極端子と前記外部正極端子とを結ぶ電流経路に挿入された正極側コンタクタと、
     前記二次電池の負極端子と前記外部負極端子とを結ぶ電流経路に挿入された負極側コンタクタと、
     前記二次電池、前記正極側コンタクタ及び前記負極側コンタクタが収納されるケースと、を備え、
     本電池システムの規定の設置状態にて、前記正極側コンタクタ及び前記負極側コンタクタの少なくとも一方が前記二次電池より高い位置に配置されるよう前記二次電池、前記正極側コンタクタ及び前記負極側コンタクタが設置されたことを特徴とする電池システム。
    A battery system comprising an external positive terminal and an external negative terminal,
    A secondary battery having a positive terminal and a negative terminal;
    A positive electrode side contactor inserted in a current path connecting the positive electrode terminal of the secondary battery and the external positive electrode terminal;
    A negative contactor inserted in a current path connecting the negative electrode terminal of the secondary battery and the external negative electrode terminal;
    A case in which the secondary battery, the positive electrode side contactor and the negative electrode side contactor are accommodated, and
    The secondary battery, the positive electrode side contactor and the negative electrode side contactor so that at least one of the positive electrode side contactor and the negative electrode side contactor is disposed at a higher position than the secondary battery in a prescribed installation state of the battery system. A battery system characterized in that is installed.
  2.  前記正極側コンタクタ及び前記負極側コンタクタの一方は、本電池システムの規定の設置状態にて、前記二次電池と略同じ高さに配置されたことを特徴とする請求項1に記載の電池システム。 2. The battery system according to claim 1, wherein one of the positive electrode side contactor and the negative electrode side contactor is disposed at substantially the same height as the secondary battery in a predetermined installation state of the battery system. .
  3.  本電池システムの規定の設置状態にて、前記負極側コンタクタが、前記二次電池より高い位置に配置され、前記正極側コンタクタが前記二次電池と略同じ高さに配置されたことを特徴とする請求項2に記載の電池システム。 In the specified installation state of the battery system, the negative electrode side contactor is disposed at a position higher than the secondary battery, and the positive electrode side contactor is disposed at substantially the same height as the secondary battery. The battery system according to claim 2.
  4.  前記正極側コンタクタ及び前記負極側コンタクタの一方に、プリチャージコンタクタが並列に接続され、
     前記正極側コンタクタ及び前記負極側コンタクタの内、前記プリチャージコンタクタが並列に接続されているほうのコンタクタが、前記二次電池より高い位置に配置されたことを特徴とする請求項3に記載の電池システム。
    A precharge contactor is connected in parallel to one of the positive electrode side contactor and the negative electrode side contactor,
    The contactor of the positive electrode side contactor and the negative electrode side contactor to which the precharge contactor is connected in parallel is disposed at a position higher than the secondary battery. Battery system.
  5.  本電池システムの規定の設置状態にて、前記正極側コンタクタ及び前記負極側コンタクタの両方が前記二次電池より高い位置に配置され、
     前記正極側コンタクタ及び前記負極側コンタクタの一方が防水仕様で設計されたことを特徴とする請求項1に記載の電池システム。
    In the specified installation state of the battery system, both the positive electrode side contactor and the negative electrode side contactor are arranged at a position higher than the secondary battery,
    The battery system according to claim 1, wherein one of the positive electrode side contactor and the negative electrode side contactor is designed to be waterproof.
  6.  本電池システムの規定の設置状態にて、前記正極側コンタクタ及び前記負極側コンタクタの両方が前記二次電池より高い位置に配置され、
     本電源装置の規定の設置状態にて、前記正極側コンタクタ及び前記負極側コンタクタの一方は、凹部状の防水壁が上から被せられたことを特徴とする請求項1に記載の電池システム。
    In the specified installation state of the battery system, both the positive electrode side contactor and the negative electrode side contactor are arranged at a position higher than the secondary battery,
    2. The battery system according to claim 1, wherein one of the positive electrode side contactor and the negative electrode side contactor is covered with a recessed waterproof wall from above in a prescribed installation state of the power supply device.
  7.  前記正極側コンタクタ及び前記負極側コンタクタの一方に、プリチャージコンタクタが並列に接続され、
     前記正極側コンタクタ及び前記負極側コンタクタの内、前記プリチャージコンタクタが接続されていないほうのコンタクタに、前記凹部状の防水壁が上から被せられたことを特徴とする請求項5に記載の電池システム。
    A precharge contactor is connected in parallel to one of the positive electrode side contactor and the negative electrode side contactor,
    6. The battery according to claim 5, wherein the recessed waterproof wall is covered from the top of the contactor to which the precharge contactor is not connected among the positive electrode side contactor and the negative electrode side contactor. system.
  8.  本電池システムの規定の設置状態にて、前記二次電池より高い位置に配置される前記正極側コンタクタ及び前記負極側コンタクタの少なくとも一方が、前記ケース内の中央部に配置されたことを特徴とする請求項1に記載の電池システム。 In the specified installation state of the battery system, at least one of the positive electrode side contactor and the negative electrode side contactor arranged at a position higher than the secondary battery is arranged at a central portion in the case. The battery system according to claim 1.
  9.  前記電池システムは、車両に搭載されることを特徴とする請求項1から8のいずれかに記載の電池システム。 The battery system according to any one of claims 1 to 8, wherein the battery system is mounted on a vehicle.
PCT/JP2014/000509 2013-02-08 2014-01-31 Cell system WO2014122904A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014560672A JP6279493B2 (en) 2013-02-08 2014-01-31 Battery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-023461 2013-02-08
JP2013023461 2013-02-08

Publications (1)

Publication Number Publication Date
WO2014122904A1 true WO2014122904A1 (en) 2014-08-14

Family

ID=51299504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000509 WO2014122904A1 (en) 2013-02-08 2014-01-31 Cell system

Country Status (2)

Country Link
JP (1) JP6279493B2 (en)
WO (1) WO2014122904A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017004919A (en) * 2015-06-04 2017-01-05 本田技研工業株式会社 Power supply device for vehicle
JP2018006043A (en) * 2016-06-28 2018-01-11 三洋電機株式会社 Battery system and electric vehicle with battery system
EP3293810A1 (en) * 2016-09-07 2018-03-14 Thunder Power New Energy Vehicle Development Company Limited Battery system
JP2018202945A (en) * 2017-05-31 2018-12-27 本田技研工業株式会社 Vehicle power source device and electric vehicle
JP2019179595A (en) * 2018-03-30 2019-10-17 トヨタ自動車株式会社 Battery pack
CN111952690A (en) * 2019-05-16 2020-11-17 本田技研工业株式会社 Cooling structure of battery unit for vehicle
JP2020187966A (en) * 2019-05-16 2020-11-19 本田技研工業株式会社 Cooling structure of vehicle battery unit
CN114520401A (en) * 2020-11-18 2022-05-20 通用汽车环球科技运作有限责任公司 Thermal mechanical fuse with reduced heat propagation for electrochemical devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004237803A (en) * 2003-02-04 2004-08-26 Toyota Motor Corp Battery installation structure for vehicle
JP2009238644A (en) * 2008-03-27 2009-10-15 Sanyo Electric Co Ltd Power source device for vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5330876B2 (en) * 2009-03-26 2013-10-30 本田技研工業株式会社 Battery module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004237803A (en) * 2003-02-04 2004-08-26 Toyota Motor Corp Battery installation structure for vehicle
JP2009238644A (en) * 2008-03-27 2009-10-15 Sanyo Electric Co Ltd Power source device for vehicle

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017004919A (en) * 2015-06-04 2017-01-05 本田技研工業株式会社 Power supply device for vehicle
JP2018006043A (en) * 2016-06-28 2018-01-11 三洋電機株式会社 Battery system and electric vehicle with battery system
EP3293810A1 (en) * 2016-09-07 2018-03-14 Thunder Power New Energy Vehicle Development Company Limited Battery system
JP2018202945A (en) * 2017-05-31 2018-12-27 本田技研工業株式会社 Vehicle power source device and electric vehicle
US10434893B2 (en) 2017-05-31 2019-10-08 Honda Motor Co., Ltd. Vehicle electric power supply apparatus and electric vehicle
JP7091775B2 (en) 2018-03-30 2022-06-28 トヨタ自動車株式会社 Battery pack
JP2019179595A (en) * 2018-03-30 2019-10-17 トヨタ自動車株式会社 Battery pack
CN111952690A (en) * 2019-05-16 2020-11-17 本田技研工业株式会社 Cooling structure of battery unit for vehicle
JP2020187966A (en) * 2019-05-16 2020-11-19 本田技研工業株式会社 Cooling structure of vehicle battery unit
US11309599B2 (en) 2019-05-16 2022-04-19 Honda Motor Co., Ltd. Cooling structure of vehicle battery unit
US20200361289A1 (en) * 2019-05-16 2020-11-19 Honda Motor Co., Ltd. Cooling structure of vehicle battery unit
US11479087B2 (en) * 2019-05-16 2022-10-25 Honda Motor Co., Ltd. Cooling structure of vehicle battery unit
CN111952690B (en) * 2019-05-16 2023-11-21 本田技研工业株式会社 Cooling structure of battery unit for vehicle
CN114520401A (en) * 2020-11-18 2022-05-20 通用汽车环球科技运作有限责任公司 Thermal mechanical fuse with reduced heat propagation for electrochemical devices

Also Published As

Publication number Publication date
JPWO2014122904A1 (en) 2017-01-26
JP6279493B2 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
JP6279493B2 (en) Battery system
US11978845B2 (en) Vent shield for a battery module
US9997816B2 (en) Micro-hybrid battery module for a vehicle
KR101596107B1 (en) Battery temperature managing system and vehicle comprising the same
US10008710B2 (en) Overcharge protection assembly for a battery module
KR102224592B1 (en) Battery pack of matrix structure for electromobile
US10913361B2 (en) Battery temperature control system and method
US8922959B2 (en) Safety component by fuse at high voltage battery sensing line
US10800411B2 (en) Vehicle control apparatus
JP6297496B2 (en) In-vehicle battery system
US20160093857A1 (en) Battery module vent system and method
JP6124292B2 (en) In-vehicle power supply device and vehicle equipped with power supply device
KR101583679B1 (en) Apparatus for cooling secondary battery pack for vehicle
CN107078250B (en) Overcharge protection assembly for battery module
KR20160104867A (en) Vehicle Comprising Battery Pack with Pressure Sensor
JP5505333B2 (en) In-vehicle power storage device
JPWO2017081846A1 (en) Power system
EP4040565A1 (en) Battery module, and electric vehicle and power storage device comprising battery module
CN109641532B (en) Bistable relay
KR102389162B1 (en) Battery cooling system for electric vehicle
JP7234912B2 (en) battery pack
JP6162140B2 (en) In-vehicle battery system
US9694708B2 (en) Battery assembly and hybrid electric vehicle including the same
JP2014128171A (en) Battery controller
US20230311708A1 (en) Power control apparatus for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749361

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560672

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14749361

Country of ref document: EP

Kind code of ref document: A1