WO2014119838A1 - 모션 인식 방법 - Google Patents

모션 인식 방법 Download PDF

Info

Publication number
WO2014119838A1
WO2014119838A1 PCT/KR2013/011001 KR2013011001W WO2014119838A1 WO 2014119838 A1 WO2014119838 A1 WO 2014119838A1 KR 2013011001 W KR2013011001 W KR 2013011001W WO 2014119838 A1 WO2014119838 A1 WO 2014119838A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflector
axis
light receiving
light emitting
Prior art date
Application number
PCT/KR2013/011001
Other languages
English (en)
French (fr)
Inventor
정회원
김기홍
Original Assignee
(주)하이소닉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130010155A external-priority patent/KR101382519B1/ko
Priority claimed from KR1020130010156A external-priority patent/KR101382477B1/ko
Application filed by (주)하이소닉 filed Critical (주)하이소닉
Priority to US14/398,801 priority Critical patent/US9170653B1/en
Publication of WO2014119838A1 publication Critical patent/WO2014119838A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen

Definitions

  • the present invention is a motion recognition method, in order to perform a variety of functions of the electronic device according to the motion (motion) of the reflector, such as a human hand, to emit light from the light emitting element, the light receiving element is to reflect the light reflected by the reflector
  • the present invention relates to a motion recognition method capable of sensing and determining an operation direction of a reflector.
  • recognition of motion involves repeatedly measuring the reflectivity from the reflector to determine an approximate location for the reflector, comparing the measured reflectivity to identify a change in the approximate location of the reflector over time, and user movement or It is based on interpreting the change in the approximate position of the reflector in motion that correlates to a particular gesture that can be interpreted as a motion vector of the reflector.
  • the position of the reflector is an approximate approximation because it depends significantly on the orientation of the reflector surface as well as the reflectivity of the reflector surface.
  • Korean Patent Publication No. 10-2010-0068222 discloses an optical gesture recognition apparatus and method.
  • the first light source A first light receiver configured to receive reflected light from a reflector when the first light source is activated and to output a first measured reflectivity value corresponding to the magnitude of the reflected light;
  • a processor configured to receive the first measured reflectance value, the processor comparing the first measured reflectance value at a first time and a second time to track the motion of the reflector and tracked motion of the reflector And to identify the gesture of the object corresponding to.
  • the conventional optical gesture recognition method includes measuring the magnitude of reflected light from the reflector at a first time to obtain a first measured reflectance value; Measuring the magnitude of the reflected light from the reflector at a second time to obtain a second measured reflectance value; Comparing the first measured reflectivity value and a second measured reflectance value to determine a relative motion of the object; Identifying a gesture corresponding to the relative motion of the reflector.
  • the conventional optical gesture recognition method has a problem that the reliability of the motion identification function is inferior because it is difficult to clearly distinguish a complex and unclear gesture or motion.
  • a specific motion may not be recognized correctly and a response to the motion may not occur or an unintended reaction may be generated by recognizing it as another motion.
  • the present invention has been made to solve the above-mentioned problems, in order to perform various functions of the electronic device according to the motion (motion) of the reflector such as a human hand, the light emitting element is irradiated with light, and the light receiving element is a reflector It is an object of the present invention to provide a motion recognition method capable of clearly distinguishing and recognizing motion by increasing the reliability of a motion switch by sensing the reflected light to determine an operation direction of the reflector.
  • a motion recognition method for irradiating light from a light emitting device and recognizing the motion of the reflector by sensing the light reflected by a reflector.
  • the data processing unit may include a plurality of plane coordinates X starting from the origin (0,0) and passing through the first position and the second position, and then located again on the path arriving at the origin (0,0).
  • Y are continuously calculated according to the light irradiation interval of the light emitting device, and the standard value (N) of each plane coordinate (X, Y) is calculated based on the origin (0,0), and the standard value (N)
  • the positions of the start point and the end point of the increasing section are set to the first position and the second position, respectively, and the standard value N is calculated by the following equation.
  • a weight is added to the angle ⁇ to correct a direction in which the reflector moves.
  • the light emitting devices are spaced apart from each other by 90 ° with respect to the light receiving device, and the center of the light receiving device is an origin of the plane coordinates, and the light emitting devices are arranged to face each other with respect to the light receiving device.
  • a second light emitting device and third and fourth light emitting devices disposed to face each other with respect to the light receiving device, wherein X1 and X2, which are the X-axis coordinate components of the plane coordinates of the reflector, are respectively formed on the first light emitting device.
  • It is disposed adjacent to the light emitting device, and further comprises an interpolation device for interpolating the intensity of light emitted from the light emitting device detected by the light receiving device.
  • the direction determining step determines the moving direction of the reflector only when the light intensity detected by the light receiving element is greater than or equal to a predetermined value.
  • the direction determining step determines that the reflector moves in a predetermined pattern when the light intensity detected by the light receiving element is repeatedly increased or decreased.
  • the direction determining step determines that the reflector is rotated when the rate of change of the intensity of light sensed by the light receiving element changes along a predetermined pattern.
  • Another object of the present invention for achieving the above object is a motion recognition method of irradiating light from a light emitting device, the light receiving device detects the light reflected by the reflector to recognize the motion of the reflector, A photodetecting step of sensing light reflected by the reflector to measure the intensity of light; A first coordinate setting step of setting, by a data processor, plane coordinates (X1, Y1) of the reflector whose origin is the center of the light receiving range of the light receiving element at a first position using the light intensity of the light; A second coordinate setting step of setting, by the data processing unit, planar coordinates (X2, Y2) of the reflector whose origin is the center of the light receiving range of the light receiving element at a second position using the light intensity of the light; When the reflector is moved from the first position to the second position, the reflector is X according to the relative position of X1 and X2 as X-axis coordinate components and the relative position of Y1 and Y2 as Y-axis coordinate components by the
  • the data processor is configured to irradiate light of the light emitting device with plane coordinates on a path starting from the origin (0,0) and passing through the first and second positions, and then arriving at the origin (0,0). It calculates continuously according to the interval, and sets the position where the inflection point at which the X-axis coordinate component or Y-axis coordinate component of the plane coordinates increases or decreases on the path is sequentially set to the first position and the second position.
  • the reflector is located in the X axis direction in the direction determining step. It is determined to move.
  • the reflector is in the Y-axis direction in the direction determining step. It is determined to move.
  • coordinate components Y1 and Y2 satisfy the following relationship, it is determined that the reflector moves in the Y-axis direction in the direction determining step.
  • the plane coordinates (X1, Y1) are located on the Y axis except the origin at the first position, and Y2 is larger or smaller than Y1, in the direction determining step, it is determined that the reflector moves in the Y axis direction. If the plane coordinates (X1, Y1) are located on the X-axis excluding the origin at the first position, and X2 is larger or smaller than X1, it is determined that the reflector moves in the X-axis direction in the direction determining step.
  • the angle between the X axis and the plane coordinates (X1, Y1) and the plane coordinate ( According to the relative difference in the angle between X2 and Y2), it is determined that the reflector moves in either the X-axis direction or the Y-axis direction in the direction determining step.
  • the light emitting devices are spaced apart from each other by 90 ° with respect to the light receiving device, and the center of the light receiving device is an origin of the plane coordinates, and the light emitting devices are arranged to face each other with respect to the light receiving device.
  • a second light emitting device and third and fourth light emitting devices disposed to face each other with respect to the light receiving device, wherein X1 and X2, which are the X-axis coordinate components of the plane coordinates of the reflector, are respectively formed on the first light emitting device.
  • the motion detection method according to the present invention has the following effects.
  • FIG. 1 is a view showing a method of determining a reflector movement direction of a motion recognition method according to an aspect of the present invention
  • FIG. 2 is a view schematically showing the structure of a motion switch according to Embodiment 1 of the present invention
  • FIG. 3 is a view showing a recognition pattern of a special motion of the reflector
  • FIG. 4 is a view schematically showing the structure of a motion switch according to Embodiment 2 of the present invention.
  • FIG. 5 is a view showing a first position and a second position designation method of a motion recognition method according to another aspect of the present invention.
  • 6 to 12 are views showing a method of determining a reflector according to each condition as another embodiment of the present invention.
  • FIG. 13 is a view showing the structure of a motion switch according to Embodiment 3 of the present invention.
  • FIG. 14 is a view showing the structure of a motion switch according to Embodiment 4 of the present invention.
  • FIG. 1 is a view showing a method of determining a reflector movement direction of a motion recognition method according to an aspect of the present invention.
  • the motion detection method of the present invention comprises a light detection step, a first coordinate setting step, a second coordinate setting step and a direction determining step.
  • the motion recognition method includes a light emitting device 10 for irradiating light, a light receiving device 20 for detecting light emitted from the light emitting device 10, and data input through light detected by the light receiving device 20. It is implemented by a motion switch composed of a data processor (not shown) for processing and determining information.
  • Patent Publication No. 10-1090965 discloses a motion detection switch filed by the applicant of the present invention, may be a kind of motion switch that can implement the motion recognition method of the present invention.
  • the light receiving element 20 detects the light reflected by the reflector and measures the light intensity of the light.
  • the data processor sets the plane coordinates X1 and Y1 of the reflector whose origin is the center of the light receiving range of the light receiving element 20 at the first position using the light intensity of the light.
  • the data processor sets the plane coordinates X2 and Y2 of the reflector whose origin is the center of the light receiving range of the light receiving element 20 at the second position using the light intensity.
  • the data processor starts from the origin (0,0), passes through the first and second positions, and then arrives at the origin (0,0).
  • a plurality of plane coordinates (X, Y) on the path to be calculated continuously according to the light irradiation interval of the light emitting device, and the standard value (N) of each plane coordinates (X, Y) based on the origin (0,0) Calculate
  • the standard value (N) is calculated by the following formula.
  • the data processor sets the positions of the start point and the end point of the section 2 where the standard value N decreases and then increase to the first position and the second position, respectively.
  • FIG. 1 (b) is a graph showing the change of the standard value N with time t.
  • the standard value N decreases as the reflector approaches the origin and increases as it moves away from the origin.
  • the direction determining step may correct the direction in which the reflector moves by adding a weight to the angle ( ⁇ ).
  • the direction determining step determines that the reflector moves in a predetermined pattern when the light intensity detected by the light receiving element 20 is repeatedly increased or decreased.
  • the data processing unit may recognize that the light intensity detected by the light receiving element 20 is repeatedly increased or decreased in a predetermined pattern.
  • a special function corresponding to the operation signal may be executed in a system (electronic device, etc.) based on motion recognition.
  • the motion recognition method determines the moving direction by calculating the entrance angle of the reflector based on the first position coordinate and the second position coordinate with respect to the origin, so that the complex and unclear motion can be clearly distinguished and recognized. Accordingly, the reliability of the motion switch operated by the motion can be increased, thereby minimizing the operation error of the electronic device based on the motion recognition and conveniently using the motion switch.
  • Figure 2 (a) is a schematic view showing the structure of a motion switch according to a first embodiment of the present invention
  • Figure 2 (b) is a motion switch further includes an interpolation element in Figure 2 (a)
  • Figure 3 Is a diagram illustrating a recognition pattern of a special motion of a reflector.
  • the motion switch for implementing the motion recognition method of the present invention comprises a light emitting device 10, a light receiving device 20 and a data processor (not shown).
  • the light emitting device 10 includes first and second light emitting devices 11 and 12 disposed to face each other with respect to the light receiving device 20, and disposed to face each other with respect to the light receiving device 20. Composed of the third and fourth light emitting elements 13 and 14, the light emitting element 20 is spaced at 90 ° intervals and irradiates light sequentially at predetermined intervals.
  • the light intensity detected by the light receiving element 20 is changed according to the position of the reflector, and the light intensity is converted into analog data.
  • the data processing unit compares analog data of light sensed by the first light emitting device 11 and the second light emitting device 12 and sensed by the light receiving device 20 to compare the X axis of the plane coordinates at each position of the reflector. Calculate the coordinate component value.
  • A brightness of light emitted from the first light emitting device
  • B brightness of light emitted from the second light emitting device
  • the data processing unit compares analog data of light sensed by the third light emitting device 13 and the fourth light emitting device 14 and sensed by the light receiving device 20 to determine the Y of the plane coordinates at each position of the reflector. Calculate the axis coordinate component value.
  • the motion switch operates only when the light intensity detected by the light receiving element 20 is greater than or equal to a predetermined reference value.
  • the light receiving device 20 detects light coming from the open space of the upper part of the motion switch, external light other than the light emitted from the light emitting device 10 and reflected on the reflector may be detected.
  • the determination of the moving direction of the reflector is suspended in the direction determination step, and the light intensity detected by the light receiving element 20 is suspended. It is possible to determine the moving direction of the reflector only when is equal to or greater than a predetermined reference value, thereby preventing errors in the direction determination.
  • the reference value may be changed based on the intensity of light reflected by the reflector 20 and sensed by the light receiving element 20.
  • the determination of the direction in the direction determining step is suspended.
  • the user may be informed of the detection of the reflector by light, vibration, or sound.
  • the motion switch may further include an interpolation element 15, as shown in Figure 2 (b).
  • the interpolation element 15 may be disposed adjacent to the light emitting element 10, and may increase the reliability of data by interpolating analog data of light emitted from the light emitting element and detected by the light receiving element.
  • the coordinate values set by the motion switch are structurally rotated and translated. You can adjust it to apply.
  • the reflector F rotates when the rate of change of the intensity of light detected by the light receiving element 20 changes along a predetermined pattern. It can be judged that.
  • FIG. 3 (a) is a view showing a state in which the reflector F is rotating the upper portion of the light emitting elements (11, 12, 13, 14),
  • Figure 3 (b) is a light emitting element (11, 12, 13) (14) is a graph showing the change rate according to the time (t) of the light intensity (analog data) of the light detected by the light receiving element 20.
  • the first light emitting device 11 of the light emitting device is irradiated from the first light emitting device 11 when the reflector F passes over the first light emitting device 11.
  • the change rate according to the time t of the analog data detected by the device 20 is greatest, and the reflector F is disposed in the opposite direction of the first light emitting device 11 with respect to the light receiving device 20.
  • the rate of change according to the time t of the analog data irradiated by the first light emitting device 11 and sensed by the light receiving device 20 appears to be the smallest.
  • the second light emitting element 12, the third light emitting element 13, and the fourth light emitting element 14 also exhibit a time t change rate of the analog data in the same pattern as the first light emitting element 11 described above. .
  • the data processor may recognize that the reflector is rotating on the upper part of the motion switch.
  • the system may be based on motion detection according to the rotation of the reflector. Etc.) may be executed.
  • Example 2 is different from the arrangement of the light emitting device and the light receiving device compared to the first embodiment.
  • Figure 4 (a) is a diagram schematically showing a planar structure of a motion switch according to a second embodiment of the present invention
  • Figure 4 (b) is a diagram schematically showing a side structure of a motion switch according to a second embodiment of the present invention to be.
  • the motion switch for implementing the motion recognition method according to the second embodiment includes a light emitting device 10, a light receiving device 20, and a data processor (not shown).
  • the light emitting device 10 emits light at regular intervals.
  • the light receiving device 20 is spaced apart from each other by 90 ° with respect to the origin which is the center of the entire light receiving range, and the light emitting device 10 is disposed adjacent to the light receiving device 20.
  • the light receiving element 20 includes first and second light receiving elements 21 and 22 disposed to face each other with respect to the origin, and third and fourth light receiving elements disposed to face each other with respect to the origin. It consists of (23,24).
  • the data processor compares analog data of light sensed by the first light receiving element 21 and the second light receiving element 22 and calculates an X-axis coordinate component value of a plane coordinate at each position of the reflector.
  • the data processor compares analog data of light sensed by the third light receiving device 23 and the fourth light receiving device 24, and calculates a Y-axis coordinate component value of a plane coordinate at each position of the reflector.
  • Each of the light receiving elements 20 includes a light receiving lens 30, and the optical axis of the light receiving lens 30 is inclined with respect to the vertical image direction.
  • the light irradiated from the light emitting device 10 is reflected by the reflector so that each light receiving device 20 can detect it.
  • the optical axis is inclined with respect to the vertical image direction so that each light receiving element 21, 22, 23, 24 can detect light of the same intensity. do.
  • a motion detection method includes a light detection step, a first coordinate setting step, a second coordinate setting step, and a direction determining step.
  • the motion recognition method includes a light emitting device 10 for irradiating light, a light receiving device 20 for detecting light emitted from the light emitting device 10, and data input through light detected by the light receiving device 20. It is implemented by a motion switch composed of a data processor (not shown) for processing and determining information.
  • Patent Publication No. 10-1090965 discloses a motion detection switch filed by the applicant of the present invention, may be a kind of motion switch that can implement the motion recognition method of the present invention.
  • the light receiving element 20 detects the light reflected by the reflector and measures the light intensity of the light.
  • the data processor sets the plane coordinates X1 and Y1 of the reflector whose origin is the center of the light receiving range of the light receiving element 20 at the first position using the light intensity of the light.
  • the data processor sets the plane coordinates X2 and Y2 of the reflector whose origin is the center of the light receiving range of the light receiving element 20 at the second position using the light intensity.
  • the data processing unit starts on the origin (0,0), passes through the first and second positions, and then returns to the origin (0,0).
  • a plurality of plane coordinates are continuously calculated according to the light irradiation intervals of the light emitting device 10, and the first position is sequentially displayed at the inflection point where the X-axis coordinate component or the Y-axis coordinate component of the plane coordinates increases or decreases on the path.
  • the direction determining step is performed when the reflector is moved from the first position to the second position, according to the relative position of X1 and X2 as X-axis coordinate components and the relative position of Y1 and Y2 as Y-axis coordinate components by the data processor. It is determined that the reflector moves in either the X-axis direction or the Y-axis direction.
  • the following is a specific example of determining the moving direction of the reflector by comparing the plane coordinates X1 and Y1 at the first position with the plane coordinates X2 and Y2 at the second position according to the position of the reflector.
  • the reflector is located in the X-axis It is determined to move in the direction.
  • the data processor determines that the reflector moves to the left in the direction determining step. If X2 is positive, the data processor determines that the reflector moves to the right direction in the direction determining step.
  • the reflector is Y-axis in the direction determining step It is determined to move in the direction.
  • the data processor determines that the reflector moves downward in the direction determining step. If Y2 is positive, the data processor determines that the reflector moves upward in the direction determining step.
  • the direction determining step determines that the reflector moves to the left direction, and when X2 is positive as shown in FIG. In the determination step, it is determined that the reflector moves in the right direction.
  • the reflector is determined to move downward in the direction determining step, and when the Y2 is positive as shown in FIG. In the determination step, it is determined that the reflector moves upward.
  • the reflector is determined to move downward in the direction determining step, and if Y2 is larger than Y1 as shown in FIG. In the direction determination step, it is determined that the reflector moves upward.
  • the reflector determines that the reflector moves in the X-axis direction.
  • the moving direction of the reflector is simply recognized in one of the X-axis direction and the Y-axis direction according to a preset condition, so that a complicated and unclear motion can be clearly distinguished and recognized. Accordingly, the reliability of the motion switch operated by motion can be improved to minimize the operation error of electronic devices based on motion recognition and to use it conveniently.
  • FIG. 13 is a view schematically showing the plane structure of a motion switch according to Embodiment 3 of the present invention.
  • the motion switch for implementing the motion recognition method of the present invention comprises a light emitting device 10, a light receiving device 20 and a data processor.
  • the light emitting device 10 includes first and second light emitting devices 11 and 12 disposed to face each other with respect to the light receiving device 20, and third and second light emitting devices facing each other with respect to the light receiving device. It is composed of the fourth light emitting element (13,24), and is disposed at a distance of 90 ° centered around the light receiving element is irradiated with light at regular intervals in order.
  • the light intensity detected by the light receiving element 20 is changed according to the position of the reflector, and the light intensity is converted into analog data.
  • the data processing unit compares analog data of light sensed by the first light emitting device 11 and the second light emitting device 12 and sensed by the light receiving device 20 to compare the X axis of the plane coordinates at each position of the reflector. Calculate the coordinate component value.
  • A brightness of light emitted from the first light emitting device
  • B brightness of light emitted from the second light emitting device
  • the data processing unit compares analog data of light sensed by the third light emitting device 13 and the fourth light emitting device 14 and sensed by the light receiving device 20 to determine the Y of the plane coordinates at each position of the reflector. Calculate the axis coordinate component value.
  • the data processing unit continuously calculates plane coordinates on the movement path of the reflector recognized by the data processing unit, and a position at which an inflection point at which the X-axis coordinate component or the Y-axis coordinate component of the plane coordinates is increased or decreased appears. Is set to the first position and the second position in order, and the plane coordinates (X1, Y1) of the first position and the plane coordinates (X2, Y2) of the second position are compared to change the direction of movement of the reflector.
  • the motion switch operates only when the light intensity detected by the light receiving element 20 is greater than or equal to a predetermined reference value.
  • the light receiving device 20 detects light coming from the open space of the upper part of the motion switch, external light other than the light emitted from the light emitting device 10 and reflected on the reflector may be detected.
  • the determination of the moving direction of the reflector is suspended in the direction determination step, and the light intensity detected by the light receiving element 20 is suspended. It is possible to determine the moving direction of the reflector only when is equal to or greater than a predetermined reference value, thereby preventing errors in the direction determination.
  • the reference value may be changed based on the intensity of light reflected by the reflector 20 and sensed by the light receiving element 20.
  • the determination of the direction in the direction determining step is suspended.
  • the user may be informed of the detection of the reflector by light, vibration, or sound.
  • the motion switch may further include an interpolation element.
  • the interpolation element is disposed adjacent to the light emitting element 10, and interpolates analog data of light emitted from the light emitting element 10 and sensed by the light receiving element 20 to increase reliability of the data. have.
  • the coordinate values set by the motion switch are structurally rotated and translated. You can adjust it to apply.
  • the fourth embodiment has a difference in arrangement between the light emitting device and the light receiving device as compared with the third embodiment.
  • FIG. 14 is a diagram showing the structure of a motion switch according to a fourth embodiment of the present invention.
  • FIG. 14 (a) is a diagram showing a planar structure of a motion switch according to Embodiment 4 of the present invention
  • FIG. 14 (b) schematically shows a side structure of a motion switch according to Embodiment 2 of the present invention. Drawing.
  • the motion switch for implementing the motion recognition method according to the fourth embodiment includes a light emitting device (! 0), a light receiving device 20, and a data processor (not shown).
  • the light emitting device 10 emits light at regular intervals.
  • the light receiving device 20 is spaced apart from each other by 90 ° with respect to the origin which is the center of the entire light receiving range, and the light emitting device 10 is disposed adjacent to the light receiving device 20.
  • the light receiving element 20 includes first and second light receiving elements 21 and 22 disposed to face each other with respect to the origin, and third and fourth light receiving elements disposed to face each other with respect to the origin. It consists of (23,24).
  • the data processor compares analog data of light sensed by the first light receiving element 21 and the second light receiving element 22 and calculates an X-axis coordinate component value of a plane coordinate at each position of the reflector.
  • the data processor compares analog data of light sensed by the third light receiving device 23 and the fourth light receiving device 24, and calculates a Y-axis coordinate component value of a plane coordinate at each position of the reflector.
  • Each of the light receiving elements 20 includes a light receiving lens 30, and the optical axis of the light receiving lens 30 is inclined with respect to the vertical image direction.
  • the light irradiated from the light emitting device 10 is reflected by the reflector so that each light receiving device 20 can detect it.
  • the optical axis is inclined with respect to the vertical image direction so that each light receiving element 20 can detect light having the same light intensity.
  • the motion recognition method of the present invention is not limited to the above-described embodiment, but may be modified and implemented in various ways within the scope of the technical idea of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

본 발명은 모션 인식 방법으로서, 수광소자가 반사체에 의해 반사된 빛을 감지하여 빛의 광도를 측정하는 광검출단계; 데이터 처리부가 상기 빛의 광도를 이용하여 제1위치에서 상기 수광소자의 수광범위의 중심을 원점으로 하는 상기 반사체의 평면좌표(X1,Y1)를 설정하는 제1좌표설정단계; 상기 데이터 처리부가 상기 빛의 광도를 이용하여 제2위치에서 상기 수광소자의 수광범위의 중심을 원점으로 하는 상기 반사체의 평면좌표(X2,Y2)를 설정하는 제2좌표설정단계; 상기 반사체가 상기 제1위치에서 제2위치로 이동하였을 때, 상기 데이터 처리부에 의해 상기 원점과 제1위치에서의 평면좌표(X1,Y1)를 잇는 선분과 상기 제1위치에서의 평면좌표(X1,Y1)와 제2위치에서의 평면좌표(X2,Y2)를 잇는 선분 사이의 각도(θ)를 구하여, 상기 반사체가 상기 제1위치에서 상기 각도(θ)의 1/2지점을 지나는 방향 이동하는 것으로 판단하는 방향결정단계; 를 포함하여 이루어진다.

Description

모션 인식 방법
본 발명은 모션 인식 방법으로써, 사람의 손과 같은 반사체의 모션(motion)에 따라 전자기기의 다양한 기능이 실행되도록 하기 위하여, 발광소자에서 빛을 조사하고, 수광소자가 반사체에 의해 반사된 빛을 감지하여 반사체의 동작 방향을 결정할 수 있는 모션 인식 방법에 관한 것이다.
일반적으로 모션의 인식은 반사체에 대한 근사 위치를 결정하기 위해 상기 반사체로부터의 반사도를 반복 측정하는 단계, 측정된 반사도를 비교하여 시간에 대한 반사체의 근사 위치에서의 변화를 식별하는 단계 및 사용자 이동 또는 반사체의 모션 백터로 해석될 수 있는 특정 제스처에 상관하는 모션으로 상기 반사체의 근사 위치에서 변화를 해석하는 단계에 기초하고 있다.
상기 반사체의 위치는 상기 반사체 표면의 방위는 물론 반사체 표면의 반사도에 상당히 종속되어 있기 때문에 대략적인 근사치이다.
거리의 절대 측정치를 얻기 위한 단순한 광 시스템으로부터의 반사도 측정치를 사용하는 것은 보통 매우 정확하지 않다.
공개특허공보 제10-2010-0068222호에는 광 제스처 인식 장치 및 방법이 개시되어 있다.
종래의 광 제스처 인식 장치는, 제1광원; 상기 제1광원이 기동될 때 반사체로부터 반사광을 수신하고 상기 반사광의 크기에 상응하는 제1측정된 반사도 값을 출력하도록 구성된 제1광수신기; 상기 제1측정된 반사도 값을 수신하도록 구성된 프로세서를 포함하고, 상기 프로세서는 제1시각 및 제2시각에서 상기 제1측정된 반사도 값을 비교하여 상기 반사체의 모션을 추적하고 상기 반사체의 추적된 모션에 상응하는 객체의 제스처를 식별하도록 구성되어 있다.
그리고 종래의 광 제스처 인식방법은, 제1측정된 반사도 값을 얻기 위해 제1시각에서 반사체로부터의 반사광의 크기를 측정하는 단계; 제2측정된 반사도 값을 얻기 위해 제2시각에서 반사체로부터의 반사광의 크기를 측정하는 단계; 상기 객체의 상대적인 모션을 결정하기 위해 상기 제1측정 반사도 값과 제2측정 반사도 값을 비교하는 단계; 상기 반사체의 상대적인 모션에 상응하는 제스처를 식별하는 단계;로 이루어진다.
그러나 종래의 광 제스처 인식 방법은 복잡하고 불명확한 제스처 또는 모션을 분명하게 구분하여 인식하기 어렵기 때문에 모션 식별 기능의 신뢰성이 떨어지는 문제점이 있다.
즉, 특정 모션에 대하여 그 모션을 정확하게 인식하지 못하여 그에 대한 반응이 일어나지 않거나 다른 모션으로 인식하여 의도하지 않은 반응이 발생할 수 있다.
따라서 모션 인식을 기반으로 하는 전자기기들의 작동오류가 빈번히 발생하게 되고, 사용자가 상기 전자기기 등을 사용함에 있어서 불편함을 느끼거나 모션 식별 기능에 대한 불신을 초래하게 된다.
본 발명은 전술한 문제점을 해결하기 위한 것으로서, 사람의 손과 같은 반사체의 모션(motion)에 따라 전자기기의 다양한 기능이 실행되도록 하기 위하여, 발광소자에서 빛을 조사하고, 수광소자가 반사체에 의해 반사된 빛을 감지하여 반사체의 동작 방향을 결정함으로써, 모션을 분명하게 구분하여 인식할 수 있고 모션 스위치의 신뢰성을 높일 수 있는 모션 인식 방법을 제공하는데 그 목적이 있다.
상기 목적을 달성하기 위한 본 발명은, 발광소자에서 빛을 조사하고, 수광소자가 반사체에 의해 반사된 상기 빛을 감지하여 상기 반사체의 모션을 인식하는 모션 인식 방법은, 상기 수광소자가 상기 반사체에 의해 반사된 빛을 감지하여 빛의 광도를 측정하는 광검출단계; 데이터 처리부가 상기 빛의 광도를 이용하여 제1위치에서 상기 수광소자의 수광범위의 중심을 원점으로 하는 상기 반사체의 평면좌표(X1,Y1)를 설정하는 제1좌표설정단계; 상기 데이터 처리부가 상기 빛의 광도를 이용하여 제2위치에서 상기 수광소자의 수광범위의 중심을 원점으로 하는 상기 반사체의 평면좌표(X2,Y2)를 설정하는 제2좌표설정단계; 상기 반사체가 상기 제1위치에서 제2위치로 이동하였을 때, 상기 데이터 처리부에 의해 상기 원점과 제1위치에서의 평면좌표(X1,Y1)를 잇는 선분과 상기 제1위치에서의 평면좌표(X1,Y1)와 제2위치에서의 평면좌표(X2,Y2)를 잇는 선분 사이의 각도(θ)를 구하여, 상기 반사체가 상기 제1위치에서 상기 각도(θ)의 1/2지점을 지나는 방향 이동하는 것으로 판단하는 방향결정단계; 를 포함하여 이루어진다.
상기 데이터 처리부는, 상기 원점(0,0)에서 출발하여 상기 제1위치 및 제2위치를 경유한 후, 다시 상기 원점(0,0)으로 도착하는 경로 상에 위치하는 다수의 평면좌표(X,Y)를 상기 발광소자의 빛 조사 간격에 따라 연속적으로 연산하고, 상기 원점(0,0)을 기준으로 각 평면좌표(X,Y)의 표준값(N)을 연산하며, 상기 표준값(N)이 감소 후 증가하는 구간의 시작점과 끝점의 위치를 각각 상기 제1위치와 제2위치로 설정하되, 상기 표준값(N)은 하기 식에 의해 산출된다.
Figure PCTKR2013011001-appb-I000001
상기 방향결정단계는, 상기 각도(θ)에 가중치를 부가하여 상기 반사체가 이동하는 방향을 보정한다.
상기 발광소자는 상기 수광소자를 중심으로 90°간격으로 이격 배치되고, 상기 수광소자의 중심은 상기 평면좌표의 원점이 되되, 상기 발광소자는, 상기 수광소자를 중심으로 상호 마주보도록 배치된 제1 및 제2발광소자와, 상기 수광소자를 중심으로 상호 마주보도록 배치된 제3 및 제4발광소자로 구성되며, 상기 반사체의 평면좌표 중 X축 좌표성분인 X1, X2는 각각 상기 제1발광소자와 제2발광소자에서 조사되어 상기 반사체에 의해 반사된 빛의 광도를 비교하여 산출되고, 상기 반사체의 평면좌표 중 Y축 좌표성분인 Y1, Y2는 각각 상기 제3발광소자와 제4발광소자에서 조사되어 상기 반사체에 의해 반사된 빛의 광도를 비교하여 산출된다.
상기 발광소자에 인접하게 배치되고, 상기 발광소자에서 조사되어 상기 수광소자에서 감지한 빛의 광도를 보간(補間)하는 보간소자를 더 포함하여 이루어진다.
상기 방향결정단계는 상기 수광소자가 감지하는 빛의 광도가 소정 값 이상일 때만 상기 반사체의 이동방향을 판단한다.
상기 방향결정단계는 상기 수광소자가 감지하는 빛의 광도가 반복적으로 증감될 때 상기 반사체가 소정의 패턴으로 이동하는 것으로 판단한다.
상기 방향결정단계는 상기 수광소자가 감지하는 빛의 광도의 변화율이 소정의 패턴을 따라 변화할 때 상기 반사체가 회전하는 것으로 판단한다.
상기 목적을 달성하기 위한 또하나의 본 발명은, 발광소자에서 빛을 조사하고, 수광소자가 반사체에 의해 반사된 상기 빛을 감지하여 상기 반사체의 모션을 인식하는 모션 인식 방법은, 상기 수광소자가 상기 반사체에 의해 반사된 빛을 감지하여 빛의 광도를 측정하는 광검출단계; 데이터 처리부가 상기 빛의 광도를 이용하여 제1위치에서 상기 수광소자의 수광범위의 중심을 원점으로 하는 상기 반사체의 평면좌표(X1,Y1)를 설정하는 제1좌표설정단계; 상기 데이터 처리부가 상기 빛의 광도를 이용하여 제2위치에서 상기 수광소자의 수광범위의 중심을 원점으로 하는 상기 반사체의 평면좌표(X2,Y2)를 설정하는 제2좌표설정단계; 상기 반사체가 상기 제1위치에서 제2위치로 이동하였을 때, 상기 데이터 처리부에 의해 X축 좌표성분인 X1과 X2의 상대적 위치 및 Y축 좌표성분인 Y1과 Y2의 상대적 위치에 따라 상기 반사체가 X축 방향, Y축 방향 중 어느 한 방향으로 이동하는 것으로 판단하는 방향결정단계; 를 포함하여 이루어진다.
상기 데이터 처리부는, 상기 원점(0,0)에서 출발하여 상기 제1위치 및 제2위치를 경유한 후, 다시 상기 원점(0,0)으로 도착하는 경로 상의 평면좌표를 상기 발광소자의 빛 조사 간격에 따라 연속적으로 연산하고, 상기 경로 상에서 평면좌표의 X축 좌표성분 또는 Y축 좌표성분이 증감되는 변곡점이 나타나는 위치를 순서대로 상기 제1위치와 제2위치로 설정한다.
상기 X1과 X2가 상기 좌표평면 상에서 Y축을 기준으로 서로 반대방향에 위치하고, 상기 Y1과 Y2가 상기 좌표평면 상에서 X축을 기준으로 동일한 방향에 위치하면, 상기 방향결정단계에서는 상기 반사체가 X축 방향으로 이동하는 것으로 판단한다.
상기 X1과 X2가 상기 좌표평면 상에서 Y축을 기준으로 동일한 방향에 위치하고, 상기 Y1과 Y2가 상기 좌표평면 상에서 X축을 기준으로 서로 반대방향에 위치하면, 상기 방향결정단계에서는 상기 반사체가 Y축 방향으로 이동하는 것으로 판단한다.
상기 X1과 X2가 상기 좌표평면 상에서 Y축을 기준으로 서로 반대방향에 위치하고, 상기 Y1과 Y2가 상기 좌표평면 상에서 X축을 기준으로 서로 반대방향에 위치할 때, X축 좌표성분 X1, X2와 Y축 좌표성분 Y1, Y2가 아래의 관계를 만족하면, 상기 방향결정단계에서는 상기 반사체가 X축 방향으로 이동하는 것으로 판단한다.
Figure PCTKR2013011001-appb-I000002
상기 X1과 X2가 상기 좌표평면 상에서 Y축을 기준으로 서로 반대방향에 위치하고, 상기 Y1과 Y2가 상기 좌표평면 상에서 X축을 기준으로 서로 반대방향에 위치할 때, X축 좌표성분 X1, X2와 Y축 좌표성분 Y1, Y2가 아래의 관계를 만족하면, 상기 방향결정단계에서는 상기 반사체가 Y축 방향으로 이동하는 것으로 판단한다.
Figure PCTKR2013011001-appb-I000003
상기 제1위치에서 평면좌표(X1,Y1)가 원점을 제외한 Y축 상에 위치하고, Y2가 Y1보다 크거나 작으면, 상기 방향결정단계에서는 상기 반사체가 Y축 방향으로 이동하는 것으로 판단하고, 상기 제1위치에서 평면좌표(X1,Y1)가 원점을 제외한 X축 상에 위치하고, X2가 X1보다 크거나 작으면, 상기 방향결정단계에서는 상기 반사체가 X축 방향으로 이동하는 것으로 판단한다.
상기 X1과 X2가 상기 Y축을 기준으로 동일한 방향에 위치하고, 상기 Y1과 Y2가 상기 X축을 기준으로 동일한 방향에 위치할 때, 상기 X축으로부터 평면좌표(X1,Y1) 사이의 각도와 평면좌표(X2,Y2) 사이의 각도의 상대적 차이에 따라, 상기 방향결정단계에서는 상기 반사체가 X축 방향, Y축 방향 중 어느 한 방향으로 이동하는 것으로 판단한다.
상기 발광소자는 상기 수광소자를 중심으로 90°간격으로 이격 배치되고, 상기 수광소자의 중심은 상기 평면좌표의 원점이 되되, 상기 발광소자는, 상기 수광소자를 중심으로 상호 마주보도록 배치된 제1 및 제2발광소자와, 상기 수광소자를 중심으로 상호 마주보도록 배치된 제3 및 제4발광소자로 구성되며, 상기 반사체의 평면좌표 중 X축 좌표성분인 X1, X2는 각각 상기 제1발광소자와 제2발광소자에서 조사되어 상기 반사체에 의해 반사된 빛의 광도를 비교하여 설정되고, 상기 반사체의 평면좌표 중 Y축 좌표성분인 Y1, Y2는 각각 상기 제3발광소자와 제4발광소자에서 조사되어 상기 반사체에 의해 반사된 빛의 광도를 비교하여 산출된다.
본 발명에 따른 모션 감지 방법은 다음과 같은 효과가 있다.
원점을 기준으로 하는 제1위치 좌표와 제2위치 좌표를 기반으로 반사체의 진입각도를 연산하여 이동방향을 결정함으로써, 복잡하고 불분명한 모션을 분명하게 구분하여 인식할 수 있고, 이에 따라 모션에 의해 작동하는 모션 스위치의 신뢰성을 높여 모션 인식을 기반으로 하는 전자기기의 작동오류를 최소화하고 편리하게 이용할 수 있다.
도 1은 본 발명에 일 양태에 따른 모션 인식 방법의 반사체 이동 방향 결정방법을 나타낸 도면,
도 2는 본 발명의 실시예1에 따른 모션 스위치의 구조를 개략적으로 나타낸 도면,
도 3은 반사체의 특수 모션의 인식 패턴을 나타낸 도면,
도 4는 본 발명의 실시예2에 따른 모션 스위치의 구조를 개략적으로 나타낸 도면,
도 5은 본 발명의 다른 양태에 따른 모션 인식 방법의 제1위치와 제2위치 지정방법을 나타낸 도면,
도 6 내지 도 12은 본 발명의 다른 양태로서 각 조건에 따라 반사체의 방향결정방법을 나타낸 도면,
도 13은 본 발명의 실시예 3에 따른 모션 스위치의 구조를 나타낸 도면,
도 14는 본 발명의 실시예 4에 따른 모션 스위치의 구조를 나타낸 도면,
도 1은 본 발명의 일 양태에 따른 모션 인식 방법의 반사체 이동 방향 결정방법을 나타낸 도면이다.
본 발명의 모션 감지 방법은 광검출단계, 제1좌표설정단계, 제2좌표설정단계 및 방향결정단계로 이루어진다.
이러한 모션 인식 방법은, 빛을 조사하는 발광소자(10), 상기 발광소자(10)에서 조사된 빛을 감지하는 수광소자(20) 및 상기 수광소자(20)가 감지한 빛을 통해 입력되는 데이터 정보를 처리하여 판단하는 데이터 처리부(미도시)로 구성된 모션 스위치에 의해 구현된다.
등록특허공보 제10-1090965호에는 본 발명의 출원인이 출원한 모션 감지 스위치가 개시되어 있으며, 본 발명의 모션 인식 방법을 구현할 수 있는 일종의 모션 스위치가 될 수 있다.
광검출단계는 상기 수광소자(20)가 상기 반사체에 의해 반사된 빛을 감지하여 빛의 광도를 측정한다.
제1좌표설정단계는 상기 데이터 처리부가 상기 빛의 광도를 이용하여 제1위치에서 상기 수광소자(20)의 수광범위의 중심을 원점으로 하는 상기 반사체의 평면좌표(X1,Y1)를 설정한다.
제2좌표설정단계는 상기 데이터 처리부가 상기 빛의 광도를 이용하여 제2위치에서 상기 수광소자(20)의 수광범위의 중심을 원점으로 하는 상기 반사체의 평면좌표(X2,Y2)를 설정한다.
구체적으로 상기 데이터 처리부는, 도 1(a)에 도시된 바와 같이 상기 원점(0,0)에서 출발하여 상기 제1위치 및 제2위치를 경유한 후, 다시 상기 원점(0,0)으로 도착하는 경로 상의 다수의 평면좌표(X,Y)를 상기 발광소자의 빛 조사 간격에 따라 연속적으로 연산하고, 상기 원점(0,0)을 기준으로 각 평면좌표(X,Y)의 표준값(N)을 연산한다.
상기 표준값(N)은 하기 식에 의해 산출된다.
Figure PCTKR2013011001-appb-I000004
그리고 상기 데이터 처리부는 도 1(b)에 도시된 바와 같이 상기 표준값(N)이 감소 후 증가하는 구간(②)의 시작점과 끝점의 위치를 각각 상기 제1위치와 제2위치로 설정한다.
도 1(b)는 시간(t)에 따른 상기 표준값(N)의 변화를 나타낸 그래프로써, 상기 표준값(N)은 반사체가 상기 원점으로 접근할 때 감소하고, 상기 원점으로부터 멀어질 때 증가한다.
방향결정단계는 상기 반사체가 상기 제1위치에서 제2위치로 이동하였을 때, 도 1(a)에 도시된 바와 같이 상기 데이터 처리부에 의해 상기 원점과 제1위치에서의 평면좌표(X1,Y1)를 잇는 선분(①)과 상기 제1위치에서의 평면좌표(X1,Y1)와 제2위치에서의 평면좌표(X2,Y2)를 잇는 선분(②) 사이의 각도(θ)를 구하여, 상기 반사체가 상기 제1위치에서 상기 각도(θ)의 1/2지점을 지나는 방향 이동하는 것으로 판단한다.
한편, 상기 방향결정단계는 상기 각도(θ)에 가중치를 부가하여 상기 반사체가 이동하는 방향을 보정할 수도 있다.
그리고 상기 방향결정단계는 상기 수광소자(20)가 감지하는 빛의 광도가 반복적으로 증감될 때 상기 반사체가 소정의 패턴으로 이동하는 것으로 판단한다.
즉, 사용자가 상기 수광소자의 수광범위 내에서 동일한 동작을 반복적으로 하게 되면, 상기 데이터 처리부는 상기 수광소자(20)가 감지하는 빛의 광도가 일정한 패턴으로 반복되게 증감되는 것을 인식할 수 있다.
따라서 상기 데이터 처리부가 이러한 반복적인 특수 동작신호를 인식하면 모션 인식을 기반으로 하는 시스템(전자기기 등)에서 상기 동작신호에 대응되는 특수 기능이 실행되도록 할 수 있다.
상술한 바와 같은 모션 인식 방법은 원점을 기준으로 하는 제1위치 좌표와 제2위치 좌표를 기반으로 반사체의 진입각도를 연산하여 이동방향을 결정함으로써, 복잡하고 불분명한 모션을 분명하게 구분하여 인식할 수 있고, 이에 따라 모션에 의해 작동하는 모션 스위치의 신뢰성을 높여 모션 인식을 기반으로 하는 전자기기의 작동오류를 최소화하고 편리하게 이용할 수 있다.
실시예 1
도 2(a)는 본 발명의 실시예1에 따른 모션 스위치의 구조를 개략적으로 나타낸 도면이고, 도 2(b)는 도 2(a)에 보간소자가 더 포함되어 있는 모션 스위치이며, 도 3은 반사체의 특수 모션의 인식 패턴을 나타낸 도면이다.
본 발명의 모션 인식 방법을 구현하기 위한 모션 스위치는 발광소자(10), 수광소자(20) 및 데이터 처리부(미도시)로 이루어진다.
상기 발광소자(10)는, 상기 수광소자(20)를 중심으로 상호 마주보도록 배치된 제1 및 제2발광소자(11,12)와, 상기 수광소자(20)를 중심으로 상호 마주보도록 배치된 제3 및 제4발광소자(13,14)로 구성되며, 상기 수광소자(20)를 중심으로 90°간격으로 이격 배치되어 일정 간격으로 차례로 빛을 조사한다.
이에 따라 사용자의 손과 같은 반사체가 상기 모션 스위치의 상부를 지나가면, 상기 발광소자(10)에서 조사된 빛이 상기 반사체에 반사되어 상기 수광소자(20)가 반사된 빛을 감지한다.
이때, 상기 반사체의 위치에 따라 상기 수광소자(20)가 감지하는 빛의 광도가 변화하게 되고, 이러한 빛의 광도가 아날로그 데이터로 변환된다.
상기 데이터 처리부는 상기 제1발광소자(11)와 제2발광소자(12)에서 조사되어 상기 수광소자(20)가 감지한 빛의 아날로그 데이터를 비교하여 상기 반사체의 각 위치에서 평면좌표의 X축 좌표성분 값을 연산한다.
Figure PCTKR2013011001-appb-I000005
(A : 제1발광소자에서 조사된 빛의 광도, B : 제2발광소자에서 조사된 빛의 광도)
반사체가 평면좌표의 원점이 되는 수광소자(20)의 상부에 위치할 경우, A와 B의 값은 동일하여 X=0이 되고, 상기 반사체가 상기 제1발광소(11)자 방향으로 이동하면 A가 증가하고 B가 감소하여 X>0이며, 상기 반사체가 상기 제2발광소자(12) 방향으로 이동하면 A가 감소하고 B가 증가하여 X<0이 된다.
그리고 상기 데이터 처리부는 상기 제3발광소자(13)와 제4발광소자(14)에서 조사되어 상기 수광소자(20)가 감지한 빛의 아날로그 데이터를 비교하여 상기 반사체의 각 위치에서 평면좌표의 Y축 좌표성분 값을 연산한다.
Figure PCTKR2013011001-appb-I000006
(C : 제3발광소자에서 조사된 빛의 광도, D : 제4발광소자에서 조사된 빛의 광도)
반사체가 평면좌표의 원점이 되는 수광소자(20)의 상부에 위치할 경우, C와 D의 값은 동일하여 Y=0이 되고, 상기 반사체가 상기 제3발광소자(13) 방향으로 이동하면 C가 증가하고 D가 감소하여 Y>0이며, 상기 반사체가 상기 제4발광소자(14) 방향으로 이동하면 C가 감소하고 D가 증가하여 X<0이 된다.
상기와 같이 데이터 처리부는, 상기 반사체가 상기 제1위치에서 제2위치로 이동하였을 때, 도 1(a)에 도시된 바와 같이 상기 데이터 처리부에 의해 상기 원점과 제1위치에서의 평면좌표(X1,Y1)를 잇는 선분(①)과 상기 제1위치에서의 평면좌표(X1,Y1)와 제2위치에서의 평면좌표(X2,Y2)를 잇는 선분(②) 사이의 각도(θ)를 구하여, 상기 반사체가 상기 제1위치에서 상기 각도(θ)의 1/2지점을 지나는 방향 이동하는 것으로 판단한다.
이러한 모션 스위치는 상기 수광소자(20)에서 감지하는 빛의 광도가 소정의 기준 값 이상일 때만 작동되도록 한다.
상기 수광소자(20)는 모션 스위치의 상부 개방된 공간에서 들어오는 빛을 감지하기 때문에, 상기 발광소자(10)에서 조사되어 반사체에 반사된 빛 이외의 외부 빛이 감지될 수 있다.
이에 따라 상기 수광소자(20)가 감지하는 빛의 광도가 소정의 기준 값보다 작을 때는 상기 방향결정단계에서 상기 반사체의 이동 방향의 판단을 보류하고, 상기 수광소자(20)가 감지하는 빛의 광도가 소정의 기준 값 이상일 때만 반사체의 이동 방향을 판단하도록 하여 방향 판단의 오류를 방지할 수 있다.
그리고 외부 조건에 유연하게 대응하기 위하여 반사체에 반사되어 상기 수광소자(20)가 감지하는 빛의 광도를 기준으로 상기 기준 값을 변경할 수도 있다.
또한, 상기 수광소자(20)의 수광범위 내에 반사체가 진입한 후 일정시간 빠져나가지 않을 경우에는 상기 방향결정단계에서의 방향 판단을 보류하도록 한다.
그리고 반사체가 수광범위 내로 진입하였을 때, 불빛, 진동, 소리 등으로 사용자에게 반사체의 감지를 알려주도록 한다.
한편, 상기 모션 스위치는 도 2(b)에 도시된 바와 같이 보간소자(15)를 더 포함할 수 있다.
상기 보간소자(15)는 상기 발광소자(10)에 인접하게 배치되고, 상기 발광소자에서 조사되어 상기 수광소자에서 감지한 빛의 아날로그 데이터를 보간(補間)하여 데이터의 신뢰성을 높일 수 있다.
그리고 상기 모션 스위치의 평면좌표의 축 방향과 상기 모션 스위치에 의해 시스템(전자기기 등)이 인식하는 방향이 상호 대칭되지 않을 경우, 상기 모션 스위치에 의해 설정되는 좌표값을 구조적인 회전변환 및 병진변환으로 조정하여 적용할 수 있다.
또한, 도 3에 도시된 바와 같이, 상기 방향결정단계에서 상기 데이터 처리부는 상기 수광소자(20)가 감지하는 빛의 광도의 변화율이 소정의 패턴을 따라 변화할 때 상기 반사체(F)가 회전하는 것으로 판단할 수 있다.
도 3(a)는 반사체(F)가 상기 발광소자(11,12,13,14)의 상부를 회전하고 있는 상태를 나타낸 도면이고, 도 3(b)는 각 발광소자(11,12,13,14)에서 조사되어 상기 수광소자(20)가 감지하는 빛의 광도(아날로그 데이터)의 시간(t)에 따른 변화율을 구분하여 나타낸 그래프이다.
상기 발광소자 중 상기 제1발광소자(11)를 일례로 설명하면, 상기 반사체(F)가 상기 제1발광소자(11)의 상부를 지나갈 때 상기 제1발광소자(11)에서 조사되어 상기 수광소자(20)가 감지하는 아날로그 데이터의 시간(t)에 따른 변화율이 가장 크게 나타나고, 상기 반사체(F)가 상기 수광소자(20)를 중심으로 상기 제1발광소자(11)의 반대방향에 배치되어 있는 상기 제2발광소자(12)의 상부를 지나갈 때 상기 제1발광소자(11)에서 조사되어 상기 수광소자(20)가 감지하는 아날로그 데이터의 시간(t)에 따른 변화율이 가장 작게 나타난다.
상기 제2발광소자(12), 제3발광소자(13) 및 제4발광소자(14) 역시 전술한 상기 제1발광소자(11)와 동일한 패턴으로 상기 아날로그 데이터의 시간(t) 변화율이 나타난다.
따라서 상기 데이터 처리부는 상기와 같은 아날로그 데이터의 패턴을 인식하면 상기 반사체가 상기 모션 스위치의 상부에서 회전하고 있는 것을 알 수 있고, 이러한 상기 반사체의 회전 동작에 따라 모션 감지를 기반으로 하는 시스템(전자기기 등)에 그에 대응되는 특수 기능이 실행되도록 할 수 있다.
실시예 2
실시예 2는 실시예 1과 비교하여 발광소자와 수광소자의 배치구조에 차이가 있다.
도 4(a)는 본 발명의 실시예2에 따른 모션 스위치의 평면구조를 개략적으로 나타낸 도면이고, 도 4(b)는 본 발명의 실시예2에 따른 모션 스위치의 측면구조를 개략적으로 나타낸 도면이다.
실시예 2에 따른 모션 인식 방법을 구현하기 위한 모션 스위치는 발광소자(10), 수광소자(20) 및 데이터 처리부(미도시)로 이루어진다.
상기 발광소자(10)는 일정간격으로 빛을 조사한다.
상기 수광소자(20)는 전체 수광범위의 중심이 되는 원점을 중심으로 90°간격으로 이격 배치되고, 상기 발광소자(10)는 상기 수광소자(20)에 인접하게 배치된다.
그리고 상기 수광소자(20)는, 상기 원점을 중심으로 상호 마주보도록 배치된 제1 및 제2수광소자(21,22)와, 상기 원점을 중심으로 상호 마주보도록 배치된 제3 및 제4수광소자(23,24)로 구성된다.
상기 데이터 처리부는 상기 제1수광소자(21)와 제2수광소자(22)가 감지한 빛의 아날로그 데이터를 비교하여 상기 반사체의 각 위치에서 평면좌표의 X축 좌표성분 값을 연산한다.
Figure PCTKR2013011001-appb-I000007
(A : 제1수광소자가 감지한 빛의 광도, B : 제2수광소자가 감지한 빛의 광도)
그리고 상기 데이터 처리부는 상기 제3수광소자(23)와 제4수광소자(24)가 감지한 빛의 아날로그 데이터를 비교하여 상기 반사체의 각 위치에서 평면좌표의 Y축 좌표성분 값을 연산한다.
Figure PCTKR2013011001-appb-I000008
(C : 제3수광소자가 감지한 빛의 광도, D : 제4수광소자가 감지한 빛의 광도)
이러한 수광소자(20)는 각각 수광렌즈(30)를 구비하며, 상기 수광렌즈(30)의 광축은 수직 상방향에 대하여 기울어져 있다.
이에 따라 상기 발광소자(10)에서 조사된 빛은 반사체에 반사되어 각각의 수광소자(20)가 감지할 수 있다.
상기 수광렌즈(30)는 반사체가 수광범위의 중심부에 위치할 때, 각각의 수광소자(21,22,23,24)에서 동일한 광도의 빛을 감지할 수 있도록 광축이 수직 상방향에 대하여 기울어지게 된다.
전술한 사항 이외에는 실시예 1과 동일한바 자세한 설명은 생략한다.
본 발명의 다른 양태에 따른 모션 감지 방법은 광검출단계, 제1좌표설정단계, 제2좌표설정단계 및 방향결정단계로 이루어진다.
이러한 모션 인식 방법은, 빛을 조사하는 발광소자(10), 상기 발광소자(10)에서 조사된 빛을 감지하는 수광소자(20) 및 상기 수광소자(20)가 감지한 빛을 통해 입력되는 데이터 정보를 처리하여 판단하는 데이터 처리부(미도시)로 구성된 모션 스위치에 의해 구현된다.
등록특허공보 제10-1090965호에는 본 발명의 출원인이 출원한 모션 감지 스위치가 개시되어 있으며, 본 발명의 모션 인식 방법을 구현할 수 있는 일종의 모션 스위치가 될 수 있다.
광검출단계는 상기 수광소자(20)가 상기 반사체에 의해 반사된 빛을 감지하여 빛의 광도를 측정한다.
제1좌표설정단계는 상기 데이터 처리부가 상기 빛의 광도를 이용하여 제1위치에서 상기 수광소자(20)의 수광범위의 중심을 원점으로 하는 상기 반사체의 평면좌표(X1,Y1)를 설정한다.
제2좌표설정단계는 상기 데이터 처리부가 상기 빛의 광도를 이용하여 제2위치에서 상기 수광소자(20)의 수광범위의 중심을 원점으로 하는 상기 반사체의 평면좌표(X2,Y2)를 설정한다.
구체적으로 상기 데이터 처리부는 도 5에 도시된 바와 같이, 상기 원점(0,0)에서 출발하여 상기 제1위치 및 제2위치를 경유한 후, 다시 상기 원점(0,0)으로 도착하는 경로 상의 다수의 평면좌표를 상기 발광소자(10)의 빛 조사 간격에 따라 연속적으로 연산하고, 상기 경로 상에서 평면좌표의 X축 좌표성분 또는 Y축 좌표성분이 증감되는 변곡점이 나타나는 위치를 순서대로 상기 제1위치(①)와 제2위치(②)로 설정한다.
방향결정단계는 상기 반사체가 상기 제1위치에서 제2위치로 이동하였을 때, 상기 데이터 처리부에 의해 X축 좌표성분인 X1과 X2의 상대적 위치 및 Y축 좌표성분인 Y1과 Y2의 상대적 위치에 따라 상기 반사체가 X축 방향, Y축 방향 중 어느 한 방향으로 이동하는 것으로 판단한다.
다음은 상기 반사체의 위치에 따라 상기 제1위치에서의 평면좌표(X1,Y1)와 상기 제2위치에서의 평면좌표(X2,Y2)를 비교하여 상기 반사체의 이동방향을 판단하는 구체적인 예이다.
1) 상기 X1과 X2가 상기 좌표평면 상에서 Y축을 기준으로 서로 반대방향에 위치하고, 상기 Y1과 Y2가 상기 좌표평면 상에서 X축을 기준으로 동일한 방향에 위치하면, 상기 방향결정단계에서는 상기 반사체가 X축 방향으로 이동하는 것으로 판단한다.
이때, 도 6(a)에 도시된 바와 같이 상기 X1이 양수이면 상기 방향결정단계에서는 반사체가 좌측방향으로 이동하는 것으로 판단하고, 도 6(b)에 도시된 바와 같이 상기 X2가 양수이면 상기 방향결정단계에서는 반사체가 우측방향으로 이동하는 것으로 판단한다.
즉, 아래의 조건을 만족할 때,
Figure PCTKR2013011001-appb-I000009
Figure PCTKR2013011001-appb-I000010
X1이 양수이면 상기 방향결정단계에서 상기 데이터 처리부는 반사체가 좌측방향으로 이동하는 것으로 판단하고, X2가 양수이면 상기 방향결정단계에서 상기 데이터 처리부는 반사체가 우측방향으로 이동하는 것으로 판단한다.
2) 상기 X1과 X2가 상기 좌표평면 상에서 Y축을 기준으로 동일한 방향에 위치하고, 상기 Y1과 Y2가 상기 좌표평면 상에서 X축을 기준으로 서로 반대방향에 위치하면, 상기 방향결정단계에서는 상기 반사체가 Y축 방향으로 이동하는 것으로 판단한다.
이때, 도 6(c)에 도시된 바와 같이 상기 Y1이 양수이면 상기 방향결정단계에서는 반사체가 하방향으로 이동하는 것으로 판단하고, 도 6(d)에 도시된 바와 같이 상기 Y2가 양수이면 상기 방향결정단계에서는 반사체가 상방향으로 이동하는 것으로 판단한다.
즉, 아래의 조건을 만족할 때,
Figure PCTKR2013011001-appb-I000011
Figure PCTKR2013011001-appb-I000012
Y1이 양수이면 상기 방향결정단계에서 상기 데이터 처리부는 반사체가 하방향으로 이동하는 것으로 판단하고, Y2가 양수이면 상기 방향결정단계에서 상기 데이터 처리부는 반사체가 상방향으로 이동하는 것으로 판단한다.
3) 상기 X1과 X2가 상기 좌표평면 상에서 Y축을 기준으로 서로 반대방향에 위치하고, 상기 Y1과 Y2가 상기 좌표평면 상에서 X축을 기준으로 서로 반대방향에 위치할 때, X축 좌표성분 X1, X2와 Y축 좌표성분 Y1, Y2가 하기의 관계식을 만족하면, 상기 방향결정단계에서는 상기 반사체가 X축 방향으로 이동하는 것으로 판단한다.
Figure PCTKR2013011001-appb-I000013
(상기 관계식은 각 좌표성분의 연산값의 절대값을 비교한 것이다.)
이때, 도 7(a)에 도시된 바와 같이 상기 X1이 양수이면 상기 방향결정단계에서는 반사체가 좌측방향으로 이동하는 것으로 판단하고, 도 7(b)에 도시된 바와 같이 상기 X2가 양수이면 상기 방향결정단계에서는 반사체가 우측방향으로 이동하는 것으로 판단한다.
또한, 상기 X1과 X2가 상기 좌표평면 상에서 Y축을 기준으로 서로 반대방향에 위치하고, 상기 Y1과 Y2가 상기 좌표평면 상에서 X축을 기준으로 서로 반대방향에 위치할 때, X축 좌표성분 X1, X2와 Y축 좌표성분 Y1, Y2가 하기의 관계식을 만족하면, 상기 방향결정단계에서는 상기 반사체가 Y축 방향으로 이동하는 것으로 판단한다.
Figure PCTKR2013011001-appb-I000014
(상기 관계식은 각 좌표성분의 연산값의 절대값을 비교한 것이다.)
이때, 도 7(c)에 도시된 바와 같이 상기 Y1이 양수이면 상기 방향결정단계에서는 반사체가 하방향으로 이동하는 것으로 판단하고, 도 7(d)에 도시된 바와 같이 상기 Y2가 양수이면 상기 방향결정단계에서는 반사체가 상방향으로 이동하는 것으로 판단한다.
4) 상기 제1위치에서 평면좌표(X1,Y1)가 원점을 제외한 Y축 상에 위치하고, Y2가 Y1보다 크거나 작으면, 상기 방향결정단계에서는 상기 반사체가 Y축 방향으로 이동하는 것으로 판단한다.
즉, 상기 제1위치에서 X1=0이다.
이때, 도 8(a)에 도시된 바와 같이 Y2가 Y1보다 작으면 상기 방향결정단계에서는 반사체가 하방향으로 이동하는 것으로 판단하고, 도 8(b)에 도시된 바와 같이 Y2가 Y1보다 크면 상기 방향결정단계에서는 반사체가 상방향으로 이동하는 것으로 판단한다.
또한, 상기 제1위치에서 평명좌표(X1,Y1)가 원점을 제외한 X축 상에 위치하고, X2가 X1보다 크거나 작으면, 상기 방향결정단계에서는 상기 반사체가 X축 방향으로 이동하는 것으로 판단한다.
즉, 상기 제1위치에서 Y1=0이다.
이때, 도 8(c)에 도시된 바와 같이 X2가 X1보다 작으면 상기 방향결정단계에서는 반사체가 좌측방향으로 이동하는 것으로 판단하고, 도 8(d)에 도시된 바와 같이 X2가 X1보다 크면 상기 방향결정단계에서는 반사체가 우측방향으로 이동하는 것으로 판단한다.
5) 상기 X1과 X2가 상기 Y축을 기준으로 동일한 방향에 위치하고, 상기 Y1과 Y2가 상기 X축을 기준으로 동일한 방향에 위치할 때, 상기 X축으로부터 평면좌표(X1,Y1) 사이의 각도(θ1)와 상기 X축으로부터 평면좌표(X2,Y2) 사이의 각도(θ2)의 상대적 차이에 따라, 상기 방향결정단계에서는 상기 반사체가 X축 방향, Y축 방향 중 어느 한 방향으로 이동하는 것으로 판단한다.
구체적으로 좌표평면에서 (X1,Y1)과 (X2,Y2)가 1사분면에 위치할 때, 도 9(a)에 도시된 바와 같이 θ2가 θ1보다 작으면 상기 방향결정단계에서는 반사체가 하방향으로 이동하는 것으로 판단하고, 도 9(b)에 도시된 바와 같이 θ2가 θ1보다 크면 상기 방향결정단계에서는 반사체가 좌측방향으로 이동하는 것으로 판단한다.
그리고 좌표평면에서 (X1,Y1)과 (X2,Y2)가 2사분면에 위치할 때, 도 10(a)에 도시된 바와 같이 θ2가 θ1보다 작으면 상기 방향결정단계에서는 반사체가 우측방향으로 이동하는 것으로 판단하고, 도 10(b)에 도시된 바와 같이 θ2가 θ1보다 크면 상기 방향결정단계에서는 반사체가 하방향으로 이동하는 것으로 판단한다.
그리고 좌표평면에서 (X1,Y1)과 (X2,Y2)가 3사분면에 위치할 때, 도 11(a)에 도시된 바와 같이 θ2가 θ1보다 작으면 상기 방향결정단계에서는 반사체가 상방향으로 이동하는 것으로 판단하고, 도 11(b)에 도시된 바와 같이 θ2가 θ1보다 크면 상기 방향결정단계에서는 반사체가 우측방향으로 이동하는 것으로 판단한다.
그리고 좌표평면에서 (X1,Y1)과 (X2,Y2)가 4사분면에 위치할 때, 도 12(a)에 도시된 바와 같이 θ2가 θ1보다 작으면 상기 방향결정단계에서는 반사체가 좌측방향으로 이동하는 것으로 판단하고, 도 12(b)에 도시된 바와 같이 θ2가 θ1보다 크면 상기 방향결정단계에서는 반사체가 상방향으로 이동하는 것으로 판단한다.
상술한 바와 같은 모션 인식 방법은 미리 설정된 조건에 따라 반사체의 이동 방향을 X축 방향과 Y축 방향 중 어느 한 방향으로 단순화하여 인식함으로써, 복잡하고 불분명한 모션을 분명하게 구분하여 인식할 수 있고, 이에 따라 모션에 의해 작동하는 모션 스위치의 신뢰성을 높여 모션 인식을 기반으로 하는 전자기기들의 작동오류를 최소화하고 편리하게 이용할 수 있다.
실시예 3
도 13은 본 발명의 실시예 3에 따른 모션 스위치의 평면 구조를 개략적으로 나타낸 도면이다.
본 발명의 모션 인식 방법을 구현하기 위한 모션 스위치는 발광소자(10), 수광소자(20) 및 데이터 처리부로 이루어진다.
상기 발광소자(10)는, 상기 수광소자(20)를 중심으로 상호 마주보도록 배치된 제1 및 제2발광소자(11,12)와, 상기 수광소자를 중심으로 상호 마주보도록 배치된 제3 및 제4발광소자(13,24)로 구성되며, 상기 수광소자를 중심으로 90°간격으로 이격 배치되어 일정 간격으로 차례로 빛을 조사한다.
이에 따라 사용자의 손과 같은 반사체가 상기 모션 스위치의 상부를 지나가면, 상기 발광소자(10)에서 조사된 빛이 상기 반사체에 반사되어 상기 수광소자(20)가 반사된 빛을 감지한다.
이때, 상기 반사체의 위치에 따라 상기 수광소자(20)가 감지하는 빛의 광도가 변화하게 되고, 이러한 빛의 광도가 아날로그 데이터로 변환된다.
상기 데이터 처리부는 상기 제1발광소자(11)와 제2발광소자(12)에서 조사되어 상기 수광소자(20)가 감지한 빛의 아날로그 데이터를 비교하여 상기 반사체의 각 위치에서 평면좌표의 X축 좌표성분 값을 연산한다.
Figure PCTKR2013011001-appb-I000015
(A : 제1발광소자에서 조사된 빛의 광도, B : 제2발광소자에서 조사된 빛의 광도)
반사체가 평면좌표의 원점이 되는 수광소자(20)의 상부에 위치할 경우, A와 B의 값은 동일하여 X=0이 되고, 상기 반사체가 상기 제1발광소자(11) 방향으로 이동하면 A가 증가하고 B가 감소하여 X>0이며, 상기 반사체가 상기 제2발광소자(12) 방향으로 이동하면 A가 감소하고 B가 증가하여 X<0이 된다.
그리고 상기 데이터 처리부는 상기 제3발광소자(13)와 제4발광소자(14)에서 조사되어 상기 수광소자(20)가 감지한 빛의 아날로그 데이터를 비교하여 상기 반사체의 각 위치에서 평면좌표의 Y축 좌표성분 값을 연산한다.
Figure PCTKR2013011001-appb-I000016
(C : 제3발광소자에서 조사된 빛의 광도, D : 제4발광소자에서 조사된 빛의 광도)
반사체가 평면좌표의 원점이 되는 수광소자(20)의 상부에 위치할 경우, C와 D의 값은 동일하여 Y=0이 되고, 상기 반사체가 상기 제3발광소(13)자 방향으로 이동하면 C가 증가하고 D가 감소하여 Y>0이며, 상기 반사체가 상기 제4발광소자(14) 방향으로 이동하면 C가 감소하고 D가 증가하여 X<0이 된다.
상기와 같이 데이터 처리부는, 상기 데이터 처리부가 인식하게 되는 상기 반사체의 이동 경로 상에서 평면좌표를 연속적으로 연산하고, 상기 경로 상에서 평면좌표의 X축 좌표성분 또는 Y축 좌표성분이 증감되는 변곡점이 나타나는 위치를 순서대로 상기 제1위치와 제2위치로 설정한 후, 상기 제1위치의 평면좌표(X1,Y1)와 상기 제2위치의 평면좌표(X2,Y2)를 비교하여 상기 반사체의 이동 방향을 결정한다.
이러한 모션 스위치는 상기 수광소자(20)에서 감지하는 빛의 광도가 소정의 기준 값 이상일 때만 작동되도록 한다.
상기 수광소자(20)는 모션 스위치의 상부 개방된 공간에서 들어오는 빛을 감지하기 때문에, 상기 발광소자(10)에서 조사되어 반사체에 반사된 빛 이외의 외부 빛이 감지될 수 있다.
이에 따라 상기 수광소자(20)가 감지하는 빛의 광도가 소정의 기준 값보다 작을 때는 상기 방향결정단계에서 상기 반사체의 이동 방향의 판단을 보류하고, 상기 수광소자(20)가 감지하는 빛의 광도가 소정의 기준 값 이상일 때만 반사체의 이동 방향을 판단하도록 하여 방향 판단의 오류를 방지할 수 있다.
그리고 외부 조건에 유연하게 대응하기 위하여 반사체에 반사되어 상기 수광소자(20)가 감지하는 빛의 광도를 기준으로 상기 기준 값을 변경할 수도 있다.
또한, 상기 수광소자(20)의 수광범위 내에 반사체가 진입한 후 일정시간 빠져나가지 않을 경우에는 상기 방향결정단계에서의 방향 판단을 보류하도록 한다.
그리고 반사체가 수광범위 내로 진입하였을 때, 불빛, 진동, 소리 등으로 사용자에게 반사체의 감지를 알려주도록 한다.
한편, 상기 모션 스위치는 보간소자를 더 포함할 수 있다.
상기 보간소자는 상기 발광소자(10)에 인접하게 배치되고, 상기 발광소자(10)에서 조사되어 상기 수광소자(20)에서 감지한 빛의 아날로그 데이터를 보간(補間)하여 데이터의 신뢰성을 높일 수 있다.
그리고 상기 모션 스위치의 평면좌표의 축 방향과 상기 모션 스위치에 의해 시스템(전자기기 등)이 인식하는 방향이 상호 대칭되지 않을 경우, 상기 모션 스위치에 의해 설정되는 좌표값을 구조적인 회전변환 및 병진변환으로 조정하여 적용할 수 있다.
실시예 4
실시예 4는 실시예 3과 비교하여 발광소자와 수광소자의 배치구조에 차이가 있다.
도 14은 본 발명의 실시예 4에 따른 모션 스위치의 구조를 나타낸 도면이다.
도 14(a)는 본 발명의 실시예 4에 따른 모션 스위치의 평면구조를 개력적으로 나타낸 도면이고, 도 14(b)는 본 발명의 실시예2에 따른 모션 스위치의 측면구조를 개략적으로 나타낸 도면이다.
실시예 4에 따른 모션 인식 방법을 구현하기 위한 모션 스위치는 발광소자(!0), 수광소자(20) 및 데이터 처리부(미도시)로 이루어진다.
상기 발광소자(10)는 일정간격으로 빛을 조사한다.
상기 수광소자(20)는 전체 수광범위의 중심이 되는 원점을 중심으로 90°간격으로 이격 배치되고, 상기 발광소자(10)는 상기 수광소자(20)에 인접하게 배치된다.
그리고 상기 수광소자(20)는, 상기 원점을 중심으로 상호 마주보도록 배치된 제1 및 제2수광소자(21,22)와, 상기 원점을 중심으로 상호 마주보도록 배치된 제3 및 제4수광소자(23,24)로 구성된다.
상기 데이터 처리부는 상기 제1수광소자(21)와 제2수광소자(22)가 감지한 빛의 아날로그 데이터를 비교하여 상기 반사체의 각 위치에서 평면좌표의 X축 좌표성분 값을 연산한다.
Figure PCTKR2013011001-appb-I000017
(A : 제1수광소자가 감지한 빛의 광도, B : 제2수광소자가 감지한 빛의 광도)
그리고 상기 데이터 처리부는 상기 제3수광소자(23)와 제4수광소자(24)가 감지한 빛의 아날로그 데이터를 비교하여 상기 반사체의 각 위치에서 평면좌표의 Y축 좌표성분 값을 연산한다.
Figure PCTKR2013011001-appb-I000018
(C : 제3수광소자가 감지한 빛의 광도, D : 제4수광소자가 감지한 빛의 광도)
이러한 수광소자(20)는 각각 수광렌즈(30)를 구비하며, 상기 수광렌즈(30)의 광축은 수직 상방향에 대하여 기울어져 있다.
이에 따라 상기 발광소자(10)에서 조사된 빛은 반사체에 반사되어 각각의 수광소자(20)가 감지할 수 있다.
상기 수광렌즈(30)는 반사체가 수광범위의 중심부에 위치할 때, 각각의 수광소자(20)에서 동일한 광도의 빛을 감지할 수 있도록 광축이 수직 상방향에 대하여 기울어지게 된다.
전술한 사항 이외에는 실시예 3과 동일한바 자세한 설명은 생략한다.
본 발명인 모션 인식 방법은 전술한 실시예에 국한되지 않고, 본 발명의 기술사상이 허용되는 범위 내에서 다양하게 변형하여 실시할 수 있다.

Claims (17)

  1. 발광소자에서 빛을 조사하고, 수광소자가 반사체에 의해 반사된 상기 빛을 감지하여 상기 반사체의 모션을 인식하는 모션 인식 방법에 있어서,
    상기 수광소자가 상기 반사체에 의해 반사된 빛을 감지하여 빛의 광도를 측정하는 광검출단계;
    데이터 처리부가 상기 빛의 광도를 이용하여 제1위치에서 상기 수광소자의 수광범위의 중심을 원점으로 하는 상기 반사체의 평면좌표(X1,Y1)를 설정하는 제1좌표설정단계;
    상기 데이터 처리부가 상기 빛의 광도를 이용하여 제2위치에서 상기 수광소자의 수광범위의 중심을 원점으로 하는 상기 반사체의 평면좌표(X2,Y2)를 설정하는 제2좌표설정단계;
    상기 반사체가 상기 제1위치에서 제2위치로 이동하였을 때, 상기 데이터 처리부에 의해 상기 원점과 제1위치에서의 평면좌표(X1,Y1)를 잇는 선분과 상기 제1위치에서의 평면좌표(X1,Y1)와 제2위치에서의 평면좌표(X2,Y2)를 잇는 선분 사이의 각도(θ)를 구하여, 상기 반사체가 상기 제1위치에서 상기 각도(θ)의 1/2지점을 지나는 방향 이동하는 것으로 판단하는 방향결정단계; 를 포함하여 이루어지는 것을 특징으로 하는 모션 인식 방법.
  2. 청구항 1에 있어서,
    상기 데이터 처리부는,
    상기 원점(0,0)에서 출발하여 상기 제1위치 및 제2위치를 경유한 후, 다시 상기 원점(0,0)으로 도착하는 경로 상에 위치하는 다수의 평면좌표(X,Y)를 상기 발광소자의 빛 조사 간격에 따라 연속적으로 연산하고,
    상기 원점(0,0)을 기준으로 각 평면좌표(X,Y)의 표준값(N)을 연산하며,
    상기 표준값(N)이 감소 후 증가하는 구간의 시작점과 끝점의 위치를 각각 상기 제1위치와 제2위치로 설정하되,
    상기 표준값(N)은 하기 식에 의해 산출되는 것을 특징으로 하는 모션 인식 방법.
    Figure PCTKR2013011001-appb-I000019
  3. 청구항 1에 있어서,
    상기 방향결정단계는, 상기 각도(θ)에 가중치를 부가하여 상기 반사체가 이동하는 방향을 보정하는 것을 특징으로 하는 모션 인식 방법.
  4. 청구항 1에 있어서,
    상기 발광소자는 상기 수광소자를 중심으로 90°간격으로 이격 배치되고,
    상기 수광소자의 중심은 상기 평면좌표의 원점이 되되,
    상기 발광소자는,
    상기 수광소자를 중심으로 상호 마주보도록 배치된 제1 및 제2발광소자와,
    상기 수광소자를 중심으로 상호 마주보도록 배치된 제3 및 제4발광소자로 구성되며,
    상기 반사체의 평면좌표 중 X축 좌표성분인 X1, X2는 각각 상기 제1발광소자와 제2발광소자에서 조사되어 상기 반사체에 의해 반사된 빛의 광도를 비교하여 산출되고,
    상기 반사체의 평면좌표 중 Y축 좌표성분인 Y1, Y2는 각각 상기 제3발광소자와 제4발광소자에서 조사되어 상기 반사체에 의해 반사된 빛의 광도를 비교하여 산출되는 것을 특징으로 하는 모션 인식 방법.
  5. 청구항 4에 있어서,
    상기 발광소자에 인접하게 배치되고, 상기 발광소자에서 조사되어 상기 수광소자에서 감지한 빛의 광도를 보간(補間)하는 보간소자를 더 포함하여 이루어지는 것을 특징으로 하는 모션 인식 방법.
  6. 청구항 1에 있어서,
    상기 방향결정단계는 상기 수광소자가 감지하는 빛의 광도가 소정 값 이상일 때만 상기 반사체의 이동방향을 판단하는 것을 특징으로 하는 모션 인식 방법.
  7. 청구항 1에 있어서,
    상기 방향결정단계는 상기 수광소자가 감지하는 빛의 광도가 반복적으로 증감될 때 상기 반사체가 소정의 패턴으로 이동하는 것으로 판단하는 것을 특징으로 하는 모션 인식 방법.
  8. 청구항 1에 있어서,
    상기 방향결정단계는 상기 수광소자가 감지하는 빛의 광도의 변화율이 소정의 패턴을 따라 변화할 때 상기 반사체가 회전하는 것으로 판단하는 것을 특징으로 하는 모션 인식 방법.
  9. 발광소자에서 빛을 조사하고, 수광소자가 반사체에 의해 반사된 상기 빛을 감지하여 상기 반사체의 모션을 인식하는 모션 인식 방법에 있어서,
    상기 수광소자가 상기 반사체에 의해 반사된 빛을 감지하여 빛의 광도를 측정하는 광검출단계;
    데이터 처리부가 상기 빛의 광도를 이용하여 제1위치에서 상기 수광소자의 수광범위의 중심을 원점으로 하는 상기 반사체의 평면좌표(X1,Y1)를 설정하는 제1좌표설정단계;
    상기 데이터 처리부가 상기 빛의 광도를 이용하여 제2위치에서 상기 수광소자의 수광범위의 중심을 원점으로 하는 상기 반사체의 평면좌표(X2,Y2)를 설정하는 제2좌표설정단계;
    상기 반사체가 상기 제1위치에서 제2위치로 이동하였을 때, 상기 데이터 처리부에 의해 X축 좌표성분인 X1과 X2의 상대적 위치 및 Y축 좌표성분인 Y1과 Y2의 상대적 위치에 따라 상기 반사체가 X축 방향, Y축 방향 중 어느 한 방향으로 이동하는 것으로 판단하는 방향결정단계; 를 포함하여 이루어지는 것을 특징으로 하는 모션 인식 방법.
  10. 청구항 9에 있어서,
    상기 데이터 처리부는,
    상기 원점(0,0)에서 출발하여 상기 제1위치 및 제2위치를 경유한 후, 다시 상기 원점(0,0)으로 도착하는 경로 상에 위치하는 다수의 평면좌표를 상기 발광소자의 빛 조사 간격에 따라 연속적으로 연산하고,
    상기 경로 상에서 평면좌표의 X축 좌표성분 또는 Y축 좌표성분이 증감되는 변곡점이 나타나는 위치를 순서대로 상기 제1위치와 제2위치로 설정하는 것을 특징으로 하는 모션 인식 방법.
  11. 청구항 9에 있어서,
    상기 X1과 X2가 상기 좌표평면 상에서 Y축을 기준으로 서로 반대방향에 위치하고, 상기 Y1과 Y2가 상기 좌표평면 상에서 X축을 기준으로 동일한 방향에 위치하면, 상기 방향결정단계에서는 상기 반사체가 X축 방향으로 이동하는 것으로 판단하는 것을 특징으로 하는 모션 인식 방법.
  12. 청구항 9에 있어서,
    상기 X1과 X2가 상기 좌표평면 상에서 Y축을 기준으로 동일한 방향에 위치하고, 상기 Y1과 Y2가 상기 좌표평면 상에서 X축을 기준으로 서로 반대방향에 위치하면, 상기 방향결정단계에서는 상기 반사체가 Y축 방향으로 이동하는 것으로 판단하는 것을 특징으로 하는 모션 인식 방법.
  13. 청구항 9에 있어서,
    상기 X1과 X2가 상기 좌표평면 상에서 Y축을 기준으로 서로 반대방향에 위치하고, 상기 Y1과 Y2가 상기 좌표평면 상에서 X축을 기준으로 서로 반대방향에 위치할 때, X축 좌표성분 X1, X2와 Y축 좌표성분 Y1, Y2가 아래의 관계를 만족하면, 상기 방향결정단계에서는 상기 반사체가 X축 방향으로 이동하는 것으로 판단하는 것을 특징으로 하는 모션 인식 방법.
    Figure PCTKR2013011001-appb-I000020
  14. 청구항 9에 있어서,
    상기 X1과 X2가 상기 좌표평면 상에서 Y축을 기준으로 서로 반대방향에 위치하고, 상기 Y1과 Y2가 상기 좌표평면 상에서 X축을 기준으로 서로 반대방향에 위치할 때, X축 좌표성분 X1, X2와 Y축 좌표성분 Y1, Y2가 아래의 관계를 만족하면, 상기 방향결정단계에서는 상기 반사체가 Y축 방향으로 이동하는 것으로 판단하는 것을 특징으로 하는 모션 인식 방법.
    Figure PCTKR2013011001-appb-I000021
  15. 청구항 9에 있어서,
    상기 제1위치에서 평면좌표(X1,Y1)가 원점을 제외한 Y축 상에 위치하고, Y2가 Y1보다 크거나 작으면, 상기 방향결정단계에서는 상기 반사체가 Y축 방향으로 이동하는 것으로 판단하고,
    상기 제1위치에서 평면좌표(X1,Y1)가 원점을 제외한 X축 상에 위치하고, X2가 X1보다 크거나 작으면, 상기 방향결정단계에서는 상기 반사체가 X축 방향으로 이동하는 것으로 판단하는 것을 특징으로 하는 모션 인식 방법.
  16. 청구항 9에 있어서,
    상기 X1과 X2가 상기 Y축을 기준으로 동일한 방향에 위치하고, 상기 Y1과 Y2가 상기 X축을 기준으로 동일한 방향에 위치할 때,
    상기 X축으로부터 평면좌표(X1,Y1) 사이의 각도와 평면좌표(X2,Y2) 사이의 각도의 상대적 차이에 따라, 상기 방향결정단계에서는 상기 반사체가 X축 방향, Y축 방향 중 어느 한 방향으로 이동하는 것으로 판단하는 것을 특징으로 하는 모션 인식 방법.
  17. 청구항 9에 있어서,
    상기 발광소자는 상기 수광소자를 중심으로 90°간격으로 이격 배치되고,
    상기 수광소자의 중심은 상기 평면좌표의 원점이 되되,
    상기 발광소자는,
    상기 수광소자를 중심으로 상호 마주보도록 배치된 제1 및 제2발광소자와,
    상기 수광소자를 중심으로 상호 마주보도록 배치된 제3 및 제4발광소자로 구성되며,
    상기 반사체의 평면좌표 중 X축 좌표성분인 X1, X2는 각각 상기 제1발광소자와 제2발광소자에서 조사되어 상기 반사체에 의해 반사된 빛의 광도를 비교하여 산출되고,
    상기 반사체의 평면좌표 중 Y축 좌표성분인 Y1, Y2는 각각 상기 제3발광소자와 제4발광소자에서 조사되어 상기 반사체에 의해 반사된 빛의 광도를 비교하여 산출되는 것을 특징으로 하는 모션 인식 방법.
PCT/KR2013/011001 2013-01-30 2013-11-29 모션 인식 방법 WO2014119838A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/398,801 US9170653B1 (en) 2013-01-30 2013-11-29 Motion recognition method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0010156 2013-01-30
KR1020130010155A KR101382519B1 (ko) 2013-01-30 2013-01-30 모션 인식 방법
KR10-2013-0010155 2013-01-30
KR1020130010156A KR101382477B1 (ko) 2013-01-30 2013-01-30 모션 인식 방법

Publications (1)

Publication Number Publication Date
WO2014119838A1 true WO2014119838A1 (ko) 2014-08-07

Family

ID=51262525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011001 WO2014119838A1 (ko) 2013-01-30 2013-11-29 모션 인식 방법

Country Status (2)

Country Link
US (1) US9170653B1 (ko)
WO (1) WO2014119838A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI558982B (zh) * 2014-09-24 2016-11-21 原相科技股份有限公司 光學感測器及光學感測系統
US11662828B2 (en) * 2021-05-28 2023-05-30 Pixart Imaging Inc. Method for identifying object, optical sensing apparatus and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080093304A (ko) * 2007-04-16 2008-10-21 주식회사 소림 광 포인팅 장치
KR20100068222A (ko) * 2008-12-12 2010-06-22 실리콘 래버래토리즈 인코포레이티드 광 제스처 인식 장치 및 방법
KR20110082010A (ko) * 2008-09-26 2011-07-15 엔엑스피 비 브이 이동 가능 객체의 움직임을 검출하는 검출 시스템과 방법 및 집적 회로
KR101090965B1 (ko) * 2011-07-18 2011-12-08 주식회사 하이소닉 모션 감지 스위치
KR20120019453A (ko) * 2009-12-29 2012-03-06 모토로라 모빌리티, 인크. 감지 어셈블리를 갖는 전자 장치 및 오프셋 제스처를 해석하는 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644005A (ja) * 1992-01-24 1994-02-18 Seiko Instr Inc 座標入力装置
JP4164423B2 (ja) * 2003-08-29 2008-10-15 キヤノン株式会社 センシング部とポインティングデバイスとを含み構成される装置
EP1819986A1 (en) * 2004-11-22 2007-08-22 Koninklijke Philips Electronics N.V. Optical system for detecting motion of a body
US9234742B2 (en) * 2013-05-01 2016-01-12 Faro Technologies, Inc. Method and apparatus for using gestures to control a laser tracker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080093304A (ko) * 2007-04-16 2008-10-21 주식회사 소림 광 포인팅 장치
KR20110082010A (ko) * 2008-09-26 2011-07-15 엔엑스피 비 브이 이동 가능 객체의 움직임을 검출하는 검출 시스템과 방법 및 집적 회로
KR20100068222A (ko) * 2008-12-12 2010-06-22 실리콘 래버래토리즈 인코포레이티드 광 제스처 인식 장치 및 방법
KR20120019453A (ko) * 2009-12-29 2012-03-06 모토로라 모빌리티, 인크. 감지 어셈블리를 갖는 전자 장치 및 오프셋 제스처를 해석하는 방법
KR101090965B1 (ko) * 2011-07-18 2011-12-08 주식회사 하이소닉 모션 감지 스위치

Also Published As

Publication number Publication date
US20150316991A1 (en) 2015-11-05
US9170653B1 (en) 2015-10-27

Similar Documents

Publication Publication Date Title
WO2011062389A2 (ko) 터치 패널, 터치 패널의 구동방법 및 터치 패널을 포함하는 디스플레이 장치
WO2013147464A1 (ko) 멀티 터치스크린 장치
WO2018230852A1 (ko) 3차원 공간의 이동 객체를 식별하는 방법 및 이를 구현하는 로봇
WO2016129950A1 (ko) 청소 로봇 및 그 제어방법
WO2017217673A1 (en) Apparatus and method for measuring dust
WO2015076547A1 (ko) 가상 키보드를 모바일 단말에서 디스플레이하는 방법 및 모바일 단말
WO2016200197A1 (ko) 사용자 기준 공간좌표계 상에서의 제스처 검출 방법 및 장치
WO2012018176A2 (en) Optical touch screen and method for assembling the same
WO2019146918A1 (en) Method for recognizing fingerprint, and electronic device and storage medium therefor
WO2010071285A1 (ko) 저항막 방식의 터치 패널을 구비하는 입력 장치 및 이 장치의 접촉 위치 계산 방법
WO2020175786A1 (en) Methods and apparatuses for object presence detection and range estimation
WO2016017956A1 (en) Wearable device and method of operating the same
WO2020171551A1 (en) Electronic device for controlling brightness of display
WO2014051362A1 (ko) 이벤트 기반 비전 센서를 이용한 근접 센서 및 근접 센싱 방법
WO2012011686A2 (en) Camera module and optical touch screen using the same
WO2019231042A1 (ko) 생체 인증 장치
WO2016085073A1 (en) Ultrasound sensor and object detecting method thereof
WO2010082749A2 (ko) 고정형 마우스
WO2011065697A2 (ko) 레이저 거리측정기를 이용한 맥파측정로봇장치 및 이를 이용한 맥파측정방법
WO2014119838A1 (ko) 모션 인식 방법
WO2012011684A2 (en) Optical touch screen
WO2020071693A1 (ko) 전자 장치, 서버 및 이를 이용한 서명 인증 방법
WO2012018179A2 (en) Camera module and optical touch screen using the same
WO2021091105A1 (en) Electronic apparatus and control method thereof
WO2020013453A1 (ko) 터치 장치 및 이의 터치 검출 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873855

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14398801

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873855

Country of ref document: EP

Kind code of ref document: A1