JPWO2017081846A1 - Power system - Google Patents

Power system Download PDF

Info

Publication number
JPWO2017081846A1
JPWO2017081846A1 JP2017549975A JP2017549975A JPWO2017081846A1 JP WO2017081846 A1 JPWO2017081846 A1 JP WO2017081846A1 JP 2017549975 A JP2017549975 A JP 2017549975A JP 2017549975 A JP2017549975 A JP 2017549975A JP WO2017081846 A1 JPWO2017081846 A1 JP WO2017081846A1
Authority
JP
Japan
Prior art keywords
power storage
contactor
supply system
storage modules
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017549975A
Other languages
Japanese (ja)
Inventor
湯郷 政樹
政樹 湯郷
誠人 西川
誠人 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of JPWO2017081846A1 publication Critical patent/JPWO2017081846A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0007Measures or means for preventing or attenuating collisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/583Devices or arrangements for the interruption of current in response to current, e.g. fuses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/103Fuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Protection Of Static Devices (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

電源システムにおいてコストを抑えつつ、浸水に対する安全性を高めるために、電源システム(1)において、複数の蓄電モジュール(11)−(14)は、直列接続される。ヒューズ(F1)は、複数の蓄電モジュール(11)−(14)を直列に接続する経路において、複数の蓄電モジュール(11)−(14)を第1グループと第2グループに分割する位置に挿入される。正極側コンタクタ(RY1)は、第1グループに属する複数の蓄電モジュールを第1サブグループと第2サブグループに分割する位置に挿入される。負極側コンタクタ(RY2)は、第2グループに属する複数の蓄電モジュールを第1サブグループと第2サブグループに分割する位置に挿入される。  In the power supply system (1), a plurality of power storage modules (11) to (14) are connected in series in order to increase the safety against flooding while suppressing the cost in the power supply system. The fuse (F1) is inserted at a position where the plurality of power storage modules (11)-(14) are divided into the first group and the second group in a path connecting the plurality of power storage modules (11)-(14) in series. Is done. The positive electrode side contactor (RY1) is inserted at a position where the plurality of power storage modules belonging to the first group are divided into the first sub group and the second sub group. The negative contactor (RY2) is inserted at a position where the plurality of power storage modules belonging to the second group are divided into the first subgroup and the second subgroup.

Description

本発明は、直列接続された複数の蓄電モジュールを備える電源システムに関する。   The present invention relates to a power supply system including a plurality of power storage modules connected in series.

近年、ハイブリッド車(HV)、プラグインハイブリッド車(PHV)、電気自動車(EV)が普及してきている。これらの車両には、走行用モータに駆動電力を供給するための蓄電モジュールを多段直列に接続した電源システムが搭載される。高電圧が要求される走行用モータの場合、蓄電モジュールの直列数を多くして電源システムの高電圧化が図られる。   In recent years, hybrid vehicles (HV), plug-in hybrid vehicles (PHV), and electric vehicles (EV) have become widespread. These vehicles are equipped with a power supply system in which power storage modules for supplying driving power to a traveling motor are connected in multiple stages. In the case of a traveling motor that requires a high voltage, the power supply system can be increased in voltage by increasing the number of power storage modules in series.

車両に搭載される電源システムは、車両の水没や冷却用冷媒液の液漏れにより浸水すると、近接する蓄電池セルが直接短絡する可能性、または蓄電池セルが金属筐体を介して短絡する可能性がある。高電位差でセルが短絡するとアーク放電が発生し、アーク放電により電池缶に孔が開く可能性があり、電解液等が漏れ出して発火に至るリスクがある。   When a power supply system installed in a vehicle is submerged due to submersion of the vehicle or leakage of coolant liquid for cooling, there is a possibility that a nearby storage battery cell may directly short-circuit or a storage battery cell may be short-circuited via a metal casing. is there. When the cell is short-circuited due to a high potential difference, arc discharge occurs, and the arc can open a hole in the battery can, and there is a risk that electrolyte etc. leaks and leads to ignition.

特開2009−238644号公報JP 2009-238644 A

セルの耐圧を高めるには絶縁距離を長くしたり、高仕様な部品を使用することが有効であるが、電源システムの大型化、コスト増大を招く。   To increase the breakdown voltage of the cell, it is effective to lengthen the insulation distance or use high-spec parts, but this leads to an increase in the size and cost of the power supply system.

本発明はこうした状況に鑑みなされたものであり、その目的は、電源システムにおいてコストを抑えつつ、浸水に対する安全性を高める技術を提供することにある。   This invention is made | formed in view of such a condition, The objective is to provide the technique which raises the safety | security with respect to flooding, suppressing cost in a power supply system.

上記課題を解決するために、本発明のある態様の電源システムは、直列接続された複数の蓄電モジュールと、前記複数の蓄電モジュールを直列に接続する経路上において、前記複数の蓄電モジュールを第1グループと第2グループに分割する位置に挿入されるヒューズと、前記第1グループに属する複数の蓄電モジュールを第1サブグループと第2サブグループに分割する位置に挿入される正極側コンタクタと、前記第2グループに属する複数の蓄電モジュールを第1サブグループと第2サブグループに分割する位置に挿入される負極側コンタクタと、を備える。   In order to solve the above problems, a power supply system according to an aspect of the present invention includes a plurality of power storage modules connected in series and a plurality of power storage modules connected to each other on a path connecting the plurality of power storage modules in series. A fuse inserted at a position to be divided into a group and a second group; a positive contactor inserted at a position at which a plurality of power storage modules belonging to the first group are divided into a first subgroup and a second subgroup; And a negative electrode side contactor inserted at a position where a plurality of power storage modules belonging to the second group are divided into a first sub group and a second sub group.

なお、以上の構成要素の任意の組み合わせ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。   It should be noted that any combination of the above-described constituent elements and a representation of the present invention converted between a method, an apparatus, a system, and the like are also effective as an aspect of the present invention.

本発明によれば、電源システムにおいてコストを抑えつつ、浸水に対する安全性を高めることができる。   ADVANTAGE OF THE INVENTION According to this invention, the safety | security with respect to flooding can be improved, suppressing cost in a power supply system.

車載用の電源システムの一般的な回路構成例を示す図である。It is a figure which shows the general circuit structural example of the vehicle-mounted power supply system. 本発明の実施の形態に係る車載用の電源システムの回路構成例を示す図である。It is a figure which shows the circuit structural example of the vehicle-mounted power supply system which concerns on embodiment of this invention. 図2の電源システムの各構成要素の筐体内の配置を上から見た模式図である。It is the schematic diagram which looked at the arrangement | positioning in the housing | casing of each component of the power supply system of FIG. 図3のA−A’断面を右側から見た模式図である。It is the schematic diagram which looked at the A-A 'cross section of FIG. 3 from the right side. 図3のB−B’断面を下側から見た模式図である。It is the schematic diagram which looked at the B-B 'cross section of FIG. 3 from the lower side.

図1は、車載用の電源システム1の一般的な回路構成例を示す図である。電源システム1は、モータ3に供給するための電力を蓄える蓄電システムである。電源システム1は車両内において、補機用の12V系の二次電池(通常、鉛電池が使用される)と別に設けられる。   FIG. 1 is a diagram illustrating a general circuit configuration example of an in-vehicle power supply system 1. The power supply system 1 is a power storage system that stores electric power to be supplied to the motor 3. The power supply system 1 is provided in the vehicle separately from a 12V secondary battery (usually a lead battery is used) for auxiliary equipment.

インバータ2は力行時、電源システム1から供給される直流電力を交流電力に変換してモータ3に供給する。回生時、モータ3から供給される交流電力を直流電力に変換して電源システム1に供給する。モータ3には例えば、三相交流同期モータを使用する。以下本明細書では、300V以上の高圧のモータを想定する。モータ3は力行モードでは、インバータ2から供給される電力をもとに回転し、車両を走行させる。回生モードでは、車両の減速エネルギーにもとづく回転により発電し、インバータ2を介して電源システム1を充電する。   During power running, the inverter 2 converts the DC power supplied from the power supply system 1 into AC power and supplies it to the motor 3. During regeneration, AC power supplied from the motor 3 is converted to DC power and supplied to the power supply system 1. For example, a three-phase AC synchronous motor is used as the motor 3. Hereinafter, in this specification, a high-voltage motor of 300 V or higher is assumed. In the power running mode, the motor 3 rotates based on the electric power supplied from the inverter 2 to drive the vehicle. In the regeneration mode, power is generated by the rotation based on the deceleration energy of the vehicle, and the power supply system 1 is charged via the inverter 2.

電源システム1は、直列接続された複数の蓄電モジュール11−14、制御回路20、コネクタ30、正極側コンタクタRY1、負極側コンタクタRY2、プリチャージ抵抗R1、プリチャージコンタクタRY3、電流センサCT1及びヒューズF1を備え、これらは筐体に収納される。   The power supply system 1 includes a plurality of power storage modules 11-14, a control circuit 20, a connector 30, a positive contactor RY1, a negative contactor RY2, a precharge resistor R1, a precharge contactor RY3, a current sensor CT1, and a fuse F1 connected in series. These are housed in a housing.

各蓄電モジュール11−14は、直列接続された複数の単セルを含む。単セルは、1個ないし複数個の単電池が並列に接続されて構成される。単セルには、リチウムイオンセル、ニッケル水素セル、電気二重層キャパシタセル等を用いることができる。以下、本明細書ではリチウムイオンセル(公称電圧:3.6−3.7V)を使用する例を想定し、直列数を20前後に設計する例を想定する。さらに、このような構成を持つ蓄電モジュールを4個直列に接続する例を想定する。   Each power storage module 11-14 includes a plurality of single cells connected in series. A single cell is configured by connecting one or a plurality of single cells in parallel. As the single cell, a lithium ion cell, a nickel hydrogen cell, an electric double layer capacitor cell, or the like can be used. Hereinafter, in this specification, an example in which a lithium ion cell (nominal voltage: 3.6-3.7 V) is used is assumed, and an example in which the number of series is designed around 20 is assumed. Furthermore, an example in which four power storage modules having such a configuration are connected in series is assumed.

コネクタ30は、電源システム1の電流入出力端子であり、高圧仕様のものを使用する。コネクタ30は、インバータ2に繋がるワイヤーハーネスの先端のコネクタと嵌合するオス型またはメス型の端子を備える。   The connector 30 is a current input / output terminal of the power supply system 1 and uses a high voltage specification connector. The connector 30 includes a male or female terminal that fits with a connector at the tip of a wire harness connected to the inverter 2.

正極側コンタクタRY1は、コネクタ30に繋がるプラス配線と、複数の蓄電モジュール11−14の正極端子(図1では、第1蓄電モジュール11の正極端子)に繋がるプラス配線との間に挿入される。負極側コンタクタRY2は、コネクタ30に繋がるマイナス配線と、複数の蓄電モジュール11−14の負極端子(図1では、第4蓄電モジュール14の負極端子)に繋がるマイナス配線との間に挿入される。   The positive electrode side contactor RY1 is inserted between the positive wiring connected to the connector 30 and the positive wiring connected to the positive terminals (a positive terminal of the first power storage module 11 in FIG. 1) of the plurality of power storage modules 11-14. The negative contactor RY2 is inserted between the negative wiring connected to the connector 30 and the negative wiring connected to the negative terminals of the plurality of power storage modules 11-14 (the negative terminals of the fourth power storage module 14 in FIG. 1).

正極側コンタクタRY1と並列にプリチャージ回路が接続される。プリチャージ回路は、直列接続されたプリチャージ抵抗R1とプリチャージコンタクタRY3を有する。正極側コンタクタRY1、負極側コンタクタRY2及びプリチャージコンタクタRY3には、大型のリレーを使用することができる。   A precharge circuit is connected in parallel with the positive electrode side contactor RY1. The precharge circuit has a precharge resistor R1 and a precharge contactor RY3 connected in series. Large relays can be used for the positive contactor RY1, the negative contactor RY2, and the precharge contactor RY3.

プリチャージコンタクタRY3は、負極側コンタクタRY2とともに、正極側コンタクタRY1が閉じられる前に閉じられ、モータ3と並列に接続されたプリチャージコンデンサ(不図示)を充電する。その後、正極側コンタクタRY1が閉じられ、モータ3への給電が開始する。この制御手順によりモータ3への突入電流を抑制できる。   The precharge contactor RY3 is closed before the positive electrode side contactor RY1 is closed together with the negative electrode side contactor RY2, and charges a precharge capacitor (not shown) connected in parallel with the motor 3. Thereafter, the positive electrode side contactor RY1 is closed, and power supply to the motor 3 is started. The inrush current to the motor 3 can be suppressed by this control procedure.

4個の蓄電モジュール11−14を直列に接続する電流経路上に、電流センサCT1とヒューズF1が挿入される。電流センサCT1は当該電流経路を流れる電流の値を検出し、制御回路20に出力する。電流センサCT1には、クランプ式の電流センサ、シャント抵抗を用いた電流センサ、ホール素子を用いた電流センサ等を使用することができる。ヒューズF1は、規定値以上の大電流が流れると溶断し、当該電流経路を遮断する。   A current sensor CT1 and a fuse F1 are inserted on a current path connecting the four power storage modules 11-14 in series. The current sensor CT1 detects the value of the current flowing through the current path and outputs it to the control circuit 20. As the current sensor CT1, a clamp-type current sensor, a current sensor using a shunt resistor, a current sensor using a Hall element, or the like can be used. The fuse F1 is blown when a large current of a specified value or more flows to interrupt the current path.

制御回路(電池ECUともいう)20は、複数の蓄電モジュール11−14を管理・制御する。制御回路20は電流センサCT1から、直列接続された複数の蓄電モジュール11−14を流れる電流の値を取得する。また制御回路20は各蓄電モジュール11−14内の電圧センサ(不図示)、温度センサ(不図示)により検出された電圧値および温度値を取得する。   The control circuit (also referred to as a battery ECU) 20 manages and controls the plurality of power storage modules 11-14. The control circuit 20 acquires the value of the current flowing through the plurality of power storage modules 11-14 connected in series from the current sensor CT1. The control circuit 20 acquires a voltage value and a temperature value detected by a voltage sensor (not shown) and a temperature sensor (not shown) in each power storage module 11-14.

制御回路20は、取得した電流値、電圧値、及び温度値にもとづき、複数の蓄電モジュール11−14の少なくとも1つに異常(例えば、過電圧、過電流)が発生している場合、正極側コンタクタRY1及び負極側コンタクタRY2を開く(ターンオフ)。   Based on the acquired current value, voltage value, and temperature value, the control circuit 20 determines that an abnormality (eg, overvoltage, overcurrent) has occurred in at least one of the plurality of power storage modules 11-14. Open RY1 and negative electrode side contactor RY2 (turn off).

図2は、本発明の実施の形態に係る車載用の電源システム1の回路構成例を示す図である。以下、図1に示した一般的な回路構成との相違点を中心に説明する。電流センサCT1及びヒューズF1は、複数の蓄電モジュール11−14を直列に接続する電流経路に上おいて、当該複数の蓄電モジュール11−14を第1グループと第2グループに2分割する位置に挿入される。図1、2では第1グループに第1蓄電モジュール11と第2蓄電モジュール12が含まれ、第2グループに第3蓄電モジュール13と第4蓄電モジュール14が含まれる。即ち、電流センサCT1及びヒューズF1は、第2蓄電モジュール12と第3蓄電モジュール13との間に挿入される。   FIG. 2 is a diagram illustrating a circuit configuration example of the in-vehicle power supply system 1 according to the embodiment of the present invention. In the following, description will be made centering on differences from the general circuit configuration shown in FIG. The current sensor CT1 and the fuse F1 are inserted in a position where the plurality of power storage modules 11-14 are divided into two groups of a first group and a second group on the current path connecting the plurality of power storage modules 11-14 in series. Is done. In FIGS. 1 and 2, the first power storage module 11 and the second power storage module 12 are included in the first group, and the third power storage module 13 and the fourth power storage module 14 are included in the second group. That is, the current sensor CT <b> 1 and the fuse F <b> 1 are inserted between the second power storage module 12 and the third power storage module 13.

図2に示す実施の形態に係る回路構成において正極側コンタクタRY1は、第1グループに属する複数の蓄電モジュールを2分割する位置に挿入される。本実施の形態では正極側コンタクタRY1は、第1蓄電モジュール11と第2蓄電モジュール12との間に挿入される。負極側コンタクタRY2は、第2グループに属する複数の蓄電モジュールを2分割する位置に挿入される。本実施の形態では負極側コンタクタRY2は、第3蓄電モジュール13と第4蓄電モジュール14の間に挿入される。   In the circuit configuration according to the embodiment shown in FIG. 2, the positive electrode side contactor RY1 is inserted at a position where the plurality of power storage modules belonging to the first group are divided into two. In the present embodiment, positive electrode side contactor RY1 is inserted between first power storage module 11 and second power storage module 12. The negative contactor RY2 is inserted at a position where the plurality of power storage modules belonging to the second group are divided into two. In the present embodiment, the negative electrode side contactor RY2 is inserted between the third power storage module 13 and the fourth power storage module 14.

このように正極側コンタクタRY1、ヒューズF1、負極側コンタクタRY2は、複数の蓄電モジュール11−14を4分割する位置にそれぞれ挿入される。なお電流センサCT1は、正極側コンタクタRY1と負極側コンタクタRY2より内部であれば、第2蓄電モジュール12と第3蓄電モジュール13の間に限るものではなく、他の位置に挿入されてもよい。   Thus, the positive electrode side contactor RY1, the fuse F1, and the negative electrode side contactor RY2 are respectively inserted at positions where the plurality of power storage modules 11-14 are divided into four. The current sensor CT1 is not limited to being between the second power storage module 12 and the third power storage module 13 as long as it is inside the positive contactor RY1 and the negative contactor RY2, and may be inserted at another position.

図3は、図2の電源システム1の各構成要素の筐体内の配置を上から見た模式図である。筐体内は5つのエリアに分割され、各エリアは、絶縁材で形成されたパーティーションにより仕切られている。図3の点線はパーティーションを示している。   FIG. 3 is a schematic view of the arrangement in the housing of each component of the power supply system 1 of FIG. 2 as viewed from above. The inside of the housing is divided into five areas, and each area is partitioned by a partition formed of an insulating material. The dotted line in FIG. 3 shows the partition.

図3において右上のエリア1に第1蓄電モジュール11が配置され、左上のエリア2に第2蓄電モジュール12が配置され、左下のエリア3に第3蓄電モジュール13が配置され、右下のエリア4に第4蓄電モジュール14が配置される。各蓄電モジュール11−14の筐体は、周囲から電気的に絶縁された状態で設置される。車載用途では堅牢性が要求されるため、蓄電モジュールの筐体には金属製の筐体が使用されることが多い。各蓄電モジュール11−14を収納している金属筐体は、他の蓄電モジュールの筐体および電源システム1全体の筐体から絶縁された状態で設置される。   In FIG. 3, the first power storage module 11 is disposed in the upper right area 1, the second power storage module 12 is disposed in the upper left area 2, the third power storage module 13 is disposed in the lower left area 3, and the lower right area 4. The fourth power storage module 14 is disposed at the bottom. The housing of each power storage module 11-14 is installed in a state of being electrically insulated from the surroundings. Since robustness is required for in-vehicle use, a metal housing is often used for the housing of the power storage module. The metal housing that houses each power storage module 11-14 is installed in a state of being insulated from the housings of other power storage modules and the entire power supply system 1.

中央のエリア5に、コネクタ30、制御回路20、正極側コンタクタRY1、負極側コンタクタRY2、プリチャージコンタクタRY3、プリチャージ抵抗R1、電流センサCT1及びヒューズF1が配置される。   In the central area 5, the connector 30, the control circuit 20, the positive contactor RY1, the negative contactor RY2, the precharge contactor RY3, the precharge resistor R1, the current sensor CT1, and the fuse F1 are arranged.

図4は、図3のA−A’断面を右側から見た模式図である。図5は、図3のB−B’断面を下側から見た模式図である。図4、図5に示すように筐体の最下部にコネクタ30が配置される。その1段上に第1蓄電モジュール11、第2蓄電モジュール12、第3蓄電モジュール13及び第4蓄電モジュール14が配置される。その1段上に制御回路20が配置される。最上部に正極側コンタクタRY1、負極側コンタクタRY2、プリチャージコンタクタRY3、プリチャージ抵抗R1、電流センサCT1及びヒューズF1が配置される。   FIG. 4 is a schematic view of the A-A ′ cross section of FIG. 3 viewed from the right side. FIG. 5 is a schematic view of the B-B ′ cross section of FIG. 3 viewed from below. As shown in FIGS. 4 and 5, the connector 30 is disposed at the bottom of the housing. The 1st electrical storage module 11, the 2nd electrical storage module 12, the 3rd electrical storage module 13, and the 4th electrical storage module 14 are arrange | positioned on the 1 step | paragraph. The control circuit 20 is arranged on the first stage. A positive electrode side contactor RY1, a negative electrode side contactor RY2, a precharge contactor RY3, a precharge resistor R1, a current sensor CT1, and a fuse F1 are arranged at the top.

図4に示すようにエリア1−4は、所定の長さ(例えば、数cm)上げ底になっている。エリア5は、第1蓄電モジュール11−第4蓄電モジュール14の上面の高さと、略同一の高さまで上げ底になっている。当該上げ底部分は、第1蓄電モジュール11及び第2蓄電モジュール12と、第3蓄電モジュール13及び第4蓄電モジュール14間の絶縁壁としての作用も担っている。   As shown in FIG. 4, the area 1-4 has a predetermined length (for example, several centimeters) and a bottom. The area 5 is raised to the same height as the top surface of the first power storage module 11 to the fourth power storage module 14 and is the bottom. The raised bottom portion also serves as an insulating wall between the first power storage module 11 and the second power storage module 12 and the third power storage module 13 and the fourth power storage module 14.

第1蓄電モジュール11−第4蓄電モジュール14の上面からは正極端子と負極端子が延び出ており、各正極端子および各負極端子は、図2に示した回路図に示した接続関係に従い、接続先の端子とバスバーで接続される。なお第1蓄電モジュール11の正極端子はワイヤーハーネスでコネクタ30の正極端子に接続され、第4蓄電モジュール14の負極端子はワイヤーハーネスでコネクタ30の負極端子に接続される。図5に示すようにエリア5の上げ底部分には、1段下がった部分があり、その部分に制御回路20が配置される。   A positive electrode terminal and a negative electrode terminal extend from the upper surfaces of the first power storage module 11 to the fourth power storage module 14, and each positive electrode terminal and each negative electrode terminal are connected according to the connection relationship shown in the circuit diagram shown in FIG. 2. Connected to the previous terminal with a bus bar. In addition, the positive electrode terminal of the 1st electrical storage module 11 is connected to the positive electrode terminal of the connector 30 with a wire harness, and the negative electrode terminal of the 4th electrical storage module 14 is connected to the negative electrode terminal of the connector 30 with a wire harness. As shown in FIG. 5, the raised bottom portion of the area 5 has a portion that is lowered by one step, and the control circuit 20 is disposed in that portion.

以上の配置例において電源システム1が浸水した場合の挙動について説明する。まずコネクタ30が浸水し、コネクタ30の正極端子と負極端子間が短絡すると、第1蓄電モジュール11−第4蓄電モジュール14間に大電流が流れ、ヒューズF1が溶断する。この段階で第1蓄電モジュール11及び第2蓄電モジュール12と、第3蓄電モジュール13及び第4蓄電モジュール14が電気的に分離される。   The behavior when the power supply system 1 is submerged in the above arrangement example will be described. First, when the connector 30 is submerged and the positive electrode terminal and the negative electrode terminal of the connector 30 are short-circuited, a large current flows between the first power storage module 11 and the fourth power storage module 14, and the fuse F1 is melted. At this stage, the first power storage module 11 and the second power storage module 12, and the third power storage module 13 and the fourth power storage module 14 are electrically separated.

次に水位が上がり、制御回路20の一部が浸水すると、制御回路20は回路異常の検知に起因して正極側コンタクタRY1及び負極側コンタクタRY2を開く(ターンオフ)。この段階で第1蓄電モジュール11と第2蓄電モジュール12が電気的に分離され、第3蓄電モジュール13と第4蓄電モジュール14が電気的に分離される。即ち第1蓄電モジュール11−第4蓄電モジュール14が全て電気的に分離される。なおこの段階では、第1蓄電モジュール11−第4蓄電モジュール14の上部は浸水しておらず、第1蓄電モジュール11−第4蓄電モジュール14の正極端子と負極端子は浸水していない。また制御回路20の高電圧回路部分も浸水していない。   Next, when the water level rises and a part of the control circuit 20 is submerged, the control circuit 20 opens the positive electrode side contactor RY1 and the negative electrode side contactor RY2 due to the detection of the circuit abnormality (turn off). At this stage, the first power storage module 11 and the second power storage module 12 are electrically separated, and the third power storage module 13 and the fourth power storage module 14 are electrically separated. That is, the first power storage module 11 to the fourth power storage module 14 are all electrically separated. At this stage, the upper portions of the first power storage module 11 to the fourth power storage module 14 are not submerged, and the positive terminal and the negative terminal of the first power storage module 11 to the fourth power storage module 14 are not submerged. Further, the high voltage circuit portion of the control circuit 20 is not submerged.

さらに水位が上がり、第1蓄電モジュール11−第4蓄電モジュール14の全体が浸水し、各蓄電モジュール内のセルが短絡する。   Further, the water level rises, the entire first power storage module 11 to fourth power storage module 14 are submerged, and the cells in each power storage module are short-circuited.

以上説明したように本実施の形態によれば、コネクタ30、第1蓄電モジュール11−第4蓄電モジュール14、ヒューズF1、正極側コンタクタRY1及び負極側コンタクタRY2の配置に高低差をつけることにより、浸水による短絡の発生順を制御することができる。即ちコネクタ30をヒューズF1より低い位置に配置することにより、コネクタ30が浸水した段階でヒューズF1が正常に溶断する状態を担保することができる。また制御回路20を正極側コンタクタRY1及び負極側コンタクタRY2より低い位置に配置することにより、制御回路20が浸水した段階で正極側コンタクタRY1及び負極側コンタクタRY2が正常に動作する状態を担保することができる。   As described above, according to the present embodiment, by providing a height difference in the arrangement of the connector 30, the first power storage module 11 to the fourth power storage module 14, the fuse F1, the positive contactor RY1, and the negative contactor RY2, It is possible to control the order of occurrence of short circuits due to water immersion. That is, by disposing the connector 30 at a position lower than the fuse F1, it is possible to ensure that the fuse F1 is normally melted when the connector 30 is submerged. Further, by disposing the control circuit 20 at a position lower than the positive electrode side contactor RY1 and the negative electrode side contactor RY2, it is ensured that the positive electrode side contactor RY1 and the negative electrode side contactor RY2 operate normally when the control circuit 20 is submerged. Can do.

また制御回路20をコネクタ30より高い位置に配置することにより、正極側コンタクタRY1及び負極側コンタクタRY2による電流経路の遮断が、ヒューズF1による電流経路の遮断より時間的に後に発生するように制御することができる。両者の遮断タイミングが同じ場合、過渡電流が大きくなるが、本実施の形態では両者の遮断タイミングに時間差が発生するため過渡電流を小さく抑えることができる。   Further, by disposing the control circuit 20 at a position higher than the connector 30, control is performed so that the interruption of the current path by the positive contactor RY1 and the negative contactor RY2 occurs after the interruption of the current path by the fuse F1. be able to. When both the cut-off timings are the same, the transient current increases. However, in this embodiment, a time difference occurs between the cut-off timings of both, and thus the transient current can be suppressed small.

通常の設置状態ではコネクタ30の方が先に浸水するが、コネクタ30が浸水しただけの状態で電源システム1への浸水が停止した場合(水位上昇が停止した場合)、制御回路20は浸水しないことになる。この場合、ヒューズF1とコネクタ30を新たなものに交換すれば、制御回路20を交換する必要がないため、修理費用を安価に抑えることができる。また制御回路20を交換する場合に生じる配線の付け替え作業も発生しない。   In the normal installation state, the connector 30 is submerged first. However, when the submersion into the power supply system 1 is stopped only when the connector 30 is submerged (when the rise in water level is stopped), the control circuit 20 is not submerged. It will be. In this case, if the fuse F1 and the connector 30 are replaced with new ones, it is not necessary to replace the control circuit 20, so that the repair cost can be reduced. In addition, the work of replacing the wiring that occurs when the control circuit 20 is replaced does not occur.

また直列接続された複数の蓄電モジュールを4等分するように、正極側コンタクタRY1、ヒューズF1及び負極側コンタクタRY2が配置される。これによりセルの短絡時にセル間にかかる電圧を低減することができる。正極側コンタクタRY1、ヒューズF1及び負極側コンタクタRY2は、電源システム1において一般的に使用される素子であり、新たに追加される素子ではない。従って、新たな素子を追加することによるコストの増大および回路規模の増大が発生しない。正極側コンタクタRY1、ヒューズF1及び負極側コンタクタRY2の配置の変更により、浸水によるセル短絡時にセルにかかる最大電圧を略1/4に低減することができる。従って安全性を確保しつつ、セルの耐圧構造の仕様を低コストなものに抑えることができる。   Further, the positive electrode side contactor RY1, the fuse F1, and the negative electrode side contactor RY2 are arranged so as to divide the plurality of power storage modules connected in series into four equal parts. Thereby, the voltage applied between the cells when the cells are short-circuited can be reduced. The positive side contactor RY1, the fuse F1, and the negative side contactor RY2 are elements generally used in the power supply system 1, and are not newly added elements. Therefore, an increase in cost and an increase in circuit scale due to the addition of a new element do not occur. By changing the arrangement of the positive side contactor RY1, the fuse F1, and the negative side contactor RY2, the maximum voltage applied to the cell when the cell is short-circuited due to water immersion can be reduced to approximately ¼. Therefore, it is possible to keep the specifications of the pressure-resistant structure of the cell at a low cost while ensuring safety.

また金属筐体で覆われた蓄電モジュールを、他の蓄電モジュールやシステムの筐体と電気的に絶縁した状態で配置することにより、金属筐体を介して短絡するセル間にかかる電圧を低減することができる。またセルを収容している電池缶と金属筐体間に絶縁材を挟んだり、電池缶と金属筐体間の距離を大きくすることによっても、金属筐体を介して短絡するセル間にかかる電圧を低減することができる。これらの対策を施すことにより、浸水に対する安全性をさらに高めることができる。   In addition, by disposing the power storage module covered with the metal casing in a state of being electrically insulated from other power storage modules and the system casing, the voltage applied between the cells that are short-circuited through the metal casing is reduced. be able to. In addition, the voltage applied between the cells that are short-circuited through the metal housing can be increased by sandwiching an insulating material between the battery can containing the cell and the metal housing, or by increasing the distance between the battery can and the metal housing. Can be reduced. By taking these measures, safety against flooding can be further enhanced.

以上、本発明を実施の形態をもとに説明した。これら実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。   The present invention has been described based on the embodiments. These embodiments are exemplifications, and it will be understood by those skilled in the art that various modifications can be made to combinations of the respective constituent elements and processing processes, and such modifications are within the scope of the present invention. is there.

上述の実施の形態では、直列接続される複数の蓄電モジュールが4個の例を説明したが、5個以上の場合にも適用可能である。例えば、複数の蓄電モジュールが8個の場合、2個ずつに分割する位置に正極側コンタクタRY1、ヒューズF1及び負極側コンタクタRY2がそれぞれ配置される。また複数の蓄電モジュールが6個の場合、2個、1個、2個、1個に分割する位置に正極側コンタクタRY1、ヒューズF1及び負極側コンタクタRY2がそれぞれ配置される。また複数の蓄電モジュールが7個の場合、2個、2個、2個、1個に分割する位置に正極側コンタクタRY1、ヒューズF1及び負極側コンタクタRY2がそれぞれ配置される。   In the above-described embodiment, an example in which a plurality of power storage modules connected in series is four has been described. However, the present invention can also be applied to a case of five or more. For example, when the plurality of power storage modules is eight, the positive electrode side contactor RY1, the fuse F1, and the negative electrode side contactor RY2 are respectively arranged at the positions divided into two. When there are six power storage modules, the positive electrode side contactor RY1, the fuse F1, and the negative electrode side contactor RY2 are respectively arranged at positions where the battery module is divided into two, one, two, and one. Further, when the plurality of power storage modules is seven, the positive contactor RY1, the fuse F1, and the negative contactor RY2 are respectively arranged at the positions divided into two, two, two, and one.

また上述の実施の形態では制御回路20を、正極側コンタクタRY1及び負極側コンタクタRY2より1段低い位置に設置する例を説明したが、当該位置に水没センサを設置することにより、正極側コンタクタRY1及び負極側コンタクタRY2と同じ高さに設置してもよい。当該水没センサは水没を検知すると制御回路20に検知信号を出力し、制御回路20は当該検知信号を受信すると、正極側コンタクタRY1及び負極側コンタクタRY2を開く。   In the above-described embodiment, the example in which the control circuit 20 is installed at a position one step lower than the positive contactor RY1 and the negative contactor RY2 has been described. However, by installing a submergence sensor at the position, the positive contactor RY1 is provided. And you may install in the same height as the negative electrode side contactor RY2. When the submergence sensor detects submergence, it outputs a detection signal to the control circuit 20, and when receiving the detection signal, the control circuit 20 opens the positive contactor RY1 and the negative contactor RY2.

また上述の実施の形態では電源システム1を車両用電源装置に利用する例を想定したが、車載用途に限らず、航空用電源装置、船舶用電源装置、定置型蓄電システム等、他の用途にも利用可能である。   Moreover, although the example which uses the power supply system 1 for a vehicle power supply device was assumed in the above-mentioned embodiment, it is not limited to a vehicle-mounted application, but for other uses such as an aircraft power supply device, a ship power supply device, a stationary power storage system, etc. Is also available.

なお、実施の形態は、以下の項目によって特定されてもよい。   The embodiment may be specified by the following items.

[項目1]
直列接続された複数の蓄電モジュール(11−14)と、
前記複数の蓄電モジュール(11−14)を直列に接続する経路上において、前記複数の蓄電モジュール(11−14)を第1グループと第2グループに分割する位置に挿入されるヒューズ(F1)と、
前記第1グループに属する複数の蓄電モジュール(11、12)を第1サブグループと第2サブグループに分割する位置に挿入される正極側コンタクタ(RY1)と、
前記第2グループに属する複数の蓄電モジュール(13、14)を第1サブグループと第2サブグループに分割する位置に挿入される負極側コンタクタ(RY2)と、
を備えることを特徴とする電源システム(1)。
これによれば、浸水によるセル短絡時において、セル間にかかる電圧を低減することができる。
[項目2]
前記複数の蓄電モジュール(11−14)を略4等分する位置に、前記正極側コンタクタ(RY1)、前記ヒューズ(F1)、及び前記負極側コンタクタ(RY2)がそれぞれ挿入されることを特徴とする項目1に記載の電源システム(1)。
これによれば、浸水によるセル短絡時において、セル間にかかる最大電圧を略1/4に低減することができる。
[項目3]
前記複数の蓄電モジュール(11−14)の両端と、外部の負荷(3)を接続するためのコネクタ(30)をさらに備え、
本電源システム(1)の規定の設置状態において、前記コネクタ(30)は、前記ヒューズ(F1)より低い位置に設置されることを特徴とする項目1または2に記載の電源システム(1)。
これによれば、コネクタ(30)が浸水した時点で、ヒューズ(F1)が正常に溶断する状態にあることを担保することができる。
[項目4]
前記正極側コンタクタ(RY1)及び前記負極側コンタクタ(RY2)を制御する制御回路(20)をさらに備え、
本電源システム(1)の規定の設置状態において、前記コネクタ(30)が最も下側に設置され、前記制御回路(20)が次に下側に設置され、前記ヒューズ(F1)、前記正極側コンタクタ(RY1)及び前記負極側コンタクタ(RY2)が最も上側に設置されることを特徴とする項目3に記載の電源システム(1)。
これによれば、ヒューズ(F1)の溶断タイミングと、正極側コンタクタ(RY1)及び負極側コンタクタ(RY2)が開くタイミングに時間差を発生させることができる。
[項目5]
前記複数の蓄電モジュール(11−14)はそれぞれ、本電源システム(1)の規定の設置状態において、上面に電極が配置される向きに設置され、
前記ヒューズ(F1)、前記正極側コンタクタ(RY1)及び前記負極側コンタクタ(RY2)は、前記複数の蓄電モジュール(11−14)の電極と、略水平な位置に設置されることを特徴とする項目4に記載の電源システム(1)。
これによれば、蓄電モジュール(11−14)の電極、ヒューズ(F1)、正極側コンタクタ(RY1)及び負極側コンタクタ(RY2)の浸水を遅らせることができ、ヒューズ(F1)、正極側コンタクタ(RY1)及び負極側コンタクタ(RY2)による遮断機構を、浸水後できるだけ長く正常に保つことができる。
[Item 1]
A plurality of power storage modules (11-14) connected in series;
A fuse (F1) inserted at a position dividing the plurality of power storage modules (11-14) into a first group and a second group on a path connecting the plurality of power storage modules (11-14) in series; ,
A positive contactor (RY1) inserted at a position where the plurality of power storage modules (11, 12) belonging to the first group are divided into a first subgroup and a second subgroup;
A negative contactor (RY2) inserted at a position where the plurality of power storage modules (13, 14) belonging to the second group are divided into a first subgroup and a second subgroup;
A power supply system (1) comprising:
According to this, when a cell is short-circuited due to water immersion, the voltage applied between the cells can be reduced.
[Item 2]
The positive electrode side contactor (RY1), the fuse (F1), and the negative electrode side contactor (RY2) are respectively inserted at positions where the plurality of power storage modules (11-14) are divided into approximately four equal parts. The power supply system (1) according to item 1.
According to this, when the cell is short-circuited due to water immersion, the maximum voltage applied between the cells can be reduced to approximately 1/4.
[Item 3]
A connector (30) for connecting both ends of the plurality of power storage modules (11-14) and an external load (3);
3. The power supply system (1) according to item 1 or 2, wherein the connector (30) is installed at a position lower than the fuse (F1) in a prescribed installation state of the power supply system (1).
According to this, when the connector (30) is submerged, it can be ensured that the fuse (F1) is normally blown out.
[Item 4]
A control circuit (20) for controlling the positive contactor (RY1) and the negative contactor (RY2);
In the specified installation state of the power supply system (1), the connector (30) is installed on the lowermost side, the control circuit (20) is installed on the lower side, the fuse (F1), and the positive electrode side. The power supply system (1) according to item 3, wherein the contactor (RY1) and the negative electrode side contactor (RY2) are installed on the uppermost side.
According to this, a time difference can be generated between the fusing timing of the fuse (F1) and the opening timing of the positive contactor (RY1) and the negative contactor (RY2).
[Item 5]
Each of the plurality of power storage modules (11-14) is installed in a direction in which electrodes are arranged on the upper surface in a prescribed installation state of the power supply system (1),
The fuse (F1), the positive electrode side contactor (RY1), and the negative electrode side contactor (RY2) are installed at substantially horizontal positions with the electrodes of the plurality of power storage modules (11-14). Item 5. The power supply system (1) according to item 4.
According to this, it is possible to delay the flooding of the electrodes, the fuse (F1), the positive contactor (RY1) and the negative contactor (RY2) of the power storage module (11-14), and the fuse (F1), the positive contactor ( The shut-off mechanism by RY1) and the negative electrode side contactor (RY2) can be kept normal as long as possible after flooding.

1 電源システム、 2 インバータ、 3 モータ、 11 第1蓄電モジュール、 12 第2蓄電モジュール、 13 第3蓄電モジュール、 14 第4蓄電モジュール、 RY1 正極側コンタクタ、 RY2 負極側コンタクタ、 RY3 プリチャージコンタクタ、 R1 プリチャージ抵抗、 CT1 電流センサ、 F1 ヒューズ、 20 制御回路、 30 コネクタ。   DESCRIPTION OF SYMBOLS 1 Power supply system, 2 Inverter, 3 Motor, 11 1st electrical storage module, 12 2nd electrical storage module, 13 3rd electrical storage module, 14 4th electrical storage module, RY1 Positive side contactor, RY2 Negative side contactor, RY3 Precharge contactor, R1 Precharge resistor, CT1 current sensor, F1 fuse, 20 control circuit, 30 connector.

Claims (5)

直列接続された複数の蓄電モジュールと、
前記複数の蓄電モジュールを直列に接続する経路上において、前記複数の蓄電モジュールを第1グループと第2グループに分割する位置に挿入されるヒューズと、
前記第1グループに属する複数の蓄電モジュールを第1サブグループと第2サブグループに分割する位置に挿入される正極側コンタクタと、
前記第2グループに属する複数の蓄電モジュールを第1サブグループと第2サブグループに分割する位置に挿入される負極側コンタクタと、
を備えることを特徴とする電源システム。
A plurality of power storage modules connected in series;
On the path connecting the plurality of power storage modules in series, a fuse inserted at a position dividing the plurality of power storage modules into a first group and a second group;
A positive contactor inserted into a position where the plurality of power storage modules belonging to the first group are divided into a first subgroup and a second subgroup;
A negative contactor inserted into a position where the plurality of power storage modules belonging to the second group are divided into a first subgroup and a second subgroup;
A power supply system comprising:
前記複数の蓄電モジュールを略4等分する位置に、前記正極側コンタクタ、前記ヒューズ、及び前記負極側コンタクタがそれぞれ挿入されることを特徴とする請求項1に記載の電源システム。   2. The power supply system according to claim 1, wherein the positive electrode side contactor, the fuse, and the negative electrode side contactor are respectively inserted into positions where the plurality of power storage modules are divided into approximately four equal parts. 前記複数の蓄電モジュールの両端と、外部の負荷を接続するためのコネクタをさらに備え、
本電源システムの規定の設置状態において、前記コネクタは、前記ヒューズより低い位置に設置されることを特徴とする請求項1または2に記載の電源システム。
Further comprising both ends of the plurality of power storage modules, and a connector for connecting an external load,
The power supply system according to claim 1, wherein the connector is installed at a position lower than the fuse in a prescribed installation state of the power supply system.
前記正極側コンタクタ及び前記負極側コンタクタを制御する制御回路をさらに備え、
本電源システムの規定の設置状態において、前記コネクタが最も下側に設置され、前記制御回路が次に下側に設置され、前記ヒューズ、前記正極側コンタクタ及び前記負極側コンタクタが最も上側に設置されることを特徴とする請求項3に記載の電源システム。
A control circuit for controlling the positive contactor and the negative contactor;
In the specified installation state of the power supply system, the connector is installed on the lowermost side, the control circuit is installed on the lower side, and the fuse, the positive contactor and the negative contactor are installed on the uppermost side. The power supply system according to claim 3.
前記複数の蓄電モジュールはそれぞれ、本電源システムの規定の設置状態において、上面に電極が配置される向きに設置され、
前記ヒューズ、前記正極側コンタクタ及び前記負極側コンタクタは、前記複数の蓄電モジュールの電極と、略水平な位置に設置されることを特徴とする請求項4に記載の電源システム。
Each of the plurality of power storage modules is installed in a direction in which electrodes are arranged on the upper surface in a prescribed installation state of the power supply system,
5. The power supply system according to claim 4, wherein the fuse, the positive electrode side contactor, and the negative electrode side contactor are installed at substantially horizontal positions with respect to the electrodes of the plurality of power storage modules.
JP2017549975A 2015-11-11 2016-10-26 Power system Pending JPWO2017081846A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015221292 2015-11-11
JP2015221292 2015-11-11
PCT/JP2016/004697 WO2017081846A1 (en) 2015-11-11 2016-10-26 Power supply system

Publications (1)

Publication Number Publication Date
JPWO2017081846A1 true JPWO2017081846A1 (en) 2018-08-23

Family

ID=58696055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017549975A Pending JPWO2017081846A1 (en) 2015-11-11 2016-10-26 Power system

Country Status (4)

Country Link
US (1) US10658853B2 (en)
JP (1) JPWO2017081846A1 (en)
CN (1) CN108391456B (en)
WO (1) WO2017081846A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2902748T3 (en) 2016-11-30 2022-03-29 Bombardier Recreational Products Inc Electrical system and method of energizing the electrical system
KR102176100B1 (en) * 2017-05-23 2020-11-09 엘에스일렉트릭(주) Power converting apparatus
JP7038017B2 (en) * 2018-07-13 2022-03-17 三菱重工業株式会社 Explosion-proof equipment
CN109494330A (en) * 2018-12-07 2019-03-19 蜂巢能源科技有限公司 Power battery pack and vehicle with it
CN112124112A (en) * 2019-06-25 2020-12-25 比亚迪股份有限公司 Electric automobile and power battery charging and temperature maintaining control method and system
GB2590464B (en) * 2019-12-19 2022-06-08 Dyson Technology Ltd Battery pack
JP7296896B2 (en) * 2020-01-28 2023-06-23 ニチコン株式会社 storage system
CN113013955A (en) * 2021-04-09 2021-06-22 武汉中原长江科技发展有限公司 Airborne power supply mounting frame with protection circuit
WO2024127601A1 (en) * 2022-12-15 2024-06-20 日産自動車株式会社 Battery pack
WO2024180985A1 (en) * 2023-02-27 2024-09-06 パナソニックエナジー株式会社 Power supply device, output cut-off method therefor, and manufacturing method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007919A (en) 2002-05-31 2004-01-08 Fuji Heavy Ind Ltd Battery circuit cut-off device for vehicle with high voltage battery
US20080157718A1 (en) * 2006-12-19 2008-07-03 Honda Motor Co., Ltd. Voltage monitor circuit
JP5258348B2 (en) 2008-03-27 2013-08-07 三洋電機株式会社 Power supply for vehicle
JP5274110B2 (en) * 2008-05-29 2013-08-28 三洋電機株式会社 Power supply for vehicle
JP5486780B2 (en) * 2008-07-01 2014-05-07 株式会社日立製作所 Battery system
JP5319224B2 (en) * 2008-09-25 2013-10-16 株式会社東芝 Assembled battery system
JP5675045B2 (en) * 2008-11-26 2015-02-25 三洋電機株式会社 Battery system
JP5401239B2 (en) 2009-09-29 2014-01-29 株式会社日立製作所 Battery control device
JP5650600B2 (en) * 2011-06-30 2015-01-07 本田技研工業株式会社 Vehicle waterproof structure
EP2773011B1 (en) * 2011-10-24 2016-12-28 Toyota Jidosha Kabushiki Kaisha Electricity-storage system
US9041243B2 (en) 2011-12-09 2015-05-26 Honda Motor Co., Ltd. Power control apparatus
CN203761082U (en) * 2014-01-15 2014-08-06 苏州市博得立电源科技有限公司 Novel topological structure used for multi-output type mobile power source

Also Published As

Publication number Publication date
CN108391456B (en) 2021-06-22
CN108391456A (en) 2018-08-10
US20190181664A1 (en) 2019-06-13
US10658853B2 (en) 2020-05-19
WO2017081846A1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
WO2017081846A1 (en) Power supply system
US10026948B2 (en) Safety element for battery cell
CN109649216B (en) Automatic connection of drive battery
KR102224592B1 (en) Battery pack of matrix structure for electromobile
CN104935026B (en) Battery cell arrangement with battery cells and current limiting circuit and corresponding method
US20190184849A1 (en) Charging device for electric vehicle
CN109874353B (en) Safety method, device for implementing the safety method and hybrid or electric vehicle
US20140339892A1 (en) Disconnection unit for disconnecting a battery from a power system and a motor vehicle having a lithium-ion battery
CN103904285B (en) The safety device of Vehicular battery module
CN107406044A (en) Vehicle power source device
CN102646796A (en) Electricity storage module
EP2930771B1 (en) Rechargeable battery
KR20170000404U (en) Battery disconnect unit
KR102161639B1 (en) Battery system and method for the operation thereof
WO2014122904A1 (en) Cell system
KR20130003381A (en) Battery cell protection device of eco-friendly vehicle
WO2022009639A1 (en) Electric power distribution module
EP2840405A1 (en) In-vehicle power supply apparatus
JP2016134962A (en) Power storage system
KR102531176B1 (en) Power distribution unit for electric vehicle
JP2017158268A (en) Power supply system
JP2012074338A (en) Power storage device
WO2016157405A1 (en) Electricity storage device for vehicle
KR102042569B1 (en) Protection circuit and protection circuit control method
JP2014048281A (en) Electric power unit and failure detection circuit