WO2014051362A1 - 이벤트 기반 비전 센서를 이용한 근접 센서 및 근접 센싱 방법 - Google Patents

이벤트 기반 비전 센서를 이용한 근접 센서 및 근접 센싱 방법 Download PDF

Info

Publication number
WO2014051362A1
WO2014051362A1 PCT/KR2013/008642 KR2013008642W WO2014051362A1 WO 2014051362 A1 WO2014051362 A1 WO 2014051362A1 KR 2013008642 W KR2013008642 W KR 2013008642W WO 2014051362 A1 WO2014051362 A1 WO 2014051362A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
proximity sensor
light
point
light source
Prior art date
Application number
PCT/KR2013/008642
Other languages
English (en)
French (fr)
Inventor
이준행
류현석
원재연
박근주
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to EP13842660.6A priority Critical patent/EP2902803B1/en
Publication of WO2014051362A1 publication Critical patent/WO2014051362A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/493Extracting wanted echo signals

Definitions

  • the following embodiments relate to a proximity sensor and a proximity sensing method using an event-based vision sensor.
  • the event-based vision sensor identifies a location where an output light is reflected from an object and uses the identified location to determine a distance between the object and the proximity sensor. It relates to a proximity sensor and a proximity sensing method for measuring the.
  • the proximity sensor outputs the output light for a specific time, and determines whether the object is close by the total amount of reflected light reflected by the output light.
  • the conventional proximity sensor has a problem in that it is susceptible to noise generation because it is sensitive to changes in the surrounding environment. For example, if the total amount of reflected light is increased by the reflected light associated with the output light output from another light source such as the sun or a fluorescent lamp, the determination of the root can be inaccurate.
  • the conventional proximity sensor has a limitation in that the distance between the object and the proximity sensor cannot be measured because it uses the total amount of reflected light.
  • Proximity sensor includes a point identification unit for identifying a point in which the output light output from the focusing light source reflected by the object in the image photographed by the proximity sensor; And a distance determiner configured to determine a distance between the object and the proximity sensor based on the location of the point.
  • the distance determiner of the proximity sensor may determine the distance between the object and the proximity sensor using an angle at which the output light is output toward the object, a distance between the proximity sensor and the light source, and a location of a point.
  • the distance determiner of the proximity sensor may determine the distance between the object and the proximity sensor to be proportional to the distance from the side of the side of the direction corresponding to the light source to the location of the point.
  • the distance determiner of the proximity sensor may determine the distance between the object and the proximity sensor to be proportional to the size of the image and the distance between the proximity sensor and the light source.
  • the distance determiner of the proximity sensor may determine whether the object approaches the proximity sensor based on the moving direction of the point in the image.
  • the proximity sensor may further include a pattern detector configured to detect an event pattern of reflected light reflected from an object according to a temporal change of the output light, and the point identifier may determine a point in the image based on the event pattern of the reflected light. Can be identified.
  • the point identification unit of the proximity sensor may distinguish noise generated by a point and another light source in the image by using the event pattern.
  • the proximity sensor may include: an area identification unit identifying an area in which an output light output from a dispersive light source is reflected by an object in an image photographed by the proximity sensor; And a distance determiner configured to determine a distance between the object and the proximity sensor based on the location of the area.
  • the dispersible light source may include a lens for condensing the output light at a focal position spaced a predetermined distance from the proximity sensor.
  • the distance determiner of the proximity sensor may determine the distance between the object and the proximity sensor by using the size of the area and the position of the focal point of the dispersive light source.
  • a proximity sensing method includes identifying a point where an output light output from a focusing light source is reflected by an object in an image photographed by a proximity sensor; And determining a distance between the object and the proximity sensor based on the location of the point.
  • a proximity sensing method includes identifying an area in which an output light output from a dispersive light source is reflected by an object in an image photographed by a proximity sensor; And determining a distance between the object and the proximity sensor based on the location of the area.
  • FIG. 1 is a diagram illustrating a structure of a proximity sensor according to an exemplary embodiment.
  • FIG. 2 is a diagram illustrating an operation of a proximity sensor according to an exemplary embodiment.
  • FIG. 3 is a diagram illustrating an operation of a proximity sensor according to an exemplary embodiment.
  • FIG. 4 is a diagram illustrating a process of removing noise according to an exemplary embodiment.
  • FIG. 5 is a diagram illustrating a structure of a proximity sensor according to an exemplary embodiment.
  • FIG. 6 is a diagram illustrating an operation of a proximity sensor according to an exemplary embodiment.
  • FIG. 7 is an example of an area identified according to a movement of an object in a proximity sensor, according to an exemplary embodiment.
  • FIG. 8 is a diagram illustrating a proximity sensing method of a proximity sensor according to an exemplary embodiment.
  • FIG. 9 is a diagram illustrating a proximity sensing method of a proximity sensor according to an exemplary embodiment.
  • FIG. 1 is a diagram illustrating a structure of a proximity sensor 100 according to an exemplary embodiment.
  • the proximity sensor 100 may determine a distance between the object 102 and the proximity sensor 100 by using a position of a point where the output light output from the light source 101 is reflected on the object.
  • the proximity sensor 110 may be a design vision sensor (DVS).
  • the light source 101 may be a condensed light source in which output light is not dispersed according to a distance.
  • the light source 101 may be a laser (light amplification by stimulated emission of radiation).
  • the light source 101 may change the intensity of the output light according to at least one of a predetermined time interval or a specific condition, and a user's manipulation. For example, when the distance between the object 102 and the proximity sensor 100 is fixed for a predetermined time or more, a specific condition may be set so that the light source 101 changes the intensity of the output light.
  • the object 102 may be either a user or an object.
  • the proximity sensor 100 may include a pattern detecting unit 110, an image capturing unit 120, a point identifying unit 130, and a distance determining unit 140.
  • the pattern detecting unit 110 may detect an event pattern of reflected light in which output light output from the light source 101 is reflected on the object 102.
  • the event pattern may be a pattern in which the amount of reflected light increases or decreases with time.
  • the amount of reflected light may increase or decrease according to the distance between the proximity sensor 100 and the object 102. For example, the closer the distance between the proximity sensor 100 and the object 102 is, the higher the ratio of reflected light that the pattern detecting unit 110 can receive among the output light reflected by the object 120. Therefore, as the distance between the proximity sensor 100 and the object 102 gets closer, the amount of reflected light detected by the pattern detector 110 may increase.
  • the ratio of the reflected light that the pattern detecting unit 110 can receive among the output light reflected on the object 120 may be lowered. Therefore, as the distance between the proximity sensor 100 and the object 102 increases, the amount of reflected light detected by the pattern detector 110 may also decrease.
  • the event pattern may correspond to a pattern in which the intensity of the output light changes.
  • the event pattern detected by the pattern detecting unit 110 may be a pattern in which the amount of reflected light increases.
  • the pattern detecting unit 110 may be a temporal contrast sensing optical sensor that detects a change in the amount of light incident on a pixel of the image and outputs events.
  • the temporal contrast sensing optical sensor may output on events when the amount of light incident on the pixel of the image increases and output off events when the amount of light incident on the pixel of the image decreases.
  • the temporal contrast sensing optical sensor operates asynchronously without a frame and may have a time resolution of less than 10 us (micro second).
  • the image capturing unit 120 may capture an image including the object 102.
  • the image captured by the image capturing unit 120 may include a point at which the output light output by the light source 101 is reflected by the object 102.
  • output light output from another light source may be reflected on the object 102 according to the operation of the object 102 and various conditions. For example, when the object 102 is under fluorescent light or the sun, output light output from the fluorescent light or the sun may be reflected on the object 102.
  • a point where the output light output by the light source 101 is reflected by the object 102 and the output light output by another light source are reflected by the object 102 may include.
  • another object may be temporarily interrupted between the object 102 and the proximity sensor 100.
  • the point reflected by the other object may also be noise.
  • the point may be located on the hair.
  • the point located in the hair may be noise.
  • the point identifying unit 130 may identify a point where the output light is reflected by the object 102 in the image photographed by the image capturing unit 120.
  • the light source 101 uses output light of a primary color such as red, the place where the output light is reflected from the object 102 is discolored by the output light, so that the point identifying unit 130 can easily identify the point. have.
  • the point identifying unit 130 may classify the noise generated by the point and other light sources in the image captured by the image capturing unit 120 based on the event pattern of the reflected light detected by the pattern detecting unit 110.
  • the event pattern of the reflected light reflected from the point may correspond to a temporal change of the output light output from the light source 101.
  • the event pattern of the reflected light may include on events when the light source 101 changes the intensity of the output light.
  • the light source 101 is output. It may be different from the temporal change of the output light.
  • the point identifying unit 130 identifies at least one point or noise on which the output light is reflected in the image captured by the image capturing unit 120, and compares the event pattern of the identified point or noise with the temporal change of the output light. By doing this, a point can be distinguished from noise.
  • the point identifying unit 130 may store event patterns of the identified points, and when the pattern detecting unit 110 detects a new pattern, the point identifying unit 130 may control the noise by comparing the stored event pattern with the new pattern.
  • the distance determiner 140 may determine the distance between the object 102 and the proximity sensor 100 based on the location of the point identified by the point identifier 130.
  • the position of the point may move away from the light source 101 as the distance between the object 102 and the proximity sensor 100 increases.
  • the distance determiner 140 identifies a direction corresponding to the position of the light source 101 on the image by using the distance between the proximity sensor 100 and the light source 101, and corresponds to the position of the point and the identified direction.
  • the distance between the sides of the image may be used to determine the distance between the object 102 and the proximity sensor 100.
  • the angle at which the output light is output toward the object 102 increases, even if the distance between the object 102 and the proximity sensor 100 is the same, the distance between the position of the point and the side of the image corresponding to the identified direction is increased. Can increase.
  • the distance determiner 140 uses the angle at which the output light is output toward the object 102, the distance between the proximity sensor 100 and the light source 101, and the location of the point, and thus the object 102 and the proximity sensor 100. The distance between them can be determined.
  • a process of determining the distance between the object 102 and the proximity sensor 100 by the distance determiner 140 will be described in detail with reference to FIG. 2.
  • the distance determiner 140 compares images continuously photographed by the image capturing unit 120 to identify a moving direction of the point, and the object 120 determines the proximity sensor 100 based on the moving direction of the identified point. You can also determine whether or not to approach (). In detail, the distance determiner 140 may determine that the object 120 approaches the proximity sensor 100 when the movement direction of the point is the same as the direction in which the light source 101 is located based on the proximity sensor 100. . In addition, the distance determiner 140 may determine that the object 120 deviates from the proximity sensor 100 when the movement direction of the point is opposite to the direction in which the light source 101 is located based on the proximity sensor 100. have.
  • the distance determiner 140 may determine whether the object is close by using the number of events corresponding to the temporal change of the output light among the event patterns detected by the pattern detector 110.
  • FIG. 2 is a diagram illustrating an operation of a proximity sensor according to an exemplary embodiment.
  • FIG 2 is a top view of the proximity sensor 100 according to an exemplary embodiment. That is, the light source 101 is located on the right side of the proximity sensor 100.
  • the light source 101 may output the output light 200 at an angle toward the object 102.
  • the output light 200 is reflected at the point 211, and the proximity sensor 100 is reflected light 212 reflected at the point 211.
  • Event pattern of can be detected.
  • the point 211 may be included in the image 213 captured by the image capturing unit 120.
  • the distance determiner 140 uses the equation 1 to determine the distance between the object 102 and the proximity sensor 100. 210 may be determined.
  • d1 is a distance between the proximity sensor 100 and the light source 101
  • sRA is a distance between the right side of the image 213 and the point 211
  • sLA is a point ( 211) and the left side.
  • the output light 200 is reflected at the point 221, and the proximity sensor 100 is reflected light reflected at the point 221.
  • the event pattern of 222 may be detected.
  • the point 221 may be included in the image 223 captured by the image capturing unit 120.
  • the output light 200 travels further to the left side than when it is reflected at the point 211, and is then reflected by the point 221 in contact with the object 102.
  • point 221 is located to the left of point 211 as shown in FIG. 2.
  • the distance determiner 140 calculates sRB, which is the distance between the right side and the point 221 of the image 223, and sLB, which is the distance between the point 211 and the left side, of Equation 1, respectively.
  • Substituting the sRA and the sLA may determine dX, the distance 220 between the object 102 and the proximity sensor 100.
  • FIG. 3 is a diagram illustrating an operation of a proximity sensor according to an exemplary embodiment.
  • FIG 3 is a top view illustrating the operation of the proximity sensor when the light source 101 outputs the output light 300 vertically toward the object 102.
  • the light source 101 may output the output light 200 at an angle toward the object 102.
  • the output light 300 is reflected at the point 311, and the proximity sensor 100 is reflected light 312 reflected at the point 311.
  • Event pattern of can be detected.
  • the point 311 may be included in the image 313 captured by the image capturing unit 120.
  • the output light 300 is reflected at the point 321, and the proximity sensor 100 is reflected light reflected at the point 321.
  • the event pattern of 322 may be detected.
  • the point 321 may be included in the image 323 captured by the image capturing unit 120.
  • the output light 300 is reflected at the point 331, and the proximity sensor 100 is reflected light reflected at the point 331.
  • the event pattern of 332 may be detected.
  • the point 331 may be included in the image 333 captured by the image capturing unit 120.
  • the locations of the points 311, 321, and 331 of the object 102 may be the same.
  • the image photographed by the image capturing unit 120 may include a background or another object other than the object 102.
  • image 313 displays object 102 in most areas.
  • the size of the object 102 displayed in the image 333 is reduced compared to the image 313.
  • the distance 314 from the center of the object 102 to the point is all the same in the image 313, the image 323, and the image 333, but the point 311 at the right side of the image 313.
  • Distance 315 to, distance 324 from right side of image 323 to point 321, and distance from point 331 to right side of image 333 ( 334 may each be different.
  • the distance 315, the distance 324, and the distance 334 which are distances from the right side to the points of each image, are the distance 310, which is the distance between the object 102 and the proximity sensor 100, Distance 320, and distance 330.
  • the distance determiner 140 uses the distance 315, the distance 324, and the distance 334, which is the distance from the right side of each image to the point, and the object 102 and the proximity sensor 100. Can be determined.
  • FIG. 4 is a diagram illustrating a process of removing noise according to an exemplary embodiment.
  • the light source 101 may periodically change the intensity of the output light to a high 411 and a low 412.
  • the pattern detecting unit 110 may detect an event pattern of reflected light in which output light output from the light source 101 is reflected on the object 102.
  • the pattern detecting unit 110 detects an event pattern of reflected light such as case 1 and an event pattern of reflected light such as case 2. You can also detect it at the same time.
  • the pattern detecting unit 110 may output a plurality of events at the time point 421 and the time point 431, respectively, as shown in FIG. 4.
  • the event output from the pattern detecting unit 110 at the time point 421 may be an on event 420 indicating that the amount of reflected light increases.
  • the event output by the pattern detector 110 at the time point 431 may be an off event 430 indicating that the amount of reflected light is reduced.
  • the time point 421 may correspond to a time point at which the light source 101 changes the intensity of the output light to the high 411, and may correspond to a time point to change the time point 431 and the intensity of the output light to the low 412.
  • the reflected light corresponding to the event pattern of the case 1 is the reflected light corresponding to the output light of the light source 101, and the point identification unit 130 identifies a place where the reflected light corresponding to the event pattern of the case 1 is reflected as a point. Can be.
  • the pattern detector 110 outputs a plurality of events at the viewpoint 422, the viewpoint 423, the viewpoint 432, and the viewpoint 433, respectively, as shown in FIG. 4. Can be.
  • the time point 422 at which the on event 420 is output is different from the time point at which the intensity of the output light is changed to the high 411, and at the time point 432 at which the off event 430 is output.
  • the time point 433 may also be different from the time point at which the intensity of the output light is changed to the row 412.
  • the time point 423 at which the on event 420 is output is the same as the time point at which the intensity of the output light is changed to high 411, but may be one of time points at which a plurality of events are output in the event pattern of case 2. have.
  • the event pattern of the case 2 since the event pattern of the case 2 outputs the on event 420 at at least one time different from the time of changing the intensity of the output light to the high 411, the event pattern of the case 2 is the light source 101. May differ from the temporal change of the output light. Therefore, the reflected light corresponding to the event pattern of case 2 may be noise.
  • the on event 420 may be output at a time different from the time point 421 in the same event pattern as the case 1.
  • the point identifying unit 130 may determine that a point is formed on another object while another object temporarily passes between the object 102 and the proximity sensor. Therefore, the point identifying unit 130 may classify the points of the image photographed by the image capturing unit 120 at different points in time with noise.
  • FIG. 5 is a diagram illustrating a structure of a proximity sensor 500 according to an embodiment.
  • the proximity sensor 500 may determine the distance between the object 502 and the proximity sensor 500 by using a position of a point where the output light output from the light source 501 is reflected on the object.
  • the proximity sensor 510 may be an event based vision sensor (DVS).
  • the light source 501 may be a dispersible light source in which output light is dispersed according to a distance.
  • the light source 501 may be a light emitting diode (LED).
  • the light source 501 may further include a lens that focuses the output light at a focal position spaced apart from the proximity sensor 500 by a predetermined distance.
  • the focus position may be determined according to a range that the proximity sensor 500 is to sense. Specifically, when the output light collected by the lens passes through the focal position, it may be dispersed. In addition, when the output light is dispersed more than a certain amount, the proximity sensor 500 may be difficult to detect the reflected light. Accordingly, the focal position may be determined such that the distance from which the output light is not detected by the proximity sensor 500 is greater than the maximum distance of the range that the proximity sensor 500 is to sense.
  • the light source 501 may change the intensity of the output light according to at least one of a predetermined time interval or a specific condition, and a user's manipulation. For example, when the distance between the object 502 and the proximity sensor 500 is fixed for a predetermined time or more, a specific condition may be set such that the light source 501 changes the intensity of the output light.
  • the proximity sensor 500 may include a pattern detector 510, an image capturer 520, a point identifier 530, and a distance determiner 540.
  • the pattern detecting unit 510 may detect an event pattern of reflected light in which output light output from the light source 501 is reflected on the object 502.
  • the event pattern may be a pattern in which the amount of reflected light increases or decreases with time.
  • the amount of reflected light may increase or decrease according to the distance between the proximity sensor 500 and the object 502. For example, the closer the distance between the proximity sensor 500 and the object 502 is, the higher the ratio of the reflected light that the pattern detecting unit 510 can receive among the output light reflected by the object 520. Therefore, as the distance between the proximity sensor 500 and the object 502 is closer, the amount of reflected light detected by the pattern detector 510 may increase.
  • the ratio of the reflected light that the pattern detecting unit 510 can receive among the output light reflected by the object 520 may be lowered. Therefore, as the distance between the proximity sensor 500 and the object 502 increases, the amount of reflected light detected by the pattern detector 510 may also decrease.
  • the event pattern may correspond to a pattern in which the intensity of the output light changes.
  • the event pattern detected by the pattern detector 510 may be a pattern in which the amount of reflected light increases.
  • the pattern detecting unit 510 may be a temporal contrast sensing optical sensor that detects a change in the amount of light incident on the pixel of the image and outputs events.
  • the temporal contrast sensing optical sensor may output on events when the amount of light incident on the pixel of the image increases and output off events when the amount of light incident on the pixel of the image decreases.
  • the temporal contrast sensing optical sensor operates asynchronously without a frame and may have a time resolution of less than 10 us (micro second).
  • the image capturing unit 520 may capture an image including the object 502.
  • the image captured by the image capturing unit 520 may include a region where the output light output by the light source 501 is reflected by the object 502.
  • output light output from another light source may be reflected on the object 502 according to the operation of the object 502 and various conditions. For example, when the object 502 is under a fluorescent light or the sun, output light output from the fluorescent light or the sun may be reflected on the object 502.
  • noise in which the output light output by the light source 501 is reflected by the object 502 and the output light output by another light source are reflected by the object 502. It may include.
  • another object may be temporarily interrupted between the object 502 and the proximity sensor 500.
  • the area reflected by the other object may also be noise.
  • the area may be located in the hair.
  • the hair since the hair is not an object to determine proximity, the area located in the hair may be noise.
  • the area identifying unit 530 may identify a region where the output light is reflected by the object 502 in the image photographed by the image capturing unit 520.
  • the area identification unit 530 can easily identify the area. have.
  • the output light may be focused at the focal position by the lens of the light source 501. That is, the closer the object 502 is to the focal position, the more the output light reflected by the object 502 is focused and the area is reduced. Therefore, the closer the object 502 is to the focal position, the smaller the size of the area identified by the area identification unit 530 may be.
  • the area identification unit 530 may distinguish noise generated by an area and another light source from an image photographed by the image capturing unit 520 based on the event pattern of reflected light detected by the pattern detecting unit 510.
  • the event pattern of the reflected light reflected from the region may correspond to a temporal change of the output light output from the light source 501.
  • the event pattern of the reflected light may include on events when the light source 501 changes the intensity of the output light.
  • the light source 501 is output. It may be different from the temporal change of the output light.
  • the area identifying unit 530 identifies at least one area or noise in which the output light is reflected in the image captured by the image capturing unit 520, and compares the event pattern of the identified area or noise with the temporal change of the output light.
  • the area can be distinguished from noise.
  • the distance determiner 540 may determine the distance between the object 502 and the proximity sensor 500 based on the location and size of the area identified by the area identifier 530.
  • the location of the area may move away from the light source 501 as the distance between the object 502 and the proximity sensor 500 increases.
  • the distance determiner 540 identifies a direction corresponding to the position of the light source 501 on the image by using the distance between the proximity sensor 500 and the light source 501, and corresponds to the position of the region and the identified direction.
  • the distance between the sides of the image may be used to determine the distance between the object 502 and the proximity sensor 500.
  • the angle at which the output light is output toward the object 502 is increased, even if the distance between the object 502 and the proximity sensor 500 is the same, the distance between the position of the area and the side of the image corresponding to the identified direction is increased. Can increase.
  • the distance determiner 540 uses the angle at which the output light is output toward the object 502, the distance between the proximity sensor 500 and the light source 501, and the location of the region, so that the object 502 and the proximity sensor 500 are located. The distance between them can be determined.
  • the distance determiner 540 may determine the distance between the object 502 and the proximity sensor 500 using the size of the area. As described above, the closer the object 502 is to the focal position, the smaller the size of the area identified by the area identifier 530 may be. Therefore, when the size of the area identified by the area identification unit 530 becomes the minimum, the distance determiner 540 may determine that the object 502 is in the focal position.
  • the distance determiner 540 compares the images continuously photographed by the image capturing unit 520 to identify a moving direction of the region, and the object 520 is a proximity sensor 500 based on the moving direction of the identified region. You can also determine whether or not to approach (). In detail, the distance determiner 540 may determine that the object 520 is close to the proximity sensor 500 when the movement direction of the region is the same as the direction in which the light source 501 is located based on the proximity sensor 500. . In addition, the distance determiner 540 may determine that the object 520 deviates from the proximity sensor 500 when the moving direction of the region is opposite to the direction in which the light source 501 is located based on the proximity sensor 500. have.
  • the distance determiner 540 may determine whether the object is close by using the number of events corresponding to the temporal change of the output light among the event patterns detected by the pattern detector 510.
  • FIG. 6 is a diagram illustrating an operation of a proximity sensor according to an exemplary embodiment.
  • the light source 501 is located on the right side of the proximity sensor 500 and may output the output light 601 at an angle toward the object.
  • the light source 501 may include a lens 600 that focuses the output light 601 at a focal point.
  • the focus position is included in the range 602 that the proximity sensor 500 is to sense, and may correspond to the center of the image captured by the proximity sensor 500.
  • the output light 601 is reflected in the area 611, and the proximity sensor 500 reflects the event pattern of the reflected light reflected at the point 611. Can be detected.
  • the region 611 may have a predetermined size or more.
  • the position of the region 611 may be located on the right side where the light source 501 is located with respect to the center of the image where the focus region is located.
  • the distance determiner 540 may determine the distance 610 between the object and the proximity sensor 500 to be closer to the focal position by using the size of the area 611 and the location of the area 611.
  • the output light 601 is reflected at the area 621, and the proximity sensor 500 is configured to reflect the reflected light reflected at the point 621. Event patterns can be detected.
  • the region 621 may have a predetermined size or more.
  • the location of the region 621 may be located on the left side opposite to the direction in which the light source 501 is located with respect to the center of the image in which the focus region is located.
  • the distance determiner 540 may determine the distance 620 between the object and the proximity sensor 500 to be farther than the focal position using the size of the region 621 and the position of the region 621.
  • the output light 601 is reflected in the area 631, and the proximity sensor 500 is reflected light reflected in the area 631. Event pattern of can be detected.
  • the region 631 may have a minimum size.
  • the location of the area 631 may be located at the center of the image in the same manner as the focus area.
  • the distance determiner 540 may determine the distance 630 between the object and the proximity sensor 500 as the distance corresponding to the focal position by using the size of the area 631 and the location of the area 631.
  • FIG. 7 is an example of an area identified according to a movement of an object in a proximity sensor, according to an exemplary embodiment.
  • the area 611 may have a predetermined size or more.
  • the position of the region 611 may be located on the right side where the light source 501 is located with respect to the center of the image where the focus region is located.
  • the area of the output light 601 may decrease as it approaches the focus position as shown in FIG. 6. Therefore, as shown in the area change 700 of FIG. 7, the size of the area 611 may decrease as the object approaches the focus position.
  • FIG. 7 is an embodiment when the light source 501 is on the right side of the proximity sensor 500 as shown in FIG. 6.
  • the position of the region 611 may move from the top of the image to the center.
  • the area 611 may move toward the center of the image in the direction in which the light source 501 is positioned with respect to the proximity sensor 500.
  • the area 621 may have a predetermined size or more.
  • an area of the output light 601 may increase as the output light 601 moves away from the focal position as shown in FIG. 6. Therefore, as shown in the region change 700 of FIG. 7, the size of the region 621 may increase as the object moves away from the focus position.
  • FIG. 7 is an embodiment when the light source 501 is on the right side of the proximity sensor 500 as shown in FIG. 6.
  • the position of the region 621 may move downward of the image.
  • the region 621 may move in a direction opposite to the direction in which the light source 501 is located.
  • the output light 601 is focused to the maximum as shown in FIG. 6, and thus the area 631 is the minimum size.
  • the location of the area 631 may be located at the center of the image in the same manner as the focus area.
  • FIG. 8 is a diagram illustrating a proximity sensing method of a proximity sensor according to an exemplary embodiment.
  • the light source 101 may change the intensity of the output light according to at least one of a predetermined time interval or a specific condition, and a user's manipulation.
  • the pattern detector 110 may detect the event pattern of the reflected light.
  • the image capturing unit 120 may capture an image including the object 102.
  • the point identifying unit 130 may identify a point where the output light is reflected by the object 102 in the image photographed in operation 810.
  • the point identifying unit 130 may classify the noise generated by the point and other light sources in the image captured by the image capturing unit 120 based on the event pattern of the reflected light detected in operation 810.
  • the event pattern of the reflected light reflected from the point may correspond to a temporal change of the output light output from the light source 101.
  • the event pattern of the reflected light reflected from the noise is determined by the change in the intensity of the output light output by the other light source or whether the output light output by the other light source is blocked before arriving at the object 102, the light source 101 is output. It may be different from the temporal change of the output light.
  • the point identifying unit 130 identifies at least one point or noise on which the output light is reflected in the image captured by the image capturing unit 120, and compares the event pattern of the identified point or noise with the temporal change of the output light. By doing this, a point can be distinguished from noise.
  • the distance determiner 140 may determine the distance between the object 102 and the proximity sensor 100 based on the location of the point identified in operation 820.
  • the distance determiner 140 identifies a direction corresponding to the position of the light source 101 on the image by using the distance between the proximity sensor 100 and the light source 101, and corresponds to the position of the point and the identified direction.
  • the distance between the sides of the image may be used to determine the distance between the object 102 and the proximity sensor 100.
  • the distance determiner 140 may determine whether the point has moved by comparing images taken by the image capturing unit 120 continuously.
  • the distance determiner 140 determines whether the object 120 approaches the proximity sensor 100 based on the moving direction of the point. You may. In detail, the distance determiner 140 may determine that the object 120 approaches the proximity sensor 100 when the movement direction of the point is the same as the direction in which the light source 101 is located based on the proximity sensor 100. . In addition, the distance determiner 140 may determine that the object 120 deviates from the proximity sensor 100 when the movement direction of the point is opposite to the direction in which the light source 101 is located based on the proximity sensor 100. have.
  • FIG. 9 is a diagram illustrating a proximity sensing method of a proximity sensor according to an exemplary embodiment.
  • the light source 501 may change the intensity of the output light according to at least one of a predetermined time interval or a specific condition, and a user's manipulation.
  • the pattern detector 510 may detect the event pattern of the reflected light.
  • the image capturing unit 520 may capture an image including the object 502.
  • the area identifier 530 may identify an area in which the output light is reflected by the object 502 in the image captured in operation 910.
  • the output light may be focused at the focal position by the lens of the light source 501. That is, the closer the object 502 is to the focal position, the more the output light reflected by the object 502 is focused and the area is reduced. Therefore, the closer the object 502 is to the focal position, the smaller the size of the area identified by the area identification unit 530 may be.
  • the area identification unit 530 may distinguish noise generated by an area and another light source from an image photographed by the image capturing unit 520 based on the event pattern of reflected light detected by the pattern detecting unit 510.
  • the event pattern of the reflected light reflected from the region may correspond to a temporal change of the output light output from the light source 501.
  • the event pattern of the reflected light reflected from the noise is determined by the change in the intensity of the output light output by the other light source or whether the output light output by the other light source is blocked before arriving at the object 502, the light source 501 is output. It may be different from the temporal change of the output light.
  • the area identifying unit 530 identifies at least one area or noise in which the output light is reflected in the image captured by the image capturing unit 520, and compares the event pattern of the identified area or noise with the temporal change of the output light. Thus, the area can be distinguished from noise.
  • the distance determiner 540 may determine a distance between the object 502 and the proximity sensor 500 based on the location and size of the area identified in operation 920.
  • the distance determiner 540 identifies a direction corresponding to the position of the light source 501 on the image by using the distance between the proximity sensor 500 and the light source 501, and corresponds to the position of the region and the identified direction.
  • the distance between the sides of the image may be used to determine the distance between the object 502 and the proximity sensor 500.
  • the distance determiner 540 may determine the distance between the object 502 and the proximity sensor 500 using the size of the area. As the object 502 is closer to the focal position, the size of the area identified by the area identifier 530 may decrease. Therefore, when the size of the area identified by the area identification unit 530 becomes the minimum, the distance determiner 540 may determine that the object 502 is in the focal position.
  • the distance determiner 540 may determine whether the region has moved by comparing images continuously photographed by the image capturing unit 520.
  • the distance determiner 540 determines whether the object 520 approaches the proximity sensor 100 based on the moving direction of the area. You may. In detail, the distance determiner 540 may determine that the object 520 is close to the proximity sensor 500 when the movement direction of the region is the same as the direction in which the light source 501 is located based on the proximity sensor 500. . In addition, the distance determiner 540 may determine that the object 520 deviates from the proximity sensor 500 when the moving direction of the region is opposite to the direction in which the light source 501 is located based on the proximity sensor 500. have.
  • the method according to the embodiment may be embodied in the form of program instructions that can be executed by various computer means and recorded in a computer readable medium.
  • the computer readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the program instructions recorded on the media may be those specially designed and constructed for the purposes of the embodiments, or they may be of the kind well-known and available to those having skill in the computer software arts.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tape, optical media such as CD-ROMs, DVDs, and magnetic disks, such as floppy disks.
  • Examples of program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware device described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.

Abstract

이벤트 기반 비전 센서를 이용한 근접 센서 및 근접 센싱 방법이 개시된다. 근접 센서는 근접 센서가 촬영한 이미지에서 집속성 광원으로부터 출력된 출력광이 오브젝트에 의해 반사된 포인트를 식별하는 포인트 식별부; 및 상기 포인트의 위치를 기초로 오브젝트와 근접 센서 간의 거리를 결정하는 거리 결정부를 포함할 수 있다.

Description

이벤트 기반 비전 센서를 이용한 근접 센서 및 근접 센싱 방법
이하의 일실시예들은 이벤트 기반 비전 센서를 이용한 근접 센서 및 근접 센싱 방법에 관한 것으로 이벤트 기반 비전 센서로 오브젝트에서 출력광이 반사된 위치를 식별하고, 식별한 위치를 이용하여 오브젝트와 근접 센서 간의 거리를 측정하는 근접 센서 및 근접 센싱 방법에 관한 것이다.
근접 센서는 특정 시간 동안 출력광을 출력하고, 출력광이 오브젝트에 반사된 반사광의 총량으로 오브젝트의 근접 여부를 판단하였다.
그러나, 종래의 근접 센서는 주변환경의 변화에 따라 민감하여 노이즈 발생에 취약하다는 문제점이 있었다. 예를 들어 태양이나 형광등과 같이 다른 광원이 출력한 출력광과 관련된 반사광에 의하여 반사광의 총량이 증가하면 근정 여부의 판단이 부정확해질 수 있었다.
또한, 종래의 근접 센서는 반사광의 총량을 이용하므로 오브젝트와 근접 센서 간의 거리를 측정할 수 없다는 한계가 있었다.
따라서, 노이즈를 제거할 수 있으면서 오브젝트와의 거리를 측정할 수 있는 근접 센서가 필요하다.
일실시예에 따른 근접 센서는 근접 센서가 촬영한 이미지에서 집속성 광원으로부터 출력된 출력광이 오브젝트에 의해 반사된 포인트를 식별하는 포인트 식별부; 및 상기 포인트의 위치를 기초로 오브젝트와 근접 센서 간의 거리를 결정하는 거리 결정부를 포함할 수 있다.
일실시예에 따른 근접 센서의 거리 결정부는 상기 출력광이 오브젝트를 향해 출력되는 각도, 근접 센서와 광원 간의 거리 및 포인트의 위치를 이용하여 오브젝트와 근접 센서 간의 거리를 결정할 수 있다.
일실시예에 따른 근접 센서의 거리 결정부는 이미지에서 광원에 대응하는 방향의 사이드에서 포인트의 위치까지의 거리에 비례하도록 오브젝트와 근접 센서 간의 거리를 결정할 수 있다.
일실시예에 따른 근접 센서의 거리 결정부는 이미지의 크기 및 근접 센서와 광원 간의 거리에 비례하도록 오브젝트와 근접 센서 간의 거리를 결정할 수 있다.
일실시예에 따른 근접 센서의 거리 결정부는 상기 이미지에서 포인트의 이동 방향에 기초하여 상기 오브젝트가 근접센서로 근접하는 지 여부를 판단할 수 있다.
일실시예에 따른 근접 센서는 상기 출력광의 시간적 변화에 따라 오브젝트에 반사된 반사광의 이벤트패턴을 감지하는 패턴 감지부를 더 포함하고, 상기 포인트 식별부는 상기 반사광의 이벤트 패턴에 기초하여 상기 이미지에서 포인트를 식별할 수 있다.
일실시예에 따른 근접 센서의 포인트 식별부는 상기 이벤트 패턴을 이용하여 상기 이미지에서 포인트 및 다른 광원에 의해 발생된 노이즈를 구분할 수 있다.
일실시예에 따른 근접 센서는 근접 센서가 촬영한 이미지에서 분산성 광원으로부터 출력된 출력광이 오브젝트에 의해 반사된 영역을 식별하는 영역 식별부; 및 상기 영역의 위치를 기초로 오브젝트와 근접 센서 간의 거리를 결정하는 거리 결정부를 포함할 수 있다.
일실시예에 따른 분산성 광원은 출력광을 근접 센서에서 일정 거리 이격된 초점 위치에 집광시키는 렌즈를 포함할 수 있다.
일실시예에 따른 근접 센서의 거리 결정부는 상기 영역의 크기와 분산성 광원의 초점의 위치를 이용하여 오브젝트와 근접 센서 간의 거리를 결정할 수 있다.
일실시예에 따른 근접 센싱 방법은 근접 센서가 촬영한 이미지에서 집속성 광원으로부터 출력된 출력광이 오브젝트에 의해 반사된 포인트를 식별하는 단계; 및 상기 포인트의 위치를 기초로 오브젝트와 근접 센서 간의 거리를 결정하는 단계를 포함할 수 있다.
일실시예에 따른 근접 센싱 방법은 근접 센서가 촬영한 이미지에서 분산성 광원으로부터 출력된 출력광이 오브젝트에 의해 반사된 영역을 식별하는 단계; 및 상기 영역의 위치를 기초로 오브젝트와 근접 센서 간의 거리를 결정하는 단계를 포함할 수 있다.
도 1은 일실시예에 따른 근접 센서의 구조를 도시한 도면이다.
도 2는 일실시예에 따른 근접 센서의 동작을 도시한 도면이다.
도 3은 일실시예에 따른 근접 센서의 동작을 도시한 도면이다.
도 4는 일실시예에 따라 노이즈를 제거하는 과정을 도시한 도면이다.
도 5는 일실시예에 따른 근접 센서의 구조를 도시한 도면이다.
도 6은 일실시예에 따른 근접 센서의 동작을 도시한 도면이다.
도 7은 일실시예에 따른 근접 센서에서 오브젝트의 이동에 따라 식별한 영역의 일례이다.
도 8은 일실시예에 따른 근접 센서의 근접 센싱 방법을 도시한 도면이다.
도 9은 일실시예에 따른 근접 센서의 근접 센싱 방법을 도시한 도면이다.
이하, 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다.
도 1은 일실시예에 따른 근접 센서(100)의 구조를 도시한 도면이다.
일실시예에 따른 근접 센서(100)는 광원(101)으로부터 출력된 출력광이 오브젝트에 반사된 포인트의 위치를 이용하여 오브젝트(102)와 근접 센서(100)간의 거리를 결정할 수 있다. 예를 들어 근접 센서(110)는 이벤트 기반 비전 센서(DVS: design vision sensor)일 수 있다.
이때, 광원(101)은 출력광이 거리에 따라 분산되지 않는 집속성 광원일 수 있다. 예를 들어 광원(101)은 레이저(LASER: light amplification by stimulated emission of radiation)일 수 있다. 또한, 광원(101)은 일정 시간 간격 또는 특정 조건, 및 사용자의 조작 중 적어도 하나에 따라 출력광의 세기를 변화시킬 수 있다. 예를 들어, 오브젝트(102)와 근접 센서(100)의 거리가 일정 시간 이상 고정된 경우 광원(101)이 출력광의 세기를 변화하도록 특정 조건을 설정할 수 있다.
또한, 오브젝트(102)는 사용자 또는 물체 중 하나일 수 있다.
도 1을 참고하면, 근접 센서(100)는 패턴 감지부(110), 이미지 촬영부(120), 포인트 식별부(130) 및 거리 결정부(140)를 포함할 수 있다.
패턴 감지부(110)는 광원(101)이 출력한 출력광이 오브젝트(102)에 반사된 반사광의 이벤트 패턴을 감지할 수 있다.
이때, 이벤트 패턴은 시간에 따라 반사광의 광량이 증가하거나 감소하는 패턴일 수 있다. 이때, 반사광의 광량은 근접 센서(100)와 오브젝트(102) 간의 거리에 따라 증가 또는 감소할 수 있다. 예를 들어, 근접 센서(100)와 오브젝트(102) 간의 거리가 가까울수록 오브젝트(120)에 반사된 출력광 중에서 패턴 감지부(110)가 수신할 수 있는 반사광의 비율이 높아질 수 있다. 따라서, 근접 센서(100)와 오브젝트(102) 간의 거리가 가까울수록 패턴 감지부(110)가 감지한 반사광의 광량도 증가할 수 있다.
반면, 근접 센서(100)와 오브젝트(102) 간의 거리가 멀수록 오브젝트(120)에 반사된 출력광 중에서 패턴 감지부(110)가 수신할 수 있는 반사광의 비율이 낮아질 수 있다. 따라서, 근접 센서(100)와 오브젝트(102) 간의 거리가 멀수록 패턴 감지부(110)가 감지한 반사광의 광량도 감소할 수 있다.
그리고, 이벤트 패턴은 출력광의 세기가 변화하는 패턴에 대응할 수 있다. 예를 들어, 광원(101)가 출력광의 세기를 증가시키는 시점에서, 패턴 감지부(110)가 감지한 이벤트 패턴은 반사광의 광량이 증가하는 패턴일 수 있다.
그리고, 패턴 감지부(110)는 영상의 픽셀에 입사되는 광량의 변화를 검출하여 이벤트들을 출력하는 템퍼럴 컨트라스트(temporal contrast) 감지 광 센서일 수 있다.
이때, 템퍼럴 컨트라스트 감지 광 센서는 영상의 픽셀에 입사되는 광량이 증가하는 경우 온(on) 이벤트들을 출력하고, 영상의 픽셀에 입사되는 광량이 감소하는 경우 오프(off) 이벤트들을 출력할 수 있다. 또한, 템퍼럴 컨트라스트 감지 광 센서는 프레임 없이 비동기로 동작하며 10 us(micro second) 미만의 시간 해상도를 가질 수 있다.
이미지 촬영부(120)는 오브젝트(102)를 포함한 이미지를 촬영할 수 있다. 이때, 이미지 촬영부(120)가 촬영한 이미지에는 광원(101)이 출력한 출력광이 오브젝트(102)에 의하여 반사된 포인트가 포함될 수 있다.
또한, 오브젝트(102)의 동작 및 다양한 조건에 의하여 다른 광원이 출력한 출력광이 오브젝트(102)에 반사될 수도 있다. 예들 들어 오브젝트(102)가 형광등이나 태양 아래에 있는 경우, 형광등이나 태양으로부터 출력된 출력광이 오브젝트(102)에 반사될 수 있다.
이때, 이미지 촬영부(120)가 촬영한 이미지에는 광원(101)이 출력한 출력광이 오브젝트(102)에 의하여 반사된 포인트와 다른 광원이 출력한 출력광이 오브젝트(102)에 의하여 반사된 노이즈를 포함할 수 있다.
또한, 오브젝트(102)와 근접 센서(100) 사이에 다른 오브젝트가 잠시 끼어 들 수 있다. 이때, 다른 오브젝트는 오브젝트(102)와 같이 근접 여부를 판단하고자 하는 대상이 아니므로 다른 오브젝트에 의하여 반사된 포인트도 노이즈가 될 수 있다. 예를 들어 사용자의 머리카락이 휘날리는 경우, 머리카락에 의하여 출력광이 반사됨으로써 포인트가 머리카락에 위치할 수도 있다. 이때, 머리카락은 근접 여부를 판정할 대상이 아니므로 머리카락에 위치한 포인트는 노이즈가 될 수 있다.
이미지 촬영부(120)가 촬영한 이미지는 도 2 내지 도 3을 참조로 상세히 설명한다.
포인트 식별부(130)는 이미지 촬영부(120)가 촬영한 이미지에서 출력광이 오브젝트(102)에 의해 반사된 포인트를 식별할 수 있다. 광원(101)이 붉은색과 같은 원색의 출력광을 쓰는 경우, 오브젝트(102)에서 출력광이 반사된 장소는 출력광에 의하여 변색되므로, 포인트 식별부(130)가 포인트를 용이하게 식별할 수 있다.
또한, 포인트 식별부(130)는 패턴 감지부(110)가 감지한 반사광의 이벤트 패턴에 기초하여 이미지 촬영부(120)가 촬영한 이미지에서 포인트 및 다른 광원에 의해 발생된 노이즈를 구분할 수 있다.
구체적으로 포인트에서 반사된 반사광의 이벤트 패턴은 광원(101)이 출력하는 출력광의 시간적 변화에 대응할 수 있다. 예를 들어 광원(101)이 출력광의 세기를 변화하는 시점에서 포인트에 반사된 반사광의 광량도 변화할 수 있다. 따라서, 반사광의 이벤트 패턴은 광원(101)이 출력광의 세기를 변화하는 시점에서 온(on) 이벤트들을 포함할 수 있다.
반면, 노이즈에서 반사된 반사광의 이벤트 패턴은 다른 광원이 출력한 출력광의 세기 변화 또는 다른 광원이 출력한 출력광이 오브젝트(102)에 도착하기 전에 차단되는지 여부에 따라 결정되므로 광원(101)이 출력하는 출력광의 시간적 변화와 상이할 수 있다.
따라서, 포인트 식별부(130)는 이미지 촬영부(120)가 촬영한 이미지에서 출력광이 반사된 적어도 하나의 포인트 또는 노이즈를 식별하고, 식별한 포인트 또는 노이즈의 이벤트 패턴을 출력광의 시간적 변화와 비교함으로써, 포인트를 노이즈와 구분할 수 있다. 이때, 포인트 식별부(130)는 식별한 포인트들의 이벤트 패턴을 저장하고, 패턴 감지부(110)가 새로운 패턴을 감지하는 경우, 저장한 이벤트 패턴을 새로운 패턴과 비교하여 노이즈를 제어할 수도 있다.
거리 결정부(140)는 포인트 식별부(130)가 식별한 포인트의 위치를 기초로 오브젝트(102)와 근접 센서(100) 간의 거리를 결정할 수 있다.
구체적으로 출력광이 오브젝트(102)를 향해 일정 각도로 출력될 경우, 포인트의 위치는 오브젝트(102)와 근접 센서(100) 간의 거리가 증가할 수록 광원(101)에서 멀어지는 방향으로 이동할 수 있다.
따라서, 거리 결정부(140)는 근접 센서(100)와 광원(101) 간의 거리를 이용하여 이미지 상에서 광원(101)이 위치에 대응하는 방향을 식별하고, 포인트의 위치와 식별한 방향에 대응하는 이미지의 사이드(side) 간의 거리를 이용하여 오브젝트(102)와 근접 센서(100) 간의 거리를 결정할 수 있다. 이때, 출력광이 오브젝트(102)를 향해 출력되는 각도가 증가하면, 오브젝트(102)와 근접 센서(100) 간의 거리가 동일하더라도, 포인트의 위치와 식별한 방향에 대응하는 이미지의 사이드 간의 거리가 증가할 수 있다.
그러므로 거리 결정부(140)는 출력광이 오브젝트(102)를 향해 출력되는 각도, 근접 센서(100)와 광원(101) 간의 거리 및 포인트의 위치를 이용하여 오브젝트(102)와 근접 센서(100) 간의 거리를 결정할 수 있다.
거리 결정부(140)가 오브젝트(102)와 근접 센서(100) 간의 거리를 결정하는 과정은 이하 도 2를 참조하여 상세히 설명한다.
또한, 거리 결정부(140)는 이미지 촬영부(120)가 연속으로 촬영한 이미지를 비교하여 포인트의 이동 방향을 식별하고, 식별한 포인트의 이동 방향에 기초하여 오브젝트(120)가 근접 센서(100)로 근접하는 지 여부를 판단할 수도 있다. 구체적으로 거리 결정부(140)는 포인트의 이동 방향이 근접 센서(100)를 기준으로 광원(101)이 위치한 방향과 동일한 경우 오브젝트(120)가 근접 센서(100)로 근접하는 것으로 판단할 수 있다. 또한, 거리 결정부(140)는 포인트의 이동 방향이 근접 센서(100)를 기준으로 광원(101)이 위치한 방향과 반대인 경우 오브젝트(120)가 근접 센서(100)에서 이탈하는 것으로 판단할 수 있다.
그리고, 오브젝트(102)와 근접 센서(100) 간의 거리가 가까울수록, 반사광의 광량이 크므로 패턴 감지부(110)가 출력하는 이벤트들의 개수가 증가할 수 있다. 즉, 패턴 감지부(110)가 출력하는 이벤트들의 개수는 오브젝트(102)와 근접 센서(100) 간의 거리와 반비례할 수 있다.
따라서, 거리 결정부(140)는 패턴 감지부(110)가 감지한 이벤트 패턴 중에서 출력광의 시간적 변화에 대응하는 이벤트의 개수를 이용하여 오브젝트의 근접 여부를 판단할 수 있다.
도 2는 일실시예에 따른 근접 센서의 동작을 도시한 도면이다.
이때, 도 2는 일실시예에 따른 근접 센서(100)의 상면도이다. 즉, 광원(101)은 근접 센서(100)의 오른쪽에 위치한다.
광원(101)은 도 2에 도시된 바와 같이 오브젝트(102)를 향해 α각도로 출력광(200)을 출력할 수 있다.
오브젝트(102)와 근접 센서(100)간의 거리(210)가 가까운 경우, 출력광(200)은 포인트(211)에서 반사되고, 근접 센서(100)는 포인트(211)에서 반사된 반사광(212)의 이벤트 패턴을 감지할 수 있다. 또한, 도 2에 도시된 바와 같이 이미지 촬영부(120)가 촬영한 이미지(213)에 포인트(211)가 포함될 수 있다.
이때, 거리 결정부(140)는 근접 센서(100)의 감지 범위의 각도 β가 도2에 도시된 바와 같이 90도인 경우 수학식 1을 이용하여 오브젝트(102)와 근접 센서(100) 간의 거리(210)인 dX를 결정할 수 있다.
Figure PCTKR2013008642-appb-I000001
이때, 도 2에 도시된 바와 같이 d1은 근접 센서(100)과 광원(101)간의 거리이고, sRA는 이미지(213)의 오른쪽 사이드(side)와 포인트(211) 간의 거리이고, sLA은 포인트(211)와 왼쪽 사이드(side) 간의 거리일 수 있다.
또한, 오브젝트(102)와 근접 센서(100)간의 거리(220)가 먼 경우, 출력광(200)은 포인트(221)에서 반사되고, 근접 센서(100)는 포인트(221)에서 반사된 반사광(222)의 이벤트 패턴을 감지할 수 있다. 그리고, 이미지 촬영부(120)가 촬영한 이미지(223)에 포인트(221)가 포함될 수 있다.
이때, 출력광(200)은 포인트(211)에서 반사될 때보다 왼쪽으로 더 진행한 다음에 오브젝트(102)와 접촉하여 포인트(221)에서 반사되고 있다. 따라서, 포인트(221)는 도 2에 도시된 바와 같이 포인트(211)보다 왼쪽에 위치하고 있다.
이때, 거리 결정부(140)는 이미지(223)의 오른쪽 사이드(side)와 포인트(221) 간의 거리인 sRB, 및 포인트(211)와 왼쪽 사이드(side) 간의 거리인 sLB를 각각 수학식 1의 sRA 및 sLA에 대입하여 오브젝트(102)와 근접 센서(100) 간의 거리(220)인 dX를 결정할 수 있다.
도 3은 일실시예에 따른 근접 센서의 동작을 도시한 도면이다.
도 3은 광원(101)이 오브젝트(102)를 향해 수직으로 출력광(300)을 출력할 경우, 근접 센서의 동작을 도시한 상면도이다.
광원(101)은 도 2에 도시된 바와 같이 오브젝트(102)를 향해 α각도로 출력광(200)을 출력할 수 있다.
오브젝트(102)와 근접 센서(100)간의 거리(310)가 가까운 경우, 출력광(300)은 포인트(311)에서 반사되고, 근접 센서(100)는 포인트(311)에서 반사된 반사광(312)의 이벤트 패턴을 감지할 수 있다. 또한, 도 3에 도시된 바와 같이 이미지 촬영부(120)가 촬영한 이미지(313)에 포인트(311)가 포함될 수 있다.
또한, 오브젝트(102)와 근접 센서(100)간의 거리(320)가 중간일 경우, 출력광(300)은 포인트(321)에서 반사되고, 근접 센서(100)는 포인트(321)에서 반사된 반사광(322)의 이벤트 패턴을 감지할 수 있다. 또한, 이미지 촬영부(120)가 촬영한 이미지(323)에 포인트(321)가 포함될 수 있다.
그리고, 오브젝트(102)와 근접 센서(100)간의 거리(330)가 멀 경우, 출력광(300)은 포인트(331)에서 반사되고, 근접 센서(100)는 포인트(331)에서 반사된 반사광(332)의 이벤트 패턴을 감지할 수 있다. 또한, 이미지 촬영부(120)가 촬영한 이미지(333)에 포인트(331)가 포함될 수 있다.
이때, 출력광(300)은 오브젝트(102)에 수직으로 출력되므로 오브젝트(102)에서 포인트(311), 포인트(321), 및 포인트(331)의 위치는 동일할 수 있다.
그러나, 이미지 촬영부(120)가 촬영하는 이미지는 도 3에 도시된 바와 같이 오브젝트(102)와 근접 센서(100)간의 거리가 증가할수록 오브젝트(102)가 아닌 배경, 또는 다른 오브젝트가 포함될 수 있다. 예를 들어 이미지(313)는 대부분의 영역에 오브젝트(102)를 표시하고 있다. 그러나, 이미지(333)는 이미지(313)에 비교하여 표시하고 있는 오브젝트(102)의 크기가 감소하였다.
즉, 오브젝트(102)의 중심에서 포인트까지의 거리(314)는 이미지(313), 이미지(323), 및 이미지(333)에서 모두 동일하지만 이미지(313)의 오른쪽 사이드(side)에서 포인트(311)까지의 거리(315), 이미지(323)의 오른쪽 사이드(side)에서 포인트(321)까지의 거리(324), 및 이미지(333)의 오른쪽 사이드(side)에서 포인트(331)까지의 거리(334)는 각각 상이할 수 있다.
그리고, 이미지 각각의 오른쪽 사이드(side)에서 포인트까지의 거리인 거리(315), 거리(324), 및 거리(334)는 오브젝트(102)와 근접 센서(100)간의 거리인 거리(310), 거리(320), 및 거리(330)와 대응할 수 있다.
따라서, 거리 결정부(140)는 이미지 각각의 오른쪽 사이드(side)에서 포인트까지의 거리인 거리(315), 거리(324), 및 거리(334)를 이용하여 오브젝트(102)와 근접 센서(100) 간의 거리를 결정할 수 있다.
도 4는 일실시예에 따라 노이즈를 제거하는 과정을 도시한 도면이다.
일실시예에 따른 광원(101)은 도 4에 도시된 바와 같이 주기적으로 출력광의 세기를 하이(High)(411)과 로우(Low)(412)으로 변경할 수 있다.
그리고, 패턴 감지부(110)는 광원(101)이 출력한 출력광이 오브젝트(102)에 반사된 반사광의 이벤트 패턴을 감지할 수 있다.
그러나, 다른 광원이 출력한 출력광이 오브젝트(102)와 접촉하는 경우, 패턴 감지부(110)는 케이스(case) 1과 같은 반사광의 이벤트 패턴과 케이스(case) 2와 같은 반사광의 이벤트 패턴을 동시에 감지할 수도 있다.
이때, 케이스 1의 이벤트 패턴에 따르면 패턴 감지부(110)는 도 4에 도시된 바와 같이 시점(421)과 시점(431)에서 각각 복수의 이벤트를 출력할 수 있다. 이때, 시점(421)에서 패턴 감지부(110)가 출력하는 이벤트는 반사광의 광량이 증가하는 것을 나타내는 온(on) 이벤트(420)일 수 있다. 또한, 시점(431)에서 패턴 감지부(110)가 출력하는 이벤트는 반사광의 광량이 감소하는 것을 나타내는 오프(off) 이벤트(430)일 수 있다.
그리고, 시점(421)은 광원(101)이 출력광의 세기를 하이(411)로 변경하는 시점과 대응하며, 시점(431)과 출력광의 세기를 로우(412)로 변경하는 시점과 대응할 수 있다.
따라서, 케이스 1의 이벤트 패턴에 대응하는 반사광은 광원(101)의 출력광에 대응하는 반사광이며, 포인트 식별부(130)는 케이스 1의 이벤트 패턴에 대응하는 반사광이 반사된 장소를 포인트로 식별할 수 있다.
반면, 케이스 2의 이벤트 패턴에 따르면 패턴 감지부(110)는 도 4에 도시된 바와 같이 시점(422), 시점(423), 시점(432) 및 시점(433)에서 각각 복수의 이벤트를 출력할 수 있다.
이때, 온(on) 이벤트(420)를 출력한 시점(422)는 출력광의 세기를 하이(411)로 변경하는 시점과 상이하며, 오프(off) 이벤트(430)를 출력한 시점(432) 및 시점(433)도 출력광의 세기를 로우(412)로 변경하는 시점과 상이할 수 있다.
다만, 온(on) 이벤트(420)를 출력한 시점(423)는 출력광의 세기를 하이(411)로 변경하는 시점과 동일하지만 케이스 2의 이벤트 패턴에서 복수의 이벤트를 출력하는 시점 중 하나일 수 있다.
즉,, 케이스 2의 이벤트 패턴은 출력광의 세기를 하이(411)로 변경하는 시점과 다른 적어도 하나의 시점에서 온(on) 이벤트(420)를 출력하고 있으므로, 케이스 2의 이벤트 패턴은 광원(101)의 출력광의 시간적 변화와 상이할 수 있다. 따라서, 케이스 2의 이벤트 패턴에 대응하는 반사광은 노이즈일 수 있다.
또한, 조건에 따라서는 케이스 1과 같은 이벤트 패턴에서 시점(421)과 다른 시점에 온(on) 이벤트(420)를 출력할 수도 있다. 이때, 포인트 식별부(130)는 다른 시점을 오브젝트(102)와 근접 센서 사이에 다른 오브젝트가 일시적으로 통과하면서 다른 오브젝트 상에 포인트가 형성된 것으로 판단할 수 있다. 따라서, 포인트 식별부(130)는 다른 시점에서 이미지 촬영부(120)가 촬영한 이미지의 포인트를 노이즈로 구분할 수 있다.
도 5는 일실시예에 따른 근접 센서(500)의 구조를 도시한 도면이다.
일실시예에 따른 근접 센서(500)는 광원(501)으로부터 출력된 출력광이 오브젝트에 반사된 포인트의 위치를 이용하여 오브젝트(502)와 근접 센서(500)간의 거리를 결정할 수 있다. 예를 들어 근접 센서(510)는 이벤트 기반 비전 센서(DVS: design vision sensor)일 수 있다.
이때, 광원(501)은 출력광이 거리에 따라 분산되는 분산성 광원일 수 있다. 예를 들어 광원(501)은 발광 다이오드(LED: Light-Emitting Diode)일 수 있다. 그리고, 광원(501)은 출력광을 근접 센서(500)에서 일정 거리 이격된 초점 위치에 집광시키는 렌즈를 더 포함할 수 있다. 이때, 초점 위치는 근접 센서(500)이 센싱하고자 하는 범위에 따라 결정될 수 있다. 구체적으로 렌즈에 의하여 집광된 출력광이 초점 위치를 통과하면 분산될 수 있다. 그리고, 출력광이 일정 이상 분산되는 경우, 근접 센서(500)는 반사광을 감지하기 어려울 수 있다. 따라서, 출력광이 근접 센서(500)에서 감지할 수 없을 정도로 분산되는 거리가 근접 센서(500)이 센싱하고자 하는 범위의 최대 거리 보다 멀도록 초점 위치를 결정할 수 있다.
또한, 광원(501)은 일정 시간 간격 또는 특정 조건, 및 사용자의 조작 중 적어도 하나에 따라 출력광의 세기를 변화시킬 수 있다. 예를 들어, 오브젝트(502)와 근접 센서(500)의 거리가 일정 시간 이상 고정된 경우 광원(501)이 출력광의 세기를 변화하도록 특정 조건을 설정할 수 있다.
도 5를 참고하면, 근접 센서(500)는 패턴 감지부(510), 이미지 촬영부(520), 포인트 식별부(530) 및 거리 결정부(540)를 포함할 수 있다.
패턴 감지부(510)는 광원(501)이 출력한 출력광이 오브젝트(502)에 반사된 반사광의 이벤트 패턴을 감지할 수 있다.
이때, 이벤트 패턴은 시간에 따라 반사광의 광량이 증가하거나 감소하는 패턴일 수 있다. 이때, 반사광의 광량은 근접 센서(500)와 오브젝트(502) 간의 거리에 따라 증가 또는 감소할 수 있다. 예를 들어, 근접 센서(500)와 오브젝트(502) 간의 거리가 가까울수록 오브젝트(520)에 반사된 출력광 중에서 패턴 감지부(510)가 수신할 수 있는 반사광의 비율이 높아질 수 있다. 따라서, 근접 센서(500)와 오브젝트(502) 간의 거리가 가까울수록 패턴 감지부(510)가 감지한 반사광의 광량도 증가할 수 있다.
반면, 근접 센서(500)와 오브젝트(502) 간의 거리가 멀수록 오브젝트(520)에 반사된 출력광 중에서 패턴 감지부(510)가 수신할 수 있는 반사광의 비율이 낮아질 수 있다. 따라서, 근접 센서(500)와 오브젝트(502) 간의 거리가 멀수록 패턴 감지부(510)가 감지한 반사광의 광량도 감소할 수 있다.
그리고, 이벤트 패턴은 출력광의 세기가 변화하는 패턴에 대응할 수 있다. 예를 들어, 광원(501)가 출력광의 세기를 증가시키는 시점에서, 패턴 감지부(510)가 감지한 이벤트 패턴은 반사광의 광량이 증가하는 패턴일 수 있다.
그리고, 패턴 감지부(510)는 영상의 픽셀에 입사되는 광량의 변화를 검출하여 이벤트들을 출력하는 템퍼럴 컨트라스트(temporal contrast) 감지 광 센서일 수 있다.
이때, 템퍼럴 컨트라스트 감지 광 센서는 영상의 픽셀에 입사되는 광량이 증가하는 경우 온(on) 이벤트들을 출력하고, 영상의 픽셀에 입사되는 광량이 감소하는 경우 오프(off) 이벤트들을 출력할 수 있다. 또한, 템퍼럴 컨트라스트 감지 광 센서는 프레임 없이 비동기로 동작하며 10 us(micro second) 미만의 시간 해상도를 가질 수 있다.
이미지 촬영부(520)는 오브젝트(502)를 포함한 이미지를 촬영할 수 있다. 이때, 이미지 촬영부(520)가 촬영한 이미지에는 광원(501)이 출력한 출력광이 오브젝트(502)에 의하여 반사된 영역이 포함될 수 있다.
또한, 오브젝트(502)의 동작 및 다양한 조건에 의하여 다른 광원이 출력한 출력광이 오브젝트(502)에 반사될 수도 있다. 예들 들어 오브젝트(502)가 형광등이나 태양 아래에 있는 경우, 형광등이나 태양으로부터 출력된 출력광이 오브젝트(502)에 반사될 수 있다.
이때, 이미지 촬영부(520)가 촬영한 이미지에는 광원(501)이 출력한 출력광이 오브젝트(502)에 의하여 반사된 영역과 다른 광원이 출력한 출력광이 오브젝트(502)에 의하여 반사된 노이즈를 포함할 수 있다.
또한, 오브젝트(502)와 근접 센서(500) 사이에 다른 오브젝트가 잠시 끼어 들 수 있다. 이때, 다른 오브젝트는 오브젝트(502)와 같이 근접 여부를 판단하고자 하는 대상이 아니므로 다른 오브젝트에 의하여 반사된 영역도 노이즈가 될 수 있다. 예를 들어 사용자의 머리카락이 휘날리는 경우, 머리카락에 의하여 출력광이 반사됨으로써 영역이 머리카락에 위치할 수도 있다. 이때, 머리카락은 근접 여부를 판정할 대상이 아니므로 머리카락에 위치한 영역은 노이즈가 될 수 있다.
이미지 촬영부(520)가 촬영한 이미지는 도 7을 참조로 상세히 설명한다.
영역 식별부(530)는 이미지 촬영부(520)가 촬영한 이미지에서 출력광이 오브젝트(502)에 의해 반사된 영역을 식별할 수 있다. 광원(501)이 붉은색과 같은 원색의 출력광을 쓰는 경우, 오브젝트(502)에서 출력광이 반사된 장소는 출력광에 의하여 변색되므로, 영역 식별부(530)가 영역을 용이하게 식별할 수 있다.
이때, 출력광은 광원(501)의 렌즈에 의하여 초점 위치에 집광 될 수 있다. 즉, 오브젝트(502)가 초점 위치에 가까울수록 오브젝트(502)에 반사되는 출력광은 집광되어 면적이 감소할 수 있다. 따라서, 오브젝트(502)가 초점 위치에 가까울수록 영역 식별부(530)가 식별한 영역의 크기는 감소할 수 있다.
또한, 영역 식별부(530)는 패턴 감지부(510)가 감지한 반사광의 이벤트 패턴에 기초하여 이미지 촬영부(520)가 촬영한 이미지에서 영역 및 다른 광원에 의해 발생된 노이즈를 구분할 수 있다.
구체적으로 영역에서 반사된 반사광의 이벤트 패턴은 광원(501)이 출력하는 출력광의 시간적 변화에 대응할 수 있다. 예를 들어 광원(501)이 출력광의 세기를 변화하는 시점에서 영역에 반사된 반사광의 광량도 변화할 수 있다. 따라서, 반사광의 이벤트 패턴은 광원(501)이 출력광의 세기를 변화하는 시점에서 온(on) 이벤트들을 포함할 수 있다.
반면, 노이즈에서 반사된 반사광의 이벤트 패턴은 다른 광원이 출력한 출력광의 세기 변화 또는 다른 광원이 출력한 출력광이 오브젝트(502)에 도착하기 전에 차단되는지 여부에 따라 결정되므로 광원(501)이 출력하는 출력광의 시간적 변화와 상이할 수 있다.
따라서, 영역 식별부(530)는 이미지 촬영부(520)가 촬영한 이미지에서 출력광이 반사된 적어도 하나의 영역 또는 노이즈를 식별하고, 식별한 영역 또는 노이즈의 이벤트 패턴을 출력광의 시간적 변화와 비교함으로써, 영역을 노이즈와 구분할 수 있다.
거리 결정부(540)는 영역 식별부(530)가 식별한 영역의 위치, 및 크기를 기초로 오브젝트(502)와 근접 센서(500) 간의 거리를 결정할 수 있다.
구체적으로 출력광이 오브젝트(502)를 향해 일정 각도로 출력될 경우, 영역의 위치는 오브젝트(502)와 근접 센서(500) 간의 거리가 증가할 수록 광원(501)에서 멀어지는 방향으로 이동할 수 있다.
따라서, 거리 결정부(540)는 근접 센서(500)와 광원(501) 간의 거리를 이용하여 이미지 상에서 광원(501)이 위치에 대응하는 방향을 식별하고, 영역의 위치와 식별한 방향에 대응하는 이미지의 사이드(side) 간의 거리를 이용하여 오브젝트(502)와 근접 센서(500) 간의 거리를 결정할 수 있다. 이때, 출력광이 오브젝트(502)를 향해 출력되는 각도가 증가하면, 오브젝트(502)와 근접 센서(500) 간의 거리가 동일하더라도, 영역의 위치와 식별한 방향에 대응하는 이미지의 사이드 간의 거리가 증가할 수 있다.
그러므로 거리 결정부(540)는 출력광이 오브젝트(502)를 향해 출력되는 각도, 근접 센서(500)와 광원(501) 간의 거리 및 영역의 위치를 이용하여 오브젝트(502)와 근접 센서(500) 간의 거리를 결정할 수 있다.
또한, 거리 결정부(540)는 영역의 크기를 이용하여 오브젝트(502)와 근접 센서(500) 간의 거리를 결정할 수도 있다. 앞에서 설명한 바와 같이 오브젝트(502)가 초점 위치에 가까울수록 영역 식별부(530)가 식별한 영역의 크기는 감소할 수 있다. 따라서, 영역 식별부(530)가 식별한 영역의 크기가 최소가 되는 경우, 거리 결정부(540)는 오브젝트(502)가 초점 위치에 있는 것으로 결정할 수 있다.
또한, 거리 결정부(540)는 이미지 촬영부(520)가 연속으로 촬영한 이미지를 비교하여 영역의 이동 방향을 식별하고, 식별한 영역의 이동 방향에 기초하여 오브젝트(520)가 근접 센서(500)로 근접하는 지 여부를 판단할 수도 있다. 구체적으로 거리 결정부(540)는 영역의 이동 방향이 근접 센서(500)를 기준으로 광원(501)이 위치한 방향과 동일한 경우 오브젝트(520)가 근접 센서(500)로 근접하는 것으로 판단할 수 있다. 또한, 거리 결정부(540)는 영역의 이동 방향이 근접 센서(500)를 기준으로 광원(501)이 위치한 방향과 반대인 경우 오브젝트(520)가 근접 센서(500)에서 이탈하는 것으로 판단할 수 있다.
그리고, 오브젝트(502)와 근접 센서(500) 간의 거리가 가까울수록, 반사광의 광량이 크므로 패턴 감지부(510)가 출력하는 이벤트들의 개수가 증가할 수 있다. 즉, 패턴 감지부(510)가 출력하는 이벤트들의 개수는 오브젝트(502)와 근접 센서(500) 간의 거리와 반비례할 수 있다.
따라서, 거리 결정부(540)는 패턴 감지부(510)가 감지한 이벤트 패턴 중에서 출력광의 시간적 변화에 대응하는 이벤트의 개수를 이용하여 오브젝트의 근접 여부를 판단할 수 있다.
도 6은 일실시예에 따른 근접 센서의 동작을 도시한 도면이다.
도 6은 일실시예에 따른 근접 센서(500)의 상면도이다. 즉, 광원(501)은 근접 센서(500)의 오른쪽에 위치하며, 오브젝트를 향해 일정 각도로 출력광(601)을 출력할 수 있다. 또한, 광원(501)은 분산성 광원이므로 출력광(601)을 초점 위치에 집광 시키는 렌즈(600)을 포함할 수 있다. 이때, 초점 위치는 근접 센서(500)이 센싱하고자 하는 범위(602)에 포함되며, 근접 센서(500)가 촬영하는 이미지의 중앙에 대응할 수 있다.
오브젝트와 근접 센서(500)간의 거리(610)가 초점 위치보다 가까운 경우, 출력광(601)은 영역(611)에서 반사되고, 근접 센서(500)는 포인트(611)에서 반사된 반사광의 이벤트 패턴을 감지할 수 있다. 이때, 출력광(601)은 도 6에 도시된 바와 같이 집광 중이므로 영역(611)는 일정 이상 크기를 가질 수 있다. 그리고, 영역(611)의 위치는 초점 영역이 위치한 이미지의 중심을 기준으로 광원(501)이 위치한 오른쪽에 위치할 수 있다.
따라서, 거리 결정부(540)는 영역(611)의 크기와 영역(611)의 위치를 이용하여 오브젝트와 근접 센서(500)간의 거리(610)를 초점 위치보다 가까운 거리로 결정할 수 있다.
또한, 오브젝트와 근접 센서(500)간의 거리(620)가 초점 위치보다 먼 경우, 출력광(601)은 영역(621)에서 반사되고, 근접 센서(500)는 포인트(621)에서 반사된 반사광의 이벤트 패턴을 감지할 수 있다. 이때, 출력광(601)은 도 6에 도시된 바와 같이 분산 중이므로 영역(621)는 일정 이상 크기를 가질 수 있다.
그리고, 영역(621)의 위치는 초점 영역이 위치한 이미지의 중심을 기준으로 광원(501)이 위치한 방향의 반대인 왼쪽에 위치할 수 있다.
따라서, 거리 결정부(540)는 영역(621)의 크기와 영역(621)의 위치를 이용하여 오브젝트와 근접 센서(500)간의 거리(620)를 초점 위치보다 먼 거리로 결정할 수 있다.
그리고, 오브젝트와 근접 센서(500)간의 거리(630)가 초점 위치에 대응하는 경우, 출력광(601)은 영역(631)에서 반사되고, 근접 센서(500)는 영역(631)에서 반사된 반사광의 이벤트 패턴을 감지할 수 있다. 이때, 출력광(601)은 도 6에 도시된 바와 같이 최대로 집광된 상태이므로 영역(631)는 최소 크기일 수 있다.
그리고, 영역(631)의 위치는 초점 영역과 동일하게 이미지의 중심에 위치할 수 있다.
따라서, 거리 결정부(540)는 영역(631)의 크기와 영역(631)의 위치를 이용하여 오브젝트와 근접 센서(500)간의 거리(630)를 초점 위치에 대응하는 거리로 결정할 수 있다.
도 7은 일실시예에 따른 근접 센서에서 오브젝트의 이동에 따라 식별한 영역의 일례이다.
오브젝트와 근접 센서(500)간의 거리가 초점 위치보다 가까운 경우, 영역(611)는 일정 이상 크기를 가질 수 있다. 그리고, 영역(611)의 위치는 초점 영역이 위치한 이미지의 중심을 기준으로 광원(501)이 위치한 오른쪽에 위치할 수 있다.
이때, 출력광(601)은 집광 중이므로, 도 6에 도시된 바와 같이 초점 위치에 가까워질수록 출력광(601)의 면적이 감소할 수 있다. 따라서, 도 7의 영역 변화(700)에 도시된 바와 같이 오브젝트가 초점 위치에 근접할수록 영역(611)의 크기가 감소할 수 있다.
또한, 오브젝트가 초점 위치에 근접할수록 초점 위치를 향하여 더 진행한 출력광(601)이 반사될 수 있다. 따라서, 도 7의 영역 변화(700)에 도시된 바와 같이 오브젝트가 초점 위치에 근접할수록 영역(611)의 위치는 이미지의 오른쪽에서 중앙으로 이동할 수 있다. 단, 도 7은 도 6에 도시된 바와 같이 광원(501)이 근접 센서(500)의 오른쪽에 있는 경우의 실시예이다. 예를 들어 광원(501)이 근접 센서(500)의 위쪽에 있는 경우, 오브젝트가 초점 위치에 근접할수록 영역(611)의 위치는 이미지의 위쪽에서 중앙으로 이동할 수 있다.
즉, 오브젝트가 초점 위치에 근접할수록 영역(611)은 근접 센서(500)을 기준으로 광원(501)이 위치한 방향에서 이미지의 중앙 쪽으로 이동할 수 있다.
또한, 오브젝트와 근접 센서(500)간의 거리가 초점 위치보다 먼 경우, 영역(621)는 일정 이상 크기를 가질 수 있다.
이때, 출력광(601)은 분산 중이므로, 도 6에 도시된 바와 같이 초점 위치에 멀어질수록 출력광(601)의 면적이 증가할 수 있다. 따라서, 도 7의 영역 변화(700)에 도시된 바와 같이 오브젝트가 초점 위치에서 멀어질수록 영역(621)의 크기가 증가할 수 있다.
또한, 오브젝트가 초점 위치에서 멀어질수록 더 오브젝트를 향하여 더 진행한 출력광(601)이 반사될 수 있다. 따라서, 도 7의 영역 변화(700)에 도시된 바와 같이 오브젝트가 초점 위치에서 멀어질수록 영역(611)의 위치는 이미지의 왼쪽으로 이동할 수 있다. 단, 도 7은 도 6에 도시된 바와 같이 광원(501)이 근접 센서(500)의 오른쪽에 있는 경우의 실시예이다. 예를 들어 광원(501)이 근접 센서(500)의 위쪽에 있는 경우, 오브젝트가 초점 위치에서 멀어질수록 영역(621)의 위치는 이미지의 아래쪽으로 이동할 수 있다.
즉, 초점 위치보다 먼 위치에 있는 오브젝트가 초점 위치에서 멀어질수록 영역(621)은 광원(501)이 위치한 방향의 반대 방향으로 이동할 수 있다.
그리고, 오브젝트와 근접 센서(500)간의 거리(620)가 초점 위치에 대응하는 경우, 출력광(601)은 도 6에 도시된 바와 같이 최대로 집광된 상태이므로 영역(631)는 최소 크기이며, 영역(631)의 위치는 초점 영역과 동일하게 이미지의 중심에 위치할 수 있다.
도 8은 일실시예에 따른 근접 센서의 근접 센싱 방법을 도시한 도면이다.
단계(810)에서 광원(101)은 일정 시간 간격 또는 특정 조건, 및 사용자의 조작 중 적어도 하나에 따라 출력광의 세기를 변화시킬 수 있다.
이때, 패턴 감지부(110)는 단계(810)에서 출력광의 세기가 변화함에 따라 오브젝트(102)에 반사된 반사광의 광량이 변화하면, 반사광의 이벤트 패턴을 감지할 수 있다. 또한, 이미지 촬영부(120)는 오브젝트(102)를 포함한 이미지를 촬영할 수 있다.
단계(820)에서 포인트 식별부(130)는 단계(810)에서 촬영한 이미지에서 출력광이 오브젝트(102)에 의해 반사된 포인트를 식별할 수 있다.
이때, 포인트 식별부(130)는 단계(810)에서 감지한 반사광의 이벤트 패턴에 기초하여 이미지 촬영부(120)가 촬영한 이미지에서 포인트 및 다른 광원에 의해 발생된 노이즈를 구분할 수 있다.
구체적으로 포인트에서 반사된 반사광의 이벤트 패턴은 광원(101)이 출력하는 출력광의 시간적 변화에 대응할 수 있다. 반면, 노이즈에서 반사된 반사광의 이벤트 패턴은 다른 광원이 출력한 출력광의 세기 변화 또는 다른 광원이 출력한 출력광이 오브젝트(102)에 도착하기 전에 차단되는지 여부에 따라 결정되므로 광원(101)이 출력하는 출력광의 시간적 변화와 상이할 수 있다. 따라서, 포인트 식별부(130)는 이미지 촬영부(120)가 촬영한 이미지에서 출력광이 반사된 적어도 하나의 포인트 또는 노이즈를 식별하고, 식별한 포인트 또는 노이즈의 이벤트 패턴을 출력광의 시간적 변화와 비교함으로써, 포인트를 노이즈와 구분할 수 있다.
단계(830)에서 거리 결정부(140)는 단계(820)에서 식별한 포인트의 위치를 기초로 오브젝트(102)와 근접 센서(100) 간의 거리를 결정할 수 있다.
구체적으로 출력광이 오브젝트(102)를 향해 일정 각도로 출력될 경우, 포인트의 위치는 오브젝트(102)와 근접 센서(100) 간의 거리가 증가할 수록 광원(101)에서 멀어지는 방향으로 이동할 수 있다. 따라서, 거리 결정부(140)는 근접 센서(100)와 광원(101) 간의 거리를 이용하여 이미지 상에서 광원(101)이 위치에 대응하는 방향을 식별하고, 포인트의 위치와 식별한 방향에 대응하는 이미지의 사이드(side) 간의 거리를 이용하여 오브젝트(102)와 근접 센서(100) 간의 거리를 결정할 수 있다.
단계(840)에서 거리 결정부(140)는 이미지 촬영부(120)가 연속으로 촬영한 이미지를 비교하여 포인트가 이동하였는지 여부를 확인할 수 있다.
단계(850)에서 거리 결정부(140)는 단계(840)에서 포인트가 이동한 것으로 확인된 경우, 포인트의 이동 방향에 기초하여 오브젝트(120)가 근접 센서(100)로 근접하는 지 여부를 판단할 수도 있다. 구체적으로 거리 결정부(140)는 포인트의 이동 방향이 근접 센서(100)를 기준으로 광원(101)이 위치한 방향과 동일한 경우 오브젝트(120)가 근접 센서(100)로 근접하는 것으로 판단할 수 있다. 또한, 거리 결정부(140)는 포인트의 이동 방향이 근접 센서(100)를 기준으로 광원(101)이 위치한 방향과 반대인 경우 오브젝트(120)가 근접 센서(100)에서 이탈하는 것으로 판단할 수 있다.
도 9는 일실시예에 따른 근접 센서의 근접 센싱 방법을 도시한 도면이다.
단계(910)에서 광원(501)은 일정 시간 간격 또는 특정 조건, 및 사용자의 조작 중 적어도 하나에 따라 출력광의 세기를 변화시킬 수 있다.
이때, 패턴 감지부(510)는 단계(910)에서 출력광의 세기가 변화함에 따라 오브젝트(502)에 반사된 반사광의 광량이 변화하면, 반사광의 이벤트 패턴을 감지할 수 있다. 또한, 이미지 촬영부(520)는 오브젝트(502)를 포함한 이미지를 촬영할 수 있다.
단계(920)에서 영역 식별부(530)는 단계(910)에서 촬영한 이미지에서 출력광이 오브젝트(502)에 의해 반사된 영역을 식별할 수 있다. 이때, 출력광은 광원(501)의 렌즈에 의하여 초점 위치에 집광 될 수 있다. 즉, 오브젝트(502)가 초점 위치에 가까울수록 오브젝트(502)에 반사되는 출력광은 집광되어 면적이 감소할 수 있다. 따라서, 오브젝트(502)가 초점 위치에 가까울수록 영역 식별부(530)가 식별한 영역의 크기는 감소할 수 있다.
또한, 영역 식별부(530)는 패턴 감지부(510)가 감지한 반사광의 이벤트 패턴에 기초하여 이미지 촬영부(520)가 촬영한 이미지에서 영역 및 다른 광원에 의해 발생된 노이즈를 구분할 수 있다.
구체적으로 영역에서 반사된 반사광의 이벤트 패턴은 광원(501)이 출력하는 출력광의 시간적 변화에 대응할 수 있다. 반면, 노이즈에서 반사된 반사광의 이벤트 패턴은 다른 광원이 출력한 출력광의 세기 변화 또는 다른 광원이 출력한 출력광이 오브젝트(502)에 도착하기 전에 차단되는지 여부에 따라 결정되므로 광원(501)이 출력하는 출력광의 시간적 변화와 상이할 수 있다. 따라서, 영역 식별부(530)는 이미지 촬영부(520)가 촬영한 이미지에서 출력광이 반사된 적어도 하나의 영역 또는 노이즈를 식별하고, 식별한 영역 또는 노이즈의 이벤트 패턴을 출력광의 시간적 변화와 비교함으로써, 영역을 노이즈와 구분할 수 있다.
단계(930)에서 거리 결정부(540)는 단계(920)에서 식별한 영역의 위치, 및 크기를 기초로 오브젝트(502)와 근접 센서(500) 간의 거리를 결정할 수 있다.
구체적으로 출력광이 오브젝트(502)를 향해 일정 각도로 출력될 경우, 영역의 위치는 오브젝트(502)와 근접 센서(500) 간의 거리가 증가할 수록 광원(501)에서 멀어지는 방향으로 이동할 수 있다. 따라서, 거리 결정부(540)는 근접 센서(500)와 광원(501) 간의 거리를 이용하여 이미지 상에서 광원(501)이 위치에 대응하는 방향을 식별하고, 영역의 위치와 식별한 방향에 대응하는 이미지의 사이드(side) 간의 거리를 이용하여 오브젝트(502)와 근접 센서(500) 간의 거리를 결정할 수 있다.
또한, 거리 결정부(540)는 영역의 크기를 이용하여 오브젝트(502)와 근접 센서(500) 간의 거리를 결정할 수도 있다. 오브젝트(502)가 초점 위치에 가까울수록 영역 식별부(530)가 식별한 영역의 크기는 감소할 수 있다. 따라서, 영역 식별부(530)가 식별한 영역의 크기가 최소가 되는 경우, 거리 결정부(540)는 오브젝트(502)가 초점 위치에 있는 것으로 결정할 수 있다.
단계(940)에서 거리 결정부(540)는 이미지 촬영부(520)가 연속으로 촬영한 이미지를 비교하여 영역이 이동하였는지 여부를 확인할 수 있다.
단계(950)에서 거리 결정부(540)는 단계(940)에서 영역이 이동한 것으로 확인된 경우, 영역의 이동 방향에 기초하여 오브젝트(520)가 근접 센서(100)로 근접하는 지 여부를 판단할 수도 있다. 구체적으로 거리 결정부(540)는 영역의 이동 방향이 근접 센서(500)를 기준으로 광원(501)이 위치한 방향과 동일한 경우 오브젝트(520)가 근접 센서(500)로 근접하는 것으로 판단할 수 있다. 또한, 거리 결정부(540)는 영역의 이동 방향이 근접 센서(500)를 기준으로 광원(501)이 위치한 방향과 반대인 경우 오브젝트(520)가 근접 센서(500)에서 이탈하는 것으로 판단할 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 이용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 이용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (33)

  1. 근접 센서가 촬영한 이미지에서 집속성 광원으로부터 출력된 출력광이 오브젝트에 의해 반사된 포인트를 식별하는 포인트 식별부; 및
    상기 포인트의 위치를 기초로 오브젝트와 근접 센서 간의 거리를 결정하는 거리 결정부
    를 포함하는 근접 센서.
  2. 제1항에 있어서,
    상기 거리 결정부는,
    상기 출력광이 오브젝트를 향해 출력되는 각도, 근접 센서와 광원 간의 거리 및 포인트의 위치를 이용하여 오브젝트와 근접 센서 간의 거리를 결정하는 근접 센서.
  3. 제1항에 있어서,
    상기 거리 결정부는,
    이미지에서 광원에 대응하는 방향의 사이드에서 포인트의 위치까지의 거리에 비례하도록 오브젝트와 근접 센서 간의 거리를 결정하는 근접 센서.
  4. 제1항에 있어서,
    상기 거리 결정부는,
    이미지의 크기 및 근접 센서와 광원 간의 거리에 비례하도록 오브젝트와 근접 센서 간의 거리를 결정하는 근접 센서.
  5. 제1항에 있어서,
    상기 거리 결정부는,
    상기 이미지에서 포인트의 이동 방향에 기초하여 상기 오브젝트가 근접센서로 근접하는 지 여부를 판단하는 근접 센서.
  6. 제1항에 있어서,
    상기 출력광의 시간적 변화에 따라 오브젝트에 반사된 반사광의 이벤트패턴을 감지하는 패턴 감지부
    를 더 포함하고,
    상기 포인트 식별부는,
    상기 반사광의 이벤트 패턴에 기초하여 상기 이미지에서 포인트를 식별하는 근접 센서.
  7. 제6항에 있어서,
    상기 포인트 식별부는,
    상기 이벤트 패턴을 이용하여 상기 이미지에서 포인트 및 다른 광원에 의해 발생된 노이즈를 구분하는 근접 센서.
  8. 근접 센서가 촬영한 이미지에서 분산성 광원으로부터 출력된 출력광이 오브젝트에 의해 반사된 영역을 식별하는 영역 식별부; 및
    상기 영역의 위치를 기초로 오브젝트와 근접 센서 간의 거리를 결정하는 거리 결정부
    를 포함하는 근접 센서.
  9. 제8항에 있어서,
    상기 분산성 광원은,
    출력광을 근접 센서에서 일정 거리 이격된 초점 위치에 집광시키는 렌즈를 포함하는 근접 센서,
  10. 제8항에 있어서,
    상기 거리 결정부는,
    상기 영역의 크기와 분산성 광원의 초점의 위치를 이용하여 오브젝트와 근접 센서 간의 거리를 결정하는 근접 센서.
  11. 제8항에 있어서,
    상기 거리 결정부는,
    상기 출력광이 오브젝트를 향해 출력되는 각도, 근접 센서와 광원 간의 거리 및 영역의 위치를 이용하여 오브젝트와 근접 센서 간의 거리를 결정하는 근접 센서.
  12. 제8항에 있어서,
    상기 거리 결정부는,
    이미지에서 광원에 대응하는 방향의 사이드에서 영역의 위치까지의 거리에 비례하도록 오브젝트와 근접 센서 간의 거리를 결정하는 근접 센서.
  13. 제8항에 있어서,
    상기 거리 결정부는,
    이미지의 크기 및 근접 센서와 광원 간의 거리에 비례하도록 오브젝트와 근접 센서 간의 거리를 결정하는 근접 센서.
  14. 제8항에 있어서,
    상기 거리 결정부는,
    상기 이미지에서 영역의 이동 방향에 기초하여 상기 오브젝트가 근접센서로 근접하는 지 여부를 판단하는 근접 센서.
  15. 제8항에 있어서,
    상기 출력광의 시간적 변화에 따라 오브젝트에 반사된 반사광의 이벤트패턴을 감지하는 패턴 감지부
    를 더 포함하고,
    상기 영역 식별부는,
    상기 반사광의 이벤트 패턴에 기초하여 상기 이미지에서 영역을 식별하는 근접 센서.
  16. 제15항에 있어서,
    상기 영역 식별부는,
    상기 이벤트 패턴을 이용하여 상기 이미지에서 영역 및 다른 광원에 의해 발생된 노이즈를 구분하는 근접 센서.
  17. 근접 센서가 촬영한 이미지에서 집속성 광원으로부터 출력된 출력광이 오브젝트에 의해 반사된 포인트를 식별하는 단계; 및
    상기 포인트의 위치를 기초로 오브젝트와 근접 센서 간의 거리를 결정하는 단계
    를 포함하는 근접 센싱 방법.
  18. 제17항에 있어서,
    상기 거리를 결정하는 단계는,
    상기 출력광이 오브젝트를 향해 출력되는 각도, 근접 센서와 광원 간의 거리 및 포인트의 위치를 이용하여 오브젝트와 근접 센서 간의 거리를 결정하는 근접 센싱 방법.
  19. 제17항에 있어서,
    상기 거리를 결정하는 단계는,
    이미지에서 광원에 대응하는 방향의 사이드에서 포인트의 위치까지의 거리에 비례하도록 오브젝트와 근접 센서 간의 거리를 결정하는 근접 센싱 방법.
  20. 제17항에 있어서,
    상기 거리를 결정하는 단계는,
    이미지의 크기 및 근접 센서와 광원 간의 거리에 비례하도록 오브젝트와 근접 센서 간의 거리를 결정하는 근접 센싱 방법.
  21. 제17항에 있어서,
    상기 거리를 결정하는 단계는,
    상기 이미지에서 포인트의 이동 방향에 기초하여 상기 오브젝트가 근접센서로 근접하는 지 여부를 판단하는 근접 센싱 방법.
  22. 제17항에 있어서,
    상기 출력광의 시간적 변화에 따라 오브젝트에 반사된 반사광의 이벤트패턴을 감지하는 단계
    를 더 포함하고,
    상기 포인트를 식별하는 단계는,
    상기 반사광의 이벤트 패턴에 기초하여 상기 이미지에서 포인트를 식별하는 근접 센싱 방법.
  23. 제22항에 있어서,
    상기 포인트를 식별하는 단계는,
    상기 이벤트 패턴을 이용하여 상기 이미지에서 포인트 및 다른 광원에 의해 발생된 노이즈를 구분하는 근접 센싱 방법.
  24. 근접 센서가 촬영한 이미지에서 분산성 광원으로부터 출력된 출력광이 오브젝트에 의해 반사된 영역을 식별하는 단계; 및
    상기 영역의 위치를 기초로 오브젝트와 근접 센서 간의 거리를 결정하는 단계
    를 포함하는 근접 센싱 방법.
  25. 제24항에 있어서,
    상기 분산성 광원은,
    출력광을 근접 센서에서 일정 거리 이격된 초점 위치에 집광시키는 렌즈를 포함하는 근접 센서,
  26. 제24항에 있어서,
    상기 거리를 결정하는 단계는,
    상기 영역의 크기와 분산성 광원의 초점의 위치를 이용하여 오브젝트와 근접 센서 간의 거리를 결정하는 근접 센싱 방법.
  27. 제24항에 있어서,
    상기 거리를 결정하는 단계는,
    상기 출력광이 오브젝트를 향해 출력되는 각도, 근접 센서와 광원 간의 거리 및 영역의 위치를 이용하여 오브젝트와 근접 센서 간의 거리를 결정하는 근접 센싱 방법.
  28. 제24항에 있어서,
    상기 거리를 결정하는 단계는,
    이미지에서 광원에 대응하는 방향의 사이드에서 영역의 위치까지의 거리에 비례하도록 오브젝트와 근접 센서 간의 거리를 결정하는 근접 센싱 방법.
  29. 제24항에 있어서,
    상기 거리를 결정하는 단계는,
    이미지의 크기 및 근접 센서와 광원 간의 거리에 비례하도록 오브젝트와 근접 센서 간의 거리를 결정하는 근접 센싱 방법.
  30. 제24항에 있어서,
    상기 거리를 결정하는 단계는,
    상기 이미지에서 영역의 이동 방향에 기초하여 상기 오브젝트가 근접센서로 근접하는 지 여부를 판단하는 근접 센싱 방법.
  31. 제24항에 있어서,
    상기 출력광의 시간적 변화에 따라 오브젝트에 반사된 반사광의 이벤트패턴을 감지하는 단계
    를 더 포함하고,
    상기 영역을 식별하는 단계는,
    상기 반사광의 이벤트 패턴에 기초하여 상기 이미지에서 영역을 식별하는 근접 센싱 방법.
  32. 제31항에 있어서,
    상기 영역을 식별하는 단계는,
    상기 이벤트 패턴을 이용하여 상기 이미지에서 영역 및 다른 광원에 의해 발생된 노이즈를 구분하는 근접 센싱 방법.
  33. 제17항 내지 제32항 중 어느 한 항의 방법을 실행하기 위한 프로그램이 기록된 컴퓨터에서 판독 가능한 기록 매체.
PCT/KR2013/008642 2012-09-26 2013-09-26 이벤트 기반 비전 센서를 이용한 근접 센서 및 근접 센싱 방법 WO2014051362A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13842660.6A EP2902803B1 (en) 2012-09-26 2013-09-26 Proximity sensor and proximity sensing method using event-based vision sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0107431 2012-09-26
KR1020120107431A KR102074857B1 (ko) 2012-09-26 2012-09-26 이벤트 기반 비전 센서를 이용한 근접 센서 및 근접 센싱 방법

Publications (1)

Publication Number Publication Date
WO2014051362A1 true WO2014051362A1 (ko) 2014-04-03

Family

ID=50338531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008642 WO2014051362A1 (ko) 2012-09-26 2013-09-26 이벤트 기반 비전 센서를 이용한 근접 센서 및 근접 센싱 방법

Country Status (4)

Country Link
US (1) US9921310B2 (ko)
EP (1) EP2902803B1 (ko)
KR (1) KR102074857B1 (ko)
WO (1) WO2014051362A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101620427B1 (ko) * 2014-10-14 2016-05-12 엘지전자 주식회사 로봇 청소기의 제어방법
CN106991650B (zh) * 2016-01-21 2020-09-15 北京三星通信技术研究有限公司 一种图像去模糊的方法和装置
KR20180014992A (ko) 2016-08-02 2018-02-12 삼성전자주식회사 이벤트 신호 처리 방법 및 장치
US10807309B2 (en) * 2017-11-17 2020-10-20 3D Systems, Inc. Latching system for three dimensional print engine
JP7311597B2 (ja) * 2019-06-25 2023-07-19 株式会社ソニー・インタラクティブエンタテインメント システム、位置検出装置、位置検出方法およびプログラム
EP3809692B1 (en) 2019-10-17 2023-10-04 Denso Wave Incorporated Imaging device provided with event-based camera
KR102334167B1 (ko) * 2020-03-23 2021-12-03 한국과학기술원 ToF 기반 3D 카메라를 이용하여 거리 해상도를 향상하는 장치 및 방법
WO2023181308A1 (ja) * 2022-03-24 2023-09-28 株式会社ソニー・インタラクティブエンタテインメント コンピュータシステム、方法およびプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0168087B1 (ko) * 1993-06-29 1999-05-01 김광호 초음파센서를 이용한 장애물의 거리 측정장치 그 방법
JP2003172780A (ja) * 2001-12-06 2003-06-20 Daihatsu Motor Co Ltd 前方車両の認識装置及び認識方法
KR20040002162A (ko) * 2002-06-29 2004-01-07 삼성전자주식회사 레이저를 이용한 위치 측정 장치 및 방법
KR20080010768A (ko) * 2006-07-28 2008-01-31 두얼메카닉스 주식회사 위치 검출 방법 및 그 방법을 이용한 이동 장치
KR20110057083A (ko) * 2009-11-13 2011-05-31 한국과학기술연구원 적외선 센서 및 이를 이용한 감지 방법

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020066847A (ko) * 2001-02-14 2002-08-21 현대중공업 주식회사 시각센서를 이용한 V, U, Butt, 필릿 및 랩 조인트형상인식 방법
GB2395261A (en) 2002-11-11 2004-05-19 Qinetiq Ltd Ranging apparatus
KR20060074503A (ko) 2004-12-27 2006-07-03 동부일렉트로닉스 주식회사 근접 센서
US8150574B2 (en) * 2005-01-04 2012-04-03 Deere & Company Method and system for guiding a vehicle with vision-based adjustment
KR101331982B1 (ko) 2005-06-03 2013-11-25 우니페르지타에트 취리히 시간 의존적 이미지 데이터를 검출하기 위한 광 어레이
US7929798B2 (en) * 2005-12-07 2011-04-19 Micron Technology, Inc. Method and apparatus providing noise reduction while preserving edges for imagers
US20070133893A1 (en) * 2005-12-14 2007-06-14 Micron Technology, Inc. Method and apparatus for image noise reduction
KR100769461B1 (ko) * 2005-12-14 2007-10-23 이길재 스테레오 비전 시스템
KR100825919B1 (ko) 2006-12-18 2008-04-28 엘지전자 주식회사 거리 측정 센서, 거리 측정 센서를 가진 이동로봇 및 그를이용한 이동로봇 주행 방법
US7778484B2 (en) * 2007-01-05 2010-08-17 Seiko Epson Corporation Method and apparatus for reducing noise in an image using wavelet decomposition
KR100823870B1 (ko) 2007-10-04 2008-04-21 주식회사 자티전자 근접 센서를 이용한 휴대용 단말기의 자동 절전 시스템 및그 방법
US7907061B2 (en) 2007-11-14 2011-03-15 Intersil Americas Inc. Proximity sensors and methods for sensing proximity
KR101412751B1 (ko) * 2008-03-14 2014-08-06 엘지전자 주식회사 이동로봇 및 그 동작방법
KR101501949B1 (ko) 2008-04-04 2015-03-11 엘지전자 주식회사 근접센서를 이용하여 동작 제어가 가능한 휴대 단말기 및그 제어방법
KR101516361B1 (ko) 2008-05-26 2015-05-04 엘지전자 주식회사 근접센서를 이용하는 휴대 단말기 및 그 제어방법
KR20100067723A (ko) * 2008-12-12 2010-06-22 엘지전자 주식회사 기록매체의 기록재생방법 및 기록재생장치
KR101137411B1 (ko) 2009-09-14 2012-04-20 마루엘에스아이 주식회사 근접센서
KR101628081B1 (ko) * 2009-11-05 2016-06-22 삼성전자주식회사 영상 센서 기반의 다중 터치 인식 장치 및 방법
JP5263193B2 (ja) 2010-02-04 2013-08-14 オムロン株式会社 近接センサ
JP5491247B2 (ja) 2010-03-25 2014-05-14 セイコーインスツル株式会社 光センサを用いた近接センサ
JP5160625B2 (ja) 2010-12-02 2013-03-13 シャープ株式会社 近接センサ及び電子機器
KR101292055B1 (ko) * 2011-02-14 2013-08-01 조수호 감지영역 설정 시스템 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0168087B1 (ko) * 1993-06-29 1999-05-01 김광호 초음파센서를 이용한 장애물의 거리 측정장치 그 방법
JP2003172780A (ja) * 2001-12-06 2003-06-20 Daihatsu Motor Co Ltd 前方車両の認識装置及び認識方法
KR20040002162A (ko) * 2002-06-29 2004-01-07 삼성전자주식회사 레이저를 이용한 위치 측정 장치 및 방법
KR20080010768A (ko) * 2006-07-28 2008-01-31 두얼메카닉스 주식회사 위치 검출 방법 및 그 방법을 이용한 이동 장치
KR20110057083A (ko) * 2009-11-13 2011-05-31 한국과학기술연구원 적외선 센서 및 이를 이용한 감지 방법

Also Published As

Publication number Publication date
KR102074857B1 (ko) 2020-02-10
EP2902803B1 (en) 2020-09-16
US9921310B2 (en) 2018-03-20
EP2902803A1 (en) 2015-08-05
KR20140042016A (ko) 2014-04-07
US20140085621A1 (en) 2014-03-27
EP2902803A4 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
WO2014051362A1 (ko) 이벤트 기반 비전 센서를 이용한 근접 센서 및 근접 센싱 방법
WO2017200303A2 (ko) 이동 로봇 및 그 제어방법
WO2018004298A1 (ko) 영상 축약 시스템 및 방법
AU2014297039B2 (en) Auto-cleaning system, cleaning robot and method of controlling the cleaning robot
WO2018186583A1 (ko) 주행 지면의 장애물을 식별하는 방법 및 이를 구현하는 로봇
WO2017200302A2 (ko) 이동 로봇 및 그 제어방법
WO2013055137A1 (ko) 이벤트 기반 비전 센서를 이용한 동작 인식 장치 및 방법
WO2018105842A1 (ko) 레이더 기반 고 정밀 돌발상황 검지 시스템
WO2015122677A1 (ko) 자동차의 트렁크 개방 장치 및 방법과, 이 방법을 실행하기 위한 프로그램을 기록한 기록 매체
WO2018004299A1 (ko) 영상 축약 시스템 및 방법
WO2021095916A1 (ko) 객체의 이동경로를 추적할 수 있는 추적시스템
WO2014038898A1 (en) Transparent display apparatus and object selection method using the same
WO2020130648A1 (en) Electronic device for adaptively altering information display area and operation method thereof
WO2018143620A2 (en) Robot cleaner and method of controlling the same
WO2020141900A1 (ko) 이동 로봇 및 그 구동 방법
WO2017026642A1 (ko) 횡단보도의 교통신호안전시스템
WO2016080716A1 (ko) 홍채 인식 카메라 시스템 및 이를 포함하는 단말기와 그 시스템의 홍채 인식 방법
WO2018230864A2 (ko) 외부광을 반영하여 객체의 뎁스를 센싱하는 방법 및 이를 구현하는 장치
WO2020153568A1 (en) Electronic apparatus and control method thereof
WO2016099165A1 (ko) 이미지 센서, 이를 포함하는 영상 획득 장치 및 그 장치를 포함하는 휴대용 단말기
EP3562369A2 (en) Robot cleaner and method of controlling the same
WO2020171572A1 (en) Electronic apparatus and controlling method thereof
WO2023022537A1 (ko) Ai 기반 차량 디스크 불량 검출 시스템
WO2016163653A1 (ko) 발광 수단 또는 색 정보를 이용한 코드 제공 장치 및 코드 식별 시스템
WO2018105830A1 (ko) 동공 중심 검출 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842660

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013842660

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE