WO2014121643A1 - 掘进灾害超前探测系统及方法 - Google Patents

掘进灾害超前探测系统及方法 Download PDF

Info

Publication number
WO2014121643A1
WO2014121643A1 PCT/CN2013/090629 CN2013090629W WO2014121643A1 WO 2014121643 A1 WO2014121643 A1 WO 2014121643A1 CN 2013090629 W CN2013090629 W CN 2013090629W WO 2014121643 A1 WO2014121643 A1 WO 2014121643A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
controller
roadheader
wave detector
wireless communication
Prior art date
Application number
PCT/CN2013/090629
Other languages
English (en)
French (fr)
Inventor
童紫原
童敏明
唐守锋
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2014121643A1 publication Critical patent/WO2014121643A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/04Safety devices
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices

Definitions

  • the invention relates to a detection method and a system, in particular to an advanced detection method and system for excavation disasters for real-time detection and early warning of geological disasters in front of roads used in mines or underground roadways.
  • the object of the present invention is to provide a method and system capable of detecting a frontal disaster in real time during the excavation process, realizing real-time monitoring and early warning of the disaster ahead, and avoiding the occurrence of geological disasters in the working face.
  • the system for advanced detection of the tunneling disaster of the present invention comprises an advanced detection device disposed on the roadheader, the signal detection amplifier is connected to the advanced detection device, the wireless communication circuit is connected to the signal acquisition amplifier, and the wireless communication circuit is connected to the wireless communication circuit.
  • the wireless base station is connected, the wireless base station is connected to the gateway, and the gateway is connected to the host through an industrial Ethernet connection.
  • the advanced detection device includes an electromagnetic wave detector, and the electromagnetic wave detector is provided with a controller, and the controller is respectively inclined with the tilting device disposed on the cantilever of the roadheader
  • the sensor and the vibration sensor are connected, wherein the output of the tilt sensor and the vibration sensor is connected to the input end of the controller, the output end of the controller is connected to the input end of the electromagnetic wave detector, and the output end of the electromagnetic wave detector is connected to the input end of the signal acquisition amplifier.
  • the output end of the signal acquisition amplifier is connected to the input end of the wireless communication circuit, and the wireless base station receives the signal of the wireless communication circuit, and the output signal of the wireless base station communicates with the monitoring host through the gateway and the industrial Ethernet.
  • the electromagnetic wave detector includes an electromagnetic wave transmitting circuit and an electromagnetic wave receiving circuit, and electromagnetic wave emission
  • the circuit is composed of a variable frequency oscillator connected to the controller and a connected transmitting antenna.
  • the electromagnetic wave receiving circuit is composed of a receiving antenna, a preamplifier and a band pass filter which are sequentially connected, and the band pass filter is connected with the model acquisition amplifier;
  • the variable frequency oscillator in the electromagnetic wave transmitting circuit can be generated
  • Electromagnetic wave signals of three different frequencies of 250KHz, 560 KHz and 820KHz.
  • An advanced detection method for an excavation disaster using the above system includes the following steps: a. Fixing an advanced detection device composed of an electromagnetic wave detector, a signal acquisition amplifier, a controller, and a wireless communication circuit on the body of the roadheader, The tilt sensor and the vibration sensor are tightly fixed on the cantilever of the roadheader;
  • the tilt sensor and the vibration sensor start to collect the information when the roadheader can work, and send the collected information to the controller.
  • the controller judges the tunneling based on the information collected by the tilt sensor and the vibration sensor. Whether the machine is at the time of stopping the excavation work after the bottoming work;
  • the electromagnetic wave transmitting circuit in the electromagnetic wave detector emits electromagnetic wave signals of different frequencies to the front of the tunneling, and the electromagnetic waves generated by the emitted electromagnetic wave signals enter the front rock mass or coal seam
  • the reflected signal is received by the electromagnetic wave receiving circuit in the electromagnetic wave detector, and the electromagnetic wave reflected signal reaches the monitoring host through the sequentially connected signal acquisition amplifier, the wireless communication circuit, the wireless base station, the gateway, and the industrial Ethernet;
  • the monitoring host performs a fast waveform analysis on all received electromagnetic wave reflection signals, and compares the pre-stored signal waveform with the electromagnetic wave reflection signal collected by the receiving circuit in the electromagnetic wave detector, if the amplitude of the detection result is found with the frequency If there is an abnormality in the change, it can be judged that the geological structure in front of the excavation is abnormal, so as to judge whether there is stress accumulation and geological structural abnormality in front of the roadheader, and the monitoring host will issue a geological disaster in front. Provide warning information to the operator.
  • the advanced detection device installed on the roadheader can detect the geological structure of the front rock formation or the interior of the coal rock in real time during the excavation process by using the gap time of the tunnel head to sweep the bottom of the tunnel. Since the detection does not pursue the depth of detection, the variable frequency oscillator can generate three different frequencies of 250KHz, 560 KHz and 820KHz through the transmitting antenna to realize the detection and scanning of the cross-section structures at different depths in the front rock formation, and the detection accuracy is much larger than the traditional geophysical methods. If it is improved, the danger of geological disasters can be discovered in time to take measures to avoid accidents.
  • the utility model has the advantages of simple structure, convenient operation and high precision, high detection precision, and can effectively avoid the accidents of the roadheader during the tunneling process, and has wide practicality.
  • FIG. 1 is a schematic structural view of an advanced detection system of the present invention.
  • Fig. 2 is a structural view of an electromagnetic wave detector of the advanced detecting device of the present invention.
  • Fig. 3 is a view showing the mounting of the advanced detecting device of the present invention on a roadheader.
  • Figure 4 is a schematic illustration of the advance detection device of the present invention operating on a roadheader.
  • 1-electromagnetic wave detector 2-signal acquisition amplifier; 3-controller; 4-tilt sensor; 5-vibration sensor; 6-wireless communication circuit; 7-radio base station; 8-gateway; 10 - monitoring host; 11-frequency oscillator; 12-transmitting antenna; 13-receiving antenna; 14-preamplifier; 15-bandpass filter; 16-lead detection device; 17-boring machine; Cantilever; 19-heading head.
  • the advanced disaster detection system of the present invention includes an advanced detection device 16 disposed on the roadheader 17, a signal acquisition amplifier 2 connected to the advance detection device 16, and a wireless communication circuit 6 connected to the signal acquisition amplifier 2.
  • Wireless communication circuit 6 through wireless signal and wireless base station 7 is connected, the wireless base station 7 is connected to the gateway 8, and the gateway 8 is connected to the monitoring host 10 through the industrial Ethernet 9.
  • the advanced detecting device includes an electromagnetic wave detector 1, and the electromagnetic wave detecting device 1 includes an electromagnetic wave transmitting circuit and electromagnetic wave receiving.
  • an electromagnetic wave transmitting circuit is constituted by a variable frequency oscillator 11 connected to a controller and a connected transmitting antenna 12, wherein the variable frequency oscillator 11 in the electromagnetic wave transmitting circuit can generate three different frequencies of 250 kHz, 560 kHz, and 820 kHz.
  • Electromagnetic wave receiving circuit electromagnetic wave receiving circuit is composed of sequentially connected receiving antenna 13, preamplifier 1 and band pass filter 15, said transmitting antenna 12 and receiving antenna 13 are circular directional antennas; band pass filter 15 and signal acquisition amplifier
  • the two-phase connection is provided;
  • the electromagnetic wave detector 1 is provided with a controller 3, and the controller 3 is respectively connected with the tilt sensor 4 and the vibration sensor 5 provided on the roadhead cantilever 18, wherein the tilt sensor 4 and the vibration sensor 5 are output terminated
  • the output end of the controller 3 is connected to the input end of the electromagnetic wave detector 1, the electromagnetic wave detector 1
  • the output terminal is connected to the input end of the signal acquisition amplifier 2, the output end of the signal acquisition amplifier 2 is connected to the input end of the wireless communication circuit 6, the wireless base station 7 receives the signal of the wireless communication circuit 6, and the output signal of the wireless base station 7 passes through the gateway 8 and the industrial ether.
  • the network 9 communicates with the monitoring host 10.
  • the model of the tilt sensor 4 is MT-90
  • the model of the vibration sensor 5 is VT9285
  • the model of the controller 3 is ATMEGA16
  • the model of the signal acquisition amplifier 2 is JBDT-3
  • the model of the wireless communication circuit 6 is RF950
  • the type of the preamplifier 14 Model VT120, bandpass filter 15 is BF32
  • variable frequency oscillator is AD9620.
  • the variable frequency oscillator can generate electromagnetic signals of three different frequencies of 250KHz, 560KHz and 820KHz to achieve different depths in the front rock formation. Probing scan of the cross-sectional structure.
  • the advanced detection device of the present invention is mounted on the roadheader 17, and the advanced detection device consisting of the electromagnetic wave detector 1, the signal acquisition amplifier 2, the controller 3, and the wireless communication circuit 6
  • the stator 16 is fixed to the body of the roadheader 17, and the tilt sensor 4 and the vibration sensor 5 are fixed to the roadhead cantilever 18.
  • the advance detecting device of the present invention is on the roadheader.
  • the roadheader boom 18 does not block the signal from the front detecting device 16 from emitting and receiving electromagnetic waves, and the advanced detecting device starts to work. , for advanced detection.
  • An advanced detection method for tunneling disasters using the above system is as follows:
  • the advanced detection device composed of the electromagnetic wave detector 1, the signal acquisition amplifier 2, the controller 3, and the wireless communication circuit 6 is fixed on the body of the roadheader 17, and the tilt sensor 5 and the vibration sensor 6 are closely fixed in the tunneling On the machine cantilever 18; b.
  • the tilt sensor 5 and the vibration sensor 6 start collecting information when the roadheader boom 18 is working, and send the collected information to the controller 3, the controller according to the tilt
  • the information collected by the sensor 5 and the vibration sensor 6 determines whether the roadheader 17 is in the time of stopping the excavation work after the bottoming work;
  • the electromagnetic wave transmitting circuit in the electromagnetic wave detector 1 emits electromagnetic wave signals of different frequencies to the front of the tunneling, and the emitted electromagnetic wave signals are reflected by the front rock mass or the coal seam.
  • the electromagnetic wave reflection signal is received by the electromagnetic wave receiving circuit in the electromagnetic wave detector 1, and the electromagnetic wave reflection signal reaches the monitoring host 10 through the sequentially connected signal acquisition amplifier, the wireless communication circuit 6, the wireless base station 7, the gateway 8, and the industrial Ethernet 9. d.
  • the electromagnetic wave detector 1, the signal acquisition amplifier 2, the controller 3 and the wireless communication circuit 6 are integrally assembled to form an advance detecting device 16, which is fixed on the body of the roadheader 17, and the tilt sensor 4 and the vibration sensor 5 are fixed in the tunneling
  • the controller 3 determines that the boring head 19 of the boring machine 17 and the boring machine cantilever 18 do not block the electromagnetic wave signal emitted by the electromagnetic wave detector 1 according to the tilt sensor 4, and controls the electromagnetic wave detector 1 to operate; according to the signal of the vibration sensor 5
  • the electromagnetic wave detector 1 is controlled to emit electromagnetic waves to the front of the tunneling, and receives electromagnetic wave signals reflected in the rock or coal rock, and the electromagnetic wave reflected signals pass through the signal acquisition amplifier 2 and the wireless communication circuit 6
  • the wireless base station 7, the gateway 8 and the industrial Ethernet 9 arrive at the monitoring host 10, and the monitoring host 10 analyzes all the received signals separately to determine whether there is stress accumulation or geological structural abnormality in front of the tunneling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种掘进灾害超前探测系统,该系统包括:电磁波探测器(1)、信号采集放大器(2)、控制器(3)、倾斜传感器(4)、振动传感器(5)、无线通信电路(6)、无线基站(7)、网关(8)、工业以太网(9)和监测主机(10);还提供一种掘进灾害超前探测方法,控制器(3)根据倾斜传感器(4)和振动传感器(5)的信号,控制电磁波探测器(1)工作,探测掘进前方的电磁波波反射信号,电磁波波反射信号通过信号采集放大器(2)、无线通信电路(6)、无线基站(7)、网关(8)和工业以太网(9)到达监测主机(10),监测主机(10)对所有接收到的信号分别进行分析,判断掘进前方是否存在应力积聚、地质结构异常等情况,对矿井或涵洞巷道掘进前方地质灾害进行预警。

Description

掘进灾害超前探测系统及方法
技术领域
本发明涉及探测方法及系统,特别是一种矿井或地下巷道中使用的掘进 前方地质灾害实时探测预警的掘进灾害超前探测方法及系统。
技术背景
矿井或地下涵洞掘进作业时, 经常会发生突水和冲击地压的地质灾害。 长期以来, 人们采用的方法是先采用物探方法先探明掘进前方的地质情况, 但这种人工探测方法, 由于最求探测深度, 探测的精确度不够理想, 有些灾 害隐患难以发现, 致使掘进中出现事故, 造成人员伤亡和经济损失。
发明内容
本发明的目的是要提供一种能够在掘进过程中实时探测前方灾害的方 法及系统, 实现掘进前方灾害的实时监测预警, 避免掘进工作面地质灾害的 发生。 为实现上述目的, 本发明的掘进灾害超前探测的系统, 包括设在掘进机 上的超前探测装置, 超前探测装置连接有信号采集放大器, 信号采集放大器 连接有无线通信电路, 无线通信电路通过无线信号与无线基站连接, 无线基 站连接网关, 网关通过工业以太网连接监测主机, 所述超前探测装置包括电 磁波探测器, 电磁波探测器上设有控制器, 控制器上分别与设在掘进机悬臂 上的倾斜传感器和振动传感器相连接,其中倾斜传感器和振动传感器输出端 接入控制器的输入端, 控制器的输出端接电磁波探测器的输入端, 电磁波探 测器的输出端接信号采集放大器的输入端,信号采集放大器的输出端接无线 通信电路的输入端, 无线基站接收无线通信电路的信号, 无线基站的输出信 号通过网关和工业以太网与监测主机通讯。 所述电磁波探测器含有电磁波发射电路和电磁波接收电路, 电磁波发射 电路由与控制器相连接的变频振荡器和相连接的发射天线构成, 电磁波接收 电路由顺序连接的接收天线、 前置放大器和带通滤波器构成, 带通滤波器与 型号采集放大器相连接; 所述的电磁波发射电路中的变频振荡器可以产生
250KHz、 560 KHz和 820KHz三个不同频率的电磁波信号。
一种使用上述系统的掘进灾害超前探测方法, 包括如下歩骤: a.将由电磁波探测器、 信号采集放大器、 控制器和无线通信电路构成的 超前探测装置固定在掘进机的机身上,将所述倾斜传感器和振动传感器紧密 固定在掘进机悬臂上;
b . 当掘进机开始工作时, 倾斜传感器和振动传感器开始采集掘进机悬 臂工作时的信息, 并将采集到的信息发送到控制器中, 控制器根据倾斜传感 器和振动传感器采集到的信息判断掘进机是否处于扫底工作后停止掘进工 作的时机;
c 当掘进机掘扫底工作结束后的短暂休息时间中, 电磁波探测器中的 电磁波发射电路向掘进前方发射不同频率的电磁波波信号,发射的电磁波信 号进入前方岩体或者煤层后反射产生的电磁波反射信号被电磁波探测器中 电磁波接收电路接收, 电磁波反射信号通过顺序连接的信号采集放大器、 无 线通信电路、 无线基站、 网关和工业以太网到达监测主机;
d . 监测主机对所有接收到的电磁波反射信号分别进行波形快速分析, 根据预先存储的信号波形与电磁波探测器中的接收电路采集到的电磁波反 射信号进行对比, 如果发现探测结果的幅度随频率的变化出现异常, 则可初 歩判断掘进前方地质结构发生异常,从而判断掘进机掘进前方是否存在应力 积聚、 地质结构异常等情况, 当监测主机得出前方出现地质灾害情况时会发 出预警信息给操作人员。 有益效果, 由于采用了上述方案, 安装在掘进机上的超前探测装置能够 在掘进过程中, 利用掘进头向下扫底掘进的间隙时间, 实时探测掘进前方岩 层或煤岩内部的地质结构, 这种探测由于不追求探测深度, 变频振荡器可以 产生 250KHz、 560 KHz和 820KHz三个不同频率通过发射天线发射出去, 实 现前方岩层内部不同深度的断面结构的探测扫描,探测的精确度比传统物探 方法大大提高, 可以及时发现地质灾害的危险性, 以采取措施, 避免事故的 发生。 其结构简单, 操作使用方便, 探测精确度高, 可有效避免掘进机在掘 进过程中出现的事故, 具有广泛的实用性。
附图说明
图 1是本发明的超前探测系统原理结构图。
图 2是本发明的超前探测装置的电磁波探测器结构图 图 3是本发明的超前探测装置安装在掘进机上的示意图。 图 4是本发明的超前探测装置在掘进机上工作的示意图。 图中, 1-电磁波探测器; 2-信号采集放大器; 3-控制器; 4-倾斜传感器; 5-振动传感器; 6-无线通信电路; 7-无线基站; 8-网关; 9-工业以太网; 10- 监测主机; 11-变频振荡器; 12-发射天线; 13-接收天线; 14-前置放大器; 15-带通滤波器; 16-超前探测装置; 17-掘进机; 18-掘进机悬臂; 19-掘进 头。
具体实施方式
如图 1所示, 本发明的掘进灾害超前探测系统, 包括设在掘进机 17上 的超前探测装置 16, 超前探测装置 16连接有信号采集放大器 2, 信号采集 放大器 2连接有无线通信电路 6, 无线通信电路 6通过无线信号与无线基站 7连接,无线基站 7连接网关 8, 网关 8通过工业以太网 9连接监测主机 10, 如图 2所示, 所述超前探测装置包括电磁波探测器 1, 电磁波探测器 1含有 电磁波发射电路和电磁波接收电路,其中电磁波发射电路由与控制器相连接 的变频振荡器 11和相连接的发射天线 12构成,所述的电磁波发射电路中的 变频振荡器 11可以产生 250KHz、 560 KHz和 820KHz三个不同频率的电磁波 信号; 电磁波接收电路由顺序连接的接收天线 13、前置放大器 1和带通滤波 器 15构成, 所述发射天线 12和接收天线 13为环形定向天线; 带通滤波器 15与信号采集放大器 2相连接; 电磁波探测器 1上设有控制器 3, 控制器 3 上分别与设在掘进机悬臂 18上的倾斜传感器 4和振动传感器 5相连接, 其 中倾斜传感器 4和振动传感器 5输出端接入控制器 3的输入端,控制器 3的 输出端接电磁波探测器 1的输入端, 电磁波探测器 1的输出端接信号采集放 大器 2的输入端, 信号采集放大器 2的输出端接无线通信电路 6的输入端, 无线基站 7接收无线通信电路 6的信号, 无线基站 7的输出信号通过网关 8 和工业以太网 9与监测主机 10通讯。
所述的倾斜传感器 4型号为 MT-90 , 振动传感器 5型号为 VT9285 , 控制 器 3型号为 ATMEGA16 , 信号采集放大器 2型号为 JBDT-3 , 无线通信电路 6 的型号为 RF950 , 前置放大器 14的型号为 VT120 , 带通滤波器 15的型号为 BF32 , 变频振荡器的型号为 AD9620; 所述的变频振荡器可以产生 250KHz、 560 KHz和 820KHz三个不同频率的电磁波信号,实现前方岩层内部不同深度 的断面结构的探测扫描。
如图 3所述, 本发明的超前探测装置安装在掘进机 17上, 由电磁波探 测器 1、 信号采集放大器 2、 控制器 3和无线通信电路 6构成的超前探测装 置 16, 固定在掘进机 17的机身上, 倾斜传感器 4和振动传感器 5固定在掘 进机悬臂 18上。
如图 4所述, 本发明的超前探测装置在掘进机上, 当掘进头 19向下扫 底时,掘进机悬臂 18不会阻挡超前探测装置 16发出和接收电磁波波的信号, 超前探测装置开始工作, 进行超前探测。
一种运用上述系统的掘进灾害超前探测方法如下:
a.将由电磁波探测器 1、信号采集放大器 2、控制器 3和无线通信电路 6 构成的超前探测装置固定在掘进机 17的机身上, 将所述倾斜传感器 5和振 动传感器 6紧密固定在掘进机悬臂 18上; b. 当掘进机 17开始工作时, 倾斜传感器 5和振动传感器 6开始采集掘 进机悬臂 18工作时的信息, 并将采集到的信息发送到控制器 3中, 控制器 根据倾斜传感器 5和振动传感器 6采集到的信息判断掘进机 17是否处于扫 底工作后停止掘进工作的时机;
c 当掘进机 17扫底工作结束后的短暂休息时间中, 电磁波探测器 1中 的电磁波发射电路向掘进前方发射不同频率的电磁波波信号,发射的电磁波 信号进入前方岩体或者煤层后反射产生的电磁波反射信号被电磁波探测器 1 中电磁波接收电路接收, 电磁波反射信号通过顺序连接的信号采集放大器、 无线通信电路 6、 无线基站 7、 网关 8和工业以太网 9到达监测主机 10; d.监测主机 10对所有接收到的电磁波反射信号分别进行波形快速分析, 根据预先存储的信号波形与电磁波探测器 1中的接收电路采集到的电磁波反 射信号进行对比, 如果发现探测结果的幅度随频率的变化出现异常, 则可初 歩判断掘进前方地质结构发生异常, 从而判断掘进机 17掘进前方是否存在 应力积聚、 地质结构异常等情况, 当监测主机得出前方出现地质灾害情况时 会发出预警信息给操作人员。
工作过程: 电磁波探测器 1、 信号采集放大器 2、 控制器 3和无线通信 电路 6安装一体, 构成超前探测装置 16, 固定在掘进机 17的机身上, 倾斜 传感器 4和振动传感器 5固定在掘进机悬臂 18上, 控制器 3根据倾斜传感 器 4判断掘进机 17的掘进头 19和掘进机悬臂 18不阻挡电磁波探测器 1发 射的电磁波波信号, 控制电磁波探测器 1工作; 根据振动传感器 5的信号, 判断掘进头 19处于掘进休息阶段, 然后控制电磁波探测器 1 向掘进前方发 射电磁波波, 并接收岩石或煤岩中反射的电磁波波信号, 电磁波波反射信号 通过信号采集放大器 2、无线通信电路 6、无线基站 7、 网关 8和工业以太网 9到达监测主机 10, 监测主机 10对所有接收到的信号分别进行分析, 判断 掘进前方是否存在应力积聚、 地质结构异常等情况, 对矿井或涵洞巷道掘进 前方地质灾害例如突水、 瓦斯、 冲击地压等情况进行预警。

Claims

权利要求书
1. 一种掘进灾害超前探测系统, 其特征是: 系统包括设在掘进机(17) 上的超前探测装置 (16), 超前探测装置 (16) 上连接有信号采集放大器
(2), 信号采集放大器 (2) 连接有无线通信电路 (6), 无线通信电路 (6) 通过无线信号与无线基站 (7) 连接, 无线基站 (7) 连接网关 (8), 网关
(8) 通过工业以太网 (9) 连接监测主机 (10), 所述超前探测装置 (16) 包括电磁波探测器 (1), 电磁波探测器 (1) 上设有控制器 (3), 控制器
(3) 上分别与设在掘进机悬臂 (17) 上的倾斜传感器 (4) 和振动传感器 (5) 相连接, 其中倾斜传感器 (4) 和振动传感器 (5) 输出端接入控制器 (3) 的输入端, 控制器 (3) 的输出端接电磁波探测器 (1) 的输入端, 电 磁波探测器 (1) 的输出端接信号采集放大器 (2) 的输入端, 信号采集放大 器 (2) 的输出端接无线通信电路 (6) 的输入端, 无线基站 (7) 接收无线 通信电路 (6) 的信号, 无线基站 (7) 的输出信号通过网关 (8) 和工业以 太网 (9) 与监测主机 (10) 通讯。
2. 根据权利要求 1所述的掘进灾害超前探测系统, 其特征为: 所述的电 磁波探测器 (1) 含有电磁波发射电路和电磁波接收电路, 电磁波发射电路 由与控制器相连接的变频振荡器 (11) 和相连接的发射天线 (12) 构成, 电 磁波接收电路由顺序连接的接收天线 (13)、 前置放大器 (14) 和带通滤波 器 (15) 构成, 带通滤波器 (15) 与型号采集放大器 (2) 相连接。
3. 根据权利要求 1所述的掘进灾害超前探测系统, 其特征为: 所述的电 磁波发射电路中的变频振荡器 (11) 可以产生 250KHz、 560 KHz和 820KHz三 个不同频率的电磁波信号。
4. 一种使用权利要求 1所述系统的掘进灾害超前探测方法, 其特征是包 括如下歩骤:
a.将由电磁波探测器 (1)、 信号采集放大器 (2)、 控制器 (3) 和无线 通信电路 (6) 构成的超前探测装置 (16) 固定在掘进机 (17) 的机身上, 将所述的倾斜传感器 (5) 和振动传感器 (6) 紧密固定在掘进机悬臂 (18) 上;
b. 当掘进机 (17) 开始工作时, 倾斜传感器 (5) 和振动传感器 (6) 开始采集掘进机悬臂 (18) 工作时的信息, 并将采集到的信息发送到控制器
(3) 中, 控制器根据倾斜传感器 (5) 和振动传感器 (6) 采集到的信息判 断掘进机 (17) 是否处于扫底工作后停止掘进工作的时机;
c 当掘进机 (17) 扫底工作结束后的短暂休息时间中, 电磁波探测器
( 1 ) 中的电磁波发射电路向掘进前方发射不同频率的电磁波波信号, 发射 的电磁波信号进入前方岩体或者煤层后反射产生的电磁波反射信号被电磁波 探测器 (1 ) 中电磁波接收电路接收, 电磁波反射信号通过顺序连接的信号 采集放大器、 无线通信电路 (6)、 无线基站 (7)、 网关 (8) 和工业以太网
( 9) 到达监测主机 ( 10 );
d. 监测主机 (10) 对所有接收到的电磁波反射信号分别进行波形快速 分析, 根据预先存储的信号波形与电磁波探测器 (1 ) 中的接收电路采集到 的电磁波反射信号进行对比, 如果发现探测结果的幅度随频率的变化出现异 常, 则可初歩判断掘进前方地质结构发生异常, 从而判断掘进机 (17) 掘进 前方是否存在应力积聚、 地质结构异常等情况, 当监测主机得出前方出现地 质灾害情况时会发出预警信息给操作人员。
PCT/CN2013/090629 2013-02-05 2013-12-27 掘进灾害超前探测系统及方法 WO2014121643A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310045425.XA CN103174418B (zh) 2013-02-05 2013-02-05 掘进灾害超前探测系统及方法
CN201310045425.X 2013-02-05

Publications (1)

Publication Number Publication Date
WO2014121643A1 true WO2014121643A1 (zh) 2014-08-14

Family

ID=48634552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090629 WO2014121643A1 (zh) 2013-02-05 2013-12-27 掘进灾害超前探测系统及方法

Country Status (2)

Country Link
CN (1) CN103174418B (zh)
WO (1) WO2014121643A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107387167A (zh) * 2017-08-30 2017-11-24 福建省高速公路有限责任公司 浅埋隧道超前核心土挤出位移监测系统及方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103174418B (zh) * 2013-02-05 2015-08-19 中国矿业大学 掘进灾害超前探测系统及方法
CN103775073B (zh) * 2014-01-22 2016-04-13 中国矿业大学 一种采掘工作面地应力分布特征探测方法
CN103901503A (zh) * 2014-03-25 2014-07-02 中冶集团武汉勘察研究院有限公司 矿山地下巷道掘进时对前方不良地质体的一种综合探测方法
CN104267441A (zh) * 2014-10-10 2015-01-07 中国矿业大学(北京) 一种掘进巷道前方水害超前实时预报方法与报警系统
CN107939449B (zh) * 2018-01-12 2019-05-03 河南理工大学 一种近距离煤层开采老空水下泄智能预警系统和预警方法
CN109319105A (zh) * 2018-10-26 2019-02-12 武汉科技大学 一种矿用地下空间无人监测设备
CN109916555A (zh) * 2019-03-12 2019-06-21 中国矿业大学 一种电磁波瓦斯压力检测仪的检定装置
CN109931072B (zh) * 2019-03-14 2023-11-14 中铁工程装备集团隧道设备制造有限公司 掘进机截割控制装置、方法及悬臂掘进机
CN110376659A (zh) * 2019-06-10 2019-10-25 中交一公局桥隧工程有限公司 一种隧道超前地质预报装置及其系统
CN112901159B (zh) * 2021-01-29 2022-01-11 中国矿业大学 一种矿井掘进机器人环境监测装置及方法
CN114046914B (zh) * 2021-10-25 2022-07-26 煤炭科学研究总院有限公司 一种围岩应力的检测方法、装置及电子设备
CN114495431A (zh) * 2022-01-14 2022-05-13 深圳市地质局 一种探测地质结构的物理探测系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201116471Y (zh) * 2007-11-14 2008-09-17 三一重型装备有限公司 一种防截割臂碰撞铲板装置
JP2010216183A (ja) * 2009-03-18 2010-09-30 Shimizu Corp 削孔機
CN102681004A (zh) * 2012-05-14 2012-09-19 中国矿业大学(北京) 以掘进机为震源的巷道随掘地震超前探测装置及方法
CN102865075A (zh) * 2012-10-08 2013-01-09 中国矿业大学 采煤机远程监控方法及系统
CN103174418A (zh) * 2013-02-05 2013-06-26 中国矿业大学 掘进灾害超前探测系统及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160970A (en) * 1977-11-25 1979-07-10 Sperry Rand Corporation Electromagnetic wave telemetry system for transmitting downhole parameters to locations thereabove
CN87211945U (zh) * 1987-08-15 1988-03-30 煤炭工业部煤炭科学研究院重庆研究所 矿井地质雷达探测仪
JP3117661B2 (ja) * 1997-08-07 2000-12-18 株式会社テックス 電磁波観測システムにおける基地局装置
CN201339487Y (zh) * 2009-01-20 2009-11-04 北京工商大学 基于无线传感器网络的煤矿井下环境安全实时监控系统
CN202455542U (zh) * 2011-10-17 2012-09-26 山西潞安集团司马煤业有限公司 一种基于无线传感器网络的监控系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201116471Y (zh) * 2007-11-14 2008-09-17 三一重型装备有限公司 一种防截割臂碰撞铲板装置
JP2010216183A (ja) * 2009-03-18 2010-09-30 Shimizu Corp 削孔機
CN102681004A (zh) * 2012-05-14 2012-09-19 中国矿业大学(北京) 以掘进机为震源的巷道随掘地震超前探测装置及方法
CN102865075A (zh) * 2012-10-08 2013-01-09 中国矿业大学 采煤机远程监控方法及系统
CN103174418A (zh) * 2013-02-05 2013-06-26 中国矿业大学 掘进灾害超前探测系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107387167A (zh) * 2017-08-30 2017-11-24 福建省高速公路有限责任公司 浅埋隧道超前核心土挤出位移监测系统及方法

Also Published As

Publication number Publication date
CN103174418A (zh) 2013-06-26
CN103174418B (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
WO2014121643A1 (zh) 掘进灾害超前探测系统及方法
CN101261325B (zh) 一种适合于tbm施工的地质超前预报方法
CN103777232A (zh) 一种基于爆破振动监测的深部岩体岩爆预测预警方法
CN103104294B (zh) 一种冲击地压的预测方法
CN111577392B (zh) 一种回采巷道多参数综合智能监控方法
CN103737589B (zh) 岩体工程无线遥控综合测孔机器人
CN103122764B (zh) 移动式瞬变电磁场自动探测方法及装置
CN103996269A (zh) 无线数据采集控制系统
CN106501857B (zh) 一种煤矿巷道冲击地压危险性的声学监测方法
CN108732612A (zh) 一种基于隧道开挖爆破信号的超前地质预报装置及方法
CN114542186B (zh) 一种基于主被动震电磁三场的深部巷道支护健康监测方法
CN104500136A (zh) 一种局部地应力分布特征精细化探测方法
CN104533395A (zh) 一种矿用本质安全型多点位移计
CN103883326B (zh) 基于煤层震波探测和地学信息的采煤机滚筒调高方法
CN104697683A (zh) 动力灾害矿井锚岩稳定性集成检测方法及系统
CN104912552A (zh) 一种煤岩体地应力分布特征探测方法及装置
CN103775073B (zh) 一种采掘工作面地应力分布特征探测方法
CN110376643B (zh) 一种用于旋喷桩径检测的微震效应数据处理方法
CN103512527B (zh) 硬岩隧道掘进机盘形滚刀磨损的在线检测装置
CN105045969B (zh) 一种地应力型冲击地压危险性多元信息耦合预测方法
CN203849835U (zh) 无线数据采集控制系统
CN109738964B (zh) 地震波和电磁波联合反演的隧道预报装置、掘进机及方法
KR101542419B1 (ko) 지반 탐사 장치 및 이를 이용한 지반 탐사 방법
CN204402467U (zh) 一种矿用本质安全型多点位移计
CN105756709A (zh) 一种工作面顶板来压及破断的监测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WA Withdrawal of international application
122 Ep: pct application non-entry in european phase

Ref document number: 13874574

Country of ref document: EP

Kind code of ref document: A1