WO2014122186A1 - Ame muni d'un renfort et d'un joint - Google Patents

Ame muni d'un renfort et d'un joint Download PDF

Info

Publication number
WO2014122186A1
WO2014122186A1 PCT/EP2014/052269 EP2014052269W WO2014122186A1 WO 2014122186 A1 WO2014122186 A1 WO 2014122186A1 EP 2014052269 W EP2014052269 W EP 2014052269W WO 2014122186 A1 WO2014122186 A1 WO 2014122186A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
reinforcement
film
face
reinforcements
Prior art date
Application number
PCT/EP2014/052269
Other languages
English (en)
Inventor
Benoît BARTHE
Denis Tremblay
Rémi VINCENT
Original Assignee
Commissariat à l'énergie atomique et aux énergies alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'énergie atomique et aux énergies alternatives filed Critical Commissariat à l'énergie atomique et aux énergies alternatives
Publication of WO2014122186A1 publication Critical patent/WO2014122186A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0284Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to proton exchange membranes (so-called PEMs for Proton Exchange Membrane in English), and in particular the structure of a membrane / electrode assembly provided with reinforcements and peripheral seals. Such membrane / electrode assemblies are notably included in fuel cells.
  • Fuel cells are envisaged as a power supply system for large scale motor vehicles in the future, as well as for a large number of applications.
  • a fuel cell is an electrochemical device that converts chemical energy directly into electrical energy. Dihydrogen is used as fuel for the fuel cell. The dihydrogen is oxidized and ionized on one electrode of the cell and the oxygen of the air is reduced on another electrode of the cell. The chemical reaction produces water at the cathode, with oxygen being reduced and reacting with the protons.
  • the great advantage of the fuel cell is that it avoids releases of atmospheric pollutants at the place of generation.
  • Proton exchange membrane fuel cells called PEM
  • PEM Proton exchange membrane fuel cells
  • Each cell comprises an electrolyte membrane allowing only the passage of protons and not the passage of electrons.
  • the membrane comprises an anode on a first face and a cathode on a second face to form a membrane / electrode assembly called AME.
  • dihydrogen is ionized to produce protons crossing the membrane.
  • the electrons produced by this reaction migrate to a flow plate and then pass through an electrical circuit external to the cell to form an electric current.
  • the fuel cell may comprise a plurality of flow plates, for example of metal, stacked one on top of the other.
  • the membrane is disposed between two flow plates.
  • the flow plates may include channels and orifices to guide reagents and products to / from the membrane.
  • the plates are also electrically conductive to form collectors of electrons generated at the anode.
  • Gaseous diffusion layers are interposed between the electrodes and the flow plates and are in contact with the flow plates.
  • Fuel cell assembly processes, and in particular ⁇ manufacturing processes, are of critical importance to fuel cell performance and service life.
  • the membrane / electrode assembly formed comprises reinforcements. Each reinforcement surrounds the electrodes.
  • the reinforcements are formed from polymeric films and reinforce the membrane / electrode assembly at the gas and coolant inlets.
  • the reinforcements facilitate the manipulation of the membrane / electrode assembly to prevent its deterioration.
  • the reinforcements also limit the dimensional variations of the membrane as a function of temperature and humidity. In practice, the reinforcements are superimposed on the periphery of the electrodes, in order to limit the gas permeation phenomenon at the origin of a deterioration of the membrane / electrode assembly.
  • a reinforcement is made by forming an opening in the middle part of a polymer film.
  • the reinforcement comprises a pressure-sensitive adhesive on one side.
  • a membrane / electrode assembly is recovered and the opening of the reinforcement is placed directly above an electrode.
  • the reinforcement covers the periphery of this electrode.
  • a pressing is then performed to secure the reinforcement to the membrane and the edge of the electrode, through the adhesive. Cutouts are then made in the reinforcement to form the gas and liquid inlets.
  • Gaseous diffusion layers are then placed in contact with the exposed portion of the electrodes.
  • a hot pressing operation is frequently performed to promote contact between a gas diffusion layer and its electrode.
  • the periphery of each gas diffusion layer covers at least a portion of a respective reinforcement, in order to limit the direct shear of the membrane.
  • the edge of the membrane does not extend to the edge of the outer reinforcements. Indeed, it is possible to use a smaller surface membrane to reduce its cost without affecting its effectiveness. It also limits the risk of pollution of the active area of the membrane by capillary coolant from the openings in the reinforcement. The coolant is frequently a mixture of water and glycol.
  • the membrane can also extend to the periphery of the reinforcements, the flow ducts then passing through the membrane. According to other designs, the reinforcements are only secured by hot pressing to the membrane, without using a layer of adhesive. One then realizes that the choice of the reinforcement can alter the operation of the fuel cell, the reinforcement being able to pollute the membrane. The pollution of the membrane is manifested by a noticeable deterioration of the performance of the fuel cell.
  • hydrophilic material For reinforcements without adhesive, it is necessary to use polymer films of hydrophilic material. Indeed, to ensure a good connection between a reinforcement and the membrane and a mutual adhesion between the reinforcements, a hydrophilic material is essential to avoid delamination. Such delamination may cause leakage or insufficient mechanical support of the membrane during its handling.
  • the life of a fuel cell is essentially limited by the degradation of the MEA.
  • fuel cell cells can be reconditioned by disassembly, removal of damaged AMEs and assembly of new MEAs between recovered bipolar plates.
  • a seal is interposed between these components at the periphery of the gas diffusion layer.
  • the seals remain partially or integrally integral with the reinforcement, which leads most often to their destruction during disassembly. The difficulty and the cost of replacing the MEA are then substantially increased.
  • the invention aims to solve one or more of these disadvantages.
  • the invention thus relates to an electrochemical cell as defined in the appended claims.
  • the invention further relates to a method of manufacturing an electrochemical cell as defined in the appended claims.
  • FIG 1 is a schematic perspective view of a stack of cells in a fuel cell
  • FIG. 2 is a diagrammatic sectional view of a fuel cell cell according to a first embodiment of the invention
  • FIG 3 is a schematic sectional view of a fuel cell cell according to a second embodiment of the invention.
  • FIG. 4 is a comparative diagram of the performances of a cell according to the invention and of a cell according to the state of the art.
  • the invention proposes an electrochemical cell, for example for a fuel cell, including a reinforcement formed of a Tefzel 200 CLZ film having a hydrophilic face and a hydrophobic face. The hydrophilic face is secured to the membrane and the hydrophobic face is in contact with a seal disposed on the periphery of a gaseous diffusion layer.
  • FIG. 1 is a schematic exploded perspective view of a stack of cells 1 of a fuel cell 2.
  • the fuel cell 2 comprises a plurality of cells 1 superimposed.
  • the cells 1 are of the proton exchange membrane or polymer electrolyte membrane type.
  • the fuel cell 2 comprises a fuel source 120 supplying hydrogen to an inlet of each cell 1.
  • the fuel cell 1 also comprises an air source 1 22 supplying an inlet of each cell with air, containing oxygen used as oxidant.
  • Each cell 1 also includes exhaust channels not shown.
  • Each cell 1 may also have a cooling circuit (shown in FIG. 2).
  • Each cell 1 comprises a membrane / electrode assembly 1 1 0.
  • the fuel cell 2 illustrated notably comprises membrane / electrode assemblies or AME 1 1 0.
  • a membrane / electrode assembly 1 10 comprises an electrolyte 1 1 3, a cathode (not illustrated in Figure 1) and an anode 1 1 1 placed on either side of the electrolyte and fixed on the electrolyte 1 13.
  • a bipolar plate 110 thus comprises a metal foil 102 oriented towards a cathode of an AME 110 and a metal foil 110 directed towards an anode of another AME 110.
  • the metal foils 110 and 108 comprise raised surfaces defining flow channels.
  • the metal sheets 1 01 and 1 02 are secured by welds 1 04. In a manner known per se, during operation of the cell 1, air flows between ⁇ and the metal sheet 1 02, and dihydrogen flows between ⁇ and the metal sheet January 1.
  • the hydrogen is ionized to produce protons that pass through ⁇ .
  • the electrons produced by this reaction are collected by the metal foil 102.
  • the electrons produced are then applied to an electrical charge connected to the fuel cell 2 to form an electric current.
  • oxygen is reduced and reacts with the protons to form water.
  • a cell of the fuel cell usually generates a DC voltage between the anode and the cathode of the order of 1 V.
  • the catalyst material used at the anode or the cathode is advantageously platinum, for its excellent catalytic performance.
  • FIG. 2 is a diagrammatic sectional view of a first embodiment of a cell 1 illustrated in FIG.
  • the electrolyte layer 1 1 3 forms a semipermeable membrane allowing proton conduction while being impermeable to the gases present in the cell.
  • the membrane 1 13 also prevents a passage of electrons between the anode 1 1 1 and the cathode 1 1 2.
  • the cell 1 further comprises reinforcements 1 31 and 132 disposed at the periphery respectively of the anode 1 1 1 and the cathode 1 12.
  • the reinforcements 1 31 and 1 32 are superimposed on the periphery of the electrodes with an overflow on the membrane 1 1 3, in order to limit the phenomenon of gas permeation causing a deterioration of the membrane / electrode assembly.
  • the reinforcements 1 31 and 1 32 extend laterally beyond the membrane 1 1 3.
  • the reinforcements 1 31 and 1 32 are in contact and secured by this portion extending laterally beyond the membrane 1 1 3.
  • a coolant flow duct 124 is formed in particular through the reinforcements 1 31 and 1 32 and through the metal sheets 1 01 and 102.
  • the duct 124 is formed laterally with respect to ⁇ , avoiding the risks of diffusion by capillarity of the coolant in the membrane 1 1 3.
  • the reinforcements 131 and 1 32 also facilitate the manipulation of the membrane / electrode assembly to prevent its deterioration.
  • the reinforcements January 31 and January 32 also limit the dimensional variations of the membrane 1 1 3 as a function of temperature and humidity.
  • Each cell has a gas diffusion layer 21 disposed between the anode 11 1 and the metal foil 110.
  • Each cell also has a gas diffusion layer 22 disposed between the cathode 1 1 2 and the metal foil 1 02.
  • Joints 23 are arranged between the metal foil 1 01 and the reinforcement 1 31 on the one hand, and between the metal foil 1 02 and the reinforcement 1 32 on the other hand.
  • the seals 23 are disposed at the periphery of the gas diffusion layers 21 and 22. The seals 23 thus surround the median openings of the reinforcements 1 31 and 1 32.
  • the reinforcements 131 and 132 are made of films marketed under the reference Tefzel 200 CLZ by the company Dupont de Nemours. Such films include an ETFE material, one side of which has undergone a specific treatment to make it hydrophilic, the material being in itself hydrophobic. These films each comprise a hydrophilic face and a hydrophobic face. The hydrophobic faces of the films are in contact with the seals 23. Thus, during disassembly of the cell 1, the seals 23 easily separate from the films without deteriorating.
  • the hydrophilic face of the reinforcement 1 31 is in contact and secured to the hydrophilic face of the reinforcement 1 32.
  • the hydrophilic face of the reinforcement 1 31 is in contact and secured to the membrane 1 1 3.
  • the hydrophilic face of the reinforcement 1 32 is in contact and secured to the membrane 1 1 3.
  • Fixing such reinforcements 131 and 1 32 on the membrane 1 1 3 includes the positioning of the reinforcements 1 31 and 1 32 on either side of the membrane 1 1 3.
  • the membrane 1 13 is positioned to appear at the openings Means reinforcements 1 31 and 1 32.
  • a hot pressing step is carried out for mutual joining of the reinforcements 1 31 and 1 32 and for a joining of these reinforcements to the membrane 1 1 3.
  • the joining between the reinforcements 1 31 and 1 32 guarantees the absence of contact between the membrane 1 1 3 and the coolant of the conduit 1 24.
  • the connection between the reinforcements 1 31 and 1 32 also ensures the absence of gas leakage through the gas diffusion layers.
  • the ETFE polymer of the reinforcing films 1 31 and 1 32 is sufficiently stable to undergo hot pressing at 140 ° C under a pressure of 4MPasans to generate shrinkage.
  • the cells 1 were disassembled without adhesion between the reinforcements 1 31, 132 and the seals 23.
  • the films chosen for the reinforcements 1 31 and 1 32 have fulfilled a number of pre-determined requirements:
  • hydrophobic face having a surface energy of less than 30 mN / m, preferably less than 25 mN / m, and if possible less than 20 mN / m;
  • hydrophilic surface having a surface energy at least equal to
  • FIG. 3 is a schematic sectional view of a second embodiment of a cell 1 illustrated in FIG.
  • the membrane 1 1 3 extends to the periphery of the reinforcements 1 31 and 1 32.
  • the reinforcements 1 31 and 132 are therefore essentially in contact with the membrane 1 13.
  • the reinforcements 1 31 and 132 are secured to the membrane 1 1 3.
  • the conduit 1 24 coolant flow is formed through the reinforcements 1 31 and 1 32, through the membrane 1 1 3 and through the metal sheets 1 01 and 1 02.
  • reinforcements 1 31 and 1 32 also formed of films marketed under the reference Tefzel 200 CLZ are used.
  • the method of assembling the reinforcements on the membrane advantageously involves a hot pressing of these films, between which the membrane 1 1 3 is arranged beforehand.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

ICG10796 PCT Depot Texte.doc 10 ABREGE L'invention concerne une cellule électrochimique (1) comprenant : -une membrane échangeuse de protons (113); -deux électrodes (111, 112) disposées de part et d'autre de la membrane; -un premier renfort (131) formé d'un film de Tefzel 200CLZ présentant une ouverture médiane, ledit film comportant une face hydrophile solidarisée à la membrane et une face hydrophobe; -un premier joint (23) entourant l'ouverture médiane et disposé en contact avec la face hydrophobe dudit film. Fig. 2

Description

AME MUNI D'UN RENFORT ET D'UN JOINT
L'invention concerne les membranes échangeuses de protons (dites PEM pour Proton Exchange Membrane en langue anglaise), et en particulier la structure d'un assemblage membrane/électrodes muni de renforts et de joints périphériques. De tels assemblages membrane/électrodes sont notamment inclus dans des piles à combustible.
Les piles à combustible sont envisagées comme système d'alimentation électrique pour des véhicules automobiles produits à grande échelle dans le futur, ainsi que pour un grand nombre d'applications. Une pile à combustible est un dispositif électrochimique qui convertit de l'énergie chimique directement en énergie électrique. Du dihydrogène est utilisé comme carburant de la pile à combustible. Le dihydrogène est oxydé et ionisé sur une électrode de la pile et du dioxygène de l'air est réduit sur une autre électrode de la pile. La réaction chimique produit de l'eau au niveau de la cathode, de l'oxygène étant réduit et réagissant avec les protons. Le grand avantage de la pile à combustible est d'éviter des rejets de composés polluants atmosphériques sur le lieu de génération d'électricité.
Les piles à combustible à membrane d'échange de protons, dites PEM, présentent des propriétés de compacité particulièrement intéressantes. Chaque cellule comprend une membrane électrolytique permettant seulement le passage de protons et non le passage des électrons. La membrane comprend une anode sur une première face et une cathode sur une deuxième face pour former un assemblage membrane/électrodes dit AME.
Au niveau de l'anode, le dihydrogène est ionisé pour produire des protons traversant la membrane. Les électrons produits par cette réaction migrent vers une plaque d'écoulement, puis traversent un circuit électrique externe à la cellule pour former un courant électrique.
La pile à combustible peut comprendre plusieurs plaques d'écoulement, par exemple en métal, empilées les unes sur les autres. La membrane est disposée entre deux plaques d'écoulement. Les plaques d'écoulement peuvent comprendre des canaux et orifices pour guider les réactifs et les produits vers/depuis la membrane. Les plaques sont également électriquement conductrices pour former des collecteurs des électrons générés au niveau de l'anode.
Des couches de diffusion gazeuse (pour Gaz Diffusion Layer en langue anglaise) sont interposées entre les électrodes et les plaques d'écoulement et sont en contact avec les plaques d'écoulement. Les procédés d'assemblage de la pile à combustible, et en particulier les procédés de fabrication de ΑΜΕ, ont une importance déterminante sur les performances de la pile à combustible et sur sa durée de vie.
Le document US2008/0105354 décrit un tel procédé d'assemblage membrane/électrodes pour une pile à combustible. L'assemblage membrane/électrodes formé comporte des renforts. Chaque renfort entoure les électrodes. Les renforts sont formés à partir de films polymères et renforcent l'assemblage membrane/électrodes au niveau des arrivées de gaz et de liquide de refroidissement. Les renforts facilitent la manipulation de l'assemblage membrane/électrodes pour éviter sa détérioration. Les renforts limitent également les variations dimensionnelles de la membrane en fonction de la température et de l'humidité. En pratique, les renforts se superposent à la périphérie des électrodes, afin de limiter le phénomène de perméation de gaz à l'origine d'une détérioration de l'assemblage membrane/électrodes.
Selon ce procédé, on réalise un renfort en formant une ouverture dans la partie médiane d'un film polymère. Le renfort comporte un adhésif sensible à la pression sur une face. On récupère un assemblage membrane/électrodes et l'on vient placer l'ouverture du renfort à l'aplomb d'une électrode. Le renfort recouvre la périphérie de cette électrode. Un pressage est ensuite réalisé pour solidariser le renfort à la membrane et à la bordure de l'électrode, par l'intermédiaire de l'adhésif. Des découpes sont ensuite réalisées dans le renfort pour former les arrivées de gaz et de liquide.
En pratique, on rapporte deux renforts. Deux films polymères viennent ainsi prendre en sandwich la bordure de la membrane. Chacun des films comporte de l'adhésif sensible à la pression. L'adhésif de chaque film est mis en contact avec l'adhésif de l'autre film, avec une face de la bordure de la membrane, et avec la bordure d'une électrode.
Des couches de diffusion gazeuse sont ensuite placées en contact avec la partie découverte des électrodes. Une opération de pressage à chaud est fréquemment réalisée pour favoriser le contact entre une couche de diffusion gazeuse et son électrode. La périphérie de chaque couche de diffusion gazeuse recouvre au moins une partie d'un renfort respectif, afin de limiter le cisaillement direct de la membrane.
Dans cette configuration, la bordure de la membrane ne s'étend pas jusqu'à la bordure des renforts externes. En effet, on peut ainsi utiliser une membrane de surface plus réduite afin de réduire son coût sans affecter son efficacité. On limite en outre les risques de pollution de la zone active de la membrane par du liquide de refroidissement par capillarité depuis les ouvertures ménagées dans le renfort. Le liquide de refroidissement est fréquemment un mélange d'eau et de glycol. Selon d'autres conceptions connues, la membrane peut également s'étendre jusqu'à la périphérie des renforts, les conduits d'écoulement traversant alors la membrane. Selon d'autres conceptions, les renforts sont uniquement solidarisés par pressage à chaud à la membrane, sans faire appel à une couche d'adhésif. On s'aperçoit alors que le choix du renfort peut altérer le fonctionnement de la pile à combustible, le renfort pouvant polluer la membrane. La pollution de la membrane se manifeste par une dégradation notable des performances de la pile à combustible.
Pour des renforts dépourvus d'adhésif, il est nécessaire d'utiliser des films polymères en matériau hydrophile. En effet, pour assurer une bonne liaison entre un renfort et la membrane et une adhésion mutuelle entre les renforts, un matériau hydrophile est indispensable pour éviter une délamination. Une telle délamination peut être à l'origine de fuites ou d'un soutien mécanique insuffisant de la membrane lors de ses manipulations.
La durée de vie d'une pile à combustible est essentiellement limitée par la dégradation de l'AME. Ainsi, les cellules de piles à combustibles peuvent être reconditionnées par démontage, retrait des AME détériorés et montage de nouveaux AME entre les plaques bipolaires récupérées. Afin d'assurer l'étanchéité entre un renfort et une plaque bipolaire, un joint est interposé entre ces composants à la périphérie de la couche de diffusion gazeuse. Lors du démontage des cellules, les joints restent partiellement ou intégralement solidaires du renfort, ce qui conduit le plus souvent à leur destruction lors du démontage. La difficulté et le coût du remplacement de l'AME sont alors sensiblement accrus.
L'invention vise à résoudre un ou plusieurs de ces inconvénients.
L'invention porte ainsi sur une cellule électrochimique telle que définies dans les revendications annexées.
L'invention porte en outre sur un procédé de fabrication d'une cellule électrochimique tel que défini dans les revendications annexées.
D'autres caractéristiques et avantages de l'invention ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels :
-la figure 1 est une représentation schématique en perspective d'un empilement de cellules dans une pile à combustible ;
-la figure 2 est une vue en coupe schématique d'une cellule de pile à combustible selon un premier mode de réalisation de l'invention ;
-la figure 3 est une vue en coupe schématique d'une cellule de pile à combustible selon un deuxième mode de réalisation de l'invention ;
-la figure 4 est un diagramme comparatif des performances d'une cellule selon l'invention et d'une cellule selon l'état de la technique. L'invention propose une cellule électrochimique, par exemple pour pile à combustible, incluant un renfort formé d'un film de Tefzel 200 CLZ présentant une face hydrophile et une face hydrophobe. La face hydrophile est solidarisée à la membrane et la face hydrophobe est en contact avec un joint disposé à la périphérie d'une couche de diffusion gazeuse.
Les inventeurs ont constaté qu'un tel renfort répondait à plusieurs contraintes de conception parfois contradictoires :
-permettre l'adhésion à la membrane ;
-permettre une adhésion mutuelle des renforts par pressage à chaud ; -éviter l'adhésion avec un joint périphérique ;
-éviter de contaminer la membrane de l'AME. La figure 1 est une vue en perspective éclatée schématique d'un empilement de cellules 1 d'une pile à combustible 2. La pile à combustible 2 comprend plusieurs cellules 1 superposées. Les cellules 1 sont du type à membrane échangeuse de protons ou membrane à électrolyte polymère.
La pile à combustible 2 comprend une source de carburant 120 alimentant en dihydrogène une entrée de chaque cellule 1 . La pile à combustible 1 comprend également une source d'air 1 22 alimentant une entrée de chaque cellule en air, contenant de l'oxygène utilisé comme oxydant. Chaque cellule 1 comprend également des canaux d'échappement non illustrés. Chaque cellule 1 peut également présenter un circuit de refroidissement (illustré à la figure 2).
Chaque cellule 1 comprend un assemblage membrane/électrodes 1 1 0. La pile à combustible 2 illustrée comprend notamment des assemblages membrane/électrodes ou AME 1 1 0. Un assemblage membrane/électrodes 1 10 comprend un électrolyte 1 1 3, une cathode (non illustrée à la figure 1 ) et une anode 1 1 1 placées de part et d'autre de l'électrolyte et fixées sur cet électrolyte 1 13.
Entre chaque couple d'AME adjacents, un couple de guides d'écoulement est disposé. Les guides d'écoulement de chaque couple sont solidaires pour former une plaque bipolaire 103. Chaque guide d'écoulement est par exemple formé d'une feuille métallique, usuellement en acier inoxydable. Une plaque bipolaire 1 03 comprend ainsi une feuille métallique 102 orientée vers une cathode d'une AME 1 1 0 et une feuille métallique 1 01 orientée vers une anode d'une autre AME 1 1 0. Les feuilles métalliques 1 01 et 1 02 comportent des surfaces en relief définissant des canaux d'écoulement. Les feuilles métalliques 1 01 et 1 02 sont solidarisées par des soudures 1 04. De façon connue en soi, durant le fonctionnement de la cellule 1 , de l'air s'écoule entre ΑΜΕ et la feuille métallique 1 02, et du dihydrogène s'écoule entre ΑΜΕ et la feuille métallique 1 01 . Au niveau de l'anode 1 1 1 , le dihydrogène est ionisé pour produire des protons qui traversent ΑΜΕ. Les électrons produits par cette réaction sont collectés par la feuille métallique 102. Les électrons produits sont ensuite appliqués sur une charge électrique connectée à la pile à combustible 2 pour former un courant électrique. Au niveau de la cathode 1 1 2, de l'oxygène est réduit et réagit avec les protons pour former de l'eau. Les réactions au niveau de l'anode et de la cathode sont régies comme suit :
H 2 → 2H+ + 2e au niveau de l'anode ;
4H + 4e + 02→ 2H20 au niveau de la cathode.
Durant son fonctionnement, une cellule de la pile à combustible génère usuellement une tension continue entre l'anode et la cathode de l'ordre de 1 V.
Le matériau catalyseur utilisé à l'anode ou à la cathode est avantageusement du platine, pour ses excellentes performances catalytiques.
La figure 2 est une vue en coupe schématique d'un premier mode de réalisation d'une cellule 1 illustrée à la figure 1 . La couche d'électrolyte 1 1 3 forme une membrane semi-perméable permettant une conduction protonique tout en étant imperméable aux gaz présents dans la cellule. La membrane 1 13 empêche également un passage des électrons entre l'anode 1 1 1 et la cathode 1 1 2.
La cellule 1 comporte en outre des renforts 1 31 et 132 disposés à la périphérie respectivement de l'anode 1 1 1 et de la cathode 1 12. Les renforts 1 31 et 1 32 se superposent à la périphérie des électrodes avec un débordement sur la membrane 1 1 3, afin de limiter le phénomène de perméation de gaz à l'origine d'une détérioration de l'assemblage membrane/électrodes. Les renforts 1 31 et 1 32 s'étendent latéralement au-delà de la membrane 1 1 3. Les renforts 1 31 et 1 32 sont en contact et solidarisés par cette partie s'étendant latéralement au- delà de la membrane 1 1 3.
Un conduit 124 d'écoulement de liquide de refroidissement est notamment formé à travers les renforts 1 31 et 1 32 et à travers les feuilles métalliques 1 01 et 102. Le conduit 124 est formé latéralement par rapport à ΓΑΜΕ, évitant les risques de diffusion par capillarité du liquide de refroidissement dans la membrane 1 1 3. Les renforts 131 et 1 32 facilitent également la manipulation de l'assemblage membrane/électrodes pour éviter sa détérioration. Les renforts 1 31 et 1 32 limitent également les variations dimensionnelles de la membrane 1 1 3 en fonction de la température et de l'humidité. Chaque cellule présente une couche de diffusion de gaz 21 disposée entre l'anode 1 1 1 et la feuille métallique 1 01 . Chaque cellule présente par ailleurs une couche de diffusion de gaz 22 disposée entre la cathode 1 1 2 et la feuille métallique 1 02. Des joints 23 sont disposés entre la feuille métallique 1 01 et le renfort 1 31 d'une part, et entre la feuille métallique 1 02 et le renfort 1 32 d'autre part. Les joints 23 sont disposés à la périphérie des couches de diffusion gazeuse 21 et 22. Les joints 23 entourent donc les ouvertures médianes des renforts 1 31 et 1 32.
Les renforts 131 et 132 sont formés de films commercialisés sous la référence Tefzel 200 CLZ par la société Dupont de Nemours. De tels films incluent un matériau ETFE dont une face a subi un traitement spécifique pour la rendre hydrophile, le matériau étant en lui-même hydrophobe. Ces films comportent chacun une face hydrophile et une face hydrophobe. Les faces hydrophobes des films sont en contact avec les joints 23. Ainsi, lors d'un démontage de la cellule 1 , les joints 23 se séparent aisément des films sans se détériorer. La face hydrophile du renfort 1 31 est en contact et solidarisée avec la face hydrophile du renfort 1 32. La face hydrophile du renfort 1 31 est en contact et solidarisée avec la membrane 1 1 3. La face hydrophile du renfort 1 32 est en contact et solidarisée avec la membrane 1 1 3.
L'utilisation de tels films pour les renforts 1 31 et 1 32 permet une adhésion satisfaisante à la membrane 1 1 3 et une adhésion mutuelle lors de la mise en œuvre d'une étape de pressage à chaud. Par des tests, ces films ont été les seuls identifiés qui présentent des propriétés satisfaisantes d'adhésion sur une face et de non adhésion sur l'autre face, sans pour autant contaminer la membrane de l'AME. La figure 4 des résultats de tests comparatifs, établissant que la cellule 1 munie de tels renforts (courbe en trait plein) présente des performances identiques à une cellule dépourvue de renforts (courbe en trait discontinu). Ces résultats prouvent l'absence de pollution de la membrane 1 1 3 par les renforts avec les films utilisés. Les films utilisés n'étant initialement pas prévus pour une application dans une cellule 1 , leur absence de pollution de la membrane 1 1 3 n'a pu être déterminée que de façon empirique.
La fixation de tels renforts 131 et 1 32 sur la membrane 1 1 3 inclut le positionnement des renforts 1 31 et 1 32 de part et d'autre de la membrane 1 1 3. La membrane 1 13 est positionnée pour apparaître au niveau des orifices médians des renforts 1 31 et 1 32. On réalise avantageusement une étape de pressage à chaud pour une solidarisation mutuelle des renforts 1 31 et 1 32 et pour une solidarisation de ces renforts à la membrane 1 1 3. La solidarisation entre les renforts 1 31 et 1 32 garantit l'absence de contact entre la membrane 1 1 3 et le liquide de refroidissement du conduit 1 24. La solidarisation entre les renforts 1 31 et 1 32 garantit également l'absence de fuite des gaz traversant les couches de diffusion gazeuses.
Avec une température de fusion cristalline Tm de 270 ° C, le polymère ETFE des films des renforts 1 31 et 1 32 est suffisamment stable pour subir un pressage à chaud à 140 ° C sous une pression de 4MPasans générer de retrait.
Après plusieurs centaines d'heures de tests à des températures de fonctionnement au moins égales à 80 ° C, les cellules 1 ont été démontées sans adhésion entre les renforts 1 31 , 132 et les joints 23. Les films choisis pour les renforts 1 31 et 1 32 ont permis de remplir un certain nombre d'exigences fixées au préalable :
-une face hydrophobe présentant une énergie de surface inférieure à 30mN/m, de préférence inférieure à 25mN/m, et si possible inférieure à 20mN/m ;
-une face hydrophile présentant une énergie de surface au moins égale à
50mN/m, de préférence supérieure à 65mN/m, et si possible supérieure à 80mN/m ;
-une température de fusion cristalline au moins égale à 1 90 ° C, de préférence supérieure à 21 0 ° C, et si possible au mdns égale à 220° C ;
-une épaisseur comprise entre 20 et 75 μιτι ;
-une rugosité inférieure à 5μιη, si possible inférieure à 1 μιτι ;
-un matériau chimiquement inerte.
La figure 3 est une vue en coupe schématique d'un deuxième mode de réalisation d'une cellule 1 illustrée à la figure 1 . Dans ce mode de réalisation, la membrane 1 1 3 s'étend jusqu'à la périphérie des renforts 1 31 et 1 32. Les renforts 1 31 et 132 sont donc essentiellement en contact avec la membrane 1 13. Les renforts 1 31 et 132 sont solidarisés à la membrane 1 1 3.
Le conduit 1 24 d'écoulement de liquide de refroidissement est ménagé à travers les renforts 1 31 et 1 32, à travers la membrane 1 1 3 et à travers les feuilles métalliques 1 01 et 1 02.
On utilise pour ce mode de réalisation des renforts 1 31 et 1 32 également formés de films commercialisés sous la référence Tefzel 200 CLZ. Comme pour le mode de réalisation précédant, le procédé d'assemblage des renforts sur la membrane met avantageusement en œuvre un pressage à chaud de ces films, entre lesquels on dispose la membrane 1 1 3 au préalable.

Claims

REVENDICATIONS
1 . Cellule électrochimique (1 ) caractérisée en ce qu'elle comprend :
-une membrane échangeuse de protons (1 13) ;
-deux électrodes (1 1 1 , 1 12) disposées de part et d'autre de la membrane ;
-un premier renfort (131 ) formé d'un film de Tefzel 200CLZ présentant une ouverture médiane, ledit film comportant une face hydrophile solidarisée à la membrane et une face hydrophobe ;
-un premier joint (23) entourant l'ouverture médiane et disposé en contact avec la face hydrophobe dudit film.
2. Cellule électrochimique (1 ) selon la revendication 1 , comprenant en outre un guide d'écoulement (101 ) disposé à l'aplomb de la membrane (1 13), le joint (23) étant comprimé entre le guide d'écoulement et ledit renfort (131 ).
3. Cellule électrochimique (1 ) selon la revendication 1 ou 2, dans laquelle la membrane (1 13) s'étend jusqu'à la périphérie dudit renfort (131 ).
4. Cellule électrochimique (1 ) selon la revendication 1 ou 2, comprenant un deuxième renfort (132) formé d'un film de Tefzel 200CLZ présentant une ouverture médiane et comportant une face hydrophile solidarisée à la membrane (1 13) et une face hydrophobe, les renforts (131 , 132) s'étendant latéralement au-delà de la membrane, les faces hydrophiles des films étant en contact et étant solidarisées.
5. Cellule électrochimique (1 ) selon l'une quelconque des revendications précédentes, dans laquelle la face hydrophile du premier renfort (131 ) est en contact et solidarisée à une desdites électrodes.
6. Cellule électrochimique (1 ) selon l'une quelconque des revendications précédentes, dans laquelle un conduit d'écoulement (124) de liquide de refroidissement traverse le premier renfort (131 ).
7. Pile à combustible (2) incluant une cellule électrochimique (1 ) selon l'une quelconque des revendications précédentes.
8. Procédé de fabrication d'une cellule électrochimique (1 ), comprenant les étapes de :
-placement d'une face hydrophile d'un premier renfort (131 ) contre une membrane échangeuse de protons (1 13), ledit premier renfort étant formé d'un film de Tefzel 200CLZ et comportant ladite face hydrophile et une face hydrophobe, ledit film comportant une ouverture médiane ; -solidarisation de la face hydrophile à la membrane par pressage à chaud ; -placement d'un joint (23) autour de l'ouverture médiane et en contact avec la face hydrophobe dudit film.
9. Procédé de fabrication selon la revendication 8, dans lequel ledit pressage à chaud est réalisé à une pression d'au moins 3 MPa et à une température d'au moins 120°C.
10. Procédé de fabrication selon la revendication 8 ou 9, comprenant en outre une étape de placement d'un guide d'écoulement (101 ) à l'aplomb de la membrane (1 13) et en contact avec ledit joint (23).
PCT/EP2014/052269 2013-02-06 2014-02-05 Ame muni d'un renfort et d'un joint WO2014122186A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1350991 2013-02-06
FR1350991A FR3001833B1 (fr) 2013-02-06 2013-02-06 Ame muni d'un renfort et d'un joint

Publications (1)

Publication Number Publication Date
WO2014122186A1 true WO2014122186A1 (fr) 2014-08-14

Family

ID=48407681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/052269 WO2014122186A1 (fr) 2013-02-06 2014-02-05 Ame muni d'un renfort et d'un joint

Country Status (2)

Country Link
FR (1) FR3001833B1 (fr)
WO (1) WO2014122186A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10103399B2 (en) * 2014-11-12 2018-10-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of manufacturing a cell unit of a fuel cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3060861A1 (fr) * 2016-12-20 2018-06-22 Compagnie Generale Des Etablissements Michelin Procede de fabrication d'assemblage membrane-electrode pour pile a combustible et ligne de fabrication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020068208A1 (en) * 2000-09-28 2002-06-06 Dristy Mark E. Cell frame/flow field integration method and apparatus
EP1220345A1 (fr) * 1999-09-01 2002-07-03 Nok Corporation Cellule electrochimique
US20080105354A1 (en) 2006-11-08 2008-05-08 Gm Global Technology Operations, Inc. Manufacture or membrane electrode assembly with edge protection for PEM fuel cells
US20090162732A1 (en) * 2007-12-21 2009-06-25 Marc Noblet Fuel cell employing perimeter gasket with perceivable orientation indicator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1220345A1 (fr) * 1999-09-01 2002-07-03 Nok Corporation Cellule electrochimique
US20020068208A1 (en) * 2000-09-28 2002-06-06 Dristy Mark E. Cell frame/flow field integration method and apparatus
US20080105354A1 (en) 2006-11-08 2008-05-08 Gm Global Technology Operations, Inc. Manufacture or membrane electrode assembly with edge protection for PEM fuel cells
US20090162732A1 (en) * 2007-12-21 2009-06-25 Marc Noblet Fuel cell employing perimeter gasket with perceivable orientation indicator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10103399B2 (en) * 2014-11-12 2018-10-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of manufacturing a cell unit of a fuel cell

Also Published As

Publication number Publication date
FR3001833B1 (fr) 2015-03-13
FR3001833A1 (fr) 2014-08-08

Similar Documents

Publication Publication Date Title
EP2704241B1 (fr) Procédé de fabrication d'une pile à combustible incluant un assemblage électrode/membrane
EP3175502B1 (fr) Réacteur électrochimique équilibrant les pertes de charge des zones d'homogénéisation cathode/anode
EP3075020B1 (fr) Procede de fabrication d'un assemblage membrane/electrodes comportant des renforts
FR3023981A1 (fr) Plaque bipolaire pour reacteur electrochimique a zone d'homogeneisation compacte et a faible differentiel de pression
EP3195391B1 (fr) Pile a combustible destinee a la detection d'un polluant
WO2014122186A1 (fr) Ame muni d'un renfort et d'un joint
JP2007048568A (ja) 燃料電池の膜・電極接合体,燃料電池および膜・電極接合体の製造方法
JP2008034274A (ja) 燃料電池用セパレータ及び燃料電池用セパレータ構成用プレート及び燃料電池用セパレータの製造方法
EP2893589B1 (fr) Pile a combustible limitant le phenomene de corrosion
EP3499625B1 (fr) Système incluant une pile à combustible à membrane échangeuse de protons limitant les fuites de carburant
EP3499623B1 (fr) Réacteur électrochimique a membrane échangeuse de protons à haute temperature adapté pour stockage basse temperature
JP5628110B2 (ja) 電解質膜・電極構造体の製造装置
JP2008269909A (ja) 燃料電池に用いられる膜電極接合体の製造方法、および、膜電極接合体
JP5988104B2 (ja) 燃料電池
EP3063817B1 (fr) Pile a combustible a fonctionnement optimise le long du canal d'ecoulement d'air
EP1501144B1 (fr) Cellule de pile à combustible à forte surface active
EP3761420B1 (fr) Dispositif de diffusion gazeuse pour réduire les pertes de charge
JP2008204710A (ja) 燃料電池、燃料電池用接合体及びその製造方法
EP3686977A1 (fr) Plaque bipolaire pour homogeneiser la temperature de liquide de refroidissement
WO2017032939A1 (fr) Pile a combustible pour optimiser l'humidification de l'air
EP3686976A1 (fr) Plaque bipolaire pour homogeneiser les temperatures de liquide de refroidissement
FR3003695A1 (fr) Cellule de pile a combustible incluant un assemblage electrode/membrane et un renfort colle
FR3037191A1 (fr) Procede de fabrication d'une pile a combustible compacte et pile a combustible associee
FR3012681A1 (fr) Pile a combustible a fonctionnement optimise le long du canal d'ecoulement d'air

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14707950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14707950

Country of ref document: EP

Kind code of ref document: A1