WO2014122868A1 - Optical member fabrication method, optical member, lens fabrication method, and lens - Google Patents

Optical member fabrication method, optical member, lens fabrication method, and lens Download PDF

Info

Publication number
WO2014122868A1
WO2014122868A1 PCT/JP2013/084569 JP2013084569W WO2014122868A1 WO 2014122868 A1 WO2014122868 A1 WO 2014122868A1 JP 2013084569 W JP2013084569 W JP 2013084569W WO 2014122868 A1 WO2014122868 A1 WO 2014122868A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
resin
optical member
substrate
lens
Prior art date
Application number
PCT/JP2013/084569
Other languages
French (fr)
Japanese (ja)
Inventor
勝己 古田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201380072320.1A priority Critical patent/CN104969096B/en
Priority to JP2014560655A priority patent/JP6198016B2/en
Publication of WO2014122868A1 publication Critical patent/WO2014122868A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/40Plastics, e.g. foam or rubber
    • B29C33/405Elastomers, e.g. rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00278Lenticular sheets
    • B29D11/00307Producing lens wafers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Definitions

  • the present invention relates to a method for manufacturing an optical member, an optical member, a method for manufacturing a lens, and a lens, and in particular, a method for manufacturing an optical member capable of mass production at a low cost, a method for manufacturing a lens, and an optical member obtained thereby. , Relating to lenses.
  • a large number of lenses such as thousands, are used as a lens material by using an energy curable resin such as a UV curable resin that does not require heating equipment and is cured in a short time by irradiation with UV light.
  • an energy curable resin such as a UV curable resin that does not require heating equipment and is cured in a short time by irradiation with UV light.
  • a shift to a manufacturing method for molding is being sought.
  • an energy curable resin is dropped on a parallel plate such as a glass substrate, and the mold is pressed and cured in the mold to form a plurality of lenses at once. After that, a large number of lenses were manufactured by cutting into individual lenses (see Patent Document 1).
  • JP 2012-111131 A Japanese Patent Laid-Open No. 2002-187135
  • the lens can be mass-produced at a low cost, but the axial thickness of the lens increases by the thickness of the glass substrate, which may hinder the compactness of the imaging device and the like. Further, the lens may be peeled off from the glass substrate after molding. As one measure for avoiding such a problem, it is conceivable to mold a large number of lenses in a lump using only an energy curable resin. However, when the substrate is not used, the resin and the mold are in full contact with each other. Therefore, when the number of lenses is increased, the contact area between the mold and the molded product is remarkably increased and the mold release resistance is increased. Mold defects are likely to occur.
  • Patent Document 2 proposes a method for manufacturing a lens sheet using a mold made of an additional silicon resin. More specifically, after applying a resin for lenses (ultraviolet curable resin or electron beam curable resin) to the base material, and overlaying the resin mold made of addition type silicon resin lined with a plastic plate, pressing with a roller, The resin is cured and the resin mold is released together with the plastic plate.
  • a plastic plate and a resin mold made of an additional silicon resin are bent together and released. This is expected to facilitate release from the lens sheet.
  • a substrate that facilitates bending is used, another problem is that the thickness of the resin to be molded tends to be non-uniform during pressing, making it difficult to control the thickness of the lens sheet with the required thickness. Occurs.
  • the present invention has been made in view of the problems of the prior art, and an optical member and a lens manufacturing method capable of mass-producing high-precision optical members and lenses at low cost, an optical member manufactured thereby, and The object is to provide a lens.
  • the method for producing an optical member according to claim 1 is a method for producing an optical member having at least a plurality of lenses arranged in a row.
  • a first mold obtained by adhering an elastic first resin mold having a first transfer surface for transferring a first optical surface of the plurality of lenses to a hard first substrate;
  • a second mold obtained by bringing a second resin mold having elasticity with a second transfer surface for transferring the second optical surfaces of a plurality of lenses into close contact with a hard second substrate, energy
  • a resin curing step of forming a molded body by curing by applying energy to the energy curable resin interposed between the first mold and the second mold;
  • a mold release step of releasing the first mold and the second mold from the molded body to obtain the optical member, In the mold release step, for at least one of the first mold and the second mold, after releasing the hard substrate from the resin mold having elasticity, the mold is released
  • Energy curable resins generally have a low viscosity, so when performing molding using an elastic resin mold as a mold, there is little risk of deforming the transfer surface during clamping, and high-precision transfer molding can be performed. it can.
  • the two resin molds can be accurately adjusted to each other using these substrates, and the thickness of the molded product can be controlled as intended.
  • the elastic resin mold can be peeled off from the molded product while being bent. By releasing the mold while bending the mold, the molded product and the resin mold are released linearly, so that the release resistance can be reduced. Therefore, even when molding an optical member in which a plurality of lenses are arranged and the mold release resistance tends to be high due to the uneven shape, the mold can be easily released without degrading the accuracy of the lens.
  • the optical member molding method according to the first aspect of the invention, wherein the releasing step is performed after the substrate is peeled from the resin mold for one of the first mold and the second mold.
  • the first mold release step for releasing the resin mold from the molded body while bending the resin mold from which the substrate has been peeled, and the other of the first mold and the second mold after the first mold release process.
  • the optical member manufacturing method according to the second aspect of the invention, wherein the mold release step is the molded product obtained by releasing the first resin mold after the first mold release step.
  • the method further includes a step of attaching a removable sheet to the surface.
  • the molding is performed after the first mold release step, by attaching a removable sheet to the surface of the molded product from which the first resin mold has been released, in the second mold release step. It is possible to prevent the optical surface of the object from being damaged or the lens from being dissipated by inadvertent separation during mold release. Further, even after the second mold release step is completed, the optical member and the sheet can be handled as a unit, and the workability and transportability are excellent.
  • the method for molding an optical member according to the second aspect of the invention wherein the mold release step is performed by releasing the first resin mold after the first mold release step.
  • the method further includes a step of attaching to the molded body a support member that supports a portion between adjacent lenses on the surface.
  • the second mold releasing step it is possible to prevent the optical surface of the molded product from being damaged, or the lens from being dissipated inadvertently during the mold release.
  • the optical member molding method according to any one of the first to fourth aspects, wherein the mold releasing step is performed in the hard portion of at least one of the first mold and the second mold.
  • the mold releasing step is performed in the hard portion of at least one of the first mold and the second mold.
  • the substrate By supplying a gas (for example, air) between the substrate and the resin mold, the substrate can be easily peeled from the resin mold.
  • a gas for example, air
  • the optical member molding method according to any one of the first to fifth aspects, wherein the first resin mold and the second resin are used for manufacturing the optical member. At least one of the molds is used when manufacturing another optical member.
  • the resin mold having elasticity is easy to be peeled off by bending, and has a small mold release resistance at the time of mold release. Therefore, even when it is repeatedly used for molding, there is little wear and damage and excellent durability. Therefore, by repeatedly using the same resin mold, optical members and lenses having the same shape can be produced in large quantities, and as a result, the cost can be significantly reduced.
  • the optical member molding method according to any one of the first to sixth aspects, wherein a spacer is provided between the first substrate and the second substrate in the mold facing step. By interposing, the first resin mold and the second resin mold are kept at a predetermined interval.
  • both the first resin mold and the second resin mold have elasticity, it is difficult to accurately adjust the gap between them by a method such as directly interposing a spacer, but both are hard.
  • a method such as directly interposing a spacer, but both are hard.
  • the method for molding an optical member according to claim 8 is the invention according to any one of claims 1 to 7, wherein the thickness of at least one of the first resin mold and the second resin mold is 100 ⁇ m. It is 10 mm or less.
  • the thickness of at least one of the first resin mold and the second resin mold is 100 ⁇ m or more, a sufficient lens shape can be transferred, and if it is 10 mm or less, release from the molded product becomes easy. .
  • the method for molding an optical member according to claim 9 is the method according to any one of claims 1 to 8, wherein the mold facing step positions the first mold and the second mold in a direction perpendicular to the mold clamping.
  • the method further includes the step of:
  • the method for molding an optical member according to claim 10 is the invention according to any one of claims 1 to 9, wherein at least one of the first resin mold and the second resin mold is a silicone resin or fluorine. It consists of resin.
  • the optical member molding method according to an eleventh aspect is characterized in that, in the invention according to the fourth aspect, the support member includes an air adsorbing portion that supports the molded product by air adsorption.
  • optical member according to claim 12 is manufactured by the optical member manufacturing method according to any one of claims 1 to 11.
  • the method for manufacturing a lens according to claim 13 is such that the optical members obtained by the manufacturing method according to any of claims 1 to 11 are one by one when viewed from the lens optical axis direction, or It is characterized by comprising a singulation process for dividing into multiple pieces when viewed from the lens optical axis direction.
  • the lens according to claim 14 is manufactured by the lens manufacturing method according to claim 13.
  • an optical member and a lens manufacturing method capable of mass-producing a highly accurate lens at low cost, and an optical member and a lens manufactured thereby.
  • (A) is sectional drawing of the optical member which has two or more Fresnel lenses concerning a modification
  • (b) is sectional drawing shown in the state which separated the Fresnel lens into pieces. It is a figure which shows the positioning method concerning 3rd Embodiment.
  • (A)-(c) is a figure which shows the example of an alignment mark.
  • (A)-(f) is a figure which shows the process of manufacturing a lens array with both spherical surfaces using a resin type
  • FIGS. 1A to 1D are schematic external views of an optical member and a lens according to the first embodiment.
  • the optical member OE includes a plurality of lenses LS each having a curved first optical surface OP1 and a flat second optical surface OP2 arranged in a two-dimensional manner. It is composed of a single resin.
  • the lens LS has the optical member OE of FIGS. 1A and 1B so that it has a single optical surface when viewed from the optical axis direction. Each lens is obtained by dividing into individual pieces (for example, dicing).
  • the optical member OE may be a lens array in which lenses LS are arranged in an array (two-dimensionally) or may be arranged in only one row (one-dimensionally). Also, the lens LS may be a lens in which a plurality of lenses are arranged as viewed from the optical axis direction.
  • an energy curable resin that is cured by applying energy is used.
  • resins include resins.
  • a UV curable resin that is cured by irradiation with UV light is preferable.
  • the energy curable resin before curing is generally low in viscosity, but as will be described later, from the viewpoint of molding with an elastic resin mold, it is particularly 10 mPa ⁇ s to 1000 mPa ⁇ s in the state before curing. What has a viscosity is preferable.
  • the optical member OE and the lens LS are used as an imaging optical system built in a thin portable electronic device.
  • a lens composed of a single lens as viewed from the optical axis direction for example, in the case of a lens used in an imaging optical system in combination with other lenses, or a lens in which a plurality of lenses are arranged as viewed from the optical axis direction, for example, It can be used in an optical system for a compound eye imaging device that combines a plurality of captured images to obtain a single image.
  • FIGS. 2 and 3 are diagrams showing the lens manufacturing process. A manufacturing process of a lens array as an optical member will be described with reference to FIGS.
  • a master material MM is manufactured by cutting a base material made of hard metal such as super steel or ceramic.
  • the mother optical surface MM1 which is the optical surface shape of the final lens is formed in an array, and a positioning wall portion MM2 is formed around the mother optical surface MM1.
  • a resin material for the resin mold is placed in the master mold MM.
  • the resin used in the resin mold is excellent in moderate flexibility and surface water repellency, and when UV curable resin or the like is used as the resin for the optical member, it transmits ultraviolet rays (300 nm to 400 nm).
  • Silicone-based resins and fluorine-based resins are particularly preferable because they have moderate flexibility and release properties with respect to UV curable resins. These materials preferably have a rubber hardness after curing of 30 to 90. If the rubber hardness is high, deformation of the mold can be suppressed and high transfer accuracy can be stably maintained. However, if the rubber hardness is too high, the releasability is deteriorated. In view of ease of use and accuracy in the process, the rubber hardness is more preferably 60-80. As specific silicone resins, product names SIM240, SIM260, SIM360 manufactured by Shin-Etsu Chemical Co., Ltd. can be suitably used. The silicone resin may be a two-component mixed type or a one-component type.
  • a first silicone resin mold SM1 (first resin mold having elasticity) having a rubber hardness of 60, a width of 80 mm, and a thickness ⁇ 1 (100 ⁇ m or more and 10 mm or less) is formed.
  • the first silicone resin mold SM1 has a plurality of transfer surfaces SM1a, which are transferred from the mother optical surface MM1 and recessed in a concave shape, arranged in an array. Thereafter, as will be described later, a glass first substrate ST1 (hard first substrate) is brought into close contact with the surface opposite to the transfer surface SM1a of the silicone resin mold SM1 as will be described later. Although not shown in the drawing, through the same process, a second silicone resin type SM2 (a second elastic material having a rubber hardness of 60, a height and width of 80 mm, and a thickness ⁇ 2 (100 ⁇ m or more and 10 mm or less)) is formed. Resin mold) is formed and adhered to the second glass substrate ST2 (hard second substrate).
  • the second substrate ST2 has a through hole SM2a at a position facing the second silicone resin mold SM2.
  • the first substrate ST1 and the first silicone resin mold SM1 constitute a first mold
  • the second substrate ST2 and the second silicone resin mold SM2 constitute a second mold. If the first resin mold and the second resin mold have a thickness of 100 ⁇ m or more, a sufficient lens shape can be transferred, and if the thickness is 10 mm or less, release from the molded product becomes easy.
  • the hard substrate is preferably one having a higher hardness than an elastic resin mold and having an elastic modulus of 0.1 Gpa or more.
  • a specific material in addition to the glass used in the present embodiment, a metal such as stainless steel, an acrylic base material, and the like can be used, but when a UV curable resin is used as an energy curable resin for an optical member, Glass or acrylic that transmits UV light is preferred.
  • both the substrate and the resin mold are light transmissive, both the first mold and the second mold are light transmissive.
  • the first silicone resin mold SM1 is brought into close contact with the first substrate ST1 made of glass.
  • a glass parallel plate having a through hole ST1a at a position facing the first silicone resin mold SM1 is used as the first substrate ST1, but the parallel plate PP described above is used. It can also be used.
  • the first silicone resin mold SM1 may be gradually pressed against the first substrate ST1 by the roller RL from one end to the other end. Since the silicone resin has adhesiveness, the flat surface opposite to the transfer surface of the first resin mold SM1 comes into close contact with the flat first substrate ST1 by pressing with the roller RL.
  • the second silicone resin type SM2 (the contact surface with the UV curable resin RUV is flat) is also brought into close contact with the second substrate ST2 in the same procedure.
  • a spacer SP is disposed on the first substrate ST1 around the first silicone resin mold SM1.
  • the shape of the spacer SP and the position on the substrate ST1 are not particularly limited as long as the distance between the substrate ST1 and the substrate ST2 is appropriately maintained, and various shapes and arrangements can be adopted.
  • the spacers SP having a height ⁇ 3 are cylindrical, and are arranged at four equal intervals around the first silicone resin mold SM1, as shown in FIG. As shown in FIG. 5 (b), it is arranged at three locations around the first silicone resin mold SM1.
  • a block shape as shown in FIG. 5C may be adopted and disposed on both sides of the first silicone resin mold SM1.
  • an appropriate amount of UV curable resin RUV is dropped onto the first silicone resin mold SM1.
  • a second silicone resin type SM2 (contact surface with the UV curable resin RUV is formed in a separate step), which is in close contact with the second substrate ST2, is formed.
  • the first silicone resin type SM1 is opposed so that the UV curable resin RUV is interposed therebetween.
  • the second silicone resin mold SM2 is brought close to the substrate ST2 at a mold clamping speed of 0.01 mm / s to 1 mm / s until it abuts against the spacer SP (mold facing step).
  • the mold is clamped at a relatively slow speed of about 0.01 mm / s to 1 mm / s, it is easy to suppress the mixing of bubbles.
  • the gap between the first substrate ST1 and the second substrate ST2 is detected by using a sensor or the like to detect the position of the surface of the substrate in close contact with the silicone resin mold or the silicone resin mold, instead of using a spacer.
  • the thickness accuracy may be mechanically obtained by feeding back to a support mechanism having a drive mechanism incorporating a servo motor, a stepping motor, etc., and controlling the position of the mold.
  • a lens array LA having a plurality of lenses LS is formed as a molded body (resin curing step).
  • the UV light irradiation may be performed from either the second mold side or the first mold side, or from both sides.
  • FIGS. 3 (e) and 3 (f) Thereafter, a first release step shown in FIGS. 3 (e) and 3 (f), a second release step comprising the steps of FIGS. 3 (g) and 3 (i), and FIG. 3 (h).
  • the mold release process including the attachment process of the detachable sheet
  • the second substrate ST2 is peeled from the second silicone resin mold SM2.
  • the gas is filled between the second silicone resin type SM2 and the second substrate ST2, and the second silicone resin.
  • the second substrate ST2 is easily peeled off from the mold SM2.
  • Factory air or the like is used as the gas to be supplied.
  • the pressure is preferably about 10 KPa to 500 KPa.
  • the second silicone resin mold SM2 is peeled off from the lens array LA which is a molded body (first release step).
  • the second silicone resin mold SM2 has elasticity and is relatively soft. Therefore, the second silicone resin mold SM2 can be easily peeled off from the lens array LA by peeling it while bending from the end.
  • the molded product and the resin mold are released linearly, so that the release resistance can be reduced. Therefore, even when molding an optical member in which a plurality of lenses are arranged and the mold release resistance tends to be high due to the uneven shape, the mold can be easily released without degrading the accuracy of the lens.
  • the back surface side of the lens array LA is in close contact with the first silicone resin mold SM1, the first silicone resin mold SM1 side is hardly peeled off.
  • the first silicone resin mold SM1 and the lens array LA are integrally peeled from the first substrate ST1.
  • the air is filled between the first silicone resin mold SM1 and the first substrate ST1, and the first substrate ST1. Therefore, the first silicone resin mold SM1 is easily peeled off.
  • a detachable thin resin sheet FM (or adhesive tape) is attached to the surface of the lens array LA from which the second silicone resin mold SM2 has been peeled off, and reversed.
  • a detachable sheet By attaching a detachable sheet to the surface of the molded product from which the first resin mold has been released, the optical surface of the molded product is damaged or inadvertently released during the second mold release step described later. It is possible to prevent the lens from being dissociated into individual pieces.
  • the optical member and the sheet can be handled integrally even after the second mold release step described later is completed, and the workability and transportability are excellent.
  • the first silicone resin mold SM1 is peeled off from the lens array LA (second mold release step). Since the first silicone resin mold SM1 is relatively soft, the first silicone resin mold SM1 can be easily peeled off from the lens array LA by being peeled off while being bent from the end. At this time, since the back surface side of the lens array LA is in close contact with the sheet FM over the entire surface, it is difficult to peel off from the lens array LA. By sequentially releasing the two resin molds in this way, the release of the other resin mold can be performed in a state in which one of the resin molds is not easily peeled off from the optical member, thereby improving workability.
  • the first lens array SM1 is again brought into close contact with the first substrate ST1, and the second lens resin type SM2 is brought into close contact with the second substrate ST2 so that the next lens array is obtained. Reusable for LA molding.
  • the lens array LA formed in this way is conveyed to the next process while being stuck on the sheet FM, and is cut at the position of the arrow C in FIG. As shown in FIG. 2, the lens is divided into pieces for each lens LS. Thereafter, the sheet FM is peeled off from the lens LS and incorporated into the imaging device.
  • FIG. 6 shows a first silicone resin mold SM1 in which a raised portion SM1b having a V-shaped cross section is formed between adjacent transfer surfaces ST1a.
  • the raised portion SM1b is interposed between the lenses LS transferred by the transfer surface SM1a.
  • a plurality of V-shaped valleys (V grooves) LV corresponding to the above are formed.
  • the angle of the valley LV is preferably 20 ° to 60 °.
  • the lens array LA formed in this way can be easily separated into lenses LS in the following manner.
  • a tensile stress is generated in the lens array LA by pulling the sheet FM to both sides (or on a diagonal line), and cleaving occurs at the innermost part of the valley LV that is the most fragile. be able to.
  • bending stress can be generated in the lens array LA by bending the sheet FM to the back side, and cleaving can be caused in the innermost part of the valley LV that is the most fragile.
  • bending stress is generated in the lens array LA by extruding the sheet FM from the back of the individual lens LS, and cleaving is performed at the innermost portion of the valley groove LV that is the most fragile. Can be generated. This is suitable when the outer diameter of the lens LS is circular.
  • an optical member or a lens provided with a first optical surface having a convex curved surface and a flat second optical surface is shown.
  • the shape of the optical surface is not limited to this.
  • it may have a concave curved surface shape or an aspherical shape, or it may have a fine structure in which fine irregularities having a cross-sectional V shape or a stepped shape are repeated.
  • the above-described manufacturing method is particularly effective because release resistance generally tends to increase.
  • the lens may be used as an optical system for an auxiliary light source mounted on a portable electronic device.
  • FIGS. 9A and 9B a lens array LA having a so-called Fresnel lens FL having an optical surface on which an annular concavo-convex structure is formed may be formed.
  • FIGS. 9A and 9B show an example in which a cutting V-groove LV similar to that described in the second embodiment is provided.
  • the transfer surface SM2a for transferring the curved surface transfer surface of the lens LS is also formed in the second silicone resin mold SM2. Then, in the mold clamping step shown in FIG. 3C in the above-described embodiment, the mold clamping of the first silicone resin mold SM1 and the second silicone resin mold SM2 is performed so as to suppress the eccentricity of both surfaces of the optical surface of the lens. Positioning in the orthogonal direction is required.
  • alignment marks SM1c and SM2c are formed on the first silicone resin mold SM1 and the second silicone resin mold SM2, respectively.
  • the alignment marks SM1c and SM2c are formed with a concave or convex portion having a predetermined shape at a position different from the transfer surface at the same time when the master mold as shown in FIG. By transferring to each of the silicone resin mold SM1 and the second silicone resin mold SM2, it can be formed with high positional accuracy.
  • the shapes of the alignment marks SM1c and SM2c ones having good visibility such as a circular shape shown in FIG. 11 (a), a cross shape shown in FIG. 11 (b), and a star shape shown in FIG. 11 (c) can be arbitrarily selected. .
  • a cleaving V groove LV may be provided.
  • one mold SM1 is released as shown in FIGS. 12A and 12B, it is connected to an external air adsorption mechanism (not shown) as shown in FIG.
  • the connecting portion CT between the lenses LS of the exposed molded product is held by the standing portion (air adsorption portion) WL of the support member HLD.
  • the optical surface OP2 of the molded product is damaged or being inadvertently separated into pieces during the mold release and dissipating the lens LS in the second mold release step.
  • the hard substrate ST2 is peeled off, and the mold SM2 on the opposite side is released.
  • the lens array (optical element) LA can be obtained by removing the support member HLD from the state shown in FIG.
  • the lens LS can be separated into pieces by cleaving the obtained lens array LA with a cleaving V groove LV.
  • the molded product can be reliably supported, and the molded product can be quickly released by releasing the suction and pressure reduction after the mold release. In addition, it is difficult to reduce the speed of the manufacturing process.
  • an uncured resin is disposed in one resin mold, and then the resin is pressed by the other resin mold so that the resin is interposed between the two molds. After making two molds face each other at a predetermined interval, an uncured resin may be filled in a gap between the two molds.
  • substrate was peeled from the resin type
  • the technique of peeling is not restricted to this, For example, a wedge is bitten between a board
  • the mold is released from the second resin mold, but the mold may be released from the first resin mold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

Provided is a lens fabrication method whereby it is possible to inexpensively mass produce a high-precision lens and a lens which is fabricated thereby. By making two molds face one another in a state of rigid substrates being applied thereto, thus accurately adjusting a gap therebetween, then detaching the second rigid substrate, and thereafter peeling away the elastic second resin mold (SM2) while bending same starting at an end thereof from a lens array (LA), it is possible to easily peel the second resin mold (SM2) from the lens array (LA). Additionally, by detaching the first rigid substrate, then peeling away the elastic first resin mold (SM1) while bending same starting at an end thereof from the lens array (LA), it is possible to easily peel the first resin mold (SM1) from the lens array (LA).

Description

光学部材の製造方法、光学部材、レンズの製造方法、および、レンズOptical member manufacturing method, optical member, lens manufacturing method, and lens
 本発明は、光学部材の製造方法、光学部材、レンズの製造方法、および、レンズに関し、特に安価で大量生産が可能な光学部材の製造方法、レンズの製造方法、および、それによって得られる光学部材、レンズに関する。 The present invention relates to a method for manufacturing an optical member, an optical member, a method for manufacturing a lens, and a lens, and in particular, a method for manufacturing an optical member capable of mass production at a low cost, a method for manufacturing a lens, and an optical member obtained thereby. , Relating to lenses.
 近年、スマートフォンやタブレット型パーソナルコンピュータなどに代表される薄型の撮像装置付き携帯端末が急速に普及している。しかるに、このような薄型の携帯端末に搭載される撮像装置には、高解像度を有しながらも薄形でコンパクトであることは勿論、さらなる低価格化が求められている。従って、これらの薄型の携帯端末に搭載される撮像装置に使用されるレンズに対しても、高品質を確保しながらも、より安価で大量生産が可能なものが求められている。 In recent years, mobile terminals with thin imaging devices such as smartphones and tablet personal computers are rapidly spreading. However, an imaging device mounted on such a thin portable terminal is required to be further reduced in price as well as being thin and compact while having high resolution. Accordingly, there is a demand for lenses that can be used in imaging devices mounted on these thin portable terminals, and that can be mass-produced at lower cost while ensuring high quality.
 このような背景から、レンズの素材として、加熱設備が不要で且つUV光の照射により短時間で硬化するUV硬化性樹脂などのエネルギー硬化性樹脂を用いて、数千個といった多数のレンズを一括して成形する製造方法への転換が模索されている。このようなレンズの製造方法としては、ガラス基板などの平行平板上に、エネルギー硬化性樹脂を滴下し、成形型を押し当てて成形型内で硬化させ、一度に複数のレンズをアレイ状に形成した後、個々のレンズに切断することで、多数のレンズを製造するようにしていた(特許文献1参照)。 Against this background, a large number of lenses, such as thousands, are used as a lens material by using an energy curable resin such as a UV curable resin that does not require heating equipment and is cured in a short time by irradiation with UV light. Thus, a shift to a manufacturing method for molding is being sought. As a method for manufacturing such a lens, an energy curable resin is dropped on a parallel plate such as a glass substrate, and the mold is pressed and cured in the mold to form a plurality of lenses at once. After that, a large number of lenses were manufactured by cutting into individual lenses (see Patent Document 1).
特開2012-111131号公報JP 2012-111131 A 特開2002-187135号公報Japanese Patent Laid-Open No. 2002-187135
 ところで、特許文献1の技術では、レンズを安価で大量生産できるが、ガラス基板の厚さ分だけレンズの軸上厚さが厚くなってしまい、撮像装置等のコンパクト化を妨げる恐れがある。又、成形後にガラス基板からレンズが剥がれる恐れもある。このような問題を回避するための一つの方策として、エネルギー硬化性樹脂のみで多数のレンズを一括して成形することが考えられる。しかしながら、基板を用いない場合、樹脂と成形型とが全面的に接しているので、レンズの個数が多くなると成形型と成形物との密着面積が著しく増して離型抵抗が大きくなる結果、離型不良が発生しやすくなる。特に、ブレーズ状や階段状などの微細な凹凸構造が設けられた光学部材を製造する場合は、離型時に型や光学部材の微細な凹凸構造の破損が生じやすくなる。これを防ぐために離型処理を行おうとすると、処理が面倒であったり、製造工程が増えたり、型のメンテナンスに時間がかかってしまったりして、安価にレンズを製造することが難しくなる。 By the way, with the technique of Patent Document 1, the lens can be mass-produced at a low cost, but the axial thickness of the lens increases by the thickness of the glass substrate, which may hinder the compactness of the imaging device and the like. Further, the lens may be peeled off from the glass substrate after molding. As one measure for avoiding such a problem, it is conceivable to mold a large number of lenses in a lump using only an energy curable resin. However, when the substrate is not used, the resin and the mold are in full contact with each other. Therefore, when the number of lenses is increased, the contact area between the mold and the molded product is remarkably increased and the mold release resistance is increased. Mold defects are likely to occur. In particular, when an optical member provided with a fine concavo-convex structure such as a blazed shape or a stepped shape is produced, the fine concavo-convex structure of the mold or the optical member is liable to be damaged during mold release. If the mold release process is performed to prevent this, the process becomes troublesome, the manufacturing process increases, and it takes time to maintain the mold, making it difficult to manufacture the lens at a low cost.
 一方、離型性のよい樹脂型を用いてエネルギー硬化性樹脂の成形を行うことも提案されている。例えば、特許文献2では、付加型シリコン樹脂製の成形型を用いたレンズシートの製造方法が提案されている。より具体的には、基材にレンズ用樹脂(紫外線硬化樹脂もしくは電子線硬化樹脂)を塗布し、プラスチック板で裏打ちされた付加型シリコン樹脂製の樹脂型を重ねてからローラでプレスした後、樹脂を硬化させプラスチック板とともに樹脂型を離型するというものである。特許文献2に記載されるレンズシートの製造方法では、プラスチック板とともに付加型シリコン樹脂製の樹脂型とをともに曲げて離型させている。これにより、レンズシートから離型することが容易になることが期待される。しかしながら、曲げを容易にするような基板を用いると、プレスの際に成形対象の樹脂の厚みが不均一になりやすく、レンズシートの厚みを必要な厚みで制御することが難しくなるという別の問題が生じる。 On the other hand, it has also been proposed to mold an energy curable resin using a resin mold having good releasability. For example, Patent Document 2 proposes a method for manufacturing a lens sheet using a mold made of an additional silicon resin. More specifically, after applying a resin for lenses (ultraviolet curable resin or electron beam curable resin) to the base material, and overlaying the resin mold made of addition type silicon resin lined with a plastic plate, pressing with a roller, The resin is cured and the resin mold is released together with the plastic plate. In the method for manufacturing a lens sheet described in Patent Document 2, a plastic plate and a resin mold made of an additional silicon resin are bent together and released. This is expected to facilitate release from the lens sheet. However, if a substrate that facilitates bending is used, another problem is that the thickness of the resin to be molded tends to be non-uniform during pressing, making it difficult to control the thickness of the lens sheet with the required thickness. Occurs.
 本発明は、かかる従来技術の問題点に鑑みてなされたものであり、高精度な光学部材及びレンズを安価に大量生産できる光学部材及びレンズの製造方法、及び、それにより製造される光学部材及びレンズを提供することを目的とする。 The present invention has been made in view of the problems of the prior art, and an optical member and a lens manufacturing method capable of mass-producing high-precision optical members and lenses at low cost, an optical member manufactured thereby, and The object is to provide a lens.
 請求項1に記載の光学部材の製造方法は、少なくとも列状に並んだ複数のレンズを有する光学部材を製造する方法であって、
 前記複数のレンズの第1の光学面を転写するための第1の転写面を備えた弾性を有する第1の樹脂型を硬質な第1の基板に密着させて得られる第1型と、前記複数のレンズの第2の光学面を転写するための第2の転写面を備えた弾性を有する第2の樹脂型を硬質な第2の基板に密着させて得られる第2型とを、エネルギー硬化性樹脂を介在させて所定間隔で対向させる型対向工程と、
 前記第1型と前記第2型との間に介在する前記エネルギー硬化性樹脂にエネルギーを付与することで硬化させ成形体を形成する樹脂硬化工程と、
 前記成形体から前記第1型及び前記第2型を離型して前記光学部材を得る離型工程と、を有し、
 前記離型工程において、前記第1型及び前記第2型のうち少なくとも一方について、硬質な前記基板を、弾性を有する前記樹脂型より剥離した後、前記樹脂型を曲げながら前記成形体より離型することを特徴とする。
The method for producing an optical member according to claim 1 is a method for producing an optical member having at least a plurality of lenses arranged in a row.
A first mold obtained by adhering an elastic first resin mold having a first transfer surface for transferring a first optical surface of the plurality of lenses to a hard first substrate; A second mold obtained by bringing a second resin mold having elasticity with a second transfer surface for transferring the second optical surfaces of a plurality of lenses into close contact with a hard second substrate, energy A mold facing step in which a curable resin is interposed to face each other at a predetermined interval;
A resin curing step of forming a molded body by curing by applying energy to the energy curable resin interposed between the first mold and the second mold;
A mold release step of releasing the first mold and the second mold from the molded body to obtain the optical member,
In the mold release step, for at least one of the first mold and the second mold, after releasing the hard substrate from the resin mold having elasticity, the mold is released from the molded body while bending the resin mold. It is characterized by doing.
 エネルギー硬化性樹脂は一般的に粘度が低いので、弾性を有する樹脂型を成形型として成形を行う際に、型締め時に転写面形状を変形させる恐れが少なく、高精度な転写成形を行うことができる。又、2つの硬質な基板を用いているので、これらの基板を利用して2つの樹脂型の相互の正確な位置調整を行うことができ、成形物の厚みを狙い通りに制御することができる。しかも、離型時には少なくとも一方の樹脂型から硬質な基板を剥離することで、弾性を有する樹脂型を曲げながら成形物から引きはがすことができる。型を曲げながら離型することで、成形物と樹脂型とが線状に離型するので、離型抵抗を小さくできる。よって、レンズが複数個並び、その凹凸形状により離型抵抗が高くなりがちな光学部材の成形であっても、レンズの精度を劣化させることなく容易に離型することが出来る。 Energy curable resins generally have a low viscosity, so when performing molding using an elastic resin mold as a mold, there is little risk of deforming the transfer surface during clamping, and high-precision transfer molding can be performed. it can. In addition, since two hard substrates are used, the two resin molds can be accurately adjusted to each other using these substrates, and the thickness of the molded product can be controlled as intended. . Moreover, at the time of mold release, by peeling the hard substrate from at least one resin mold, the elastic resin mold can be peeled off from the molded product while being bent. By releasing the mold while bending the mold, the molded product and the resin mold are released linearly, so that the release resistance can be reduced. Therefore, even when molding an optical member in which a plurality of lenses are arranged and the mold release resistance tends to be high due to the uneven shape, the mold can be easily released without degrading the accuracy of the lens.
 請求項2に記載の光学部材の成形方法は、請求項1に記載の発明において、前記離型工程は、前記第1型及び第2型の一方について、前記基板を前記樹脂型より剥離した後、前記基板を剥離された前記樹脂型を曲げながら前記成形体より離型する第1離型工程と、前記第1離型工程後に、前記第1型及び第2型の他方について、前記基板を前記樹脂型より剥離した後、前記基板を剥離された前記樹脂型を曲げながら前記成形体より離型する第2離型工程と、からなることを特徴とする。 According to a second aspect of the present invention, there is provided the optical member molding method according to the first aspect of the invention, wherein the releasing step is performed after the substrate is peeled from the resin mold for one of the first mold and the second mold. The first mold release step for releasing the resin mold from the molded body while bending the resin mold from which the substrate has been peeled, and the other of the first mold and the second mold after the first mold release process. And a second release step of releasing from the molded body while bending the resin mold from which the substrate has been peeled off after being peeled from the resin mold.
 これにより、両面に曲面やブレーズ形状などの複雑な光学面を有している光学部材であっても容易に離型を行い得る。 Thereby, even an optical member having a complicated optical surface such as a curved surface or a blazed shape on both sides can be easily released.
 請求項3に記載の光学部材の製造方法は、請求項2に記載の発明において、前記離型工程は、前記第1離型工程後に、前記第1の樹脂型が離型された前記成形物の面に着脱可能なシートを貼り付ける工程をさらに含むことを特徴とする。 According to a third aspect of the present invention, there is provided the optical member manufacturing method according to the second aspect of the invention, wherein the mold release step is the molded product obtained by releasing the first resin mold after the first mold release step. The method further includes a step of attaching a removable sheet to the surface.
 本発明によれば、前記第1離型工程後に、前記第1の樹脂型が離型された前記成形物の面に着脱可能なシートを貼り付けることで、前記第2離型工程において、成形物の光学面が傷ついたり、離型中に不用意に個片化してレンズが散逸したりすることを防止できる。又、第2離型工程が終了した後も、前記光学部材と前記シートとを一体で取り扱うことができ、作業性や搬送性に優れる。 According to the present invention, after the first mold release step, by attaching a removable sheet to the surface of the molded product from which the first resin mold has been released, in the second mold release step, the molding is performed. It is possible to prevent the optical surface of the object from being damaged or the lens from being dissipated by inadvertent separation during mold release. Further, even after the second mold release step is completed, the optical member and the sheet can be handled as a unit, and the workability and transportability are excellent.
 請求項4に記載の光学部材の成形方法は、請求項2に記載の発明において、前記離型工程は、前記第1離型工程後に、前記第1の樹脂型が離型された前記成形物の面の隣り合うレンズ間の部位を支持する支持部材を前記成形体に取り付ける工程をさらに含むことを特徴とする。 According to a fourth aspect of the present invention, there is provided the method for molding an optical member according to the second aspect of the invention, wherein the mold release step is performed by releasing the first resin mold after the first mold release step. The method further includes a step of attaching to the molded body a support member that supports a portion between adjacent lenses on the surface.
 これにより、前記第2離型工程において、成形物の光学面が傷ついたり、離型中に不用意に個片化してレンズが散逸したりすることを防止できる。 Thereby, in the second mold releasing step, it is possible to prevent the optical surface of the molded product from being damaged, or the lens from being dissipated inadvertently during the mold release.
 請求項5に記載の光学部材の成形方法は、請求項1~4のいずれかに記載の発明において、前記離型工程は、前記第1型及び前記第2型のうち少なくとも一方における硬質な前記基板を、弾性を有する前記樹脂型より剥離する際に、前記基板と前記樹脂型との間に気体を供給することを特徴とする。 According to a fifth aspect of the present invention, there is provided the optical member molding method according to any one of the first to fourth aspects, wherein the mold releasing step is performed in the hard portion of at least one of the first mold and the second mold. When the substrate is peeled from the elastic resin mold, gas is supplied between the substrate and the resin mold.
 前記基板と前記樹脂型との間に気体(例えば空気)を供給することにより、前記基板を前記樹脂型から剥離しやすくなる。 By supplying a gas (for example, air) between the substrate and the resin mold, the substrate can be easily peeled from the resin mold.
 請求項6に記載の光学部材の成形方法は、請求項1~5のいずれかに記載の発明において、前記光学部材を製造するために使用される前記第1の樹脂型及び前記第2の樹脂型のうち少なくとも一方は、別の光学部材を製造する際に使用されたものであることを特徴とする。 According to a sixth aspect of the present invention, there is provided the optical member molding method according to any one of the first to fifth aspects, wherein the first resin mold and the second resin are used for manufacturing the optical member. At least one of the molds is used when manufacturing another optical member.
 前記弾性を有する樹脂型は、曲げることで剥がれやすく離型時の離型抵抗も小さいため、繰り返し成形に用いても摩耗や損傷が少なく耐久性に優れる。従って、同じ樹脂型を繰り返し用いることで、同じ形状の光学部材やレンズを大量に生産することができ、結果としてコストを大幅に低く抑えることができる。 The resin mold having elasticity is easy to be peeled off by bending, and has a small mold release resistance at the time of mold release. Therefore, even when it is repeatedly used for molding, there is little wear and damage and excellent durability. Therefore, by repeatedly using the same resin mold, optical members and lenses having the same shape can be produced in large quantities, and as a result, the cost can be significantly reduced.
 請求項7に記載の光学部材の成形方法は、請求項1~6のいずれかに記載の発明において、前記型対向工程において、前記第1の基板と前記第2の基板との間にスペーサを介在させて、前記第1の樹脂型と前記第2の樹脂型とを所定間隔に保つことを特徴とする。 According to a seventh aspect of the present invention, there is provided the optical member molding method according to any one of the first to sixth aspects, wherein a spacer is provided between the first substrate and the second substrate in the mold facing step. By interposing, the first resin mold and the second resin mold are kept at a predetermined interval.
 前記第1の樹脂型と前記第2の樹脂型はともに弾性を有するものであるため、直接スペーサを接触介在するなどの手法では、両者の間隙を正確に調整することが難しいが、ともに硬質な前記第1の基板と前記第2の基板との間にスペーサを介在させることで、ともに弾性を有する前記第1の樹脂型と前記第2の樹脂型との間隔を精度良く調整できる。 Since both the first resin mold and the second resin mold have elasticity, it is difficult to accurately adjust the gap between them by a method such as directly interposing a spacer, but both are hard. By interposing a spacer between the first substrate and the second substrate, the distance between the first resin mold and the second resin mold both having elasticity can be adjusted with high accuracy.
 請求項8に記載の光学部材の成形方法は、請求項1~7のいずれかに記載の発明において、前記第1の樹脂型及び前記第2の樹脂型のうち少なくとも一方の厚さは、100μm以上10mm以下であることを特徴とする。 The method for molding an optical member according to claim 8 is the invention according to any one of claims 1 to 7, wherein the thickness of at least one of the first resin mold and the second resin mold is 100 μm. It is 10 mm or less.
 前記第1の樹脂型及び前記第2の樹脂型の少なくとも一方の厚さが100μm以上であれば、十分なレンズ形状を転写でき、10mm以下であれば、成形物からの離型が容易になる。 If the thickness of at least one of the first resin mold and the second resin mold is 100 μm or more, a sufficient lens shape can be transferred, and if it is 10 mm or less, release from the molded product becomes easy. .
 請求項9に記載の光学部材の成形方法は、請求項1~8のいずれかに記載の発明において、前記型対向工程は、前記第1型と前記第2型とを型締め直交方向に位置決めする工程を更に有することを特徴とする。 The method for molding an optical member according to claim 9 is the method according to any one of claims 1 to 8, wherein the mold facing step positions the first mold and the second mold in a direction perpendicular to the mold clamping. The method further includes the step of:
 これにより、光学面両面が曲面形状のレンズを安価に大量生産できる。 This makes it possible to mass-produce lenses with curved optical surfaces on both sides at low cost.
 請求項10に記載の光学部材の成形方法は、請求項1~9のいずれかに記載の発明において、前記第1の樹脂型及び前記第2の樹脂型の少なくとも一方は、シリコーン樹脂、またはフッ素樹脂からなることを特徴とする。 The method for molding an optical member according to claim 10 is the invention according to any one of claims 1 to 9, wherein at least one of the first resin mold and the second resin mold is a silicone resin or fluorine. It consists of resin.
 これにより、良好な柔軟性と離型性とを兼ね備えており、しかも硬質な基板への密着にも優れている。 As a result, it has both good flexibility and releasability, and also has excellent adhesion to hard substrates.
 請求項11に記載の光学部材の成形方法は、請求項4に記載の発明において、前記支持部材は、エアー吸着によって前記成形物を支持するエアー吸着部を備えることを特徴とする。 The optical member molding method according to an eleventh aspect is characterized in that, in the invention according to the fourth aspect, the support member includes an air adsorbing portion that supports the molded product by air adsorption.
 これにより、成形物を確実に支持するとともに、離型終了後は吸引や減圧を解除することで速やかに成形物を離脱させることができ、製造プロセスの速度を低下させにくい。 This makes it possible to reliably support the molded product and to quickly release the molded product by releasing the suction and decompression after the mold release is completed, and it is difficult to reduce the speed of the manufacturing process.
 請求項12に記載の光学部材は、請求項1~11のいずれかに記載の光学部材の製造方法により製造されたことを特徴とする。 The optical member according to claim 12 is manufactured by the optical member manufacturing method according to any one of claims 1 to 11.
 請求項13に記載のレンズの製造方法は、請求項1~11のいずれかに記載の製造方法によって得られる光学部材を、レンズ光軸方向からみたときに1個ずつになるように、又は、レンズ光軸方向からみたときに複数個ずつになるように、個片化する個片化工程を備えることを特徴とする。 The method for manufacturing a lens according to claim 13 is such that the optical members obtained by the manufacturing method according to any of claims 1 to 11 are one by one when viewed from the lens optical axis direction, or It is characterized by comprising a singulation process for dividing into multiple pieces when viewed from the lens optical axis direction.
 請求項14に記載のレンズは、請求項13に記載のレンズの製造方法により製造されたことを特徴とする。 The lens according to claim 14 is manufactured by the lens manufacturing method according to claim 13.
 本発明によれば、高精度なレンズを安価に大量生産できる光学部材及びレンズの製造方法、及び、それにより製造される光学部材及びレンズを提供することができる。 According to the present invention, it is possible to provide an optical member and a lens manufacturing method capable of mass-producing a highly accurate lens at low cost, and an optical member and a lens manufactured thereby.
第1の実施形態にかかる光学部材及びレンズの模式的な外観図であり、(a)(b)は、光学部材の斜視図および断面図、(c)(d)は、レンズの斜視図および断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a typical external view of the optical member and lens concerning 1st Embodiment, (a) (b) is a perspective view and sectional drawing of an optical member, (c) (d) is a perspective view of a lens, and It is sectional drawing. (a)~(c)は、マスター型より樹脂型を製作する工程を示す図である。(A)-(c) is a figure which shows the process of manufacturing a resin mold from a master type | mold. (a)~(k)は、樹脂型を用いてレンズアレイを製造する工程を示す図である。(A)-(k) is a figure which shows the process of manufacturing a lens array using a resin type | mold. 基板に樹脂型を密着させる手法を示す図であり、(a)は、基板と樹脂型とを正面から見た図であり、(b)、(c)は側面から見た図であるが、樹脂型の転写面は省略している。It is a figure which shows the method of sticking a resin mold to a substrate, (a) is a figure which looked at a board and a resin mold from the front, (b), (c) is a figure seen from the side, The resin-type transfer surface is omitted. (a)~(c)は、スペーサを配置した状態で、基板と樹脂型とを正面から見た図である。(A)-(c) is the figure which looked at the board | substrate and the resin type | mold from the front in the state which has arrange | positioned the spacer. 第2の実施形態にかかる第1の樹脂型の一部断面図である。It is a partial cross section figure of the 1st resin type concerning a 2nd embodiment. 第2の実施形態により成形されたレンズアレイの斜視図である。It is a perspective view of the lens array shape | molded by 2nd Embodiment. (a)~(c)は、第2の実施形態により成形されたレンズアレイから、レンズを個片化する手法を示す図である。(A)-(c) is a figure which shows the method of separating a lens into pieces from the lens array shape | molded by 2nd Embodiment. (a)は変形例にかかるフレネルレンズを複数個有する光学部材の断面図、(b)はフレネルレンズを個片化した状態で示す断面図である。(A) is sectional drawing of the optical member which has two or more Fresnel lenses concerning a modification, (b) is sectional drawing shown in the state which separated the Fresnel lens into pieces. 第3の実施形態にかかる位置決め方法を示す図である。It is a figure which shows the positioning method concerning 3rd Embodiment. (a)~(c)は、アライメントマークの例を示す図である。(A)-(c) is a figure which shows the example of an alignment mark. (a)~(f)は、樹脂型を用いて両面が球面状のレンズアレイを製造する工程を示す図である。(A)-(f) is a figure which shows the process of manufacturing a lens array with both spherical surfaces using a resin type | mold.
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、図面の寸法比率は、説明の都合上誇張され、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
 〈第1の実施形態〉
 図1(a)~(d)は、第1の実施形態にかかる光学部材及びレンズの模式的な外観図である。図1(a)(b)に示すように、光学部材OEは2次元状に並ぶ曲面状の第1の光学面OP1と平坦な第2の光学面OP2とを有する複数のレンズLSを備え、単一の樹脂により構成されている。また、図1(c)(d)に示すように、レンズLSは、光軸方向から見たときに単一の光学面を有するように、図1(a)(b)の光学部材OEをレンズ毎に個片化(例えばダイシング)して得られたものである。光学部材OEとしては、レンズLSをアレイ状に(2次元的に)並べたレンズアレイの他、一列にのみ(1次元的に)並べたものでもあってもよい。また、レンズLSとしても、光軸方向から見て複数のレンズが並んだものであってもよい。
<First Embodiment>
FIGS. 1A to 1D are schematic external views of an optical member and a lens according to the first embodiment. As shown in FIGS. 1A and 1B, the optical member OE includes a plurality of lenses LS each having a curved first optical surface OP1 and a flat second optical surface OP2 arranged in a two-dimensional manner. It is composed of a single resin. As shown in FIGS. 1C and 1D, the lens LS has the optical member OE of FIGS. 1A and 1B so that it has a single optical surface when viewed from the optical axis direction. Each lens is obtained by dividing into individual pieces (for example, dicing). The optical member OE may be a lens array in which lenses LS are arranged in an array (two-dimensionally) or may be arranged in only one row (one-dimensionally). Also, the lens LS may be a lens in which a plurality of lenses are arranged as viewed from the optical axis direction.
 光学部材用の樹脂としては、エネルギーを付与することで硬化するエネルギー硬化性樹脂を使用し、例えば光を付与することで硬化する光硬化性樹脂や、熱を付与することで硬化する熱硬化性樹脂等が挙げられる。特に、UV光を照射することで硬化するUV硬化性樹脂が好ましい。硬化前のエネルギー硬化性樹脂は概して粘性が低いものであるが、後述するように、弾性を有する樹脂型で成形を行う観点からは、特に、硬化前の状態で10mPa・s~1000mPa・sの粘度を有するものが好ましい。 As a resin for optical members, an energy curable resin that is cured by applying energy is used. For example, a photocurable resin that is cured by applying light, or a thermosetting that is cured by applying heat. Examples thereof include resins. In particular, a UV curable resin that is cured by irradiation with UV light is preferable. The energy curable resin before curing is generally low in viscosity, but as will be described later, from the viewpoint of molding with an elastic resin mold, it is particularly 10 mPa · s to 1000 mPa · s in the state before curing. What has a viscosity is preferable.
 これらの光学部材OEやレンズLSは、薄型の携帯電子機器に内蔵される撮像用の光学系として用いられる。光軸方向から見て単一のレンズをからなるレンズの場合、例えば、他のレンズと組み合わせて撮像用光学系に用いたり、光軸方向から見て複数のレンズが並ぶレンズの場合、例えば、複数の撮影画像を合成して一つの画像を得る複眼撮像装置用の光学系に用いたりすることができる。 The optical member OE and the lens LS are used as an imaging optical system built in a thin portable electronic device. In the case of a lens composed of a single lens as viewed from the optical axis direction, for example, in the case of a lens used in an imaging optical system in combination with other lenses, or a lens in which a plurality of lenses are arranged as viewed from the optical axis direction, for example, It can be used in an optical system for a compound eye imaging device that combines a plurality of captured images to obtain a single image.
 図2,3は、レンズの製造工程を示す図である。図2(a)~(c)を参照して、光学部材としてのレンズアレイの製造工程を説明する。 2 and 3 are diagrams showing the lens manufacturing process. A manufacturing process of a lens array as an optical member will be described with reference to FIGS.
(弾性を有する樹脂型の作製)
 まず、図2(a)に示すように、例えば、超鋼等の硬質な金属やセラミックなどからなる母材を切削加工することで、マスター型MMを製作する。マスター型MMは、最終的なレンズの光学面形状である母光学面MM1をアレイ状に並べて形成するとともに、その周囲に位置決め用の壁部MM2を形成している。次いで、樹脂型用の樹脂材料をマスター型MM内に配する。樹脂型に用いられる樹脂としては、適度な柔軟性と表面の撥水性に優れたものであるとともに、光学部材用の樹脂としてUV硬化性樹脂等を用いる場合、紫外線(300nm~400nm)の透過率が高いもの、特に90%以上の透過率を有するものが好ましい。シリコーン系樹脂やフッ素系樹脂は、適度な柔軟性とUV硬化性樹脂に対する離型性が良く、特に好ましい。これらの材料は硬化後のゴム硬度が30~90であることが好ましい。ゴム硬度が高いと型の変形が抑えられ高い転写精度を安定して保つことができるが、ゴム硬度が高すぎると離型性が悪くなる。プロセス上の使いやすさや精度を考慮すると、ゴム硬度60~80であることがより好ましい。具体的なシリコーン樹脂としては、信越化学工業株式会社製の製品名SIM240、SIM260、SIM360などを好適に用いることができる。シリコーン樹脂としては、2液混合タイプでも良いし、1液タイプでも良い。
(Production of elastic resin mold)
First, as shown in FIG. 2A, for example, a master material MM is manufactured by cutting a base material made of hard metal such as super steel or ceramic. In the master type MM, the mother optical surface MM1 which is the optical surface shape of the final lens is formed in an array, and a positioning wall portion MM2 is formed around the mother optical surface MM1. Next, a resin material for the resin mold is placed in the master mold MM. The resin used in the resin mold is excellent in moderate flexibility and surface water repellency, and when UV curable resin or the like is used as the resin for the optical member, it transmits ultraviolet rays (300 nm to 400 nm). Having a high transmittance, particularly those having a transmittance of 90% or more are preferred. Silicone-based resins and fluorine-based resins are particularly preferable because they have moderate flexibility and release properties with respect to UV curable resins. These materials preferably have a rubber hardness after curing of 30 to 90. If the rubber hardness is high, deformation of the mold can be suppressed and high transfer accuracy can be stably maintained. However, if the rubber hardness is too high, the releasability is deteriorated. In view of ease of use and accuracy in the process, the rubber hardness is more preferably 60-80. As specific silicone resins, product names SIM240, SIM260, SIM360 manufactured by Shin-Etsu Chemical Co., Ltd. can be suitably used. The silicone resin may be a two-component mixed type or a one-component type.
 ここでは、2液混合タイプのシリコーン樹脂の素材SMTを混合して脱泡処理後に、図2(b)に示すように、壁部MM2の内側に適量滴下させ、更に図2(c)に示すように、ガラス製の平行平板PPを重ねて壁部MM2に突き当たるまで降下させ、樹脂素材SMTを押圧する。この状態で電気炉に投入し、所定時間加熱した後、脱型する。これにより、ゴム硬度60,縦横80mm、厚さΔ1(100μm以上10mm以下)の第1のシリコーン樹脂型SM1(弾性を有する第1の樹脂型)が形成される。第1のシリコーン樹脂型SM1は、母光学面MM1を転写され凹状にくぼんだ複数の転写面SM1aをアレイ状に並べて有する。この後、後述するように、シリコーン樹脂型SM1の転写面SM1aとは反対側の面に後述するようにガラス製の第1の基板ST1(硬質な第1の基板)を密着させる。尚、図示していないが、同様の工程を経て、ゴム硬度60,縦横80mm、厚さΔ2(100μm以上10mm以下)の平行平板状である第2のシリコーン樹脂型SM2(弾性を有する第2の樹脂型)を形成し、ガラス製の第2の基板ST2(硬質な第2の基板)に密着させる。第2の基板ST2は、第2のシリコーン樹脂型SM2に対向する位置に貫通孔SM2aを有している。第1の基板ST1と第1のシリコーン樹脂型SM1とで第1型を構成し、第2の基板ST2と第2のシリコーン樹脂型SM2とで第2型を構成する。第1の樹脂型及び第2の樹脂型は、厚さが100μm以上であれば十分なレンズ形状を転写でき、また、10mm以下であれば成形物からの離型が容易になる。 Here, after mixing the two-component mixed type silicone resin material SMT and defoaming treatment, as shown in FIG. 2B, an appropriate amount is dropped inside the wall portion MM2, and further shown in FIG. 2C. As described above, the parallel plate PP made of glass is overlapped and lowered until it hits the wall portion MM2, and the resin material SMT is pressed. In this state, it is put into an electric furnace, heated for a predetermined time, and then demolded. Thereby, a first silicone resin mold SM1 (first resin mold having elasticity) having a rubber hardness of 60, a width of 80 mm, and a thickness Δ1 (100 μm or more and 10 mm or less) is formed. The first silicone resin mold SM1 has a plurality of transfer surfaces SM1a, which are transferred from the mother optical surface MM1 and recessed in a concave shape, arranged in an array. Thereafter, as will be described later, a glass first substrate ST1 (hard first substrate) is brought into close contact with the surface opposite to the transfer surface SM1a of the silicone resin mold SM1 as will be described later. Although not shown in the drawing, through the same process, a second silicone resin type SM2 (a second elastic material having a rubber hardness of 60, a height and width of 80 mm, and a thickness Δ2 (100 μm or more and 10 mm or less)) is formed. Resin mold) is formed and adhered to the second glass substrate ST2 (hard second substrate). The second substrate ST2 has a through hole SM2a at a position facing the second silicone resin mold SM2. The first substrate ST1 and the first silicone resin mold SM1 constitute a first mold, and the second substrate ST2 and the second silicone resin mold SM2 constitute a second mold. If the first resin mold and the second resin mold have a thickness of 100 μm or more, a sufficient lens shape can be transferred, and if the thickness is 10 mm or less, release from the molded product becomes easy.
 硬質な基板としては、弾性を有する樹脂型より硬度が高く、弾性率0.1Gpa以上のものが好ましい。具体的な材料としては、本実施形態で用いたガラス以外にも、ステンレス鋼などの金属、アクリル基材などが使用できるが、光学部材用のエネルギー硬化性樹脂としてUV硬化性樹脂を用いる場合、UV光を透過するガラスやアクリルなどが好ましい。本実施形態においては、基板及び樹脂型ともに光透過性であるため、第1型及び第2型はともに光透過性を有する。 The hard substrate is preferably one having a higher hardness than an elastic resin mold and having an elastic modulus of 0.1 Gpa or more. As a specific material, in addition to the glass used in the present embodiment, a metal such as stainless steel, an acrylic base material, and the like can be used, but when a UV curable resin is used as an energy curable resin for an optical member, Glass or acrylic that transmits UV light is preferred. In the present embodiment, since both the substrate and the resin mold are light transmissive, both the first mold and the second mold are light transmissive.
(レンズアレイの成形)
 次に、第1のシリコーン樹脂型SM1を、ガラス製の第1の基板ST1上に密着させる。本実施形態においては、第1の基板ST1として、第1のシリコーン樹脂型SM1に対向する位置に貫通孔ST1aを有しているガラス製の平行平板を用いているが、上述の平行平板PPを用いることもできる。
(Lens array molding)
Next, the first silicone resin mold SM1 is brought into close contact with the first substrate ST1 made of glass. In the present embodiment, a glass parallel plate having a through hole ST1a at a position facing the first silicone resin mold SM1 is used as the first substrate ST1, but the parallel plate PP described above is used. It can also be used.
 このとき、第1のシリコーン樹脂型SM1と第1の基板ST1との間に気泡などが残存すると、精度の良い成形の妨げになるので、図4(a),(b)の矢印に示すように、第1の基板ST1に対して、第1のシリコーン樹脂型の端(多角形状なら角部)より貼り合わせるようにして、徐々に両者を密着させることが望ましい。或いは、図4(c)に示すように、一端から他端にかけてローラRLで、第1のシリコーン樹脂型SM1を第1の基板ST1に徐々に押圧するようにしても良い。シリコーン樹脂は粘着性を有しているため、ローラRLによる押圧によって、第1の樹脂型SM1の転写面とは反対側の平坦面は平坦な第1の基板ST1に密着する。なお、第2のシリコーン樹脂型SM2(UV硬化性樹脂RUVとの当接面が平面)も同様の手順で第2の基板ST2に密着させる。 At this time, if bubbles or the like remain between the first silicone resin mold SM1 and the first substrate ST1, accurate molding is hindered, and as shown by arrows in FIGS. 4 (a) and 4 (b). In addition, it is desirable that the first substrate ST1 is gradually adhered to the first substrate ST1 so as to be bonded from the end of the first silicone resin mold (corner if polygonal). Alternatively, as shown in FIG. 4C, the first silicone resin mold SM1 may be gradually pressed against the first substrate ST1 by the roller RL from one end to the other end. Since the silicone resin has adhesiveness, the flat surface opposite to the transfer surface of the first resin mold SM1 comes into close contact with the flat first substrate ST1 by pressing with the roller RL. The second silicone resin type SM2 (the contact surface with the UV curable resin RUV is flat) is also brought into close contact with the second substrate ST2 in the same procedure.
 その後、図3(a)に示すように、第1のシリコーン樹脂型SM1の周囲における第1の基板ST1上に、スペーサSPを配置する。スペーサSPの形状や、基板ST1上における位置は、基板ST1と基板ST2との間隔が適切に保持されるものであれば、特に限定はなく種々の形状・配置を採用することができる。本実施形態においては、高さΔ3のスペーサSPは円筒状であって、図5(a)に示すように、第1のシリコーン樹脂型SM1の周囲4カ所に等間隔に配置するか、或いは図5(b)に示すように、第1のシリコーン樹脂型SM1の周囲3カ所に配置している。スペーサSPとして、図5(c)に示すようなブロック形状のものを採用し、第1のシリコーン樹脂型SM1の両側に配置しても良い。 Thereafter, as shown in FIG. 3A, a spacer SP is disposed on the first substrate ST1 around the first silicone resin mold SM1. The shape of the spacer SP and the position on the substrate ST1 are not particularly limited as long as the distance between the substrate ST1 and the substrate ST2 is appropriately maintained, and various shapes and arrangements can be adopted. In the present embodiment, the spacers SP having a height Δ3 are cylindrical, and are arranged at four equal intervals around the first silicone resin mold SM1, as shown in FIG. As shown in FIG. 5 (b), it is arranged at three locations around the first silicone resin mold SM1. As the spacer SP, a block shape as shown in FIG. 5C may be adopted and disposed on both sides of the first silicone resin mold SM1.
 次に、図3(b)に示すように、第1のシリコーン樹脂型SM1上にUV硬化性樹脂RUVを適量滴下する。更に、図3(c)に示すように、別工程で形成した、第2の基板ST2に密着させた第2のシリコーン樹脂型SM2(UV硬化性樹脂RUVとの当接面が平面)を、UV硬化性樹脂RUVを間に介在させるようにして、第1のシリコーン樹脂型SM1を対向させる。そして、基板ST2がスペーサSPに突き当たるまで、型締め速度0.01mm/s~1mm/sで、第2のシリコーン樹脂型SM2を接近させる(型対向工程)。0.01mm/s~1mm/s程度の比較的遅い速度で型締めを行うと気泡混入を抑制しやすくなる。 Next, as shown in FIG. 3B, an appropriate amount of UV curable resin RUV is dropped onto the first silicone resin mold SM1. Further, as shown in FIG. 3 (c), a second silicone resin type SM2 (contact surface with the UV curable resin RUV is formed in a separate step), which is in close contact with the second substrate ST2, is formed. The first silicone resin type SM1 is opposed so that the UV curable resin RUV is interposed therebetween. Then, the second silicone resin mold SM2 is brought close to the substrate ST2 at a mold clamping speed of 0.01 mm / s to 1 mm / s until it abuts against the spacer SP (mold facing step). When the mold is clamped at a relatively slow speed of about 0.01 mm / s to 1 mm / s, it is easy to suppress the mixing of bubbles.
 この型対向工程を通じて、それぞれ硬質な基板に密着された弾性を有する樹脂型からなる2つの型を、エネルギー硬化性樹脂を介在させて所定間隔で対向する。これにより、第1の基板ST1と第2の基板ST2の間隙はスペーサSPで調整されるので、第1のシリコーン樹脂型SM1と第2のシリコーン樹脂型SM2との間隙は、(Δ3-Δ1-Δ2)で常に一定に調整される(図3(d)参照)。第1の樹脂型SM1と第2の樹脂型SM2はともに弾性を有するものであるため、スペーサを樹脂型に接触介在させるやり方では両者の間隙を正確に調整することが難しいが、ともに硬質な2つの基板を用いることで弾性を有する2つの樹脂型の間隔調整を容易に行うことができる。ここで、エネルギー硬化性樹脂は一般的に粘度が低いので、弾性を有する樹脂型を成形型として成形を行ったとしても、型締め時に転写面形状を変形させる恐れが少なく、高精度な転写成形を行うことができる。尚、UV硬化性樹脂RUVは粘度が低く、型締め時に開放した周囲側に逃げるため、第1のシリコーン樹脂型SM1を圧迫することなく、転写面SM1aを変形させることはない。またこのとき、成形しようとするレンズがあまり厚くなければ、表面張力によって、UV硬化性樹脂RUVが必要以上に周囲に逃げることはない。 Through this mold facing process, two molds made of an elastic resin mold that are in close contact with a hard substrate are opposed to each other at a predetermined interval with an energy curable resin interposed therebetween. Accordingly, the gap between the first substrate ST1 and the second substrate ST2 is adjusted by the spacer SP, so that the gap between the first silicone resin mold SM1 and the second silicone resin mold SM2 is (Δ3-Δ1- Δ2) is always adjusted to be constant (see FIG. 3D). Since both the first resin mold SM1 and the second resin mold SM2 have elasticity, it is difficult to accurately adjust the gap between the two by the method of interposing the spacer in contact with the resin mold, By using two substrates, it is possible to easily adjust the distance between the two resin molds having elasticity. Here, since energy curable resins generally have low viscosity, there is little risk of deformation of the transfer surface during mold clamping even when molding is performed using an elastic resin mold as a mold, and highly accurate transfer molding It can be performed. Since the UV curable resin RUV has a low viscosity and escapes to the surrounding side opened when the mold is clamped, the transfer surface SM1a is not deformed without pressing the first silicone resin mold SM1. At this time, if the lens to be molded is not too thick, the UV curable resin RUV will not escape more than necessary due to surface tension.
 なお、第1の基板ST1と第2の基板ST2との間の間隙は、スペーサを用いた調整に代えて、シリコーン樹脂型あるいはシリコーン樹脂型に密着した基板の表面の位置をセンサーなどで検知し、サーボモータやステッピングモータなどを内蔵した駆動機構を有する支持機構にフィードバックして、型の位置を制御することにより、機械的に厚み精度を出すようにしてもよい。 Note that the gap between the first substrate ST1 and the second substrate ST2 is detected by using a sensor or the like to detect the position of the surface of the substrate in close contact with the silicone resin mold or the silicone resin mold, instead of using a spacer. The thickness accuracy may be mechanically obtained by feeding back to a support mechanism having a drive mechanism incorporating a servo motor, a stepping motor, etc., and controlling the position of the mold.
 その後、図3(d)に示すように、外部からUV光を照射すると、第2の基板ST2と第2のシリコーン樹脂型SM2を透過して、UV硬化性樹脂RUVに到達し、これを硬化させるので、硬化したUV硬化性樹脂RUVに第1のシリコーン樹脂型SM1の転写面SM1aが精度良く転写されることとなる。これにより、成形体として複数のレンズLSを有するレンズアレイLAが形成されることとなる(樹脂硬化工程)。なお、UV光の照射は第2型側及び第1型側のどちらから行ってもよいし、両側から行ってもよい。 Thereafter, as shown in FIG. 3D, when UV light is irradiated from the outside, the light passes through the second substrate ST2 and the second silicone resin type SM2, reaches the UV curable resin RUV, and is cured. Therefore, the transfer surface SM1a of the first silicone resin mold SM1 is accurately transferred to the cured UV curable resin RUV. Thereby, a lens array LA having a plurality of lenses LS is formed as a molded body (resin curing step). The UV light irradiation may be performed from either the second mold side or the first mold side, or from both sides.
 この後、図3(e)及び図3(f)に示す第1離型工程と、図3(g)及び図3(i)の工程からなる第2離型工程と、図3(h)に示す着脱可能なシートの貼り付け工程と、を含む離型工程を実行する。 Thereafter, a first release step shown in FIGS. 3 (e) and 3 (f), a second release step comprising the steps of FIGS. 3 (g) and 3 (i), and FIG. 3 (h). The mold release process including the attachment process of the detachable sheet | seat shown in FIG.
 具体的には、まず、図3(e)に示すように、第2の基板ST2を、第2のシリコーン樹脂型SM2から剥離する。このとき、外部から第2の基板ST2の貫通孔ST2aを介して気体を吹き込むと、第2のシリコーン樹脂型SM2と、第2の基板ST2との間に気体が充填され、第2のシリコーン樹脂型SM2から第2の基板ST2が剥がれやすくなる。供給する気体としては、工場エアーなどを用いる。圧力としては、10KPa~500KPa程度が好ましい。樹脂型から基板を剥離する際に、真空吸着テーブル等で硬質な基板を保持して、剥離を支援するようにしてもよい。 Specifically, first, as shown in FIG. 3E, the second substrate ST2 is peeled from the second silicone resin mold SM2. At this time, when a gas is blown from the outside through the through hole ST2a of the second substrate ST2, the gas is filled between the second silicone resin type SM2 and the second substrate ST2, and the second silicone resin. The second substrate ST2 is easily peeled off from the mold SM2. Factory air or the like is used as the gas to be supplied. The pressure is preferably about 10 KPa to 500 KPa. When peeling the substrate from the resin mold, a hard substrate may be held by a vacuum suction table or the like to assist the peeling.
 その後、図3(f)に示すように、成形体であるレンズアレイLAから第2のシリコーン樹脂型SM2を剥がす(第1離型工程)。第2のシリコーン樹脂型SM2は弾性を有しており、比較的柔らかいので、端から曲げながら剥がすことで、レンズアレイLAから容易に剥がせる。このとき、型を曲げながら離型することで、成形物と樹脂型とが線状に離型するので、離型抵抗を小さくできる。よって、レンズが複数個並び、その凹凸形状により離型抵抗が高くなりがちな光学部材の成形であっても、レンズの精度を劣化させることなく容易に離型することが出来る。また、このとき、レンズアレイLAの裏面側は、第1のシリコーン樹脂型SM1に全面で密着しているので、第1のシリコーン樹脂型SM1側は剥がれにくくなっている。 Thereafter, as shown in FIG. 3F, the second silicone resin mold SM2 is peeled off from the lens array LA which is a molded body (first release step). The second silicone resin mold SM2 has elasticity and is relatively soft. Therefore, the second silicone resin mold SM2 can be easily peeled off from the lens array LA by peeling it while bending from the end. At this time, by releasing the mold while bending the mold, the molded product and the resin mold are released linearly, so that the release resistance can be reduced. Therefore, even when molding an optical member in which a plurality of lenses are arranged and the mold release resistance tends to be high due to the uneven shape, the mold can be easily released without degrading the accuracy of the lens. At this time, since the back surface side of the lens array LA is in close contact with the first silicone resin mold SM1, the first silicone resin mold SM1 side is hardly peeled off.
 更に、図3(g)に示すように、第1の基板ST1から、第1のシリコーン樹脂型SM1とレンズアレイLAとを一体で剥離する。このとき、外部から第1の基板ST1の貫通孔ST1aを介して空気を吹き込むと、第1のシリコーン樹脂型SM1と、第1の基板ST1との間に空気が充填され、第1の基板ST1から第1のシリコーン樹脂型SM1が剥がれやすくなる。 Further, as shown in FIG. 3G, the first silicone resin mold SM1 and the lens array LA are integrally peeled from the first substrate ST1. At this time, when air is blown from the outside through the through hole ST1a of the first substrate ST1, the air is filled between the first silicone resin mold SM1 and the first substrate ST1, and the first substrate ST1. Therefore, the first silicone resin mold SM1 is easily peeled off.
 その後、図3(h)に示すように、レンズアレイLAの第2のシリコーン樹脂型SM2を剥がした面に、着脱可能な薄い樹脂製のシートFM(又は粘着テープ)を貼り付けて反転させる。第1の樹脂型が離型された成形物の面に着脱可能なシートを貼り付けることで、後述する第2離型工程において、成形物の光学面が傷ついたり、離型中に不用意に個片化してレンズが散逸したりすることを防止できる。又、後述する第2離型工程が終了した後も、光学部材とシートとを一体で取り扱うことができ、作業性や搬送性に優れる。次に、図3(i)に示すように、レンズアレイLAから第1のシリコーン樹脂型SM1を剥がす(第2離型工程)。第1のシリコーン樹脂型SM1は、比較的柔らかいので、端から曲げながら剥がすことで、レンズアレイLAから容易に剥がせる。このとき、レンズアレイLAの裏面側は、シートFMに全面で密着しているので、レンズアレイLAから剥がれにくくなっている。このように2つの樹脂型の離型を順次行うことにより、一方の樹脂型が光学部材から剥がれにくい状態で他方の樹脂型の離型を行うことができるため、作業性が向上する。尚、第1の基板ST1に、第1のシリコーン樹脂型SM1を再度密着することにより、また、第2の基板ST2に、第2のシリコーン樹脂型SM2を再度密着することにより、次のレンズアレイLAの成形に再利用できる。 Thereafter, as shown in FIG. 3 (h), a detachable thin resin sheet FM (or adhesive tape) is attached to the surface of the lens array LA from which the second silicone resin mold SM2 has been peeled off, and reversed. By attaching a detachable sheet to the surface of the molded product from which the first resin mold has been released, the optical surface of the molded product is damaged or inadvertently released during the second mold release step described later. It is possible to prevent the lens from being dissociated into individual pieces. In addition, the optical member and the sheet can be handled integrally even after the second mold release step described later is completed, and the workability and transportability are excellent. Next, as shown in FIG. 3I, the first silicone resin mold SM1 is peeled off from the lens array LA (second mold release step). Since the first silicone resin mold SM1 is relatively soft, the first silicone resin mold SM1 can be easily peeled off from the lens array LA by being peeled off while being bent from the end. At this time, since the back surface side of the lens array LA is in close contact with the sheet FM over the entire surface, it is difficult to peel off from the lens array LA. By sequentially releasing the two resin molds in this way, the release of the other resin mold can be performed in a state in which one of the resin molds is not easily peeled off from the optical member, thereby improving workability. The first lens array SM1 is again brought into close contact with the first substrate ST1, and the second lens resin type SM2 is brought into close contact with the second substrate ST2 so that the next lens array is obtained. Reusable for LA molding.
(レンズの製作)
 このようにして形成されたレンズアレイLAは、シートFM上に貼り付けられたまま、次工程に搬送されて、図3(j)の矢印Cの位置でカットされることで、図3(k)に示すように、レンズLS毎に個片化される。その後、シートFMをレンズLSから剥がして、撮像装置に組み込まれることとなる。
(Production of lens)
The lens array LA formed in this way is conveyed to the next process while being stuck on the sheet FM, and is cut at the position of the arrow C in FIG. As shown in FIG. 2, the lens is divided into pieces for each lens LS. Thereafter, the sheet FM is peeled off from the lens LS and incorporated into the imaging device.
 〈第2の実施形態〉
 第2の実施形態について説明する。図6は、第1のシリコーン樹脂型SM1において、隣接する転写面ST1aの間に、V字断面の隆起部SM1bを形成したものである。このような第1のシリコーン樹脂型SM1を用いて、上述のようにしてレンズアレイLAを転写成形すると、図7に示すように、転写面SM1aにより転写されたレンズLSの間に、隆起部SM1bに対応した複数の断面V字型の谷部(V溝)LVが形成されることとなる。谷部LVの角度は20°~60°であると好ましい。
<Second Embodiment>
A second embodiment will be described. FIG. 6 shows a first silicone resin mold SM1 in which a raised portion SM1b having a V-shaped cross section is formed between adjacent transfer surfaces ST1a. When the lens array LA is transferred and molded using the first silicone resin mold SM1 as described above, as shown in FIG. 7, the raised portion SM1b is interposed between the lenses LS transferred by the transfer surface SM1a. A plurality of V-shaped valleys (V grooves) LV corresponding to the above are formed. The angle of the valley LV is preferably 20 ° to 60 °.
 このようにして形成されたレンズアレイLAは、以下のような態様で、レンズLSに容易に個片化できる。図8(a)に示す例では、シートFMを両側に(または対角線上で)引っ張ることでレンズアレイLAに引っ張り応力を発生させ、最も脆弱である谷部LVの最奥部で割断を生じさせることができる。 The lens array LA formed in this way can be easily separated into lenses LS in the following manner. In the example shown in FIG. 8A, a tensile stress is generated in the lens array LA by pulling the sheet FM to both sides (or on a diagonal line), and cleaving occurs at the innermost part of the valley LV that is the most fragile. be able to.
 図8(b)に示す例では、シートFMを裏側に曲げることでレンズアレイLAに曲げ応力を発生させ、最も脆弱である谷溝LVの最奥部で割断を生じさせることができる。 In the example shown in FIG. 8B, bending stress can be generated in the lens array LA by bending the sheet FM to the back side, and cleaving can be caused in the innermost part of the valley LV that is the most fragile.
 図8(c)に示す例では、個別のレンズLSの背後からシートFMを押し出すようにすることでレンズアレイLAに曲げ応力を発生させ、最も脆弱である谷溝LVの最奥部で割断を生じさせることができる。これはレンズLSの外径が円形状である場合に好適である。 In the example shown in FIG. 8C, bending stress is generated in the lens array LA by extruding the sheet FM from the back of the individual lens LS, and cleaving is performed at the innermost portion of the valley groove LV that is the most fragile. Can be generated. This is suitable when the outer diameter of the lens LS is circular.
 なお、第1の実施形態、第2の実施形態においては、光学部材やレンズとして凸状の曲面形状を有する第1の光学面と、平坦な第2の光学面とを備えたものを示したが、光学面の形状はこれに限るものではない。例えば、凹状の曲面形状や非球面形状を持つものでもよいし、断面V時状あるいは断面階段状の微細な凹凸が繰り返される微細構造を持つものであってもよい。特に、凹部と凸部の両方を含む非球面形状や微細構造を持つ場合は、概して離型抵抗が大きくなりやすいため、上述した製造方法が特に有効である。なお、第1及び第2の実施形態において、レンズを携帯電子機器に搭載される補助光源用の光学系として用いるようにしてもよい。この場合、図9(a)(b)に示すように、環状の凹凸構造が形成された光学面を有するいわゆるフレネルレンズFLを持つレンズアレイLAを形成してもよい。図9(a)(b)には、上記第2の実施形態で説明したものと同様の割断用のV溝LVを設けた例を示している。 In the first embodiment and the second embodiment, an optical member or a lens provided with a first optical surface having a convex curved surface and a flat second optical surface is shown. However, the shape of the optical surface is not limited to this. For example, it may have a concave curved surface shape or an aspherical shape, or it may have a fine structure in which fine irregularities having a cross-sectional V shape or a stepped shape are repeated. In particular, in the case of having an aspherical shape or a fine structure including both concave and convex portions, the above-described manufacturing method is particularly effective because release resistance generally tends to increase. In the first and second embodiments, the lens may be used as an optical system for an auxiliary light source mounted on a portable electronic device. In this case, as shown in FIGS. 9A and 9B, a lens array LA having a so-called Fresnel lens FL having an optical surface on which an annular concavo-convex structure is formed may be formed. FIGS. 9A and 9B show an example in which a cutting V-groove LV similar to that described in the second embodiment is provided.
 〈第3の実施形態〉
 第3の実施形態について説明する。本実施形態では、第2のシリコーン樹脂型SM2にも、レンズLSの曲面転写面を転写する転写面SM2aを形成している。すると、上述した実施形態における図3(c)に示す型締め工程で、レンズの光学面両面の偏心を抑制すべく、第1のシリコーン樹脂型SM1と第2のシリコーン樹脂型SM2との型締め直交方向の位置合わせが必要になる。
<Third Embodiment>
A third embodiment will be described. In the present embodiment, the transfer surface SM2a for transferring the curved surface transfer surface of the lens LS is also formed in the second silicone resin mold SM2. Then, in the mold clamping step shown in FIG. 3C in the above-described embodiment, the mold clamping of the first silicone resin mold SM1 and the second silicone resin mold SM2 is performed so as to suppress the eccentricity of both surfaces of the optical surface of the lens. Positioning in the orthogonal direction is required.
 そこで、本実施形態では、第1のシリコーン樹脂型SM1と第2のシリコーン樹脂型SM2とに、それぞれアライメントマークSM1c、SM2cを形成している。このようなアライメントマークSM1c、SM2cは、図2(a)に示すようなマスター型を切削加工する際に同時に、転写面と異なる位置に所定形状の凹部又は凸部を形成し、これを第1のシリコーン樹脂型SM1と第2のシリコーン樹脂型SM2にそれぞれ転写することで、位置精度良く形成できる。アライメントマークSM1c、SM2cの形状としては、図11(a)に示す円形状、図11(b)に示す十字形状、図11(c)に示す星形など視認性が良いものを任意に選定できる。 Therefore, in the present embodiment, alignment marks SM1c and SM2c are formed on the first silicone resin mold SM1 and the second silicone resin mold SM2, respectively. The alignment marks SM1c and SM2c are formed with a concave or convex portion having a predetermined shape at a position different from the transfer surface at the same time when the master mold as shown in FIG. By transferring to each of the silicone resin mold SM1 and the second silicone resin mold SM2, it can be formed with high positional accuracy. As the shapes of the alignment marks SM1c and SM2c, ones having good visibility such as a circular shape shown in FIG. 11 (a), a cross shape shown in FIG. 11 (b), and a star shape shown in FIG. 11 (c) can be arbitrarily selected. .
 型締め時には、図10に示すように、第2の基板ST2側にカメラCA1,CA2を配置し、第2の基板ST2及び第2のシリコーン樹脂型SM2を通して、第1シリコーン樹脂型SM1を観察する(位置座標を読み取る)。ここで、不図示の制御装置が、読み取った位置座標に基づきアライメントマークSM1c、SM2cがずれていると判断すれば、ロボット等により保持した第2の基板ST2とともに第2のシリコーン樹脂型SM2を,型締め直交方向に移動させる。カメラCA1,CA2で観察するアライメントマークSM1c、SM2cが一致した場合、その状態を維持しつつ型締めを行う。こうして、第1型と第2型とが互いに型締め直交方向に位置決めされる。尚、第1のシリコーン樹脂型SM1側を移動させて、位置決めを行っても良い。 At the time of mold clamping, as shown in FIG. 10, cameras CA1 and CA2 are arranged on the second substrate ST2 side, and the first silicone resin mold SM1 is observed through the second substrate ST2 and the second silicone resin mold SM2. (Read position coordinates). Here, if the control device (not shown) determines that the alignment marks SM1c and SM2c are displaced based on the read position coordinates, the second silicone resin mold SM2 together with the second substrate ST2 held by the robot or the like, Move in the direction perpendicular to mold clamping. When the alignment marks SM1c and SM2c observed with the cameras CA1 and CA2 match, the mold is clamped while maintaining the state. Thus, the first mold and the second mold are positioned in a direction perpendicular to the mold clamping. The positioning may be performed by moving the first silicone resin mold SM1 side.
 なお、図12(a)~(f)に示すように、両面に曲面状の光学面OP1,OP2を有する光学部材OEの場合でも、各レンズ部間に第2実施形態で説明したのと同様の割断用V溝LVを設けるようにしてもよい。この場合、図12(a)、(b)に示すように一方の型SM1を離型した後、図12(c)に示すように、外部のエアー吸着機構(不図示)に連結された、支持部材HLDの立設部(エアー吸着部)WLによって、露出した成形物のレンズLS間の連結部CTを保持する。これにより、第2離型工程において、成形物の光学面OP2が傷ついたり、離型中に不用意に個片化してレンズLSが散逸したりすることを防止できる。そして、図12(d)に示すように、硬質の基板ST2を剥がし、反対側の型SM2を離型する。その後、図12(e)に示す状態から、支持部材HLDを取り外すことで、レンズアレイ(光学素子)LAを得ることができる。更に、図12(f)に示すように、得られたレンズアレイLAを割断用V溝LVで割断することで、レンズLSを個片化することができる。エアー吸着機構を備えた支持部材HLDを用いることで、成形物を確実に支持するとともに、離型終了後は吸引や減圧を解除することで速やかに成形物を離脱させることができる。また、製造プロセスの速度を低下させにくい。 As shown in FIGS. 12A to 12F, even in the case of the optical member OE having the curved optical surfaces OP1 and OP2 on both surfaces, the same as described in the second embodiment between the lens portions. Alternatively, a cleaving V groove LV may be provided. In this case, after one mold SM1 is released as shown in FIGS. 12A and 12B, it is connected to an external air adsorption mechanism (not shown) as shown in FIG. The connecting portion CT between the lenses LS of the exposed molded product is held by the standing portion (air adsorption portion) WL of the support member HLD. Accordingly, it is possible to prevent the optical surface OP2 of the molded product from being damaged or being inadvertently separated into pieces during the mold release and dissipating the lens LS in the second mold release step. Then, as shown in FIG. 12D, the hard substrate ST2 is peeled off, and the mold SM2 on the opposite side is released. Thereafter, the lens array (optical element) LA can be obtained by removing the support member HLD from the state shown in FIG. Furthermore, as shown in FIG. 12F, the lens LS can be separated into pieces by cleaving the obtained lens array LA with a cleaving V groove LV. By using the supporting member HLD provided with an air adsorption mechanism, the molded product can be reliably supported, and the molded product can be quickly released by releasing the suction and pressure reduction after the mold release. In addition, it is difficult to reduce the speed of the manufacturing process.
 また、上記実施形態では、一方の樹脂型に未硬化の樹脂を配した後、他方の樹脂型で樹脂を押圧するようにして、2つの型の間に樹脂を介在させるようにしたが、2つの型を所定間隔で対向させた後に、両者の間の間隙に未硬化の樹脂を充填するようにしても構わない。また、上記実施形態では、気体を供給することで硬質な基板を樹脂型から剥離していたが、剥離の手法はこれに限るものではなく、例えば、楔を基板と樹脂型との間に食い込ませることで剥離を行うようにしてもよい。 In the above embodiment, an uncured resin is disposed in one resin mold, and then the resin is pressed by the other resin mold so that the resin is interposed between the two molds. After making two molds face each other at a predetermined interval, an uncured resin may be filled in a gap between the two molds. Moreover, in the said embodiment, although the hard board | substrate was peeled from the resin type | mold by supplying gas, the technique of peeling is not restricted to this, For example, a wedge is bitten between a board | substrate and a resin type | mold. You may make it peel by carrying out.
 本発明は、明細書に記載の実施形態に限定されるものではなく、他の実施形態・変形例を含むことは、本明細書に記載された実施形態や技術思想から本分野の当業者にとって明らかである。例えば、第2の樹脂型から離型を行ったが、第1の樹脂型から離型を行っても良い。 The present invention is not limited to the embodiments described in the specification, and other embodiments and modifications are included for those skilled in the art from the embodiments and technical ideas described in the present specification. it is obvious. For example, the mold is released from the second resin mold, but the mold may be released from the first resin mold.
FM      シート
LA      レンズアレイ
LS      レンズ
LV      谷部
MM      マスター型
MM1     母光学面
MM2     壁部
PP      平行平板
RL      ローラ
RUV     UV硬化性樹脂
SM1     第1の樹脂型
SM1a    転写面
SM1b    隆起部
SM1c    アライメントマーク
SM2     第2の樹脂型
SM2a    転写面
SMT     樹脂素材
SP      スペーサ
ST1     第1の基板
ST1a    貫通孔
ST2     第2の基板
ST2a    貫通孔
FM sheet LA lens array LS lens LV valley MM master mold MM1 mother optical surface MM2 wall PP parallel plate RL roller RUV UV curable resin SM1 first resin mold SM1a transfer surface SM1b raised portion SM1c alignment mark SM2 second resin Type SM2a Transfer surface SMT Resin material SP Spacer ST1 First substrate ST1a Through hole ST2 Second substrate ST2a Through hole

Claims (14)

  1.  少なくとも列状に並んだ複数のレンズを有する光学部材を製造する方法であって、
     前記複数のレンズの第1の光学面を転写するための第1の転写面を備えた弾性を有する第1の樹脂型を硬質な第1の基板に密着させて得られる第1型と、前記複数のレンズの第2の光学面を転写するための第2の転写面を備えた弾性を有する第2の樹脂型を硬質な第2の基板に密着させて得られる第2型と、をエネルギー硬化性樹脂を介在させて所定間隔で対向させる型対向工程と、
     前記第1型と前記第2型との間に介在する前記エネルギー硬化性樹脂にエネルギーを付与することで硬化させ成形体を形成する樹脂硬化工程と、
     前記成形体から前記第1型及び前記第2型を離型して前記光学部材を得る離型工程と、を有し、
     前記離型工程において、前記第1型及び前記第2型のうち少なくとも一方について、硬質な前記基板を、弾性を有する前記樹脂型より剥離した後、前記樹脂型を曲げながら前記成形体より離型することを特徴とする光学部材の製造方法。
    A method of manufacturing an optical member having at least a plurality of lenses arranged in a row,
    A first mold obtained by adhering an elastic first resin mold having a first transfer surface for transferring a first optical surface of the plurality of lenses to a hard first substrate; A second mold obtained by bringing an elastic second resin mold having a second transfer surface for transferring the second optical surfaces of a plurality of lenses into close contact with a hard second substrate; A mold facing step in which a curable resin is interposed to face each other at a predetermined interval;
    A resin curing step of forming a molded body by curing by applying energy to the energy curable resin interposed between the first mold and the second mold;
    A mold release step of releasing the first mold and the second mold from the molded body to obtain the optical member,
    In the mold release step, for at least one of the first mold and the second mold, after releasing the hard substrate from the resin mold having elasticity, the mold is released from the molded body while bending the resin mold. A method for manufacturing an optical member.
  2.  前記離型工程は、
     前記第1型及び第2型の一方について、前記基板を前記樹脂型より剥離した後、前記基板を剥離された前記樹脂型を曲げながら前記成形体より離型する第1離型工程と、
     前記第1離型工程後に、前記第1型及び第2型の他方について、前記基板を前記樹脂型より剥離した後、前記基板を剥離された前記樹脂型を曲げながら前記成形体より離型する第2離型工程と、からなることを特徴とする請求項1に記載の光学部材の製造方法。
    The mold release step
    For one of the first mold and the second mold, after peeling the substrate from the resin mold, the first mold release step of releasing the molded body from the molded body while bending the resin mold from which the substrate has been peeled;
    After the first mold releasing step, the other of the first mold and the second mold is released from the molded body while the substrate is peeled from the resin mold and then the resin mold from which the substrate has been peeled is bent. The method for producing an optical member according to claim 1, further comprising a second release step.
  3.  前記離型工程は、前記第1離型工程後に、前記第1の樹脂型が離型された前記成形物の面に着脱可能なシートを貼り付ける工程をさらに含むことを特徴とする請求項2に記載の光学部材の製造方法。 3. The mold release step further includes a step of attaching a removable sheet to the surface of the molded product from which the first resin mold is released after the first mold release step. The manufacturing method of the optical member of description.
  4.  前記離型工程は、前記第1離型工程後に、前記第1の樹脂型が離型された前記成形物の面の隣り合うレンズ間の部位を支持する支持部材を前記成形体に取り付ける工程をさらに含むことを特徴とする請求項2に記載の光学部材の製造方法。 The mold release step includes a step of attaching a support member that supports a portion between adjacent lenses on the surface of the molded product from which the first resin mold is released after the first mold release step to the molded body. Furthermore, the manufacturing method of the optical member of Claim 2 characterized by the above-mentioned.
  5.  前記離型工程は、前記第1型及び前記第2型のうち少なくとも一方における硬質な前記基板を、弾性を有する前記樹脂型より剥離する際に、前記基板と前記樹脂型との間に気体を供給することを特徴とする請求項1~4のいずれかに記載の光学部材の製造方法。 In the releasing step, when the hard substrate in at least one of the first mold and the second mold is peeled off from the resin mold having elasticity, gas is generated between the substrate and the resin mold. 5. The method for producing an optical member according to claim 1, wherein the optical member is supplied.
  6.  前記光学部材を製造するために使用される前記第1の樹脂型及び前記第2の樹脂型のうち少なくとも一方は、別の光学部材を製造する際に使用されたものであることを特徴とする請求項1~5のいずれかに記載の光学部材の製造方法。 At least one of the first resin mold and the second resin mold used for manufacturing the optical member is used when manufacturing another optical member. The method for producing an optical member according to any one of claims 1 to 5.
  7.  前記型対向工程において、前記第1の基板と前記第2の基板との間にスペーサを介在させて、前記第1の樹脂型と前記第2の樹脂型とを所定間隔に保つことを特徴とする請求項1~6のいずれかに記載の光学部材の製造方法。 In the mold facing step, a spacer is interposed between the first substrate and the second substrate to keep the first resin mold and the second resin mold at a predetermined interval. The method for producing an optical member according to any one of claims 1 to 6.
  8.  前記第1の樹脂型及び前記第2の樹脂型のうち少なくとも一方の厚さは、100μm以上10mm以下であることを特徴とする請求項1~7のいずれかに記載の光学部材の製造方法。 The method for manufacturing an optical member according to any one of claims 1 to 7, wherein a thickness of at least one of the first resin mold and the second resin mold is 100 袖 m or more and 10 mm or less.
  9.  前記型対向工程は、前記第1型と前記第2型とを型締め直交方向に位置決めする工程を更に有することを特徴とする請求項1~8のいずれかに記載の光学部材の製造方法。 9. The method of manufacturing an optical member according to claim 1, wherein the mold facing step further includes a step of positioning the first mold and the second mold in a mold clamping orthogonal direction.
  10.  前記第1の樹脂型及び前記第2の樹脂型の少なくとも一方は、シリコーン樹脂、またはフッ素樹脂からなることを特徴とする請求項1~9のいずれかに記載の光学部材の製造方法。 10. The method of manufacturing an optical member according to claim 1, wherein at least one of the first resin mold and the second resin mold is made of a silicone resin or a fluororesin.
  11.  前記支持部材は、エアー吸着によって前記成形物を支持するエアー吸着部を備えることを特徴とする請求項4に記載の光学部材の製造方法。 The method for manufacturing an optical member according to claim 4, wherein the support member includes an air adsorption portion that supports the molded article by air adsorption.
  12.  請求項1~11のいずれかに記載の光学部材の製造方法により製造されたことを特徴とする光学部材。 An optical member manufactured by the method for manufacturing an optical member according to any one of claims 1 to 11.
  13.  請求項1~11のいずれかに記載の製造方法によって得られる光学部材を、レンズ光軸方向からみたときに1個ずつになるように、又は、レンズ光軸方向からみたときに複数個ずつになるように、個片化する個片化工程を備えることを特徴とするレンズの製造方法。 The optical members obtained by the production method according to any one of claims 1 to 11 are one by one when viewed from the lens optical axis direction, or a plurality of optical members are viewed from the lens optical axis direction. Thus, the manufacturing method of the lens characterized by providing the individualization process which separates into pieces.
  14.  請求項13に記載のレンズの製造方法により製造されたことを特徴とするレンズ。 A lens manufactured by the lens manufacturing method according to claim 13.
PCT/JP2013/084569 2013-02-05 2013-12-25 Optical member fabrication method, optical member, lens fabrication method, and lens WO2014122868A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380072320.1A CN104969096B (en) 2013-02-05 2013-12-25 The manufacture method of optics, optics, the manufacture method of lens and lens
JP2014560655A JP6198016B2 (en) 2013-02-05 2013-12-25 Manufacturing method of optical member and manufacturing method of lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013020330 2013-02-05
JP2013-020330 2013-02-05

Publications (1)

Publication Number Publication Date
WO2014122868A1 true WO2014122868A1 (en) 2014-08-14

Family

ID=51299471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084569 WO2014122868A1 (en) 2013-02-05 2013-12-25 Optical member fabrication method, optical member, lens fabrication method, and lens

Country Status (3)

Country Link
JP (1) JP6198016B2 (en)
CN (1) CN104969096B (en)
WO (1) WO2014122868A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017007187A (en) * 2015-06-19 2017-01-12 株式会社リコー Method and apparatus for manufacturing mold formed article and optical element
WO2017195879A1 (en) * 2016-05-13 2017-11-16 コニカミノルタ株式会社 Molded resin article molding method and molded resin article
JP2019142016A (en) * 2018-02-16 2019-08-29 日本電産サンキョー株式会社 Manufacturing method of gel state member
WO2020139193A1 (en) * 2018-12-27 2020-07-02 Ams Sensors Singapore Pte. Ltd. Method of manufacturing a plurality of optical elements
GB2601647A (en) * 2020-09-29 2022-06-08 Univ Jiangsu Air mold method-based method for preparing near-cylindrical microgroove array surface
JP2022173231A (en) * 2018-03-08 2022-11-18 株式会社ダイセル Method for releasing molded article and apparatus for releasing
JP2022173230A (en) * 2018-03-08 2022-11-18 株式会社ダイセル Method for releasing molded article and apparatus for releasing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6447817B2 (en) * 2015-02-25 2019-01-09 コニカミノルタ株式会社 Molding method and molded product
WO2018142443A1 (en) * 2017-01-31 2018-08-09 ダイセル網干産業株式会社 Method for manufacturing functional optical lens
CN112873922A (en) * 2021-01-11 2021-06-01 嘉兴驭光光电科技有限公司 Method for producing diffractive optical element and diffractive optical element

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006209012A (en) * 2005-01-31 2006-08-10 Arisawa Mfg Co Ltd Lens sheet, transmissive screen, and production method of lens sheet
JP2006231917A (en) * 2005-01-31 2006-09-07 Arisawa Mfg Co Ltd Method for manufacturing lens sheet
JP2007050517A (en) * 2005-08-12 2007-03-01 Ricoh Co Ltd Reversal mold, manufacturing method of molded product, molded product and image forming device
JP2007160575A (en) * 2005-12-09 2007-06-28 Seiko Epson Corp Lens substrate, its manufacturing method, transmission type screen and rear type projector
JP2007290223A (en) * 2006-04-25 2007-11-08 Toppan Printing Co Ltd Manufacturing method for substrate sheet and releasing device
JP2008536716A (en) * 2005-04-15 2008-09-11 スリーエム イノベイティブ プロパティズ カンパニー Flexible mold containing a cured polymerizable resin composition
JP2011504607A (en) * 2007-11-19 2011-02-10 スリーエム イノベイティブ プロパティズ カンパニー Article having recess or projection and method for manufacturing the same
JP2011197479A (en) * 2010-03-19 2011-10-06 Fujifilm Corp Lens, lens array, and manufacturing method thereof
JP2012008581A (en) * 2008-10-31 2012-01-12 Konica Minolta Opto Inc Wafer lens and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3938253B2 (en) * 1997-12-26 2007-06-27 日本板硝子株式会社 Resin erecting equal-magnification lens array and manufacturing method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006209012A (en) * 2005-01-31 2006-08-10 Arisawa Mfg Co Ltd Lens sheet, transmissive screen, and production method of lens sheet
JP2006231917A (en) * 2005-01-31 2006-09-07 Arisawa Mfg Co Ltd Method for manufacturing lens sheet
JP2008536716A (en) * 2005-04-15 2008-09-11 スリーエム イノベイティブ プロパティズ カンパニー Flexible mold containing a cured polymerizable resin composition
JP2007050517A (en) * 2005-08-12 2007-03-01 Ricoh Co Ltd Reversal mold, manufacturing method of molded product, molded product and image forming device
JP2007160575A (en) * 2005-12-09 2007-06-28 Seiko Epson Corp Lens substrate, its manufacturing method, transmission type screen and rear type projector
JP2007290223A (en) * 2006-04-25 2007-11-08 Toppan Printing Co Ltd Manufacturing method for substrate sheet and releasing device
JP2011504607A (en) * 2007-11-19 2011-02-10 スリーエム イノベイティブ プロパティズ カンパニー Article having recess or projection and method for manufacturing the same
JP2012008581A (en) * 2008-10-31 2012-01-12 Konica Minolta Opto Inc Wafer lens and manufacturing method thereof
JP2011197479A (en) * 2010-03-19 2011-10-06 Fujifilm Corp Lens, lens array, and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017007187A (en) * 2015-06-19 2017-01-12 株式会社リコー Method and apparatus for manufacturing mold formed article and optical element
WO2017195879A1 (en) * 2016-05-13 2017-11-16 コニカミノルタ株式会社 Molded resin article molding method and molded resin article
JP2019142016A (en) * 2018-02-16 2019-08-29 日本電産サンキョー株式会社 Manufacturing method of gel state member
JP7029973B2 (en) 2018-02-16 2022-03-04 日本電産サンキョー株式会社 Manufacturing method of gel-like member
JP2022173231A (en) * 2018-03-08 2022-11-18 株式会社ダイセル Method for releasing molded article and apparatus for releasing
JP2022173230A (en) * 2018-03-08 2022-11-18 株式会社ダイセル Method for releasing molded article and apparatus for releasing
JP7366215B2 (en) 2018-03-08 2023-10-20 株式会社ダイセル Mold release method and mold release device for molded products
WO2020139193A1 (en) * 2018-12-27 2020-07-02 Ams Sensors Singapore Pte. Ltd. Method of manufacturing a plurality of optical elements
GB2601647A (en) * 2020-09-29 2022-06-08 Univ Jiangsu Air mold method-based method for preparing near-cylindrical microgroove array surface
GB2601647B (en) * 2020-09-29 2023-02-01 Univ Jiangsu Method for preparing microgroove array surface with nearly cylindrical surface based on air molding method

Also Published As

Publication number Publication date
JPWO2014122868A1 (en) 2017-01-26
CN104969096B (en) 2017-03-08
CN104969096A (en) 2015-10-07
JP6198016B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
JP6198016B2 (en) Manufacturing method of optical member and manufacturing method of lens
TWI617430B (en) Method and device for producing a microlens
US20140376097A1 (en) Microlens array and imaging element package
JP5522587B2 (en) Method for manufacturing two-stage rod lens array
US7796337B2 (en) Optical microstructure plate and fabrication mold thereof
JP5948157B2 (en) Surface shape molding method
JP2007094168A5 (en)
CN110244510A (en) A kind of nano-imprint stamp and preparation method thereof
JP6343814B2 (en) Mold, imprint apparatus and imprint method
JP2006308669A (en) Compound lens, method of manufacturing the compound lens, and optical apparatus with the compound lens
JP2014006329A (en) Method for manufacturing wafer lens, and imaging lens
JP5833045B2 (en) Pattern forming method and pattern forming apparatus
EP3456506B1 (en) Method for manufacturing replica master mold, and method for manufacturing body to be formed
CN112526660B (en) Method for manufacturing nano-grating on curved surface, optical device and electronic equipment
JP3384757B2 (en) Method for manufacturing fine shape transfer product and method for manufacturing optical member
US11513262B2 (en) Method for manufacturing structure
JP2011085831A (en) Pellicle sticking device, method for sticking pellicle, and mask with pellicle
JPH07112443A (en) Composite type molded article and its manufacture and mold
JP2006221062A (en) Method of manufacturing lamination type diffraction optical element and lamination type diffraction optical element
JP2008065318A (en) Manufacturing method of optical transmission article array
JP2008155547A (en) Manufacturing process of optical element, optical element, and optical apparatus
CN113573877B (en) Wafer alignment feature
JP2010184425A (en) Method of manufacturing screen molding mold, screen molding mold, and method of manufacturing screen
JP2011177955A (en) Method for producing lens and lens
JP2002090506A (en) Method for sticking microlens substrate and counter substrate of liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560655

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874354

Country of ref document: EP

Kind code of ref document: A1