WO2014122716A1 - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
WO2014122716A1
WO2014122716A1 PCT/JP2013/007634 JP2013007634W WO2014122716A1 WO 2014122716 A1 WO2014122716 A1 WO 2014122716A1 JP 2013007634 W JP2013007634 W JP 2013007634W WO 2014122716 A1 WO2014122716 A1 WO 2014122716A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
annular
light guide
reflection
Prior art date
Application number
PCT/JP2013/007634
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 小谷
一郎 谷村
有士 中川
晋二 角陸
龍馬 村瀬
福井 厚司
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201390001072.7U priority Critical patent/CN205065496U/en
Priority to DE112013006614.9T priority patent/DE112013006614T5/en
Publication of WO2014122716A1 publication Critical patent/WO2014122716A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/04Lighting devices intended for fixed installation intended only for mounting on a ceiling or the like overhead structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/007Array of lenses or refractors for a cluster of light sources, e.g. for arrangement of multiple light sources in one plane
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/30Elongate light sources, e.g. fluorescent tubes curved
    • F21Y2103/33Elongate light sources, e.g. fluorescent tubes curved annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0018Redirecting means on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces

Definitions

  • the light emitting module 802 includes a plate-like substrate 8020, a light emitting element (LED) 8021 mounted on the substrate 8020, and a phosphor layer 8022 disposed in front of the light emitting element 8021.
  • each light emitting element 8021 is turned on.
  • Lights L 1 and L 2 emitted from the light emitting element 8021 pass through the Fresnel lens 803.
  • Lights L 1 and L 2 are adjusted to parallel light by a Fresnel lens 803 and irradiated outside.
  • This invention is made in view of the said subject, Comprising: It aims at providing the illuminating device which can implement
  • it further includes an annular plate-shaped diffusion cover that is disposed so as to cover the annular outer peripheral portion of the light guide plate and is subjected to light scattering treatment, on the outer side of the light collecting cover.
  • the said diffusion cover may take the structure which diffuses the light which entered from the surface by the side of the said annular outer peripheral part of the said light-guide plate, and radiate
  • FIG. 4 is a schematic diagram showing a cross-sectional shape of a concave reflecting portion 44 in the light guide plate 40 of the lighting fixture 1.
  • A) is a top view of the condensing cover 60 of the lighting fixture 1
  • (b) is the E section enlarged view in (a)
  • (c) is a side view
  • (d) is a back view.
  • the base 10 is made of a material having excellent heat dissipation characteristics, for example, a metal material such as an aluminum die-cast material.
  • the base 10 includes a main body portion 11 having a two-stage bottom structure with a deep center side and a shallow peripheral edge side, and a flange portion 12 erected around the main body portion 11 (FIG. 4).
  • the flange portion 12 has a notch portion 16.
  • the mounting substrate 20 and the reflective member 30 are sequentially stacked on the inner bottom portion 13.
  • An annular outer peripheral portion 43 of the light guide plate 40 is placed on the outer bottom portion 15.
  • the upper surface of the substrate body 21 is a reflecting surface for efficiently reflecting the emitted light of the light emitting element 22 toward the light guide plate 40 side.
  • the inner reflection portion 31 (outer reflection portion 33) is provided at a position inside (outside) the mounting position of the light emitting element 22 of the mounting substrate 20 (FIG. 5).
  • the inner reflection part 31 (outer reflection part 33) is a part for reflecting light leaking from the light guide plate 40 to the light guide plate 40 side again on the upper surface 310 (320).
  • the back surface 35 facing away from the recessed portion 32 and the outer reflecting portion 33 is a flat surface that matches the surface shape of the substrate body 21 of the mounting substrate 20.
  • the light guide plate 40 is used to guide light emitted from the light emitting element 22 mainly in the XY plane direction, and to emit light to the light collecting cover 60 side and the diffusion cover 50 (Z direction) side.
  • Fig.7 is a perspective view which shows the structure of the light-guide plate 40 of the illuminating device 100 which concerns on embodiment.
  • (B) is the C section enlarged view in (a).
  • the light guide plate 40 is disposed on the side opposite to the side facing the mounting substrate 20 of the reflecting member 30.
  • the material of the light guide plate 40 include materials having excellent translucency, such as acrylic resin, polycarbonate resin, polystyrene resin, and glass. In this embodiment, a polymethyl methacrylate resin is used as the acrylic resin. By injection-molding the light guide plate 40 using these materials, the light guide plate 40 can be configured with high accuracy in the same manner as the reflecting member 30.
  • the light guide plate 40 has a circular plate shape, and an annular portion 42 formed in an annular shape along the element row composed of the light emitting elements 22, and a circle formed continuously with the annular portion 42 inside the annular portion 42.
  • a plate-shaped ring interior 41 is provided.
  • an annular annular outer peripheral portion 43 formed continuously with the annular portion 42 is provided outside the annular portion 42.
  • the range indicated by reference sign W 42 is the annular portion 42
  • the range indicated by reference sign W 41 is the ring interior 41
  • the range indicated by reference sign W 43 is the ring interior 41.
  • the outer diameter of the light guide plate 40 including W 41 to W 43 is about 128 mm
  • the diameter of the ring inner portion 41 is about 80 mm.
  • the outer diameter of the light guide plate 40 is substantially matched with the inner diameter of the side wall portion 14.
  • a convex portion 46 is provided at the center of the surface of the inner ring 41 on the reflecting member 30 side.
  • the light guide plate 40 has a plurality of concave portions 47 for loosely inserting convex portions 62 of the light collecting cover 60 to be described later on the inner side slightly from the outer edge of the ring interior 41 on the surface on the light collecting cover 60 side (FIG. 4). ).
  • the recesses 47 are provided at three positions with different circumferential angles by about 120 ° with respect to the center of the disc-shaped light guide plate 40. And this recessed part 47 is arrange
  • each outer surface of the ring inner portion 41 is set higher than each outer surface of the annular outer peripheral portion 43 (FIG. 5). Further, the thicknesses of the ring inner portion 41 and the annular outer peripheral portion 43 are also set to be the same.
  • the annular portion 42 is a portion that guides the emitted light of the light emitting element 22 to the inside and the outside of the light guide plate 40.
  • the annular portion 42 is inserted into the recessed portion 32 of the reflecting member 30 (FIG. 5). Thereby, the annular portion 42 is continuously formed so as to connect the mounting positions of the light emitting elements 22 on the mounting substrate 20.
  • the annular portion 42 is a boundary portion existing between the element facing portion 420, the outer reflecting portion 422 ⁇ / b> A, the inner reflecting portion 422 ⁇ / b> B, and the outer reflecting portion 422 ⁇ / b> A and the inner reflecting portion 422 ⁇ / b> B. 423.
  • the annular portion 42 has a substantially V-shaped cross-sectional shape having a certain thickness as shown in FIGS. 5 and 8.
  • the element facing portion 420 is a part that is disposed in proximity to the light emitting element 22 and is disposed to face the emission surface of the light emitting element 22.
  • the surface shape of the element facing portion 420 facing the light emitting element 22 is a flat surface as an example here (FIG. 7B). Therefore, the element facing portion 420 has end portions (light incident end portions 420A and 420B) located on both sides of the width W 420 along the Y direction (FIG. 8).
  • the width W 420 of the element facing portion 420 is substantially the same as the opening width W 34 of the opening 34 in the reflecting member 30.
  • the positional relationship is set so that the element facing portion 420 of the light guide plate 40 and the opening width W 34 between the side walls 342 and 343 of the reflecting member 30 face each other. This is set so that the amount of light emitted from the light emitting element 22 is guided to the light guide plate 40 in the opening 34 without diverging.
  • the outer reflection portion 422A and the inner reflection portion 422B are disposed on the surface of the light guide plate 40 opposite to the surface on which the element facing portion 420 is formed (upper surface in FIG. 8). Specifically, the outer reflecting portion 422A and the inner reflecting portion 422B have inclined surfaces in which the inclination angle smoothly increases with increasing distance from the element facing portion 420 in the vertical (Z) direction. Further, the outer reflecting portion 422A and the inner reflecting portion 422B have substantially line-symmetric shapes with respect to the vertical (Z) direction.
  • the outer reflecting portion 422A and the inner reflecting portion 422B have the inclined surfaces as described above, so that the incident light incident along the (Z) direction directly above the element facing portion 420 is regularly reflected on the surface thereof, and the inside of the light guide plate 40 Can be guided efficiently.
  • the boundary part 423 has a protruding shape between the outer reflection part 422A and the inner reflection part 422B, and the size of the boundary part 423 is made as small as possible.
  • the light emitted from the light emitting element 22 is adjusted so that it is difficult for the light emitted from the light emitting element 22 to penetrate the boundary portion 423 and become direct light when the lighting device 100 is driven.
  • the boundary part 423 is located above the point 420c in the Z direction, which is divided approximately 1: 9 from the light incident end part 420A side on the line segment connecting the light incident end part 420A and the light incident end part 420B. Therefore, in the X direction, the boundary portion 423 is located to the left by ⁇ from the center of the light emitting element 22. This ⁇ is preferably in the range of 0.6 to 0.7 times the width W 22 of the light emitting element element 22. As a result, light incident from the element facing portion 420 is guided to the outer reflecting portion 422A and the inner reflecting portion 422B at a ratio of approximately 1: 9, respectively, and is approximately 1: 9, respectively. 41 is adjusted so that the light is guided to 41.
  • the outer reflection portion 422A and the inner reflection portion 422B, the outer side surface portion 424A, and the inner side surface portion 424B of the annular portion 42 are subjected to light reflection processing. Since the light scattering process is performed, the light incident on the element facing portion 420 is totally reflected and guided to the annular outer peripheral portion 43 and the annular inner portion 41.
  • the ring interior 41 is a part that guides the light of the light emitting element 22 that has entered the light guide plate 40 from the annular portion 42 to the inside of the mounting position of the light emitting element 22 and reflects it in the Z direction.
  • the exit surface 410 facing the Z direction side of the ring interior 41 is subjected to a reflection process so that light guided through the ring interior 42 is totally reflected.
  • the back surface 411 on the back side of the exit surface 410 of the ring interior 41 is also subjected to a reflection process so that the light guided in the ring interior 41 is totally reflected.
  • a plurality of concave reflection portions 44 are provided, in which a part of the back surface 411 is recessed. Therefore, the light incident on the inside 41 of the ring from the annular portion 42 is guided in the inside 41 of the ring, reflected on the exit surface 410 side by the concave reflection portion 44, and emitted from the exit surface 410 in the Z direction.
  • the concave reflecting portions 44 are arranged on the back surface 411 of the ring interior 41 so that the number per unit area is substantially uniform at an equal pitch.
  • the light is emitted to.
  • the concave reflecting portions 44 have a pitch in the radial direction of about 3 mm and are arranged in 26 rows over the range W 41 in the inside 41 of the ring.
  • the total number of concave reflecting portions 44 in the ring interior 41 is 491. Details of the shape of the concave reflection portion 44 will be described later.
  • the surface on the Z direction side of the annular outer peripheral portion 43 is an emission surface 430, and is subjected to a reflection process so that light guided in the annular outer peripheral portion 43 is totally reflected.
  • a light exit surface from which a part of the light incident into the annular outer peripheral portion 43 at a certain angle or more is emitted.
  • the surface 431 on the back side of the emission surface 430 of the annular outer peripheral portion 43 is also subjected to a reflection process so that the light guided through the annular outer peripheral portion 43 is totally reflected.
  • a plurality of concave reflecting portions 45 formed by recessing a part of the surface 431 are provided. Therefore, the light that has entered the annular outer peripheral portion 43 from the annular portion 42 is guided through the annular outer peripheral portion 43, reflected by the concave reflecting portion 45 toward the emission surface 430, and emitted from the emission surface 430 in the Z direction.
  • the concave reflecting portions 45 are arranged on the surface 431 of the annular outer peripheral portion 43 so that the number per unit area is substantially uniform at an equal pitch. Light is emitted uniformly.
  • the concave reflecting portions 44 have a pitch in the radial direction of about 1.7 mm, and are arranged in eight rows on one side (16 rows on the left and right sides) in the range W 43 of the annular outer peripheral portion 43.
  • the total number of concave reflecting portions 45 in the annular outer peripheral portion 43 is 1571.
  • the shape of the concave reflecting portion 45 is the same as the shape of the concave reflecting portion 44 described later.
  • FIG. 9 is an enlarged cross-sectional view showing a portion B in FIG.
  • a plurality of concave reflecting portions 44 are provided on the back surface of the light guide plate 40, with a part of the back surface 411 being recessed.
  • the concave reflecting portion 44 is a conical concave portion with the top portion facing the emission surface 410 side. Therefore, the portion that hits the bottom surface of the cone is an opening that opens on the back surface 411.
  • each concave reflecting portion 44 has a configuration in which the center line of the cone is arranged at a position where the center line of the lens portion 60 provided on the light collecting cover 60 substantially coincides with each other. It was.
  • the plurality of lens units 61 may be configured such that each of the plurality of concave reflection units 44 and the lens unit 61 individually overlap when viewed in plan in the XY direction. The same number of concave reflection portions 44 as the lens portions 61 of the light collecting cover 60 are provided.
  • the positional relationship between the concave reflection portion 44 and the lens portion 61 can be changed without being limited to the above embodiment as long as the reflected light from the concave reflection portion 44 can be condensed in the main emission direction perpendicular to the main surface. .
  • FIG. 10 is a schematic diagram showing a cross-sectional shape of the concave reflecting portion 44 in the light guide plate 40 of the lighting fixture 1.
  • the plate thickness t 1 of the light guide plate 40 is about 1.5 mm in the present embodiment.
  • the concave reflecting portion 44 is a conical concave portion having an apex angle ⁇ , a height h, and a central axis 44A.
  • the conical portion is a space whose bottom surface is an opening.
  • the apex angle ⁇ is 64 ° to 84 °, more preferably 76 ° ⁇ 1 °, h is 0.4 to 0.7 mm, and r at the tip is about 0.1 mm.
  • the shape of the concave reflection portion 44 is not limited to the above.
  • the vertical angle of the concave reflecting portion 44 can be adjusted in consideration of the refractive index of the material of the light guide plate 40.
  • the light reflection part given to the ring inside 41 and the ring outer peripheral part 43 is not limited to the above, but can be changed as will be described later in a modification.
  • the condensing cover 60 is used to allow light emitted from the light guide plate 40 to be incident, emitted in the Z direction, and condensed.
  • the condensing cover 60 is configured using a translucent material such as a silicone resin, an acrylic resin, a polycarbonate resin, or glass. In this embodiment, a polymethyl methacrylate resin is used as the acrylic resin.
  • the condensing cover 60 has a disc shape, and includes a lens region 63 that covers the exit surface 410 of the inner ring 41 of the light guide plate 40, and a peripheral portion 64 that is positioned on the outer periphery of the lens region.
  • the range indicated by the symbol W 63 is the lens region 63
  • the range indicated by the symbol W 64 is the peripheral portion 64.
  • the lens region 63 is about 80 mm.
  • the light collecting cover 60 is disposed between the light guide plate 40 and the diffusion cover 50 in a state where the back surface 65 is brought into contact with the emission surface 410 of the light guide plate 40 and the peripheral edge portion 64 is in contact with the back surface 511 of the diffusion cover 50 described later. Is sandwiched between. At this time, the lens region 63 of the light collecting cover 60 is fitted to the opening 53 of the diffusion cover 50, and the lens region 63 is exposed from the opening 53 (FIG. 5).
  • the condensing cover 60 has a plurality of convex portions 62 that are loosely inserted into the concave portions 47 of the light guide plate described above inward of the peripheral edge portion 64 on the back surface 65.
  • the position of the light guide plate 40 relative to the reflecting member 30 is restricted by loosely inserting a later-described convex portion 46 of the light guide plate 40 into the recess 36.
  • the convex portion 62 is provided at three locations with different circumferential angles by about 120 ° with respect to the center 600A of the lens region 63.
  • the convex part 62 is each arrange
  • the lens unit 61 The arrangement of the lens unit 61 in the planar direction will be described.
  • the lens region 63 of the light collecting cover 60 has a plurality of lens portions 61.
  • the lens unit 61 is positioned so that the center of the lens unit 61 is a concentric circle having a pitch p between the circles with a center 600A of the lens region 63 as a reference. Be placed.
  • the pitch p is about 3 mm, for example.
  • a number of lens parts 61 whose arc distance between the centers of adjacent lens parts 61 is closest to the pitch p are arranged.
  • a configuration is adopted in which six lens portions 61 are arranged on the circumference of the first row from the center 600A, and thirteen lens portions 61 are arranged on the circumference of the second row.
  • the total number of lens units 61 is 491.
  • FIG. 12 is a schematic diagram illustrating a cross section of the lens portion 61 in the light collection cover 60 of the lighting device 100 and the concave reflection portion 44 in the light guide plate 40.
  • the plate thickness t 1 of the light guide plate 40 is about 1.5 mm as described above, and the maximum thickness of the light collecting cover 60 is 2.5 mm.
  • the light guide plate 40 and the light collection cover 60 each have a portion in contact with each other in the optical path from the concave reflection portion 44 to the lens portion 61. As shown in FIG.
  • the lens portion 61 has a lens surface 610 having an aspherical shape centered on an intersection 44 ⁇ / b> B between the central axis 44 ⁇ / b> A of the cone in the concave reflection portion 44 described above and the back surface 411 of the light guide plate 40.
  • the radius r of the lens surface 610 is defined by the following equation as a function of the angle ⁇ with respect to the central axis 44A, where t 2 is the distance from the back surface 411 of the light guide plate 40 to the vertex 610A of the lens surface 610, and n is the refractive index. Is done.
  • r (n ⁇ 1) ⁇ t 2 / (n ⁇ cos ⁇ )
  • t 2 is 4.0 mm and n is 1.491.
  • the diffusion cover 50 is disposed for the purpose of obtaining surface light emission with a uniform luminance distribution by further scattering the light emitted from the annular outer peripheral portion 43 of the light guide plate 40.
  • the diffusion cover 50 is configured using a light transmissive material such as silicone resin, acrylic resin, polycarbonate resin, or glass.
  • the light collecting cover 60 has an annular shape having an annular portion 51 in which an opening 53 for exposing the lens region 63 of the light collecting cover 60 is formed in the central portion.
  • the lighting device 100 is assembled by having the side wall 52 on the periphery of the annular portion 51 and fitting the side wall 52 to the flange 12 of the base 10.
  • the back surface 511 of the diffusion cover 50 abuts the peripheral edge portion 64 of the light collecting cover 60 and presses the light collecting cover 60 against the light guide plate 40.
  • the ribs 54 erected on the back surface 511 are in contact with the emission surface 430 of the annular outer peripheral portion 43 of the light guide plate 40 and press the light guide plate 40 against the base 10.
  • the side wall portion 52 of the diffusion cover 50 and the flange portion 12 of the base 10 are fixed by a resin spring or the like (not shown).
  • the range indicated by the symbol W 53 is the opening 53, and in this embodiment, is about 80 mm.
  • the annular portion 51 is subjected to a light scattering process, and is adjusted so as to efficiently scatter the light emitted from the annular outer peripheral portion 43 of the light guide plate 40.
  • the light scattering treatment for example, the surface of the annular portion 51 facing the light guide plate 40 may be finely processed.
  • the lighting device 100 When the user uses the lighting device 100 having the above configuration, the lighting device 100 is powered on. In the lighting device 100, power is supplied to each light emitting element 22 from the power supply unit 4 connected to a commercial power supply via the wiring 23. Thereby, outgoing light is generated from each light emitting element 22.
  • the light emitted from the light emitting element 22 enters the annular portion 42 of the light guide plate 40 from the element facing portion 420 through the opening 34 of the reflecting member 30.
  • Incident light repeats regular reflection inside the light guide plate 40 and diffuses inside both the ring interior 41 and the annular outer periphery 43. Further, the light leaking downward from the light guide plate 40 is reflected on the upper surfaces 310 and 330 (FIG. 6) of the reflection member 30 and is incident on the light guide plate 40 side again.
  • the emitted light of the light emitting element 22 reflected in the direction of the emission surface 410 by the concave reflecting portion 44 formed on the back surface 411 of the light guide plate 40 is emitted from the emission surface side of the light guide plate 40 and is incident on the light collecting cover 60.
  • the Incident light is condensed on the target surface in the main emission direction as illumination light by the lens portion 61 of the light collecting cover 60.
  • the emitted light of the light emitting element 22 reflected in the direction of the emitting surface 430 by the concave reflecting portion 45 formed on the back surface 431 of the light guide plate 40 is emitted from the upper surface side of the light guide plate 40 and enters the diffusion cover 50.
  • Incident light is further diffused by the main body 51 of the diffusion cover 50 that has been subjected to light scattering treatment, and finally emitted as illumination light to the outside.
  • the illumination device 100 passes the inner peripheral side of the annular diffused light irradiated from the diffusion cover 50 and the disc-shaped spot light from the light collecting cover 60 on the target surface. Irradiated toward. ⁇ Effects produced by lighting device 100> When the illumination device 100 is driven, the following effects can be expected.
  • FIG. 13 is an explanatory diagram showing a light collection principle in the light guide plate 40 and the light collection cover 60 of the illumination device 100.
  • the light emitted from the light emitting element 22 is reflected in the direction of the light emission surface 410 by the concave reflecting portion 44 formed on the back surface 411 of the light guide plate 40.
  • the concave reflecting portion 44 formed on the back surface 411 of the light guide plate 40.
  • light p 1 , p 2 , p 3 , p 4 , and p 5 emitted from the conical center 44A of the concave reflecting portion 44 are taken into consideration, they are incident on the light collecting cover 60 and then the lens portion 61. Is converted into parallel light ahead of the main emission direction.
  • the reflecting surface of the concave reflecting portion 44 is at a position shifted from the center 44A, and light reflected from the center 44A, for example, q 1 , q 2 , q 3 , q 4 or r 1 , r 2 , r 3 , r
  • the peak of the intensity of the light emitted from the circularly-shaped concave reflector 44 is formed at a position slightly deviated from the orientation angle of 0 °.
  • the intensity peak of the emitted light occurs at an angle of about ⁇ 5 °.
  • the peak-to-peak distance X 0 of the illuminance on the target surface about 2 m ahead from the light source is about 350 mm.
  • illumination light that has been collected with a peak of illuminance at an orientation angle of about ⁇ 5 ° is irradiated onto the target surface from the plurality of lens portions 61 existing in the lens region 63 of the light collecting cover 60.
  • the size of the lens region 63 is about 80 mm in diameter
  • the centers of illumination light from the plurality of lens portions 61 are also distributed within a range of about 80 mm in diameter on the symmetry plane.
  • FIG. 14 is a characteristic diagram showing the calculation result of the orientation characteristic of the illumination device 100.
  • FIG. 14 (a) shows the illuminance distribution when the illumination device 100 is installed at the center O, the 0 ° direction is turned on as the main emission direction, and the target surface 2m ahead of the light source is irradiated.
  • FIG. 5 is a characteristic diagram showing the circumferential direction on the circumferential coordinate with the radial direction as illuminance. Further, (b) is a characteristic diagram shown in orthogonal coordinates.
  • the 1/2 beam angle ⁇ 1 which is one of the scales for evaluating the orientation, was 25 °.
  • the 1/2 beam angle refers to the angle formed by the line connecting the point where the illuminance is 1 ⁇ 2 of the illuminance directly below the light source, the center of the light source, and the vertical direction line of the light source center, and the degree of light distribution. Show.
  • the 1/2 beam angle was 45 ° (Patent Document 1).
  • the 1 ⁇ 2 beam angle can be reduced to 25 °.
  • the total thickness Y1 of the lighting device 100 shown in FIG. 5 was 18 mm
  • the thickness Y2 of the portion inserted into the through hole 2a of the ceiling 2 was 8 mm
  • the thickness Y3 of the portion exiting from the ceiling 2 was 10 mm.
  • the ring inner portion 41 and the annular outer peripheral portion 43 of the light guide plate 40 have different heights in terms of design. By making the height of the ring interior 41 and the height of the annular outer peripheral portion 43 in the light guide plate 40 the same, it is possible to further reduce the thickness. In this case, the total thickness Y1 of the lighting device 100 is 13 mm.
  • the length of the optical path from the light emitting part of the light source to the lens surface is approximately 13.6 mm when the lens aperture is approximately 80 mm.
  • the / 2 beam angle was 80 ° (Patent Document 1).
  • the optical path length from the light emitting part of the light source to the lens surface needs to be about 27 mm (Patent Document 1).
  • the total thickness Y1 of the lighting device can be reduced to about 6 mm by adopting a configuration in which the light emitting element 22 is incident from the side surface of the light guide plate.
  • the total thickness Y1 of the lighting device can be similarly reduced to about 6 mm by reducing the thickness of the reflector and the base in the present embodiment and adopting a configuration in which the total thickness is 2 mm.
  • each lens unit 61 irradiates illumination light condensed to a predetermined size on the target surface, and the illumination light emitted from the plurality of lens units 61. An optical system in which is superimposed is adopted. Therefore, the striped luminance unevenness does not occur in the illumination light with the thinning of the lens. Therefore, striped luminance unevenness can be prevented while realizing narrow orientation and thinning of the lens.
  • the illumination device 100 has the above-described configuration, and in the concentrating illumination device, an orientation angle of 1 ⁇ 2 beam angle of 25 ° and a total thickness of the illumination device of 18 mm can be realized. By adopting this method, it is possible to provide a lighting device that is thin and can realize narrow orientation.
  • the lens unit 61 is configured as shown in FIG. That is, the lens unit 61 has a lens surface 610 having an aspherical shape centering on an intersection 44B between the conical central axis 44A of the concave reflection unit 44 and the back surface 411 of the light guide plate 40.
  • the lens unit 61 may have any shape as long as it can collect the illumination light on the target surface and can be modified as follows.
  • FIG. 15 is an explanatory diagram illustrating a light collection principle in the light guide plate 40 and the light collection cover 60A of the illumination device 100A according to the modification of the embodiment.
  • the lens unit 61A in the light collecting cover 60A is obtained by changing the lens surface 610 of the lens unit 61 used in the illumination device 100 as follows. . That is, the aspherical shape of the lens surface 610, relative to the central axis 44A of the cone at the concave reflecting portion 44, each offset by X 1 in the left-right direction in FIG. 15, the top of the lens surface of the wide 2 ⁇ X 1
  • the structure which provided the flat part 66 is taken.
  • the offset X 1 is about 0.1 to 0.2 mm, and the diameter of the flat portion is 0.2 to 0.4 mm.
  • the light emitted from the light emitting element 22 is reflected in the direction of the light emission surface 410 by the concave reflecting portion 44 formed on the back surface 411 of the light guide plate 40.
  • the concave reflecting portion 44 formed on the back surface 411 of the light guide plate 40.
  • light s 1 , s 2 , s 3 , s 4 , and s 5 emitted from the conical center 44A of the concave reflecting portion 44 are taken into consideration, they are incident on the light collecting cover 60 and then the lens portion 61. Is converted into parallel light ahead of the main emission direction.
  • the reflecting surface of the concave reflecting portion 44 is at a position shifted from the center 44A.
  • the light t in the main emission direction 3 is emitted in the main emission direction through the flat portion 66 as it is.
  • light other than t 3 , t 1 , t 2 , t 4 , t 5 is incident on the light collecting cover 60 and then emitted by the lens unit 61 in a direction inclined with respect to the front in the main emission direction.
  • the light u 3 in the main emission direction is incident on the light collection cover 60 and then emitted by the lens unit 61 in a direction inclined with respect to the front in the main emission direction.
  • t 1 , t 2 , t 4 , t 5 and u 1 , u 2 , u 4 , excluding the light t 3 and u 3 in the main emission direction from the light reflected from the concave reflector 44.
  • the peak of the light intensity of u 5 exists at a position slightly deviated from the orientation angle 0 °. For example, when the diameter of the bottom surface of the cone in the concave reflection portion 44 is 0.8 mm, t 1 , t 2 , t 4 , t 5 and u 1 , u 2 , u 4 , A peak of the light intensity of u 5 occurs.
  • the light t 3 and u 3 emitted in the main emission direction from the concave reflection portion 44 through the flat portion 66 has the highest intensity among the light emitted from the concave reflection portion 44, so that the orientation angle is 0 °.
  • a peak of the intensity of the entire emitted light occurs at the angle. Therefore, the light is condensed with an illuminance peak at an orientation angle of about 0 °.
  • the peak-to-peak distance of illuminance on the symmetry plane of the illumination light is zero.
  • illumination light that has been collected with a peak of illuminance at an orientation angle of about 0 ° is irradiated onto the target surface from the plurality of lens portions 61A in the light collection cover 60A.
  • FIG. 16 is a characteristic diagram showing the calculation result of the orientation characteristic of the illumination device 100A.
  • FIG. 16A shows an illumination angle distribution when the illumination device 100A is placed at the center O and is turned on with the 0 ° direction as the main emission direction and the target surface 2m ahead of the light source is irradiated. It is the characteristic view shown on the circumference coordinate by making a radial direction illuminance. Further, (b) is a characteristic diagram shown in orthogonal coordinates.
  • the 1 ⁇ 2 beam angle ⁇ 2 is 22 °.
  • FIG. 16 is a characteristic diagram showing the relationship between the shape and the orientation characteristic of the concave reflecting portion 44 in the illumination device 100A.
  • the distribution of illuminance on the exit surface 410 of the light guide plate 40 when the apex angles in the conical shape of the concave reflecting portion 44 are 60 °, 76 °, and 84 ° was obtained by simulation. As shown in FIG. 16, the change occurs at an orientation angle of 15 ° or less. And when the apex angle was set to 76 °, it was confirmed that the illuminance near the peak increased most.
  • FIG. 18 is a characteristic diagram showing the relationship between the apex angle of the concave reflecting portion 44 and the luminous flux at an orientation angle of ⁇ 10 ° in the illumination device 100A.
  • the luminous flux at an orientation angle of ⁇ 10 ° close to a 1 ⁇ 2 beam angle in the illumination device 100A exhibits a peak at an apex angle of 76 °.
  • the luminous flux is within about 98% of the peak value in the range of the apex angle of 64 ° to 84 °. Therefore, the apex angle in the conical shape of the concave reflecting portion 44 is preferably in the range of 64 ° to 84 °, and more preferably in the vicinity of 76 ° (about ⁇ 1 °).
  • a plurality of light emitting elements 22 a light guide plate 40 that guides light emitted from the plurality of light emitting elements within the plate, and a main surface of the light guide plate And a light collecting cover 60 that covers a part of 410.
  • the light guide plate has a plurality of concave reflection portions 44 in which a part of the main surface and the back surface facing away are recessed, and light guided into the light guide plate is reflected toward the main surface.
  • the condensing cover is arranged in an optically opposed relationship with each of the plurality of concave reflecting portions and condenses the reflected light from each concave reflecting portion in the main emission direction perpendicular to the main surface.
  • a plurality of lens portions 61 are provided. With this configuration, the optical path length from the light emitting portion of the light source to the lens surface can be shortened compared to a configuration using a conventional Fresnel lens. As a result, it is possible to simultaneously realize thinning and narrow orientation in a concentrating illumination device.
  • the lighting device according to the present invention is not limited to a ceiling light embedded in a ceiling. In addition to ceiling lights installed by other installation methods, it can be widely used for lighting applications such as downlights and backlights.
  • the hooking member 3 is not essential in the lighting device 100 according to the present embodiment.
  • the luminaire 1 may be fixed to the ceiling using screws, rivets, adhesion, or the like.
  • the lighting device 100 is thin, it can be disposed on the ceiling surface of the ceiling 2 without providing the through hole 2a. In that case, the lighting device 100 can be attached to the ceiling surface using a fastening member such as a screw, an adhesive, or a double-sided tape.
  • the power supply unit 4 and the lighting fixture 1 are configured separately, but the present invention is not limited to this structure. That is, the illuminating device of the present invention may be configured such that the luminaire 1 includes the power supply unit 4 therein.
  • the light emitting element 22 may be, for example, an LD (laser diode) or an EL element (electric luminescence element).
  • the light emitting device according to the present invention may be an SMD (Surface Mount Device) type.
  • the light guide plate 40 has a flat surface facing the reflecting member 30, a plurality of minute lenses may be provided to change the reflection characteristics of light passing through the light guide plate. Thereby, the light guide effect of the light guide plate can be improved.
  • the reflecting member 30 is exemplified as a plate-like member provided above the mounting substrate 20.
  • the plate-like member can be a member that does not have reflectivity.
  • substrate 20 and the light guide plate 40 may be sufficient.
  • the lighting device 100 has a disk shape
  • the lighting device 100 is not limited to a disk shape.
  • a long or rectangular lighting device may be configured by arranging a plurality of light emitting elements in a row.
  • the base, the reflection member, the light guide plate, and the light collecting cover are formed in a long shape or a rectangular shape in the same manner as the mounting substrate.
  • it can implement
  • the lens unit 61 has a lens surface 610 having an aspherical shape centering on the intersection 44 ⁇ / b> B between the central axis 44 ⁇ / b> A of the cone in the concave reflection unit 44 and the back surface 411 of the light guide plate 40. did.
  • the lens unit 61 may have any shape that can concentrate the illumination light on the target surface. For example, a spherical lens, a Fresnel shape, or another configuration may be used.
  • the lens unit 61 is formed on the surface of the light collecting cover 60 on the side opposite to the light guide plate 40 side.
  • the surface on which the lens unit 61 is formed only needs to have a shape that allows the illumination light to be collected on the target surface.
  • the lens unit 61 may be formed on the back surface 66 on the side opposite to the light guide plate 40 side. Good.
  • the lens unit 61 does not appear on the external appearance of the illumination device 100, and a design close to that of the diffusion illumination device can be realized in the condensing illumination device.
  • the lens portion 61 can be brought close to the concave reflecting portion 44, and further thinning can be achieved.
  • concave portion not the concave portion but a convex portion may be provided as the light reflecting portion, or both the concave portion and the convex portion may be provided.

Abstract

A lighting device (100) is provided with a plurality of light-emitting elements (22), a light guide plate (40) that guides light emitted from the plurality of light-emitting elements within the plate thereof, and a light-collecting cover (60) that covers one part of the main surface (410) of the light guide plate. The light guide plate has an indented back surface that faces the opposite direction of one part of the main surface and comprises a plurality of concave reflecting sections (44) that reflect light guided within the light guide plate toward the main surface. The light-collecting cover comprises a plurality of lens sections (61) that are each arranged so as to maintain an optically facing relationship with each of the plurality of concave reflecting sections and that collect light reflected from each of the concave reflecting sections in a main emission direction that is perpendicular to the main surface.

Description

照明装置Lighting device
 本発明は、LED(light emitting diode)等の発光素子を光源として備える照明装置に関する。本発明は特に、集光型の照明装置に関する。 The present invention relates to an illumination device including a light emitting element such as an LED (light emitting diode) as a light source. The present invention particularly relates to a concentrating illumination device.
 近年、省エネルギーの観点から、高効率・長寿命なLED等、半導体発光素子を光源として利用した照明装置が開発されている。特に近年ではLED発光モジュールの広い発光面積を利用したダウンライトやスポットライトが提案されている。例えば、特許文献1では、面状発光部を有するLED発光モジュールとフレネルレンズを具備した集光型の照明装置800が提案されている。図19は、従来の照明装置800の内部構成を示す断面図である。照明装置800は、筐体801と、筐体801の内部に収納された発光モジュール802と、光路上に配されたフレネルレンズ803とを備える。発光モジュール802は板状の基体8020と、基体8020上に実装された発光素子(LED)8021と、発光素子8021の前方の配された蛍光体層8022とを備える。照明装置800に電力供給することにより各発光素子8021が点灯する。発光素子8021から出射された光L1、L2はフレネルレンズ803を透過する。光L1、L2はフレネルレンズ803にて平行光に調整され、外部に照射される。 In recent years, from the viewpoint of energy saving, lighting devices using semiconductor light emitting elements as light sources, such as LEDs with high efficiency and long life, have been developed. Particularly in recent years, downlights and spotlights using a wide light emitting area of LED light emitting modules have been proposed. For example, Patent Document 1 proposes a concentrating illumination device 800 including an LED light emitting module having a planar light emitting unit and a Fresnel lens. FIG. 19 is a cross-sectional view showing an internal configuration of a conventional lighting device 800. The lighting device 800 includes a housing 801, a light emitting module 802 housed inside the housing 801, and a Fresnel lens 803 disposed on the optical path. The light emitting module 802 includes a plate-like substrate 8020, a light emitting element (LED) 8021 mounted on the substrate 8020, and a phosphor layer 8022 disposed in front of the light emitting element 8021. By supplying power to the lighting device 800, each light emitting element 8021 is turned on. Lights L 1 and L 2 emitted from the light emitting element 8021 pass through the Fresnel lens 803. Lights L 1 and L 2 are adjusted to parallel light by a Fresnel lens 803 and irradiated outside.
特開2012-114022号公報JP 2012-1104022 A
 しかしながら、従来の集光方式の照明装置では、一定の配向角で集光するために光源からレンズまでの間に所定の長さの光路を確保することが必要である。その結果、照明装置の薄型化と狭配向とを同時に実現することは難しかった。 However, in the conventional condensing type illumination device, it is necessary to secure an optical path of a predetermined length between the light source and the lens in order to condense at a constant orientation angle. As a result, it has been difficult to simultaneously realize the thinning and narrow orientation of the lighting device.
 例えば、特許文献1記載の従来の照明装置800では、配向性を評価するための指標のひとつである1/2ビーム角を45°とした場合には、光源の発光部からレンズ表面までの光路長に27mmの長さが必要であった。他方、上記光路長を10mmに短縮した場合には1/2ビーム角は100°となり、薄型と狭配向との両立に向けては、さらなる改善が必要であった。 For example, in the conventional illumination device 800 described in Patent Document 1, when the 1/2 beam angle, which is one of the indices for evaluating the orientation, is 45 °, the optical path from the light emitting part of the light source to the lens surface A length of 27 mm was required. On the other hand, when the optical path length was shortened to 10 mm, the 1/2 beam angle was 100 °, and further improvement was necessary to achieve both thinness and narrow orientation.
 本発明は上記課題に鑑みてなされたものであって、薄型で狭配向を実現可能な照明装置を提供することを目的とする。 This invention is made in view of the said subject, Comprising: It aims at providing the illuminating device which can implement | achieve thin and narrow orientation.
 上記目的を達成するために、本発明の一態様に係る照明装置は、複数の発光素子と、前記複数の発光素子から出射した光を板内において導光する導光板と、前記導光板の主面の一部を覆う集光カバーとを備える。また、前記導光板は、前記主面の一部と背向する裏面が凹入され且つ前記導光板内に導光される光が前記主面に向けて反射される複数の凹状反射部を有する。そして、前記集光カバーは、前記複数の凹状反射部の各々と個別に光学的な対向関係を保って配置され且つ前記各々の凹状反射部からの反射光を前記主面に垂直な主出射方向に集光する複数のレンズ部を有することを特徴とする。 In order to achieve the above object, an illumination device according to one embodiment of the present invention includes a plurality of light-emitting elements, a light guide plate that guides light emitted from the plurality of light-emitting elements in the plate, and a main part of the light guide plate. And a light collecting cover that covers a part of the surface. Further, the light guide plate has a plurality of concave reflecting portions in which a part of the main surface and a back surface facing away from the main surface are recessed, and light guided into the light guide plate is reflected toward the main surface. . The condensing cover is disposed in an optically opposed relationship with each of the plurality of concave reflecting portions, and the reflected light from each concave reflecting portion is in a main emission direction perpendicular to the main surface. And a plurality of lens portions for condensing light.
 また、別の態様では、前記複数のレンズ部は、前記集光カバーを平面視したときに前記複数の凹状反射部の各々と個別に重なるように配置されている構成を採ってもよい。 In another aspect, the plurality of lens portions may be arranged so as to individually overlap each of the plurality of concave reflection portions when the light collection cover is viewed in plan.
 また、別の態様では、前記各凹状反射部は、前記主面側に頂部を向けた円錐形状であることを特徴とする構成を採ってもよい。 In another aspect, each concave reflecting portion may have a conical shape with a top portion facing the main surface.
 また、別の態様では、さらに基板の表面に前記複数の発光素子が実装されてなる実装基板を備える。そして、前記複数の発光素子は前記基板上において環状の素子列を形成する。また、前記導光板は、前記実装基板上の前記素子列に沿って環状に形成された環状部と、当該環状部の環内側に前記環状部と連続して形成された環内部とを有する。また、前記環状部は、前記各々の発光素子から出射された光が入射する入射面を有する素子列対向部分と、当該素子列対向部分よりも前記環内部側に位置し前記入射面から入射した光が前記環内部に向けて反射される反射面を有する内側反射部分とを有する。また、前記環内部は、一方の平面を前記主面とする円板状であり、前記集光カバーは、前記環内部を覆う円板状である構成を採ってもよい。 Further, in another aspect, a mounting substrate in which the plurality of light emitting elements are mounted on the surface of the substrate is further provided. The plurality of light emitting elements form an annular element array on the substrate. The light guide plate includes an annular part formed in an annular shape along the element row on the mounting substrate, and an inside of the ring formed continuously with the annular part on the inner side of the annular part. The annular portion includes an element array facing portion having an incident surface on which light emitted from each of the light emitting elements is incident, and the annular portion is located on the inner side of the ring from the element array facing portion and is incident from the incident surface. An inner reflection portion having a reflection surface on which light is reflected toward the inside of the ring. Further, the inside of the ring may have a disk shape with one plane as the main surface, and the light collecting cover may have a disk shape that covers the inside of the ring.
 また、別の態様では、前記導光板と前記実装基板との間には、表面の一部が前記導光板の少なくとも環状部及び環内部に沿う円板状の反射部材が介挿され、前記反射部材は前記各発光素子と個別に対応する開口を有する構成を採ってもよい。 In another aspect, a disc-shaped reflecting member is inserted between the light guide plate and the mounting substrate, and a part of the surface extends along at least the annular portion of the light guide plate and the inside of the ring. The member may take a configuration having an opening corresponding to each light emitting element.
 また、別の態様では、前記導光板は、前記環状部の環外側に向かって前記環状部と連設された円環板状の環状外周部をさらに有する。また、前記環状部は、前記素子列対向部分よりも前記環状外周部側に位置し前記入射面から入射した光が前記環状外周部に向けて反射される外側反射部分をさらに有する。そして、前記環状外周部は、前記主出射方向側に環状出射面と、前記環状出射面と背向する面が凹入されてなり且つ前記環状外周部内に導光される光が前記環状出射面側に反射される複数の第2凹状反射部を有する構成を採ってもよい。 In another aspect, the light guide plate further includes an annular plate-shaped annular outer peripheral portion connected to the annular portion toward the outer side of the annular portion. In addition, the annular portion further includes an outer reflection portion that is located closer to the annular outer peripheral portion than the element row facing portion and reflects light incident from the incident surface toward the annular outer peripheral portion. The annular outer peripheral portion has an annular outgoing surface on the main outgoing direction side and a surface facing away from the annular outgoing surface, and the light guided into the annular outer peripheral portion is the annular outgoing surface. You may take the structure which has several 2nd concave reflection part reflected in the side.
 また、別の態様では、前記集光カバーの環外側に、前記導光板の環状外周部を覆うように配置され光散乱処理が施された円環板状の拡散カバーをさらに有する。そして、当該拡散カバーは、前記導光板の前記環状外周部側の面から入光した光を拡散して前記主出射方向に出射する構成を採ってもよい。 Further, in another aspect, it further includes an annular plate-shaped diffusion cover that is disposed so as to cover the annular outer peripheral portion of the light guide plate and is subjected to light scattering treatment, on the outer side of the light collecting cover. And the said diffusion cover may take the structure which diffuses the light which entered from the surface by the side of the said annular outer peripheral part of the said light-guide plate, and radiate | emits it in the said main output direction.
 また、別の態様では前記円錐形状における円錐面のなす頂角は64°以上84°以下の範囲に含まれる構成を採ってもよい。 In another aspect, the apex angle formed by the conical surface in the conical shape may be in the range of 64 ° to 84 °.
 また、別の態様では、前記レンズ部は頂部が平坦部を有し、前記主出射方向から視したときに前記凹状反射部における円錐の頂部と前記平坦部とが重なっている構成を採ってもよい。 In another aspect, the lens portion may have a flat top portion, and the conical top portion of the concave reflection portion and the flat portion overlap when viewed from the main emission direction. Good.
 また、別の態様では、前記入射面から入射し前記内側反射部分に導光される光の光束は、前記外側反射部分に導光される光の光束よりも大きい構成を採ってもよい。 In another aspect, the light beam incident from the incident surface and guided to the inner reflection portion may be larger than the light beam guided to the outer reflection portion.
 また、別の態様では、前記凹状反射部から前記レンズ部に至る光路に、前記導光版の主面と集光カバーとが互いに接している部分が存する構成を採ってもよい。 Further, in another aspect, a configuration in which a portion where the main surface of the light guide plate and the light collection cover are in contact with each other may be provided in the optical path from the concave reflection portion to the lens portion.
 本発明の一態様に係る照明装置では、上記構成により光源の発光部からレンズ表面までの光路長の短縮を図れる。これにより、集光型の照明装置において薄型化と狭配向とを同時に実現できる。 In the lighting device according to one embodiment of the present invention, the optical path length from the light emitting portion of the light source to the lens surface can be shortened by the above configuration. Thereby, in a condensing type illuminating device, thickness reduction and narrow orientation can be realized simultaneously.
実施の形態に係る照明装置100の構成及び設置例を示す、一部断面図である。It is a partial cross section figure which shows the structure and installation example of the illuminating device 100 which concerns on embodiment. 照明器具1の外観構成と内部構成を示す図である。It is a figure which shows the external appearance structure and internal structure of the lighting fixture 1. FIG. 照明器具1の平面図である。1 is a plan view of a lighting fixture 1. 照明器具1の内部構成を示す分解図(組立図)である。It is an exploded view (assembly drawing) which shows the internal structure of the lighting fixture 1. FIG. 照明器具1の内部構成を示す断面図である。2 is a cross-sectional view showing an internal configuration of the lighting fixture 1. FIG. (a)は、照明器具1の反射部材30の平面図、(b)は、(a)における断面A-Aで切断した断面図、(c)は裏面図である。(A) is a plan view of the reflecting member 30 of the luminaire 1, (b) is a cross-sectional view taken along the section AA in (a), and (c) is a back view. (a)は、照明器具1の導光板40の構成を示す斜視図である。(b)は、(a)におけるC部拡大図である。(A) is a perspective view which shows the structure of the light-guide plate 40 of the lighting fixture 1. FIG. (B) is the C section enlarged view in (a). (a)は、図4におけるA部を示す拡大断面図、(b)は(a)におけるD部を示す拡大断面図である。(A) is an expanded sectional view which shows the A section in FIG. 4, (b) is an expanded sectional view which shows the D section in (a). 図4におけるB部を示す拡大断面図である。It is an expanded sectional view which shows the B section in FIG. 照明器具1の導光板40における凹状反射部44の断面形状を示す模式図である。FIG. 4 is a schematic diagram showing a cross-sectional shape of a concave reflecting portion 44 in the light guide plate 40 of the lighting fixture 1. (a)は、照明器具1の集光カバー60の平面図、(b)は、(a)におけるE部拡大図、(c)は側面図、(d)は裏面図である。(A) is a top view of the condensing cover 60 of the lighting fixture 1, (b) is the E section enlarged view in (a), (c) is a side view, (d) is a back view. 照明器具1の集光カバー60におけるレンズ部61と導光板40における凹状反射部44の断面を示す模式図である。FIG. 4 is a schematic diagram illustrating a cross section of a lens portion 61 in a light collection cover 60 and a concave reflection portion 44 in a light guide plate 40 of the lighting fixture 1. 照明装置100の導光板40と集光カバー60における集光原理を示す説明図である。It is explanatory drawing which shows the condensing principle in the light-guide plate 40 of the illuminating device 100, and the condensing cover 60. FIG. 照明装置100の配向特性の計算結果を示す特性図である。It is a characteristic view which shows the calculation result of the orientation characteristic of the illuminating device 100. FIG. 実施の形態の変形例に係る照明装置100Aの導光板40と集光カバー60Aにおける集光原理を示す説明図である。It is explanatory drawing which shows the condensing principle in the light guide plate 40 of the illuminating device 100A which concerns on the modification of embodiment, and the condensing cover 60A. 照明装置100Aの凹状反射部の断面形状と配向特性の計算結果との関係を示す特性図である。It is a characteristic view which shows the relationship between the cross-sectional shape of the concave reflective part of 100 A of illuminating devices, and the calculation result of an orientation characteristic. 照明装置100Aにおける凹状反射部44の形状と配向特性との関係を示す特性図である。It is a characteristic view which shows the relationship between the shape and the orientation characteristic of the concave reflective part 44 in 100 A of illuminating devices. 照明装置100Aにおける凹状反射部44の円錐の頂角と配向角±10°における光束との関係を示す特性図である。It is a characteristic view which shows the relationship between the apex angle of the cone of the concave reflection part 44 in 100 A of illuminating devices, and the light beam in orientation angle +/- 10 degree. 従来の照明装置800の内部構成を示す断面図である。It is sectional drawing which shows the internal structure of the conventional illuminating device 800. FIG.
 以下、本発明の各態様に係る照明装置について図面を参照しながら説明する。 Hereinafter, the lighting device according to each aspect of the present invention will be described with reference to the drawings.
 ≪実施の形態≫
 <照明装置100の構成>
 図1は、実施の形態に係る照明装置100の構成及び設置例を示す、一部断面図である。照明装置100は、XY平面に平行な円板形状をなし、Z方向を主出射方向とする。図1に示すように、照明装置100は、照明器具1と、板バネ状の掛止部材3と、照明器具1を点灯させる電源ユニット4とを備えてなる。照明器具1は配線23により電源ユニット4と電気接続されている。掛止部材3は照明器具1の背面側にあるベース10に取着される。実施の形態では、照明装置100を天井に埋設する外径約136mmのダウンライトとしている。
<< Embodiment >>
<Configuration of lighting apparatus 100>
FIG. 1 is a partial cross-sectional view illustrating a configuration and an installation example of a lighting device 100 according to an embodiment. The illumination device 100 has a disk shape parallel to the XY plane, and the Z direction is the main emission direction. As shown in FIG. 1, the lighting device 100 includes a lighting fixture 1, a leaf spring-like hooking member 3, and a power supply unit 4 that lights the lighting fixture 1. The luminaire 1 is electrically connected to the power supply unit 4 by wiring 23. The latch member 3 is attached to the base 10 on the back side of the lighting fixture 1. In the embodiment, the lighting device 100 is a downlight with an outer diameter of about 136 mm embedded in the ceiling.
 照明装置100を設置する際には、天井2に設けた貫通孔2aを介し、天井2の裏面2bに電源ユニット4を載置する。貫通孔2aに対し、照明器具1をベース10が収納されるように配置する。このとき貫通孔2aの周縁に掛止部材3を掛止させる。これにより照明装置100を天井2に設置できる。 When installing the lighting device 100, the power supply unit 4 is placed on the back surface 2 b of the ceiling 2 through the through hole 2 a provided in the ceiling 2. The lighting fixture 1 is arrange | positioned with respect to the through-hole 2a so that the base 10 may be accommodated. At this time, the latch member 3 is latched around the periphery of the through hole 2a. Accordingly, the lighting device 100 can be installed on the ceiling 2.
 図2は、実施の形態に係る照明器具1の外観構成と内部構成を示す図である。図3は照明器具1の平面図である。図2及び図3に示すように、照明器具1は、外観構成はおよそベース10と点Oを中心とした円板形状の集光カバー60及びその周囲に設けられた円環状の拡散カバー50とで構成される。ベース10の切欠部16からは配線23が外部に延出される。 FIG. 2 is a diagram showing an external configuration and an internal configuration of the lighting fixture 1 according to the embodiment. FIG. 3 is a plan view of the luminaire 1. As shown in FIGS. 2 and 3, the luminaire 1 has a disc-shaped light collection cover 60 centered around the base 10 and the point O and an annular diffusion cover 50 provided around the luminaire 1. Consists of. A wiring 23 is extended from the notch 16 of the base 10 to the outside.
 尚、図2中の点線は、内蔵された実装基板20と、発光素子22と、基板本体21の位置を示す。 Note that the dotted lines in FIG. 2 indicate the positions of the built-in mounting substrate 20, light emitting element 22, and substrate body 21.
 <照明器具1の構成>
 図4は、実施の形態に係る照明器具1の内部構成を示す分解図(組立図)である。図5は、実施の形態に係る照明器具1の内部構成を示す断面図である。図4及び図5に示すように、照明器具1は、ベース10と、実装基板20と、反射部材30と、導光板40と、拡散カバー50と、集光カバー60とを有してなる。照明器具1は円板状の全体形状を有する。ベース10と、実装基板20と、反射部材30と、導光板40と、拡散カバー50の各外周形状は、照明器具1の全体形状に合わせて円形に形成される。
<Configuration of lighting apparatus 1>
FIG. 4 is an exploded view (assembly drawing) showing the internal configuration of the lighting fixture 1 according to the embodiment. FIG. 5 is a cross-sectional view showing the internal configuration of the lighting fixture 1 according to the embodiment. As shown in FIGS. 4 and 5, the lighting fixture 1 includes a base 10, a mounting substrate 20, a reflection member 30, a light guide plate 40, a diffusion cover 50, and a light collection cover 60. The lighting fixture 1 has a disk-like overall shape. Each outer peripheral shape of the base 10, the mounting substrate 20, the reflecting member 30, the light guide plate 40, and the diffusion cover 50 is formed in a circle according to the overall shape of the lighting fixture 1.
 導光板40と集光カバー60はお互いに接しており、導光板40の厚み1.5mmに対して、集光カバー60の最大厚みは2.5mmで構成されている。導光板40の厚みが更に薄くなれば、それに比例して集光カバー60の厚みを薄くすることが可能である。 The light guide plate 40 and the light collecting cover 60 are in contact with each other, and the maximum thickness of the light collecting cover 60 is 2.5 mm with respect to the thickness of the light guide plate 40 being 1.5 mm. If the thickness of the light guide plate 40 is further reduced, the thickness of the light collecting cover 60 can be reduced in proportion thereto.
 (ベース10)
 ベース10は放熱特性に優れる材料、例えばアルミダイキャスト材料等の金属材料で構成される。ベース10は、中央側が深く周縁側が浅い二段底構造を有する本体部11と、本体部11の周囲に立設されたフランジ部12とを有する(図4)。フランジ部12には切欠部16が存在する。
(Base 10)
The base 10 is made of a material having excellent heat dissipation characteristics, for example, a metal material such as an aluminum die-cast material. The base 10 includes a main body portion 11 having a two-stage bottom structure with a deep center side and a shallow peripheral edge side, and a flange portion 12 erected around the main body portion 11 (FIG. 4). The flange portion 12 has a notch portion 16.
 本体部11は、その中央側から周縁側に向けて、底が深い円板状の内側底部13と、底が浅い内側底部13と内側底部13の周縁に立設された側壁部14と、側壁部14の周囲に配された環状の外側底部15とを有する。 The main body 11 has a disk-shaped inner bottom 13 with a deep bottom, a shallow bottom, an inner bottom 13 and a side wall 14 erected on the periphery of the inner bottom 13, And an annular outer bottom portion 15 disposed around the portion 14.
 内側底部13には実装基板20と反射部材30とが順次重ねて載置される。外側底部15には導光板40の環状外周部43が載置される。 The mounting substrate 20 and the reflective member 30 are sequentially stacked on the inner bottom portion 13. An annular outer peripheral portion 43 of the light guide plate 40 is placed on the outer bottom portion 15.
 フランジ部12はそのZ方向頂部付近において、拡散カバー50の側壁部52と例えば接着剤やシール部材を用いて接合される。 The flange portion 12 is joined to the side wall portion 52 of the diffusion cover 50 using, for example, an adhesive or a seal member, in the vicinity of the top portion in the Z direction.
 (実装基板20)
 実装基板20は、環状の基板本体21と、基板本体21の表面(図4では反射部材30と対向する上面)に実装された複数の発光素子22と、配線23とを有する。
(Mounting board 20)
The mounting substrate 20 includes an annular substrate body 21, a plurality of light emitting elements 22 mounted on the surface of the substrate body 21 (an upper surface facing the reflecting member 30 in FIG. 4), and wirings 23.
 基板本体21は、例えば、セラミック材料や熱伝導樹脂等からなる絶縁層と、アルミニウム等からなる金属層とを積層した2層構造を有する。基板本体21の表面には発光素子22と配線23とを電気接続するための配線パターン(不図示)が形成されている。基板本体21の外径は側壁部14の内径とほぼ一致させている。 The substrate body 21 has, for example, a two-layer structure in which an insulating layer made of a ceramic material or a heat conductive resin and a metal layer made of aluminum or the like are laminated. A wiring pattern (not shown) for electrically connecting the light emitting element 22 and the wiring 23 is formed on the surface of the substrate body 21. The outer diameter of the substrate body 21 is substantially matched with the inner diameter of the side wall portion 14.
 発光素子22は、一例としてLED素子を用いてなる。図5におけるA部を示す拡大断面図(図8)に示すように、発光素子22は素子本体220と、素子本体220を収納する素子筐体221とを有する。発光素子22は、基板本体21の上面に対し、主な出射方向が垂直(Z)方向を向くように、互いに一定間隔をおいて円環状の素子列を形成して実装される。実装基板20では、一例として合計18個の発光素子22が配線パターンに対し、COB(Chip on Board)技術を用いてフェイスアップ実装される。素子列の直径は約90mmである。 The light emitting element 22 uses an LED element as an example. As shown in an enlarged cross-sectional view (FIG. 8) showing part A in FIG. 5, the light emitting element 22 has an element body 220 and an element housing 221 that houses the element body 220. The light emitting elements 22 are mounted by forming an annular element array at a predetermined interval so that the main emission direction is directed to the vertical (Z) direction with respect to the upper surface of the substrate body 21. On the mounting substrate 20, as an example, a total of 18 light emitting elements 22 are face-up mounted on a wiring pattern using a COB (Chip on Board) technology. The diameter of the element row is about 90 mm.
 尚、基板本体21の上面は、発光素子22の出射光を効率良く導光板40側へ反射させるために反射面となっている。 Note that the upper surface of the substrate body 21 is a reflecting surface for efficiently reflecting the emitted light of the light emitting element 22 toward the light guide plate 40 side.
 配線23は、電源ユニット4側より発光素子22に電力供給を行うために用いられる。配線23の両端は、基板本体21の配線パターンと、電源ユニット4とに電気接続される。 The wiring 23 is used to supply power to the light emitting element 22 from the power supply unit 4 side. Both ends of the wiring 23 are electrically connected to the wiring pattern of the substrate body 21 and the power supply unit 4.
 (反射部材30)
 反射部材30は、発光素子22からの出射光と導光板40から漏れ出た光とを効率よく導光板40側に反射する目的で配設する円板状の板状部材である。照明器具1において、反射部材30は実装基板20と導光板40との間に挟設される。反射部材30は、高反射特性を有する材料、例えば高光反射性ポリブチレンテレフタレート(PBT)樹脂、高反射ポリカーボネート(PC)樹脂、高光反射性ナイロン樹脂、高光反射性発泡樹脂等の何れかを用いて構成される。これらの樹脂材料を用いて反射部材30を射出成形することで、高精度で反射部材30を構成することができる。反射部材30は、少なくともその表面において反射特性を有していればよい。
(Reflection member 30)
The reflection member 30 is a disk-shaped plate member disposed for the purpose of efficiently reflecting the light emitted from the light emitting element 22 and the light leaking from the light guide plate 40 toward the light guide plate 40 side. In the lighting fixture 1, the reflecting member 30 is sandwiched between the mounting substrate 20 and the light guide plate 40. The reflection member 30 is made of a material having high reflection characteristics, for example, any one of a high light reflection polybutylene terephthalate (PBT) resin, a high reflection polycarbonate (PC) resin, a high light reflection nylon resin, a high light reflection foamed resin, and the like. Composed. By reflecting and molding the reflecting member 30 using these resin materials, the reflecting member 30 can be configured with high accuracy. The reflection member 30 should just have a reflection characteristic in the surface at least.
 図6(a)は、実施の形態に係る照明器具1の反射部材30の平面図、(b)は、(a)における断面A-Aで切断した断面図、(c)は裏面図である。図6に示すように、反射部材30は中央側から外側に向けて、内側反射部31と、凹入部32と、外側反射部33とを有する。反射部材30の外径は側壁部14の内径とほぼ一致させている。内側反射部31と外側反射部33とはそれぞれ上面310、330を有する(図6(b))。 6A is a plan view of the reflecting member 30 of the luminaire 1 according to the embodiment, FIG. 6B is a cross-sectional view taken along the section AA in FIG. 6A, and FIG. . As shown in FIG. 6, the reflecting member 30 includes an inner reflecting portion 31, a recessed portion 32, and an outer reflecting portion 33 from the center side toward the outer side. The outer diameter of the reflecting member 30 is substantially matched with the inner diameter of the side wall portion 14. The inner reflection part 31 and the outer reflection part 33 have upper surfaces 310 and 330, respectively (FIG. 6B).
 内側反射部31(外側反射部33)は、実装基板20の発光素子22の実装位置より内側(外側)の位置に設けられる(図5)。内側反射部31(外側反射部33)は、導光板40より漏れた光を、上面310(320)において再度、導光板40側に反射させるための部位である。 The inner reflection portion 31 (outer reflection portion 33) is provided at a position inside (outside) the mounting position of the light emitting element 22 of the mounting substrate 20 (FIG. 5). The inner reflection part 31 (outer reflection part 33) is a part for reflecting light leaking from the light guide plate 40 to the light guide plate 40 side again on the upper surface 310 (320).
 凹入部32は、実装基板20における各発光素子22の実装位置の真上に対応する領域に設けられる。反射部材30を平面視する際、凹入部32は、反射部材30の上面(導光板40との対向面)における一定半径の円周領域を厚み(Z)方向に凹入されてなる(図6(b))。 The recessed portion 32 is provided in a region corresponding to the mounting substrate 20 on the mounting substrate 20 directly above the mounting position of each light emitting element 22. When the reflecting member 30 is viewed in plan, the recessed portion 32 is formed by recessing a circumferential region having a certain radius on the upper surface of the reflecting member 30 (the surface facing the light guide plate 40) in the thickness (Z) direction (FIG. 6). (B)).
 凹入部32の内部には、図5、図6(a)、(b)、(c)、図8に示すように、その円周方向に沿って、反射部材30の厚み方向に貫通する複数の開口34が一定間隔をおいて存在する。開口34は、実装基板20の発光素子22の実装位置の真上に存在する。開口34では、Y方向に沿って開口34を挟む両側には、発光素子22の出射光を反射する一対の側壁342、343が存在する。側壁342、343は図8に示すように、Y方向に沿って開口34の周縁を形成し、開口幅W34をおいて互いに近接される。この開口幅W34は発光素子22の幅W22と略等しいが、発光素子22が開口34に緩挿される程度に幅W22は開口幅W34よりも小さく構成されている。 As shown in FIGS. 5, 6 </ b> A, 6 </ b> B, 8 </ b> C, and 8, a plurality of penetrating members in the thickness direction of the reflecting member 30 are provided along the circumferential direction. Are present at regular intervals. The opening 34 exists immediately above the mounting position of the light emitting element 22 on the mounting substrate 20. In the opening 34, there are a pair of side walls 342 and 343 that reflect the emitted light of the light emitting element 22 on both sides of the opening 34 along the Y direction. As shown in FIG. 8, the side walls 342 and 343 form the periphery of the opening 34 along the Y direction, and are close to each other with an opening width W 34 . The opening width W 34 is substantially equal to the width W 22 of the light emitting element 22, but the width W 22 is configured to be smaller than the opening width W 34 to such an extent that the light emitting element 22 is loosely inserted into the opening 34.
 反射部材30は、上面310の中央に、後述する導光板の凸部46が緩挿される凹部36を有する。この凹部36に導光板40の後述する凸部46が緩挿されることにより導光板40の反射部材30に対する位置が規制される。 The reflecting member 30 has a concave portion 36 in which a convex portion 46 of a light guide plate described later is loosely inserted in the center of the upper surface 310. The position of the light guide plate 40 relative to the reflecting member 30 is restricted by loosely inserting a later-described convex portion 46 of the light guide plate 40 into the recess 36.
 また、反射部材30の上面310に配向する裏面には、ベース10に対しネジ70により締結されるためのネジ穴38を有するボス37が形成されている。ベース10の穴17を挿通するネジ70が反射部材30のボス37におけるネジ穴38に螺合することにより、反射部材30はベース10に固定される。 Further, a boss 37 having a screw hole 38 to be fastened to the base 10 by a screw 70 is formed on the back surface oriented to the upper surface 310 of the reflecting member 30. When the screw 70 inserted through the hole 17 of the base 10 is screwed into the screw hole 38 in the boss 37 of the reflecting member 30, the reflecting member 30 is fixed to the base 10.
 尚、図6(b)に示すように、凹入部32及び外側反射部33に背向する裏面35は実装基板20の基板本体21の表面形状に合わせた平坦面としている。 As shown in FIG. 6B, the back surface 35 facing away from the recessed portion 32 and the outer reflecting portion 33 is a flat surface that matches the surface shape of the substrate body 21 of the mounting substrate 20.
 (導光板40)
 [全体構成]
 導光板40は、発光素子22の出射光を主としてXY平面方向に導光し、集光カバー60側及び拡散カバー50(Z方向)側に面発光させるために用いる。
(Light guide plate 40)
[overall structure]
The light guide plate 40 is used to guide light emitted from the light emitting element 22 mainly in the XY plane direction, and to emit light to the light collecting cover 60 side and the diffusion cover 50 (Z direction) side.
 図7(a)は、実施の形態に係る照明装置100の導光板40の構成を示す斜視図である。(b)は、(a)におけるC部拡大図である。導光板40は、図5及び図7に示すように、反射部材30の実装基板20との対向側とは反対側に配置される。導光板40の材料としては透光性に優れる材料、例えばアクリル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ガラス等を挙げられる。本実施の形態では、アクリル樹脂としてポリメタクリル酸メチル樹脂を用いた。これらの材料を用いて導光板40を射出成形することで、反射部材30と同様に、高精度で導光板40を構成できる。 Fig.7 (a) is a perspective view which shows the structure of the light-guide plate 40 of the illuminating device 100 which concerns on embodiment. (B) is the C section enlarged view in (a). As shown in FIGS. 5 and 7, the light guide plate 40 is disposed on the side opposite to the side facing the mounting substrate 20 of the reflecting member 30. Examples of the material of the light guide plate 40 include materials having excellent translucency, such as acrylic resin, polycarbonate resin, polystyrene resin, and glass. In this embodiment, a polymethyl methacrylate resin is used as the acrylic resin. By injection-molding the light guide plate 40 using these materials, the light guide plate 40 can be configured with high accuracy in the same manner as the reflecting member 30.
 導光板40は円形板状であって、発光素子22からなる素子列に沿って円環状に形成された環状部42と、環状部42の環内側に環状部42と連続して形成された円板状の環内部41を備える。さらに、環状部42の環外側に環状部42と連続して形成された円環状の環状外周部43を備える。図5および図8において、符号W42で示す範囲が環状部42であり、符号W41で示す範囲が環内部41であり、符号W43で示す範囲が環内部41である。本実施の形態では、W41からW43までを合わせた導光板40の外径は約128mmであり、環内部41の直径は約80mmである。 The light guide plate 40 has a circular plate shape, and an annular portion 42 formed in an annular shape along the element row composed of the light emitting elements 22, and a circle formed continuously with the annular portion 42 inside the annular portion 42. A plate-shaped ring interior 41 is provided. Further, an annular annular outer peripheral portion 43 formed continuously with the annular portion 42 is provided outside the annular portion 42. 5 and 8, the range indicated by reference sign W 42 is the annular portion 42, the range indicated by reference sign W 41 is the ring interior 41, and the range indicated by reference sign W 43 is the ring interior 41. In the present embodiment, the outer diameter of the light guide plate 40 including W 41 to W 43 is about 128 mm, and the diameter of the ring inner portion 41 is about 80 mm.
 導光板40の外径は側壁部14の内径とほぼ一致させている。環内部41の反射部材30側の面中央には凸部46を有する。この凸部46を反射部材30の凹部36に導光板40の緩挿することにより、反射部材30と導光板40との配置関係では位置ずれ誤差を無視できる程度に小さくできる。 The outer diameter of the light guide plate 40 is substantially matched with the inner diameter of the side wall portion 14. A convex portion 46 is provided at the center of the surface of the inner ring 41 on the reflecting member 30 side. By loosely inserting the light guide plate 40 into the concave portion 36 of the reflection member 30, the positional relationship between the reflection member 30 and the light guide plate 40 can make the positional deviation error negligible.
 また、導光板40は、集光カバー60側の面における環内部41の外縁よりも少し内側に、後述する集光カバー60の凸部62を緩挿するための凹部47を複数有する(図4)。本実施の形態では、例えば、この凹部47は、円板形状の導光板40の中心を基準に、約120°ずつ円周角を異ならせて3か所設けられている。そして、この凹部47は、導光板40と集光カバー60とを重ねた合わせた状態で後述するレンズ部61の中心とZ方向において重なる位置に配置されている。 Further, the light guide plate 40 has a plurality of concave portions 47 for loosely inserting convex portions 62 of the light collecting cover 60 to be described later on the inner side slightly from the outer edge of the ring interior 41 on the surface on the light collecting cover 60 side (FIG. 4). ). In the present embodiment, for example, the recesses 47 are provided at three positions with different circumferential angles by about 120 ° with respect to the center of the disc-shaped light guide plate 40. And this recessed part 47 is arrange | positioned in the position which overlaps with the center of the lens part 61 mentioned later in the Z direction in the state which accumulated the light guide plate 40 and the condensing cover 60, and overlapped.
 また、導光板40では一例として、環内部41の各外表面が、環状外周部43の各外表面よりも高く設定される(図5)。また、環内部41、環状外周部43の厚みも同一に設定されている。 In the light guide plate 40, as an example, each outer surface of the ring inner portion 41 is set higher than each outer surface of the annular outer peripheral portion 43 (FIG. 5). Further, the thicknesses of the ring inner portion 41 and the annular outer peripheral portion 43 are also set to be the same.
 [環状部42]
 環状部42は、発光素子22の出射光を導光板40の内側と外側とに導光させる部位である。照明器具1において、環状部42は反射部材30の凹入部32に挿入される(図5)。これにより環状部42は、実装基板20上の各発光素子22の実装位置を結ぶように連続的に形成される。
[Annular part 42]
The annular portion 42 is a portion that guides the emitted light of the light emitting element 22 to the inside and the outside of the light guide plate 40. In the lighting fixture 1, the annular portion 42 is inserted into the recessed portion 32 of the reflecting member 30 (FIG. 5). Thereby, the annular portion 42 is continuously formed so as to connect the mounting positions of the light emitting elements 22 on the mounting substrate 20.
 図8(a)は、図5におけるA部を示す拡大断面図、(b)は(a)におけるD部を示す拡大断面図である。具体的な構成として、環状部42は図8に示すように、素子対向部420と、外側反射部422Aと、内側反射部422Bと、外側反射部422Aと内側反射部422B間に存在する境界部423とを有する。環状部42は、全体的な形状としては図5、図8に示すように、一定の厚みを持つ略V字断面形状を有する。Y方向に沿った環状部42の両側には、外側反射部422A及び内側反射部422Bと反対側に、外側反射部422A及び内側反射部422Bと同様の傾斜面を有する外側側面部424A及び内側側面部424Bが存在する(図8)。 8 (a) is an enlarged cross-sectional view showing a portion A in FIG. 5, and (b) is an enlarged cross-sectional view showing a D portion in (a). As a specific configuration, as shown in FIG. 8, the annular portion 42 is a boundary portion existing between the element facing portion 420, the outer reflecting portion 422 </ b> A, the inner reflecting portion 422 </ b> B, and the outer reflecting portion 422 </ b> A and the inner reflecting portion 422 </ b> B. 423. As shown in FIGS. 5 and 8, the annular portion 42 has a substantially V-shaped cross-sectional shape having a certain thickness as shown in FIGS. 5 and 8. On both sides of the annular portion 42 along the Y direction, an outer side surface portion 424A and an inner side surface having inclined surfaces similar to the outer reflection portion 422A and the inner reflection portion 422B on the opposite side to the outer reflection portion 422A and the inner reflection portion 422B. Part 424B exists (FIG. 8).
 素子対向部420は、発光素子22と近接配置され、且つ、発光素子22の出射面と対向配置される部位である。発光素子22と対向する素子対向部420の表面形状は、ここでは一例として平坦面としている(図7(b))。従って素子対向部420はY方向に沿って、幅W420を挟んで両側に位置する端部(入光端部420A、420B)を有する(図8)。ここで、素子対向部420の幅W420は、反射部材30における開口34の開口幅W34と略同一である。そして、導光板40の素子対向部420と反射部材30の側壁342、343との開口幅W34とが互いに対向するように位置関係が設定されている。これは、開口34において、発光素子22の出射光量が発散することなく、導光板40に導光するように設定したものである。 The element facing portion 420 is a part that is disposed in proximity to the light emitting element 22 and is disposed to face the emission surface of the light emitting element 22. The surface shape of the element facing portion 420 facing the light emitting element 22 is a flat surface as an example here (FIG. 7B). Therefore, the element facing portion 420 has end portions (light incident end portions 420A and 420B) located on both sides of the width W 420 along the Y direction (FIG. 8). Here, the width W 420 of the element facing portion 420 is substantially the same as the opening width W 34 of the opening 34 in the reflecting member 30. The positional relationship is set so that the element facing portion 420 of the light guide plate 40 and the opening width W 34 between the side walls 342 and 343 of the reflecting member 30 face each other. This is set so that the amount of light emitted from the light emitting element 22 is guided to the light guide plate 40 in the opening 34 without diverging.
 外側反射部422A及び内側反射部422Bは、導光板40において、素子対向部420が形成された面と反対側の面(図8では上面)に配設される。外側反射部422A及び内側反射部422Bは、具体的には垂直(Z)方向に対し、素子対向部420より遠ざかるにつれて滑らかに傾斜角度が増大する傾斜面を有する。さらに外側反射部422A及び内側反射部422Bは、垂直(Z)方向に対して互いに略線対称の形状を有する。外側反射部422A及び内側反射部422Bは上記のような傾斜面を有することで、素子対向部420より直上(Z)方向に沿って入射した入射光をその表面において正反射させ、導光板40内に効率よく導光させることができる。 The outer reflection portion 422A and the inner reflection portion 422B are disposed on the surface of the light guide plate 40 opposite to the surface on which the element facing portion 420 is formed (upper surface in FIG. 8). Specifically, the outer reflecting portion 422A and the inner reflecting portion 422B have inclined surfaces in which the inclination angle smoothly increases with increasing distance from the element facing portion 420 in the vertical (Z) direction. Further, the outer reflecting portion 422A and the inner reflecting portion 422B have substantially line-symmetric shapes with respect to the vertical (Z) direction. The outer reflecting portion 422A and the inner reflecting portion 422B have the inclined surfaces as described above, so that the incident light incident along the (Z) direction directly above the element facing portion 420 is regularly reflected on the surface thereof, and the inside of the light guide plate 40 Can be guided efficiently.
 境界部423は、外側反射部422Aと内側反射部422Bの間にある突起形状であって、境界部423のサイズをできるだけ小さくしている。これにより、照明装置100の駆動時に発光素子22からの出射光が境界部423を突き抜けて直接光となりにくいように調整されている。 The boundary part 423 has a protruding shape between the outer reflection part 422A and the inner reflection part 422B, and the size of the boundary part 423 is made as small as possible. Thus, the light emitted from the light emitting element 22 is adjusted so that it is difficult for the light emitted from the light emitting element 22 to penetrate the boundary portion 423 and become direct light when the lighting device 100 is driven.
 境界部423は、入光端部420Aと入光端部420Bを結ぶ線分上の入光端部420A側からほぼ1:9に内分した点420cのZ方向上方に位置する。そのため、X方向において境界部423は発光素子22の中心からδだけ左方に位置する。本δは、発光素子素子22の幅W22に対して、0.6~0.7倍の範囲であることが好ましい。これにより、素子対向部420から入光した光は、ほぼ1:9の割合で各々外側反射部422A及び内側反射部422Bに導かれ、ほぼ1:9の割合で各々環状外周部43及び環内部41に導光されるよう調整されている。 The boundary part 423 is located above the point 420c in the Z direction, which is divided approximately 1: 9 from the light incident end part 420A side on the line segment connecting the light incident end part 420A and the light incident end part 420B. Therefore, in the X direction, the boundary portion 423 is located to the left by δ from the center of the light emitting element 22. This δ is preferably in the range of 0.6 to 0.7 times the width W 22 of the light emitting element element 22. As a result, light incident from the element facing portion 420 is guided to the outer reflecting portion 422A and the inner reflecting portion 422B at a ratio of approximately 1: 9, respectively, and is approximately 1: 9, respectively. 41 is adjusted so that the light is guided to 41.
 環状部42の外側反射部422A及び内側反射部422B、外側側面部424A及び内側側面部424Bには、光反射処理が施されている。光散乱処理が施されているため、素子対向部420に入射した光は全反射され、環状外周部43及び環内部41に導光される。 The outer reflection portion 422A and the inner reflection portion 422B, the outer side surface portion 424A, and the inner side surface portion 424B of the annular portion 42 are subjected to light reflection processing. Since the light scattering process is performed, the light incident on the element facing portion 420 is totally reflected and guided to the annular outer peripheral portion 43 and the annular inner portion 41.
 [環内部41]
 環内部41は、環状部42より導光板40の内部に入射された発光素子22の光を発光素子22の実装位置よりも内側に導光し、Z方向に向けて反射させる部位である。
[Inside ring 41]
The ring interior 41 is a part that guides the light of the light emitting element 22 that has entered the light guide plate 40 from the annular portion 42 to the inside of the mounting position of the light emitting element 22 and reflects it in the Z direction.
 環内部41のZ方向側を向いた出射面410は、環内部42内を導光される光が全反射するよう反射処理がされている。また、一定角度以上で環内部41内に入射した光の一部が出射する光出射面となっている。 The exit surface 410 facing the Z direction side of the ring interior 41 is subjected to a reflection process so that light guided through the ring interior 42 is totally reflected. In addition, a light emitting surface from which a part of the light incident into the ring interior 41 at a certain angle or more is emitted.
 環内部41の出射面410の裏側の裏面411にも、環内部41内を導光される光が全反射するよう反射処理がされている。併せて、環内部41内に導光される光を出射面410側に反射させるために、裏面411の一部を凹入されてなる複数の凹状反射部44が設けられている。したがって、環状部42から環内部41に入射した光は環内部41内を導光され凹状反射部44において出射面410側に反射され、出射面410からZ方向に出射される。 The back surface 411 on the back side of the exit surface 410 of the ring interior 41 is also subjected to a reflection process so that the light guided in the ring interior 41 is totally reflected. In addition, in order to reflect the light guided into the ring interior 41 to the emission surface 410 side, a plurality of concave reflection portions 44 are provided, in which a part of the back surface 411 is recessed. Therefore, the light incident on the inside 41 of the ring from the annular portion 42 is guided in the inside 41 of the ring, reflected on the exit surface 410 side by the concave reflection portion 44, and emitted from the exit surface 410 in the Z direction.
 凹状反射部44は、図5に示すように、環内部41の裏面411において等ピッチで単位面積当たりの個数が略均一となるように配設されており、これにより出射面410から全体から均一に光が出射されるようになっている。本実施の形態では、凹状反射部44は、半径方向におけるピッチを約3mmとし、環内部41の範囲W41にわたり26列配置されている。環内部41における凹状反射部44の総個数は491個である。凹状反射部44の形状の詳細については後述する。 As shown in FIG. 5, the concave reflecting portions 44 are arranged on the back surface 411 of the ring interior 41 so that the number per unit area is substantially uniform at an equal pitch. The light is emitted to. In the present embodiment, the concave reflecting portions 44 have a pitch in the radial direction of about 3 mm and are arranged in 26 rows over the range W 41 in the inside 41 of the ring. The total number of concave reflecting portions 44 in the ring interior 41 is 491. Details of the shape of the concave reflection portion 44 will be described later.
 [環状外周部43]
 環状外周部43は、環状部42より導光板40の内部に入射された発光素子22の光を発光素子22の実装位置よりも外側に導光し、Z方向に向けて反射させる部位である。環状外周部43の外周縁部は、ベース10の本体部11上に載置された状態で、本体部11と拡散カバー50の側壁部52とで挟持されている。
[Annular outer periphery 43]
The annular outer peripheral part 43 is a part that guides the light of the light emitting element 22 that has entered the light guide plate 40 from the annular part 42 to the outside of the mounting position of the light emitting element 22 and reflects it in the Z direction. The outer peripheral edge portion of the annular outer peripheral portion 43 is sandwiched between the main body portion 11 and the side wall portion 52 of the diffusion cover 50 while being placed on the main body portion 11 of the base 10.
 環状外周部43のZ方向側の面は出射面430であり、環状外周部43内を導光される光が全反射するよう反射処理がされている。また、一定角度以上で環状外周部43内に入射した光の一部が出射する光出射面となっている。 The surface on the Z direction side of the annular outer peripheral portion 43 is an emission surface 430, and is subjected to a reflection process so that light guided in the annular outer peripheral portion 43 is totally reflected. In addition, a light exit surface from which a part of the light incident into the annular outer peripheral portion 43 at a certain angle or more is emitted.
 環状外周部43の出射面430の裏側の面431にも、環状外周部43内を導光される光が全反射するよう反射処理がされている。併せて、環状外周部43内に導光される光を出射面430側に反射させるために、面431の一部を凹入されてなる複数の凹状反射部45が設けられている。したがって、環状部42から環状外周部43に入射した光は環状外周部43内を導光され凹状反射部45において出射面430側に反射され、出射面430からZ方向に出射される。 The surface 431 on the back side of the emission surface 430 of the annular outer peripheral portion 43 is also subjected to a reflection process so that the light guided through the annular outer peripheral portion 43 is totally reflected. In addition, in order to reflect the light guided into the annular outer peripheral portion 43 to the emission surface 430 side, a plurality of concave reflecting portions 45 formed by recessing a part of the surface 431 are provided. Therefore, the light that has entered the annular outer peripheral portion 43 from the annular portion 42 is guided through the annular outer peripheral portion 43, reflected by the concave reflecting portion 45 toward the emission surface 430, and emitted from the emission surface 430 in the Z direction.
 凹状反射部45は、図5に示すように、環状外周部43の面431において等ピッチで単位面積当たりの個数が略均一となるように配設されており、これにより出射面430から全体から均一に光が出射されるようになっている。本実施の形態では、凹状反射部44は、半径方向におけるピッチを約1.7mmとし、環状外周部43の範囲W43において片側8列(左右両側では16列)配置されている。環状外周部43における凹状反射部45の総個数は1571個である。凹状反射部45の形状は後述する凹状反射部44の形状と同じである。 As shown in FIG. 5, the concave reflecting portions 45 are arranged on the surface 431 of the annular outer peripheral portion 43 so that the number per unit area is substantially uniform at an equal pitch. Light is emitted uniformly. In the present embodiment, the concave reflecting portions 44 have a pitch in the radial direction of about 1.7 mm, and are arranged in eight rows on one side (16 rows on the left and right sides) in the range W 43 of the annular outer peripheral portion 43. The total number of concave reflecting portions 45 in the annular outer peripheral portion 43 is 1571. The shape of the concave reflecting portion 45 is the same as the shape of the concave reflecting portion 44 described later.
 [凹状反射部44]
 図9は、図5におけるB部を示す拡大断面図である。図9に示すように、導光板40の裏面には、裏面411の一部を凹入されてなる複数の凹状反射部44が設けられている。凹状反射部44は、出射面410側に頂部を向けた円錐形状の凹陥部である。したがって、円錐の底面に当たる部分は、裏面411に開いた開口である。ここで、XY平面方向においては、XY方向を平面視したときに複数の凹状反射部44の各々とレンズ部61とが個別に光学的な対向関係を保って配置されていることが必要である。「光学的な対向関係を保って配置」されているとは、凹状反射部44で反射されレンズ部61に入光した光が照明光として集光する位置関係にあることを指す。本実施の形態では、一例として、各々の凹状反射部44は、円錐の中心線が、集光カバー60に設けられたレンズ部60の中心線と各々がほぼ一致する位置に配置されている構成とした。しかしながら、例えば、複数のレンズ部61は、XY方向に平面視したときに複数の凹状反射部44の各々とレンズ部61とが個別に重なるように配置されている構成であってもよい。そして、凹状反射部44は、集光カバー60のレンズ部61と同数設けられている。
[Concave reflector 44]
FIG. 9 is an enlarged cross-sectional view showing a portion B in FIG. As shown in FIG. 9, a plurality of concave reflecting portions 44 are provided on the back surface of the light guide plate 40, with a part of the back surface 411 being recessed. The concave reflecting portion 44 is a conical concave portion with the top portion facing the emission surface 410 side. Therefore, the portion that hits the bottom surface of the cone is an opening that opens on the back surface 411. Here, in the XY plane direction, it is necessary that each of the plurality of concave reflecting portions 44 and the lens unit 61 are individually arranged in an optically facing relationship when the XY direction is viewed in plan. . “Arranged while maintaining an optical facing relationship” means that the light reflected by the concave reflecting portion 44 and incident on the lens portion 61 is in a positional relationship where it is condensed as illumination light. In the present embodiment, as an example, each concave reflecting portion 44 has a configuration in which the center line of the cone is arranged at a position where the center line of the lens portion 60 provided on the light collecting cover 60 substantially coincides with each other. It was. However, for example, the plurality of lens units 61 may be configured such that each of the plurality of concave reflection units 44 and the lens unit 61 individually overlap when viewed in plan in the XY direction. The same number of concave reflection portions 44 as the lens portions 61 of the light collecting cover 60 are provided.
 なお、凹状反射部44とレンズ部61との位置関係は、凹状反射部44からの反射光を主面に垂直な主出射方向に集光できる構成であれば上記態様に限られず変更可能である。 The positional relationship between the concave reflection portion 44 and the lens portion 61 can be changed without being limited to the above embodiment as long as the reflected light from the concave reflection portion 44 can be condensed in the main emission direction perpendicular to the main surface. .
 図10は、照明器具1の導光板40における凹状反射部44の断面形状を示す模式図である。導光板40の板厚t1は、本実施の形態では約1.5mmである。凹状反射部44は、頂角θ、高さh、中心軸を44Aとする円錐形状の凹陥部である。円錐の部分は底面を開口とする空間である。頂角θは、64°以上84°以下、より好ましくは、76°±1°、hは、0.4以上0.7mm以下、先端のrは、約0.1mmとした。しかしながら、上記は一例であって、凹状反射部44の形状は、上記に限られない。例えば、導光板40の材料の屈折率を考慮して、凹状反射部44の頂角を調整することができる。 FIG. 10 is a schematic diagram showing a cross-sectional shape of the concave reflecting portion 44 in the light guide plate 40 of the lighting fixture 1. The plate thickness t 1 of the light guide plate 40 is about 1.5 mm in the present embodiment. The concave reflecting portion 44 is a conical concave portion having an apex angle θ, a height h, and a central axis 44A. The conical portion is a space whose bottom surface is an opening. The apex angle θ is 64 ° to 84 °, more preferably 76 ° ± 1 °, h is 0.4 to 0.7 mm, and r at the tip is about 0.1 mm. However, the above is an example, and the shape of the concave reflection portion 44 is not limited to the above. For example, the vertical angle of the concave reflecting portion 44 can be adjusted in consideration of the refractive index of the material of the light guide plate 40.
 なお、環内部41および環状外周部43に施される光反射部は上記に限定されず変形例にて後述するように変更可能である。 In addition, the light reflection part given to the ring inside 41 and the ring outer peripheral part 43 is not limited to the above, but can be changed as will be described later in a modification.
 (集光カバー60)
 [全体構成]
 集光カバー60は、導光板40から出射される光を入射してZ方向に出射して集光させるために用いる。集光カバー60は透光性材料、例えばシリコーン樹脂、アクリル樹脂、ポリカーボネート樹脂、ガラス等を用いて構成される。本実施の形態では、アクリル樹脂としてポリメタクリル酸メチル樹脂を用いた。
(Condensing cover 60)
[overall structure]
The condensing cover 60 is used to allow light emitted from the light guide plate 40 to be incident, emitted in the Z direction, and condensed. The condensing cover 60 is configured using a translucent material such as a silicone resin, an acrylic resin, a polycarbonate resin, or glass. In this embodiment, a polymethyl methacrylate resin is used as the acrylic resin.
 図11は、(a)は、照明器具1の集光カバー60の平面図、(b)は、(a)におけるE部拡大図、(c)は側面図、(d)は裏面図である。図5及び図11に示すように、集光カバー60は円板形状であり、導光板40の環内部41の出射面410を覆うレンズ領域63と、レンズ領域の外周に位置する周縁部64とを有する。図5および図11において、符号W63で示す範囲がレンズ領域63であり、符号W64で示す範囲が周縁部64である。本実施の形態では、レンズ領域63は約80mmである。 11A is a plan view of the light collection cover 60 of the luminaire 1, FIG. 11B is an enlarged view of an E portion in FIG. 11A, FIG. 11C is a side view, and FIG. . As shown in FIGS. 5 and 11, the condensing cover 60 has a disc shape, and includes a lens region 63 that covers the exit surface 410 of the inner ring 41 of the light guide plate 40, and a peripheral portion 64 that is positioned on the outer periphery of the lens region. Have 5 and 11, the range indicated by the symbol W 63 is the lens region 63, and the range indicated by the symbol W 64 is the peripheral portion 64. In the present embodiment, the lens region 63 is about 80 mm.
 集光カバー60は、裏面65を導光板40の出射面410に接触させ、周縁部64を後述する拡散カバー50の裏面511に当接させた状態で、導光板40と拡散カバー50との間に挟設される。このとき、集光カバー60のレンズ領域63は拡散カバー50の開口53に適合し、レンズ領域63は開口53から露出した状態となる(図5)。 The light collecting cover 60 is disposed between the light guide plate 40 and the diffusion cover 50 in a state where the back surface 65 is brought into contact with the emission surface 410 of the light guide plate 40 and the peripheral edge portion 64 is in contact with the back surface 511 of the diffusion cover 50 described later. Is sandwiched between. At this time, the lens region 63 of the light collecting cover 60 is fitted to the opening 53 of the diffusion cover 50, and the lens region 63 is exposed from the opening 53 (FIG. 5).
 集光カバー60は、裏面65における周縁部64よりも内方に、上述した導光板の凹部47に緩挿される凸部62を複数有する。この凹部36に導光板40の後述する凸部46が緩挿されることにより導光板40の反射部材30に対する位置が規制される。本実施の形態では、例えば、凸部62は、レンズ領域63の中心600Aを基準に、約120°ずつ円周角を異ならせて3か所設けられている。尚、凸部62は、後述するレンズ部61の中心に各々配置される。これは、配向特性上、レンズ部61の中心が凸部62に起因する照度のムラが最も目立たない位置であるからである。 The condensing cover 60 has a plurality of convex portions 62 that are loosely inserted into the concave portions 47 of the light guide plate described above inward of the peripheral edge portion 64 on the back surface 65. The position of the light guide plate 40 relative to the reflecting member 30 is restricted by loosely inserting a later-described convex portion 46 of the light guide plate 40 into the recess 36. In the present embodiment, for example, the convex portion 62 is provided at three locations with different circumferential angles by about 120 ° with respect to the center 600A of the lens region 63. In addition, the convex part 62 is each arrange | positioned in the center of the lens part 61 mentioned later. This is because, in terms of orientation characteristics, the center of the lens portion 61 is a position where the unevenness in illuminance due to the convex portion 62 is least noticeable.
 [レンズ部61]
 レンズ部61の平面方向における配置について説明する。図11(a)に示すように、集光カバー60のレンズ領域63は、複数のレンズ部61を有する。図11(b)に示すように、レンズ部61は、レンズ領域63の中心600Aを基準に、円周間のピッチをpとする同心円の円周状にレンズ部61の中心が位置するように配置される。本実施の形態では、ピッチpは、例えば、約3mmである。また、各円周上には、隣接するレンズ部61の中心間の円弧上の距離がピッチpと最も近くなる個数のレンズ部61が配置される。本実施の形態では、中心600Aから1列目の円周上にはレンズ部61が6個配置され、2列目の円周上にはレンズ部61が13個配置される構成を採る。また、レンズ部61の総数は491個である。
[Lens 61]
The arrangement of the lens unit 61 in the planar direction will be described. As shown in FIG. 11A, the lens region 63 of the light collecting cover 60 has a plurality of lens portions 61. As shown in FIG. 11B, the lens unit 61 is positioned so that the center of the lens unit 61 is a concentric circle having a pitch p between the circles with a center 600A of the lens region 63 as a reference. Be placed. In the present embodiment, the pitch p is about 3 mm, for example. In addition, on each circumference, a number of lens parts 61 whose arc distance between the centers of adjacent lens parts 61 is closest to the pitch p are arranged. In the present embodiment, a configuration is adopted in which six lens portions 61 are arranged on the circumference of the first row from the center 600A, and thirteen lens portions 61 are arranged on the circumference of the second row. The total number of lens units 61 is 491.
 次に、レンズ部61の断面形状について説明する。図12は、照明装置100の集光カバー60におけるレンズ部61と導光板40における凹状反射部44の断面を示す模式図である。導光板40の板厚t1は、上述したように約1.5mm、集光カバー60の最大厚みは2.5mmである。図12に示すように導光版40と集光カバー60とは、各々凹状反射部44からレンズ部61に至る光路において互いに接している部分を有する。レンズ部61は、図12に示すように、上述した凹状反射部44における円錐の中心軸44Aと導光板40の裏面411との交点44Bを中心とした非球面形状からなるレンズ面610を有する。レンズ面610の半径rは、導光板40の裏面411からレンズ面610の頂点610Aまでの距離をt2、屈折率をnとしたとき、中心軸44Aとの角度θの関数として次式で規定される。 Next, the cross-sectional shape of the lens unit 61 will be described. FIG. 12 is a schematic diagram illustrating a cross section of the lens portion 61 in the light collection cover 60 of the lighting device 100 and the concave reflection portion 44 in the light guide plate 40. The plate thickness t 1 of the light guide plate 40 is about 1.5 mm as described above, and the maximum thickness of the light collecting cover 60 is 2.5 mm. As shown in FIG. 12, the light guide plate 40 and the light collection cover 60 each have a portion in contact with each other in the optical path from the concave reflection portion 44 to the lens portion 61. As shown in FIG. 12, the lens portion 61 has a lens surface 610 having an aspherical shape centered on an intersection 44 </ b> B between the central axis 44 </ b> A of the cone in the concave reflection portion 44 described above and the back surface 411 of the light guide plate 40. The radius r of the lens surface 610 is defined by the following equation as a function of the angle θ with respect to the central axis 44A, where t 2 is the distance from the back surface 411 of the light guide plate 40 to the vertex 610A of the lens surface 610, and n is the refractive index. Is done.
        r=(n-1)×t2/(n-cosθ)
尚、本実施の形態では、t2は、4.0mm、nは、1.491とした。
r = (n−1) × t 2 / (n−cos θ)
In this embodiment, t 2 is 4.0 mm and n is 1.491.
 (拡散カバー50)
 拡散カバー50は、導光板40の環状外周部43からの出射光をさらに散乱させることにより均一な輝度分布の面発光を得る目的で配設する。拡散カバー50は透光性材料、例えばシリコーン樹脂、アクリル樹脂、ポリカーボネート樹脂、ガラス等の何れかを用いて構成される。
(Diffusion cover 50)
The diffusion cover 50 is disposed for the purpose of obtaining surface light emission with a uniform luminance distribution by further scattering the light emitted from the annular outer peripheral portion 43 of the light guide plate 40. The diffusion cover 50 is configured using a light transmissive material such as silicone resin, acrylic resin, polycarbonate resin, or glass.
 図5及び図11に示すように、集光カバー60は、集光カバー60のレンズ領域63を露出させるための開口53が中央部に形成された円環部51を有する円環形状である。そして、円環部51の周縁に側壁部52を有し、側壁部52をベース10のフランジ部12に嵌合させて照明装置100は組立てられる。このとき、拡散カバー50の裏面511は集光カバー60の周縁部64を当接し、集光カバー60を導光板40に圧接する。また、裏面511に立設されたリブ54は、導光板40の環状外周部43の出射面430に当接し、導光板40をベース10に圧接する。拡散カバー50の側壁部52とベース10のフランジ部12とは図示しない樹脂バネ等によって固定される。図5において、符号W53で示す範囲が開口53であり、本実施の形態では、は約80mmである。 As shown in FIGS. 5 and 11, the light collecting cover 60 has an annular shape having an annular portion 51 in which an opening 53 for exposing the lens region 63 of the light collecting cover 60 is formed in the central portion. The lighting device 100 is assembled by having the side wall 52 on the periphery of the annular portion 51 and fitting the side wall 52 to the flange 12 of the base 10. At this time, the back surface 511 of the diffusion cover 50 abuts the peripheral edge portion 64 of the light collecting cover 60 and presses the light collecting cover 60 against the light guide plate 40. In addition, the ribs 54 erected on the back surface 511 are in contact with the emission surface 430 of the annular outer peripheral portion 43 of the light guide plate 40 and press the light guide plate 40 against the base 10. The side wall portion 52 of the diffusion cover 50 and the flange portion 12 of the base 10 are fixed by a resin spring or the like (not shown). In FIG. 5, the range indicated by the symbol W 53 is the opening 53, and in this embodiment, is about 80 mm.
 円環部51には光散乱処理が施され、導光板40の環状外周部43からの出射光を効率よく散乱するように調整される。光散乱処理としては、例えば導光板40と対向する円環部51の表面を微細に凹凸処理することが挙げられる。 The annular portion 51 is subjected to a light scattering process, and is adjusted so as to efficiently scatter the light emitted from the annular outer peripheral portion 43 of the light guide plate 40. As the light scattering treatment, for example, the surface of the annular portion 51 facing the light guide plate 40 may be finely processed.
 <照明装置100の動作>
 以上の構成を有する照明装置100をユーザが使用する際は、照明装置100に電源投入する。照明装置100では、商業用電源に接続された電源ユニット4から配線23を介して各発光素子22に電力供給がなされる。これにより各発光素子22から出射光が生ずる。
<Operation of Lighting Device 100>
When the user uses the lighting device 100 having the above configuration, the lighting device 100 is powered on. In the lighting device 100, power is supplied to each light emitting element 22 from the power supply unit 4 connected to a commercial power supply via the wiring 23. Thereby, outgoing light is generated from each light emitting element 22.
 発光素子22の出射光は、反射部材30の開口34を介し、素子対向部420より導光板40の環状部42内部に入射する。入射光は導光板40の内部で正反射を繰り返し、環内部41と環状外周部43の両方の内部に拡散する。また、導光板40より下方に漏れ出た光は反射部材30の上面310、330(図6)において反射され、再度、導光板40側に入射される。 The light emitted from the light emitting element 22 enters the annular portion 42 of the light guide plate 40 from the element facing portion 420 through the opening 34 of the reflecting member 30. Incident light repeats regular reflection inside the light guide plate 40 and diffuses inside both the ring interior 41 and the annular outer periphery 43. Further, the light leaking downward from the light guide plate 40 is reflected on the upper surfaces 310 and 330 (FIG. 6) of the reflection member 30 and is incident on the light guide plate 40 side again.
 導光板40の裏面411に形成された凹状反射部44によって出射面410の方向に反射された発光素子22の出射光は、導光板40の出射面側から出射されて集光カバー60に入射される。入射光は集光カバー60のレンズ部61により照明光として主出射方向の対象面に集光される。 The emitted light of the light emitting element 22 reflected in the direction of the emission surface 410 by the concave reflecting portion 44 formed on the back surface 411 of the light guide plate 40 is emitted from the emission surface side of the light guide plate 40 and is incident on the light collecting cover 60. The Incident light is condensed on the target surface in the main emission direction as illumination light by the lens portion 61 of the light collecting cover 60.
 他方、導光板40の裏面431に形成された凹状反射部45によって出射面430の方向に反射された発光素子22の出射光は、導光板40の上面側から出射され拡散カバー50に入射される。入射光は光散乱処理された拡散カバー50の本体部51でさらに拡散され、最終的に照明光として外部に出射される。 On the other hand, the emitted light of the light emitting element 22 reflected in the direction of the emitting surface 430 by the concave reflecting portion 45 formed on the back surface 431 of the light guide plate 40 is emitted from the upper surface side of the light guide plate 40 and enters the diffusion cover 50. . Incident light is further diffused by the main body 51 of the diffusion cover 50 that has been subjected to light scattering treatment, and finally emitted as illumination light to the outside.
 以上、説明したとおり、本実施の形態の照明装置100により、拡散カバー50から照射される円環状の拡散光の内周側を通り、集光カバー60から円板状のスポット光が対象面に向けて照射される。
<照明装置100で奏される効果>
 照明装置100を駆動させた場合、以下に挙げる諸効果を期待することができる。
As described above, the illumination device 100 according to the present embodiment passes the inner peripheral side of the annular diffused light irradiated from the diffusion cover 50 and the disc-shaped spot light from the light collecting cover 60 on the target surface. Irradiated toward.
<Effects produced by lighting device 100>
When the illumination device 100 is driven, the following effects can be expected.
 (配向特性について)
 [具体的効果]
 図13は、照明装置100の導光板40と集光カバー60における集光原理を示す説明図である。図13に示すように、発光素子22の出射光は導光板40の裏面411に形成された凹状反射部44によって出射面410の方向に反射される。そのとき、凹状反射部44の円錐の中心44Aから出射される光p1、p2、p3、p4、p5を考慮した場合、それらはそれぞれ集光カバー60に入射後、レンズ部61により主出射方向前方の平行な光に変換される。しかしながら、凹状反射部44の反射面は中心44Aからずれた位置にあり、そこから反射される光、例えばq1、q2、q3、q4或はr1、r2、r3、r4の光は集光カバー60に入射後、レンズ部61により主出射方向前方に対して傾いた光に変換される。そのため、円推形状の凹状反射部44から出射される光の強度のピークは配向角0°から少しずれた位置に形成される。例えば、凹状反射部44における円錐の底面の直径が0.8mmの場合、配向角約±5°の角度に出射光の強度のピークが発生する。
(Orientation characteristics)
[Specific effects]
FIG. 13 is an explanatory diagram showing a light collection principle in the light guide plate 40 and the light collection cover 60 of the illumination device 100. As shown in FIG. 13, the light emitted from the light emitting element 22 is reflected in the direction of the light emission surface 410 by the concave reflecting portion 44 formed on the back surface 411 of the light guide plate 40. At this time, when light p 1 , p 2 , p 3 , p 4 , and p 5 emitted from the conical center 44A of the concave reflecting portion 44 are taken into consideration, they are incident on the light collecting cover 60 and then the lens portion 61. Is converted into parallel light ahead of the main emission direction. However, the reflecting surface of the concave reflecting portion 44 is at a position shifted from the center 44A, and light reflected from the center 44A, for example, q 1 , q 2 , q 3 , q 4 or r 1 , r 2 , r 3 , r After being incident on the light collecting cover 60, the light 4 is converted into light inclined with respect to the front in the main emission direction by the lens unit 61. For this reason, the peak of the intensity of the light emitted from the circularly-shaped concave reflector 44 is formed at a position slightly deviated from the orientation angle of 0 °. For example, when the diameter of the bottom surface of the cone in the concave reflecting portion 44 is 0.8 mm, the intensity peak of the emitted light occurs at an angle of about ± 5 °.
 このとき、例えば光源から距離約2m前方にある対象面における照度のピーク間距離X0は、約350mmとなる。集光カバー60のレンズ領域63に存する複数のレンズ部61から、同様に配向角約±5°に照度のピークを有して集光した照明光が対象面に照射される。このとき、レンズ領域63のサイズは直径約80mmであるので、対称面上において複数のレンズ部61からの照明光の中心も直径約80mmの範囲内に分布する。 At this time, for example, the peak-to-peak distance X 0 of the illuminance on the target surface about 2 m ahead from the light source is about 350 mm. Similarly, illumination light that has been collected with a peak of illuminance at an orientation angle of about ± 5 ° is irradiated onto the target surface from the plurality of lens portions 61 existing in the lens region 63 of the light collecting cover 60. At this time, since the size of the lens region 63 is about 80 mm in diameter, the centers of illumination light from the plurality of lens portions 61 are also distributed within a range of about 80 mm in diameter on the symmetry plane.
 [性能確認結果]
 照明装置100の配向特性について、光学シミュレーションによる計算を行った。図14は、照明装置100の配向特性の計算結果を示す特性図である。図14(a)は、中心Oに照明装置100を設置し0°方向を主出射方向として点灯させ、光源の前方2mにある対象面を照射したときの照度の分布を円周方向に配向角、半径方向を照度として円周座標上に示した特性図である。また、(b)は直交座標に示した特性図である。
[Performance confirmation result]
About the orientation characteristic of the illuminating device 100, the calculation by optical simulation was performed. FIG. 14 is a characteristic diagram showing the calculation result of the orientation characteristic of the illumination device 100. FIG. 14 (a) shows the illuminance distribution when the illumination device 100 is installed at the center O, the 0 ° direction is turned on as the main emission direction, and the target surface 2m ahead of the light source is irradiated. FIG. 5 is a characteristic diagram showing the circumferential direction on the circumferential coordinate with the radial direction as illuminance. Further, (b) is a characteristic diagram shown in orthogonal coordinates.
 図14(a)及び(b)に示すように、照明装置100では、配向性を評価するための尺度のひとつである1/2ビーム角θ1は25°となった。ここで、1/2ビーム角とは、光源の直下照度の1/2の照度になる点と光源中心を結んだ線と、光源中心の鉛直方向線とのなす角度を指し配光の度合いを示す。 As shown in FIGS. 14A and 14B, in the illumination device 100, the 1/2 beam angle θ1, which is one of the scales for evaluating the orientation, was 25 °. Here, the 1/2 beam angle refers to the angle formed by the line connecting the point where the illuminance is ½ of the illuminance directly below the light source, the center of the light source, and the vertical direction line of the light source center, and the degree of light distribution. Show.
 従来のフレネルレンズを用いた集光型の照明装置では、1/2ビーム角は45°であった(特許文献1)。これに対し、照明装置100では、1/2ビーム角を25°に低減することができる。導光板40の凹状反射部44の円錐の底面の直径をさらに減少することにより、1/2ビーム角をさらに減少させることが可能である。 In a concentrating illumination device using a conventional Fresnel lens, the 1/2 beam angle was 45 ° (Patent Document 1). On the other hand, in the luminaire 100, the ½ beam angle can be reduced to 25 °. By further reducing the diameter of the bottom surface of the cone of the concave reflecting portion 44 of the light guide plate 40, it is possible to further reduce the 1/2 beam angle.
 (照明装置100の厚みについて)
 照明装置100では、図5に示す、照明装置100の総厚みY1が18mm、天井2の貫通孔2aに挿入される部分の厚みY2が8mm、天井2から出る部分の厚みY3が10mmであった。照明装置100では、意匠上、導光板40における環内部41と環状外周部43とを異なる高さとした。導光板40における環内部41の高さと環状外周部43の高さとを同一とすることにより更なる薄型化が可能となる。この場合、照明装置100の総厚みY1は13mmとなる。
(About the thickness of the lighting device 100)
In the lighting device 100, the total thickness Y1 of the lighting device 100 shown in FIG. 5 was 18 mm, the thickness Y2 of the portion inserted into the through hole 2a of the ceiling 2 was 8 mm, and the thickness Y3 of the portion exiting from the ceiling 2 was 10 mm. . In the illuminating device 100, the ring inner portion 41 and the annular outer peripheral portion 43 of the light guide plate 40 have different heights in terms of design. By making the height of the ring interior 41 and the height of the annular outer peripheral portion 43 in the light guide plate 40 the same, it is possible to further reduce the thickness. In this case, the total thickness Y1 of the lighting device 100 is 13 mm.
 従来のフレネルレンズを用いた集光型の照明装置では、光源の発光部からレンズ表面までの光路長において、レンズ口径約80mmの場合約、13.6mmの長さが必要であり、その時の1/2ビーム角は80°あった(特許文献1)。また、1/2ビーム角が45°となるレンズ口径162mmの場合には、光源の発光部からレンズ表面までの光路長は約、27mmの長さが必要であった(特許文献1)。 In the conventional condensing type illumination device using the Fresnel lens, the length of the optical path from the light emitting part of the light source to the lens surface is approximately 13.6 mm when the lens aperture is approximately 80 mm. The / 2 beam angle was 80 ° (Patent Document 1). Further, in the case of a lens aperture of 162 mm where the 1/2 beam angle is 45 °, the optical path length from the light emitting part of the light source to the lens surface needs to be about 27 mm (Patent Document 1).
 さらに、本実施の形態では、発光素子22を導光板の側面から入射する構成を採ることによって照明装置の総厚みY1を約6mmまで低減することが可能となる。あるいは、本実施の形態における反射板とベースの厚みを低減し厚みの合計を2mmとする構成を採ることによっても、照明装置の総厚みY1を同様に約6mmまで低減することが可能となる。 Furthermore, in this embodiment, the total thickness Y1 of the lighting device can be reduced to about 6 mm by adopting a configuration in which the light emitting element 22 is incident from the side surface of the light guide plate. Alternatively, the total thickness Y1 of the lighting device can be similarly reduced to about 6 mm by reducing the thickness of the reflector and the base in the present embodiment and adopting a configuration in which the total thickness is 2 mm.
 (縞状の輝度ムラを防止ついて)
 レンズを用いた集光型の照明装置では、狭配向を実現しようとするとレンズの厚みが増加する。これを防止するためにはフレネルレンズを用い、レンズの分割数を増加することが必要となる。しかしながら、フレネルレンズを用いた場合には照明光は分割され縞状の輝度ムラが生じる。これに対し、本実施の形態に係る照明装置100では、各々のレンズ部61が対象面に対し所定のサイズに集光した照明光を各々照射し、複数のレンズ部61から照射された照明光が重畳される光学系を採る。そのため、レンズの薄型化に伴って照明光は縞状の輝度ムラが生じることはない。したがって、狭配向とレンズの薄型化を実現しつつ、縞状の輝度ムラを防止することができる。
(To prevent striped brightness unevenness)
In a concentrating illumination device using a lens, the thickness of the lens increases when narrow orientation is achieved. In order to prevent this, it is necessary to use a Fresnel lens and increase the number of lens divisions. However, when a Fresnel lens is used, the illumination light is divided and striped luminance unevenness occurs. On the other hand, in the illumination device 100 according to the present embodiment, each lens unit 61 irradiates illumination light condensed to a predetermined size on the target surface, and the illumination light emitted from the plurality of lens units 61. An optical system in which is superimposed is adopted. Therefore, the striped luminance unevenness does not occur in the illumination light with the thinning of the lens. Therefore, striped luminance unevenness can be prevented while realizing narrow orientation and thinning of the lens.
 (小括)
 以上、説明したとおり、照明装置100では、上記した構成におり、集光型の照明装置において、1/2ビーム角25°の配向角と照明装置の総厚み18mmを実現することができた。本方式を採ることにより、薄型であって狭配向を実現可能な照明装置を提供することが可能となる。
(Brief Summary)
As described above, the illumination device 100 has the above-described configuration, and in the concentrating illumination device, an orientation angle of ½ beam angle of 25 ° and a total thickness of the illumination device of 18 mm can be realized. By adopting this method, it is possible to provide a lighting device that is thin and can realize narrow orientation.
 ≪変形例1≫
 以上、実施の形態に係る照明装置100について説明したが、例示した照明装置100を以下のように変形することも可能であり、本発明が上述の実施の形態で示した通りの照明装置100に限られないことは勿論である。
<< Modification 1 >>
The lighting device 100 according to the embodiment has been described above. However, the illustrated lighting device 100 can be modified as follows, and the present invention is applied to the lighting device 100 as described in the above embodiment. Of course, it is not limited.
 上記した実施の形態に係る照明装置100では、レンズ部61は、図12に示すような構成とした。すなわち、レンズ部61は、凹状反射部44における円錐の中心軸44Aと導光板40の裏面411との交点44Bを中心とした非球面形状からなるレンズ面610を有する構成とした。しかしながら、レンズ部61は、照明光を対象面に集光されることができる形状であれば良く下記のとおり変形可能である。 In the lighting device 100 according to the above-described embodiment, the lens unit 61 is configured as shown in FIG. That is, the lens unit 61 has a lens surface 610 having an aspherical shape centering on an intersection 44B between the conical central axis 44A of the concave reflection unit 44 and the back surface 411 of the light guide plate 40. However, the lens unit 61 may have any shape as long as it can collect the illumination light on the target surface and can be modified as follows.
 図15は、実施の形態の変形例に係る照明装置100Aの導光板40と集光カバー60Aにおける集光原理を示す説明図である。図15に示すように、変形例1に係る照明装置100Aでは、集光カバー60Aにおけるレンズ部61Aは、照明装置100に用いたレンズ部61のレンズ面610を次のように変更したものである。すなわち、レンズ面610の非球面形状を、凹状反射部44における円錐の中心軸44Aを基準に、図15における紙面左右方向に各々X1ずつオフセットし、レンズ面の頂部に幅2×X1の平坦部66を設けた構成を採る。本実施の形態では、オフセットX1は約0.1から0.2mm、平坦部の直径は0.2から0.4mmである。
<照明装置100Aで奏される効果>
 照明装置100Aを駆動させた場合、以下に挙げる諸効果を期待することができる。
FIG. 15 is an explanatory diagram illustrating a light collection principle in the light guide plate 40 and the light collection cover 60A of the illumination device 100A according to the modification of the embodiment. As shown in FIG. 15, in the illumination device 100A according to Modification 1, the lens unit 61A in the light collecting cover 60A is obtained by changing the lens surface 610 of the lens unit 61 used in the illumination device 100 as follows. . That is, the aspherical shape of the lens surface 610, relative to the central axis 44A of the cone at the concave reflecting portion 44, each offset by X 1 in the left-right direction in FIG. 15, the top of the lens surface of the wide 2 × X 1 The structure which provided the flat part 66 is taken. In the present embodiment, the offset X 1 is about 0.1 to 0.2 mm, and the diameter of the flat portion is 0.2 to 0.4 mm.
<Effects produced by lighting device 100A>
When the illumination device 100A is driven, the following effects can be expected.
 (配向特性について)
 [具体的効果]
図14に示すように、発光素子22の出射光は導光板40の裏面411に形成された凹状反射部44によって出射面410の方向に反射される。そのとき、凹状反射部44の円錐の中心44Aから出射される光s1、s2、s3、s4、s5を考慮した場合、それらはそれぞれ集光カバー60に入射後、レンズ部61により主出射方向前方の平行な光に変換される。しかしながら、凹状反射部44の反射面は中心44Aからずれた位置にある。
(Orientation characteristics)
[Specific effects]
As shown in FIG. 14, the light emitted from the light emitting element 22 is reflected in the direction of the light emission surface 410 by the concave reflecting portion 44 formed on the back surface 411 of the light guide plate 40. At this time, when light s 1 , s 2 , s 3 , s 4 , and s 5 emitted from the conical center 44A of the concave reflecting portion 44 are taken into consideration, they are incident on the light collecting cover 60 and then the lens portion 61. Is converted into parallel light ahead of the main emission direction. However, the reflecting surface of the concave reflecting portion 44 is at a position shifted from the center 44A.
 変形例1では、中心44Aから左方にずれた位置にある凹状反射部の斜面から反射される光t1、t2、t3、t4、t5の内、主出射方向への光t3はそのまま平坦部66を通して主出射方向に出射される。他方、t3以外光、t1、t2、t4、t5は集光カバー60に入射後、レンズ部61により主出射方向前方に対して傾いた方向に出射される。 In the first modification, among the light t 1 , t 2 , t 3 , t 4 , t 5 reflected from the slope of the concave reflecting portion located to the left from the center 44A, the light t in the main emission direction 3 is emitted in the main emission direction through the flat portion 66 as it is. On the other hand, light other than t 3 , t 1 , t 2 , t 4 , t 5 is incident on the light collecting cover 60 and then emitted by the lens unit 61 in a direction inclined with respect to the front in the main emission direction.
 同様に、中心44Aから右方にずれた位置にある凹状反射部44の斜面から反射される光u1、u2、u3、u4、u5の内、主出射方向への光u3はそのまま平坦部66を通して主出射方向に出射される。他方、u3以外光、u1、u2、u4、u5は集光カバー60に入射後、レンズ部61により主出射方向前方に対して傾いた方向に出射される。そのため、凹状反射部44から反射される光のうち主出射方向への光t3及びu3を除いた、t1、t2、t4、t5及び、u1、u2、u4、u5の光の強度のピークは配向角0°から少しずれた位置に存在する。例えば、凹状反射部44における円錐の底面の直径が0.8mmの場合、配向角約±5°の角度にt1、t2、t4、t5及び、u1、u2、u4、u5の光の強度のピークが発生する。 Similarly, out of the light u 1 , u 2 , u 3 , u 4 , u 5 reflected from the slope of the concave reflecting portion 44 located to the right from the center 44A, the light u 3 in the main emission direction. Is directly emitted through the flat portion 66 in the main emission direction. On the other hand, light other than u 3 , u 1 , u 2 , u 4 , u 5 is incident on the light collection cover 60 and then emitted by the lens unit 61 in a direction inclined with respect to the front in the main emission direction. Therefore, t 1 , t 2 , t 4 , t 5, and u 1 , u 2 , u 4 , excluding the light t 3 and u 3 in the main emission direction from the light reflected from the concave reflector 44. The peak of the light intensity of u 5 exists at a position slightly deviated from the orientation angle 0 °. For example, when the diameter of the bottom surface of the cone in the concave reflection portion 44 is 0.8 mm, t 1 , t 2 , t 4 , t 5 and u 1 , u 2 , u 4 , A peak of the light intensity of u 5 occurs.
 しかしながら、凹状反射部44から平坦部66を通して主出射方向へ出射される光t3及びu3の光は、凹状反射部44から出射される光の中で最も強度が大きいので、配向角0°の角度に出射光全体の強度のピークが発生する。そのため、配向角約0°に照度のピークを有して集光される。その結果、図14(a)及び(b)において示される、照明装置100における、配向角0°付近での照度の落ち込みを改善することができる。このとき、照明光の対称面における照度のピーク間距離はゼロとなる。集光カバー60Aに存する複数のレンズ部61Aから、同様に配向角約0°に照度のピークを有して集光した照明光が対象面に照射される。 However, the light t 3 and u 3 emitted in the main emission direction from the concave reflection portion 44 through the flat portion 66 has the highest intensity among the light emitted from the concave reflection portion 44, so that the orientation angle is 0 °. A peak of the intensity of the entire emitted light occurs at the angle. Therefore, the light is condensed with an illuminance peak at an orientation angle of about 0 °. As a result, it is possible to improve the drop in illuminance in the vicinity of an orientation angle of 0 ° in the lighting device 100 shown in FIGS. 14 (a) and 14 (b). At this time, the peak-to-peak distance of illuminance on the symmetry plane of the illumination light is zero. Similarly, illumination light that has been collected with a peak of illuminance at an orientation angle of about 0 ° is irradiated onto the target surface from the plurality of lens portions 61A in the light collection cover 60A.
 [性能確認結果]
 照明装置100Aの配向特性について、光学シミュレーションによる計算を行った。図16は、照明装置100Aの配向特性の計算結果を示す特性図である。図16(a)は、中心Oに照明装置100Aを置き0°方向を主出射方向として点灯させ、光源の前方2mにある対象面を照射したときの照度の分布を円周方向に配向角、半径方向を照度として円周座標上に示した特性図である。また、(b)は直交座標に示した特性図である。
[Performance confirmation result]
The orientation characteristics of the lighting device 100A were calculated by optical simulation. FIG. 16 is a characteristic diagram showing the calculation result of the orientation characteristic of the illumination device 100A. FIG. 16A shows an illumination angle distribution when the illumination device 100A is placed at the center O and is turned on with the 0 ° direction as the main emission direction and the target surface 2m ahead of the light source is irradiated. It is the characteristic view shown on the circumference coordinate by making a radial direction illuminance. Further, (b) is a characteristic diagram shown in orthogonal coordinates.
 図16(a)及び(b)に示すように、照明装置100Aでは、1/2ビーム角θ2は、22°となった。 As shown in FIGS. 16A and 16B, in the illumination device 100A, the ½ beam angle θ2 is 22 °.
 図16は、照明装置100Aにおける凹状反射部44の形状と配向特性との関係を示す特性図である。凹状反射部44の円錐形状における頂角を60°、76°、84°とした場合の導光板40の出射面410における照度の分布をシミュレーションにより求めた。図16に示すように、配向角15°以下においてが変化する。そして、頂角を76°とした場合に最もピーク付近の照度が高まることを確認した。図18は、照明装置100Aにおける凹状反射部44の頂角と配向角±10°における光束との関係を示す特性図である。これにより、照明装置100Aにおける1/2ビーム角に近い配向角±10°における光束は頂角76°にてピークを示す。また、頂角64°以上84°以下の範囲においてピーク値の約98%以内の光束を示す。したがって、凹状反射部44の円錐形状における頂角は64°以上84°以下の範囲が好ましく、76°近傍(約±1°)がより好ましい。 FIG. 16 is a characteristic diagram showing the relationship between the shape and the orientation characteristic of the concave reflecting portion 44 in the illumination device 100A. The distribution of illuminance on the exit surface 410 of the light guide plate 40 when the apex angles in the conical shape of the concave reflecting portion 44 are 60 °, 76 °, and 84 ° was obtained by simulation. As shown in FIG. 16, the change occurs at an orientation angle of 15 ° or less. And when the apex angle was set to 76 °, it was confirmed that the illuminance near the peak increased most. FIG. 18 is a characteristic diagram showing the relationship between the apex angle of the concave reflecting portion 44 and the luminous flux at an orientation angle of ± 10 ° in the illumination device 100A. As a result, the luminous flux at an orientation angle of ± 10 ° close to a ½ beam angle in the illumination device 100A exhibits a peak at an apex angle of 76 °. Further, the luminous flux is within about 98% of the peak value in the range of the apex angle of 64 ° to 84 °. Therefore, the apex angle in the conical shape of the concave reflecting portion 44 is preferably in the range of 64 ° to 84 °, and more preferably in the vicinity of 76 ° (about ± 1 °).
 ≪まとめ≫
 以上、説明したように、本実施の形態に係る照明装置100では、複数の発光素子22と、複数の発光素子から出射した光を板内において導光する導光板40と、導光板の主面410の一部を覆う集光カバー60とを備える。そして、導光板は、主面の一部と背向する裏面が凹入され且つ導光板内に導光される光が主面に向けて反射される複数の凹状反射部44を有する。また、集光カバーは、複数の凹状反射部の各々と個別に光学的な対向関係を保って配置され且つ各々の凹状反射部からの反射光を主面に垂直な主出射方向に集光する複数のレンズ部61を有することを特徴とする。かかる構成により、従来のフレネルレンズを用いた構成に比べて光源の発光部からレンズ表面までの光路長の短縮を図ることができる。その結果、集光型の照明装置において薄型化と狭配向とを同時に実現することができる。
≪Summary≫
As described above, in lighting apparatus 100 according to the present embodiment, a plurality of light emitting elements 22, a light guide plate 40 that guides light emitted from the plurality of light emitting elements within the plate, and a main surface of the light guide plate And a light collecting cover 60 that covers a part of 410. The light guide plate has a plurality of concave reflection portions 44 in which a part of the main surface and the back surface facing away are recessed, and light guided into the light guide plate is reflected toward the main surface. The condensing cover is arranged in an optically opposed relationship with each of the plurality of concave reflecting portions and condenses the reflected light from each concave reflecting portion in the main emission direction perpendicular to the main surface. A plurality of lens portions 61 are provided. With this configuration, the optical path length from the light emitting portion of the light source to the lens surface can be shortened compared to a configuration using a conventional Fresnel lens. As a result, it is possible to simultaneously realize thinning and narrow orientation in a concentrating illumination device.
 ≪その他の事項≫
 (1)本発明に係る照明装置は、天井に埋設するシーリングライトに限定されない。その他の設置方法で設置されるシーリングライトの他、ダウンライト、バックライトなど照明用途全般に広く利用可能である。
≪Other matters≫
(1) The lighting device according to the present invention is not limited to a ceiling light embedded in a ceiling. In addition to ceiling lights installed by other installation methods, it can be widely used for lighting applications such as downlights and backlights.
 (2)本実施の形態に係る照明装置100では、掛止部材3は必須ではない。照明器具1はネジ止めやリベット、接着等を用いて天井に固定してもよい。 (2) The hooking member 3 is not essential in the lighting device 100 according to the present embodiment. The luminaire 1 may be fixed to the ceiling using screws, rivets, adhesion, or the like.
 (3)照明装置100の一部が天井2の貫通孔2aに挿入される構成とした。しかしながら、照明装置100は厚みが薄いために、貫通孔2aを設けずに、天井2の天井面に配設することもできる。その場合、ネジ等の締結部材、接着剤又は両面テープ等を用いて照明装置100を天井面に取り付けることができる。 (3) A configuration in which a part of the lighting device 100 is inserted into the through hole 2a of the ceiling 2 is adopted. However, since the lighting device 100 is thin, it can be disposed on the ceiling surface of the ceiling 2 without providing the through hole 2a. In that case, the lighting device 100 can be attached to the ceiling surface using a fastening member such as a screw, an adhesive, or a double-sided tape.
 (4)照明装置100では、電源ユニット4と照明器具1とを別個の構成としたが、本発明はこの構造に限定されない。すなわち本発明の照明装置は、照明器具1が電源ユニット4を内蔵してなる構成としてもよい。 (4) In the lighting device 100, the power supply unit 4 and the lighting fixture 1 are configured separately, but the present invention is not limited to this structure. That is, the illuminating device of the present invention may be configured such that the luminaire 1 includes the power supply unit 4 therein.
 (5)発光素子22は、例えば、LD(レーザダイオード)や、EL素子(エレクトリックルミネッセンス素子)であってもよい。また本発明に係る発光素子としては、SMD(Surface Mount Device)型でもよい。 (5) The light emitting element 22 may be, for example, an LD (laser diode) or an EL element (electric luminescence element). The light emitting device according to the present invention may be an SMD (Surface Mount Device) type.
 (6)導光板40は、反射部材30との対向面を平坦面としたが、微小なレンズを複数設けて導光板内を通る光の反射特性を変化させてもよい。これにより導光板の導光効果を向上させることができる。 (6) Although the light guide plate 40 has a flat surface facing the reflecting member 30, a plurality of minute lenses may be provided to change the reflection characteristics of light passing through the light guide plate. Thereby, the light guide effect of the light guide plate can be improved.
 (7)実装基板20の上方に設ける板状部材として反射部材30を例示した。しかしながら実装基板20の上方に設ける板状部材は反射部材を用いることは必須ではない。すなわち、板状部材に反射性を有さない部材とすることもできる。また、実装基板20の上方であって導光板40の下方に部材を挟挿しない構成であってもよい。 (7) The reflecting member 30 is exemplified as a plate-like member provided above the mounting substrate 20. However, it is not essential to use a reflective member for the plate member provided above the mounting substrate 20. That is, the plate-like member can be a member that does not have reflectivity. Moreover, the structure which does not insert a member above the mounting board | substrate 20 and the light guide plate 40 may be sufficient.
 (8)照明装置100を円板状としているが、照明装置100は円板状に限定されない。例えば複数の発光素子を列状に配列させて、長尺状又は矩形状の照明装置を構成してもよい。この場合、ベース、反射部材、導光板、集光カバーを実装基板と同様に長尺状又は矩形状に構成する。そして、長尺状又は矩形状の導光板の長辺又は短辺の近傍に入光部を設け、列状の発光素子列を入光部に対向させて配置することにより実現できる。あるいは、長辺と短辺の両方に入光部を設けて発光素子列を対向させてもよい。 (8) Although the lighting device 100 has a disk shape, the lighting device 100 is not limited to a disk shape. For example, a long or rectangular lighting device may be configured by arranging a plurality of light emitting elements in a row. In this case, the base, the reflection member, the light guide plate, and the light collecting cover are formed in a long shape or a rectangular shape in the same manner as the mounting substrate. And it can implement | achieve by providing a light-incidence part in the vicinity of the long side or short side of a elongate or rectangular light-guide plate, and arrange | positioning a row-shaped light emitting element row | line | column facing a light-incidence part. Or you may provide a light-incidence part in both a long side and a short side, and may make a light emitting element row | line | column oppose.
 (9)照明装置100では、レンズ部61は、凹状反射部44における円錐の中心軸44Aと導光板40の裏面411との交点44Bを中心とした非球面形状からなるレンズ面610を有する構成とした。しかしながら、レンズ部61は、照明光を対象面に集光されることができる形状であれば良く、例えば、球面レンズやフレネル形状他の構成を用いてもよい。 (9) In the illuminating device 100, the lens unit 61 has a lens surface 610 having an aspherical shape centering on the intersection 44 </ b> B between the central axis 44 </ b> A of the cone in the concave reflection unit 44 and the back surface 411 of the light guide plate 40. did. However, the lens unit 61 may have any shape that can concentrate the illumination light on the target surface. For example, a spherical lens, a Fresnel shape, or another configuration may be used.
 (10)照明装置100では、レンズ部61は、集光カバー60において導光板40側と反対に位置する側の面に形成する構成とした。しかしながら、レンズ部61を形成する面は、照明光を対象面に集光されることができる形状であれば良く、例えば、導光板40側と反対に位置する側の裏面66に形成してもよい。この場合は、照明装置100の外観にレンズ部61が現れず、集光型の照明装置において拡散型の照明装置に近い意匠を実現することができる。また、レンズ部61を凹状反射部44に近接させることができ更なる薄型化を図ることができる。 (10) In the illumination device 100, the lens unit 61 is formed on the surface of the light collecting cover 60 on the side opposite to the light guide plate 40 side. However, the surface on which the lens unit 61 is formed only needs to have a shape that allows the illumination light to be collected on the target surface. For example, the lens unit 61 may be formed on the back surface 66 on the side opposite to the light guide plate 40 side. Good. In this case, the lens unit 61 does not appear on the external appearance of the illumination device 100, and a design close to that of the diffusion illumination device can be realized in the condensing illumination device. In addition, the lens portion 61 can be brought close to the concave reflecting portion 44, and further thinning can be achieved.
 (11)照明装置100では、凹状反射部44は、導光板40において集光カバー60と反対に位置する側の面411に形成する構成とした。しかしながら、凹状反射部44を形成する面は、照明光を対象面に集光されることができる構成ればよい。例えば、光反射部が裏側の裏面411、431ではなく表側の出射面410、430に施されていてもよいし、裏側の裏面411、431と表側の出射面410、430の両方に施されていてもよい。導光板40の拡散カバー60側に凹状反射部44を形成した場合は、凹状反射部44をレンズ部61に近接させることができ更なる薄型化を図ることができる。但し、環内部41の表側の出射面410および環状外周部43の表側の出射面430の全体から、均一に光が出射するような態様であることが好ましい。 (11) In the illumination device 100, the concave reflecting portion 44 is formed on the surface 411 on the side of the light guide plate 40 that is opposite to the light collection cover 60. However, the surface on which the concave reflection portion 44 is formed only needs to be configured so that the illumination light can be condensed on the target surface. For example, the light reflecting portion may be provided on the front-side exit surfaces 410 and 430 instead of the back-side back surfaces 411 and 431, or on both the back-side back surfaces 411 and 431 and the front-side exit surfaces 410 and 430. May be. When the concave reflection portion 44 is formed on the light guide plate 40 on the diffusion cover 60 side, the concave reflection portion 44 can be brought close to the lens portion 61, and further reduction in thickness can be achieved. However, it is preferable that the light is uniformly emitted from the entire emission surface 410 on the front side of the ring interior 41 and the entire emission surface 430 on the front side of the annular outer peripheral portion 43.
 また、光反射部として凹部ではなく凸部が設けられていてもよいし、凹部と凸部の両方が設けられていてもよい。 Further, not the concave portion but a convex portion may be provided as the light reflecting portion, or both the concave portion and the convex portion may be provided.
 また、本発明に係る導光板は、円形板状に限定されず任意である。例えば、四角形板状、六角形板状、八角形板状等のような多角形の板状であってもよい。また、環状部、環内部、環状外周部、素子列対向部分、内側反射部、外側反射部、内側側面部、および外側側面部の各形状も、導光板の形状に応じて任意である。さらに、発光素子の配列や基板の形状も導光板の形状に応じて任意である。 Further, the light guide plate according to the present invention is not limited to a circular plate shape and is arbitrary. For example, a polygonal plate shape such as a quadrangular plate shape, a hexagonal plate shape, or an octagonal plate shape may be used. In addition, each shape of the annular portion, the inside of the ring, the annular outer peripheral portion, the element array facing portion, the inner reflecting portion, the outer reflecting portion, the inner side surface portion, and the outer side surface portion is arbitrary depending on the shape of the light guide plate. Furthermore, the arrangement of the light emitting elements and the shape of the substrate are arbitrary depending on the shape of the light guide plate.
 1 照明器具
 10 ベース
 11 本体部
 12 フランジ部
 13 内側底部
 14 側壁部
 15 外側底部
 20 実装基板
 21 基板本体
 22 発光素子
 30 反射部材
 31 内側反射部
 32 凹入部
 33 外側反射部
 34 開口
 40 導光板
 41 環内部
 42 環状部
 43 環状外周部
 44、45 凹状反射部
 50 拡散カバー
 51 円環部
 52 側壁部
 53 開口
 60 集光カバー
 61 レンズ部
 62 凸部
 63 レンズ領域
 66 平坦部
 100、100A 照明装置
 310、330 反射部材の上面
 342、343 側壁
 420 素子対向部
 420A、420B 入光端部
 420C 素子対向部上の位置
 422A、422B 反射部
 423 境界部
 424A、424B 側面部
DESCRIPTION OF SYMBOLS 1 Lighting fixture 10 Base 11 Main body part 12 Flange part 13 Inner bottom part 14 Side wall part 15 Outer bottom part 20 Mounting board 21 Substrate body 22 Light emitting element 30 Reflective member 31 Inner reflection part 32 Recessed part 33 Outer reflection part 34 Opening 40 Light guide plate 41 Ring Internal part 42 Annular part 43 Annular outer peripheral part 44, 45 Concave reflection part 50 Diffusion cover 51 Annular part 52 Side wall part 53 Opening 60 Condensing cover 61 Lens part 62 Convex part 63 Lens area 66 Flat part 100, 100A Illumination device 310, 330 Upper surface 342, 343 Side wall 420 Element facing portion 420A, 420B Light incident end 420C Position on element facing portion 422A, 422B Reflecting portion 423 Boundary portion 424A, 424B Side surface portion

Claims (12)

  1.  複数の発光素子と、
     前記複数の発光素子から出射した光を板内において導光する導光板と、
     前記導光板の主面の一部を覆う集光カバーとを備え、
     前記導光板は、前記主面の一部と背向する裏面が凹入され且つ前記導光板内に導光される光が前記主面に向けて反射される複数の凹状反射部を有し、
     前記集光カバーは、前記複数の凹状反射部の各々と個別に光学的な対向関係を保って配置され且つ前記各々の凹状反射部からの反射光を前記主面に垂直な主出射方向に集光する複数のレンズ部を有する
     ことを特徴とする照明装置。
    A plurality of light emitting elements;
    A light guide plate for guiding light emitted from the plurality of light emitting elements in the plate;
    A light collecting cover covering a part of the main surface of the light guide plate,
    The light guide plate has a plurality of concave reflecting portions in which a part of the main surface and a back surface facing away from the main surface are recessed, and light guided into the light guide plate is reflected toward the main surface,
    The condensing cover is disposed in an optically opposing relationship with each of the plurality of concave reflecting portions and collects reflected light from each concave reflecting portion in a main emission direction perpendicular to the main surface. A lighting device comprising a plurality of lens portions that emit light.
  2.  前記複数のレンズ部は、前記集光カバーを平面視したときに前記複数の凹状反射部の各々と個別に重なるように配置されていることを特徴とする請求項1記載の照明装置。 The lighting device according to claim 1, wherein the plurality of lens portions are arranged so as to individually overlap each of the plurality of concave reflection portions when the light collecting cover is viewed in plan.
  3.  前記各凹状反射部は、前記主面側に頂部を向けた円錐形状であることを特徴とする請求項1記載の照明装置。 2. The illumination device according to claim 1, wherein each of the concave reflecting portions has a conical shape with a top portion facing the main surface side.
  4.  さらに基板の表面に前記複数の発光素子が実装されてなる実装基板を備え、
     前記複数の発光素子は前記基板上において環状の素子列を形成し、
     前記導光板は、前記実装基板上の前記素子列に沿って環状に形成された環状部と、当該環状部の環内側に前記環状部と連続して形成された環内部とを有し、
     前記環状部は、前記各々の発光素子から出射された光が入射する入射面を有する素子列対向部分と、当該素子列対向部分よりも前記環内部側に位置し前記入射面から入射した光が前記環内部に向けて反射される反射面を有する内側反射部分とを有し、
     前記環内部は、一方の平面を前記主面とする円板状であり、
     前記集光カバーは、前記環内部を覆う円板状である
    ことを特徴とする請求項1記載の照明装置。
    Furthermore, a mounting substrate in which the plurality of light emitting elements are mounted on the surface of the substrate,
    The plurality of light emitting elements form an annular element array on the substrate,
    The light guide plate includes an annular portion formed in an annular shape along the element row on the mounting substrate, and an inside of the ring formed continuously with the annular portion on the inner side of the annular portion,
    The annular portion includes an element array facing portion having an incident surface on which light emitted from each of the light emitting elements is incident, and light incident from the incident surface located on the inner side of the ring from the element array facing portion. An inner reflection portion having a reflection surface that is reflected toward the inside of the ring,
    The inside of the ring is disk-shaped with one plane as the main surface,
    The lighting device according to claim 1, wherein the light collection cover has a disk shape covering the inside of the ring.
  5.  前記導光板と前記実装基板との間には、表面の一部が前記導光板の少なくとも環状部及び環内部に沿う円板状の反射部材が介挿され、前記反射部材は前記各発光素子と個別に対応する開口を有する
    ことを特徴とする請求項4記載の照明装置。
    Between the light guide plate and the mounting substrate, a disc-shaped reflection member is inserted between the light guide plate and at least an annular portion of the light guide plate and the inside of the ring, and the reflection member is connected to each light emitting element. The lighting device according to claim 4, wherein each of the lighting devices has a corresponding opening.
  6.  前記導光板は、前記環状部の環外側に向かって前記環状部と連設された円環板状の環状外周部をさらに有し、
     前記環状部は、前記素子列対向部分よりも前記環状外周部側に位置し前記入射面から入射した光が前記環状外周部に向けて反射される外側反射部分をさらに有し、
     前記環状外周部は、前記主出射方向側に環状出射面と、前記環状出射面と背向する面が凹入されてなり且つ前記環状外周部内に導光される光が前記環状出射面側に反射される複数の第2凹状反射部を有する
    ことを特徴とする請求項4記載の照明装置。
    The light guide plate further has an annular plate-shaped annular outer peripheral portion connected to the annular portion toward the outer side of the annular portion,
    The annular portion further includes an outer reflection portion that is located closer to the annular outer peripheral portion than the element row facing portion and that reflects light incident from the incident surface toward the annular outer peripheral portion;
    The annular outer peripheral portion has an annular exit surface on the main exit direction side and a surface opposite to the annular exit surface, and light guided into the annular outer periphery portion is directed to the annular exit surface side. The lighting device according to claim 4, further comprising a plurality of second concave reflecting portions to be reflected.
  7.  前記集光カバーの環外側に、前記導光板の環状外周部を覆うように配置され光散乱処理が施された円環板状の拡散カバーをさらに有し、
     当該拡散カバーは、前記導光板の前記環状外周部側の面から入光した光を拡散して前記主出射方向に出射することを特徴とする請求項6記載の照明装置。
    On the outer side of the light collecting cover, it further has an annular plate-shaped diffusion cover that is disposed so as to cover the annular outer peripheral portion of the light guide plate and subjected to light scattering treatment,
    The illumination device according to claim 6, wherein the diffusion cover diffuses light incident from a surface on the annular outer peripheral portion side of the light guide plate and emits the light in the main emission direction.
  8.  前記円錐形状における円錐面のなす頂角は64°以上84°以下の範囲に含まれることを特徴とする請求項3記載の照明装置。 4. The illumination device according to claim 3, wherein an apex angle formed by the conical surface in the conical shape is included in a range of 64 ° to 84 °.
  9.  前記レンズ部は頂部が平坦部を有し、前記主出射方向から視したときに前記凹状反射部における円錐の頂部と前記平坦部とが重なっている
    ことを特徴とする請求項1記載の照明装置。
    The illumination device according to claim 1, wherein the top of the lens portion has a flat portion, and the top of the cone and the flat portion of the concave reflection portion overlap each other when viewed from the main emission direction. .
  10.  前記入射面から入射し前記内側反射部分に導光される光の光束は、前記外側反射部分に導光される光の光束よりも大きいことを特徴とする請求項6記載の照明装置。 The illumination device according to claim 6, wherein a light beam incident from the incident surface and guided to the inner reflection part is larger than a light beam guided to the outer reflection part.
  11.  前記凹状反射部から前記レンズ部に至る光路に、前記導光版の主面と集光カバーとが互いに接している部分が存することを特徴とする請求項1から10の何れかに記載の照明装置。 The illumination according to any one of claims 1 to 10, wherein a portion where the main surface of the light guide plate and the light collecting cover are in contact with each other exists in an optical path from the concave reflection portion to the lens portion. apparatus.
  12.  複数の発光素子と基板を有し、当該基板の表面に前記複数の発光素子が実装され環状の素子列を形成してなる実装基板と、
     前記実装基板上の前記素子列に沿って環状に形成された環状部と、当該環状部の環内側に前記環状部と連続して形成され一方の平面を主面とする円板状の環内部とを有し、前記複数の発光素子から出射した光を板内において導光する導光板と、
     前記主面の一部を覆う円板状の集光カバーと、を備え
     前記導光板は、前記主面の一部と背向する裏面が凹入され且つ前記導光板内に導光される光が前記主面に向けて反射される複数の凹状反射部を有し
     前記集光カバーは、前記複数の凹状反射部の各々と個別に光学的な対向関係を保って配置され且つ前記各々の凹状反射部からの反射光を前記主面に垂直な主出射方向に集光する複数のレンズ部を有することを特徴とする照明装置。
    A mounting substrate having a plurality of light emitting elements and a substrate, wherein the plurality of light emitting elements are mounted on the surface of the substrate to form an annular element array;
    An annular portion formed in an annular shape along the element row on the mounting substrate, and a disk-shaped annular interior formed continuously from the annular portion inside the annular portion and having one plane as a main surface A light guide plate for guiding the light emitted from the plurality of light emitting elements in the plate,
    A disc-shaped condensing cover that covers a part of the main surface, and the light guide plate has a light that is guided into the light guide plate with a back surface facing away from a part of the main surface. Has a plurality of concave reflecting portions that are reflected toward the main surface, and the condensing cover is individually disposed in an optically facing relationship with each of the plurality of concave reflecting portions, and each concave shape. An illuminating device comprising: a plurality of lens portions for condensing reflected light from a reflecting portion in a main emission direction perpendicular to the main surface.
PCT/JP2013/007634 2013-02-07 2013-12-26 Lighting device WO2014122716A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201390001072.7U CN205065496U (en) 2013-02-07 2013-12-26 Lighting device
DE112013006614.9T DE112013006614T5 (en) 2013-02-07 2013-12-26 lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-022434 2013-02-07
JP2013022434A JP5879548B2 (en) 2013-02-07 2013-02-07 Lighting device

Publications (1)

Publication Number Publication Date
WO2014122716A1 true WO2014122716A1 (en) 2014-08-14

Family

ID=51299332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007634 WO2014122716A1 (en) 2013-02-07 2013-12-26 Lighting device

Country Status (4)

Country Link
JP (1) JP5879548B2 (en)
CN (1) CN205065496U (en)
DE (1) DE112013006614T5 (en)
WO (1) WO2014122716A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104949065A (en) * 2015-06-11 2015-09-30 横店集团得邦照明股份有限公司 Conjoined lens

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107111186B (en) * 2014-12-26 2020-08-14 夏普株式会社 Illumination device and display device
WO2016104352A1 (en) * 2014-12-26 2016-06-30 シャープ株式会社 Illumination device and display device
CN108779900B (en) * 2016-03-05 2021-11-05 爱丽思欧雅玛株式会社 Lighting device
US10119682B2 (en) * 2016-07-05 2018-11-06 Philips Lighting Holding B.V. Luminaire having improved uniformity of output
JP6706331B2 (en) * 2016-09-23 2020-06-03 マクセル株式会社 Video projection lighting system
CN107525043A (en) * 2017-09-30 2017-12-29 闫超 Three-dimensional light guides light transmission mechanism
DE202018102168U1 (en) * 2018-04-19 2019-07-22 Zumtobel Lighting Gmbh Flat LED light

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311388A (en) * 2003-02-20 2004-11-04 Alps Electric Co Ltd Lighting apparatus for portable electronic device
JP2007080789A (en) * 2005-09-16 2007-03-29 New Industry Research Organization Light guide
JP2007086784A (en) * 2005-09-21 2007-04-05 Samsung Electronics Co Ltd Optical plate, method of manufacturing the same and display device having the same
JP2008198376A (en) * 2007-02-08 2008-08-28 Konica Minolta Medical & Graphic Inc Light guide plate and image display device
JP2010027573A (en) * 2008-07-24 2010-02-04 Toshiba Corp Light guide plate, light emitting device, and light guiding method
JP2012504253A (en) * 2008-09-29 2012-02-16 アイティーアイ スコットランド リミテッド Light guide device
JP2012104476A (en) * 2010-10-12 2012-05-31 Toshiba Lighting & Technology Corp Lighting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199041A (en) * 2009-02-27 2010-09-09 Panasonic Corp Led lighting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311388A (en) * 2003-02-20 2004-11-04 Alps Electric Co Ltd Lighting apparatus for portable electronic device
JP2007080789A (en) * 2005-09-16 2007-03-29 New Industry Research Organization Light guide
JP2007086784A (en) * 2005-09-21 2007-04-05 Samsung Electronics Co Ltd Optical plate, method of manufacturing the same and display device having the same
JP2008198376A (en) * 2007-02-08 2008-08-28 Konica Minolta Medical & Graphic Inc Light guide plate and image display device
JP2010027573A (en) * 2008-07-24 2010-02-04 Toshiba Corp Light guide plate, light emitting device, and light guiding method
JP2012504253A (en) * 2008-09-29 2012-02-16 アイティーアイ スコットランド リミテッド Light guide device
JP2012104476A (en) * 2010-10-12 2012-05-31 Toshiba Lighting & Technology Corp Lighting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104949065A (en) * 2015-06-11 2015-09-30 横店集团得邦照明股份有限公司 Conjoined lens

Also Published As

Publication number Publication date
CN205065496U (en) 2016-03-02
JP2014154321A (en) 2014-08-25
JP5879548B2 (en) 2016-03-08
DE112013006614T5 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
JP5879548B2 (en) Lighting device
WO2010001604A1 (en) Illumination device
WO2010119580A1 (en) Light source module
JP2013045651A (en) Lighting fixture
JP6217972B2 (en) lighting equipment
JP5842117B2 (en) Lighting device
JP5820999B2 (en) Lighting device
WO2013128761A1 (en) Illumination module and illumination device comprising same
JP2013513198A (en) Lighting module
JP2013016463A (en) Optical device and light-emitting device having the same
JP6078906B2 (en) Lighting device
JP5816850B2 (en) Lighting device
JP2013182730A (en) Lighting module, and lighting device having the same
JP2012175013A (en) Light-emitting device and illumination apparatus
JP5810317B2 (en) Lighting device
JP2015057791A (en) Lighting device
US20110285268A1 (en) Light-emitting device
JP6252887B2 (en) Lighting device
JP2016212371A (en) Luminous flux control member, light-emitting device and luminaire
TWI640719B (en) Lighting device
JP5559649B2 (en) Lighting device
JP6032555B2 (en) Lighting device
JP2014160616A (en) Illumination device
JP5853128B2 (en) lighting equipment
JP2014146429A (en) Lighting device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390001072.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874738

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120130066149

Country of ref document: DE

Ref document number: 112013006614

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874738

Country of ref document: EP

Kind code of ref document: A1