WO2014122807A1 - Solid oxide fuel cell and method for producing same - Google Patents

Solid oxide fuel cell and method for producing same Download PDF

Info

Publication number
WO2014122807A1
WO2014122807A1 PCT/JP2013/066944 JP2013066944W WO2014122807A1 WO 2014122807 A1 WO2014122807 A1 WO 2014122807A1 JP 2013066944 W JP2013066944 W JP 2013066944W WO 2014122807 A1 WO2014122807 A1 WO 2014122807A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
fuel
dense
battery according
thermal behavior
Prior art date
Application number
PCT/JP2013/066944
Other languages
French (fr)
Japanese (ja)
Inventor
聖一 須田
ファン パウロ ウィフ
正義 小浦
充也 橋本
Original Assignee
FCO Power株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FCO Power株式会社 filed Critical FCO Power株式会社
Priority to JP2014560628A priority Critical patent/JP6174608B2/en
Publication of WO2014122807A1 publication Critical patent/WO2014122807A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • H01M4/8889Cosintering or cofiring of a catalytic active layer with another type of layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the solid oxide fuel cell has a cell structure in which a fuel electrode having a porous structure and an air electrode are opposed to each other with an electrolyte interposed therebetween.
  • SOFC solid oxide fuel cell
  • a flat-plate SOFC can secure a desired power by constructing a stack structure in which such cells are stacked via separators.
  • a fuel gas such as hydrogen is supplied to the fuel electrode, and an oxidant gas such as air containing oxygen is supplied to the air electrode.
  • SOFC is a non-porous sealing material for shutting off these gases at the boundary between these electrodes and the gas flow region in order to avoid mixing of oxidant gas into the fuel electrode and fuel gas into the air electrode.
  • Patent Document 1 For example, in the flat plate type SOFC, the sealing material is provided in contact with a part of the outer edge portion of the electrode layer.
  • the elements constituting SOFC are often ceramic materials fired at high temperatures. For this reason, at the time of manufacturing the SOFC, in order to suppress warpage, cracking, and deformation in the cell or the stack, it is necessary to make the thermal expansion and the thermal contraction equal in the intended directions among a plurality of integrated elements.
  • the separator may be integrated by firing in addition to the fuel electrode, the air electrode, and the electrolyte.
  • firing including the sealing material similarly to the above, a porous portion (electrode layer) and a non-porous portion (sealing material) are present in one layer. Since these cells are also integrated, it becomes more difficult to control thermal expansion and contraction.
  • the present specification has a structure capable of obtaining preferable integrity and strength by suppressing cracking, cracking, deformation, etc. of a cell or stack in an SOFC including a porous part and a non-porous part in the same layer. SOFC and its manufacturing method are provided.
  • the inventors of the present invention have studied a structure advantageous for monolithic firing of SOFC cells or stacks. As a result, a porous electrode portion and a non-porous structure are sealed to seal the surface of the electrode portion facing the gas flow path. A quality seal part, and a thermal behavior adjustment part for adjusting the thermal behavior on the surface opposite to the electrode part of the seal part, the electrode part and the seal part As a result, it was found that unintentional deformation including warping and cracking of the laminate can be reduced or avoided by integrally firing the electrode layer containing the electrode, the cell containing the electrode layer, and the stack. According to the present specification, the following means are taught based on such knowledge.
  • a solid oxide fuel cell Comprising one or more cells comprising a fuel electrode supplied with fuel gas, an air electrode supplied with oxidant gas, and an electrolyte; At least one electrode layer including either the fuel electrode or the air electrode as an electrode portion faces the unintended gas flow path of the electrode portion in order to shield the electrode portion from unintended gas.
  • a seal portion disposed on at least a part of the surface of The battery includes one or more dense parts having gas sealing properties, and one or more thermal behavior adjusting parts adjacent to the one or more dense parts.
  • the one or two or more dense parts are provided adjacent to the first surface, and the one or two or more thermal behavior adjusting parts are the first or two or more dense parts.
  • the battery according to (1) or (2) which is provided adjacent to a second surface which is a surface opposite to a surface adjacent to the surface.
  • the battery according to any one of (1) to (4), wherein the one or more thermal behavior adjusting units are provided adjacent to the first surface.
  • the electrode portion has an inclined structure with a lower porosity on the first surface side in the vicinity of the first surface. .
  • the dense part includes ceramics containing lanthanum, yttria stabilized zirconia, or scandium stabilized zirconia.
  • the electrode material band for forming either the fuel electrode or the air electrode, and the unintentional at least part of the first surface of the electrode material band facing the unintended gas flow path side of the electrode.
  • An electrode material layer comprising at least a dense material band for blocking gas and a sealing material band including one or more thermal behavior adjusting material bands adjacent to the dense material band;
  • a step of forming a laminate comprising the solid electrolyte material layer and / or the separator material layer adjacent to the material layer, and a method of firing the laminate in a lump.
  • (a) is a figure which shows an example of the relationship between a cell and a stack
  • (b) is a figure which shows an example of the relationship between a cell and a gas supply path.
  • (C) is a figure which shows an example of the seal
  • a seal portion is provided on at least a part of the first surface of the electrode portion of the electrode layer facing the unintended gas flow path, and the seal portion includes a gas A dense portion having sealing properties and a thermal behavior adjusting portion adjacent to the dense portion are provided. Since such a seal portion is provided, in the electrode layer including the porous electrode portion, it is possible to suppress or avoid the occurrence of cracks, warpage, deformation and the like while ensuring the seal performance with respect to the electrode portion. Conventionally, it has been difficult to sinter the electrode layer while suppressing or avoiding deformation and the like while providing sealing properties to the electrode portion.
  • the thermal behavior such as thermal expansion and thermal shrinkage during firing of the electrode layer including the electrode portion provided with sealing properties
  • the structure for SOFC cells and the structure for stacks as a precursor of SOFC are also provided.
  • the SOFC includes a cell 2 including a fuel electrode, an air electrode, and an electrolyte, or a stacked body (stack) 100 in which two or more layers of these cells 2 are stacked via a separator 60.
  • the SOFC includes the cell 2 or the stack 100 shown below, and also includes necessary members, that is, a gas supply system from a supply source of fuel gas and air gas to the stack structure, a current collecting member, a casing, and the like. Can function as SOFC.
  • the cell 2 will be described first, and then the stack 100 will be described.
  • FIG. 1 schematically shows the cell 2 and the stack 100.
  • the cell 2 includes a solid electrolyte 4, a fuel electrode layer 6 including a fuel electrode 8, and an air electrode layer 12 including an air electrode 14.
  • the cell 2 may be a so-called electrolyte support type or an electrode support type, but is preferably a laminate support type that ensures strength by stacking two or more cells 2. It is preferable. In such a laminate support type, it is preferable that the thickness of the fuel electrode layer 6 and the air electrode layer 14 is 30% or more and 300% or less, respectively, with respect to the thickness of the solid electrolyte 4. This is because warpage and peeling are less likely to occur during firing.
  • the thicknesses of the solid electrolyte 4, the air electrode layer 14, and the fuel electrode layer 6 are all preferably 1 ⁇ m or more and 150 ⁇ m or less. If these elements have a thickness in this range, there is no great limitation on adjusting the difference in thermal expansion and contraction characteristics during firing and use. For this reason, at least two elements adjacent to the cell 2, for example, in a state where the cell 2 is laminated through integral firing of the solid electrolyte 4 and the air electrode layer 14, or the cell 2 is further laminated via a separator. In this state, the stack 100 is easily formed by firing integrally. Since the cells 2 and the stack 100 having such unity can be formed, the strength can be easily secured in the cells 2 and the stack 100 as a result. More preferably, the thickness of the element of any cell 2 is 1 ⁇ m or more and 100 ⁇ m or less.
  • Solid electrolyte As the solid electrolyte 4, a known one usually used for SOFC can be used. Examples thereof include oxide ion conductive ceramic materials such as ceria-based oxides doped with samarium, gadolinium, etc., lanthanum galide-based oxides doped with strontium or magnesium, and zirconia-based oxides containing scandium or yttrium.
  • oxide ion conductive ceramic materials such as ceria-based oxides doped with samarium, gadolinium, etc., lanthanum galide-based oxides doped with strontium or magnesium, and zirconia-based oxides containing scandium or yttrium.
  • the form of the solid electrolyte 4 is determined depending on the form of the cell 2 or the stack 100 and is not particularly limited.
  • the cell 2 when it is a flat plate type SOFC, it has a flat plate-like three-dimensional form that approximates the flat form of the cell 2.
  • the planar shape of the solid electrolyte 4 can take various shapes such as a square shape, a rectangular shape, and a circular shape depending on the planar shape of the cell 2.
  • the thermal expansion coefficient (20 ° C. to 1000 ° C.) of the solid electrolyte 4 is preferably 10 ⁇ 10 ⁇ 6 K ⁇ 1 or more and 12 ⁇ 10 ⁇ 6 K ⁇ 1 or less. This is because if it is within this range, peeling and cracking are unlikely to occur during firing. Considering the residual stress of the stack 100, it is more preferably 10.5 ⁇ 10 ⁇ 6 K ⁇ 1 or more and 11.5 ⁇ 10 ⁇ 6 K ⁇ 1 or less.
  • the thickness of the solid electrolyte 4 is not particularly limited, but can be 1 ⁇ m or more and 150 ⁇ m or less. Within this range, when the single electrode 2 is configured with both the fuel electrode layer 6 and the air electrode layer 8 described later, and the stack 100 is configured with the separator 60, appropriate mechanical strength and power generation characteristics can be obtained. More preferably, they are 1 micrometer or more and 100 micrometers or less, More preferably, they are 1 micrometer or more and 40 micrometers or less, More preferably, they are 1 micrometer or more and 20 micrometers or less.
  • the fuel electrode layer 6 has a fuel electrode 8.
  • the fuel electrode layer 6 is an example of an electrode layer in the disclosure of the present specification, and the fuel electrode 8 is an example of an electrode portion.
  • the fuel electrode layer 6 includes a seal portion 10 in addition to the fuel electrode 8, and the seal portion 10 will be described later.
  • the fuel electrode material constituting the fuel electrode 8 is not particularly limited, and a material used as a fuel electrode material in a known SOFC can be used. Examples thereof include a mixture of a metal catalyst and a ceramic powder material made of an oxide ion conductor or a composite powder thereof.
  • a metal catalyst used at this time a material that is stable in a reducing atmosphere such as nickel, iron, cobalt, noble metals (platinum, ruthenium, palladium, etc.) and has hydrogen oxidation activity can be used.
  • the oxide ion conductor those having a fluorite structure or a perovskite structure can be preferably used.
  • the fuel electrode 8 is preferably formed of a mixture of an oxide ion conductor and nickel. Typically, nickel and scandium stabilized zirconia or yttria stabilized zirconia. Moreover, the ceramic material mentioned above can be used individually by 1 type or in mixture of 2 or more types. Moreover, the fuel electrode 8 can also be comprised using a metal catalyst alone.
  • the average particle size of the fuel electrode material powder is preferably 10 nm or more and 100 ⁇ m or less, more preferably 50 nm or more and 50 ⁇ m or less, and further preferably 100 nm or more and 10 ⁇ m or less.
  • an average particle diameter can be measured according to JISR1619, for example.
  • the fuel electrode layer 6 is also formed in a layered body depending on the planar form of the cell 2, similarly to the solid electrolyte 4.
  • the thermal expansion coefficient (20 ° C. to 1000 ° C.) of the fuel electrode 8 is preferably 10 ⁇ 10 ⁇ 6 K ⁇ 1 or more and 12.5 ⁇ 10 ⁇ 6 K ⁇ 1 or less. This is because peeling is less likely to occur at the interface with the solid electrolyte 4 within this range. Considering the residual stress of the stack 100, it is more preferably 10 ⁇ 10 ⁇ 6 K ⁇ 1 or more and 12 ⁇ 10 ⁇ 6 K ⁇ 1 or less.
  • the thickness of the fuel electrode layer 6 is not particularly limited, but can be 1 ⁇ m or more and 150 ⁇ m or less. Within this range, when configuring the cell 2 and further configuring the stack 100 together with the separator 60, appropriate mechanical strength and power generation characteristics can be obtained. More preferably, they are 1 micrometer or more and 100 micrometers or less, More preferably, they are 5 micrometers or more and 40 micrometers or less, More preferably, they are 5 micrometers or more and 20 micrometers or less.
  • the fuel electrode 8 can include one or more fuel gas passages (not shown).
  • the fuel gas flow path may be provided on the adjacent separator 60 side, but is preferably formed within the thickness range (inside the layer) of the fuel electrode 8. That is, it is preferable that the fuel gas flow path is contained in the fuel electrode 8 in a state surrounded by the material constituting the fuel electrode 8. By doing so, the fuel gas can be efficiently supplied to the entire fuel electrode 8.
  • the fuel gas flow paths are evenly arranged in the thickness direction of the fuel electrode 8.
  • at least one fuel gas flow path center portion may be disposed at substantially the center in the thickness direction of the fuel electrode 8, or two or more fuel gas flows may be evenly distributed along the thickness direction. The form by which the path is arrange
  • positioned may be sufficient.
  • the size of the opening of the fuel gas channel to the fuel gas supply channel is not particularly limited.
  • the opening shape of the fuel gas channel is not particularly limited. Examples include a substantially circular shape, an elliptical shape, a rectangular shape, and an indefinite shape, and a substantially circular shape is preferable. This is because the gas diffusion direction from the fuel gas flow path to the fuel electrode 7 is isotropic and uniform diffusion is possible when it is substantially circular.
  • the fuel gas flow path is formed so that the fuel gas can flow in the intended direction in the fuel electrode 8.
  • the fuel electrode 8 can be provided with 1 type or 2 or more types of patterns combining about 1 or 2 or more fuel gas flow paths.
  • the pattern may be a two-dimensional arrangement form along the surface direction of the fuel electrode 8 of the one or two or more fuel gas passages 16, or a three-dimensional arrangement form across the surface direction and the thickness direction. .
  • the pattern of the fuel gas flow path has at least one bent portion. According to such a pattern, supply of fuel gas can be realized with a higher degree of design freedom.
  • the degree of bending or bending of the bent portion is not particularly limited. It may be rounded from an obtuse angle to an acute angle. Furthermore, the pattern may have at least two bent portions.
  • Examples of patterns include, for example, a straight shape, a U-shape, a zigzag shape, a radial shape, a spiral shape, and a network (lattice) shape.
  • a fuel gas supply path 70 for supplying fuel gas to the fuel gas flow path of the fuel electrode 8 is provided.
  • the fuel gas supply path 70 may be provided so as to be supplied from, for example, one side surface of the cell 2 or two opposite side surfaces. Further, the fuel gas supply path 70 may be provided so as to penetrate the fuel electrode 8 along the stacking direction of the elements in the cell 2.
  • the air electrode layer 12 includes an air electrode 14.
  • the air electrode layer 12 is an example of an electrode layer in the disclosure of the present specification, and the air electrode 14 is an example of an electrode part.
  • the air electrode layer 12 includes a seal portion 16 in addition to the air electrode 14, and the seal portion 16 will be described later.
  • an air electrode material which comprises the air electrode 14 what is used as an air electrode material in a well-known solid oxide fuel cell can be used without specifically limiting.
  • a metal oxide made of La, Sr, Co, Fe, Ni, Cr, Mn, or the like having a perovskite structure or the like can be used.
  • An oxide such as La, Sr) (Fe, Co, Ni) O 3 may be mentioned, and (La, Sr) MnO 3 is preferable.
  • the ceramic material mentioned above can be used individually by 1 type or in mixture of 2 or more types.
  • the average particle diameter of the air electrode material powder is preferably 10 nm or more and 100 ⁇ m or less, more preferably 50 nm or more and 50 ⁇ m or less, and further preferably 100 nm or more and 10 ⁇ m or less.
  • the thermal expansion coefficient (20 ° C. to 1000 ° C.) of the air electrode 14 is preferably 10 ⁇ 10 ⁇ 6 K ⁇ 1 or more and 15 ⁇ 10 ⁇ 6 K ⁇ 1 or less. This is because peeling is less likely to occur at the interface with the solid electrolyte 4 within this range. Considering the residual stress of the stack 100, it is more preferably 10 ⁇ 10 ⁇ 6 K ⁇ 1 or more and 12 ⁇ 10 ⁇ 6 K ⁇ 1 or less.
  • the thickness of the air electrode layer 12 is not particularly limited, but may be 1 ⁇ m or more and 150 ⁇ m or less. Within this range, when configuring the single cell 2 and further configuring the stack 100 together with the separator 60, appropriate mechanical strength and power generation characteristics can be obtained. More preferably, they are 1 micrometer or more and 100 micrometers or less, More preferably, they are 5 micrometers or more and 40 micrometers or less, More preferably, they are 5 micrometers or more and 20 micrometers or less.
  • the air electrode 14 can include one or more oxidant gas flow paths (not shown). With respect to the oxidant gas flow path 00, the same embodiment as the fuel gas flow path in the fuel electrode 8 can be applied except that the oxidant gas flows in the air electrode 14. Note that the oxidant gas flow channel 00 may not have the same pattern as the fuel gas flow channel, or may have a different pattern. Moreover, it is preferable that the oxidant gas channel does not have an opening on the side surface side of the cell 2 where the fuel gas channel opens.
  • An oxidant gas supply path 80 for supplying oxidant gas to the oxidant gas flow path of the air electrode 14 is provided.
  • the oxidant gas supply path 80 varies depending on the pattern of the oxidant gas flow path.
  • the cell 2 is configured to be supplied from one side where the fuel gas supply path 70 is not provided or from two opposite sides. Has been. Further, the oxidant gas supply path 80 may be provided so as to penetrate the air electrode 14 along the stacking direction of the elements in the cell 2.
  • the fuel electrode layer 6 has a seal portion 10 on at least part of the first surface 20 facing the oxidant gas supply path 00 of the fuel electrode 8 in order to shield the fuel electrode 8 from unintended gas, that is, oxidant gas. It has.
  • the seal portion 10 can be integrated with at least a part of the first surface 20 of the fuel electrode 8 to form the fuel electrode layer 6 together with the fuel electrode 8.
  • the seal portion 10 disclosed in the present specification is intended to adjust the thermal behavior of the cell 2 and the stack 100 during the firing and sintering of the fuel electrode layer 6 in addition to the gas sealability in the cell 2 or the stack 100. ing.
  • the first surface 20 only needs to be provided in a region where the thermal behavior is sufficiently adjusted under the planned firing conditions. In other regions of the first surface 20, only a mere seal portion intended only for gas sealing properties may be formed.
  • the fuel electrode layer 6 has a seal portion 10 within the range of the thickness of the fuel electrode layer 6.
  • the seal portion 10 has a degree corresponding to the thickness of the fuel electrode layer 6.
  • the seal portion 10 is preferably provided on the entire first surface 20.
  • the seal portion 10 can include a dense portion 10a having gas sealing properties and a thermal behavior adjusting portion 10b adjacent to the dense portion 10a.
  • the dense portion 10a is for shielding the fuel electrode 8 from the oxidant gas.
  • the dense portion 10a is formed to be nonporous so as to exhibit the airtightness required in SOFC.
  • Porosity p b of the dense portion 10a is not particularly limited, preferably 10% or less. This is because if it exceeds 10%, it becomes difficult to obtain gas sealing properties. More preferably, it is 5% or less. In this specification, the porosity can be measured by a known method, but is preferably measured by a specific surface area measurement method.
  • the dense part 10a may be dense enough to have gas sealing properties, and the degree of non-porosity is not particularly limited.
  • the dense portion 10a is preferably formed so as to be included in a range of preferable thermal expansion / contraction characteristics in the separator 60 or the solid electrolyte 4. In this way, when separating the cells 2 with the separator 60, or when configuring the solid electrolyte 4 and the cell 2, it is possible to avoid the difference in thermal expansion and contraction characteristics between these materials laminated, and to integrate In addition, the cell 2 and the stack 100 having excellent thermal shock resistance can be obtained.
  • the thermal expansion / contraction characteristic includes at least a thermal expansion coefficient.
  • “equal in terms of thermal expansion and contraction characteristics” means a range that is the same as that of the separator 60 or the solid electrolyte 4 or that does not significantly impair the integrity of the stack 100 in the temperature range given to the SOFC in the production and operation of the SOFC. According to the experiments by the present inventors, the range that does not significantly hinder the integrity of the stack 100 is 0.85 times or more to 1.18 times the thermal expansion coefficient of the separator 60 or the solid electrolyte 4. It is known that it is about the following.
  • the thermal expansion / shrinkage characteristics of the dense portion 10 a can be equal to the thermal expansion / shrinkage characteristics of both the solid electrolyte 4 and the separator 60. Such an aspect is most preferable from the viewpoint of improving the mechanical strength and thermal shock resistance of the stack 100.
  • the dense portion 10 a may have a material common to the separator 60 or the solid electrolyte 4. If the dense part has a common material for the separator 60 or the solid electrolyte 4, the thermal expansion / shrinkage characteristics as a whole are homogenized and integrated well by firing when integrated with either of them. In addition to improving the thermal shock resistance of the cell 2 and the stack 100, the mechanical strength can be improved.
  • the dense portion 10a may include one or more materials constituting the separator 60, may include one or more materials constituting the solid electrolyte 4, and may be a material derived from the separator and Both materials derived from the solid electrolyte 4 may be included.
  • the dense portion 10a may have the same composition as either the separator 60 or the solid electrolyte 4.
  • the dense part 10 a may have a material common to the material of the fuel electrode 8 or the air electrode 14. Since the dense portion 10a has the same material as that of the fuel electrode 8 or the air electrode 14, the overall thermal expansion / contraction characteristics can be homogenized, and the integrity during firing can be improved. Thereby, the thermal shock resistance of the cell 2 and the stack 100 can be improved, and the mechanical strength can be improved.
  • the dense portion 10 a may contain one or more materials that constitute the fuel electrode 8, may contain one or more materials that constitute the air electrode 14, and is derived from the fuel electrode 8. Both the material and the material derived from the air electrode 14 may be included.
  • the dense portion 10 a may have the same composition as either the fuel electrode 8 or the air electrode 14.
  • the dense portion 10a is, for example, (Sm, Sr) CoO 3 , (La, Sr) MnO 3 , (La, Sr) FeO 3 , (La, Sr) CoO 3 , (La, Sr) (Fe, Co).
  • Fuel electrode such as air electrode material such as O 3 , (La, Sr) (Fe, Co, Ni) O 3 and / or ceria oxide doped with samarium or gadolinium, zirconia oxide containing scandium or yttrium Materials can be used.
  • the air electrode material and the fuel electrode material may be mixed and used in an arbitrary range, or only one of them may be used.
  • the thermal behavior adjusting unit 10 b is intended to suppress or avoid deformation of the fuel electrode layer 6 including the fuel electrode 8, and consequently the cell 2 and the stack 100, by providing the dense part 10 a in the fuel electrode layer 6.
  • the thermal expansion / contraction characteristics, arrangement, form, and size of the thermal behavior adjusting unit 10b are determined in consideration of the thermal expansion / contraction characteristics, arrangement, form, size, and the like of the fuel electrode 8 and the dense part 10a.
  • the thermal behavior adjusting unit 10b is set in a range where the above intention can be realized.
  • the dense part 10b may be porous or non-porous.
  • the thermal behavior adjusting portion 10b is preferably porous from the viewpoint of suppressing or avoiding the influence of the thermal expansion / contraction characteristics of the dense portion 10a.
  • Porosity p c of thermal behavior adjustment unit 10b is not particularly limited, (porosity dense portion 10a) p b from the relationship between the dense areas 10a ⁇ it is preferable that p c ⁇ 50%.
  • the thermal behavior adjusting unit 10b preferably has the same material as the fuel electrode 8, more preferably has the same material as the fuel electrode 8, and more preferably has the same composition as the fuel electrode 8. .
  • the porosity may be substantially the same as that of the fuel electrode 8, but is not necessarily the same, may be adjusted as appropriate, may be higher than the fuel electrode 8, or may be higher than that of the fuel electrode 8. It may be low.
  • the dense portion 10a and the thermal behavior adjusting portion 10b are provided with respect to the first surface 00 so as to provide gas sealing properties to the fuel electrode 8 and to suppress or avoid deformation of the fuel electrode layer 6 and the like. It only has to be.
  • the dense portion 10 a has an oxidant gas supply path with respect to the first surface 20 on the supply path 80 side. It may be provided adjacent to the first surface 20 facing 80, that is, in direct contact with the first surface 20. In this case, the thermal behavior adjusting portion 10b is provided adjacent to the surface on the opposite side of the dense portion 10b facing the first surface 20.
  • a dense portion 10a may be provided adjacent to the thermal behavior adjusting portion 10b provided adjacent to the first surface 20.
  • one or more dense portions 10a and one or more thermal behavior adjusting portions 10b may be provided.
  • the dense portions 10a and the thermal behavior adjusting portions 10b may be alternately provided.
  • the seal portion 10 when the oxidant gas supply path 80 passes through the cell, the seal portion 10 is provided for the first surface 20 on the supply path 80 side. .
  • the dense portion 10a and the thermal behavior adjusting portion 10b in the seal portion 10 can take various arrangement patterns similar to those in FIGS.
  • the dense portion 10a is provided adjacent to the first surface 20 of the fuel electrode 8 that is porous, the closer the fuel electrode 8 is to the first surface 20 in the vicinity of the first surface 20, It may have an inclined structure having a lower porosity.
  • the porous thermal behavior adjusting portion 10b is adjacent to the dense portion 10a, the closer to the surface adjacent to the dense portion 10a of the thermal behavior portion 10b, the inclined structure having a lower porosity. You may do it.
  • Such an inclined structure is easily obtained as a result of firing the fuel electrode layer 6 including the dense portion 10a, the thermal behavior adjusting portion 10b, and the fuel electrode 8 together.
  • Such an inclined structure is effective for homogenizing the thermal expansion and contraction characteristics.
  • the arrangement pattern of the seal portion 10 can be set for the fuel electrode 8 according to the fuel gas flow path pattern in the fuel electrode 8, the arrangement form of the oxidant gas supply path 80 to the cell 2 or the stack 100, and the like. More specifically, the seal portion 10 is formed on the side surface of the fuel electrode 8 that is the first surface 20 on the side of the supply path 80 of the oxidant gas so that the exposure of the fuel electrode 8 to the oxidant gas is avoided. Yes.
  • the first surface 20 is a surface on the one side surface side of the fuel electrode 8.
  • a seal portion 10 is provided on the one side surface.
  • FIGS. 1 to 3 when the oxidant gas supply path 24 is two opposite side surfaces of the cell 2, the first surface 20 is formed on the two side surfaces of the fuel electrode 8. Surface. In this case, the seal portion 10 is provided on the two side surfaces of the fuel electrode 8.
  • the air electrode layer 12 includes a seal portion 16 for blocking the air electrode 14 from an unintended gas, that is, a fuel gas.
  • the seal portion 16 is provided on at least a part of the first surface 30 facing the fuel gas supply path 00 of the air electrode 14.
  • the seal portion 16 of the air electrode layer 12 can be integrated with at least a part of the first surface 30 of the air electrode 14 to form the air electrode layer 12 together with the air electrode 14.
  • the seal portion 16 can have the same configuration as the seal portion 10 except that the exposure of the air electrode 14 to the fuel gas is prevented.
  • the seal portion 10 or the seal portion 16 is provided on the first surface 20 or the second surface 30 of the fuel electrode layer 6 or the air electrode layer 12 facing each other.
  • the seal portion 10 or the seal portion 16 includes the dense portions 10a and 16a in the shape of a belt adjacent to the first surfaces 20 and 30, respectively, and the dense portions 10a and 16a.
  • the thermal behavior adjusting units 10b and 16b are provided adjacent to the entire second surface 00.
  • the dense portions 10a and 16a are provided symmetrically with the fuel electrode 8 or the air electrode 14 in between, and the thermal behavior adjusting portions 10b and 10b are respectively provided on the second surfaces of the dense portions 10a and 16a. Since 16b is provided, the thermal behavior along the y direction acting by the dense portions 10a and 16a is adjusted by the thermal behavior adjusting portion 10b or 16b.
  • the width defined by the first surface 00 of the fuel electrode 8 or the air electrode 14 is Wa
  • the width of the dense portion 10a or 16a in the direction along Wa is Wb.
  • the width in the direction along Wa of the portion 10b or 16b is Wc
  • 0 ⁇ Wb ⁇ 0.25Wa is preferable.
  • the thermal behavior in the direction parallel to the interface between the dense portion 10a and the fuel electrode 8 or in the direction parallel to the interface between the dense portion 16a and the air electrode 14 is likely to match. It is also preferable that 0.15Wc ⁇ Wb ⁇ 3Wc.
  • the width of the thermal behavior adjusting portion is within this range, the thermal behavior in the direction parallel to the interface between the dense portion 10a or 16a and the thermal behavior adjusting portion is easily matched. More preferably, 0 ⁇ Wb ⁇ 0.15Wa and Wc ⁇ Wb ⁇ 2Wc.
  • 0.1 mm ⁇ Wb ⁇ 75 mm and 0.5 mm ⁇ Wc ⁇ 94 mm are preferable. More preferably, when 30 mm ⁇ Wa ⁇ 100 mm, 1 mm ⁇ Wb ⁇ 15 mm and 1 mm ⁇ Wc ⁇ 17 mm.
  • the seal portion 10 or the seal portion 16 adopts the pattern shown in FIG. That is, in the example shown in FIG. 7, each gas supply path is provided so as to penetrate the fuel electrode 8 or the air electrode 14, and the seal portion 10 or the seal portion 16 is provided on the first surface 00 facing the gas supply passage side. It has.
  • the width defined by the longer first surface of the fuel electrode 8 or the air electrode 14 is Wa
  • the width of the dense portion 10a or 16a in the direction along Wa is Wb
  • the thermal behavior adjusting portion 10b or 16b When the width in the direction along Wa is Wc, the embodiment of the gas flow path configuration shown in FIG. 6 can be applied as it is.
  • the solid electrolyte 4 and / or the separator 60 are collectively fired and sintered. It is preferable that they are integrated. Since the thermal expansion and contraction characteristics of the fuel electrode layer 6 and / or the air electrode layer 12 are adjusted to suppress deformation and the like, batch firing of these layers, the solid electrolyte 4 and the separator 60 is facilitated. As a result, the cell 2 itself has sufficient integrity and strength by suppressing deformation and the like. More preferably, the solid electrolyte 4, the fuel electrode layer 6 and the air electrode layer 12, which are constituent elements of the cell 2, are sintered together and sintered and integrated. Furthermore, in addition to each component of the cell 2, it is preferable that the separator 60 is fired at once and these are sintered and integrated.
  • the fuel gas supply path 70 and the oxidant gas supply path 80 are separated, and the seal portion 10 and the seal portion 16 in the fuel electrode layer 6 and the air electrode layer 12 Are separated from each other along the stacking direction of the elements or the stacking direction of the cells 2 in the stack 100. Accordingly, these supply paths exist at different positions in the plane of the cell 2 or the stack 100, and as a result, the pattern of the first surface in the fuel electrode layer 6 and the air electrode layer 12 and the seal portion 10 and the seal portion 16. The pattern is different. For this reason, the thermal behavior of the cell 2 and the stack 100 as a whole is more easily adjusted, and deformation and the like are more effectively suppressed.
  • the SOFC disclosed in this specification preferably takes the form of a stack 100 in which two or more cells 2 are stacked via a separator 60. Since the cells 2 constituting the stack 100 are each provided with the seal portion 10 and / or the seal portion 16, the thermal behavior of the cell 2 and the stack 100 can be easily adjusted by the thermal behavior adjusting portions 10b and / or 16b, so Is suppressed, and the stack 100 is excellent in unity and strength.
  • the stack 100 includes 5 or more cells 2 stacked, more preferably 6 or more cells 2 stacked, and even more preferably 7 or more cells 2 stacked, and more preferably. Eight or more cells 2 are stacked. More preferably, 10 cells are laminated, and even more preferably 12 cells or more are laminated.
  • the separator 60 preferably has a form that can be stacked in the same manner as the solid electrolyte 4, the fuel electrode layer 6, and the air electrode layer 12. Typically, a flat plate shape is preferable.
  • various conductive materials known as SOFC separators can be used.
  • SOFC separators can be used.
  • a lanthanum chromite metal ceramic material can be used.
  • the separator 60 is preferably a ceramic material that is sintered at a relatively low temperature.
  • lanthanum chromium-based oxide LaCrO 3
  • lanthanum strontium chromium-based oxide La (1-x) Sr x CrO 3 , 0 ⁇ x ⁇ 0.5
  • a ceramic containing a lanthanum-chromium perovskite oxide such as) or a zirconia in which such a lanthanum-chromium perovskite oxide and a rare earth element are dissolved.
  • Lanthanum-chromium-based perovskite oxide can be densely sintered at a lower temperature than before. As a result, the separator can be densified at a temperature of about 1400 ° C. or less at which the cell components can be co-sintered. Such lanthanum-chromium-based perovskite oxide may be dissolved in other metal elements such as calcium.
  • Examples of the rare earth in the rare earth solid solution zirconia include yttrium (Y), scandium (Sc), ytterbium (Yb), cerium (Ce), neodymium (Nd), samarium (Sm), and preferably yttrium (Y ), Scandium (Sc), and ytterbium (Yb), and more preferably yttrium (Y).
  • X in the rare earth solid solution zirconia (general formula (1-x) ZrO 2 .xY 2 O 3 , where Y represents a rare earth element) is preferably 0.02 or more and 0.20 or less, more preferably It is 0.02 or more and 0.1 or less.
  • the thermal expansion coefficient (20 ° C. to 1000 ° C.) of the separator 60 is preferably 8 ⁇ 10 ⁇ 6 K ⁇ 1 or more and 12 ⁇ 10 ⁇ 6 K ⁇ 1 or less. This is because peeling within the air electrode layer or the fuel electrode layer can be suppressed within this range.
  • the thickness of the separator 60 is not particularly limited, but can be 1 ⁇ m or more and 200 ⁇ m or less. Within this range, when the stack 100 is formed by stacking so as to separate the single cells 2, appropriate mechanical strength and power generation characteristics can be obtained. Preferably they are 10 micrometers or more and 50 micrometers or less, More preferably, they are 10 micrometers or more and 40 micrometers or less.
  • each component of the cell 2 and the separator 60 preferably have a thickness of 150 ⁇ m or less.
  • the SOFC system disclosed in this specification can include a SOFC type SOFC that is the cell 2 or the stack 100.
  • the SOFC system may be a single SOFC system, but usually includes one or a plurality of modules in which a plurality of SOFCs are combined so as to output intended power.
  • the SOFC system can further include elements of a known SOFC system, such as a fuel gas reformer, a heat exchanger, and a turbine.
  • the SOFC manufacturing method disclosed in this specification includes one or more cells including a fuel electrode to which a fuel gas is supplied, an air electrode to which an oxidant gas is supplied, and a solid electrolyte. It is a manufacturing method of SOFC. This manufacturing method is not intended for at least a part of the electrode material band for forming either the fuel electrode or the air electrode and the first surface of the electrode material band facing the unintended gas flow path side of the electrode.
  • An electrode material layer comprising at least a dense material band for blocking gas and a sealing material band including one or more thermal behavior adjusting material bands adjacent to the dense material band,
  • a step of forming a laminate including the solid electrolyte material layer and / or the separator material layer adjacent to an electrode material layer, and the laminate are collectively fired.
  • the electrode material layer includes the sealing material band including the thermal behavior adjusting material band, the thermal behavior of the electrode material layer and the laminated body during the firing of the laminated body is adjusted.
  • the deformation of the cell 2 and the stack 100 that are formed is suppressed. Thereby, the deformation
  • the laminate forming step is a step of forming a laminate including at least an electrode material layer and further including a separator material layer and / or a solid electrolyte material layer.
  • the electrode material layer includes an electrode material band, a dense material band for blocking unintended gas on at least a part of the first surface of the electrode material band facing the unintended gas flow path of the electrode, And a sealing material band including one or more thermal behavior adjusting material bands adjacent to the dense material band.
  • the electrode material strip can be prepared with the intention of either a fuel electrode or an air electrode. About each material, the already demonstrated material can be selected suitably and can be used.
  • the seal material band can be appropriately selected and used from the material of the dense part and the material of the thermal behavior adjusting part already described.
  • the pattern of the sealing material band, and the dense material band and the thermal behavior adjusting material band constituting the sealing material band can be determined based on the design concept of the seal portion and the like already described.
  • a solid electrolyte material layer made of a solid electrolyte material or a separator material layer made of a separator material the materials described above can be used as appropriate for each material of the solid electrolyte and the separator.
  • the separator material it is preferable to use a ceramic powder containing a lanthanum-chromium perovskite oxide and a rare earth element solid solution zirconia.
  • the rare earth element-stabilized zirconia the lanthanum-chromium perovskite oxide can be densely sintered even at a firing temperature of about 1400 ° C. or less, and co-sintering with the cell constituent elements becomes possible. Also, high conductivity can be maintained.
  • the rare earth solid solution zirconia is preferably 0.05% by mass or more and 10% by mass or less based on the mass of the lanthanum-chromium perovskite oxide ceramics. This is because if it is less than 0.05% by mass, the effect of lowering the sintering temperature is not sufficiently obtained, and even if it exceeds 10% by mass, the conductivity may decrease.
  • zone suitably.
  • the electrode material layer, the separator material layer, and the solid electrolyte material layer can be formed according to a conventional method.
  • a slurry containing a layer material as a main component and further added with an appropriate amount of a binder resin, an organic solvent, or the like is obtained using a sheet forming method by casting such as a tape casting method using a coating apparatus such as a knife coat or a doctor blade. be able to.
  • the obtained sheet can be dried according to a conventional method. Moreover, you may heat-process as needed (sintering is not intended).
  • An electrode material layer having different bands can be obtained by a sheet forming method by casting such as a tape casting method using a coating device such as a doctor blade.
  • the casting method is determined as appropriate.
  • the electrode material strip and the seal material strip may be cast at that time. That is, the slurry having different compositions along the casting direction is discharged at the same time, and the different slurry zones are integrated without being mixed after casting. At this time, such different composition band can be integrally applied by adjusting the fluidity of the slurry for forming different bands.
  • the electrode material layer can be formed by drying the coated material thus obtained in accordance with a conventional method and subjecting it to heat treatment as necessary.
  • the porosity of the electrode material band, the dense material band, and the thermal behavior adjusting material band in the electrode material layer can be adjusted by a known method such as adding a foaming material or the like as appropriate.
  • a laminate can be formed by laminating other layers on one layer.
  • the stacking order and stacking method are appropriately determined. That is, each layer may be formed as an independent sheet body, and the sheet body may be laminated, or may be sequentially integrated with other layers by coating so as to be laminated on other layers.
  • the laminate may be a precursor before firing intended for only a part of the cell 2 or may be intended for the cell 2.
  • what added the separator 60 to the cell 2 may be intended, and the stack 100 may be intended.
  • a stack 100 in which a plurality of cells 2 are stacked via a separator 60 is intended.
  • this laminate is fired. That is, the material layers in the laminate are fired and sintered together.
  • the firing step is performed so that the firing conditions are a desired dense or porous for each material layer.
  • all of the cell components and separator are co-sintered.
  • the heat treatment can be performed at a temperature of 1250 ° C. to 1550 ° C., and preferably 1300 ° C. to 1500 ° C. More preferably, it is 1300 degreeC or more and 1400 degrees C or less. It can be fired in air.
  • the layers constituting the laminate can be integrated to obtain the cell 2 or the stack 100 that is the SOFC disclosed in this specification or a part thereof.
  • this manufacturing method as already described, it is preferable to prepare a laminate intended for the stack 100 in which a plurality of cells 2 are laminated and to fire the laminate.
  • the electrode material layer includes the sealing material band including the thermal behavior adjusting material band, even in the stack 100 in which a plurality of the cells 2 are stacked, the deformation and the like are suppressed, and the integrity and strength are improved.
  • An excellent stack 100 can be obtained.
  • the aspect already described for the stack 100 can be applied.
  • the SOFC cell 2 or the stack 100 or a part of the SOFC cell 2 having good integrity and strength is formed by forming a laminate including at least an electrode material layer and firing the laminate. Can be obtained.
  • another material layer can also be laminated
  • a current collecting element or the like necessary for SOFC can be appropriately provided.
  • the SOFC electrode sheet of the present invention can include an electrode material band containing a fuel electrode material or an air electrode material, and a seal material band. According to this sheet, a seal portion having a thermal behavior adjusting portion and a dense portion can be formed in the fuel electrode layer or the air electrode layer. For this reason, while being able to provide a reliable and simple seal structure, the thermal behavior in the cell 2 or the stack 100 can be adjusted well, the deformation or the like is suppressed, and the cell 2 or the stack 100 having excellent integrity and strength can be obtained.
  • the electrode sheet of the present invention various aspects can be applied to the fuel electrode, the air electrode, the separator, the solid electrolyte, and the seal portion already described for the stack 100. Moreover, the manufacturing method of SOFC already demonstrated can be referred for manufacture of the sheet
  • a stack was manufactured in which cells each provided with a fuel electrode layer 6 and air electrode layers 12 provided with seal portions 10 and 16 on both sides were laminated.
  • Each of the sealing portions 10 and 16 includes dense portions 10a and 16a adjacent to the fuel electrode 8 or the air electrode 14, and further includes thermal behavior adjusting portions 10b and 16b on the outside thereof.
  • the cell has a square plate shape of 35 mm ⁇ 35 mm, and the width Wb of the dense portions 10 a and 16 a of the seal portion in each electrode layer is about 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, and The width Wc of the thermal behavior adjusting units 10b and 16b was about 2 mm.
  • the cell stacks were 5 to 12 cells, and stacks having various types of seal portions were formed.
  • LSM La 1-x Sr x MnO 3
  • 8YSZ was used as the electrolyte material
  • La 0.79 Ca 0.06 Sr 0.15 CrO x LaCaSCr
  • the dense material a dense LSM that can ensure the gas sealing property, which is an air electrode material, is made dense enough to ensure the gas sealing property. Dense areas 10a, porosity p b of 16a were prepared dense material to be 2% in the present embodiment.
  • porous LSM was used for both the air electrode and the fuel electrode layer.
  • Porosity p c of thermal behavior adjuster to prepare a thermal behavior modifying material such that 25% in this embodiment.
  • the thickness of these material layers after firing was set to be about 100 ⁇ m for the electrode layer, about 20 ⁇ m for the separator layer and the electrolyte layer.
  • the electrode layer was prepared by arranging a polymer material that disappears at a firing temperature in a linear channel structure.
  • ethanol, allyl ether copolymer, and polyvinyl butyral were used in addition to the pore-forming material of methyl methacrylate polymer.
  • ethanol, allyl ether copolymer and polyvinyl butyral were used in addition to the pore-forming material of methyl methacrylate polymer.
  • preparing the slurry for the solid electrolyte ethanol, allyl ether copolymer, and polyvinyl butyral were used.
  • ethanol, allyl ether copolymer and polyvinyl butyral were used.
  • a ceramic green sheet was prepared using each slurry.
  • the slurry was cast while a plurality of vanishing filaments were embedded in the casting direction in a straight line at regular intervals in the approximate center of the sheet thickness.
  • the separator sheet and the solid electrolyte sheet the sheet was produced without embedding the filament.
  • Each electrode sheet, solid electrolyte sheet and separator sheet thus obtained were laminated, and finally 5 to 12 cells were laminated and fired at 1300 ° C. for 5 hours.
  • the thicknesses of the fuel electrode, air electrode, solid electrolyte, and separator in the fired body were about 100 ⁇ m, 100 ⁇ m, 20 ⁇ m, and 20 ⁇ m, respectively.
  • the thermal behavior adjusting unit can effectively suppress deformation such as generation of cracks in the cell and the stack. Further, it has been found that if the width Wc of the thermal behavior adjusting portion is too narrow relative to Wb or Wa, the function of controlling thermal contraction and thermal expansion becomes weak. For example, it was found that 3Wc> Wb was preferable, and 2Wc> Wb was more preferable. It was also found that 0 ⁇ Wb ⁇ 0.25Wa, 0.15Wc ⁇ Wb ⁇ 3Wc, and 0 ⁇ Wc ⁇ 0.25 (Wa + Wb).

Abstract

[Problem] To provide a SOFC containing a porous section and a non-porous section within a single layer, and equipped with a structure capable of obtaining favorable uniformity and strength, and preventing cracks, deformities and the like in the cells and stacks thereof. [Solution] A solid oxide fuel cell provided with one or more cells equipped with a fuel electrode to which a fuel gas is supplied, an air electrode to which an oxidizing gas is supplied, and an electrolyte, wherein: one or more of the electrode layers equipped with the fuel electrode or the air electrode as the electrode part thereof is further equipped with a sealing part positioned on at least one section of a first surface facing the channel of gas not intended for the electrode part, in order to shield the electrode part from unintended gas; and the sealing part is equipped with one or more compact sections having gas-sealing properties, and one or more thermal behavior adjustment sections which are adjacent to the one or more compact sections.

Description

固体酸化物形燃料電池及びその製造方法Solid oxide fuel cell and method for producing the same
 本願は、2013年2月7日に出願した日本国特許出願である特願2013-022716に基づく優先権を主張するものであって、その内容の全てが参照により本願に組み込まれる。本明細書は、固体酸化物形燃料電池及びその製造方法に関する。 This application claims priority based on Japanese Patent Application No. 2013-022716 filed on Feb. 7, 2013, the entire contents of which are incorporated herein by reference. The present specification relates to a solid oxide fuel cell and a manufacturing method thereof.
 固体酸化物形燃料電池(SOFC)は、電解質を挟んで多孔質構造を有する燃料極と空気極とが対峙するセル構造を取っている。例えば平板型SOFCは、さらに、こうしたセルをセパレータを介して積層したスタック構造を構築することで、所望する電力を確保することができる。 The solid oxide fuel cell (SOFC) has a cell structure in which a fuel electrode having a porous structure and an air electrode are opposed to each other with an electrolyte interposed therebetween. For example, a flat-plate SOFC can secure a desired power by constructing a stack structure in which such cells are stacked via separators.
 燃料極には、水素などの燃料ガスが供給され、空気極には酸素を含む空気などの酸化剤ガスが供給されるようになっている。一般に、SOFCは、燃料極への酸化剤ガス及び空気極への燃料ガスの混入を避けるために、これらの電極とガス流域の境界において、これらのガスを遮断するための非多孔質のシール材を配置することがある(特許文献1)。シール材は、例えば、平板型SOFCにおいては、電極層の外縁部の一部に接して設けられている。 A fuel gas such as hydrogen is supplied to the fuel electrode, and an oxidant gas such as air containing oxygen is supplied to the air electrode. In general, SOFC is a non-porous sealing material for shutting off these gases at the boundary between these electrodes and the gas flow region in order to avoid mixing of oxidant gas into the fuel electrode and fuel gas into the air electrode. (Patent Document 1). For example, in the flat plate type SOFC, the sealing material is provided in contact with a part of the outer edge portion of the electrode layer.
特願2010-505799号公報Japanese Patent Application No. 2010-505799
 SOFCを構成する要素は、高温で焼成するセラミックス材料であることが多い。このため、SOFCの製造の際、セルやスタックにおける反り、割れ、変形を抑制するには、一体化する複数の要素の間で熱膨張及び熱収縮を意図した方向において等しくする必要がある。 The elements constituting SOFC are often ceramic materials fired at high temperatures. For this reason, at the time of manufacturing the SOFC, in order to suppress warpage, cracking, and deformation in the cell or the stack, it is necessary to make the thermal expansion and the thermal contraction equal in the intended directions among a plurality of integrated elements.
 SOFCの製造方法として、燃料極、空気極及び電解質のうち1層を支持層として他の1層を一体に焼成することが行われる場合がある。しかしながら、多孔質構造である電極層内に非多孔質構造であるシール材を有する場合には、一体焼成が困難になる。また、特定の支持層を備えないで、燃料極、空気極及び電解質に加えてセパレータも焼成により一体化することもある。しかし、シール材も含めて焼成する場合には、上記と同様に、一つの層内に多孔質部分(電極層)と非多孔質部分(シール材)とが存在し、さらに、セパレータ層や他のセルも一体化するため、一層熱膨張及び熱収縮の制御が困難になる。 As a manufacturing method of SOFC, there is a case where one layer of a fuel electrode, an air electrode, and an electrolyte is used as a support layer and the other layer is integrally fired. However, in the case where the electrode layer having a porous structure has a sealing material having a non-porous structure, integral firing becomes difficult. In addition to the specific support layer, the separator may be integrated by firing in addition to the fuel electrode, the air electrode, and the electrolyte. However, in the case of firing including the sealing material, similarly to the above, a porous portion (electrode layer) and a non-porous portion (sealing material) are present in one layer. Since these cells are also integrated, it becomes more difficult to control thermal expansion and contraction.
 以上のように、緻密質で非多孔質性のシール材と多孔質性の電極層とを同一層内において一体化するには、熱膨張及び熱収縮特性を均等にすることが重要であるが、このような焼成制御は容易ではなかった。 As described above, in order to integrate the dense and non-porous sealing material and the porous electrode layer in the same layer, it is important to make the thermal expansion and thermal shrinkage characteristics uniform. Such firing control has not been easy.
 本明細書は、多孔質部と非多孔質部とを同一層内に含むSOFCにおいて、セルないしスタックの割れ、クラック及び変形などを抑制し、好ましい一体性及び強度を得ることができる構造を備えるSOFC及びその製造方法を提供する。 The present specification has a structure capable of obtaining preferable integrity and strength by suppressing cracking, cracking, deformation, etc. of a cell or stack in an SOFC including a porous part and a non-porous part in the same layer. SOFC and its manufacturing method are provided.
 本発明者らは、SOFCのセル又はスタックの一体焼成に有利な構造について検討を行ったところ、多孔質の電極部と、当該電極部のガス流路に面する表面をシールするために非多孔質のシール部と、を備えるとき、当該シール部の電極部とは反対側の面に熱挙動を調整するための熱挙動調整部と、を備えるようにすることで、電極部とシール部とを含む電極層並びに当該電極層を含むセル並びにスタックを一体焼成することで、こうした積層体の反りや割れを含む意図しない変形を低減又は回避できるという知見を得た。本明細書によれば、こうした知見に基づき以下の手段が教示される。 The inventors of the present invention have studied a structure advantageous for monolithic firing of SOFC cells or stacks. As a result, a porous electrode portion and a non-porous structure are sealed to seal the surface of the electrode portion facing the gas flow path. A quality seal part, and a thermal behavior adjustment part for adjusting the thermal behavior on the surface opposite to the electrode part of the seal part, the electrode part and the seal part As a result, it was found that unintentional deformation including warping and cracking of the laminate can be reduced or avoided by integrally firing the electrode layer containing the electrode, the cell containing the electrode layer, and the stack. According to the present specification, the following means are taught based on such knowledge.
(1)固体酸化物形燃料電池であって、
 燃料ガス供給される燃料極と、酸化剤ガスが供給される空気極と、電解質と、を備える1又は2以上のセルを備え、
 前記燃料極又は前記空気極のいずれかを電極部として備える少なくとも1つの電極層は、前記電極部を意図しないガスから遮断するために前記電極部の前記意図しないガスの流路に面する第1の面の少なくとも一部に配置されるシール部を備えており、
 前記シール部は、ガスシール性を有する1又は2以上の緻密質部と、前記1又は2以上の緻密質部に隣接して1又は2以上の熱挙動調整部と、備える、電池。
(2)前記1又は2以上の熱挙動調整部は、多孔質である、(1)に記載の電池。
(3)前記1又は2以上の緻密質部が前記第1の面に隣接して備えられ、前記1又は2以上の熱挙動調整部が前記1又は2以上の緻密質部の前記第1の面に隣接する面とは反対側の面となる第2の面に隣接して備えられる、(1)又は(2)に記載の電池。
(4)前記1又は2以上の緻密質部と前記1又は2以上の熱挙動調整部とが、交互に配置されている、(1)~(3)のいずれかに記載の電池。
(5)前記1又は2以上の熱挙動調整部が前記第1の面に隣接して備えられる、(1)~(4)のいずれかに記載の電池。
(6)前記電極部は、前記第1の面の近傍において前記第1の面側においてより低い気孔率の傾斜構造を有している、(1)~(5)のいずれかに記載の電池。
(7)前記シール部は、前記電極層において前記電極部の対向する2つの側面を含む第1の面に隣接して配置される、(1)~(6)のいずれかに記載の電池。
(8)1つの前記シール部が前記第1の面に隣接して配置され、前記シール部
 前記電極部の前記対向する2つの側面で規定される幅をWaとし、
 前記緻密質部の前記Waに沿う方向での幅をWbとし、
 前記熱挙動調整部の前記Waに沿う方向での幅をWcとするとき、0<Wb<0.25Waであり、0.15Wc<Wb<3Wcであり、かつ0<Wc<0.25(Wa+Wb)である、(7)に記載の電池。
(9)平板型固体酸化物形燃料電池である、(1)~(8)のいずれかに記載の電池。
(10)前記電極層と前記電解質とが一体焼成されている、(1)~(9)のいずれかに記載の電池。
(11)複数の前記セルをセパレータを介して積層して備える、(1)~(10)のいずれかに記載の電池。
(12)前記セルの前記燃料極及び前記空気極をそれぞれ含む前記電極層と、前記電解質と、前記セパレータとが、一括焼成されている、(1)~(11)のいずれかに記載の電池。
(13)前記燃料極が、ニッケル及びイットリア安定化ジルコニア又はスカンジウム安定化ジルコニアを含む、(1)~(12)のいずれかに記載の電池。
(14)前記空気極が、ランタンストロンチウム、ランタンストロンチウムフェライト及びランタンストロンチウムコバルトフェライトからなる群から選択される1種又は2種以上を含む、(1)~(13)のいずれかに記載の電池。
(15)前記緻密質部がランタンを含むセラミックス又はイットリア安定化ジルコニア又はスカンジウム安定化ジルコニアを含む、(1)~(14)のいずれかに記載の電池。
(16)固体酸化物形燃料電池の製造方法であって、
 前記固体酸化物形燃料電池は、燃料ガス供給される燃料極と、酸化剤ガスが供給される空気極と、電解質と、を備える1又は2以上のセルを備えており、
 前記燃料極又は前記空気極のいずれかを形成するための電極材料帯と、前記電極材料帯の当該電極の意図しないガスの流路側に面する第1の面の少なくとも一部に、前記意図しないガスを遮断するための緻密質材料帯とこの緻密質材料帯に隣接して1又は2以上の熱挙動調整材料帯とを含むシール材料帯とを備える電極材料層を少なくとも含み、さらに、前記電極材料層に隣接して前記固体電解質材料層及び/又は前記セパレータ材料層を備える積層体を形成する工程と、前記積層体を一括焼成する、方法。
(1) A solid oxide fuel cell,
Comprising one or more cells comprising a fuel electrode supplied with fuel gas, an air electrode supplied with oxidant gas, and an electrolyte;
At least one electrode layer including either the fuel electrode or the air electrode as an electrode portion faces the unintended gas flow path of the electrode portion in order to shield the electrode portion from unintended gas. A seal portion disposed on at least a part of the surface of
The battery includes one or more dense parts having gas sealing properties, and one or more thermal behavior adjusting parts adjacent to the one or more dense parts.
(2) The battery according to (1), wherein the one or two or more thermal behavior adjusting units are porous.
(3) The one or two or more dense parts are provided adjacent to the first surface, and the one or two or more thermal behavior adjusting parts are the first or two or more dense parts. The battery according to (1) or (2), which is provided adjacent to a second surface which is a surface opposite to a surface adjacent to the surface.
(4) The battery according to any one of (1) to (3), wherein the one or more dense portions and the one or more thermal behavior adjusting portions are alternately arranged.
(5) The battery according to any one of (1) to (4), wherein the one or more thermal behavior adjusting units are provided adjacent to the first surface.
(6) The battery according to any one of (1) to (5), wherein the electrode portion has an inclined structure with a lower porosity on the first surface side in the vicinity of the first surface. .
(7) The battery according to any one of (1) to (6), wherein the seal portion is disposed adjacent to a first surface including two opposing side surfaces of the electrode portion in the electrode layer.
(8) One of the seal portions is disposed adjacent to the first surface, and the width defined by the two opposing side surfaces of the seal portion is defined as Wa.
The width of the dense part in the direction along Wa is Wb,
When the width in the direction along the Wa of the thermal behavior adjusting unit is Wc, 0 <Wb <0.25Wa, 0.15Wc <Wb <3Wc, and 0 <Wc <0.25 (Wa + Wb The battery according to (7), wherein
(9) The battery according to any one of (1) to (8), which is a flat plate solid oxide fuel cell.
(10) The battery according to any one of (1) to (9), wherein the electrode layer and the electrolyte are integrally fired.
(11) The battery according to any one of (1) to (10), comprising a plurality of the cells stacked via a separator.
(12) The battery according to any one of (1) to (11), wherein the electrode layer including the fuel electrode and the air electrode of the cell, the electrolyte, and the separator are collectively fired. .
(13) The battery according to any one of (1) to (12), wherein the fuel electrode includes nickel and yttria stabilized zirconia or scandium stabilized zirconia.
(14) The battery according to any one of (1) to (13), wherein the air electrode includes one or more selected from the group consisting of lanthanum strontium, lanthanum strontium ferrite, and lanthanum strontium cobalt ferrite.
(15) The battery according to any one of (1) to (14), wherein the dense part includes ceramics containing lanthanum, yttria stabilized zirconia, or scandium stabilized zirconia.
(16) A method for producing a solid oxide fuel cell,
The solid oxide fuel cell includes one or more cells including a fuel electrode supplied with a fuel gas, an air electrode supplied with an oxidant gas, and an electrolyte.
The electrode material band for forming either the fuel electrode or the air electrode, and the unintentional at least part of the first surface of the electrode material band facing the unintended gas flow path side of the electrode. An electrode material layer comprising at least a dense material band for blocking gas and a sealing material band including one or more thermal behavior adjusting material bands adjacent to the dense material band; A step of forming a laminate comprising the solid electrolyte material layer and / or the separator material layer adjacent to the material layer, and a method of firing the laminate in a lump.
SOFCの一例の概要を示す図であり、(a)は、セルとスタックとの関係の一例を示す図であり、(b)は、セルとガス供給路との関係の一例を示す図であり、(c)は、燃料極層及び空気極層におけるシール部の一例を示す図である。It is a figure which shows the outline | summary of an example of SOFC, (a) is a figure which shows an example of the relationship between a cell and a stack, (b) is a figure which shows an example of the relationship between a cell and a gas supply path. (C) is a figure which shows an example of the seal | sticker part in a fuel electrode layer and an air electrode layer. 燃料極層におけるシール部の他の一例を示す図である。It is a figure which shows another example of the seal part in a fuel electrode layer. 燃料極層におけるシール部のさらに他の一例を示す図である。It is a figure which shows another example of the seal part in a fuel electrode layer. 燃料極層におけるシール部のさらに他の一例を示す図である。It is a figure which shows another example of the seal part in a fuel electrode layer. 燃料極層におけるシール部のさらに他の一例を示す図である。It is a figure which shows another example of the seal part in a fuel electrode layer. 燃料極層及び空気極層におけるシール部の各部の幅の関係の一例を示す図である。It is a figure which shows an example of the relationship of the width | variety of each part of the seal part in a fuel electrode layer and an air electrode layer. 燃料極層及び空気極層におけるシール部の各部の幅の関係の他の一例を示す図である。It is a figure which shows another example of the relationship of the width | variety of each part of the seal part in a fuel electrode layer and an air electrode layer. 実施例における燃料極層及び空気極層におけるシール部の一例を示す図である。It is a figure which shows an example of the seal part in a fuel electrode layer and an air electrode layer in an Example.
 本明細書の開示は、SOFC及びその製造方法に関する。本明細書に開示されるSOFCによれば、電極層の電極部の意図しないガスの流路に面する第1の面の少なくとも一部にシール部を備えており、そのシール部には、ガスシール性を有する緻密質部とこの緻密質部に隣接する熱挙動調整部とを備えている。こうしたシール部を備えているために、多孔質性の電極部を含む電極層において、電極部に対するシール性を確保しつつ、割れ、反り、変形等の発生を抑制又は回避できる。従来、電極部にシール性を付与しつつ電極層を変形等の発生を抑制又は回避して焼成することが困難であった。しかしながら、本開示によれば、シール性を付与した電極部を含む電極層の焼成時の熱膨張、熱収縮などの熱挙動を制御して、割れ、反り、変形の発生を抑制又は回避することができる。このため、意図した形態を維持して一体性及び強度に優れるSOFCを得ることができる。 The disclosure of this specification relates to an SOFC and a manufacturing method thereof. According to the SOFC disclosed in this specification, a seal portion is provided on at least a part of the first surface of the electrode portion of the electrode layer facing the unintended gas flow path, and the seal portion includes a gas A dense portion having sealing properties and a thermal behavior adjusting portion adjacent to the dense portion are provided. Since such a seal portion is provided, in the electrode layer including the porous electrode portion, it is possible to suppress or avoid the occurrence of cracks, warpage, deformation and the like while ensuring the seal performance with respect to the electrode portion. Conventionally, it has been difficult to sinter the electrode layer while suppressing or avoiding deformation and the like while providing sealing properties to the electrode portion. However, according to the present disclosure, by controlling the thermal behavior such as thermal expansion and thermal shrinkage during firing of the electrode layer including the electrode portion provided with sealing properties, it is possible to suppress or avoid the occurrence of cracks, warpage, and deformation. Can do. For this reason, it is possible to obtain an SOFC having excellent integrity and strength while maintaining the intended form.
 なお、本明細書の開示によれば、SOFCの前駆体としての、SOFCのセル用構造体及びスタック用構造体も提供される。 In addition, according to the indication of this specification, the structure for SOFC cells and the structure for stacks as a precursor of SOFC are also provided.
 以下では、本明細書の開示の代表的かつ非限定的な具体例について、適宜図面を参照して詳細に説明する。この詳細な説明は、本明細書の開示の好ましい例を実施するための詳細を当業者に示すことを単純に意図しており、本明細書の開示の範囲を限定することを意図したものではない。また、以下に開示される追加的な特徴ならびに開示は、さらに改善された標的核酸の検出方法等を提供するために、他の特徴や発明とは別に、又は共に用いることができる。 Hereinafter, representative and non-limiting specific examples of the disclosure of the present specification will be described in detail with reference to the drawings as appropriate. This detailed description is intended merely to provide those skilled in the art with details for practicing the preferred embodiments of the present disclosure and is not intended to limit the scope of the present disclosure. Absent. Further, the additional features and disclosure disclosed below can be used separately from or together with other features and inventions to provide improved methods for detecting target nucleic acids and the like.
 また、以下の詳細な説明で開示される特徴や工程の組み合わせは、最も広い意味において本明細書の開示を実施する際に必須のものではなく、特に本明細書の開示の代表的な具体例を説明するためにのみ記載されるものである。さらに、上記及び下記の代表的な具体例の様々な特徴、ならびに、独立及び従属クレームに記載されるものの様々な特徴は、本明細書の開示の追加的かつ有用な実施形態を提供するにあたって、ここに記載される具体例のとおりに、あるいは列挙された順番のとおりに組合せなければならないものではない。 In addition, the combination of features and steps disclosed in the following detailed description are not essential in carrying out the disclosure of the present specification in the broadest sense, and are particularly representative specific examples of the disclosure of the present specification. It is described only for the purpose of explaining. Furthermore, the various features of the exemplary embodiments described above and below, as well as those described in the independent and dependent claims, provide additional and useful embodiments of the disclosure herein. They do not have to be combined according to the specific examples described herein or in the order listed.
 以下、本明細書の開示について、適宜図面を参照しながら詳細に説明する。 Hereinafter, the disclosure of this specification will be described in detail with reference to the drawings as appropriate.
(SOFC)
 本明細書において、SOFCとは、燃料極、空気極及び電解質を備えるセル2又はこれらのセル2がセパレータ60を介して2又は3層以上積層された積層体(スタック)100を含んでいる。SOFCは、以下に示すセル2又はスタック100を備えるとともに、適宜必要な部材、すなわち、スタック構造体への燃料ガス及び空気ガスの供給源からのガス供給系、集電部材やケーシング等を備えることでSOFCとして機能できる。以下、まずセル2について説明し、その後、スタック100について説明する。
(SOFC)
In this specification, the SOFC includes a cell 2 including a fuel electrode, an air electrode, and an electrolyte, or a stacked body (stack) 100 in which two or more layers of these cells 2 are stacked via a separator 60. The SOFC includes the cell 2 or the stack 100 shown below, and also includes necessary members, that is, a gas supply system from a supply source of fuel gas and air gas to the stack structure, a current collecting member, a casing, and the like. Can function as SOFC. Hereinafter, the cell 2 will be described first, and then the stack 100 will be described.
(セル)
 図1には、セル2及びスタック100の概略を示す。図1に示すように、セル2は、固体電解質4と、燃料極8を含む燃料極層6と、空気極14を含む空気極層12と、を備えている。
(cell)
FIG. 1 schematically shows the cell 2 and the stack 100. As shown in FIG. 1, the cell 2 includes a solid electrolyte 4, a fuel electrode layer 6 including a fuel electrode 8, and an air electrode layer 12 including an air electrode 14.
 セル2は、いわゆる電解質支持型であってもよいし、電極支持型であってもよいが、好ましくは、セル2を2又は3以上を積層することによって強度を確保する積層体支持型であることが好ましい。こうした積層体支持型においては、好ましくは、固体電解質4の厚みに対して燃料極層6及び空気極層14の厚みがそれぞれ30%以上300%以下であることが好ましい。この範囲であると、焼成の際に反りや剥離が生じにくいからである。 The cell 2 may be a so-called electrolyte support type or an electrode support type, but is preferably a laminate support type that ensures strength by stacking two or more cells 2. It is preferable. In such a laminate support type, it is preferable that the thickness of the fuel electrode layer 6 and the air electrode layer 14 is 30% or more and 300% or less, respectively, with respect to the thickness of the solid electrolyte 4. This is because warpage and peeling are less likely to occur during firing.
 また、固体電解質4、空気極層14及び燃料極層6の厚みは、いずれも1μm以上150μm以下であることが好ましい。これらの要素がいずれもこの範囲の厚みであると、これらの焼成時及び使用時における熱膨張収縮特性の相違を調整することに大きく制限されない。このため、セル2の隣接するうちの少なくとも2要素、例えば、固体電解質4と空気極層14との一体焼成を経由してセル2を積層した状態で、あるいはセル2をさらにセパレータを介して積層した状態で一体焼成してスタック100を形成しやすい。こうした一体性のあるセル2及びスタック100を形成できるため、結果として、セル2及びスタック100において容易に強度を確保することができる。より好ましくは、いずれのセル2の要素の厚みは、1μm以上100μm以下である。 The thicknesses of the solid electrolyte 4, the air electrode layer 14, and the fuel electrode layer 6 are all preferably 1 μm or more and 150 μm or less. If these elements have a thickness in this range, there is no great limitation on adjusting the difference in thermal expansion and contraction characteristics during firing and use. For this reason, at least two elements adjacent to the cell 2, for example, in a state where the cell 2 is laminated through integral firing of the solid electrolyte 4 and the air electrode layer 14, or the cell 2 is further laminated via a separator. In this state, the stack 100 is easily formed by firing integrally. Since the cells 2 and the stack 100 having such unity can be formed, the strength can be easily secured in the cells 2 and the stack 100 as a result. More preferably, the thickness of the element of any cell 2 is 1 μm or more and 100 μm or less.
(固体電解質)
 固体電解質4は、SOFCに通常使用される公知のものを使用することができる。例えば、サマリウムやガドリニウム等をドープしたセリア系酸化物、ストロンチウムやマグネシウムをドープしたランタン・ガレード系酸化物、スカンジウムやイットリウムを含むジルコニア系酸化物などの酸化物イオン伝導性セラミックス材料が挙げられる。
(Solid electrolyte)
As the solid electrolyte 4, a known one usually used for SOFC can be used. Examples thereof include oxide ion conductive ceramic materials such as ceria-based oxides doped with samarium, gadolinium, etc., lanthanum galide-based oxides doped with strontium or magnesium, and zirconia-based oxides containing scandium or yttrium.
 固体電解質4の形態は、セル2ないしスタック100の形態に依存して決定され、特に限定されない。例えば、セル2が平板型SOFCである場合には、セル2の平面形態に近似した平板状の3次元形態を有している。固体電解質4の平面形態は、セル2の平面形態に依拠して、方形状、長方形状、円形状等の各種の形状を取ることができる。 The form of the solid electrolyte 4 is determined depending on the form of the cell 2 or the stack 100 and is not particularly limited. For example, when the cell 2 is a flat plate type SOFC, it has a flat plate-like three-dimensional form that approximates the flat form of the cell 2. The planar shape of the solid electrolyte 4 can take various shapes such as a square shape, a rectangular shape, and a circular shape depending on the planar shape of the cell 2.
 固体電解質4の熱膨張係数(20℃~1000℃)は、10×10-6-1以上~12×10-6-1以下であることが好ましい。この範囲であると、焼成の際にはく離や割れがしょうじにくいからである。スタック100の残留応力を考慮すると、より好ましくは、10.5×10-6-1以上11.5×10-6-1以下である。 The thermal expansion coefficient (20 ° C. to 1000 ° C.) of the solid electrolyte 4 is preferably 10 × 10 −6 K −1 or more and 12 × 10 −6 K −1 or less. This is because if it is within this range, peeling and cracking are unlikely to occur during firing. Considering the residual stress of the stack 100, it is more preferably 10.5 × 10 −6 K −1 or more and 11.5 × 10 −6 K −1 or less.
 固体電解質4の厚みは特に限定されないが、1μm以上150μm以下とすることができる。この範囲であると、後述する燃料極層6及び空気極層8ともに単セル2を構成し、さらにセパレータ60とともにスタック100を構成するとき、適切な機械的強度と発電特性を得ることができる。より好ましくは、1μm以上100μm以下であり、さらに好ましくは1μm以上40μm以下であり、一層好ましくは1μm以上20μm以下である。 The thickness of the solid electrolyte 4 is not particularly limited, but can be 1 μm or more and 150 μm or less. Within this range, when the single electrode 2 is configured with both the fuel electrode layer 6 and the air electrode layer 8 described later, and the stack 100 is configured with the separator 60, appropriate mechanical strength and power generation characteristics can be obtained. More preferably, they are 1 micrometer or more and 100 micrometers or less, More preferably, they are 1 micrometer or more and 40 micrometers or less, More preferably, they are 1 micrometer or more and 20 micrometers or less.
(燃料極層)
 燃料極層6は、燃料極8を有している。燃料極層6は本明細書の開示における電極層の一例であり、燃料極8は、電極部の一例である。燃料極層6は、燃料極8のほか、シール部10を備えているが、シール部10については後述する。
(Fuel electrode layer)
The fuel electrode layer 6 has a fuel electrode 8. The fuel electrode layer 6 is an example of an electrode layer in the disclosure of the present specification, and the fuel electrode 8 is an example of an electrode portion. The fuel electrode layer 6 includes a seal portion 10 in addition to the fuel electrode 8, and the seal portion 10 will be described later.
 燃料極8を構成する燃料極材料としては、特に限定しないで公知のSOFCにおいて燃料極材料として用いられているものを用いることができる。例えば、金属触媒と酸化物イオン伝導体からなるセラミックス粉末材料との混合物又はその複合粉末が挙げられる。このとき用いられる金属触媒としては、ニッケル、鉄、コバルトや、貴金属(白金、ルテニウム、パラジウム等)等の還元性雰囲気中で安定であって水素酸化活性を有する材料を用いることができる。また、酸化物イオン伝導体としては、蛍石型構造又はペロブスカイト型構造を有するものを好ましく用いることができる。蛍石型構造を有するものとしては、例えばサマリウムやガドリニウム等をドープしたセリア系酸化物、スカンジウムやイットリウムを含むジルコニア系酸化物などを挙げることができる。また、ペロブスカイト型構造を有するものとしてはストロンチウムやマグネシウムをドープしたランタン・ガレード系酸化物が挙げられる。上記材料の中では、酸化物イオン伝導体とニッケルとの混合物で、燃料極8を形成することが好ましい。典型的には、ニッケル及びスカンジウム安定化ジルコニア又はイットリア安定化ジルコニアが挙げられる。また、上述したセラミックス材料は、1種類を単独で又は2種類以上を混合して使用することができる。また、燃料極8は、金属触媒を単体で用いて構成することもできる。 The fuel electrode material constituting the fuel electrode 8 is not particularly limited, and a material used as a fuel electrode material in a known SOFC can be used. Examples thereof include a mixture of a metal catalyst and a ceramic powder material made of an oxide ion conductor or a composite powder thereof. As the metal catalyst used at this time, a material that is stable in a reducing atmosphere such as nickel, iron, cobalt, noble metals (platinum, ruthenium, palladium, etc.) and has hydrogen oxidation activity can be used. Further, as the oxide ion conductor, those having a fluorite structure or a perovskite structure can be preferably used. Examples of those having a fluorite structure include ceria-based oxides doped with samarium, gadolinium, and the like, and zirconia-based oxides containing scandium and yttrium. In addition, examples of those having a perovskite structure include lanthanum galide oxides doped with strontium and magnesium. Among the above materials, the fuel electrode 8 is preferably formed of a mixture of an oxide ion conductor and nickel. Typically, nickel and scandium stabilized zirconia or yttria stabilized zirconia. Moreover, the ceramic material mentioned above can be used individually by 1 type or in mixture of 2 or more types. Moreover, the fuel electrode 8 can also be comprised using a metal catalyst alone.
 燃料極材料の粉末の平均粒子径は、好ましくは10nm以上100μm以下であり、より好ましくは50nm以上50μm以下であり、さらに好ましくは100nm以上10μm以下である。なお、本明細書において、平均粒子径は、例えば、JISR1619にしたがって計測することができる。なお、燃料極層6も、固体電解質4と同様、セル2の平面形態に依存した層状体に形成されている。 The average particle size of the fuel electrode material powder is preferably 10 nm or more and 100 μm or less, more preferably 50 nm or more and 50 μm or less, and further preferably 100 nm or more and 10 μm or less. In addition, in this specification, an average particle diameter can be measured according to JISR1619, for example. The fuel electrode layer 6 is also formed in a layered body depending on the planar form of the cell 2, similarly to the solid electrolyte 4.
 燃料極8の熱膨張係数(20℃~1000℃)は、10×10-6-1以上~12.5×10-6-1以下であることが好ましい。この範囲であると、固体電解質4との界面ではく離がおきにくいからである。スタック100の残留応力を考慮すると、より好ましくは、10×10-6-1以上12×10-6-1以下である。 The thermal expansion coefficient (20 ° C. to 1000 ° C.) of the fuel electrode 8 is preferably 10 × 10 −6 K −1 or more and 12.5 × 10 −6 K −1 or less. This is because peeling is less likely to occur at the interface with the solid electrolyte 4 within this range. Considering the residual stress of the stack 100, it is more preferably 10 × 10 −6 K −1 or more and 12 × 10 −6 K −1 or less.
 燃料極層6の厚みは特に限定されないが、1μm以上150μm以下とすることができる。この範囲であると、セル2を構成し、さらにセパレータ60とともにスタック100を構成するとき、適切な機械的強度と発電特性を得ることができる。より好ましくは、1μm以上100μm以下であり、さらに好ましくは5μm以上40μm以下であり、一層好ましくは5μm以上20μm以下である。 The thickness of the fuel electrode layer 6 is not particularly limited, but can be 1 μm or more and 150 μm or less. Within this range, when configuring the cell 2 and further configuring the stack 100 together with the separator 60, appropriate mechanical strength and power generation characteristics can be obtained. More preferably, they are 1 micrometer or more and 100 micrometers or less, More preferably, they are 5 micrometers or more and 40 micrometers or less, More preferably, they are 5 micrometers or more and 20 micrometers or less.
(燃料ガス流路)
 燃料極8は、燃料ガス流路を1又は複数備えることができる(図示せず)。燃料ガス流路は、隣接するセパレータ60側に備えられていてもよいが、燃料極8の厚みの範囲内(層内)に形成されていることが好ましい。すなわち、燃料ガス流路は燃料極8を構成する材料で囲繞された状態で燃料極8内に内在されていることが好ましい。こうすることで、燃料極8の全体に効率的に燃料ガスを供給することができる。好ましくは、燃料極8の厚み方向において燃料ガス流路が均等に配置されている。例えば、燃料極8の厚み方向のほぼ中央に少なくとも1本の燃料ガス流路中心部分が配置されている形態であってもよいし、同厚み方向に沿って均等に2本以上の燃料ガス流路が配置されている形態であってもよい。
(Fuel gas flow path)
The fuel electrode 8 can include one or more fuel gas passages (not shown). The fuel gas flow path may be provided on the adjacent separator 60 side, but is preferably formed within the thickness range (inside the layer) of the fuel electrode 8. That is, it is preferable that the fuel gas flow path is contained in the fuel electrode 8 in a state surrounded by the material constituting the fuel electrode 8. By doing so, the fuel gas can be efficiently supplied to the entire fuel electrode 8. Preferably, the fuel gas flow paths are evenly arranged in the thickness direction of the fuel electrode 8. For example, at least one fuel gas flow path center portion may be disposed at substantially the center in the thickness direction of the fuel electrode 8, or two or more fuel gas flows may be evenly distributed along the thickness direction. The form by which the path is arrange | positioned may be sufficient.
 燃料ガス流路の燃料ガス供給路側への開口部の大きさは、特に限定しない。また、燃料ガス流路の開口形状は、特に限定しない。略円形、楕円形、方形状、不定形状等が挙げられるが、好ましくは、略円形状である。略円形状であると、燃料ガス流路から燃料極7へのガスの拡散方向が等方的であり均一な拡散が可能だからである。 The size of the opening of the fuel gas channel to the fuel gas supply channel is not particularly limited. The opening shape of the fuel gas channel is not particularly limited. Examples include a substantially circular shape, an elliptical shape, a rectangular shape, and an indefinite shape, and a substantially circular shape is preferable. This is because the gas diffusion direction from the fuel gas flow path to the fuel electrode 7 is isotropic and uniform diffusion is possible when it is substantially circular.
 燃料ガス流路は、燃料極8において意図した方向性で燃料ガスを流通可能に形成されている。また、燃料極8は、1又は2以上の燃料ガス流路について、1種又は2種以上のパターンを組み合わせて備えることができる。パターンは、1又は2以上の燃料ガス流路16の燃料極8の面方向に沿う2次元の配置形態であってもよく、面方向及び厚み方向に渡る三次元の配置形態であってもよい。 The fuel gas flow path is formed so that the fuel gas can flow in the intended direction in the fuel electrode 8. Moreover, the fuel electrode 8 can be provided with 1 type or 2 or more types of patterns combining about 1 or 2 or more fuel gas flow paths. The pattern may be a two-dimensional arrangement form along the surface direction of the fuel electrode 8 of the one or two or more fuel gas passages 16, or a three-dimensional arrangement form across the surface direction and the thickness direction. .
 燃料ガス流路のパターンは、少なくとも一つの屈曲部位を有することが好ましい。こうしたパターンによれば、より燃料ガスの供給をより高い設計自由度で実現できる。屈曲部位の屈曲又は湾曲程度は特に問わない。鈍角から鋭角、丸みを帯びていてもよい。さらに、パターンは、少なくとも2つの屈曲部位を有していてもよい。 It is preferable that the pattern of the fuel gas flow path has at least one bent portion. According to such a pattern, supply of fuel gas can be realized with a higher degree of design freedom. The degree of bending or bending of the bent portion is not particularly limited. It may be rounded from an obtuse angle to an acute angle. Furthermore, the pattern may have at least two bent portions.
 パターンの例としては、例えば、ストレート状のほか、コの字状、ジグザグ状、放射状、螺旋状、ネットワーク(格子)状等が挙げられる。 Examples of patterns include, for example, a straight shape, a U-shape, a zigzag shape, a radial shape, a spiral shape, and a network (lattice) shape.
 燃料極8の燃料ガス流路に燃料ガスを供給するための燃料ガス供給路70が備えられている。燃料ガス供給路70は、例えば、セル2の一側面又は対向する2側面から供給されるように備えられていてもよい。また、燃料ガス供給路70は、セル2における要素の積層方向に沿って燃料極8を貫通するように備えられていてもよい。 A fuel gas supply path 70 for supplying fuel gas to the fuel gas flow path of the fuel electrode 8 is provided. The fuel gas supply path 70 may be provided so as to be supplied from, for example, one side surface of the cell 2 or two opposite side surfaces. Further, the fuel gas supply path 70 may be provided so as to penetrate the fuel electrode 8 along the stacking direction of the elements in the cell 2.
(空気極層)
 空気極層12は、空気極14を含んでいる。空気極層12は本明細書の開示における電極層の一例であり、空気極14は、電極部の一例である。空気極層12は、空気極14のほか、シール部16を備えているが、シール部16については後述する。
(Air electrode layer)
The air electrode layer 12 includes an air electrode 14. The air electrode layer 12 is an example of an electrode layer in the disclosure of the present specification, and the air electrode 14 is an example of an electrode part. The air electrode layer 12 includes a seal portion 16 in addition to the air electrode 14, and the seal portion 16 will be described later.
 空気極14を構成する空気極材料としては、特に限定しないで公知の固体酸化物形燃料電池において空気極材料として用いられているものを用いることができる。例えば、ペロブスカイト型構造等を有するLa、Sr、Co,Fe,Ni,Cr又はMnなどからなる金属酸化物を用いることができる。具体的には(Sm,Sr)CoO3,(La,Sr)MnO3,(La,Sr)FeO3,(La,Sr)CoO3,(La,Sr)(Fe,Co)O3,(La,Sr)(Fe,Co,Ni)O3などの酸化物が挙げられ、好ましくは、(La,Sr)MnO3である。上述したセラミックス材料は、1種を単独で又は2種以上を混合して使用することができる。 As an air electrode material which comprises the air electrode 14, what is used as an air electrode material in a well-known solid oxide fuel cell can be used without specifically limiting. For example, a metal oxide made of La, Sr, Co, Fe, Ni, Cr, Mn, or the like having a perovskite structure or the like can be used. Specifically, (Sm, Sr) CoO 3 , (La, Sr) MnO 3 , (La, Sr) FeO 3 , (La, Sr) CoO 3 , (La, Sr) (Fe, Co) O 3 , ( An oxide such as La, Sr) (Fe, Co, Ni) O 3 may be mentioned, and (La, Sr) MnO 3 is preferable. The ceramic material mentioned above can be used individually by 1 type or in mixture of 2 or more types.
 空気極材料の粉末の平均粒子径は、好ましくは10nm以上100μm以下であり、より好ましくは50nm以上50μm以下であり、さらに好ましくは100nm以上10μm以下である。 The average particle diameter of the air electrode material powder is preferably 10 nm or more and 100 μm or less, more preferably 50 nm or more and 50 μm or less, and further preferably 100 nm or more and 10 μm or less.
 空気極14の熱膨張係数(20℃~1000℃)は、10×10-6-1以上~15×10-6-1以下であることが好ましい。この範囲であると、固体電解質4との界面ではく離がおきにくいからである。スタック100の残留応力を考慮すると、より好ましくは、10×10-6-1以上12×10-6-1以下である。 The thermal expansion coefficient (20 ° C. to 1000 ° C.) of the air electrode 14 is preferably 10 × 10 −6 K −1 or more and 15 × 10 −6 K −1 or less. This is because peeling is less likely to occur at the interface with the solid electrolyte 4 within this range. Considering the residual stress of the stack 100, it is more preferably 10 × 10 −6 K −1 or more and 12 × 10 −6 K −1 or less.
 空気極層12の厚みは特に限定されないが、1μm以上150μm以下とすることができる。この範囲であると、単セル2を構成し、さらにセパレータ60とともにスタック100を構成するとき、適切な機械的強度と発電特性を得ることができる。より好ましくは、1μm以上100μm以下であり、さらに好ましくは5μm以上40μm以下であり、一層好ましくは5μm以上20μm以下である。 The thickness of the air electrode layer 12 is not particularly limited, but may be 1 μm or more and 150 μm or less. Within this range, when configuring the single cell 2 and further configuring the stack 100 together with the separator 60, appropriate mechanical strength and power generation characteristics can be obtained. More preferably, they are 1 micrometer or more and 100 micrometers or less, More preferably, they are 5 micrometers or more and 40 micrometers or less, More preferably, they are 5 micrometers or more and 20 micrometers or less.
(酸化剤ガス流路)
 空気極14は、酸化剤ガス流路を1又は複数備えることができる(図示せず)。酸化剤ガス流路00については、空気極14において酸化剤ガスを流通させる点をのぞき、燃料極8における燃料ガス流路と同様の実施形態を適用することができる。なお、酸化剤ガス流路00は、燃料ガス流路と同様のパターンを有していなくてもよく、異なるパターンを有していてもよい。また、酸化剤ガス流路は、燃料ガス流路が開口するセル2の側面側には開口を備えていないことが好ましい。
(Oxidant gas flow path)
The air electrode 14 can include one or more oxidant gas flow paths (not shown). With respect to the oxidant gas flow path 00, the same embodiment as the fuel gas flow path in the fuel electrode 8 can be applied except that the oxidant gas flows in the air electrode 14. Note that the oxidant gas flow channel 00 may not have the same pattern as the fuel gas flow channel, or may have a different pattern. Moreover, it is preferable that the oxidant gas channel does not have an opening on the side surface side of the cell 2 where the fuel gas channel opens.
 空気極14の酸化剤ガス流路に酸化剤ガスを供給するための酸化剤ガス供給路80が備えられている。酸化剤ガス供給路80は、酸化剤ガス流路のパターンによっても異なるが、例えば、セル2において、燃料ガス供給路70が備えられていない一側面又は対向する2側面から供給されるように構成されている。また、酸化剤ガス供給路80は、セル2における要素の積層方向に沿って空気極14を貫通するように備えられていてもよい。 An oxidant gas supply path 80 for supplying oxidant gas to the oxidant gas flow path of the air electrode 14 is provided. The oxidant gas supply path 80 varies depending on the pattern of the oxidant gas flow path. For example, the cell 2 is configured to be supplied from one side where the fuel gas supply path 70 is not provided or from two opposite sides. Has been. Further, the oxidant gas supply path 80 may be provided so as to penetrate the air electrode 14 along the stacking direction of the elements in the cell 2.
(燃料極層のシール部)
 燃料極層6は、燃料極8を意図しないガス、すなわち、酸化剤ガスから遮断するために燃料極8の酸化剤ガス供給路00に面する第1の面20の少なくとも一部にシール部10を備えている。シール部10は、燃料極8の前記第1の面20の少なくとも一部に一体化されて、燃料極8とともに燃料極層6を構成することができる。
(Fuel electrode layer seal)
The fuel electrode layer 6 has a seal portion 10 on at least part of the first surface 20 facing the oxidant gas supply path 00 of the fuel electrode 8 in order to shield the fuel electrode 8 from unintended gas, that is, oxidant gas. It has. The seal portion 10 can be integrated with at least a part of the first surface 20 of the fuel electrode 8 to form the fuel electrode layer 6 together with the fuel electrode 8.
 本明細書に開示されるシール部10は、セル2又はスタック100におけるガスシール性のほか、燃料極層6の焼成及び焼結時、さらには、セル2やスタック100の熱挙動調整を意図している。第1の面20において、予定されている焼成条件において熱挙動調整が十分な程度の領域において備えられていればよい。第1の面20の他の領域においては、ガスシール性のみを意図した単なるシール部のみが形成されていてもよい。燃料極層6は、燃料極層6の厚みの範囲内においてシール部10を有している。好ましくは、燃料極層6の厚みに一致する程度のシール部10を有している。シール部10を好ましくは、シール部10を第1の面20の全体において備えている。 The seal portion 10 disclosed in the present specification is intended to adjust the thermal behavior of the cell 2 and the stack 100 during the firing and sintering of the fuel electrode layer 6 in addition to the gas sealability in the cell 2 or the stack 100. ing. The first surface 20 only needs to be provided in a region where the thermal behavior is sufficiently adjusted under the planned firing conditions. In other regions of the first surface 20, only a mere seal portion intended only for gas sealing properties may be formed. The fuel electrode layer 6 has a seal portion 10 within the range of the thickness of the fuel electrode layer 6. Preferably, the seal portion 10 has a degree corresponding to the thickness of the fuel electrode layer 6. The seal portion 10 is preferably provided on the entire first surface 20.
 シール部10は、ガスシール性を有する緻密質部10aと、緻密質部10aに隣接する熱挙動調整部10bとを備えることができる。緻密質部10aは、燃料極8を酸化剤ガスから遮断するためのものである。緻密質部10aは、SOFCにおいて要求される程度の気密性を発揮できる程度の非多孔質に形成されている。緻密質部10aの空孔率pbは,特に限定しないが、10%以下が好ましい。10%を超えると、ガスシール性を得られにくくなるからである。より好ましくは5%以下である。なお、本明細書において、空孔率は、公知の方法で測定することができるが、比表面積測定法によって測定することが好ましい。 The seal portion 10 can include a dense portion 10a having gas sealing properties and a thermal behavior adjusting portion 10b adjacent to the dense portion 10a. The dense portion 10a is for shielding the fuel electrode 8 from the oxidant gas. The dense portion 10a is formed to be nonporous so as to exhibit the airtightness required in SOFC. Porosity p b of the dense portion 10a is not particularly limited, preferably 10% or less. This is because if it exceeds 10%, it becomes difficult to obtain gas sealing properties. More preferably, it is 5% or less. In this specification, the porosity can be measured by a known method, but is preferably measured by a specific surface area measurement method.
 緻密質部10aは、ガスシール性を有する程度の緻密質であればよく、その非多孔質性の程度は特に限定されない。緻密質部10aは、好ましくは、セパレータ60又は固体電解質4において好ましい熱膨張収縮特性の範囲に含まれるように形成されていることが好ましい。こうすることで、セパレータ60でセル2間を分離するときや固体電解質4とセル2を構成するときなど、これらの材料積層される材料との熱膨張収縮特性の相違を回避して、一体性及び耐熱衝撃性に優れるセル2やスタック100を得ることができる。なお、熱膨張収縮特性とは、熱膨張係数を少なくとも包含するものである。また、熱膨張収縮特性に関し均等であるとは、SOFCの作製及び運転にあたってSOFCに付与される温度範囲において、セパレータ60又は固体電解質4と同一又はスタック100の一体性を大きく阻害しない範囲である。なお、本発明者らの実験によれば、スタック100の一体性を大きく阻害しない程度の範囲とは、セパレータ60又は固体電解質4の熱膨張係数に対して0.85倍以上から1.18倍以下程度であることがわかっている。 The dense part 10a may be dense enough to have gas sealing properties, and the degree of non-porosity is not particularly limited. The dense portion 10a is preferably formed so as to be included in a range of preferable thermal expansion / contraction characteristics in the separator 60 or the solid electrolyte 4. In this way, when separating the cells 2 with the separator 60, or when configuring the solid electrolyte 4 and the cell 2, it is possible to avoid the difference in thermal expansion and contraction characteristics between these materials laminated, and to integrate In addition, the cell 2 and the stack 100 having excellent thermal shock resistance can be obtained. The thermal expansion / contraction characteristic includes at least a thermal expansion coefficient. Further, “equal in terms of thermal expansion and contraction characteristics” means a range that is the same as that of the separator 60 or the solid electrolyte 4 or that does not significantly impair the integrity of the stack 100 in the temperature range given to the SOFC in the production and operation of the SOFC. According to the experiments by the present inventors, the range that does not significantly hinder the integrity of the stack 100 is 0.85 times or more to 1.18 times the thermal expansion coefficient of the separator 60 or the solid electrolyte 4. It is known that it is about the following.
 なお、セパレータ60及び固体電解質4の熱膨張係数によっては、緻密質部10aの熱膨張収縮特性は、固体電解質4及びセパレータ60の双方の熱膨張収縮特性と均等となりえる。このような態様が、スタック100の機械的強度及び耐熱衝撃性の向上の観点から最も好ましい。 Depending on the thermal expansion coefficients of the separator 60 and the solid electrolyte 4, the thermal expansion / shrinkage characteristics of the dense portion 10 a can be equal to the thermal expansion / shrinkage characteristics of both the solid electrolyte 4 and the separator 60. Such an aspect is most preferable from the viewpoint of improving the mechanical strength and thermal shock resistance of the stack 100.
 緻密質部10aは、セパレータ60又は固体電解質4と共通の材料を有していてもよい。緻密質部がセパレータ60又は固体電解質4の共通の材料を有していれば、いずれかと一体化されるとき、全体としての熱膨張収縮特性が均質化されるとともに、焼成により良好に一体化され、セル2やスタック100の耐熱衝撃性を向上させるほか、機械的強度を向上させることができる。 The dense portion 10 a may have a material common to the separator 60 or the solid electrolyte 4. If the dense part has a common material for the separator 60 or the solid electrolyte 4, the thermal expansion / shrinkage characteristics as a whole are homogenized and integrated well by firing when integrated with either of them. In addition to improving the thermal shock resistance of the cell 2 and the stack 100, the mechanical strength can be improved.
 緻密質部10aは、セパレータ60を構成する1又は2以上の材料を含んでいてもよいし、固体電解質4を構成する1又は2以上の材料を含んでいてもよいし、セパレータ由来の材料及び固体電解質4由来の材料の双方を含んでいてもよい。緻密質部10aは、セパレータ60又は固体電解質4のいずれかと同一組成であってもよい。 The dense portion 10a may include one or more materials constituting the separator 60, may include one or more materials constituting the solid electrolyte 4, and may be a material derived from the separator and Both materials derived from the solid electrolyte 4 may be included. The dense portion 10a may have the same composition as either the separator 60 or the solid electrolyte 4.
 緻密質部10aは、燃料極8又は空気極14の材料と共通の材料を有していてもよい。緻密質部10aが燃料極8又は空気極14と共通の材料を有していることで、全体としての熱膨張収縮特性が均質化されるとともに、焼成時の一体性も向上させることができる。また、これにより、セル2やスタック100の耐熱衝撃性を向上させるほか、機械的強度を向上させることができる。 The dense part 10 a may have a material common to the material of the fuel electrode 8 or the air electrode 14. Since the dense portion 10a has the same material as that of the fuel electrode 8 or the air electrode 14, the overall thermal expansion / contraction characteristics can be homogenized, and the integrity during firing can be improved. Thereby, the thermal shock resistance of the cell 2 and the stack 100 can be improved, and the mechanical strength can be improved.
 緻密質部10aは、燃料極8を構成する1又は2以上の材料を含んでいてもよいし、空気極14を構成する1又は2以上の材料を含んでいてもよいし、燃料極8由来の材料及び空気極14由来の材料の双方を含んでいてもよい。緻密質部10aは、燃料極8又は空気極14のいずれかと同一組成であってもよい。 The dense portion 10 a may contain one or more materials that constitute the fuel electrode 8, may contain one or more materials that constitute the air electrode 14, and is derived from the fuel electrode 8. Both the material and the material derived from the air electrode 14 may be included. The dense portion 10 a may have the same composition as either the fuel electrode 8 or the air electrode 14.
 緻密質部10aは、例えば、(Sm,Sr)CoO3,(La,Sr)MnO3,(La,Sr)FeO3,(La,Sr)CoO3,(La,Sr)(Fe,Co)O3,(La,Sr)(Fe,Co,Ni)O3などの空気極材料及び/又はサマリウムやガドリニウム等をドープしたセリア系酸化物、スカンジウムやイットリウムを含むジルコニア系酸化物などの燃料極材料を用いることができる。空気極材料と燃料極材料とを任意の範囲で混合して用いてもよいし、いずれか一方のみを用いてもよい。 The dense portion 10a is, for example, (Sm, Sr) CoO 3 , (La, Sr) MnO 3 , (La, Sr) FeO 3 , (La, Sr) CoO 3 , (La, Sr) (Fe, Co). Fuel electrode such as air electrode material such as O 3 , (La, Sr) (Fe, Co, Ni) O 3 and / or ceria oxide doped with samarium or gadolinium, zirconia oxide containing scandium or yttrium Materials can be used. The air electrode material and the fuel electrode material may be mixed and used in an arbitrary range, or only one of them may be used.
 熱挙動調整部10bは、燃料極層6内に緻密質部10aを備えることによる主として燃料極8を含む燃料極層6、ひいてはセル2及びスタック100の変形の抑制又は回避を意図している。熱挙動調整部10bの熱膨張収縮特性や配置や形態やサイズは、燃料極8や緻密質部10aの熱膨張収縮特性や配置、形態及びサイズ等を考慮して決定される。 The thermal behavior adjusting unit 10 b is intended to suppress or avoid deformation of the fuel electrode layer 6 including the fuel electrode 8, and consequently the cell 2 and the stack 100, by providing the dense part 10 a in the fuel electrode layer 6. The thermal expansion / contraction characteristics, arrangement, form, and size of the thermal behavior adjusting unit 10b are determined in consideration of the thermal expansion / contraction characteristics, arrangement, form, size, and the like of the fuel electrode 8 and the dense part 10a.
 熱挙動調整部10bは、上記意図が実現できる範囲で設定される。このため、緻密質部10bは、多孔質であってもよいし非多孔質であってもよい。熱挙動調整部10bは、緻密質部10aの熱膨張収縮特性の影響を抑制又は回避する観点から、多孔質性であることが好ましい。熱挙動調整部10bの空孔率pcは特に限定しないが、緻密質部10aとの関係からpb(緻密質部10aの空孔率)<pc≦50%であることが好ましい。熱挙動調整部10bの空孔率が、緻密質部10aの空孔率と同じであると、熱挙動調整能が発揮しにくく、50%よりもより大きいと、熱挙動の差が大きくなりすぎるからである。好ましくは、20%<pc≦35%である。熱挙動調整部10bは、燃料極8と共通の材料を有していることが好ましく、より好ましくは燃料極8と同一材料を有しており、さらに好ましくは、燃料極8と同一組成である。なお、気孔率は、燃料極8とほぼ同一であってもよいが、必ずしも同一でなくてもよく、適宜調整されてもよく、燃料極8よりも高くてもよいし、燃料極8よりも低くてもよい。 The thermal behavior adjusting unit 10b is set in a range where the above intention can be realized. For this reason, the dense part 10b may be porous or non-porous. The thermal behavior adjusting portion 10b is preferably porous from the viewpoint of suppressing or avoiding the influence of the thermal expansion / contraction characteristics of the dense portion 10a. Porosity p c of thermal behavior adjustment unit 10b is not particularly limited, (porosity dense portion 10a) p b from the relationship between the dense areas 10a <it is preferable that p c ≦ 50%. If the porosity of the thermal behavior adjusting portion 10b is the same as the porosity of the dense portion 10a, the thermal behavior adjusting ability is difficult to exert, and if it is larger than 50%, the difference in thermal behavior becomes too large. Because. Preferably, 20% < pc ≦ 35%. The thermal behavior adjusting unit 10b preferably has the same material as the fuel electrode 8, more preferably has the same material as the fuel electrode 8, and more preferably has the same composition as the fuel electrode 8. . The porosity may be substantially the same as that of the fuel electrode 8, but is not necessarily the same, may be adjusted as appropriate, may be higher than the fuel electrode 8, or may be higher than that of the fuel electrode 8. It may be low.
 緻密質部10a及び熱挙動調整部10bは、燃料極8に対してガスシール性を付与するとともに燃料極層6等の変形抑制又は回避が実現できるように第1の面00に対して備えられていればよい。 The dense portion 10a and the thermal behavior adjusting portion 10b are provided with respect to the first surface 00 so as to provide gas sealing properties to the fuel electrode 8 and to suppress or avoid deformation of the fuel electrode layer 6 and the like. It only has to be.
 例えば、図1に示すように、酸化剤ガス供給路80がセル2の側面側にあるとき、当該供給路80側の第1の面20に対して緻密質部10aは、酸化剤ガス供給路80に面する第1の面20に隣接して、すなわち、第1の面20に直接的に接して備えられていてもよい。この場合、熱挙動調整部10bは、緻密質部10bの第1の面20に面する側の反対側の面に隣接して設けられる。 For example, as shown in FIG. 1, when the oxidant gas supply path 80 is on the side surface side of the cell 2, the dense portion 10 a has an oxidant gas supply path with respect to the first surface 20 on the supply path 80 side. It may be provided adjacent to the first surface 20 facing 80, that is, in direct contact with the first surface 20. In this case, the thermal behavior adjusting portion 10b is provided adjacent to the surface on the opposite side of the dense portion 10b facing the first surface 20.
 また、図2に示すように、第1の面20に隣接して備えられる熱挙動調整部10bに隣接して緻密質部10aを備えていてもよい。 Further, as shown in FIG. 2, a dense portion 10a may be provided adjacent to the thermal behavior adjusting portion 10b provided adjacent to the first surface 20.
 さらに、例えば、図3に示すように、1又は2以上の緻密質部10aと1又は2以上の熱挙動調整部10bとを備えていてもよい。緻密質部10aと熱挙動調整部10bとが交互に備えられていてもよい。 Further, for example, as shown in FIG. 3, one or more dense portions 10a and one or more thermal behavior adjusting portions 10b may be provided. The dense portions 10a and the thermal behavior adjusting portions 10b may be alternately provided.
 例えば、図4に示すように、酸化剤ガス供給路80が、セル内を貫通している場合には、当該供給路80側にある第1の面20に対して、シール部10が設けられる。シール部10における緻密質部10a及び熱挙動調整部10bは、図1~3におけるのと同様の各種配置パターンを採ることができる。 For example, as shown in FIG. 4, when the oxidant gas supply path 80 passes through the cell, the seal portion 10 is provided for the first surface 20 on the supply path 80 side. . The dense portion 10a and the thermal behavior adjusting portion 10b in the seal portion 10 can take various arrangement patterns similar to those in FIGS.
 多孔質性である燃料極8の第1の面20に隣接して緻密質部10aを備える場合においては、燃料極8は第1の面20の近傍において、第1の面20に近いほど、より低い気孔率を有している傾斜構造を有していてもよい。また、緻密質部10aに多孔質の熱挙動調整部10bが隣接するとき、熱挙動部10bの緻密質部10aに隣接する面に近いほど、より低い気孔率を有している傾斜構造を有していてもよい。こうした傾斜構造は、緻密質部10aと熱挙動調整部10bと燃料極8を含む燃料極層6を一括して焼成する結果として得られやすい。こうした傾斜構造は、熱膨張収縮特性を均質化するのに有効である。 In the case where the dense portion 10a is provided adjacent to the first surface 20 of the fuel electrode 8 that is porous, the closer the fuel electrode 8 is to the first surface 20 in the vicinity of the first surface 20, It may have an inclined structure having a lower porosity. Further, when the porous thermal behavior adjusting portion 10b is adjacent to the dense portion 10a, the closer to the surface adjacent to the dense portion 10a of the thermal behavior portion 10b, the inclined structure having a lower porosity. You may do it. Such an inclined structure is easily obtained as a result of firing the fuel electrode layer 6 including the dense portion 10a, the thermal behavior adjusting portion 10b, and the fuel electrode 8 together. Such an inclined structure is effective for homogenizing the thermal expansion and contraction characteristics.
 なお、シール部10の配置パターンは、燃料極8における燃料ガス流路パターンやセル2やスタック100に対する酸化剤ガスの供給路80の配置形態等に応じて燃料極8に対して設定できる。より具体的には、シール部10は、第1の面20である燃料極8の酸化剤ガスの供給路80側の側面に形成されて酸化剤ガスへの燃料極8の暴露が回避されている。例えば、図5に示すように、酸化剤ガス供給路80が方形状のセル2の一側面である場合には、第1の面20は、燃料極8のその一側面側の面である。この場合、前記一側面に対してシール部10が備えられる。また、図1~3に示すように、酸化剤ガス供給路24がセル2の対向する2つの側面である場合には、第1の面20は、燃料極8のこれらの2つの側面側の面である。この場合、シール部10は、燃料極8の当該2つの側面側に備えられる。 The arrangement pattern of the seal portion 10 can be set for the fuel electrode 8 according to the fuel gas flow path pattern in the fuel electrode 8, the arrangement form of the oxidant gas supply path 80 to the cell 2 or the stack 100, and the like. More specifically, the seal portion 10 is formed on the side surface of the fuel electrode 8 that is the first surface 20 on the side of the supply path 80 of the oxidant gas so that the exposure of the fuel electrode 8 to the oxidant gas is avoided. Yes. For example, as shown in FIG. 5, when the oxidant gas supply path 80 is one side surface of the rectangular cell 2, the first surface 20 is a surface on the one side surface side of the fuel electrode 8. In this case, a seal portion 10 is provided on the one side surface. In addition, as shown in FIGS. 1 to 3, when the oxidant gas supply path 24 is two opposite side surfaces of the cell 2, the first surface 20 is formed on the two side surfaces of the fuel electrode 8. Surface. In this case, the seal portion 10 is provided on the two side surfaces of the fuel electrode 8.
(空気極層のシール部)
 空気極層12も、燃料極層6と同様、空気極14を意図しないガス、すなわち、燃料ガスから遮断するためのシール部16を備えている。図1に示すように、シール部16は、空気極14の燃料ガス供給路00に面する第1の面30の少なくとも一部に備えられている。空気極層12のシール部16は、空気極14の第1の面30の少なくとも一部に一体化されて、空気極14とともに空気極層12を構成することができる。シール部16は、空気極14の燃料ガスへの暴露を防止する点以外は、シール部10と同様の構成を採ることができる。すなわち、既に説明したシール部10の緻密質部10a、熱挙動調整部10b、材料及び配置パターン等の各種態様を、シール部16の緻密質部16a、熱挙動調整部16b、材料及び配置パターンに適用できる。
(Air electrode layer seal)
Similarly to the fuel electrode layer 6, the air electrode layer 12 includes a seal portion 16 for blocking the air electrode 14 from an unintended gas, that is, a fuel gas. As shown in FIG. 1, the seal portion 16 is provided on at least a part of the first surface 30 facing the fuel gas supply path 00 of the air electrode 14. The seal portion 16 of the air electrode layer 12 can be integrated with at least a part of the first surface 30 of the air electrode 14 to form the air electrode layer 12 together with the air electrode 14. The seal portion 16 can have the same configuration as the seal portion 10 except that the exposure of the air electrode 14 to the fuel gas is prevented. That is, various aspects such as the dense portion 10a, the thermal behavior adjusting portion 10b, the material and the arrangement pattern of the seal portion 10 described above are changed to the dense portion 16a, the thermal behavior adjusting portion 16b, the material and the arrangement pattern of the seal portion 16. Applicable.
 例えば、燃料極層6又は空気極層12におけるシール部10又はシール部16の図6に示すパターンを採ることが好ましい。すなわち、図6に示す例では、燃料極層6又は空気極層12の対向する第1の面20又は第2の面30にシール部10又はシール部16を備えている。シール部10又はシール部16は、それぞれ第1の面20、30に隣接して第1の面の全体に緻密質部10a、16aを帯状に備え、さらに、これらの緻密質部10a、16aの第2の面00の全体に隣接して熱挙動調整部10b、16bを備えている。このパターンによれば、緻密質部10a、16aを、燃料極8又は空気極14を挟んで対称的に備え、さらに、緻密質部10a、16aの第2の面にそれぞれ熱挙動調整部10b、16bを備えるため、緻密質部10a、16aによって作用するy方向に沿う熱挙動が熱挙動調整部10b又は16bによって調整される。 For example, it is preferable to adopt the pattern shown in FIG. 6 of the seal portion 10 or the seal portion 16 in the fuel electrode layer 6 or the air electrode layer 12. That is, in the example shown in FIG. 6, the seal portion 10 or the seal portion 16 is provided on the first surface 20 or the second surface 30 of the fuel electrode layer 6 or the air electrode layer 12 facing each other. The seal portion 10 or the seal portion 16 includes the dense portions 10a and 16a in the shape of a belt adjacent to the first surfaces 20 and 30, respectively, and the dense portions 10a and 16a. The thermal behavior adjusting units 10b and 16b are provided adjacent to the entire second surface 00. According to this pattern, the dense portions 10a and 16a are provided symmetrically with the fuel electrode 8 or the air electrode 14 in between, and the thermal behavior adjusting portions 10b and 10b are respectively provided on the second surfaces of the dense portions 10a and 16a. Since 16b is provided, the thermal behavior along the y direction acting by the dense portions 10a and 16a is adjusted by the thermal behavior adjusting portion 10b or 16b.
 図6に例示する形態において、燃料極8又は空気極14の第1の面00で規定される幅をWaとし、緻密質部10a又は16aのWaに沿う方向の幅をWbとし、熱挙動調整部10b又は16bのWaに沿う方向の幅をWcとするとき、0<Wb<0.25Waであることが好ましい。この範囲であると、緻密質部10aと燃料極8の界面に平行な方向あるいは、緻密質部16aと空気極14の界面に平行な方向の熱挙動が一致しやすくなる。また、0.15Wc<Wb<3Wcであることも好ましい。熱挙動調整部の幅がこの範囲であると緻密質部10a又は16aと熱挙動調整部の界面に平行な方向の熱挙動が一致しやすくなるからである。より好ましくは、0<Wb<0.15WaでありWc<Wb<2Wcである。 In the embodiment illustrated in FIG. 6, the width defined by the first surface 00 of the fuel electrode 8 or the air electrode 14 is Wa, and the width of the dense portion 10a or 16a in the direction along Wa is Wb. When the width in the direction along Wa of the portion 10b or 16b is Wc, 0 <Wb <0.25Wa is preferable. Within this range, the thermal behavior in the direction parallel to the interface between the dense portion 10a and the fuel electrode 8 or in the direction parallel to the interface between the dense portion 16a and the air electrode 14 is likely to match. It is also preferable that 0.15Wc <Wb <3Wc. This is because if the width of the thermal behavior adjusting portion is within this range, the thermal behavior in the direction parallel to the interface between the dense portion 10a or 16a and the thermal behavior adjusting portion is easily matched. More preferably, 0 <Wb <0.15Wa and Wc <Wb <2Wc.
 また、好ましくは、0<Wc<0.25(Wa+Wb)である。熱挙動調整部の幅が広すぎると、シール部との熱収縮・熱膨張の差異が顕著になり、クラックが発生するおそれもある。また、幅が広いと発電に寄与しない層が嵩高になる。より好ましくは0<Wc<0.15(Wa+Wb)である。 Also preferably, 0 <Wc <0.25 (Wa + Wb). If the width of the thermal behavior adjusting portion is too wide, the difference in thermal shrinkage / thermal expansion from the seal portion becomes significant, and cracks may occur. Moreover, if the width is wide, the layer that does not contribute to power generation becomes bulky. More preferably, 0 <Wc <0.15 (Wa + Wb).
 さらに、20mm<Wa<300mmのときには、0.1mm<Wb<75mmであり、0.5mm<Wc<94mmであることが好ましい。より好ましくは、30mm<Wa<100mmのときには、1mm<Wb<15mmであり、1mm<Wc<17mmである。 Furthermore, when 20 mm <Wa <300 mm, 0.1 mm <Wb <75 mm and 0.5 mm <Wc <94 mm are preferable. More preferably, when 30 mm <Wa <100 mm, 1 mm <Wb <15 mm and 1 mm <Wc <17 mm.
 また、シール部10又はシール部16は図7に示すパターンを採ることが好ましい。すなわち、図7に示す例では、燃料極8又は空気極14を貫通するように各ガス供給路を備えており、当該ガス供給路側に面する第1の面00にシール部10又はシール部16を備えている。このとき、燃料極8又は空気極14のより長い第1の面で規定される幅をWaとし、緻密質部10a又は16aのWaに沿う方向の幅をWbとし、熱挙動調整部10b又は16bのWaに沿う方向の幅をWcとするとき、図6に示すガス流路形態についての実施態様を、そのまま適用できる。 Further, it is preferable that the seal portion 10 or the seal portion 16 adopts the pattern shown in FIG. That is, in the example shown in FIG. 7, each gas supply path is provided so as to penetrate the fuel electrode 8 or the air electrode 14, and the seal portion 10 or the seal portion 16 is provided on the first surface 00 facing the gas supply passage side. It has. At this time, the width defined by the longer first surface of the fuel electrode 8 or the air electrode 14 is Wa, the width of the dense portion 10a or 16a in the direction along Wa is Wb, and the thermal behavior adjusting portion 10b or 16b. When the width in the direction along Wa is Wc, the embodiment of the gas flow path configuration shown in FIG. 6 can be applied as it is.
 シール部10を備える燃料極層6及びシール部16を備える空気極層12のいずれかあるいは双方を備えるセル2は、こうした層と固体電解質4及び/又はセパレータ60とが一括焼成されて焼結され一体化されていることが好ましい。燃料極層6及び/又は空気極層12の熱膨張収縮特性が調整されて変形等が抑制されているため、こうした層と固体電解質4とセパレータ60との一括焼成が容易化され、結果としてセル2自体も変形等が抑制され十分な一体性と強度を有したものとなっている。より好ましくは、セル2の構成要素である、固体電解質4、燃料極層6及び空気極層12が一括焼成されて焼結され一体化されていることが好ましい。さらに、セル2の各構成要素に加えてセパレータ60が一括焼成されてこれらが焼結され一体化されていることが好ましい。 In the cell 2 including either or both of the fuel electrode layer 6 including the seal portion 10 and the air electrode layer 12 including the seal portion 16, such a layer, the solid electrolyte 4 and / or the separator 60 are collectively fired and sintered. It is preferable that they are integrated. Since the thermal expansion and contraction characteristics of the fuel electrode layer 6 and / or the air electrode layer 12 are adjusted to suppress deformation and the like, batch firing of these layers, the solid electrolyte 4 and the separator 60 is facilitated. As a result, the cell 2 itself has sufficient integrity and strength by suppressing deformation and the like. More preferably, the solid electrolyte 4, the fuel electrode layer 6 and the air electrode layer 12, which are constituent elements of the cell 2, are sintered together and sintered and integrated. Furthermore, in addition to each component of the cell 2, it is preferable that the separator 60 is fired at once and these are sintered and integrated.
 なお、セル2又はスタック100においては、燃料ガス供給路70と酸化剤ガス供給路80は分離されており、燃料極層6と空気極層12におけるシール部10とシール部16とは、セル2の要素の積層方向又はスタック100におけるセル2の積層方向に沿って互いに分離されている。したがって、これらの供給路は、セル2又はスタック100の平面内において異なる位置に存在している結果、燃料極層6及び空気極層12における第1の面のパターン及びシール部10及びシール部16のパターンが異なっている。このため、セル2及びスタック100の全体として、一層熱挙動が調整されやすくなっており、より効果的に変形等が抑制される。 In the cell 2 or the stack 100, the fuel gas supply path 70 and the oxidant gas supply path 80 are separated, and the seal portion 10 and the seal portion 16 in the fuel electrode layer 6 and the air electrode layer 12 Are separated from each other along the stacking direction of the elements or the stacking direction of the cells 2 in the stack 100. Accordingly, these supply paths exist at different positions in the plane of the cell 2 or the stack 100, and as a result, the pattern of the first surface in the fuel electrode layer 6 and the air electrode layer 12 and the seal portion 10 and the seal portion 16. The pattern is different. For this reason, the thermal behavior of the cell 2 and the stack 100 as a whole is more easily adjusted, and deformation and the like are more effectively suppressed.
(スタック)
 本明細書に開示されるSOFCは、2又は3以上のセル2をセパレータ60を介して積層されたスタック100の形態を採ることが好ましい。スタック100を構成するセル2がそれぞれシール部10及び/又はシール部16を備えることで、熱挙動調整部10b及び/又は16bによってセル2やスタック100の熱挙動を容易に調整できるため、変形等が抑制され一体性及び強度に優れたスタック100となっている。
(stack)
The SOFC disclosed in this specification preferably takes the form of a stack 100 in which two or more cells 2 are stacked via a separator 60. Since the cells 2 constituting the stack 100 are each provided with the seal portion 10 and / or the seal portion 16, the thermal behavior of the cell 2 and the stack 100 can be easily adjusted by the thermal behavior adjusting portions 10b and / or 16b, so Is suppressed, and the stack 100 is excellent in unity and strength.
 好ましくは、スタック100は、5以上のセル2が積層されており、より好ましくは、6以上のセル2が積層されており、さらに好ましくは7以上のセル2が積層されており、一層好ましくは8以上のセル2が積層されている。さらに一層好ましくは10セルが積層され、より一層好ましくは12セル以上が積層されている。 Preferably, the stack 100 includes 5 or more cells 2 stacked, more preferably 6 or more cells 2 stacked, and even more preferably 7 or more cells 2 stacked, and more preferably. Eight or more cells 2 are stacked. More preferably, 10 cells are laminated, and even more preferably 12 cells or more are laminated.
(セパレータ)
 セパレータ60は、固体電解質4、燃料極層6及び空気極層12と同様にして積層可能な形態を備えていることが好ましい。典型的には、平板状であることが好ましい。セパレータ60の材料としては、SOFCのセパレータとして公知の各種導電性材料を用いることができる。例えば、ステンレス系の金属材料のほか、ランタンクロマイト系の金属セラミックス材料を使用することができる。
(Separator)
The separator 60 preferably has a form that can be stacked in the same manner as the solid electrolyte 4, the fuel electrode layer 6, and the air electrode layer 12. Typically, a flat plate shape is preferable. As the material of the separator 60, various conductive materials known as SOFC separators can be used. For example, in addition to a stainless steel metal material, a lanthanum chromite metal ceramic material can be used.
 後述するように、本発明のスタック構造体20を得るには、単セルの各構成要素とセパレータ60とを一括して焼成、これらを共焼結することが好ましい。かかる態様においては、セパレータ60が比較的低温で焼結するセラミックス材料であることが好ましい。こうしたセラミックス材料としては、焼結性を向上させるために、例えば、ランタンクロム系酸化物(LaCrO3)、ランタンストロンチウムクロム系酸化物(La(1-x)SrxCrO3,0<x≦0.5)などのランタン-クロム系ペロブスカイト型酸化物,又はこうしたランタン-クロム系ペロブスカイト型酸化物と希土類元素を固溶させたジルコニアとを含むセラミックスを用いることが好ましい。希土類固溶ジルコニア(一般式(1-x)ZrO2・xY23、式中Yは希土類元素を表し、0.02≦x≦0.20である。)を含んで焼成することで、従来に比べて低温でランタン-クロム系ペロブスカイト型酸化物を緻密に焼結できる。この結果、セル構成要素を共焼結可能な1400℃以下程度の温度で、セパレータを緻密化することができる。なお、こうしたランタン-クロム系ペロブスカイト型酸化物には、カルシウムなどの他の金属元素が固溶されていてもよい。 As will be described later, in order to obtain the stack structure 20 of the present invention, it is preferable to fire each component of the single cell and the separator 60 together and co-sinter them. In such an embodiment, the separator 60 is preferably a ceramic material that is sintered at a relatively low temperature. As such a ceramic material, in order to improve the sinterability, for example, lanthanum chromium-based oxide (LaCrO 3 ), lanthanum strontium chromium-based oxide (La (1-x) Sr x CrO 3 , 0 <x ≦ 0.5 It is preferable to use a ceramic containing a lanthanum-chromium perovskite oxide such as), or a zirconia in which such a lanthanum-chromium perovskite oxide and a rare earth element are dissolved. By firing containing a rare earth solid solution zirconia (general formula (1-x) ZrO 2 .xY 2 O 3 , where Y represents a rare earth element and 0.02 ≦ x ≦ 0.20), Lanthanum-chromium-based perovskite oxide can be densely sintered at a lower temperature than before. As a result, the separator can be densified at a temperature of about 1400 ° C. or less at which the cell components can be co-sintered. Such lanthanum-chromium-based perovskite oxide may be dissolved in other metal elements such as calcium.
 希土類固溶ジルコニアにおける希土類としては、イットリウム(Y)、スカンジウム(Sc)、イッテルビウム(Yb)、セリウム(Ce)、ネオジム(Nd)、サマリウム(Sm)等が挙げられるが、好ましくは、イットリウム(Y)、スカンジウム(Sc)、イッテルビウム(Yb)であり、より好ましくは、イットリウム(Y)である。希土類固溶ジルコニア(一般式(1-x)ZrO2・xY23、式中Yは希土類元素を表す。)におけるxは、好ましくは0.02以上0.20以下であり、より好ましくは0.02以上0.1以下である。 Examples of the rare earth in the rare earth solid solution zirconia include yttrium (Y), scandium (Sc), ytterbium (Yb), cerium (Ce), neodymium (Nd), samarium (Sm), and preferably yttrium (Y ), Scandium (Sc), and ytterbium (Yb), and more preferably yttrium (Y). X in the rare earth solid solution zirconia (general formula (1-x) ZrO 2 .xY 2 O 3 , where Y represents a rare earth element) is preferably 0.02 or more and 0.20 or less, more preferably It is 0.02 or more and 0.1 or less.
 セパレータ60の熱膨張係数(20℃~1000℃)は、8×10-6-1以上~12×10-6-1以下であることが好ましい。この範囲であると、空気極層あるいは燃料極層とのはく離を抑えることができるからである。スタック100の残留応力を考慮すると、より好ましくは、9.5×10-6-1以上11.5×10-6-1以下である。セパレータ60の厚みは特に限定されないが、1μm以上200μm以下とすることができる。この範囲であると、単セル2間を分離するように積層してスタック100を構成するとき、適切な機械的強度と発電特性を得ることができる。好ましくは10μm以上50μm以下であり、より好ましくは10μm以上40μm以下である。 The thermal expansion coefficient (20 ° C. to 1000 ° C.) of the separator 60 is preferably 8 × 10 −6 K −1 or more and 12 × 10 −6 K −1 or less. This is because peeling within the air electrode layer or the fuel electrode layer can be suppressed within this range. When the residual stress of the stack 100 is taken into consideration, it is more preferably 9.5 × 10 −6 K −1 or more and 11.5 × 10 −6 K −1 or less. The thickness of the separator 60 is not particularly limited, but can be 1 μm or more and 200 μm or less. Within this range, when the stack 100 is formed by stacking so as to separate the single cells 2, appropriate mechanical strength and power generation characteristics can be obtained. Preferably they are 10 micrometers or more and 50 micrometers or less, More preferably, they are 10 micrometers or more and 40 micrometers or less.
 スタック100において、セル2の各構成要素とセパレータ60とは、それぞれの層の厚みが150μm以下であることが好ましい。 In the stack 100, each component of the cell 2 and the separator 60 preferably have a thickness of 150 μm or less.
(SOFCシステム)
 本明細書に開示されるSOFCシステムは、セル2又はスタック100であるSOFC型SOFCを備えることができる。SOFCシステムは、SOFC単体であってもよいが、通常、意図した電力を出力するように、SOFCを複数組み合わせたモジュールを1個又は複数個を備えている。SOFCシステムは、さらに、燃料ガス改質装置、熱交換器及びタービン等、公知のSOFCシステムの要素を備えることができる。
(SOFC system)
The SOFC system disclosed in this specification can include a SOFC type SOFC that is the cell 2 or the stack 100. The SOFC system may be a single SOFC system, but usually includes one or a plurality of modules in which a plurality of SOFCs are combined so as to output intended power. The SOFC system can further include elements of a known SOFC system, such as a fuel gas reformer, a heat exchanger, and a turbine.
(SOFCの製造方法)
 本明細書に開示されるSOFCの製造方法は、燃料ガスが供給される燃料極と、酸化剤ガスが供給される空気極と、固体電解質と、を備える1又は2以上のセルを備えているSOFCの製造方法である。この製造方法は、燃料極又は空気極のいずれかを形成するための電極材料帯と、電極材料帯の当該電極の意図しないガスの流路側に面する第1の面の少なくとも一部に意図しないガスを遮断するための緻密質材料帯とこの緻密質材料帯に隣接して1又は2以上の熱挙動調整材料帯とを含むシール材料帯と、を備える電極材料層を少なくとも含み、さらに、前記電極材料層に隣接して前記固体電解質材料層及び/又は前記セパレータ材料層を備える積層体を形成する工程と、前記積層体を一括焼成することを特徴としている。
(SOFC manufacturing method)
The SOFC manufacturing method disclosed in this specification includes one or more cells including a fuel electrode to which a fuel gas is supplied, an air electrode to which an oxidant gas is supplied, and a solid electrolyte. It is a manufacturing method of SOFC. This manufacturing method is not intended for at least a part of the electrode material band for forming either the fuel electrode or the air electrode and the first surface of the electrode material band facing the unintended gas flow path side of the electrode. An electrode material layer comprising at least a dense material band for blocking gas and a sealing material band including one or more thermal behavior adjusting material bands adjacent to the dense material band, A step of forming a laminate including the solid electrolyte material layer and / or the separator material layer adjacent to an electrode material layer, and the laminate are collectively fired.
 本製造方法によれば熱挙動調整材料帯を含むシール材料帯を電極材料層に備えているため、前記積層体の焼成時における電極材料層や積層体における熱挙動が調整され、この結果、得られるセル2やスタック100の変形等が抑制される。これにより、変形等が抑制され、一体性及び強度が向上されたセル2やスタック100を得ることができる。 According to this manufacturing method, since the electrode material layer includes the sealing material band including the thermal behavior adjusting material band, the thermal behavior of the electrode material layer and the laminated body during the firing of the laminated body is adjusted. The deformation of the cell 2 and the stack 100 that are formed is suppressed. Thereby, the deformation | transformation etc. are suppressed and the cell 2 and the stack 100 with improved integrity and strength can be obtained.
(積層体形成工程)
 積層体形成工程は、少なくとも電極材料層を含み、さらにセパレータ材料層及び/又は固体電解質材料層を含む積層体を形成する工程である。電極材料層は、電極材料帯と、電極材料帯の当該電極の意図しないガスの流路側に面する第1の面の少なくとも一部に、意図しないガスを遮断するための緻密質材料帯とこの緻密質材料帯に隣接して1又は2以上の熱挙動調整材料帯とを含むシール材料帯と、を備えている。電極材料帯は、燃料極又は空気極のいずれかを意図して調製することができる。それぞれの材料については、既に説明した材料を適宜選択して用いることができる。また、シール材料帯は、既に説明した緻密質部の材料と熱挙動調製部の材料から適宜選択して用いることができる。シール材料帯、及びそれを構成する緻密質材料帯及び熱挙動調製材料帯のパターンは、既に説明したシール部等の設計思想により決定することができる。
(Laminate formation process)
The laminate forming step is a step of forming a laminate including at least an electrode material layer and further including a separator material layer and / or a solid electrolyte material layer. The electrode material layer includes an electrode material band, a dense material band for blocking unintended gas on at least a part of the first surface of the electrode material band facing the unintended gas flow path of the electrode, And a sealing material band including one or more thermal behavior adjusting material bands adjacent to the dense material band. The electrode material strip can be prepared with the intention of either a fuel electrode or an air electrode. About each material, the already demonstrated material can be selected suitably and can be used. In addition, the seal material band can be appropriately selected and used from the material of the dense part and the material of the thermal behavior adjusting part already described. The pattern of the sealing material band, and the dense material band and the thermal behavior adjusting material band constituting the sealing material band can be determined based on the design concept of the seal portion and the like already described.
 固体電解質の材料からなる固体電解質材料層又はセパレータの材料からなるセパレータ材料層を形成するのにあたり、固体電解質及びセパレータの各材料としては既に説明した材料を適宜用いることができる。セパレータ材料は、ランタン-クロム系ペロブスカイト型酸化物と希土類元素固溶ジルコニアとを含むセラミックス粉末を用いることが好ましい。希土類元素安定化ジルコニアを含むことで、1400℃以下程度の焼成温度でも、ランタン-クロム系ペロブスカイト型酸化物を緻密に焼結させることができ、セル構成要素との共焼結が可能となる。また、高い導電率も維持できる。この材料において、希土類固溶ジルコニアは、ランタン-クロム系ペロブスカイト型酸化物セラミックスの質量に対して0.05質量%以上10質量%以下であることが好ましい。0.05質量%未満であると、焼結温度低下効果が十分得られにくく、10質量%を超えても導電性が低下するおそれが生じるからである。 In forming a solid electrolyte material layer made of a solid electrolyte material or a separator material layer made of a separator material, the materials described above can be used as appropriate for each material of the solid electrolyte and the separator. As the separator material, it is preferable to use a ceramic powder containing a lanthanum-chromium perovskite oxide and a rare earth element solid solution zirconia. By including the rare earth element-stabilized zirconia, the lanthanum-chromium perovskite oxide can be densely sintered even at a firing temperature of about 1400 ° C. or less, and co-sintering with the cell constituent elements becomes possible. Also, high conductivity can be maintained. In this material, the rare earth solid solution zirconia is preferably 0.05% by mass or more and 10% by mass or less based on the mass of the lanthanum-chromium perovskite oxide ceramics. This is because if it is less than 0.05% by mass, the effect of lowering the sintering temperature is not sufficiently obtained, and even if it exceeds 10% by mass, the conductivity may decrease.
 なお、適宜、燃料ガス流路や酸化剤ガス流路のための消失材料を適宜セパレータ材料層や電極材料帯に対して付与してもよい。 In addition, you may provide suitably the loss | disappearance material for a fuel gas flow path or an oxidizing gas flow path with respect to a separator material layer or an electrode material belt | band | zone suitably.
 電極材料層、セパレータ材料層や固体電解質材料層は、常法に従って形成することができる。例えば、層材料を主成分として、さらにバインダー樹脂、有機溶媒などが適量加えたスラリーを、ナイフコート、ドクターブレードなどの塗工装置を用いたテープキャスト法などのキャスティングによるシート成形法を用いて得ることができる。得られたシートを、常法に従い、乾燥することができる。また、必要に応じて加熱処理してもよい(焼結を意図しない)。 The electrode material layer, the separator material layer, and the solid electrolyte material layer can be formed according to a conventional method. For example, a slurry containing a layer material as a main component and further added with an appropriate amount of a binder resin, an organic solvent, or the like is obtained using a sheet forming method by casting such as a tape casting method using a coating apparatus such as a knife coat or a doctor blade. be able to. The obtained sheet can be dried according to a conventional method. Moreover, you may heat-process as needed (sintering is not intended).
 異種の帯(バンド)を有する電極材料層は、ドクターブレードなどの塗工装置を使用してテープキャスティング法などのキャスティングによるシート成形法により得ることができる。キャスティング方法は適宜決定される。電極材料帯とシール材料帯とを当時にキャスティングしてもよい。すなわち、キャスティング方向に沿って異なる組成のスラリーが同時に排出されかつキャスティング後に異種のスラリー帯が混合することなく一体化されるようにして塗工するようにする。このとき、異なる帯を形成するためのスラリーの流動性を調整することでこのような異種組成帯の一体塗工が可能となる。こうして得られた塗工物を、常法に従い、乾燥し、必要に応じて加熱処理することで電極材料層を形成できる。 An electrode material layer having different bands can be obtained by a sheet forming method by casting such as a tape casting method using a coating device such as a doctor blade. The casting method is determined as appropriate. The electrode material strip and the seal material strip may be cast at that time. That is, the slurry having different compositions along the casting direction is discharged at the same time, and the different slurry zones are integrated without being mixed after casting. At this time, such different composition band can be integrally applied by adjusting the fluidity of the slurry for forming different bands. The electrode material layer can be formed by drying the coated material thus obtained in accordance with a conventional method and subjecting it to heat treatment as necessary.
 なお、電極材料層における電極材料帯、緻密質材料帯及び熱挙動調整材料帯の気孔率は、適宜発泡材料等を添加するなど、公知の方法で調整することができる。 In addition, the porosity of the electrode material band, the dense material band, and the thermal behavior adjusting material band in the electrode material layer can be adjusted by a known method such as adding a foaming material or the like as appropriate.
 積層体は、1つの層に対して他の層を積層することで形成できる。積層順序や積層方法は適宜決定される。すなわち、各層を独立したシート体として形成し、シート体を積層してもよいし、他の層に積層するように塗工等して順次他の層に一体化していくようにしてもよい。積層体は、セル2の一部のみを意図する焼成前前駆体であってもよいし、セル2を意図するものであってもよい。さらに、セル2にセパレータ60を付加したものを意図するものであってもよいし、スタック100を意図したものであってもよい。本製造方法においては、好ましくは、複数のセル2をセパレータ60を介して積層したスタック100を意図したものである。 A laminate can be formed by laminating other layers on one layer. The stacking order and stacking method are appropriately determined. That is, each layer may be formed as an independent sheet body, and the sheet body may be laminated, or may be sequentially integrated with other layers by coating so as to be laminated on other layers. The laminate may be a precursor before firing intended for only a part of the cell 2 or may be intended for the cell 2. Furthermore, what added the separator 60 to the cell 2 may be intended, and the stack 100 may be intended. In the present manufacturing method, preferably, a stack 100 in which a plurality of cells 2 are stacked via a separator 60 is intended.
(焼成工程)
 次いで、この積層体を焼成する。すなわち、積層体内の各材料層を一括焼成し焼結させる。焼成工程は、焼成条件は、各材料層につき所望の緻密質又は多孔質となるように実施する。好ましくは、セル構成要素及びセパレータの全てを共焼結させる。例えば、1250℃以上1550℃以下の温度で加熱処理することができ、好ましくは1300℃以上1500℃以下である。より好ましくは1300℃以上1400℃以下である。なお、空気中で焼成することができる。
(Baking process)
Next, this laminate is fired. That is, the material layers in the laminate are fired and sintered together. The firing step is performed so that the firing conditions are a desired dense or porous for each material layer. Preferably, all of the cell components and separator are co-sintered. For example, the heat treatment can be performed at a temperature of 1250 ° C. to 1550 ° C., and preferably 1300 ° C. to 1500 ° C. More preferably, it is 1300 degreeC or more and 1400 degrees C or less. It can be fired in air.
 焼成工程により、積層体を構成する各層が一体化され本明細書に開示されるSOFCであるセル2又はスタック100若しくはこれらの一部を得ることができる。本製造方法においては、既に説明したように、セル2を複数積層したスタック100を意図した積層体を準備し、それを焼成することが好ましい。本方法によれば、電極材料層に熱挙動調整材料帯を含むシール材料帯を含むため、セル2を複数積層されたスタック100であっても、変形等を抑制して、一体性及び強度に優れるスタック100を得ることができる。好ましい積層数は、既にスタック100について説明した態様を適用できる。 By the firing step, the layers constituting the laminate can be integrated to obtain the cell 2 or the stack 100 that is the SOFC disclosed in this specification or a part thereof. In this manufacturing method, as already described, it is preferable to prepare a laminate intended for the stack 100 in which a plurality of cells 2 are laminated and to fire the laminate. According to this method, since the electrode material layer includes the sealing material band including the thermal behavior adjusting material band, even in the stack 100 in which a plurality of the cells 2 are stacked, the deformation and the like are suppressed, and the integrity and strength are improved. An excellent stack 100 can be obtained. For the preferred number of layers, the aspect already described for the stack 100 can be applied.
 以上のように、本方法によれば、電極材料層を少なくとも含む積層体を形成し、焼成することで、変形が抑制され一体性及び強度が良好なSOFCのセル2又はスタック100若しくはその一部を得ることができる。なお、こうした得られたセル2又はスタック100若しくはその一部に対して、さらに他の材料層を積層し焼成することもできる。また、SOFCとして必要な集電要素等を適宜付与することができる。 As described above, according to the present method, the SOFC cell 2 or the stack 100 or a part of the SOFC cell 2 having good integrity and strength is formed by forming a laminate including at least an electrode material layer and firing the laminate. Can be obtained. In addition, another material layer can also be laminated | stacked and baked with respect to such obtained cell 2 or stack 100, or its part. In addition, a current collecting element or the like necessary for SOFC can be appropriately provided.
 以上、本発明の一実施形態について説明したが、本発明はこれに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、種々の変更が可能である。 As mentioned above, although one Embodiment of this invention was described, this invention is not limited to this, A various change is possible unless it deviates from the meaning of this invention.
(SOFC用の電極シート)
 本発明のSOFC用電極シートは、燃料極材料又は空気極材料を含む電極材料帯と、シール材料帯とを備えることができる。本シートによれば、燃料極層又は空気極層の層内において熱挙動調整部と緻密質部とを有するシール部を形成することができる。このため、確実かつ簡易なシール構造を提供できるとともに、セル2やスタック100における熱挙動を良好に調整でき、変形等を抑制し、一体性及び強度に優れるセル2又はスタック100等が得られる。
(Electrode sheet for SOFC)
The SOFC electrode sheet of the present invention can include an electrode material band containing a fuel electrode material or an air electrode material, and a seal material band. According to this sheet, a seal portion having a thermal behavior adjusting portion and a dense portion can be formed in the fuel electrode layer or the air electrode layer. For this reason, while being able to provide a reliable and simple seal structure, the thermal behavior in the cell 2 or the stack 100 can be adjusted well, the deformation or the like is suppressed, and the cell 2 or the stack 100 having excellent integrity and strength can be obtained.
 本発明の電極用シートについては、既にスタック100について説明した燃料極、空気極、セパレータ、固体電解質及びシール部について各種態様を適用することができる。また、本発明の電極用シートの製造には、既に説明したSOFCの製造方法を参照することができる。 For the electrode sheet of the present invention, various aspects can be applied to the fuel electrode, the air electrode, the separator, the solid electrolyte, and the seal portion already described for the stack 100. Moreover, the manufacturing method of SOFC already demonstrated can be referred for manufacture of the sheet | seat for electrodes of this invention.
 以上、本発明のいくつかの実施形態について説明したが、本発明はこれに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、種々の変更が可能である。 As mentioned above, although several embodiment of this invention was described, this invention is not limited to this, A various change is possible unless it deviates from the meaning of this invention.
 以下、発明を、実施例を挙げて具体的に説明するが、本発明は以下の実施例に限定するものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples.
 本実施例では、図8に示すように、両側にシール部10,16を備えた燃料極層6及び空気極層12とを備えるセルを積層したスタックを製造した。各シール部10、16は、燃料極8又は空気極14に隣接して緻密質部10a、16aを備え、さらにその外側に熱挙動調整部10b、16bを備えるようにした。図8に示すように、セルは、35mm×35mmの正方形状の平板型であり、各電極層におけるシール部の緻密質部10a、16aの幅Wbは約1mm、2mm、3mm、4mm、5mm及び6mmとし、熱挙動調整部10b、16bの幅Wcは約2mmとした。また、熱挙動調整部10b、16bを設けないで緻密質部10a、16a2mmのみをとしたものも作製した。セルのスタックは、5セル~12セルとして、各種態様のシール部を備えるスタックを形成した。 In this example, as shown in FIG. 8, a stack was manufactured in which cells each provided with a fuel electrode layer 6 and air electrode layers 12 provided with seal portions 10 and 16 on both sides were laminated. Each of the sealing portions 10 and 16 includes dense portions 10a and 16a adjacent to the fuel electrode 8 or the air electrode 14, and further includes thermal behavior adjusting portions 10b and 16b on the outside thereof. As shown in FIG. 8, the cell has a square plate shape of 35 mm × 35 mm, and the width Wb of the dense portions 10 a and 16 a of the seal portion in each electrode layer is about 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, and The width Wc of the thermal behavior adjusting units 10b and 16b was about 2 mm. Moreover, what made only the dense parts 10a and 16a2mm without providing the thermal behavior adjustment parts 10b and 16b was also produced. The cell stacks were 5 to 12 cells, and stacks having various types of seal portions were formed.
 燃料極材料としてNi/8YSZのサーメット(Ni:8YSZ=50:50(モル比))、空気極材料としてLa1-xSrMnO(x=0.2-0.3)(LSM)、電解質材料として8YSZ、セパレータとしては、La0.79Ca0.06Sr0.15CrO(LaCaSCr)を用いた。緻密質材料には空気極材料であるガスシール性を確保できる程度の緻密質のLSMを、ガスシール性を確保できる程度の緻密質となるようにした。本実施例では緻密質部10a、16aの空孔率pbが2%となるように緻密質材料を調製した。また、熱挙動調整材料は空気極、燃料極層共に多孔質LSMを用いた。本実施例では熱挙動調整部の空孔率pcが25%となるように熱挙動調整材料を調製した。なお、また、これらの材料層は、焼成後の厚みは、電極層約100μm、セパレータ層および電解質層約20μmとなるようにした。また、電極層には直線状の流路構造を焼成温度で消失する高分子材料を配置して作製した。 Ni / 8YSZ cermet as the fuel electrode material (Ni: 8YSZ = 50: 50 (molar ratio)), La 1-x Sr x MnO 3 (x = 0.2-0.3) (LSM) as the air electrode material, 8YSZ was used as the electrolyte material, and La 0.79 Ca 0.06 Sr 0.15 CrO x (LaCaSCr) was used as the separator. As the dense material, a dense LSM that can ensure the gas sealing property, which is an air electrode material, is made dense enough to ensure the gas sealing property. Dense areas 10a, porosity p b of 16a were prepared dense material to be 2% in the present embodiment. As the thermal behavior adjusting material, porous LSM was used for both the air electrode and the fuel electrode layer. Porosity p c of thermal behavior adjuster to prepare a thermal behavior modifying material such that 25% in this embodiment. In addition, the thickness of these material layers after firing was set to be about 100 μm for the electrode layer, about 20 μm for the separator layer and the electrolyte layer. Further, the electrode layer was prepared by arranging a polymer material that disappears at a firing temperature in a linear channel structure.
 燃料極用のスラリーの調製にあたっては、メタクリル酸メチルポリマーの造孔材のほか、エタノール、アリルエーテルコポリマー、及びポリビニルブチラールを用いた。空気極用のスラリーの調製にあたっては、メタクリル酸メチルポリマーの造孔材のほか、エタノール、アリルエーテルコポリマー及びポリビニルブチラールを用いた。固体電解質用のスラリーの調製にあたっては、エタノール、アリルエーテルコポリマー、及びポリビニルブチラールを用いた。セパレータ用のスラリーの調製にあたっては、エタノール、アリルエーテルコポリマー及びポリビニルブチラールを用いた。 In preparing the slurry for the fuel electrode, ethanol, allyl ether copolymer, and polyvinyl butyral were used in addition to the pore-forming material of methyl methacrylate polymer. In preparing the slurry for the air electrode, ethanol, allyl ether copolymer and polyvinyl butyral were used in addition to the pore-forming material of methyl methacrylate polymer. In preparing the slurry for the solid electrolyte, ethanol, allyl ether copolymer, and polyvinyl butyral were used. In preparing the slurry for the separator, ethanol, allyl ether copolymer and polyvinyl butyral were used.
 各スラリーを用いてセラミックスグリーンシートを作製した。燃料極用シート及び空気極用シートを作製するにあたっては、消失性フィラメントを、シート厚みのほぼ中央にキャスティング方向に直線状に一定間隔で複数本埋設しながらスラリーをキャスティングするようにした。また、セパレータ用シート及び固体電解質用シートの作製にあたっては、フィラメントを埋設しないでシートを作製した。 A ceramic green sheet was prepared using each slurry. In preparing the fuel electrode sheet and the air electrode sheet, the slurry was cast while a plurality of vanishing filaments were embedded in the casting direction in a straight line at regular intervals in the approximate center of the sheet thickness. Moreover, in producing the separator sheet and the solid electrolyte sheet, the sheet was produced without embedding the filament.
 こうして得られた各電極用シート、固体電解質用シート及びセパレータ用シートを積層して、最終的に5セル~12セルを積層して、1300℃で5時間焼成した。焼成体における燃料極、空気極、固体電解質及びセパレータの厚みは、それぞれ約100μm、100μm、20μm及び20μmであった。 Each electrode sheet, solid electrolyte sheet and separator sheet thus obtained were laminated, and finally 5 to 12 cells were laminated and fired at 1300 ° C. for 5 hours. The thicknesses of the fuel electrode, air electrode, solid electrolyte, and separator in the fired body were about 100 μm, 100 μm, 20 μm, and 20 μm, respectively.
 これらの焼成体の観察結果から、以下のことがわかった。熱挙動調整部のない電極層を有するスタックの場合には、5セルまでしか焼成による一体化ができず、それ以上のセル数を一体化しようとするとクラックが発生していた。また、2mm以上のWcの熱挙動調整部を備える電極層を有するスタックの場合には、12セルであっても、一括焼成により一体化することができた。一方、Wcが2mmのとき、緻密質部の幅Wbが6mm以上であると、熱挙動調整部の有無に関わらずクラックが発生した。また、Wbが5mm以下、好ましくは4mm以下であると、クラックもなく、良好な一体性及び形状を備える焼成体を得ることができた。 The observation results of these fired bodies revealed the following. In the case of a stack having an electrode layer without a thermal behavior adjusting portion, integration by firing was possible only up to 5 cells, and cracks occurred when attempting to integrate more cells. Further, in the case of a stack having an electrode layer provided with a thermal behavior adjusting portion of Wc of 2 mm or more, even a 12 cell could be integrated by batch firing. On the other hand, when Wc was 2 mm, when the width Wb of the dense part was 6 mm or more, cracks occurred regardless of the presence or absence of the thermal behavior adjusting part. Further, when Wb was 5 mm or less, preferably 4 mm or less, there was no crack, and a fired body having good integrity and shape could be obtained.
 以上のことから、熱挙動調整部がクラックの発生などの変形をセル及びスタックにおいて効果的に抑制できることがわかった。また、熱挙動調整部の幅Wcは、WbやWaに対して相対的に狭すぎると熱収縮・熱膨張の制御の機能が弱くなることがわかった。例えば、3Wc>Wbであることが好ましく、2Wc>Wbがより望ましいことがわかった。また、0<Wb<0.25Waであり、0.15Wc<Wb<3Wcであり、かつ0<Wc<0.25(Wa+Wb)であることがわかった。 From the above, it has been found that the thermal behavior adjusting unit can effectively suppress deformation such as generation of cracks in the cell and the stack. Further, it has been found that if the width Wc of the thermal behavior adjusting portion is too narrow relative to Wb or Wa, the function of controlling thermal contraction and thermal expansion becomes weak. For example, it was found that 3Wc> Wb was preferable, and 2Wc> Wb was more preferable. It was also found that 0 <Wb <0.25Wa, 0.15Wc <Wb <3Wc, and 0 <Wc <0.25 (Wa + Wb).
 本明細書及び/又はクレームに記載された全ての特徴は、実施例及び/又はクレームに記載された特徴の構成とは別に、出願当初の開示ならびにクレームされた特定事項に対する限定として、個別に、かつ互いに独立して開示されることを意図するものである。さらに、全ての数値範囲及びグループ又は集団に関する記載は、出願当初の開示ならびにクレームされた特定事項に対する限定として、それらの中間の構成を開示する意図を持ってなされている。
 
 
All features described in this specification and / or claims, apart from the configuration of the features described in the examples and / or claims, are individually disclosed as limitations on the original disclosure and claimed specific matters. And are intended to be disclosed independently of each other. Further, all numerical ranges and group or group descriptions are intended to disclose intermediate configurations thereof as a limitation to the original disclosure and claimed subject matter.

Claims (16)

  1.  固体酸化物形燃料電池であって、
     燃料ガス供給される燃料極と、酸化剤ガスが供給される空気極と、電解質と、を備える1又は2以上のセルを備え、
     前記燃料極又は前記空気極のいずれかを電極部として備える少なくとも1つの電極層は、前記電極部を意図しないガスから遮断するために前記電極部の前記意図しないガスの流路に面する第1の面の少なくとも一部に配置されるシール部を備えており、
     前記シール部は、ガスシール性を有する1又は2以上の緻密質部と、前記1又は2以上の緻密質部に隣接して1又は2以上の熱挙動調整部と、備える、電池。
    A solid oxide fuel cell,
    Comprising one or more cells comprising a fuel electrode supplied with fuel gas, an air electrode supplied with oxidant gas, and an electrolyte;
    At least one electrode layer including either the fuel electrode or the air electrode as an electrode portion faces the unintended gas flow path of the electrode portion in order to shield the electrode portion from unintended gas. A seal portion disposed on at least a part of the surface of
    The battery includes one or more dense parts having gas sealing properties, and one or more thermal behavior adjusting parts adjacent to the one or more dense parts.
  2.  前記1又は2以上の熱挙動調整部は、多孔質である、請求項1に記載の電池。 The battery according to claim 1, wherein the one or more thermal behavior adjusting portions are porous.
  3.  前記1又は2以上の緻密質部が前記第1の面に隣接して備えられ、前記1又は2以上の熱挙動調整部が前記1又は2以上の緻密質部の前記第1の面に隣接する面とは反対側の面となる第2の面に隣接して備えられる、請求項1又は2に記載の電池。 The one or more dense portions are provided adjacent to the first surface, and the one or more thermal behavior adjusting portions are adjacent to the first surface of the one or more dense portions. The battery according to claim 1, wherein the battery is provided adjacent to a second surface which is a surface opposite to a surface to be operated.
  4.  前記1又は2以上の緻密質部と前記1又は2以上の熱挙動調整部とが、交互に配置されている、請求項1~3のいずれかに記載の電池。 4. The battery according to claim 1, wherein the one or more dense portions and the one or more thermal behavior adjusting portions are alternately arranged.
  5.  前記1又は2以上の熱挙動調整部が前記第1の面に隣接して備えられる、請求項1~4のいずれかに記載の電池。 The battery according to any one of claims 1 to 4, wherein the one or more thermal behavior adjusting units are provided adjacent to the first surface.
  6.  前記電極部は、前記第1の面の近傍において前記第1の面側においてより低い気孔率の傾斜構造を有している、請求項1~5のいずれかに記載の電池。 The battery according to any one of claims 1 to 5, wherein the electrode portion has an inclined structure with a lower porosity on the first surface side in the vicinity of the first surface.
  7.  前記シール部は、前記電極層において前記電極部の対向する2つの側面を含む第1の面に隣接して配置される、請求項1~6のいずれかに記載の電池。 The battery according to any one of claims 1 to 6, wherein the seal portion is disposed adjacent to a first surface including two opposite side surfaces of the electrode portion in the electrode layer.
  8.  1つの前記シール部が前記第1の面に隣接して配置され、前記シール部
     前記電極部の前記対向する2つの側面で規定される幅をWaとし、
     前記緻密質部の前記Waに沿う方向での幅をWbとし、
     前記熱挙動調整部の前記Waに沿う方向での幅をWcとするとき、
     0<Wb<0.25Waであり、0.15Wc<Wb<3Wcであり、かつ0<Wc<0.25(Wa+Wb)である、請求項7に記載の電池。
    One of the seal portions is disposed adjacent to the first surface, and the width defined by the two opposing side surfaces of the seal portion is defined as Wa.
    The width of the dense part in the direction along Wa is Wb,
    When the width in the direction along the Wa of the thermal behavior adjusting unit is Wc,
    The battery according to claim 7, wherein 0 <Wb <0.25Wa, 0.15Wc <Wb <3Wc, and 0 <Wc <0.25 (Wa + Wb).
  9.  平板型固体酸化物形燃料電池である、請求項1~8のいずれかに記載の電池。 The battery according to any one of claims 1 to 8, which is a flat plate solid oxide fuel cell.
  10.  前記電極層と前記電解質とが一体焼成されている、請求項1~9のいずれかに記載の電池。 The battery according to any one of claims 1 to 9, wherein the electrode layer and the electrolyte are integrally fired.
  11.  複数の前記セルをセパレータを介して積層して備える、請求項1~10のいずれかに記載の電池。 The battery according to any one of claims 1 to 10, comprising a plurality of the cells stacked via separators.
  12.  前記セルの前記燃料極及び前記空気極をそれぞれ含む前記電極層と、前記電解質と、前記セパレータとが、一括焼成されている、請求項1~11のいずれかに記載の電池。 The battery according to any one of claims 1 to 11, wherein the electrode layer including the fuel electrode and the air electrode of the cell, the electrolyte, and the separator are calcined together.
  13.  前記燃料極が、ニッケル及びイットリア安定化ジルコニア又はスカンジウム安定化ジルコニアを含む、請求項1~12のいずれかに記載の電池。 The battery according to any one of claims 1 to 12, wherein the fuel electrode contains nickel and yttria stabilized zirconia or scandium stabilized zirconia.
  14.  前記空気極が、ランタンストロンチウム、ランタンストロンチウムフェライト及びランタンストロンチウムコバルトフェライトからなる群から選択される1種又は2種以上を含む、請求項1~13のいずれかに記載の電池。 The battery according to any one of claims 1 to 13, wherein the air electrode includes one or more selected from the group consisting of lanthanum strontium, lanthanum strontium ferrite, and lanthanum strontium cobalt ferrite.
  15.  前記緻密質部がランタンを含むセラミックス又はイットリア安定化ジルコニア又はスカンジウム安定化ジルコニアを含む、請求項1~14のいずれかに記載の電池。 The battery according to any one of claims 1 to 14, wherein the dense portion includes ceramics containing lanthanum, yttria stabilized zirconia or scandium stabilized zirconia.
  16.  固体酸化物形燃料電池の製造方法であって、
     前記固体酸化物形燃料電池は、燃料ガス供給される燃料極と、酸化剤ガスが供給される空気極と、電解質と、を備える1又は2以上のセルを備えており、
     前記燃料極又は前記空気極のいずれかを形成するための電極材料帯と、前記電極材料帯の当該電極の意図しないガスの流路側に面する第1の面の少なくとも一部に、前記意図しないガスを遮断するための緻密質材料帯とこの緻密質材料帯に隣接して1又は2以上の熱挙動調整材料帯とを含むシール材料帯とを備える電極材料層を少なくとも含み、さらに、前記電極材料層に隣接して前記固体電解質材料層及び/又は前記セパレータ材料層を備える積層体を形成する工程と、前記積層体を一括焼成する、方法。
     
    A method for producing a solid oxide fuel cell, comprising:
    The solid oxide fuel cell includes one or more cells including a fuel electrode supplied with a fuel gas, an air electrode supplied with an oxidant gas, and an electrolyte.
    The electrode material band for forming either the fuel electrode or the air electrode, and the unintentional at least part of the first surface of the electrode material band facing the unintended gas flow path side of the electrode. An electrode material layer comprising at least a dense material band for blocking gas and a sealing material band including one or more thermal behavior adjusting material bands adjacent to the dense material band; A step of forming a laminate comprising the solid electrolyte material layer and / or the separator material layer adjacent to the material layer, and a method of firing the laminate in a lump.
PCT/JP2013/066944 2013-02-07 2013-06-20 Solid oxide fuel cell and method for producing same WO2014122807A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014560628A JP6174608B2 (en) 2013-02-07 2013-06-20 Solid oxide fuel cell and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-022716 2013-02-07
JP2013022716 2013-02-07

Publications (1)

Publication Number Publication Date
WO2014122807A1 true WO2014122807A1 (en) 2014-08-14

Family

ID=51299417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066944 WO2014122807A1 (en) 2013-02-07 2013-06-20 Solid oxide fuel cell and method for producing same

Country Status (2)

Country Link
JP (1) JP6174608B2 (en)
WO (1) WO2014122807A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017134941A (en) * 2016-01-26 2017-08-03 株式会社デンソー Fuel battery single cell
WO2018042475A1 (en) * 2016-08-29 2018-03-08 FCO Power株式会社 Cell for solid oxide fuel cell, solid oxide fuel cell stack, and solid oxide fuel cell
JP2019515462A (en) * 2016-09-30 2019-06-06 エルジー・ケム・リミテッド Solid oxide fuel cell
US11251439B2 (en) 2018-11-28 2022-02-15 Taiyo Yuden Co., Ltd. Fuel cell and fuel cell stack

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002056855A (en) * 2000-08-08 2002-02-22 Mitsubishi Electric Corp Flat fuel cell
JP2007059065A (en) * 2005-08-22 2007-03-08 Toyota Motor Corp Fuel cell
JP2008108677A (en) * 2006-10-27 2008-05-08 Sony Corp Electrochemical device
JP2008159320A (en) * 2006-12-21 2008-07-10 Matsushita Electric Ind Co Ltd Membrane electrode assembly
WO2009119771A1 (en) * 2008-03-26 2009-10-01 財団法人ファインセラミックスセンター Stack structure for solid exide fuel cell stack, solid oxide fuel cell stack, and production method for the same
JP2009277448A (en) * 2008-05-13 2009-11-26 Sharp Corp Fuel cell and fuel cell stack
JP2012190720A (en) * 2011-03-11 2012-10-04 Toppan Printing Co Ltd Membrane electrode assembly in solid polymer fuel cell and method for manufacturing the same
JP2012221666A (en) * 2011-04-06 2012-11-12 Panasonic Corp Polymer electrolyte fuel cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002056855A (en) * 2000-08-08 2002-02-22 Mitsubishi Electric Corp Flat fuel cell
JP2007059065A (en) * 2005-08-22 2007-03-08 Toyota Motor Corp Fuel cell
JP2008108677A (en) * 2006-10-27 2008-05-08 Sony Corp Electrochemical device
JP2008159320A (en) * 2006-12-21 2008-07-10 Matsushita Electric Ind Co Ltd Membrane electrode assembly
WO2009119771A1 (en) * 2008-03-26 2009-10-01 財団法人ファインセラミックスセンター Stack structure for solid exide fuel cell stack, solid oxide fuel cell stack, and production method for the same
JP2009277448A (en) * 2008-05-13 2009-11-26 Sharp Corp Fuel cell and fuel cell stack
JP2012190720A (en) * 2011-03-11 2012-10-04 Toppan Printing Co Ltd Membrane electrode assembly in solid polymer fuel cell and method for manufacturing the same
JP2012221666A (en) * 2011-04-06 2012-11-12 Panasonic Corp Polymer electrolyte fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017134941A (en) * 2016-01-26 2017-08-03 株式会社デンソー Fuel battery single cell
WO2018042475A1 (en) * 2016-08-29 2018-03-08 FCO Power株式会社 Cell for solid oxide fuel cell, solid oxide fuel cell stack, and solid oxide fuel cell
JPWO2018042475A1 (en) * 2016-08-29 2018-08-30 FCO Power株式会社 Solid oxide fuel cell, solid oxide fuel cell stack and solid oxide fuel cell
JP2019515462A (en) * 2016-09-30 2019-06-06 エルジー・ケム・リミテッド Solid oxide fuel cell
US10665879B2 (en) 2016-09-30 2020-05-26 Lg Chem, Ltd. Solid oxide fuel cell
US11251439B2 (en) 2018-11-28 2022-02-15 Taiyo Yuden Co., Ltd. Fuel cell and fuel cell stack

Also Published As

Publication number Publication date
JP6174608B2 (en) 2017-08-02
JPWO2014122807A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP5767297B2 (en) Stack structure for stacked solid oxide fuel cell, stacked solid oxide fuel cell, and manufacturing method thereof
JP6174608B2 (en) Solid oxide fuel cell and method for producing the same
JP5566405B2 (en) FUEL CELL CELL, FUEL CELL CELL DEVICE, FUEL CELL MODULE, AND FUEL CELL DEVICE
JP6378337B2 (en) Stack structure of flat solid oxide fuel cell and solid oxide fuel cell system
JP4332639B2 (en) Fuel cell and method for producing the same
JP6311953B1 (en) Interconnector, solid oxide fuel cell stack, and method for manufacturing solid oxide fuel cell stack
JP5711093B2 (en) Gas separation material for solid oxide fuel cell and solid oxide fuel cell
JP6311952B1 (en) Interconnector, solid oxide fuel cell stack, and method for manufacturing solid oxide fuel cell stack
JP6378435B2 (en) Solid oxide fuel cell, solid oxide fuel cell stack and solid oxide fuel cell
JP6378436B2 (en) Solid oxide fuel cell stack and manufacturing method thereof
JP6507337B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP5732180B1 (en) Fuel cell
JP5923139B2 (en) Fuel cell
WO2018042474A1 (en) Cell for solid oxide fuel cell, solid oxide fuel cell stack, and solid oxide fuel cell
JP2016072213A (en) Solid oxide fuel cell stack
JP2015072892A (en) Fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560628

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874555

Country of ref document: EP

Kind code of ref document: A1