WO2014119282A1 - Organosilane composition - Google Patents

Organosilane composition Download PDF

Info

Publication number
WO2014119282A1
WO2014119282A1 PCT/JP2014/000407 JP2014000407W WO2014119282A1 WO 2014119282 A1 WO2014119282 A1 WO 2014119282A1 JP 2014000407 W JP2014000407 W JP 2014000407W WO 2014119282 A1 WO2014119282 A1 WO 2014119282A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
acid
epoxy group
composition
containing trialkoxysilane
Prior art date
Application number
PCT/JP2014/000407
Other languages
French (fr)
Japanese (ja)
Inventor
淳司 岩佐
Original Assignee
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本曹達株式会社 filed Critical 日本曹達株式会社
Priority to JP2014559566A priority Critical patent/JP5951050B2/en
Publication of WO2014119282A1 publication Critical patent/WO2014119282A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds

Definitions

  • the present invention relates to an organic silane composition, and particularly relates to a composition having excellent adhesion to a plastic substrate, a metal substrate, etc., and also having excellent storage stability.
  • This application claims priority to Japanese Patent Application No. 2013-013845 filed on January 29, 2013, and Japanese Patent Application No. 2013-104509 filed on May 16, 2013, The contents are incorporated here.
  • Transparent plastic moldings such as polycarbonate are widely used as an alternative to inorganic glass products by taking advantage of light weight, easy processability, impact resistance, etc., but they are easily affected by solvents and difficult to modify the surface. There are some drawbacks. For this reason, there are still inferior points compared to inorganic glass, and attempts have been made to improve these properties. For example, glycidoxytrimethoxysilane is hydrolyzed with nitric acid in alcohol, and further, diethylenetriamine is added and further reacted to form a hard coat film corresponding to a pencil hardness of 2H on a polycarbonate plate. It is known that it can be formed. (Non-Patent Document 1)
  • the coating composition has a problem of workability that it takes a long time of 24 hours for hydrolysis and 15 hours for curing after the coating film, and also has a storage stability as described later. There was a problem.
  • the present invention has been made in view of the above circumstances, and can be applied to a wide range of base materials including plastic, can be surface-modified like glass, can be manufactured in a short time, and can be cured in a short time.
  • An object is to provide a method for producing a hydrolysis-condensation product of trialkoxysilane, which is a raw material of composition A from which a coating film having sufficient hardness is obtained, and an improved product of composition A having excellent long-term storage stability.
  • the present inventors have found that the trialkoxysilane is obtained by simply mixing and stirring an epoxy group-containing trialkoxysilane with a specific polyamine or imidazole in water for a short time.
  • the composition containing the decomposition condensate has been found that a coating film having sufficient hardness can be obtained in a short time after heating, and the present invention has been completed.
  • composition obtained by mixing and stirring an organic acid having a specific pKa or an alcohol having a perfluoroalkyl group to a composition containing an epoxy group-containing trialkoxysilane hydrolysis condensate and polyamines The inventors have found that the storage stability is excellent and have completed the present invention.
  • the present invention (1) Polyamines or imidazoles having an epoxy group-containing trialkoxysilane and / or a hydrolysis condensate thereof in water and two or more amino groups or imino groups to which one or more hydrogen atoms are bonded in one molecule Mixing and stirring, a method for producing an epoxy group-containing trialkoxysilane hydrolysis condensate, (2) The method for producing an epoxy group-containing trialkoxysilane hydrolysis condensate according to (1), which is mixed and stirred at room temperature, (3) The method for producing an epoxy group-containing trialkoxysilane hydrolysis condensate according to (1), wherein the polyamine is a polyalkylene polyamine, (4) The method for producing an epoxy group-containing trialkoxysilane hydrolysis condensate according to (1), wherein the epoxy group-containing trialkoxysilane is glycidoxyalkyltrialkoxysilane, (5) The epoxy group-containing trialkoxysilane hydrolysis according to (1), wherein water is used
  • the present invention also provides: (7) (A) Hydrolysis condensate of epoxy group-containing trialkoxysilane, (B) a composition containing polyamines and (C-1) n-pentanol, (8) (A) Hydrolysis condensate of epoxy group-containing trialkoxysilane, (B) polyamines and (C-2) organic acids having a pKa in the range of 2.0 to 6.0 at 25 ° C.
  • composition containing (9) The composition according to (8), wherein the z-average particle diameter of the hydrolyzed condensate of the epoxy group-containing trialkoxysilane measured by a dynamic light scattering method is in the range of 5 to 50 nm, (10) The composition according to (8), wherein the polyamine is at least one polyamine selected from the group consisting of an alkylene polyamine, a polyalkylene polyamine, a poly (phenylene alkylene) polyamine, and a cycloalkylene alkyl polyamine.
  • Polyamines are 1 / (total number of hydrogen atoms on all nitrogen atoms in one molecule of polyamine) with respect to 1 mol of epoxy group in epoxy group-containing trialkoxysilane and / or its hydrolysis condensate.
  • the composition according to (8) which is used in a range of 1 mol or more and 1 / (total number of hydrogen atoms on all nitrogen atoms in 1 molecule of polyamine) or less.
  • composition according to (8) wherein an organic acid having a pKa in the range of 2.0 to 6.0 is used in a range of 0.3 to 1.2 mol with respect to 1 mol of the polyamines, (13)
  • the composition according to (8), wherein the alcohol having 2 to 5 carbon atoms having a perfluoroalkyl group and / or a perfluoroalkylene group is 30% by mass or more of the whole composition, (14)
  • a hydrolysis condensate of an epoxy group-containing trialkoxysilane can be produced in a short time, and therefore a composition containing the hydrolysis condensate can also be produced in a short time.
  • the composition of the present invention can form a coating film having excellent hardness, adhesion, and appearance on a substrate such as plastic by heating in a short time, and further has insulation and corrosion resistance. Can be granted.
  • the surface of the substrate may be modified such as by imparting functions such as solvent resistance and water repellency by treating the resulting thin film with a silane-based water repellent or monomolecular film forming solution. Can do.
  • the composition of the present invention has the same function as the composition containing the hydrolysis condensate obtained by the method described in Non-Patent Document 1, and has a marked improvement in storage stability. It was seen.
  • FIG. 3 is a diagram showing the element concentration in the depth direction of the film by X-ray photoelectron spectroscopy (ESCA) of the PC resin substrate (B-1) treated with the composition (A-1) obtained in Example 1.
  • FIG. 6 is a graph showing the change over time in the z-average particle size of the solid content in the composition using various solvents obtained in Example 5.
  • FIG. 6 is a graph showing the time-dependent change in the z-average particle size of the solid content in the composition using various solvents obtained in Example 7.
  • FIG. 10 is a graph showing the time-dependent change in the z-average particle diameter of the solid content in the composition using various solvents obtained in Example 8.
  • FIG. 6 is a graph showing the time-dependent change in the z-average particle diameter of the solid content in the composition having a different benzoic acid content obtained in Example 10.
  • FIG. 3 is a graph showing the time-dependent change in the z-average particle diameter of the solid content in the composition obtained using the various organic acids obtained in Example 11.
  • the method for producing the epoxy group-containing trialkoxysilane hydrolyzed condensate of the present invention comprises an epoxy group-containing trialkoxysilane. And / or the hydrolysis-condensation product thereof is mixed with water and polyamines or imidazoles and stirred.
  • the conventional production method described in Non-Patent Document 1 is a method in which hydrolysis condensation is performed using an epoxy group-containing trialkoxysilane, an alcohol having 1 to 5 carbon atoms, water, and an acid such as a mineral acid or an organic acid.
  • polyamines or imidazoles are generally added afterwards to prepare a composition.
  • the hydrolysis condensation process has a long time and is obtained.
  • the method of the present invention can produce a composition that overcomes the conventional drawbacks by preparing a hydrolysis condensate of the trialkoxysilane in the presence of polyamines or imidazoles.
  • the hydrolysis-condensation product of the epoxy group-containing trialkoxysilane obtained by the production method of the present invention is a polymer or oligomer condensed with an epoxy group-containing trialkoxysilane.
  • the product is a product obtained by further hydrolytic condensation of the hydrolysis condensate.
  • Epoxy group-containing trialkoxysilane as a raw material and / or its hydrolysis condensate The structure of the epoxy group-containing trialkoxysilane used in the method of the present invention is not particularly limited as long as it is a trialkoxysilane containing an epoxy group in addition to a functional group portion that is lost due to hydrolysis or the like.
  • the compound represented by the following formula (I) can be exemplified.
  • R-Si (OR 1 ) 3 (I) (In the formula, R represents a hydrocarbon group having an epoxy group or a glycidoxy group, and R 1 represents an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms.)
  • R represents a hydrocarbon group having an epoxy group or a glycidoxy group, and R 1 represents an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms.
  • one or more epoxy groups or glycidoxy groups may be contained, and preferably 1 to 3 are included, and both epoxy groups and glycidoxy groups may be contained.
  • hydrocarbon group of the “hydrocarbon group having an epoxy group or glycidoxy group” of R, specifically, an alkyl group, a cycloalkyl group, a cycloalkylalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, An aryl group, an arylalkyl group, an arylalkenyl group and the like can be exemplified, and the carbon number is preferably in the range of 1 to 30, more preferably in the range of 1 to 10.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group, isopentyl group, neopentyl group, n -Hexyl group, isohexyl group, n-heptyl group, n-octyl group, n-nonyl group, isononyl group, n-decyl group, etc., lauryl group, tridecyl group, myristyl group, pentadecyl group, palmityl group, heptadecyl group, stearyl Examples include groups.
  • cycloalkyl group examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like.
  • cycloalkylalkyl group examples include a cyclopropylmethyl group, a cyclopropylethyl group, a cyclopropylpropyl group, a cyclobutylmethyl group, a cyclopentylmethyl group, a cyclohexylmethyl group, a cycloheptylmethyl group, and a cyclooctylmethyl group.
  • groups such as a cycloalkyl group having 3 to 10 carbon atoms and an alkyl group having 1 to 10 carbon atoms bonded to each other.
  • alkenyl group examples include a vinyl group, a prop-1-en-1-yl group, an allyl group, a but-1-en-1-yl group, a but-2-en-1-yl group, But-3-en-1-yl group, but-1-en-2-yl group, but-3-en-2-yl group, penta-1-en-1-yl group, penta-4-ene- 1-yl group, penta-1-en-2-yl group, penta-4-en-2-yl group, 3-methyl-but-1-en-1-yl group, hexa-1-en-1- Yl group, hexa-5-en-1-yl group, hepta-1-en-1-yl group, hepta-6-en-1-yl group, octa-1-en-1-yl group, octa-7 Examples include -en-1-yl group, buta-1,3-dien-1-yl group and the like.
  • cycloalkenyl group examples include 1-cyclopenten-1-yl group, 2-cyclopenten-1-yl group, 1-cyclohexen-1-yl group, 2-cyclohexen-1-yl group, and 3-cyclohexene. Examples thereof include a 1-yl group and the like.
  • alkynyl group examples include ethynyl group, prop-1-in-1-yl group, prop-2-yn-1-yl group, but-1-in-1-yl group, but-3- In-1-yl group, penta-1-in-1-yl group, penta-4-in-1-yl group, hexa-1-in-1-yl group, hexa-5-in-1-yl group And hept-1-in-1-yl group, octa-1-in-1-yl group, octa-7-in-1-yl group and the like.
  • Aryl group means a monocyclic or polycyclic aryl group, and in the case of a polycyclic aryl group, in addition to fully unsaturated, partially saturated groups are also included. Specifically, a phenyl group, a naphthyl group, an azulenyl group, an indenyl group, an indanyl group, a tetralinyl group and the like can be exemplified.
  • arylalkyl group examples include benzyl group, phenethyl group, 3-phenyl-n-propyl group, 4-phenyl-n-butyl group, 5-phenyl-n-pentyl group, 8-phenyl-n- An octyl group and the like can be exemplified, and a group in which an aryl group having 6 to 10 carbon atoms and an alkyl group having 1 to 10 carbon atoms are bonded is preferable.
  • the “arylalkenyl group” is a group in which an aryl group and an alkenyl group are bonded, and specifically includes a styryl group, a 3-phenyl-prop-1-en-1-yl group, a 3-phenyl-prop-2-yl group.
  • a group in which an aryl group having 6 to 10 carbon atoms and an alkenyl group having 2 to 10 carbon atoms are bonded is preferable.
  • hydrocarbon group may have a substituent other than an epoxy group and a glycidoxy group.
  • a substituent include a halogen atom, an alkyl group, an alkenyl group, and an alkoxy group.
  • (meth) acryloxy groups include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • specific examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, and a t-butoxy group.
  • an alkyl group and an alkenyl group the same specific example as the alkyl group and alkenyl group in said R can be illustrated.
  • Examples of the “alkyl group having 1 to 10 carbon atoms” of the “unsubstituted or substituted alkyl group having 1 to 10 carbon atoms” of R 1 include the same alkyl groups as in the above R.
  • Specific examples of the substituent “having a substituent” include a halogen atom, an alkoxy group, a (meth) acryloxy group, and the like.
  • Specific examples of the halogen atom and alkoxy group include the same specific examples as the halogen atom and alkoxy group exemplified as the substituent other than the epoxy group and glycidoxy group in R.
  • raw material epoxy group-containing trialkoxysilane or its hydrolysis condensate include the following compounds, but are not limited thereto. Moreover, these can be used individually by 1 type or in mixture of 2 or more types.
  • glycidoxyalkyltrialkoxysilane or glycidoxyalkenylalkoxysilane is preferable, and specific examples thereof include compounds represented by the following formulae.
  • Alkoxysilanes other than epoxy group-containing trialkoxysilanes In the production method of the present invention, it is preferable to add a tetraalkoxysilane, a trialkoxysilane other than the epoxy group-containing trialkoxysilane, or a dialkoxysilane to the epoxy group-containing trialkoxysilane as described above. it can.
  • alkoxysilanes include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetra (n-propoxy) silane, tetra (isopropoxy) silane, and tetra (n-butoxy) silane; Methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, n-butyltrimethoxysilane , N-butyltriethoxysilane, n-pentyltrimethoxysilane, n-hexyltrimethoxysilane, n-heptyltri
  • Such a partial hydrolysis-condensation product include trade names “MKC silicate MS51”, “MKC silicate MS56”, “MKC silicate MS57”, and “MKC silicate MS60” manufactured by Mitsubishi Chemical Corporation (both are tetramethoxy). Silane condensate); trade names “Ethyl silicate 40” and “ethyl silicate 48” (both are condensates of tetraethoxysilane) manufactured by Colcoat Co., Ltd.
  • alkoxysilane condensate trade names “MKC silicate MS56B15”, “MKC silicate MS56B30”, “MKC silicate MS58B15”, “MKC silicate MS56I30”, “MKC silicate MS56F20” manufactured by Mitsubishi Chemical Corporation; Product name of It can be exemplified MS-485 ", and the like.
  • the amount of water used in the method of the present invention is not particularly limited as long as the amount of the epoxy group-containing trialkoxysilane and / or the hydrolysis condensate used is not less than the amount that can be hydrolyzed to some extent.
  • Epoxy group-containing trialkoxysilane and / or its hydrolysis condensate used (however, when the epoxy group-containing trialkoxysilane and its hydrolysis condensate are used in combination, it represents the total of both, Also when using together alkoxysilanes other than alkoxysilane, it represents the total of them.)
  • 0.5 mol or more is preferable with respect to 1 mol, 1.0 mol or more, 2.0 mol or more, 5.0 More preferably, it is more than 10 mol or more.
  • the polyamine used in the present invention is not particularly limited as long as it is a compound having two or more amino groups or imino groups bonded to one or more hydrogen atoms in one molecule.
  • polyalkylene polyamines are preferable, and specific examples include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and dipropylenetriamine.
  • the amount of the polyamine used is not particularly limited, but is 1 / (on the total nitrogen atoms in one molecule of the polyamines with respect to 1 mol of the epoxy group in the epoxy group-containing trialkoxysilane and / or its hydrolysis condensate.
  • the total number of hydrogen atoms is preferably used in a molar range of 1.2 to 10 times the 1 / (number of total hydrogen atoms on all nitrogen atoms in one molecule of the polyamine), 1.5 to 5 times.
  • a double mole, or a range of 1.8 to 2.5 moles is preferred.
  • 1 / total number of hydrogen atoms on all nitrogen atoms in one molecule of polyamine
  • curing may be insufficient and a film with high hardness may not be obtained.
  • 1 / polyamines 1
  • polyamines When it is larger than 10 times the mole of all hydrogen atoms on all nitrogen atoms in the molecule, polyamines may remain and a film having sufficient hardness may not be obtained.
  • imidazoles used in the present invention include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 2-n-propylimidazole, 2-undecyl-1H-imidazole, 2- Heptadecyl-1H-imidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-1H-imidazole, 4-methyl-2-phenyl-1H-imidazole, 2-phenyl-4-methylimidazole 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole , 1- Anoethyl-2-ethyl-4-methyl
  • the amount of imidazole used is not particularly limited as long as it is a catalytic amount or more, and is preferably in the range of 0.001 to 1.0 mol with respect to 1 mol of the epoxy group contained in the trialkoxysilane used. The range of ⁇ 0.5 mol, or 0.01 to 0.1 mol is more preferable.
  • the acid used include organic acids and mineral acids, and more specific examples of the organic acid include acetic acid, formic acid, oxalic acid, carbonic acid, phthalic acid, trifluoroacetic acid, p-
  • mineral acids such as toluenesulfonic acid and methanesulfonic acid include hydrochloric acid, nitric acid, boric acid, borohydrofluoric acid and the like, and in particular, the pKa at 20 ° C. is in the range of 2.0 to 6.0.
  • the organic acid is preferably used.
  • organic acids include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, caproic acid, isocaproic acid, chloroacetic acid, fluoroacetic acid, bromoacetic acid, and 3-chloropropion.
  • the amount of the acid used is not particularly limited, but is preferably in the range of 0.3 to 1.2 mol, preferably 0.5 to 1.0 mol, or 0.6 with respect to 1 mol of the polyamine or imidazole to be used. A range of ⁇ 0.9 mol is more preferred. When the amount is less than 0.3 mol, the storage stability of the composition may be lowered. When the amount is more than 1.2 mol, a coating film having sufficient hardness may not be formed.
  • an organic solvent can be used as necessary.
  • the solvent is not particularly limited as long as the solvent can maintain the uniformity and stability of the solution to some extent.
  • alcohols having 1 to 5 carbon atoms are preferable. These can be used alone or in combination of two or more.
  • the alcohol having 1 to 5 carbon atoms may have a substituent such as a halogen atom on an appropriate carbon.
  • Specific examples of such alcohol include perfluoroethanol and perfluoropentanol. can do. These can be used individually by 1 type or in mixture of 2 or more types.
  • alcohols having 3 or less carbon atoms are preferable, and isopropanol, n-propanol and the like are particularly preferable.
  • the organic solvent to be used is preferably an organic solvent that is soluble in water.
  • the ratio of water to the organic solvent is preferably an amount ratio that makes a uniform solution after using a necessary amount.
  • the mass ratio of water to organic solvent is preferably in the range of 30/70 to 95/5. , 50/50 to 90/10, 60/40 to 80/20, or 65/35 to 75/25 are more preferable.
  • the amount of water used for hydrolysis of trialkoxysilane is low because the solubility of water in the organic solvent is low. It is preferable to use it in an amount in a range where the solution becomes uniform more than the necessary amount.
  • the amount of the solvent to be used is not particularly limited, but the appearance of the coating film using the composition containing the hydrolysis condensate produced by the production method of the present invention, the coatability and curability of the composition, and the composition are used.
  • the solid content concentration in the reaction solution is in the range of 0.5 to 50% by mass. 1.0 to 30% by mass, 1.0 to 20% by mass, 1.0 to 10% by mass, 1.5 to 5.0% by mass, or 1.8 to 3% by mass is more preferable.
  • polyamines having an epoxy group-containing trialkoxysilane and / or a hydrolysis condensate thereof, water, and two or more amino groups or imino groups to which one or more hydrogen atoms are bonded in one molecule, or imidazole If necessary, an acid and an organic solvent are mixed and stirred to produce a hydrolyzed condensate of an epoxy group-containing trialkoxysilane, but the mixing order and stirring speed are not particularly limited, any order, or Any speed can be set.
  • the temperature at the time of mixing and stirring is not particularly limited, and it is preferably in the range of room temperature to the boiling point of the solvent used, more preferably at room temperature.
  • the room temperature is the outside air temperature at the place where mixing and stirring is performed, but a temperature in the range of 15 to 35 ° C. is preferable.
  • the epoxy group-containing trialkoxysilane, water, and a polyamine having two or more amino groups or imino groups in which one or more hydrogen atoms are bonded in one molecule or all imidazoles coexist. It is preferable to stir for 2 to 3 hours. After hydrolysis, if necessary, dilute with an organic solvent or water.
  • the solid content concentration of the composition containing the hydrolysis condensate obtained by the production method of the present invention is not particularly limited, but it is preferably used in the range of 0.5 to 50% by mass, and 1.0 to 30% by mass.
  • the solid content concentration may be adjusted to a predetermined solid content concentration from the beginning, or may be adjusted to a predetermined solid content concentration by preparing a composition in a thick state and then diluting the composition.
  • composition of the present invention comprises a hydrolyzed condensate (A), (B) and (C) of an epoxy group-containing trialkoxysilane obtained by the production method of the present invention or other methods. Includes things.
  • A Hydrolysis condensate of epoxy group-containing trialkoxysilane
  • B Polyamines
  • C (C-1) n-pentanol, or (C-2) an organic acid having a pKa at 20 ° C. in the range of 2.0 to 6.0 or a carbon number of 2 having a perfluoroalkyl group and / or a perfluoroalkylene group ⁇ 5 alcohols
  • composition containing the components (A), (B) and (C) will be described in detail.
  • the solid content concentration of the hydrolyzed condensate of the epoxy group-containing trialkoxysilane in the composition is not particularly limited, but is preferably in the range of 1 to 50% by mass, 1 to 10% by mass, or 1.5 to 3% by mass. % Range is more preferred.
  • the solid content concentration may be adjusted to a predetermined solid content concentration from the beginning, or may be adjusted to a predetermined solid content concentration by preparing a composition in a thick state and then diluting the composition.
  • the production method of the hydrolyzed condensate of the epoxy group-containing trialkoxysilane of component (A) can preferably be exemplified by the production method of the present invention described above in (1).
  • the raw material epoxy group-containing trialkoxysilane and / or its hydrolysis condensate is The thing similar to what was shown by the term of the manufacturing method of invention can be used. Further, as described in the production method of the present invention, a trialkoxysilane other than tetraalkoxysilane, epoxy group-containing trialkoxysilane and / or its hydrolysis condensate, dialkoxysilane, or partial hydrolysis thereof. It can also be produced in the presence of a decomposition condensate.
  • the amount of water is not particularly limited as long as the epoxy group-containing trialkoxysilane used and / or the hydrolysis condensate thereof is an amount that can be hydrolyzed to some extent, and specifically, the trialkoxysilane used and / or Or 0.5 mol or more is preferable with respect to 1 mol of the hydrolysis-condensation products, 1.0 mol or more, 2.0 mol or more, 5.0 mol or more, or 10 mol or more is more preferable.
  • the amount of the silanol condensation catalyst used is not particularly limited, but the molar amount relative to the amount of trialkoxysilyl group converted as uncondensed in the raw material epoxy group-containing trialkoxysilane and / or its hydrolysis condensate.
  • the ratio (silanol catalyst / the silyl group) is preferably in the range of 0.001 to 1.0, more preferably in the range of 0.01 to 1.0, or 0.1 to 0.5.
  • the silanol condensation catalyst is not particularly limited as long as it hydrolyzes the alkoxy group of the epoxy group-containing trialkoxysilane and condenses the silanol to form a siloxane bond.
  • Silanol condensation catalysts such as silane coupling agents having amino groups such as amino-modified silyl polymers, silylated amino polymers, unsaturated aminosilane complexes, phenylamino long-chain alkylsilanes, aminosilylated silicones, etc., are derivatives obtained by modifying these. Furthermore, known silanol condensation catalysts such as other acidic catalysts such as fatty acids such as ferrous acid and organic acidic phosphoric acid ester compounds and basic catalysts can be exemplified.
  • a photoacid generator can also be used as a silanol condensation catalyst.
  • Specific examples of the photoacid generator include tetrafluoroborate (BF 4 ⁇ ), hexafluorophosphate (PF 6 ⁇ ), fluoroalkyl phosphate (PFm (RF) 6-m ⁇ (RF represents a fluorinated alkyl group).
  • M represents an integer of 0 to 5)
  • hexafluoroantimonate SbF 6 ⁇
  • hexafluoroarsenate AsF 6 ⁇
  • hexachloroantimonate SbCl 6 ⁇
  • tetraphenylborate tetrakis ( Trifluoromethylphenyl) borate, tetrakis (pentafluoromethylphenyl) borate, perchlorate ion (ClO 4 ⁇ ), trifluoromethanesulfonate ion (CF 3 SO 3 ⁇ ), fluorosulfonate ion (FSO 3 ⁇ ), toluene Sulfonate ion, trinitroben Nsurufon anion, a sulfonium salt or iodonium salt having an anion such as trinitrotoluene sulfonate anion can be used.
  • a silanol condensation catalyst can be used individually by 1 type or in combination of 2 or more types.
  • polyamines or imidazoles are used as the curing agent or curing accelerator of the epoxy group-containing trialkoxysilane, and therefore it is preferable to use polyamines and imidazoles as the silanol condensation catalyst. Details of the polyamines and imidazoles are as described above in the production method of the present invention.
  • the z-average particle diameter measured by the dynamic light scattering method of the hydrolysis-condensation product of the epoxy group-containing trialkoxysilane used in the present invention is 5 from the viewpoint of film hardness, coating unevenness during coating, etc.
  • the range of ⁇ 50 nm is preferable, and 5 to 30 nm is more preferable. If it is larger than 50 nm, the pot life is short, there is a problem in storage stability, and smear may occur after coating. If it is smaller than 5 nm, the hardness of the coating film obtained from this composition is insufficient. It may become.
  • composition of the present invention contains specific polyamines.
  • polyamines include the polyamines shown in the production method of (1) above.
  • the amount of use is also as described in the production method of (1) above.
  • a curing agent or curing accelerator other than these can be added as necessary.
  • imidazoles shown in the production method of (1) above Dimethylaminopropylamine, diethylaminopropylamine, trimethylhexamethylenediamine, pentanediamine, bis (2-dimethylaminoethyl) ether, pentamethyldiethylenetriamine, alkyl-t-monoamine, 1,4-diazabicyclo (2,2,2) octane (Triethylenediamine), N, N, N ′, N′-tetramethylhexamethylenediamine, N, N, N ′, N′-tetramethylpropylenediamine, N, N, N ′, N′-tetramethylethylenediamine, Aliphatic amines such as N, N-dimethylcyclohexylamine, dimethylaminoethoxyethoxyethanol, dimethylaminohexanol, piperidine, piperazine, menthanediamine, isophoronediamine, methylmorpholine,
  • Organic acid used in the composition of the present invention is not particularly limited as long as the pKa at 25 ° C. is in the range of 2.0 to 6.0, preferably in the range of 3.0 to 5.0.
  • the amount of acid to be used is not particularly limited, but is preferably in the range of 0.3 to 1.2 mol, preferably 0.5 to 1.0 mol, or 0.6 to 0.00 mol per mol of the polyamine used. A range of 9 moles is more preferred. When the amount is less than 0.3 mol, the storage stability of the composition may be lowered. When the amount is more than 1.2 mol, a coating film having sufficient hardness may not be formed.
  • C2-C5 alcohol having a perfluoroalkyl group and / or a perfluoroalkylene group Specific examples of the alcohol having 2 to 5 carbon atoms having a perfluoroalkyl group and / or a perfluoroalkylene group used in the composition of the present invention include trifluoromethanol, 2,2,2-trifluoroethanol.
  • 1,1,2,2,2-pentafluoroethanol 3,3,3-trifluoro-1-propanol, 2,2,3,3,3-pentafluoro-1-propanol, 1,1,2 , 2,3,3,3-heptafluoro-1-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2-trifluoromethyl-2-propanol, 2-methyl-1 , 1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,4,4,4-heptafluoro-1-butanol, nonafluoro-t-butanol, , It can be exemplified 2,3,3,4,4,5,5- octafluoro-1-pentanol.
  • the amount of fluoroalcohol used in the composition is not particularly limited, but is preferably 30% by mass or more, and more preferably 40% by mass or more of the entire composition. When it is less than 30% by mass, the long-term storage stability of the composition may be lowered.
  • the composition of the present invention can use an organic solvent in order to adjust the solid content concentration in the composition, and as such a solvent, as long as the solvent can maintain the uniformity and stability of the solution, Specific examples include, but are not limited to, methanol, ethanol, propyl alcohol, isopropyl alcohol, n-butanol, s-butanol, t-butanol, n-pentanol, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, ethylene Alcohols such as glycol monomethyl ether, propylene glycol monomethyl ether, and ethylene glycol monoethyl ether; ethers such as tetrahydrofuran, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, and tetrahydropyran Ketones such as acetone, methyl ethyl ketone and acetylacetone, esters such as methyl acetate and ethylene glyco
  • the organic solvent to be used is preferably an organic solvent that dissolves in water.
  • the ratio of water to the organic solvent is not particularly limited as long as it is an amount ratio that makes a uniform solution as a composition after using a necessary amount.
  • the mass ratio of water to organic solvent is preferably in the range of 30/70 to 95/5. , 50/50 to 90/10, 60/40 to 80/20, or 65/35 to 75/25 are more preferable.
  • the amount of water used for hydrolysis of trialkoxysilane is low because the solubility of water in the organic solvent is low. It is preferable to use it in an amount in a range where the composition becomes more than the necessary amount.
  • the solid content concentration in the composition of the present invention is not particularly limited, but it is 0.5 to 0.5 in consideration of the appearance of the coating film, coating properties, curability, properties of the coating film, storage stability of the composition, and the like.
  • An amount in the range of 50% by weight is preferred, 1.0-30% by weight, 1.0-20% by weight, 1.0-10% by weight, 1.5-5.0% by weight, or 1 More preferably, the range is from 8 to 3% by mass. If it is less than 0.5% by mass, it may be difficult to form a film uniformly, and if it is more than 50% by mass, the stability of the composition, the transparency of the coating film, the appearance, or There may be a problem in coating properties.
  • the amount of the organic solvent and water used can be determined as appropriate in consideration of the amount of the fluoroalcohol used in combination as long as the solid content concentration can be adjusted.
  • composition of the present invention other components can be added depending on the application. Specifically, inorganic fine particles such as colloidal silica and colloidal alumina, various surfactants, dyes, pigments, Dispersants, water repellent materials, thickeners, fragrances, antibacterial components and the like can be exemplified.
  • inorganic fine particles such as colloidal silica and colloidal alumina, various surfactants, dyes, pigments, Dispersants, water repellent materials, thickeners, fragrances, antibacterial components and the like can be exemplified.
  • Epoxy group-containing trialkoxysilane and / or hydrolysis condensate thereof, water, organic solvent (including n-pentanol) and polyamines are mixed and stirred at room temperature, and further, an organic acid or fluoroalcohol as necessary Are further diluted with an organic solvent (including n-pentanol) and water as necessary.
  • iii) Mixing epoxy group-containing trialkoxysilane and / or hydrolysis condensate thereof, water, alcohol as a solvent (including n-pentanol), polyamines, organic acid or fluoroalcohol as necessary at room temperature, Stir and further dilute with organic solvent (including n-pentanol) and water as needed.
  • the stirring temperature is not particularly limited, but is preferably in the range of room temperature to the boiling temperature of the solvent used, and more preferably at room temperature. In this case, the room temperature is the outside temperature of the place where the stirring is performed, but a range of 15 to 35 ° C. is preferable.
  • composition of the present invention can be applied to the surface of a substrate as a target by any known coating means such as brush, spray, dipping, spin coating, bar coating, and gravure printing.
  • a coating film can be formed. Drying can be performed by room temperature drying and / or heating. Specifically, it is carried out at 20 ° C. to 250 ° C., preferably 20 ° C. to 150 ° C. for 10 seconds to 24 hours, preferably 30 seconds to 10 hours.
  • the thin film obtained is not particularly limited, it is preferably more than 10 nm and not more than 5 ⁇ m.
  • the substrate for treating the composition of the present invention is not particularly limited as long as it can be treated.
  • iron, stainless steel, copper, aluminum and other metals, ceramics, cement, glass, polycarbonate resin examples thereof include resin base materials such as acrylic resin, polyimide resin, polyester resin, epoxy resin, liquid crystal polymer resin, and polyether sulfone, and the surface may be coated with another coating material.
  • resin base materials such as acrylic resin, polyimide resin, polyester resin, epoxy resin, liquid crystal polymer resin, and polyether sulfone
  • a resin base material and a metal base material are particularly preferable.
  • a water-repellent layer a layer containing a hydrolytic condensate of a metal surfactant, or a self-assembled monolayer can be laminated on the thin film obtained from the composition of the present invention.
  • the composition of the present invention can be applied to, for example, heat exchangers, fins for heat exchangers, building materials, roofs, window glasses, windshields, various mirrors, plastic lenses, lenses, tires, rubber, magnetic recording media, semiconductor material surfaces, and the like.
  • the surface of the resin substrate treated with the composition of the present invention is hardened, it can also be used as a substitute for applications in which conventional glass such as an automobile windshield has been used. .
  • Example 1 Preparation of coating composition 0.44 g of acetic acid was added to 0.54 g of 2-methylimidazole dispersed in 1.25 g of water and dissolved. 16.5 g of 3-glycidoxypropyltrimethoxysilane (GPTMS) was added to the obtained aqueous solution, and the mixture was stirred at room temperature for 2 hours. 10.0 g of the condensation reaction solution was diluted with 40.0 g of Solmix (registered trademark) (AP-7, manufactured by Nippon Alcohol Sales Co., Ltd.) to obtain a coating composition (A-1) having a solid content of 20 wt%. .
  • Solmix registered trademark
  • a coating composition (A-1) was formed on a polycarbonate (PC) resin substrate.
  • the prepared coating composition (A-1) was dip coated on a PC resin substrate.
  • the coated substrate was dried in an oven (120 ° C., 20 min) to obtain a coating composition-treated substrate (B-1).
  • the resulting treated substrate was coated with a fluorine-based glass surface liquid repellent treatment agent Super Galaco (registered trademark) (manufactured by Soft 99) to obtain a base film-liquid repellent treated PC resin substrate (C-1). .
  • the coating composition-treated substrate (B-1) was measured by an X-ray photoelectron spectrometer (Quantera II, manufactured by ULVAC-PHI). 100 cycles were performed under a sputtering condition of 1 kV, and the measurement was made to a depth of about 200 nm. The measurement results are shown in FIG. FIG. 1 clearly shows that a glass-like inorganic film rich in Si component is formed.
  • the cross cut test of the cross cut test (B-1) was conducted according to the cross cut tape peel test method described in JIS K-5400 (1999).
  • the coating film on the PC resin substrate was cross-cut into a 1 mm ⁇ 1 mm grid pattern, and a peel test was performed using a transparent adhesive tape.
  • Example 2 Preparation of Coating Composition A coating composition (A-1) was obtained in the same manner as in Example 1.
  • Heat cycle test Heat cycle tests (B-2) and (B-3) were conducted.
  • a hot air dryer (LC-234, manufactured by Espec) was used for the test. It set so that it might cycle from 25 degreeC to 200 degreeC in 2 hours, the process substrate was put, and the heat cycle test of 5 rounds was done. In both (B-2) and (B-3), it was visually confirmed that there was no crack or peeling after the test.
  • Example 3 Preparation of Coating Composition 2.0 g GPTMS, 0.5 g diethylenetriamine, 0.3 g water and 8.0 g n-pentanol were mixed and stirred at room temperature for 2 hours. 1.0 g of the reaction solution was diluted with 9.0 g of n-pentanol to prepare a coating composition (A-2) of 2% in terms of solid content mass concentration.
  • A-2 a coating composition of 2% in terms of solid content mass concentration.
  • the average particle diameter of the hydrolysis condensate of GPTMS in the coating composition is measured by a particle size distribution meter (Zetersizer Nano, Malvern: measurement conditions; solution viscosity 3.31, particle refractive index 1.50)
  • the particle size after 1 day of preparation of the coating composition was 11 nm.
  • Example 4 1 Preparation of Coating Composition A coating composition (A-2) was prepared in the same manner as in Example 3 using GPTMS and diethylenetriamine.
  • Example 5 2.0 g of GPTMS, 0.5 g of diethylenetriamine, 0.22 g (2 molar equivalents relative to GPTMS) of water and 8.0 g of n-pentanol were mixed, stirred at room temperature for 2 hours, and an additional 90 g of n -Diluted with pentanol to prepare a coating composition (A-3) having a solid content of 2.5% in terms of mass concentration.
  • the average particle size of the GPTMS hydrolyzed condensate in the coating composition is set to a particle size distribution meter (Zetasizer Nano, Malvern: measurement conditions; solution viscosity is set to the viscosity of the main solvent n-pentanol, When measured by refractive index 1.50), the particle size after 1 day of preparation of the coating composition was 11 nm.
  • Coating compositions (A-31) to (A-34) were prepared in the same manner as described above using isopropanol, methanol, ethanol, and n-butanol instead of n-pentanol.
  • Example 6 (Confirmation of effect of z-average particle diameter in composition of hydrolysis condensation product of GPTMS) After mixing 2.0 g of GPTMS, 0.5 g of diethylenetriamine, 0.22 g of water and 8.0 g of n-pentanol, the mixture was stirred at room temperature to prepare a coating composition. Sampling was performed immediately after mixing, diluted 10-fold with n-pentanol, and the z-average particle size was measured with a particle size distribution meter (Zetersizer Nano, Malvern: measurement conditions; the same as in Example 3).
  • the remaining coating composition was sampled after 1 hour, 8 hours, 1 day, 2 days and 3 days of stirring at room temperature, diluted under similar conditions, and the z-average particle size was measured.
  • a PC resin substrate 80 x 80 mm
  • hydrocarbon cleaner Nippon Oil & Energy Corporation
  • ultrasonic waves for 10 minutes each.
  • About 0.5 ml of the composition was dropped and spread evenly with Kimwipe, and then heat-cured for 10 minutes in an oven at 120 ° C. to obtain a treated substrate, which was visually checked for the presence of coating unevenness (appearance evaluation). .
  • Example 7 Difference in storage stability depending on the ratio of alcohols to water 2.0 g of GPTMS, 0.5 g of diethylenetriamine, and a mixture of water and isopropanol (IPA) in a mass ratio (water / IPA) of 5/2 8.0 g of the solvent was mixed, stirred at room temperature for 2 hours, and further diluted with 90 g of a mixed solvent having a mass ratio of water / IPA of 5/2 to obtain a coating composition (2.5% in terms of mass concentration of solid content) A-4) was prepared.
  • IPA isopropanol
  • Example 8 2.0 g of GPTMS, 0.5 g of diethylenetriamine, and 8.0 g of a mixed solvent having a mass ratio of water and isopropanol (IPA) (water / IPA) of 5/2 are mixed and stirred at room temperature for 2 hours.
  • IPA isopropanol
  • TFE 2,2,2-trifluoroethanol
  • TFE 1,1,1,3,3,3-hexafluoro-2-propanol
  • HFIP 1,1,1,3,3,3-hexafluoro-2-propanol
  • a coating composition (A-50) was obtained by the same method as that described above except that TFE and HFIP were not added.
  • (A-50) to (A-54) are put in a tightly stoppered bottle, stored at 25 ° C., and the z-average particle size of the solid content in the composition is measured by a particle size distribution meter (Zeta Sizer Nano, manufactured by Malvern: measurement) Conditions; the same as in Example 3), and the change with time was measured.
  • the result is shown in FIG. From the above, it was found that it is preferable to use TFE at 30% by mass or more of the entire composition for long-term storage. Moreover, even when a small amount of HFIP was added, it was found that a certain degree of storage stability could be secured.
  • Example 9 Preparation of coating composition After mixing 2.0 g GPTMS, 0.5 g diethylenetriamine, 0.5 g benzoic acid, 70.0 g water and 28.0 g IPA, the mixture was stirred for 2 hours at room temperature to A coating composition (A-6) of 3% in terms of mass concentration was prepared. When the average particle size of the solid content in the coating composition was measured by a particle size distribution meter (Zeta Sizer Nano, manufactured by Malvern), the particle size one day after preparation of the coating composition was 8.5 nm.
  • Example 10 After mixing 2.0 g GPTMS, 0.5 g diethylenetriamine, 0.5 g, 0.2 g, 0.08 g benzoic acid, 70.0 g water and 28.0 g IPA, the mixture was stirred at room temperature for 2 hours, Coating compositions (A-71) to (A-73) were prepared. A composition without benzoic acid (A-70) was prepared in the same manner. The obtained (A-70) and (A-71) to (A-73) were put in a sealed bottle and stored at 25 ° C., and the change over time in the z-average particle diameter of the solid content in the composition was measured. The particle size distribution was measured with a particle size distribution meter (Zeta Sizer Nano, manufactured by Malvern). The result is shown in FIG.
  • Example 11 After mixing 0.5 g GPTMS, 0.125 g diethylenetriamine, 0.171 g p-nitrobenzoic acid, 17.5 g water and 7.0 g IPA, the mixture was stirred at room temperature for 2 hours to obtain a coating composition (A -80) was prepared. In the same manner, a coating composition (A-81) or (A-82) was prepared using 0.156 g of p-anisic acid or 0.0615 g of acetic acid instead of p-nitrobenzoic acid.
  • (A-80), (A-81) and (A-82) are put in a sealed bottle and stored at 25 ° C., and the z-average particle size of the solid content in the composition is measured by a particle size distribution meter (Zetersizer Nano). , Manufactured by Malvern: Measurement conditions; the same as in Example 3), and the change with time was measured. The result is shown in FIG. About 0.5 mL of the coating composition (A-80), (A-81) and (A-82) was formed on a PET film using a barcode, and heated in an oven at 100 ° C. for 10 minutes. The coating composition-treated PET films (B-11), (B-12) and (B-13) were obtained.
  • the coating surface was subjected to UV ozone treatment (about 12000 mJ / cm 2 ) for 10 minutes, then immersed in SAMLAY (registered trademark) for 5 minutes, and then the surface was ultrasonically cleaned in NS Clean 100 to obtain a SAM-treated film. (C-5), (C-6) and (C-7) were obtained. Each film was subjected to static contact angle measurement in the same manner as described above. The results are summarized in Table 8.
  • Example 12 0.5 g GPTMS, 0.05 g 3,3,4,4,5,5,6,6,6-nonafluorohexyltrimethoxysilane 0.05 g, 0.125 g diethylenetriamine, 0.125 g benzoic acid Then, 2.0 g of 2,2,2-trifluoroethanol, 16.0 g of water and 6.5 g of IPA were mixed and then stirred at room temperature for 24 hours to prepare a coating composition (A-8). The PC resin substrate (80 ⁇ 80 mm) was washed with ultrasonic waves in water, NS clean and IPA for 10 minutes each.
  • the prepared coating composition (A-8) is formed on a PC resin substrate using a barcode, and heated and dried for 20 minutes in a circulation oven controlled at 120 ° C.
  • a substrate (B-11) was obtained.
  • the static contact angle of the obtained processed substrate (B-11) and the processed substrate (B-12) obtained by further rubbing the processed substrate (B-11) were measured by the same method as described above.
  • the same measurement was performed on the resulting treated substrate (R-1) prepared without adding fluorotrimethoxysilane. The results are shown in Table 9.
  • the prepared coating composition (cA-2) was dip coated on a PC resin substrate.
  • the coated substrate was dried in an oven (120 ° C., 20 minutes) to obtain a coating composition-treated substrate (cB-1).
  • Fluorine glass surface liquid repellent treatment agent Super Galaco (registered trademark) (manufactured by Soft99 Corporation) was applied to the resulting treated substrate to obtain a coating composition-liquid repellent treated PC substrate (cC-2). It was.
  • a substrate (cC-3) obtained by coating soda-lime glass with a fluorine-based glass surface liquid repellent treatment agent Super Galaco (registered trademark) (manufactured by Soft99 Corporation) was obtained.
  • the value was the same as the liquid repellency when super-galaxy treatment was performed on a soda-lime glass (SLG) substrate, but it took 3 days to prepare the coating composition.

Abstract

A method for producing a coating composition according to the present invention is characterized by comprising mixing an epoxy-group-containing trialkoxysilane and/or a hydrolysis and condensation product thereof with water and a polyamine or imidazole that has, per molecule, at least two amino or imino groups each having at least one hydrogen atom bound thereto and then agitating the resultant mixture. A coating composition according to the present invention comprises: (A) a hydrolysis and condensation product of an epoxy-group-containing trialkoxysilane; (B) a polyamine; and (C) (C-1) n-pentanol or (C-2) an organic acid having a pKa value ranging from 2.0 to 6.0 at 25°C or a C2-5 alcohol having a perfluoroalkyl group and/or a perfluoroalkylene group.

Description

有機シラン系組成物Organosilane composition
 本発明は、有機シラン系組成物に関し、特に、プラスチック基板、金属基板等への密着性に優れ、さらに保存安定性にも優れた組成物に関する。
 本願は、2013年1月29日に出願された日本国特許出願第2013-013845号、2013年5月16日に出願された日本国特許出願第2013-104509号に対し優先権を主張し、その内容をここに援用する。
The present invention relates to an organic silane composition, and particularly relates to a composition having excellent adhesion to a plastic substrate, a metal substrate, etc., and also having excellent storage stability.
This application claims priority to Japanese Patent Application No. 2013-013845 filed on January 29, 2013, and Japanese Patent Application No. 2013-104509 filed on May 16, 2013, The contents are incorporated here.
 ポリカーボネートなどの透明プラスチック成形体は、軽量、易加工性、耐衝撃性などの長所を生かして、無機ガラス製品の代替として広く用いられているが、溶媒に侵されやすい、表面改質が困難であるなどの欠点がある。そのため、無機ガラスに比べるとまだ劣る点があり、これらの性質を改良するための試みが従来よりなされてきている。
 例えば、グリシドキシトリメトキシシランをアルコール中、硝酸水を用いて加水分解し、さらに、ジエチレントリアミンを添加しさらに反応させ、コーティングすることにより、ポリカーボネート板上に、鉛筆硬度2Hに相当するハードコート膜が形成できることが知られている。(非特許文献1)
Transparent plastic moldings such as polycarbonate are widely used as an alternative to inorganic glass products by taking advantage of light weight, easy processability, impact resistance, etc., but they are easily affected by solvents and difficult to modify the surface. There are some drawbacks. For this reason, there are still inferior points compared to inorganic glass, and attempts have been made to improve these properties.
For example, glycidoxytrimethoxysilane is hydrolyzed with nitric acid in alcohol, and further, diethylenetriamine is added and further reacted to form a hard coat film corresponding to a pencil hardness of 2H on a polycarbonate plate. It is known that it can be formed. (Non-Patent Document 1)
 しかしながら、前記コーティング組成物は、加水分解に24時間という長時間を要し、塗膜後の硬化に15時間をも要するという作業性の問題があり、さらに後述するようにその保存安定性にも問題があった。
 本発明は上記事情を鑑みてなされたものであり、プラスチックを含む広範囲の基材に適応可能であり、ガラス様に表面改質でき、短時間で製造することができ、さらに短時間の硬化で十分な硬度を有する塗膜が得られる組成物Aの原料となるトリアルコキシシランの加水分解縮合物の製造方法、及びさらに長期の保存安定性に優れる組成物Aの改良品を提供することを目的とする。
However, the coating composition has a problem of workability that it takes a long time of 24 hours for hydrolysis and 15 hours for curing after the coating film, and also has a storage stability as described later. There was a problem.
The present invention has been made in view of the above circumstances, and can be applied to a wide range of base materials including plastic, can be surface-modified like glass, can be manufactured in a short time, and can be cured in a short time. An object is to provide a method for producing a hydrolysis-condensation product of trialkoxysilane, which is a raw material of composition A from which a coating film having sufficient hardness is obtained, and an improved product of composition A having excellent long-term storage stability. And
 本発明者は、上記課題を解決すべく鋭意検討した結果、エポキシ基含有トリアルコキシシランを特定のポリアミン類またはイミダゾール類を水中で、短時間、混合撹拌するだけで得られる該トリアルコキシシランの加水分解縮合物を含む組成物が、塗布後の加熱時間も短時間で十分な硬度の塗膜が得られることを見出し、本発明を完成するに至った。さらに、エポキシ基含有トリアルコキシシラン加水分解縮合物とポリアミン類を含む組成物にさらに、特定のpKaを有する有機酸又はパーフルオロアルキル基等を有するアルコール類を混合撹拌して得られる組成物が、その保存安定性にも優れることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the trialkoxysilane is obtained by simply mixing and stirring an epoxy group-containing trialkoxysilane with a specific polyamine or imidazole in water for a short time. The composition containing the decomposition condensate has been found that a coating film having sufficient hardness can be obtained in a short time after heating, and the present invention has been completed. Furthermore, a composition obtained by mixing and stirring an organic acid having a specific pKa or an alcohol having a perfluoroalkyl group to a composition containing an epoxy group-containing trialkoxysilane hydrolysis condensate and polyamines, The inventors have found that the storage stability is excellent and have completed the present invention.
 すなわち、本発明は、
(1)エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物を、水、及び水素原子が1以上結合しているアミノ基又はイミノ基を2以上1分子内に有するポリアミン類またはイミダゾール類と混合、撹拌する、エポキシ基含有トリアルコキシシラン加水分解縮合物の製造方法、
(2)室温で、混合、撹拌する、(1)に記載のエポキシ基含有トリアルコキシシラン加水分解縮合物の製造方法、
(3)ポリアミン類が、ポリアルキレンポリアミン類である、(1)に記載のエポキシ基含有トリアルコキシシラン加水分解縮合物の製造方法、
(4)エポキシ基含有トリアルコキシシランが、グリシドキシアルキルトリアルコキシシランである、(1)に記載のエポキシ基含有トリアルコキシシラン加水分解縮合物の製造方法、
(5)水を、エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物1モルに対して、0.5モル以上の範囲で用いる、(1)に記載のエポキシ基含有トリアルコキシシラン加水分解縮合物の製造方法、及び、
(6)酸とともに、混合、撹拌する、(1)~(5)のいずれかに記載のエポキシ基含有トリアルコキシシラン加水分解縮合物の製造方法に関する。
That is, the present invention
(1) Polyamines or imidazoles having an epoxy group-containing trialkoxysilane and / or a hydrolysis condensate thereof in water and two or more amino groups or imino groups to which one or more hydrogen atoms are bonded in one molecule Mixing and stirring, a method for producing an epoxy group-containing trialkoxysilane hydrolysis condensate,
(2) The method for producing an epoxy group-containing trialkoxysilane hydrolysis condensate according to (1), which is mixed and stirred at room temperature,
(3) The method for producing an epoxy group-containing trialkoxysilane hydrolysis condensate according to (1), wherein the polyamine is a polyalkylene polyamine,
(4) The method for producing an epoxy group-containing trialkoxysilane hydrolysis condensate according to (1), wherein the epoxy group-containing trialkoxysilane is glycidoxyalkyltrialkoxysilane,
(5) The epoxy group-containing trialkoxysilane hydrolysis according to (1), wherein water is used in an amount of 0.5 mol or more per 1 mol of the epoxy group-containing trialkoxysilane and / or hydrolysis condensate thereof. Production method of condensate, and
(6) The present invention relates to a method for producing an epoxy group-containing trialkoxysilane hydrolysis condensate according to any one of (1) to (5), which is mixed and stirred together with an acid.
 また、本発明は、
(7)(A)エポキシ基含有トリアルコキシシランの加水分解縮合物、
(B)ポリアミン類、及び
(C-1)n-ペンタノール
を含有する組成物、
(8)(A)エポキシ基含有トリアルコキシシランの加水分解縮合物、
(B)ポリアミン類、並びに
(C-2)25℃におけるpKaが2.0~6.0の範囲の有機酸又はパーフルオロアルキル基及び/又はパーフルオロアルキレン基を有する炭素数2~5のアルコール類
を含有する組成物、
(9)エポキシ基含有トリアルコキシシランの加水分解縮合物の動的光散乱法で測定したz-平均粒子径が5~50nmの範囲である、(8)に記載の組成物、
(10)ポリアミン類が、アルキレンポリアミン、ポリアルキレンポリアミン、ポリ(フェニレンアルキレン)ポリアミン、及びシクロアルキレンアルキルポリアミンからなる群から選ばれる少なくとも1種のポリアミンである、(8)に記載の組成物、
(11)ポリアミン類を、エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物中のエポキシ基1モルに対して、1/(ポリアミン類1分子中の全窒素原子上の全水素原子数)モル以上、1/(ポリアミン類1分子中の全窒素原子上の全水素原子数)の10倍モル以下の範囲で用いる、(8)に記載の組成物、
(12)pKaが2.0~6.0の範囲の有機酸をポリアミン類1モルに対して、0.3~1.2モルの範囲で用いる、(8)に記載の組成物、
(13)パーフルオロアルキル基及び/又はパーフルオロアルキレン基を有する炭素数2~5のアルコール類が、組成物全体の30質量%以上である、(8)に記載の組成物、
(14)さらに、パーフルオロアルキル基及び/又はパーフルオロアルキレン基を有する炭素数2~5のアルコール類以外の炭素数1~5のアルコール及び水を含む、(8)に記載の組成物、及び、
(15)(8)~(14)のいずれかに記載の組成物を基材上に塗布し室温乾燥及び/又は加熱して得られる薄膜に関する。
The present invention also provides:
(7) (A) Hydrolysis condensate of epoxy group-containing trialkoxysilane,
(B) a composition containing polyamines and (C-1) n-pentanol,
(8) (A) Hydrolysis condensate of epoxy group-containing trialkoxysilane,
(B) polyamines and (C-2) organic acids having a pKa in the range of 2.0 to 6.0 at 25 ° C. or alcohols having 2 to 5 carbon atoms having a perfluoroalkyl group and / or a perfluoroalkylene group A composition containing
(9) The composition according to (8), wherein the z-average particle diameter of the hydrolyzed condensate of the epoxy group-containing trialkoxysilane measured by a dynamic light scattering method is in the range of 5 to 50 nm,
(10) The composition according to (8), wherein the polyamine is at least one polyamine selected from the group consisting of an alkylene polyamine, a polyalkylene polyamine, a poly (phenylene alkylene) polyamine, and a cycloalkylene alkyl polyamine.
(11) Polyamines are 1 / (total number of hydrogen atoms on all nitrogen atoms in one molecule of polyamine) with respect to 1 mol of epoxy group in epoxy group-containing trialkoxysilane and / or its hydrolysis condensate. The composition according to (8), which is used in a range of 1 mol or more and 1 / (total number of hydrogen atoms on all nitrogen atoms in 1 molecule of polyamine) or less.
(12) The composition according to (8), wherein an organic acid having a pKa in the range of 2.0 to 6.0 is used in a range of 0.3 to 1.2 mol with respect to 1 mol of the polyamines,
(13) The composition according to (8), wherein the alcohol having 2 to 5 carbon atoms having a perfluoroalkyl group and / or a perfluoroalkylene group is 30% by mass or more of the whole composition,
(14) The composition according to (8), further comprising an alcohol having 1 to 5 carbon atoms other than the alcohol having 2 to 5 carbon atoms and a water having a perfluoroalkyl group and / or a perfluoroalkylene group, and ,
(15) A thin film obtained by coating the composition according to any one of (8) to (14) on a substrate, drying at room temperature and / or heating.
 本発明の製造方法によれば、エポキシ基含有トリアルコキシシランの加水分解縮合物を短時間で製造することができ、従って当該加水分解縮合物を含有する組成物をも短時間に製造することができ、さらに、本発明の組成物は、短時間の加熱で硬度、密着性、及び外観が優れた塗膜をプラスチック等の基材の上に形成することができ、さらに絶縁性、耐腐食性を付与することができる。また、得られた薄膜上に、シラン系の撥水剤や単分子膜形成溶液などを処理して、耐溶剤性、撥水性等の機能を付与する等の基材表面の改質をすることができる。
 また、本発明の組成物は、上記非特許文献1に記載の方法で得られた該加水分解縮合物を含む組成物と同様の機能を有するとともに、その保存安定性の点において格段の向上が見られた。
According to the production method of the present invention, a hydrolysis condensate of an epoxy group-containing trialkoxysilane can be produced in a short time, and therefore a composition containing the hydrolysis condensate can also be produced in a short time. In addition, the composition of the present invention can form a coating film having excellent hardness, adhesion, and appearance on a substrate such as plastic by heating in a short time, and further has insulation and corrosion resistance. Can be granted. In addition, the surface of the substrate may be modified such as by imparting functions such as solvent resistance and water repellency by treating the resulting thin film with a silane-based water repellent or monomolecular film forming solution. Can do.
In addition, the composition of the present invention has the same function as the composition containing the hydrolysis condensate obtained by the method described in Non-Patent Document 1, and has a marked improvement in storage stability. It was seen.
実施例1で得られた組成物(A-1)で処理したPC樹脂基板(B-1)のX線光電子分光法(ESCA)による膜の深さ方向の元素濃度を示す図である。FIG. 3 is a diagram showing the element concentration in the depth direction of the film by X-ray photoelectron spectroscopy (ESCA) of the PC resin substrate (B-1) treated with the composition (A-1) obtained in Example 1. 実施例5で得られた各種溶媒を用いた組成物中の固形分のz-平均粒子径の経時変化を示す図である。FIG. 6 is a graph showing the change over time in the z-average particle size of the solid content in the composition using various solvents obtained in Example 5. 実施例7で得られた各種溶媒を用いた組成物中の固形分のz-平均粒子径の経時変化を示す図である。FIG. 6 is a graph showing the time-dependent change in the z-average particle size of the solid content in the composition using various solvents obtained in Example 7. 実施例8で得られた各種溶媒を用いた組成物中の固形分のz-平均粒子径の経時変化を示す図である。FIG. 10 is a graph showing the time-dependent change in the z-average particle diameter of the solid content in the composition using various solvents obtained in Example 8. 実施例9で得られた用組成物(A-1)で処理したPC樹脂基板(B-1)のX線光電子分光法(ESCA)による膜の深さ方向の元素濃度を示す図である。It is a figure which shows the element concentration of the depth direction of the film | membrane by the X-ray photoelectron spectroscopy (ESCA) of PC resin board | substrate (B-1) processed with the composition for use (A-1) obtained in Example 9. FIG. 実施例10で得られた安息香酸の含有量のことなる組成物中の固形分のz-平均粒子径の経時変化を示す図である。FIG. 6 is a graph showing the time-dependent change in the z-average particle diameter of the solid content in the composition having a different benzoic acid content obtained in Example 10. 実施例11で得られた各種有機酸を用いて得られた組成物中の固形分のz-平均粒子径の経時変化を示す図である。FIG. 3 is a graph showing the time-dependent change in the z-average particle diameter of the solid content in the composition obtained using the various organic acids obtained in Example 11.
(1)エポキシ基含有トリアルコキシシラン加水分解縮合物の製造方法又はそれを含有する組成物の製造方法
 本発明のエポキシ基含有トリアルコキシシラン加水分解縮合物の製造方法は、エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物を、水、及びポリアミン類またはイミダゾール類と混合、撹拌するものである。
 非特許文献1に記載の従来の製造方法は、エポキシ基含有トリアルコキシシランと、炭素数1~5のアルコール、水、及び鉱酸又は有機酸等の酸を用いて加水分解縮合を行う方法であり、ポリアミン類、又はイミダゾール類は、その後に添加して組成物を調製するのが一般的であったが、このような方法では、加水分解縮合の工程に長時間を有する、また、得られた加水分解物を含む組成物を硬化させる場合にも、その塗膜に十分な硬度を具備するためには、長時間、高温の加熱が必要となるという問題があり、実用性に欠けるものであった。本発明の方法は、ポリアミン類またはイミダゾール類存在下で当該トリアルコキシシランの加水分解縮合物を調製することで、従来の欠点を克服する組成物を製造できるものである。
 なお、本発明の製造方法により得られるエポキシ基含有トリアルコキシシランの加水分解縮合物は、エポキシ基含有トリアルコキシシランの縮合したポリマー又はオリゴマーである。原料が既に加水分解縮合物の場合は、生成物は加水分解縮合物がさらに加水分解縮合したものである。
(1) Method for Producing Epoxy Group-Containing Trialkoxysilane Hydrolyzed Condensate or Method for Producing Composition Containing It The method for producing the epoxy group-containing trialkoxysilane hydrolyzed condensate of the present invention comprises an epoxy group-containing trialkoxysilane. And / or the hydrolysis-condensation product thereof is mixed with water and polyamines or imidazoles and stirred.
The conventional production method described in Non-Patent Document 1 is a method in which hydrolysis condensation is performed using an epoxy group-containing trialkoxysilane, an alcohol having 1 to 5 carbon atoms, water, and an acid such as a mineral acid or an organic acid. In general, polyamines or imidazoles are generally added afterwards to prepare a composition. However, in such a method, the hydrolysis condensation process has a long time and is obtained. Even when a composition containing a hydrolyzate is cured, there is a problem that heating at a high temperature for a long time is required in order to provide the coating film with sufficient hardness, which is not practical. there were. The method of the present invention can produce a composition that overcomes the conventional drawbacks by preparing a hydrolysis condensate of the trialkoxysilane in the presence of polyamines or imidazoles.
In addition, the hydrolysis-condensation product of the epoxy group-containing trialkoxysilane obtained by the production method of the present invention is a polymer or oligomer condensed with an epoxy group-containing trialkoxysilane. When the raw material is already a hydrolysis condensate, the product is a product obtained by further hydrolytic condensation of the hydrolysis condensate.
(原料としてのエポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物)
 本発明の方法に用いられるエポキシ基含有トリアルコキシシランは、加水分解等により失われてしまう官能基部分以外にエポキシ基が含まれているトリアルコキシシランであれば、その構造は特に制限されないが、例えば、下記式(I)で表される化合物を例示することができる。
R-Si(OR…(I)
(式中、Rは、エポキシ基又はグリシドキシ基を有する炭化水素基を表し、Rは無置換又は置換基を有する炭素数1~10のアルキル基を表す。)
 R中、エポキシ基、又はグリシドキシ基は、1個以上含まれていればよく、1~3個有するのが好ましく、エポキシ基、グリシドキシ基両方を含んでいてもよい。
 Rの「エポキシ基又はグリシドキシ基を有する炭化水素基」の「炭化水素基」としては、具体的には、アルキル基、シクロアルキル基、シクロアルキルアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、アリールアルキル基、アリールアルケニル基等を例示することができ、炭素数としては、1~30個の範囲が好ましく、1~10個の範囲がさらに好ましい。
 「アルキル基」として、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、イソノニル基、n-デシル基等、ラウリル基、トリデシル基、ミリスチル基、ペンタデシル基、パルミチル基、ヘプタデシル基、ステアリル基等を例示することができる。
(Epoxy group-containing trialkoxysilane as a raw material and / or its hydrolysis condensate)
The structure of the epoxy group-containing trialkoxysilane used in the method of the present invention is not particularly limited as long as it is a trialkoxysilane containing an epoxy group in addition to a functional group portion that is lost due to hydrolysis or the like. For example, the compound represented by the following formula (I) can be exemplified.
R-Si (OR 1 ) 3 (I)
(In the formula, R represents a hydrocarbon group having an epoxy group or a glycidoxy group, and R 1 represents an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms.)
In R, one or more epoxy groups or glycidoxy groups may be contained, and preferably 1 to 3 are included, and both epoxy groups and glycidoxy groups may be contained.
As the “hydrocarbon group” of the “hydrocarbon group having an epoxy group or glycidoxy group” of R, specifically, an alkyl group, a cycloalkyl group, a cycloalkylalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, An aryl group, an arylalkyl group, an arylalkenyl group and the like can be exemplified, and the carbon number is preferably in the range of 1 to 30, more preferably in the range of 1 to 10.
Specific examples of the “alkyl group” include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group, isopentyl group, neopentyl group, n -Hexyl group, isohexyl group, n-heptyl group, n-octyl group, n-nonyl group, isononyl group, n-decyl group, etc., lauryl group, tridecyl group, myristyl group, pentadecyl group, palmityl group, heptadecyl group, stearyl Examples include groups.
 「シクロアルキル基」としては、具体的には、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロヘプチル基、シクロオクチル基等を例示することができる。 Specific examples of the “cycloalkyl group” include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like.
 「シクロアルキルアルキル基」として、具体的には、シクロプロピルメチル基、シクロプロピルエチル基、シクロプロピルプロピル基、シクロブチルメチル基、シクロペンチルメチル基、シクロへキシルメチル基、シクロヘプチルメチル基、シクロオクチルメチル基等を例示することができ、炭素数3~10のシクロアルキル基と炭素数1~10のアルキル基が結合しているのが好ましい。 Specific examples of the “cycloalkylalkyl group” include a cyclopropylmethyl group, a cyclopropylethyl group, a cyclopropylpropyl group, a cyclobutylmethyl group, a cyclopentylmethyl group, a cyclohexylmethyl group, a cycloheptylmethyl group, and a cyclooctylmethyl group. Examples thereof include groups such as a cycloalkyl group having 3 to 10 carbon atoms and an alkyl group having 1 to 10 carbon atoms bonded to each other.
 「アルケニル基」として、具体的には、ビニル基、プロパ-1-エン-1-イル基、アリル基、ブタ-1-エン-1-イル基、ブタ-2-エン-1-イル基、ブタ-3-エン-1-イル基、ブタ-1-エン-2-イル基、ブタ-3-エン-2-イル基、ペンタ-1-エン-1-イル基、ペンタ-4-エン-1-イル基、ペンタ-1-エン-2-イル基、ペンタ-4-エン-2-イル基、3-メチル-ブタ-1-エン-1-イル基、ヘキサ-1-エン-1-イル基、ヘキサ-5-エン-1-イル基、ヘプタ-1-エン-1-イル基、ヘプタ-6-エン-1-イル基、オクタ-1-エン-1-イル基、オクタ-7-エン-1-イル基、ブタ-1,3-ジエン-1-イル基等を例示することができる。 Specific examples of the “alkenyl group” include a vinyl group, a prop-1-en-1-yl group, an allyl group, a but-1-en-1-yl group, a but-2-en-1-yl group, But-3-en-1-yl group, but-1-en-2-yl group, but-3-en-2-yl group, penta-1-en-1-yl group, penta-4-ene- 1-yl group, penta-1-en-2-yl group, penta-4-en-2-yl group, 3-methyl-but-1-en-1-yl group, hexa-1-en-1- Yl group, hexa-5-en-1-yl group, hepta-1-en-1-yl group, hepta-6-en-1-yl group, octa-1-en-1-yl group, octa-7 Examples include -en-1-yl group, buta-1,3-dien-1-yl group and the like.
 「シクロアルケニル基」として具体的には、1-シクロペンテン-1-イル基、2-シクロペンテン-1-イル基、1-シクロヘキセン-1-イル基、2-シクロヘキセン-1-イル基、3-シクロヘキセン-1-イル基等を例示することができる。 Specific examples of the “cycloalkenyl group” include 1-cyclopenten-1-yl group, 2-cyclopenten-1-yl group, 1-cyclohexen-1-yl group, 2-cyclohexen-1-yl group, and 3-cyclohexene. Examples thereof include a 1-yl group and the like.
 「アルキニル基」として具体的には、エチニル基、プロパ-1-イン-1-イル基、プロパ-2-イン-1-イル基、ブタ-1-イン-1-イル基、ブタ-3-イン-1-イル基、ペンタ-1-イン-1-イル基、ペンタ-4-イン-1-イル基、ヘキサ-1-イン-1-イル基、ヘキサ-5-イン-1-イル基、ヘプタ-1-イン-1-イル基、オクタ-1-イン-1-イル基、オクタ-7-イン-1-イル基等を例示することができる。 Specific examples of the “alkynyl group” include ethynyl group, prop-1-in-1-yl group, prop-2-yn-1-yl group, but-1-in-1-yl group, but-3- In-1-yl group, penta-1-in-1-yl group, penta-4-in-1-yl group, hexa-1-in-1-yl group, hexa-5-in-1-yl group And hept-1-in-1-yl group, octa-1-in-1-yl group, octa-7-in-1-yl group and the like.
 「アリール基」は、単環又は多環のアリール基を意味し、多環アリール基の場合は、完全不飽和に加え、部分飽和の基も包含する。具体的には、フェニル基、ナフチル基、アズレニル基、インデニル基、インダニル基、テトラリニル基等が例示することができる。 “Aryl group” means a monocyclic or polycyclic aryl group, and in the case of a polycyclic aryl group, in addition to fully unsaturated, partially saturated groups are also included. Specifically, a phenyl group, a naphthyl group, an azulenyl group, an indenyl group, an indanyl group, a tetralinyl group and the like can be exemplified.
 「アリールアルキル基」として具体的には、ベンジル基、フェネチル基、3-フェニル-n-プロピル基、4-フェニル-n-ブチル基、5-フェニル-n-ペンチル基、8-フェニル-n-オクチル基等を例示することができ、炭素数6-10のアリール基と炭素数1~10のアルキル基が結合した基であるのが好ましい。
 「アリールアルケニル基」は、アリール基とアルケニル基が結合した基であり、具体的には、スチリル基、3-フェニル-プロパ-1-エン-1-イル基、3-フェニル-プロパ-2-エン-1-イル基、4-フェニル-ブタ-1-エン-1-イル基、4-フェニル-ブタ-3-エン-1-イル基、5-フェニル-ペンタ-1-エン-1-イル基、5-フェニル-ペンタ-4-エン-1-イル基、8-フェニル-オクタ-1-エン-1-イル基、8-フェニル-オクタ-7-エン-1-イル基、ナフチルエテニル基等を例示することができ、炭素数6~10のアリール基と炭素数2~10のアルケニル基とが結合した基であるのが好ましい。
Specific examples of the “arylalkyl group” include benzyl group, phenethyl group, 3-phenyl-n-propyl group, 4-phenyl-n-butyl group, 5-phenyl-n-pentyl group, 8-phenyl-n- An octyl group and the like can be exemplified, and a group in which an aryl group having 6 to 10 carbon atoms and an alkyl group having 1 to 10 carbon atoms are bonded is preferable.
The “arylalkenyl group” is a group in which an aryl group and an alkenyl group are bonded, and specifically includes a styryl group, a 3-phenyl-prop-1-en-1-yl group, a 3-phenyl-prop-2-yl group. En-1-yl group, 4-phenyl-but-1-en-1-yl group, 4-phenyl-but-3-en-1-yl group, 5-phenyl-pent-1-en-1-yl Group, 5-phenyl-pent-4-en-1-yl group, 8-phenyl-oct-1-en-1-yl group, 8-phenyl-oct-7-en-1-yl group, naphthylethenyl group, etc. And a group in which an aryl group having 6 to 10 carbon atoms and an alkenyl group having 2 to 10 carbon atoms are bonded is preferable.
 上述した「炭化水素基」には、エポキシ基及びグリシドキシ基以外の置換基を有していてもよく、そのような置換基として、具体的には、ハロゲン原子、アルキル基、アルケニル基、アルコキシ基、(メタ)アクリロキシ基等を例示することができる。
 ここで、ハロゲン原子として具体的には、フッ素原子、塩素原子、臭素原子、ヨウ素原子等を例示することができる。
 アルコキシ基として具体的には、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、t-ブトキシ基等を例示することができる。
 アルキル基、アルケニル基としては、上記Rにおけるアルキル基、アルケニル基と同じ具体例を例示することができる。
The above-mentioned “hydrocarbon group” may have a substituent other than an epoxy group and a glycidoxy group. Specific examples of such a substituent include a halogen atom, an alkyl group, an alkenyl group, and an alkoxy group. And (meth) acryloxy groups.
Here, specific examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Specific examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, and a t-butoxy group.
As an alkyl group and an alkenyl group, the same specific example as the alkyl group and alkenyl group in said R can be illustrated.
 Rの「無置換または置換基を有する炭素数1~10のアルキル基」の「炭素数1~10のアルキル基」としては、上記Rにおけるアルキル基と同じものを例示することができる。
 「置換基を有する」の置換基として具体的には、ハロゲン原子、アルコキシ基、(メタ)アクリロキシ基等を例示することができる。ハロゲン原子、アルコキシ基として具体的には、上記Rにおけるエポキシ基及びグリシドキシ基以外の置換として例示されたハロゲン原子、アルコキシ基と同じ具体例を例示することができる。
Examples of the “alkyl group having 1 to 10 carbon atoms” of the “unsubstituted or substituted alkyl group having 1 to 10 carbon atoms” of R 1 include the same alkyl groups as in the above R.
Specific examples of the substituent “having a substituent” include a halogen atom, an alkoxy group, a (meth) acryloxy group, and the like. Specific examples of the halogen atom and alkoxy group include the same specific examples as the halogen atom and alkoxy group exemplified as the substituent other than the epoxy group and glycidoxy group in R.
 原料であるエポキシ基含有トリアルコキシシラン又はその加水分解縮合物として具体的には、次の化合物を例示することができるが、これに限られるものではない。また、これらは、1種単独で、又は2種以上を混合して用いることができる。 Specific examples of the raw material epoxy group-containing trialkoxysilane or its hydrolysis condensate include the following compounds, but are not limited thereto. Moreover, these can be used individually by 1 type or in mixture of 2 or more types.
Figure JPOXMLDOC01-appb-C000001
 中でも、グリシドキシアルキルトリアルコキシシラン、またはグリシドキシアルケニルアルコキシシランが好ましく、具体的には、下記式に示す化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000001
Of these, glycidoxyalkyltrialkoxysilane or glycidoxyalkenylalkoxysilane is preferable, and specific examples thereof include compounds represented by the following formulae.
Figure JPOXMLDOC01-appb-C000002
 これらは、1種単独で、又は2種以上を混合して用いることができる。 These can be used singly or in combination of two or more.
(エポキシ基含有トリアルコキシシラン以外のアルコキシシラン類)
 本発明の製造方法には、前記したエポキシ基含有トリアルコキシシランに、適宜、テトラアルコキシシラン類、エポキシ基含有トリアルコキシシラン以外のトリアルコキシシラン類、又はジアルコキシシラン類を添加して用いることができる。そのようなアルコキシシラン類として、具体的には、テトラメトキシシラン、テトラエトキシシラン、テトラ(n-プロポキシ)シラン、テトラ(イソプロポキシ)シラン、テトラ(n-ブトキシ)シラン等のテトラアルコキシシラン類;
 メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、n-ブチルトリメトキシシラン、n-ブチルトリエトキシシラン、n-ペンチルトリメトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘプチルトリメトキシシラン、n-オクチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、3,3,3-トリフルオロプロピルトリエトキシシラン、ノナフルオロヘキシルトリメトキシシラン、トリデカフルオロオクチルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、トリデカフルオロオクチルトリエトキシシラン、ヘプタデカフルオロデシルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-ヒドロキシエチルトリメトキシシラン、2-ヒドロキシエチルトリエトキシシラン、2-ヒドロキシプロピルトリメトキシシラン、2-ヒドロキシプロピルトリエトキシシラン、3-ヒドロキシプロピルトリメトキシシラン、3-ヒドロキシプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-イソシアナートプロピルトリメトキシシラン、3-イソシアナートプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アタクリロイルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルトリn-プロポキシシラン、3-(メタ)アクリロイルオキシプロピルトリイソプロポキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン等のトリアルコキシシラン類;
 ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジ-n-プロピルジメトキシシラン、ジ-n-プロピルジエトキシシラン、ジイソプロピルジメトキシシラン、ジイソプロピルジエトキシシラン、ジ-n-ブチルジメトキシシラン、ジ-n-ブチルジエトキシシラン、ジ-n-ペンチルジメトキシシラン、ジ-n-ペンチルジエトキシシラン、ジ-n-ヘキシルジメトキシシラン、ジ-n-ヘキシルジエトキシシラン、ジ-n-ヘプチルジメトキシシラン、ジ-n-ヘプチルジエトキシシラン、ジ-n-オクチルジメトキシシラン、ジ-n-オクチルジエトキシシラン、ジ-n-シクロヘキシルジメトキシシラン、ジ-n-シクロヘキシルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、ヘプタデカフルロデシルメチルジメトキシシラン等のジアルコキシシラン類等を例示することができ、これらの部分加水分解縮合物も同様に使用することができる。そのような部分加水分解縮合物として、具体的には、三菱化学社製の商品名「MKCシリケートMS51」、「MKCシリケートMS56」、「MKCシリケートMS57」、「MKCシリケートMS60」(いずれもテトラメトキシシランの縮合物);コルコート社製の商品名「エチルシリケート40」、「エチルシリケート48」(いずれもテトラエトキシシランの縮合物)等を例示することができ、また、含有するアルキル基が異なるテトラアルコキシシランの縮合物の具体例として、三菱化学社製の商品名「MKCシリケートMS56B15」、「MKCシリケートMS56B30」、「MKCシリケートMS58B15」、「MKCシリケートMS56I30」、「MKCシリケートMS56F20」;コルコート社製の商品名「EMS-485」等を例示することができる。
(Alkoxysilanes other than epoxy group-containing trialkoxysilanes)
In the production method of the present invention, it is preferable to add a tetraalkoxysilane, a trialkoxysilane other than the epoxy group-containing trialkoxysilane, or a dialkoxysilane to the epoxy group-containing trialkoxysilane as described above. it can. Specific examples of such alkoxysilanes include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetra (n-propoxy) silane, tetra (isopropoxy) silane, and tetra (n-butoxy) silane;
Methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, n-butyltrimethoxysilane , N-butyltriethoxysilane, n-pentyltrimethoxysilane, n-hexyltrimethoxysilane, n-heptyltrimethoxysilane, n-octyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane Cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloro Ropropyltriethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, 3,3,3-trifluoropropyltriethoxysilane, nonafluorohexyltrimethoxysilane, tridecafluorooctyltrimethoxysilane, heptadecafluoro Decyltrimethoxysilane, trifluoropropyltriethoxysilane, tridecafluorooctyltriethoxysilane, heptadecafluorodecyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-hydroxyethyltrimethoxysilane Silane, 2-hydroxyethyltriethoxysilane, 2-hydroxypropyltrimethoxysilane, 2-hydroxypropyltriethoxysilane, 3-hydroxypropyltrimethoxy Lan, 3-hydroxypropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3- (meth) acryloyl Oxypropyltrimethoxysilane, 3- (meth) acryloyloxypropyltriethoxysilane, 3- (meth) acryloyloxypropyltri-n-propoxysilane, 3- (meth) acryloyloxypropyltriisopropoxysilane, 3-ureido Trialkoxysilanes such as propyltrimethoxysilane and 3-ureidopropyltriethoxysilane;
Dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, di-n-propyldimethoxysilane, di-n-propyldiethoxysilane, diisopropyldimethoxysilane, diisopropyldiethoxysilane, di-n-butyldimethoxy Silane, di-n-butyldiethoxysilane, di-n-pentyldimethoxysilane, di-n-pentyldiethoxysilane, di-n-hexyldimethoxysilane, di-n-hexyldiethoxysilane, di-n-heptyl Dimethoxysilane, di-n-heptyldiethoxysilane, di-n-octyldimethoxysilane, di-n-octyldiethoxysilane, di-n-cyclohexyldimethoxysilane, di-n-cyclohexyldiethoxysilane, diphenyldimethyl Examples thereof include dialkoxysilanes such as xyloxysilane, diphenyldiethoxysilane, 3- (meth) acryloyloxypropylmethyldimethoxysilane, heptadecafluorodecylmethyldimethoxysilane, and the like. Can be used for Specific examples of such a partial hydrolysis-condensation product include trade names “MKC silicate MS51”, “MKC silicate MS56”, “MKC silicate MS57”, and “MKC silicate MS60” manufactured by Mitsubishi Chemical Corporation (both are tetramethoxy). Silane condensate); trade names “Ethyl silicate 40” and “ethyl silicate 48” (both are condensates of tetraethoxysilane) manufactured by Colcoat Co., Ltd. As specific examples of the alkoxysilane condensate, trade names “MKC silicate MS56B15”, “MKC silicate MS56B30”, “MKC silicate MS58B15”, “MKC silicate MS56I30”, “MKC silicate MS56F20” manufactured by Mitsubishi Chemical Corporation; Product name of It can be exemplified MS-485 ", and the like.
(水)
 本発明の方法において用いられる水の量は、用いられるエポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物がある程度加水分解縮合できるだけの量以上であれば、特に制限されず、具体的には、用いるエポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物(但し、エポキシ基含有トリアルコキシシラン及びその加水分解縮合物を併用する場合にはその両者の合計を表し、また、エポキシ基含有トリアルコキシシラン以外のアルコキシシランを併用する場合にも、それら全体の合計を表す。)1モルに対して、0.5モル以上が好ましく、1.0モル以上、2.0モル以上、5.0モル以上、または10モル以上がさらに好ましい。
(water)
The amount of water used in the method of the present invention is not particularly limited as long as the amount of the epoxy group-containing trialkoxysilane and / or the hydrolysis condensate used is not less than the amount that can be hydrolyzed to some extent. , Epoxy group-containing trialkoxysilane and / or its hydrolysis condensate used (however, when the epoxy group-containing trialkoxysilane and its hydrolysis condensate are used in combination, it represents the total of both, Also when using together alkoxysilanes other than alkoxysilane, it represents the total of them.) 0.5 mol or more is preferable with respect to 1 mol, 1.0 mol or more, 2.0 mol or more, 5.0 More preferably, it is more than 10 mol or more.
(ポリアミン類)
 本発明に用いられるポリアミン類は、1以上の水素原子が結合しているアミノ基またはイミノ基を1分子中に2以上有する化合物であれば、特に制限されず、具体的には、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロピレントリアミン、メチルアミノプロピルアミン、エチルアミノプロピルアミン、N,N’-ジメチルヘキサメチレンジアミン、ビス(2-メチルアミノエチル)エーテル、メンタンジアミン、イソホロンジアミン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキシスピロ(5,5)ウンデカンアダクト、ビス(4-アミノシクロヘキシル)メタン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、m-キシレンジアミン等を例示することができ、これらは、1種単独で、又は2種以上を混合して用いることができる。中でも、ポリアルキレンポリアミン類が好ましく、具体的には、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロピレントリアミン等を例示することができる。
 用いられるポリアミン類の使用量は、特に制限されないが、エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物中のエポキシ基1モルに対して1/(ポリアミン類1分子中の全窒素原子上の全水素原子数)モル以上用いるのが好ましく、1/(ポリアミン類1分子中の全窒素原子上の全水素原子数)の1.2倍~10倍モルの範囲、1.5倍~5倍モル、または1.8倍~2.5倍モルの範囲が好ましい。1/(ポリアミン類1分子中の全窒素原子上の全水素原子数)モルより少ない場合には、硬化が不十分で、高い硬度の膜が得られない場合があり、1/(ポリアミン類1分子中の全窒素原子上の全水素原子数)の10倍モルよりも大きい場合、ポリアミン類が残存して十分な硬度の膜が得られない場合がある。
(Polyamines)
The polyamine used in the present invention is not particularly limited as long as it is a compound having two or more amino groups or imino groups bonded to one or more hydrogen atoms in one molecule. Methylenediamine, tetramethylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenetriamine, methylaminopropylamine, ethylaminopropylamine, N, N′-dimethylhexamethylenediamine, bis (2- Methylaminoethyl) ether, menthanediamine, isophoronediamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxyspiro (5,5) undecane adduct, bis (4-aminocyclohexyl) Methane, o-phenyle Diamine, m-phenylenediamine, p-phenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, m-xylenediamine, and the like. These may be used alone or in combination of two or more. it can. Among these, polyalkylene polyamines are preferable, and specific examples include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and dipropylenetriamine.
The amount of the polyamine used is not particularly limited, but is 1 / (on the total nitrogen atoms in one molecule of the polyamines with respect to 1 mol of the epoxy group in the epoxy group-containing trialkoxysilane and / or its hydrolysis condensate. The total number of hydrogen atoms) is preferably used in a molar range of 1.2 to 10 times the 1 / (number of total hydrogen atoms on all nitrogen atoms in one molecule of the polyamine), 1.5 to 5 times. A double mole, or a range of 1.8 to 2.5 moles is preferred. When less than 1 / (total number of hydrogen atoms on all nitrogen atoms in one molecule of polyamine) is less than 1 mol, curing may be insufficient and a film with high hardness may not be obtained. 1 / (polyamines 1 When it is larger than 10 times the mole of all hydrogen atoms on all nitrogen atoms in the molecule, polyamines may remain and a film having sufficient hardness may not be obtained.
(イミダゾール類)
 また、本発明に用いられるイミダゾール類として、具体的には、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-イソプロピルイミダゾール、2-n-プロピルイミダゾール、2-ウンデシル-1H-イミダゾール、2-ヘプタデシル-1H-イミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-1H-イミダゾール、4-メチル-2-フェニル-1H-イミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾリウムトリメリテイト、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-(2’-ウンデシルイミダゾリル-)-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4-イミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、1-シアノエチル-2-フェニル-4,5-ジ(2-シアノエトキシ)メチルイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、1-ベンジル-2-フェニルイミダゾール塩酸塩、1-ベンジル-2-フェニルイミダゾリウムトリメリテイト等を例示することができ、これらは1種単独で、または2種以上を混合して用いることができる。
 用いるイミダゾール類の量は、触媒量以上であれば特に制限されず、用いられるトリアルコキシシランに含まれるエポキシ基1モルに対して、0.001~1.0モルの範囲が好ましく、0.001~0.5モル、又は0.01~0.1モルの範囲がさらに好ましい。
(Imidazoles)
Specific examples of imidazoles used in the present invention include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 2-n-propylimidazole, 2-undecyl-1H-imidazole, 2- Heptadecyl-1H-imidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-1H-imidazole, 4-methyl-2-phenyl-1H-imidazole, 2-phenyl-4-methylimidazole 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole , 1- Anoethyl-2-ethyl-4-methylimidazolium trimellitate, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2′-Methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- (2′-undecylimidazolyl-)-ethyl-s-triazine, 2,4-diamino-6 -[2'-ethyl-4-imidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine isocyanuric Acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxy Methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 1-cyanoethyl-2-phenyl-4,5-di (2-cyanoethoxy) methylimidazole, 1-dodecyl-2-methyl-3-benzyl Examples thereof include imidazolium chloride, 1-benzyl-2-phenylimidazole hydrochloride, 1-benzyl-2-phenylimidazolium trimellitate and the like. These may be used alone or in combination of two or more. Can be used.
The amount of imidazole used is not particularly limited as long as it is a catalytic amount or more, and is preferably in the range of 0.001 to 1.0 mol with respect to 1 mol of the epoxy group contained in the trialkoxysilane used. The range of ˜0.5 mol, or 0.01 to 0.1 mol is more preferable.
(酸)
 本発明においては、必要に応じて、加水分解工程に、さらに酸を共存させて該工程を行うのが好ましい。
 用いられる酸として具体的には、有機酸、鉱酸等を例示することができ、さらに具体的には、有機酸としては酢酸、ギ酸、シュウ酸、炭酸、フタル酸、トリフルオロ酢酸、p-トルエンスルホン酸、メタンスルホン酸等、鉱酸としては、塩酸、硝酸、ホウ酸、ホウフッ化水素酸等を例示することができ、なかでも20℃でのpKaが2.0~6.0の範囲の有機酸を用いるのが好ましい。そのような有機酸として、具体的には、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、イソ吉草酸、カプロン酸、イソカプロン酸、クロロ酢酸、フルオロ酢酸、ブロモ酢酸、3-クロロプロピオン酸、2-ブロモプロピオン酸、2-ヒドロキシ酪酸、フェニル酢酸、フェニルプロピオン酸、4-フェニル酪酸、フェノキシ酢酸、シアノ酢酸、シュウ酸、マロン酸、2,2-ジメチルマロン酸、アジピン酸、コハク酸、ピメリン酸、フタル酸、グルタル酸、オキザロ酢酸、クエン酸、イソクエン酸、シクロヘキサン-1,1-ジカルボン酸、酒石酸、o-、m-、p-アニス酸、安息香酸、o-クロロ安息香酸、m-フルオロ安息香酸、2,3-ジフルオロ安息香酸、o-、m-、p-ニトロ安息香酸、m-、p-アミノ安息香酸、サリチル酸、フタル酸、イロフタル酸、trans-ケイ皮酸、2-フランカルボン酸、グリオキシル酸、グルコール酸、クロトン酸、乳酸、2-ヒドロキシ-2-メチルプロピオン酸、ピルビン酸、マンデル酸、リンゴ酸、レブリン酸、2,6-ピリジンジカルボン酸、ニコチン酸等を例示することができる。用いる酸の量は、特に制限されないが、用いられるポリアミン類またはイミダゾール類1モルに対して、0.3~1.2モルの範囲が好ましく、0.5~1.0モル、又は0.6~0.9モルの範囲がさらに好ましい。
 0.3モルより少ない場合には、組成物の保存安定性が低下する場合があり、1.2モルよりも大きい場合には、十分な硬度の塗膜を形成できない場合がある。
(acid)
In the present invention, it is preferable to carry out this step in the presence of an acid in the hydrolysis step as necessary.
Specific examples of the acid used include organic acids and mineral acids, and more specific examples of the organic acid include acetic acid, formic acid, oxalic acid, carbonic acid, phthalic acid, trifluoroacetic acid, p- Examples of mineral acids such as toluenesulfonic acid and methanesulfonic acid include hydrochloric acid, nitric acid, boric acid, borohydrofluoric acid and the like, and in particular, the pKa at 20 ° C. is in the range of 2.0 to 6.0. The organic acid is preferably used. Specific examples of such organic acids include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, caproic acid, isocaproic acid, chloroacetic acid, fluoroacetic acid, bromoacetic acid, and 3-chloropropion. Acid, 2-bromopropionic acid, 2-hydroxybutyric acid, phenylacetic acid, phenylpropionic acid, 4-phenylbutyric acid, phenoxyacetic acid, cyanoacetic acid, oxalic acid, malonic acid, 2,2-dimethylmalonic acid, adipic acid, succinic acid Pimelic acid, phthalic acid, glutaric acid, oxaloacetic acid, citric acid, isocitric acid, cyclohexane-1,1-dicarboxylic acid, tartaric acid, o-, m-, p-anisic acid, benzoic acid, o-chlorobenzoic acid, m-fluorobenzoic acid, 2,3-difluorobenzoic acid, o-, m-, p-nitrobenzoic acid, m-, p-aminobenzoic acid, sa Tyric acid, phthalic acid, ilophthalic acid, trans-cinnamic acid, 2-furancarboxylic acid, glyoxylic acid, glycolic acid, crotonic acid, lactic acid, 2-hydroxy-2-methylpropionic acid, pyruvic acid, mandelic acid, malic acid Levulinic acid, 2,6-pyridinedicarboxylic acid, nicotinic acid and the like. The amount of the acid used is not particularly limited, but is preferably in the range of 0.3 to 1.2 mol, preferably 0.5 to 1.0 mol, or 0.6 with respect to 1 mol of the polyamine or imidazole to be used. A range of ˜0.9 mol is more preferred.
When the amount is less than 0.3 mol, the storage stability of the composition may be lowered. When the amount is more than 1.2 mol, a coating film having sufficient hardness may not be formed.
(溶媒)
 本発明の製造方法において、必要に応じて有機溶媒を用いることができ、そのような溶媒として、溶液の均一性、安定性等をある程度保持できる溶媒であれば、特に限定されないが、具体的には、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、s-ブタノール、t-ブタノール、n-ペンタノール、イソペンタノール、s-ペンタノール、t-ペンタノール、ネオペンタノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、2-アセトキシエタノール等のアルコール類;テトラヒドロフラン、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、テトラヒドロピラン等のエーテル類;アセトン、メチルエチルケトン、アセチルアセトン等のケトン類;酢酸メチル、エチレングリコールモノアセテート等のエステル類;ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ピロリドン、N-メチルピロリドン等のアミド類等を例示することができ、中でも炭素数1~5のアルコールが好ましい。これらは1種単独で、又は2種以上を併用して用いることができる。炭素数1~5のアルコールは、適当な炭素上にハロゲン原子等の置換基を有していてもよく、そのようなアルコールとして、具体的には、パーフルオロエタノール、パーフルオロペンタノール等を例示することができる。
 これらは1種単独で、または2種以上を混合して用いることができる。作業環境、及び塗膜への残留を少なくする等を考慮した場合、炭素数3以下のアルコールが好ましく、イソプロパノール、n-プロパノール等を特に好ましく例示することができる。加水分解縮合物の保存安定性を考慮した場合には、n-ペンタノールを用いるのが好ましい。
 その他の溶媒として、水を用いるのが好ましく、その場合、用いる有機溶媒は、水に溶解する有機溶媒が好ましい。また、水と有機溶媒の比率は、おのおの必要な量を用いた上で、均一な溶液になる量比が好ましい。炭素数3以下のアルコール等の水に比較的良く溶解する有機溶媒を用いた場合には、水と有機溶媒の質量比(水/有機溶媒)は、30/70~95/5の範囲が好ましく、50/50~90/10、60/40~80/20、または65/35~75/25の範囲がさらに好ましい。
 また、炭素数4以上のアルコール等の水に比較的溶解しにくい有機溶媒を用いた場合に、有機溶媒に対する水の溶解度が低いために、使用する水の量は、トリアルコキシシランの加水分解に必要な量以上、溶液が均一になる範囲の量で使用するのが好ましい。
 用いる溶媒量は、特に制限されないが、本発明の製造方法によって作られた加水分解縮合物を含む組成物を用いた塗膜の外観、該組成物の塗工性、硬化性、該組成物を用いた塗膜の性質、該組成物または加水分解縮合物の保存安定性等を考慮して、反応液中の固形分濃度が0.5~50質量%の範囲になる量を用いるのが好ましく、1.0~30質量%、1.0~20質量%、1.0~10質量%、1.5~5.0質量%、または1.8~3質量%の範囲がさらに好ましい。
(solvent)
In the production method of the present invention, an organic solvent can be used as necessary. The solvent is not particularly limited as long as the solvent can maintain the uniformity and stability of the solution to some extent. Are methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, s-butanol, t-butanol, n-pentanol, isopentanol, s-pentanol, t-pentanol, neopentanol, Alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, ethylene glycol monoethyl ether, 2-acetoxyethanol; tetrahydrofuran, ethylene group Ethers such as coal dimethyl ether, propylene glycol dimethyl ether and tetrahydropyran; ketones such as acetone, methyl ethyl ketone and acetylacetone; esters such as methyl acetate and ethylene glycol monoacetate; formamide, N, N-dimethylformamide, N, N-dimethyl Examples include amides such as acetamide, pyrrolidone, N-methylpyrrolidone, etc. Among them, alcohols having 1 to 5 carbon atoms are preferable. These can be used alone or in combination of two or more. The alcohol having 1 to 5 carbon atoms may have a substituent such as a halogen atom on an appropriate carbon. Specific examples of such alcohol include perfluoroethanol and perfluoropentanol. can do.
These can be used individually by 1 type or in mixture of 2 or more types. In consideration of the working environment and the reduction of the residue on the coating film, alcohols having 3 or less carbon atoms are preferable, and isopropanol, n-propanol and the like are particularly preferable. In consideration of the storage stability of the hydrolysis condensate, it is preferable to use n-pentanol.
As the other solvent, water is preferably used. In that case, the organic solvent to be used is preferably an organic solvent that is soluble in water. In addition, the ratio of water to the organic solvent is preferably an amount ratio that makes a uniform solution after using a necessary amount. When an organic solvent that dissolves relatively well in water such as alcohol having 3 or less carbon atoms is used, the mass ratio of water to organic solvent (water / organic solvent) is preferably in the range of 30/70 to 95/5. , 50/50 to 90/10, 60/40 to 80/20, or 65/35 to 75/25 are more preferable.
In addition, when an organic solvent that is relatively difficult to dissolve in water such as alcohol having 4 or more carbon atoms is used, the amount of water used for hydrolysis of trialkoxysilane is low because the solubility of water in the organic solvent is low. It is preferable to use it in an amount in a range where the solution becomes uniform more than the necessary amount.
The amount of the solvent to be used is not particularly limited, but the appearance of the coating film using the composition containing the hydrolysis condensate produced by the production method of the present invention, the coatability and curability of the composition, and the composition are used. In consideration of the properties of the coating film used, the storage stability of the composition or the hydrolysis condensate, etc., it is preferable to use an amount such that the solid content concentration in the reaction solution is in the range of 0.5 to 50% by mass. 1.0 to 30% by mass, 1.0 to 20% by mass, 1.0 to 10% by mass, 1.5 to 5.0% by mass, or 1.8 to 3% by mass is more preferable.
(製造条件)
 本発明では、エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物と、水、及び水素原子が1以上結合しているアミノ基もしくはイミノ基を2以上1分子内に有するポリアミン類、またはイミダゾール類、必要に応じて酸、有機溶媒を混合、撹拌してエポキシ基含有トリアルコキシシランの加水分解縮合物を製造するが、その混合順序、及び撹拌速度は特に限定されず、任意の順序、または任意の速度を設定できる。混合時及び撹拌時の温度は、特に限定されず、室温から、用いる溶媒の沸点の範囲で行うのが好ましく、室温で行うのがさらに好ましい。室温とは、この場合、混合撹拌を行う場所での外気温度になるが、15~35℃の範囲の温度が好ましい。
 エポキシ基含有トリアルコキシシランと、水、及び、水素原子が1以上結合しているアミノ基もしくはイミノ基を2以上1分子内に有するポリアミン類、またはイミダゾールすべてが共存している状態で、室温で2時間から3時間撹拌するのが好ましい。
 加水分解後、必要ならば、有機溶媒や水で希釈する。
 本発明の製造方法で得られた加水分解縮合物を含む組成物の固形分濃度は、特に限定されないが、0.5~50質量%の範囲で使用するのが好ましく、1.0~30質量%、1.0~20質量%、1.0~10質量%、1.5~5.0質量%、又は1.8~3.0質量%の範囲がさらに好ましい。0.5質量%より小さい場合には、膜を均質に成膜するのが困難な場合があり、50質量%より大きい場合には、組成物の安定性、塗膜の透明性、外観、または塗工性等に問題が生じる場合がある。固形分濃度は、最初から所定の固形分濃度に調整してもよく、濃い状態で組成物を調製した後、希釈して所定の固形分濃度に調整することもできる。
(Production conditions)
In the present invention, polyamines having an epoxy group-containing trialkoxysilane and / or a hydrolysis condensate thereof, water, and two or more amino groups or imino groups to which one or more hydrogen atoms are bonded in one molecule, or imidazole If necessary, an acid and an organic solvent are mixed and stirred to produce a hydrolyzed condensate of an epoxy group-containing trialkoxysilane, but the mixing order and stirring speed are not particularly limited, any order, or Any speed can be set. The temperature at the time of mixing and stirring is not particularly limited, and it is preferably in the range of room temperature to the boiling point of the solvent used, more preferably at room temperature. In this case, the room temperature is the outside air temperature at the place where mixing and stirring is performed, but a temperature in the range of 15 to 35 ° C. is preferable.
At room temperature, the epoxy group-containing trialkoxysilane, water, and a polyamine having two or more amino groups or imino groups in which one or more hydrogen atoms are bonded in one molecule or all imidazoles coexist. It is preferable to stir for 2 to 3 hours.
After hydrolysis, if necessary, dilute with an organic solvent or water.
The solid content concentration of the composition containing the hydrolysis condensate obtained by the production method of the present invention is not particularly limited, but it is preferably used in the range of 0.5 to 50% by mass, and 1.0 to 30% by mass. %, 1.0 to 20% by mass, 1.0 to 10% by mass, 1.5 to 5.0% by mass, or 1.8 to 3.0% by mass are more preferable. If it is less than 0.5% by mass, it may be difficult to form a film uniformly, and if it is more than 50% by mass, the stability of the composition, the transparency of the coating film, the appearance, or There may be a problem in coating properties. The solid content concentration may be adjusted to a predetermined solid content concentration from the beginning, or may be adjusted to a predetermined solid content concentration by preparing a composition in a thick state and then diluting the composition.
(2)組成物
 本発明の組成物は、本発明の製造方法またはその他の方法により得られるエポキシ基含有トリアルコキシシランの加水分解縮合物(A)、(B)及び(C)を含有する組成物を包含する。 
(A)エポキシ基含有トリアルコキシシランの加水分解縮合物
(B)ポリアミン類、及び
(C)
(C-1)n-ペンタノール、又は
(C-2)20℃におけるpKaが2.0~6.0の範囲の有機酸又はパーフルオロアルキル基及び/若しくはパーフルオロアルキレン基を有する炭素数2~5のアルコール類
(2) Composition The composition of the present invention comprises a hydrolyzed condensate (A), (B) and (C) of an epoxy group-containing trialkoxysilane obtained by the production method of the present invention or other methods. Includes things.
(A) Hydrolysis condensate of epoxy group-containing trialkoxysilane (B) Polyamines, and (C)
(C-1) n-pentanol, or (C-2) an organic acid having a pKa at 20 ° C. in the range of 2.0 to 6.0 or a carbon number of 2 having a perfluoroalkyl group and / or a perfluoroalkylene group ~ 5 alcohols
 以下に、成分(A)、(B)及び(C)を含有する組成物について詳述する。 Hereinafter, the composition containing the components (A), (B) and (C) will be described in detail.
(エポキシ基含有トリアルコキシシランの加水分解縮合物)
 組成物中のエポキシ基含有トリアルコキシシランの加水分解縮合物等の固形分濃度は、特に制限されないが、1~50質量%の範囲が好ましく、1~10質量%、または1.5~3質量%の範囲がさらに好ましい。
 固形分濃度は、最初から所定の固形分濃度に調整してもよく、濃い状態で組成物を調製した後、希釈して所定の固形分濃度に調整することもできる。
 成分(A)のエポキシ基含有トリアルコキシシランの加水分解縮合物の製造方法は、好ましくは、(1)において前述した本発明の製造方法を例示することができるが、それ以外に、具体的には、エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物に水、必要に応じてシラノール縮合触媒を添加し、5~100℃、好ましくは20~60℃において、1分~10日、好ましくは30分~24時間反応させる方法等を例示することができる。
(Hydrolysis condensate of epoxy group-containing trialkoxysilane)
The solid content concentration of the hydrolyzed condensate of the epoxy group-containing trialkoxysilane in the composition is not particularly limited, but is preferably in the range of 1 to 50% by mass, 1 to 10% by mass, or 1.5 to 3% by mass. % Range is more preferred.
The solid content concentration may be adjusted to a predetermined solid content concentration from the beginning, or may be adjusted to a predetermined solid content concentration by preparing a composition in a thick state and then diluting the composition.
The production method of the hydrolyzed condensate of the epoxy group-containing trialkoxysilane of component (A) can preferably be exemplified by the production method of the present invention described above in (1). Is prepared by adding water and optionally a silanol condensation catalyst to the epoxy group-containing trialkoxysilane and / or its hydrolysis condensate at 5 to 100 ° C., preferably 20 to 60 ° C., preferably 1 minute to 10 days, Examples of the method include reacting for 30 minutes to 24 hours.
 エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物に水、必要に応じてシラノール縮合触媒を添加する方法において、原料であるエポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物は、本発明の製造方法の項で示したものと同様のものを用いることができる。また、本発明の製造方法の部分で記載したのと同様に、テトラアルコキシシラン、エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物以外のトリアルコキシシラン、ジアルコキシシラン、またはそれらの部分加水分解縮合物を共存させて製造することもできる。
 水の量は、用いられるエポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物がある程度加水分解縮合できるだけの量以上であれば、特に制限されず、具体的には、用いるトリアルコキシシラン及び/又はその加水分解縮合物1モルに対して、0.5モル以上が好ましく、1.0モル以上、2.0モル以上、5.0モル以上、または10モル以上がさらに好ましい。
 シラノール縮合触媒の使用量は、特に制限はされないが、原料であるエポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物中の全て未縮合として換算したトリアルコキシシリル基の量に対して、モル比(シラノール触媒/当該シリル基)で、0.001~1.0の範囲が好ましく、0.01~1.0、又は0.1~0.5の範囲がさらに好ましい。
In the method of adding water and optionally a silanol condensation catalyst to the epoxy group-containing trialkoxysilane and / or its hydrolysis condensate, the raw material epoxy group-containing trialkoxysilane and / or its hydrolysis condensate is The thing similar to what was shown by the term of the manufacturing method of invention can be used. Further, as described in the production method of the present invention, a trialkoxysilane other than tetraalkoxysilane, epoxy group-containing trialkoxysilane and / or its hydrolysis condensate, dialkoxysilane, or partial hydrolysis thereof. It can also be produced in the presence of a decomposition condensate.
The amount of water is not particularly limited as long as the epoxy group-containing trialkoxysilane used and / or the hydrolysis condensate thereof is an amount that can be hydrolyzed to some extent, and specifically, the trialkoxysilane used and / or Or 0.5 mol or more is preferable with respect to 1 mol of the hydrolysis-condensation products, 1.0 mol or more, 2.0 mol or more, 5.0 mol or more, or 10 mol or more is more preferable.
The amount of the silanol condensation catalyst used is not particularly limited, but the molar amount relative to the amount of trialkoxysilyl group converted as uncondensed in the raw material epoxy group-containing trialkoxysilane and / or its hydrolysis condensate. The ratio (silanol catalyst / the silyl group) is preferably in the range of 0.001 to 1.0, more preferably in the range of 0.01 to 1.0, or 0.1 to 0.5.
 シラノール縮合触媒としては、エポキシ基含有トリアルコキシシランのアルコキシ基を加水分解し、シラノールを縮合してシロキサン結合とするものであれば特に制限されず、具体的には、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジエチルヘキサノエート、ジブチル錫ジオクテート、ジブチル錫ジメチルマレート、ジブチル錫ジエチルマレート、ジブチル錫ジブチルマレート、ジブチル錫ジイソオクチルマレート、ジブチル錫ジトリデシルマレート、ジブチル錫ジベンジルマレート、ジブチル錫マレエート、ジオクチル錫ジアセテート、ジオクチル錫ジステアレート、ジオクチル錫ジラウレート、ジオクチル錫ジエチルマレート、ジオクチル錫ジイソオクチルマレート等のジアルキル錫ジカルボキシレート類、ジブチル錫ジメトキシド、ジブチル錫ジフェノキシド等のジアルキル錫アルコキサイド類、ジブチル錫ジアセチルアセトナート、ジブチル錫ジエチルアセトアセテートなどのジアルキル錫キレート類、ジブチル錫オキサイドやジオクチル錫オキサイド等のジアルキル錫オキサイドとジオクチルフタレート、ジイソデシルフタレート、メチルマレエート等のエステル化合物との反応物、ジアルキル錫オキサイド、カルボン酸およびアルコール化合物を反応させて得られる錫化合物、ジブチル錫ビストリエトキシシリケート、ジオクチル錫ビストリエトキシシリケート等のジアルキル錫オキサイドとシリケート化合物との反応物、およびこれらジアルキル錫化合物のオキシ誘導体(スタノキサン化合物)等の4価の錫化合物類、オクチル酸錫、ナフテン酸錫、ステアリン酸錫、フェルザチック酸錫等の2価の錫化合物類、あるいはこれらと後述のラウリルアミン等のアミン系化合物との反応物および混合物、モノブチル錫トリスオクトエートやモノブチル錫トリイソプロポキシド等のモノブチル錫化合物やモノオクチル錫化合物等のモノアルキル錫類、テトラブチルチタネート、テトラプロピルチタネート、テトラ(2-エチルヘキシル)チタネート、イソプロポキシチタンビス(エチルアセトアセテート)等のチタン酸エステル類、アルミニウムトリスアセチルアセトナート、アルミニウムトリスエチルアセトアセテート、ジ-イソプロポキシアルミニウムエチルアセトアセテート等の有機アルミニウム化合物類、カルボン酸ビスマス、カルボン酸鉄、カルボン酸チタニウム、カルボン酸鉛、カルボン酸バナジウム、カルボン酸ジルコニウム、カルボン酸カルシウム、カルボン酸カリウム、カルボン酸バリウム、カルボン酸マンガン、カルボン酸セリウム、カルボン酸ニッケル、カルボン酸コバルト、カルボン酸亜鉛、カルボン酸アルミニウム等のカルボン酸(2-エチルヘキサン酸、ネオデカン酸、バーサチック酸、オレイン酸、ナフテン酸等)金属塩、あるいはこれらと後述のラウリルアミン等のアミン系化合物との反応物および混合物、ジルコニウムテトラアセチルアセトナート、ジルコニウムトリブトキシアセチルアセトナート、ジブトキシジルコニウムジアセチルアセトナート、ジルコニウムアセチルアセトナートビス(エチルアセトアセテート、チタンテトラアセチルアセトナート等のキレート化合物類、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、アミルアミン、ヘキシルアミン、オクチルアミン、2-エチルヘキシルアミン、ノニルアミン、デシルアミン、ラウリルアミン、ペンタデシルアミン、セチルアミン、ステアリルアミン、シクロヘキシルアミン等の脂肪族第一アミン類、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、ジアミルアミン、ジオクチルアミン、ジ(2-エチルヘキシル)アミン、ジデシルアミン、ジラウリルアミン、ジセチルアミン、ジステアリルアミン、メチルステアリルアミン、エチルステアリルアミン、ブチルステアリルアミン等の脂肪族第二アミン類、トリアミルアミン、トリヘキシルアミン、トリオクチルアミン等の脂肪族第三アミン類、トリアリルアミン、オレイルアミン、などの脂肪族不飽和アミン類、ラウリルアニリン、ステアリルアニリン、トリフェニルアミン等の芳香族アミン類、および、その他のアミン類として、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジエチレントリアミン、トリエチレンテトラミン、オレイルアミン、シクロヘキシルアミン、ベンジルアミン、ジエチルアミノプロピルアミン、キシリレンジアミン、エチレンジアミン、ヘキサメチレンジアミン、トリエチレンジアミン、グアニジン、ジフェニルグアニジン、2,4,6-トリス(ジメチルアミノメチル)フェノール、モルホリン、N-メチルモルホリン、2-エチル-4-メチルイミダゾール、1,8-ジアザビシクロ(5,4,0)ウンデセン(DBU)等のアミン系化合物、あるいはこれらのアミン系化合物のカルボン酸等との塩、ラウリルアミンとオクチル酸錫の反応物あるいは混合物のようなアミン系化合物と有機錫化合物との反応物および混合物、過剰のポリアミンと多塩基酸とから得られる低分子量ポリアミド樹脂、過剰のポリアミンとエポキシ化合物との反応生成物、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリイソプロポキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-(β-アミノエチル)アミノプロピルトリメトキシシラン、N-(β-アミノエチル)アミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)アミノプロピルトリエトキシシラン、N-(β-アミノエチル)アミノプロピルメチルジエトキシシラン、N-(β-アミノエチル)アミノプロピルトリイソプロポキシシラン、γ-ウレイドプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-ベンジル-γ-アミノプロピルトリメトキシシラン、N-ビニルベンジル-γ-アミノプロピルトリエトキシシラン等を例示することができる。また、これらを変性した誘導体である、アミノ変性シリルポリマー、シリル化アミノポリマー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミノシリル化シリコーン等のアミノ基を有するシランカップリング剤等のシラノール縮合触媒、さらにはフェルザチック酸等の脂肪酸や有機酸性リン酸エステル化合物等他の酸性触媒、塩基性触媒等の公知のシラノール縮合触媒等が例示できる。 The silanol condensation catalyst is not particularly limited as long as it hydrolyzes the alkoxy group of the epoxy group-containing trialkoxysilane and condenses the silanol to form a siloxane bond. Specifically, dibutyltin dilaurate, dibutyltin Acetate, dibutyltin diethylhexanoate, dibutyltin dioctate, dibutyltin dimethylmalate, dibutyltin diethylmalate, dibutyltin dibutylmalate, dibutyltin diisooctylmalate, dibutyltin ditridecylmalate, dibutyltin dibenzyl Dialkyltin dicarboxylates such as malate, dibutyltin maleate, dioctyltin diacetate, dioctyltin distearate, dioctyltin dilaurate, dioctyltin diethylmalate, dioctyltin diisooctylmalate, Dialkyltin alkoxides such as rutin dimethoxide and dibutyltin diphenoxide, dialkyltin chelates such as dibutyltin diacetylacetonate and dibutyltin diethylacetoacetate, dialkyltin oxide such as dibutyltin oxide and dioctyltin oxide and dioctylphthalate, diisodecyl Reaction products with ester compounds such as phthalate and methyl maleate, tin compounds obtained by reacting dialkyltin oxides, carboxylic acids and alcohol compounds, dialkyltin oxides and silicates such as dibutyltin bistriethoxysilicate, dioctyltin bistriethoxysilicate Reaction products with compounds, tetravalent tin compounds such as oxy derivatives (stannoxane compounds) of these dialkyltin compounds, tin octylate, naphthe Divalent tin compounds such as tin oxide, tin stearate, and ferrous acid tin, or reaction products and mixtures of these with amine compounds such as laurylamine described later, monobutyltin trisoctoate and monobutyltin triisopropoxy Monobutyltin compounds such as copper, monoalkyltins such as monooctyltin compounds, tetrabutyl titanates, tetrapropyl titanates, tetra (2-ethylhexyl) titanates, titanates such as isopropoxy titanium bis (ethyl acetoacetate), aluminum Organoaluminum compounds such as trisacetylacetonate, aluminum trisethylacetoacetate, di-isopropoxyaluminum ethylacetoacetate, bismuth carboxylate, iron carboxylate, titanium carboxylate, lead carboxylate Carboxylic acids such as vanadium carboxylate, zirconium carboxylate, calcium carboxylate, potassium carboxylate, barium carboxylate, manganese carboxylate, cerium carboxylate, nickel carboxylate, cobalt carboxylate, zinc carboxylate, aluminum carboxylate (2 -Ethylhexanoic acid, neodecanoic acid, versatic acid, oleic acid, naphthenic acid, etc.) Metal salts, or reactants and mixtures of these with amine compounds such as laurylamine described later, zirconium tetraacetylacetonate, zirconium tributoxyacetyl Acetonate, dibutoxyzirconium diacetylacetonate, zirconium acetylacetonate bis (ethyl acetoacetate, titanium tetraacetylacetonate and other chelating compounds, methylamino Primary amines such as ethylamine, propylamine, isopropylamine, butylamine, amylamine, hexylamine, octylamine, 2-ethylhexylamine, nonylamine, decylamine, laurylamine, pentadecylamine, cetylamine, stearylamine, cyclohexylamine , Dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, diamylamine, dioctylamine, di (2-ethylhexyl) amine, didecylamine, dilaurylamine, dicetylamine, distearylamine, methylstearylamine, ethylstearylamine, butyl Aliphatic secondary amines such as stearylamine, aliphatic secondary amines such as triamylamine, trihexylamine, and trioctylamine Aliphatic unsaturated amines such as amines, triallylamine, oleylamine, aromatic amines such as laurylaniline, stearylaniline, triphenylamine, and other amines such as monoethanolamine, diethanolamine, triethanolamine , Diethylenetriamine, triethylenetetramine, oleylamine, cyclohexylamine, benzylamine, diethylaminopropylamine, xylylenediamine, ethylenediamine, hexamethylenediamine, triethylenediamine, guanidine, diphenylguanidine, 2,4,6-tris (dimethylaminomethyl) phenol , Morpholine, N-methylmorpholine, 2-ethyl-4-methylimidazole, 1,8-diazabicyclo (5,4,0) undecene (D BU) and other amine compounds, or salts of these amine compounds with carboxylic acids, etc., and reactants and mixtures of amine compounds and organotin compounds, such as a reaction product or mixture of laurylamine and tin octylate, Low molecular weight polyamide resin obtained from excess polyamine and polybasic acid, reaction product of excess polyamine and epoxy compound, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltriiso Propoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, N- (β-aminoethyl) aminopropyltrimethoxysilane, N- (β-aminoethyl) aminopropylmethyldimethoxysilane, N- (Β-Aminoethyl) aminopropyltriethoxy Sisilane, N- (β-aminoethyl) aminopropylmethyldiethoxysilane, N- (β-aminoethyl) aminopropyltriisopropoxysilane, γ-ureidopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxy Examples thereof include silane, N-benzyl-γ-aminopropyltrimethoxysilane, N-vinylbenzyl-γ-aminopropyltriethoxysilane and the like. Silanol condensation catalysts such as silane coupling agents having amino groups such as amino-modified silyl polymers, silylated amino polymers, unsaturated aminosilane complexes, phenylamino long-chain alkylsilanes, aminosilylated silicones, etc., are derivatives obtained by modifying these. Furthermore, known silanol condensation catalysts such as other acidic catalysts such as fatty acids such as ferrous acid and organic acidic phosphoric acid ester compounds and basic catalysts can be exemplified.
  酸性触媒の有機酸性リン酸エステル化合物として、具体的には、(CHO)P(=O)(OH)、(CHO)P(=O)(OH)、(CO)P(=O)(OH)、(CO)P(=O)(OH)、(CO)P(=O)(OH)、(C3H7O)P(=O)(OH)、(CO)P(=O)(OH)、(CO)P(=O)(OH)、(C17O)P(=O)(OH)、(C17O)P(=O)(OH)、(C1021O)2P(=O)(OH)、(C1021O)P(=O)(OH)、(C1327O)P(=O)(OH)、(C1327O)P(=O)(OH)、(C1633O)P(=O)(OH)、(C1633O)P(=O)(OH)、(HOC12O)P(=O)(OH)、(HOC12O)P(=O)(OH)、(HOC16O)P(=O)(OH)、(HOC16O)P(=O)(OH)、[(HOCHCH(OH)O]P(=O)(OH)、[(HOCHCH(OH)O]P(=O)(OH)、[(HOCHCH(OH)CO]P(=O)(OH)、[(HOCHCH(OH)CO]P(=O)(OH)等を例示することができる。 Specifically, as the organic acidic phosphate compound of the acidic catalyst, (CH 3 O) 2 P (═O) (OH), (CH 3 O) P (═O) (OH) 2 , (C 2 H 5 O) 2 P (═O) (OH), (C 2 H 5 O) P (═O) (OH) 2 , (C 3 H 7 O) 2 P (═O) (OH), (C 3 H 7 O) P (= O) (OH) 2, (C 4 H 9 O) 2 P (= O) (OH), (C 4 H 9 O) P (= O) (OH) 2, (C 8 H 17 O ) 2 P (═O) (OH), (C 8 H 17 O) P (═O) (OH) 2 , (C 10 H 21 O) 2 P (═O) (OH), (C 10 H 21 O ) P (= O) (OH ) 2, (C 13 H 27 O) 2 P (= O) (OH), (C 13 H 27 O) P (= O) (OH) 2, (C 16 H 33 O) 2 P (= O) (O ), (C 16 H 33 O ) P (= O) (OH) 2, (HOC 6 H 12 O) 2 P (= O) (OH), (HOC 6 H 12 O) P (= O) (OH ) 2 , (HOC 8 H 16 O) 2 P (═O) (OH), (HOC 8 H 16 O) P (═O) (OH) 2 , [(HOCH 2 CH (OH) O] 2 P ( = O) (OH), [ (HOCH 2 CH (OH) O] P (= O) (OH) 2, [(HOCH 2 CH (OH) C 2 H 4 O] 2 P (= O) (OH) , [(HOCH 2 CH (OH) C 2 H 4 O] P (═O) (OH) 2 and the like.
 また、シラノール縮合触媒として光酸発生剤を使用することもできる。光酸発生剤として、具体的には、テトラフルオロボレート(BF )、ヘキサフルオロホスフェート(PF )、フルオロアルキルホスフェート(PFm(RF)6-m (RFはフッ素化アルキル基を表す。mは0~5の整数を示す。))、ヘキサフルオロアンチモネート(SbF )、ヘキサフルオロアルセネート(AsF )、ヘキサクロルアンチモネート(SbCl )、テトラフェニルボレート、テトラキス(トリフルオロメチルフェニル)ボレート、テトラキス(ペンタフルオロメチルフェニル)ボレート、過塩素酸イオン(ClO )、トリフルオロメタンスルフォン酸イオン(CFSO )、フルオロスルフォン酸イオン(FSO )、トルエンスルフォン酸イオン、トリニトロベンゼンスルフォン酸アニオン、トリニトロトルエンスルフォン酸アニオン等のアニオンを有するスルホニウム塩又はヨードニウム塩を使用することができる。 A photoacid generator can also be used as a silanol condensation catalyst. Specific examples of the photoacid generator include tetrafluoroborate (BF 4 ), hexafluorophosphate (PF 6 ), fluoroalkyl phosphate (PFm (RF) 6-m (RF represents a fluorinated alkyl group). M represents an integer of 0 to 5)), hexafluoroantimonate (SbF 6 ), hexafluoroarsenate (AsF 6 ), hexachloroantimonate (SbCl 6 ), tetraphenylborate, tetrakis ( Trifluoromethylphenyl) borate, tetrakis (pentafluoromethylphenyl) borate, perchlorate ion (ClO 4 ), trifluoromethanesulfonate ion (CF 3 SO 3 ), fluorosulfonate ion (FSO 3 ), toluene Sulfonate ion, trinitroben Nsurufon anion, a sulfonium salt or iodonium salt having an anion such as trinitrotoluene sulfonate anion can be used.
  シラノール縮合触媒は1種単独、又は、2種以上の組合せで使用することができる。
 本発明の組成物においては、エポキシ基含有トリアルコキシシランの硬化剤または硬化促進剤としてポリアミン類、又はイミダゾール類を用いることから、シラノール縮合触媒としても、ポリアミン類、イミダゾール類を用いるのが好ましい。ポリアミン類、及びイミダゾール類の詳細については、本発明の製造方法の部分で前述した通りである。
A silanol condensation catalyst can be used individually by 1 type or in combination of 2 or more types.
In the composition of the present invention, polyamines or imidazoles are used as the curing agent or curing accelerator of the epoxy group-containing trialkoxysilane, and therefore it is preferable to use polyamines and imidazoles as the silanol condensation catalyst. Details of the polyamines and imidazoles are as described above in the production method of the present invention.
 本発明において使用されるエポキシ基含有トリアルコキシシランの加水分解縮合物の動的光散乱法で測定したz-平均粒子径は、膜の硬度や、塗工時の塗りムラ等の観点から、5~50nmの範囲が好ましく、5~30nmがさらに好ましい。50nmより大きい場合、可使時間が短く、保存安定性に問題があったり、塗工後に塗り斑が生じる場合あり、5nmより小さい場合には、本組成物から得られる塗膜の硬度が不十分となる場合がある。 The z-average particle diameter measured by the dynamic light scattering method of the hydrolysis-condensation product of the epoxy group-containing trialkoxysilane used in the present invention is 5 from the viewpoint of film hardness, coating unevenness during coating, etc. The range of ˜50 nm is preferable, and 5 to 30 nm is more preferable. If it is larger than 50 nm, the pot life is short, there is a problem in storage stability, and smear may occur after coating. If it is smaller than 5 nm, the hardness of the coating film obtained from this composition is insufficient. It may become.
(ポリアミン類及び他の硬化剤または硬化促進剤)
 本発明の組成物には、特定のポリアミン類を含有する。ポリアミン類としては、上記(1)の製造方法において示したポリアミン類を例示することができる。その使用量についても、前記(1)の製造方法において記載された通りである。
 さらに、必要に応じてこれら以外の硬化剤または硬化促進剤を添加することができる。
 具体的には、上記(1)の製造方法において示したイミダゾール類;
 ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、トリメチルヘキサメチレンジアミン、ペンタンジアミン、ビス(2-ジメチルアミノエチル)エーテル、ペンタメチルジエチレントリアミン、アルキル-t-モノアミン、1,4-ジアザビシクロ(2,2,2)オクタン(トリエチレンジアミン)、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、N,N,N’,N’-テトラメチルプロピレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N-ジメチルシクロヘキシルアミン、ジメチルアミノエトキシエトキシエタノール、ジメチルアミノヘキサノール等の脂肪族アミン系、ピペリジン、ピペラジン、メンタンジアミン、イソホロンジアミン、メチルモルホリン、エチルモルホリン、N,N’,N”-トリス(ジメチルアミノプロピル)ヘキサヒドロ-s-トリアジン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキシスピロ(5,5)ウンデカンアダクト、N-アミノエチルピペラジン、トリメチルアミノエチルピペラジン、ビス(4-アミノシクロヘキシル)メタン、N,N’-ジメチルピペラジン、1,8-ジアザビシクロ(4,5,0)ウンデセン-7等の脂環式や複素環式アミン系、ベンジルメチルアミン、ジメチルベンジルアミン、ピリジン、ピコリン等の芳香族アミン系、エポキシ化合物付加ポリアミン、マイケル付加ポリアミン、マンニッヒ付加ポリアミン、チオ尿素付加ポリアミン、ケトン封鎖ポリアミン等の変性アミン系、ジシアンジアミド、グアニジン、有機酸ヒドラジド、ジアミノマレオニトリル、アミンイミド、三フッ化ホウ素-ピペリジン錯体、三フッ化ホウ素-モノエチルアミン錯体等のその他のアミン系等のアミン系化合物;
 2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾリン系化合物;
 ダイマー酸とポリアミンとの縮合により得られるポリアミド等のアミド系化合物;
 カルボン酸のアリール及びチオアリールエステル等の活性カルボニル化合物;
 フェノールノボラック、クレゾールノボラック、ポリオール、ポリメルカプタン、ポリサルファイド、2-(ジメチルアミノメチルフェノール)、2,4,6-トリス(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノールのトリ-2-エチルヘキシル塩酸塩等のフェノール、アルコール系、チオール系、エーテル系、又はチオエーテル系化合物;
 ブチル化尿素、ブチル化メラミン、ブチル化チオ尿素、三フッ化ホウ素等の尿素系、チオ尿素系、又はルイス酸系化合物;
 エチルホスフィン、ブチルホスフィン等のアルキルホスフィン、フェニルホスフィン等の第1ホスフィン、ジメチルホスフィン、ジプロピルホスフィン等のジアルキルホスフィン、ジフェニルホスフィン、メチルエチルホスフィン等の第2ホスフィン、トリメチルホスフィン、トリエチルホスフィン等の第3ホスフィン等のリン系化合物;
 無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、無水マレイン酸、テトラメチレン無水マレイン酸、無水トリメリット酸、無水クロレンド酸、無水ピロメリット酸、ドデセニル無水コハク酸、無水ベンゾフェノンテトラカルボン酸、エチレングリコールビス(アンヒドロトリメリテート)、メチルシクロヘキセンテトラカルボン酸無水物、ポリアゼライン酸無水物等の酸無水物系化合物;
 アリールジアゾニウム塩、ジアリールヨードニウム塩、トリアリールスルホニウム塩、トリフェニルシラノール-アルミニウム錯体、トリフェニルメトキシシラン-アルミニウム錯体、シリルペルオキシド-アルミニウム錯体、トリフェニルシラノール-トリス(サリシルアルデヒダート)アルミニウム錯体等のオニウム塩系、または活性ケイ素化合物-アルミニウム錯体系化合物等を例示することができる。
(Polyamines and other curing agents or accelerators)
The composition of the present invention contains specific polyamines. Examples of polyamines include the polyamines shown in the production method of (1) above. The amount of use is also as described in the production method of (1) above.
Furthermore, a curing agent or curing accelerator other than these can be added as necessary.
Specifically, imidazoles shown in the production method of (1) above;
Dimethylaminopropylamine, diethylaminopropylamine, trimethylhexamethylenediamine, pentanediamine, bis (2-dimethylaminoethyl) ether, pentamethyldiethylenetriamine, alkyl-t-monoamine, 1,4-diazabicyclo (2,2,2) octane (Triethylenediamine), N, N, N ′, N′-tetramethylhexamethylenediamine, N, N, N ′, N′-tetramethylpropylenediamine, N, N, N ′, N′-tetramethylethylenediamine, Aliphatic amines such as N, N-dimethylcyclohexylamine, dimethylaminoethoxyethoxyethanol, dimethylaminohexanol, piperidine, piperazine, menthanediamine, isophoronediamine, methylmorpholine, ethylmorpholine, N, N ′, N ″ -tris (dimethylaminopropyl) hexahydro-s-triazine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxyspiro (5,5) undecane adduct, N-aminoethyl Alicyclic and heterocyclic amines such as piperazine, trimethylaminoethylpiperazine, bis (4-aminocyclohexyl) methane, N, N'-dimethylpiperazine, 1,8-diazabicyclo (4,5,0) undecene-7 , Aromatic amines such as benzylmethylamine, dimethylbenzylamine, pyridine, and picoline, epoxy compound-added polyamines, Michael-added polyamines, Mannich-added polyamines, thiourea-added polyamines, and modified amines such as ketone-capped polyamines, dicyandiamide, guanidine, Organic acid hydrazide, diamino male Other amine compounds such as nitrile, amine imide, boron trifluoride-piperidine complex, boron trifluoride-monoethylamine complex;
Imidazoline compounds such as 2-methylimidazoline and 2-phenylimidazoline;
Amide compounds such as polyamide obtained by condensation of dimer acid and polyamine;
Active carbonyl compounds such as aryl and thioaryl esters of carboxylic acids;
Phenol novolak, cresol novolak, polyol, polymercaptan, polysulfide, 2- (dimethylaminomethylphenol), 2,4,6-tris (dimethylaminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol Phenols such as tri-2-ethylhexyl hydrochloride, alcohols, thiols, ethers or thioethers;
Urea-based, thiourea-based or Lewis acid-based compounds such as butylated urea, butylated melamine, butylated thiourea, boron trifluoride;
Alkylphosphine such as ethylphosphine and butylphosphine, first phosphine such as phenylphosphine, dialkylphosphine such as dimethylphosphine and dipropylphosphine, second phosphine such as diphenylphosphine and methylethylphosphine, and third such as trimethylphosphine and triethylphosphine Phosphorus compounds such as phosphine;
Phthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, maleic anhydride, tetramethylene maleic anhydride, trimellitic anhydride Acid anhydrides such as acid, chlorendic anhydride, pyromellitic anhydride, dodecenyl succinic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bis (anhydrotrimellitate), methylcyclohexene tetracarboxylic anhydride, polyazeline acid anhydride Physical compounds;
Onium such as aryldiazonium salt, diaryliodonium salt, triarylsulfonium salt, triphenylsilanol-aluminum complex, triphenylmethoxysilane-aluminum complex, silyl peroxide-aluminum complex, triphenylsilanol-tris (salicylide) aluminum complex Examples thereof include a salt system or an active silicon compound-aluminum complex system compound.
(有機酸)
 本発明の組成物に用いられる有機酸は、25℃におけるpKaが、2.0~6.0の範囲、好ましくは、3.0~5.0の範囲の有機酸であれば、特に制限されず、具体的には、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、イソ吉草酸、カプロン酸、イソカプロン酸、クロロ酢酸、フルオロ酢酸、ブロモ酢酸、3-クロロプロピオン酸、2-ブロモプロピオン酸、2-ヒドロキシ酪酸、フェニル酢酸、フェニルプロピオン酸、4-フェニル酪酸、フェノキシ酢酸、シアノ酢酸、シュウ酸、マロン酸、2,2-ジメチルマロン酸、アジピン酸、コハク酸、ピメリン酸、フタル酸、グルタル酸、オキザロ酢酸、クエン酸、イソクエン酸、シクロヘキサン-1,1-ジカルボン酸、酒石酸、o-、m-、p-アニス酸、安息香酸、o-クロロ安息香酸、m-フルオロ安息香酸、2,3-ジフルオロ安息香酸、o-、m-、p-ニトロ安息香酸、m-、p-アミノ安息香酸、サリチル酸、フタル酸、イロフタル酸、trans-ケイ皮酸、2-フランカルボン酸、グリオキシル酸、グルコール酸、クロトン酸、乳酸、2-ヒドロキシ-2-メチルプロピオン酸、ピルビン酸、マンデル酸、リンゴ酸、レブリン酸、2,6-ピリジンジカルボン酸、ニコチン酸等を例示することができ、中でも、脂肪族モノカルボン酸、または置換または無置換安息香酸を好ましく例示することができる。
 用いる酸の量は、特に制限されないが、用いられるポリアミン類1モルに対して、0.3~1.2モルの範囲が好ましく、0.5~1.0モル、又は0.6~0.9モルの範囲がさらに好ましい。
 0.3モルより少ない場合には、組成物の保存安定性が低下する場合があり、1.2モルよりも大きい場合には、十分な硬度の塗膜を形成できない場合がある。
(Organic acid)
The organic acid used in the composition of the present invention is not particularly limited as long as the pKa at 25 ° C. is in the range of 2.0 to 6.0, preferably in the range of 3.0 to 5.0. Specifically, formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, caproic acid, isocaproic acid, chloroacetic acid, fluoroacetic acid, bromoacetic acid, 3-chloropropionic acid, 2-bromo Propionic acid, 2-hydroxybutyric acid, phenylacetic acid, phenylpropionic acid, 4-phenylbutyric acid, phenoxyacetic acid, cyanoacetic acid, oxalic acid, malonic acid, 2,2-dimethylmalonic acid, adipic acid, succinic acid, pimelic acid, phthalate Acid, glutaric acid, oxaloacetic acid, citric acid, isocitric acid, cyclohexane-1,1-dicarboxylic acid, tartaric acid, o-, m-, p-anisic acid, benzoic acid, o-acid B-benzoic acid, m-fluorobenzoic acid, 2,3-difluorobenzoic acid, o-, m-, p-nitrobenzoic acid, m-, p-aminobenzoic acid, salicylic acid, phthalic acid, ilophthalic acid, trans-silica Cinnamic acid, 2-furancarboxylic acid, glyoxylic acid, glucholic acid, crotonic acid, lactic acid, 2-hydroxy-2-methylpropionic acid, pyruvic acid, mandelic acid, malic acid, levulinic acid, 2,6-pyridinedicarboxylic acid, Nicotinic acid and the like can be exemplified, and among them, aliphatic monocarboxylic acid or substituted or unsubstituted benzoic acid can be preferably exemplified.
The amount of acid to be used is not particularly limited, but is preferably in the range of 0.3 to 1.2 mol, preferably 0.5 to 1.0 mol, or 0.6 to 0.00 mol per mol of the polyamine used. A range of 9 moles is more preferred.
When the amount is less than 0.3 mol, the storage stability of the composition may be lowered. When the amount is more than 1.2 mol, a coating film having sufficient hardness may not be formed.
(パーフルオロアルキル基及び/又はパーフルオロアルキレン基を有する炭素数2~5のアルコール類)
 本発明の組成物に使用されるパーフルオロアルキル基及び/若しくはパーフルオロアルキレン基を有する炭素数2~5のアルコール類として、具体的には、トリフルオロメタノール、2,2,2-トリフルオロエタノール、1,1,2,2,2-ペンタフルオロエタノール、3,3,3-トリフルオロ-1-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、1,1,2,2,3,3,3-ヘプタフルオロ-1-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2-トリフルオロメチル-2-プロパノール、2-メチル-1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,4,4,4-ヘプタフルオロ-1-ブタノール、ノナフルオロ-t-ブタノール、2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール等を例示することができる。
 本組成物中のフルオロアルコールの使用量は、特に制限されないが、組成物全体の30質量%以上が好ましく、40質量%以上がさらに好ましい。30質量%より小さい場合には、組成物の長期保存安定性が低下する場合がある。
(C2-C5 alcohol having a perfluoroalkyl group and / or a perfluoroalkylene group)
Specific examples of the alcohol having 2 to 5 carbon atoms having a perfluoroalkyl group and / or a perfluoroalkylene group used in the composition of the present invention include trifluoromethanol, 2,2,2-trifluoroethanol. 1,1,2,2,2-pentafluoroethanol, 3,3,3-trifluoro-1-propanol, 2,2,3,3,3-pentafluoro-1-propanol, 1,1,2 , 2,3,3,3-heptafluoro-1-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2-trifluoromethyl-2-propanol, 2-methyl-1 , 1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,4,4,4-heptafluoro-1-butanol, nonafluoro-t-butanol, , It can be exemplified 2,3,3,4,4,5,5- octafluoro-1-pentanol.
The amount of fluoroalcohol used in the composition is not particularly limited, but is preferably 30% by mass or more, and more preferably 40% by mass or more of the entire composition. When it is less than 30% by mass, the long-term storage stability of the composition may be lowered.
(有機溶媒)
 本発明の組成物は、組成物中の固形分濃度を調製するために、有機溶媒を用いることができ、そのような溶媒として、溶液の均一性、安定性等を保持できる溶媒であれば、特に限定されないが、具体的には、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、n-ブタノール、s-ブタノール、t-ブタノール、n-ペンタノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のアルコール類、テトラヒドロフラン、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、テトラヒドロピラン等のエーテル類、アセトン、メチルエチルケトン、アセチルアセトン等のケトン類、酢酸メチル、エチレングリコールモノアセテート等のエステル類、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ピロリドン、N-メチルピロリドン等のアミド類等を例示することができ、中でも炭素数1~5のアルコールが好ましい。これらは1種単独で、または2種以上を併用して用いることができる。
 その他の溶媒とし、水を用いるのが好ましく、その場合、用いる有機溶媒は、水に溶解する有機溶媒が好ましい。また、水と有機溶媒の比率は、おのおの必要な量を用いた上で、組成物として均一な溶液になる量比であれば特に制限されない。炭素数3以下のアルコール等の水に比較的良く溶解する有機溶媒を用いた場合には、水と有機溶媒の質量比(水/有機溶媒)は、30/70~95/5の範囲が好ましく、50/50~90/10、60/40~80/20、または65/35~75/25の範囲がさらに好ましい。
 また、炭素数4以上のアルコール等の水に比較的溶解しにくい有機溶媒を用いた場合に、有機溶媒に対する水の溶解度が低いために、使用する水の量は、トリアルコキシシランの加水分解に必要な量以上、組成物が均一になる範囲の量で使用するのが好ましい。
(Organic solvent)
The composition of the present invention can use an organic solvent in order to adjust the solid content concentration in the composition, and as such a solvent, as long as the solvent can maintain the uniformity and stability of the solution, Specific examples include, but are not limited to, methanol, ethanol, propyl alcohol, isopropyl alcohol, n-butanol, s-butanol, t-butanol, n-pentanol, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, ethylene Alcohols such as glycol monomethyl ether, propylene glycol monomethyl ether, and ethylene glycol monoethyl ether; ethers such as tetrahydrofuran, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, and tetrahydropyran Ketones such as acetone, methyl ethyl ketone and acetylacetone, esters such as methyl acetate and ethylene glycol monoacetate, amides such as formamide, N, N-dimethylformamide, N, N-dimethylacetamide, pyrrolidone and N-methylpyrrolidone Examples thereof include alcohols having 1 to 5 carbon atoms. These can be used alone or in combination of two or more.
It is preferable to use water as the other solvent. In that case, the organic solvent to be used is preferably an organic solvent that dissolves in water. In addition, the ratio of water to the organic solvent is not particularly limited as long as it is an amount ratio that makes a uniform solution as a composition after using a necessary amount. When an organic solvent that dissolves relatively well in water such as alcohol having 3 or less carbon atoms is used, the mass ratio of water to organic solvent (water / organic solvent) is preferably in the range of 30/70 to 95/5. , 50/50 to 90/10, 60/40 to 80/20, or 65/35 to 75/25 are more preferable.
In addition, when an organic solvent that is relatively difficult to dissolve in water such as alcohol having 4 or more carbon atoms is used, the amount of water used for hydrolysis of trialkoxysilane is low because the solubility of water in the organic solvent is low. It is preferable to use it in an amount in a range where the composition becomes more than the necessary amount.
(配合割合)
 本発明の組成物中の固形分濃度は、特に制限されないが、塗膜の外観、塗工性、硬化性、塗膜の性質、組成物の保存安定性等を考慮して、0.5~50質量%の範囲になる量を用いるのが好ましく、1.0~30質量%、1.0~20質量%、1.0~10質量%、1.5~5.0質量%、または1.8~3質量%の範囲がさらに好ましい。0.5質量%より小さい場合には、膜を均質に成膜するのが困難な場合があり、50質量%より大きい場合には、組成物の安定性、塗膜の透明性、外観、または塗工性等に問題が生じる場合がある。
 有機溶媒、及び水の使用量は、上記固形分濃度に調製できる範囲で併用するフルオロアルコール類の量も考慮して適宜定めることができる。
(Mixing ratio)
The solid content concentration in the composition of the present invention is not particularly limited, but it is 0.5 to 0.5 in consideration of the appearance of the coating film, coating properties, curability, properties of the coating film, storage stability of the composition, and the like. An amount in the range of 50% by weight is preferred, 1.0-30% by weight, 1.0-20% by weight, 1.0-10% by weight, 1.5-5.0% by weight, or 1 More preferably, the range is from 8 to 3% by mass. If it is less than 0.5% by mass, it may be difficult to form a film uniformly, and if it is more than 50% by mass, the stability of the composition, the transparency of the coating film, the appearance, or There may be a problem in coating properties.
The amount of the organic solvent and water used can be determined as appropriate in consideration of the amount of the fluoroalcohol used in combination as long as the solid content concentration can be adjusted.
(その他の配合成分)
 本発明の組成物には、その用途に応じて、他の成分を添加することができ、具体的には、コロイド状シリカやコロイド状アルミナ等の無機微粒子、各種界面活性剤、染料、顔料、分散材、撥水材、増粘材、香料、抗菌性成分等を例示することができる。
(Other ingredients)
In the composition of the present invention, other components can be added depending on the application. Specifically, inorganic fine particles such as colloidal silica and colloidal alumina, various surfactants, dyes, pigments, Dispersants, water repellent materials, thickeners, fragrances, antibacterial components and the like can be exemplified.
(組成物の製造条件)
 本発明の組成物の製造方法は、特に制限されないが、具体的には、以下の方法等を例示することができる。
i)エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物、シラノール縮合触媒、水と必要に応じて有機溶媒(n-ペンタノールを含む)を室温で混合、撹拌し、次いで、ポリアミン類、必要に応じて有機酸またはフルオロアルコール類を加え、有機溶媒(n-ペンタノールを含む)と必要に応じて水で希釈する。
ii)エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物、水、有機溶媒(n-ペンタノールを含む)、ポリアミン類を室温で混合、撹拌し、さらに必要に応じて有機酸またはフルオロアルコール類を添加し、さらに有機溶媒(n-ペンタノールを含む)と必要に応じて水で希釈する。
iii)エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物、水、溶媒としてのアルコール(n-ペンタノールを含む)、ポリアミン類、必要に応じて有機酸またはフルオロアルコール類を室温で混合、撹拌し、さらに有機溶媒(n-ペンタノールを含む)と必要に応じて水で希釈する。
iv)エポキシ基含有トリアルコキシシラン、水、溶媒としてのアルコール(n-ペンタノールを含む)、ポリアミン類、必要に応じて有機酸またはフルオロアルコール類を室温で混合、撹拌する。
 撹拌温度は、特に制限されないが、室温~用いる溶媒の沸点温度の範囲が好ましく、室温で行うのが、さらに好ましい。この場合、室温とは、撹拌を行っている場所の外気温になるが、15~35℃の範囲が好ましい。
(Production conditions for the composition)
Although the manufacturing method of the composition of this invention is not restrict | limited in particular, The following methods etc. can be illustrated specifically ,.
i) Epoxy group-containing trialkoxysilane and / or its hydrolysis condensate, silanol condensation catalyst, water and, if necessary, an organic solvent (including n-pentanol) are mixed and stirred at room temperature, and then polyamines, If necessary, an organic acid or fluoroalcohol is added and diluted with an organic solvent (including n-pentanol) and water as necessary.
ii) Epoxy group-containing trialkoxysilane and / or hydrolysis condensate thereof, water, organic solvent (including n-pentanol) and polyamines are mixed and stirred at room temperature, and further, an organic acid or fluoroalcohol as necessary Are further diluted with an organic solvent (including n-pentanol) and water as necessary.
iii) Mixing epoxy group-containing trialkoxysilane and / or hydrolysis condensate thereof, water, alcohol as a solvent (including n-pentanol), polyamines, organic acid or fluoroalcohol as necessary at room temperature, Stir and further dilute with organic solvent (including n-pentanol) and water as needed.
iv) Mix and stir the epoxy group-containing trialkoxysilane, water, alcohol as a solvent (including n-pentanol), polyamines and, if necessary, organic acid or fluoroalcohol at room temperature.
The stirring temperature is not particularly limited, but is preferably in the range of room temperature to the boiling temperature of the solvent used, and more preferably at room temperature. In this case, the room temperature is the outside temperature of the place where the stirring is performed, but a range of 15 to 35 ° C. is preferable.
(3)本発明の組成物の使用の態様
 本発明の組成物は、対象物である基材の表面に刷毛、スプレー、ディッピング、スピンコート、バーコート、グラビア印刷等の公知のあらゆる塗装手段により塗膜を形成することができる。乾燥は、室温乾燥及び/又は加熱により行うことができる。具体的には20℃~250℃、好ましくは20℃~150℃で、10秒~24時間、好ましくは30秒~10時間程度行なう。
 得られる薄膜は、特に制限されないが、10nmを超え、5μm以下であることが好ましい。
(3) Aspects of use of the composition of the present invention The composition of the present invention can be applied to the surface of a substrate as a target by any known coating means such as brush, spray, dipping, spin coating, bar coating, and gravure printing. A coating film can be formed. Drying can be performed by room temperature drying and / or heating. Specifically, it is carried out at 20 ° C. to 250 ° C., preferably 20 ° C. to 150 ° C. for 10 seconds to 24 hours, preferably 30 seconds to 10 hours.
Although the thin film obtained is not particularly limited, it is preferably more than 10 nm and not more than 5 μm.
 本発明の組成物を処理する基材としては、処理が可能であれば特に制限されず、具体的には、鉄、ステンレス、銅、アルミニウム及びその他の金属、セラミックス、セメント、ガラス、ポリカーボネート樹脂、アクリル樹脂、ポリイミド樹脂、ポリエステル樹脂、エポキシ樹脂、液晶ポリマー樹脂、ポリエーテルスルフォン等の樹脂基材等を例示することができ、他のコーティング材で表面がコーティングされていてもよい。これらの中でも特に樹脂基材や金属基材が好ましい。 The substrate for treating the composition of the present invention is not particularly limited as long as it can be treated. Specifically, iron, stainless steel, copper, aluminum and other metals, ceramics, cement, glass, polycarbonate resin, Examples thereof include resin base materials such as acrylic resin, polyimide resin, polyester resin, epoxy resin, liquid crystal polymer resin, and polyether sulfone, and the surface may be coated with another coating material. Among these, a resin base material and a metal base material are particularly preferable.
 本発明の組成物から得られた薄膜上に、さらに撥水層や金属界面活性剤の加水分解縮合物を含有する層、または自己組織化単分子膜等を積層することができる。 Further, a water-repellent layer, a layer containing a hydrolytic condensate of a metal surfactant, or a self-assembled monolayer can be laminated on the thin film obtained from the composition of the present invention.
 本発明の組成物は、例えば、熱交換器、熱交換器用フィン、建築材料、屋根、窓ガラス、風防ガラス、各種ミラー、プラスチックレンズ、レンズ、タイヤ、ゴム、磁気記録媒体、半導体材料表面等への処理、降雪地帯のアンテナ、鉄塔、電気通信施設、道路交通標識、信号機等への処理、船舶と水との摩擦抵抗の低減化、車両・航空機のボデイの汚れ付着防止、各種金属材料表面や電池材料等の電極の腐食防止、魚網表面への処理、シーラント、耐火防水シール剤、カーワックス等への添加などに使用することができる。また、本発明の組成物を処理した樹脂基板は、その表面が硬質化されていることから、自動車のフロントガラス等の従来ガラスが使用されていた用途の代替品として使用することも可能である。 The composition of the present invention can be applied to, for example, heat exchangers, fins for heat exchangers, building materials, roofs, window glasses, windshields, various mirrors, plastic lenses, lenses, tires, rubber, magnetic recording media, semiconductor material surfaces, and the like. Treatment of snowfall antennas, steel towers, telecommunication facilities, road traffic signs, traffic lights, etc., reduction of frictional resistance between ships and water, prevention of vehicle and aircraft body contamination, various metal material surfaces and It can be used to prevent corrosion of electrodes such as battery materials, treatment on the surface of fish nets, addition to sealants, fireproof and waterproof sealants, car wax, and the like. Moreover, since the surface of the resin substrate treated with the composition of the present invention is hardened, it can also be used as a substitute for applications in which conventional glass such as an automobile windshield has been used. .
 以下に、実施例を記載するが、本発明の技術的範囲はこれらの実施例に限定されない。 Examples will be described below, but the technical scope of the present invention is not limited to these examples.
[実施例1]
1.コーティング組成物の調製
 1.25gの水に分散させた0.54gの2-メチルイミダゾールに酢酸0.44gを加え、溶解させた。得られた水溶液に、16.5gの3-グリシドキシプロピルトリメトキシシラン(GPTMS)を加え、室温で2時間の撹拌を行なった。10.0gの縮合反応液を40.0gのソルミックス(登録商標)(AP-7、日本アルコール販売株式会社製)で希釈し、固形分20wt%のコーティング組成物(A-1)を得た。
[Example 1]
1. Preparation of coating composition 0.44 g of acetic acid was added to 0.54 g of 2-methylimidazole dispersed in 1.25 g of water and dissolved. 16.5 g of 3-glycidoxypropyltrimethoxysilane (GPTMS) was added to the obtained aqueous solution, and the mixture was stirred at room temperature for 2 hours. 10.0 g of the condensation reaction solution was diluted with 40.0 g of Solmix (registered trademark) (AP-7, manufactured by Nippon Alcohol Sales Co., Ltd.) to obtain a coating composition (A-1) having a solid content of 20 wt%. .
2.コーティング組成物の成膜および撥液処理
 ポリカーボネート(PC)樹脂基板上にコーティング用組成物(A-1)の成膜を行った。まず、PC樹脂基板に、調製したコーティング用組成物(A-1)をディップコートした。コートした基板はオーブン内で乾燥し(120℃、20min)、コーティング用組成物処理基板(B-1)を得た。得られた処理後基板にフッ素系のガラス表面撥液処理剤超ガラコ(登録商標)(ソフト99社製)を塗工し、下地膜‐撥液処理PC樹脂基板(C-1)を得た。
2. Coating Film Formation and Liquid-Repellent Treatment A coating composition (A-1) was formed on a polycarbonate (PC) resin substrate. First, the prepared coating composition (A-1) was dip coated on a PC resin substrate. The coated substrate was dried in an oven (120 ° C., 20 min) to obtain a coating composition-treated substrate (B-1). The resulting treated substrate was coated with a fluorine-based glass surface liquid repellent treatment agent Super Galaco (registered trademark) (manufactured by Soft 99) to obtain a base film-liquid repellent treated PC resin substrate (C-1). .
3.撥液性の評価
 得られた(C-1)の静的接触角を接触角測定器(Drop Master 700、協和界面科学社製)を用いて測定を行った。その結果を表1に示す。比較のために超ガラコ(登録商標)を処理したソーダ石灰ガラス(SLG)基板(cC-1)を作成し、同様に、静的接触角測定を行なった。
3. Evaluation of Liquid Repellency The static contact angle of the obtained (C-1) was measured using a contact angle measuring device (Drop Master 700, manufactured by Kyowa Interface Science Co., Ltd.). The results are shown in Table 1. For comparison, a soda-lime glass (SLG) substrate (cC-1) treated with Super Galaco (registered trademark) was prepared, and the static contact angle was measured in the same manner.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 その結果、本発明のコーティング組成物を用いることで、PC樹脂基板上にも、ソーダライムガラス基板上と同様の撥水性膜を形成することができることがわかった。 As a result, it was found that the same water-repellent film as that on the soda lime glass substrate can be formed on the PC resin substrate by using the coating composition of the present invention.
4.X線光電子分光法(ESCA)による測定
 コーティング用組成物処理基板(B-1)について、X線光電子分光装置(QuanteraII、アルバック・ファイ社製)による測定を実施した。1kVのスパッタ条件で100サイクル行い、約200nmの深さまで測定した。測定結果を図1に示す。図1から、確かにSi成分に富んだ、ガラスライクな無機膜が形成されていることが分かった。
4). Measurement by X-ray photoelectron spectroscopy (ESCA) The coating composition-treated substrate (B-1) was measured by an X-ray photoelectron spectrometer (Quantera II, manufactured by ULVAC-PHI). 100 cycles were performed under a sputtering condition of 1 kV, and the measurement was made to a depth of about 200 nm. The measurement results are shown in FIG. FIG. 1 clearly shows that a glass-like inorganic film rich in Si component is formed.
5.碁盤目試験
 (B-1)の碁盤目剥離試験をJIS K-5400(1999年)に記載された碁盤目テープ剥離試験法に準じて行った。PC樹脂基板上のコーティング膜を1mm×1mmの碁盤目状にクロスカットし、透明粘着テープを用いて剥離試験を行なった。各碁盤目のコーティング膜について、光学顕微鏡により評価したところ、全く剥離は観測されなかった(非剥離数/試験数 = 100/100)。その結果、PC樹脂基板とコーティング膜が良く密着していることがわかった。
5. The cross cut test of the cross cut test (B-1) was conducted according to the cross cut tape peel test method described in JIS K-5400 (1999). The coating film on the PC resin substrate was cross-cut into a 1 mm × 1 mm grid pattern, and a peel test was performed using a transparent adhesive tape. When the coating film of each grid was evaluated with an optical microscope, no peeling was observed (number of non-peeling / number of tests = 100/100). As a result, it was found that the PC resin substrate and the coating film were in good contact.
[実施例2]
1.コーティング用組成物の調製
 実施例1と同様の方法でコーティング用組成物(A-1)を得た。
[Example 2]
1. Preparation of Coating Composition A coating composition (A-1) was obtained in the same manner as in Example 1.
2.SUS304鏡面板およびCu鏡面板への成膜
 得られたコーティング用組成物(A-1)を用いて、SUS304鏡面板およびCu鏡面板に成膜を行った。まず、SUS304鏡面板およびCu鏡面板に、調製したコーティング用組成物(A-1)をディップコートした。コートした基板はオーブン内で加熱硬化し(200℃、20min)、処理基板(B-2)、及び(B-3)を得た。加熱処理後のCu鏡面板を目視で評価したところ、未処理品は錆びにより鏡面が失われているが、コーティング用組成物処理品(B-3)は加熱前と変化が見られず、鏡面が維持されていた。
2. Film formation on SUS304 mirror surface plate and Cu mirror surface plate Using the obtained coating composition (A-1), a film was formed on SUS304 mirror surface plate and Cu mirror surface plate. First, the prepared coating composition (A-1) was dip coated on a SUS304 mirror plate and a Cu mirror plate. The coated substrate was heated and cured in an oven (200 ° C., 20 min) to obtain treated substrates (B-2) and (B-3). When the Cu mirror plate after the heat treatment was evaluated visually, the untreated product lost the mirror surface due to rust, but the coating composition treated product (B-3) showed no change from that before the heating. Was maintained.
3.ヒートサイクル試験
 (B-2)、(B-3)のヒートサイクル試験を行なった。試験は熱風乾燥機(LC-234、Espec社製)を用いた。2時間で25℃から200℃をサイクルするように設定し、処理基板を入れ、5周のヒートサイクル試験を行った。(B-2)及び(B-3)とも、目視により、試験後にクラックや剥がれがないことを確認した。
3. Heat cycle test Heat cycle tests (B-2) and (B-3) were conducted. A hot air dryer (LC-234, manufactured by Espec) was used for the test. It set so that it might cycle from 25 degreeC to 200 degreeC in 2 hours, the process substrate was put, and the heat cycle test of 5 rounds was done. In both (B-2) and (B-3), it was visually confirmed that there was no crack or peeling after the test.
[実施例3]
1.コーティング組成物の調製
 2.0gのGPTMS、0.5gのジエチレントリアミン、0.3gの水および8.0gのn-ペンタノールを混合し、室温で2時間撹拌した。1.0gの反応溶液を9.0gのn-ペンタノールで希釈し、固形分の質量濃度換算で2%のコーティング組成物(A-2)を調製した。コーティング用組成物中のGPTMSの加水分解縮合物の平均粒径を粒度分布計(ゼーターサイザーナノ、マルバーン社製:測定条件;溶液粘度 3.31、粒子の屈折率 1.50)により測定したところ、コーティング組成物調製1日後の粒径は11nmであった。
[Example 3]
1. Preparation of Coating Composition 2.0 g GPTMS, 0.5 g diethylenetriamine, 0.3 g water and 8.0 g n-pentanol were mixed and stirred at room temperature for 2 hours. 1.0 g of the reaction solution was diluted with 9.0 g of n-pentanol to prepare a coating composition (A-2) of 2% in terms of solid content mass concentration. When the average particle diameter of the hydrolysis condensate of GPTMS in the coating composition is measured by a particle size distribution meter (Zetersizer Nano, Malvern: measurement conditions; solution viscosity 3.31, particle refractive index 1.50) The particle size after 1 day of preparation of the coating composition was 11 nm.
2.PC樹脂基板への成膜
 PC樹脂基板(80×80mm)を水、炭化水素系洗浄剤(NSクリーン100、JX日鉱日石エネルギー社製)およびイソプロパノール中で超音波による洗浄を各10分間ずつ行った。洗浄後PC樹脂基板に、調製したコーティング用組成物(A-2)約0.5mlをドロップし、キムワイプで均一に塗り延ばしたのち、25℃に温度管理されたキャビネット内で8時間静置して、処理基板(B-4)を得た。同様の基板上に同様にコーティング組成物(A-2)を塗り伸ばしたのちに、オーブン内で120℃で20分間加熱して、処理基板(B-5)を得た。得られた(B-4)及び(B-5)について、表面硬度計(ピコデンター、フィッシャー社製:測定条件;最大負荷 0.5mN、クリープ速度 20sec)を用いてビッカース硬さ(HV、単位N/mm)、およびマルテンス硬さ(HM、単位N/mm)の測定を行った。その結果を表2に示す。
2. Film formation on PC resin substrate PC resin substrate (80 x 80 mm) was cleaned with water, hydrocarbon cleaner (NS Clean 100, manufactured by JX Nippon Oil & Energy Corporation) and isopropanol for 10 minutes each. It was. After washing, about 0.5 ml of the prepared coating composition (A-2) is dropped on a PC resin substrate, spread evenly with Kimwipe, and then left in a cabinet controlled at 25 ° C. for 8 hours. Thus, a treated substrate (B-4) was obtained. Similarly, the coating composition (A-2) was spread on the same substrate and then heated in an oven at 120 ° C. for 20 minutes to obtain a treated substrate (B-5). For the obtained (B-4) and (B-5), using a surface hardness meter (Picodenter, manufactured by Fischer: measurement conditions; maximum load 0.5 mN, creep rate 20 sec), Vickers hardness (HV, unit N) / Mm 2 ) and Martens hardness (HM, unit N / mm 2 ). The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例4]
1 コーティング組成物の調製
 GPTMS、ジエチレントリアミンを用いて、実施例3と同様の方法でコーティング組成物(A-2)を調製した。
[Example 4]
1 Preparation of Coating Composition A coating composition (A-2) was prepared in the same manner as in Example 3 using GPTMS and diethylenetriamine.
2 基板上への成膜
 約0.5mlのコーティング組成物(A-2)をポリエチレンテレフタレート(PET)フィルム上にドロップし、キムワイプで均一になるように塗り延ばした。オーブンにて120℃で20分間の加熱を行い、コーティング組成物処理PETフィルム(B-6)を得た。
 同液を同様の手法によりSUS304鏡面板に塗り延ばしたのち、オーブンにて200℃で20分間の加熱を行い、コーティング組成物処理SUS304鏡面板(B-7)を得た。
2 Film Formation on Substrate About 0.5 ml of the coating composition (A-2) was dropped onto a polyethylene terephthalate (PET) film and spread evenly with Kimwipe. The coating composition-treated PET film (B-6) was obtained by heating in an oven at 120 ° C. for 20 minutes.
The same solution was spread on a SUS304 mirror plate by the same method and then heated in an oven at 200 ° C. for 20 minutes to obtain a coating composition-treated SUS304 mirror plate (B-7).
3 自己組織化単分子膜(SAM)処理基板の作成
 得られた両基板(B-6),(B-7)について、コーティング膜上を10分間のUVオゾン処理(約12,000mJ/cm)した後、SAM形成溶液(SAMLAY(登録商標)、日本曹達社製)に5分間、浸漬し、その後、その表面を炭化水素系洗浄剤(NSクリーン100、JX日鉱日石エネルギー社製)中で超音波洗浄し、SAM処理基板(C-2)、(C-3)を得た。それぞれの基板について前記と同様の方法で静的接触角測定を行った。その結果を表3に示す。
3. Preparation of self-assembled monolayer (SAM) -treated substrate For both of the obtained substrates (B-6) and (B-7), UV ozone treatment (about 12,000 mJ / cm 2 ) was performed on the coating film for 10 minutes. ) And then immersed in a SAM-forming solution (SAMLAY (registered trademark), manufactured by Nippon Soda Co., Ltd.) for 5 minutes, and then the surface of the hydrocarbon-based cleaning agent (NS Clean 100, manufactured by JX Nippon Oil & Energy Corporation) And SAM-treated substrates (C-2) and (C-3) were obtained. The static contact angle was measured for each substrate by the same method as described above. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 水、TD共にSAMの典型的な接触角が観測された。
Figure JPOXMLDOC01-appb-T000003
The typical contact angle of SAM was observed for both water and TD.
[実施例5]
 2.0gのGPTMS、0.5gのジエチレントリアミン、0.22g(GPTMSに対して2モル当量)の水および8.0gのn-ペンタノールを混合し、室温で2時間撹拌し、さらに90gのn-ペンタノールで希釈し、固形分の質量濃度換算で2.5%のコーティング組成物(A-3)を調製した。コーティング用組成物中のGPTMSの加水分解縮合物の平均粒径を粒度分布計(ゼーターサイザーナノ、マルバーン社製:測定条件;溶液粘度を主溶剤であるn-ペンタノールの粘度に設定、粒子の屈折率 1.50)により測定したところ、コーティング組成物調製1日後の粒径は11nmであった。
 n-ペンタノールの代わりに、イソプロパノール、メタノール、エタノール、n-ブタノールを用いて上記方法と同様の方法で、コーティング組成物(A-31)~(A-34)を調製した。
 (A-3)及び(A-31)~(A-34)を密栓した瓶にいれ、25℃で保存し、前記粒度分布計(測定条件は、n-ペンタノールの場合と同様、各主溶剤の粘度に設定、粒子の屈折率は先と同様)で各組成物中のz-平均粒子径の経時変化を測定した。その結果を図2に示す。
 図2より、n-ペンタノールを用いた場合に、保存安定性が最もよくなることがわかった。
[Example 5]
2.0 g of GPTMS, 0.5 g of diethylenetriamine, 0.22 g (2 molar equivalents relative to GPTMS) of water and 8.0 g of n-pentanol were mixed, stirred at room temperature for 2 hours, and an additional 90 g of n -Diluted with pentanol to prepare a coating composition (A-3) having a solid content of 2.5% in terms of mass concentration. The average particle size of the GPTMS hydrolyzed condensate in the coating composition is set to a particle size distribution meter (Zetasizer Nano, Malvern: measurement conditions; solution viscosity is set to the viscosity of the main solvent n-pentanol, When measured by refractive index 1.50), the particle size after 1 day of preparation of the coating composition was 11 nm.
Coating compositions (A-31) to (A-34) were prepared in the same manner as described above using isopropanol, methanol, ethanol, and n-butanol instead of n-pentanol.
(A-3) and (A-31) to (A-34) are put in a tightly sealed bottle and stored at 25 ° C., and the particle size distribution analyzer (measurement conditions are the same as in the case of n-pentanol). The change over time of the z-average particle diameter in each composition was measured by setting the viscosity of the solvent and the refractive index of the particles as before. The result is shown in FIG.
FIG. 2 shows that the storage stability is best when n-pentanol is used.
[実施例6](GPTMSの加水分解縮合物の組成物中のz-平均粒子径による効果の確認)
 2.0gのGPTMS、0.5gのジエチレントリアミン、0.22gの水および8.0gのn-ペンタノールを混合した後、室温で撹拌し、コーティング組成物を調製した。混合直後にサンプリングし、n-ペンタノールで10倍に希釈し、粒度分布計(ゼーターサイザーナノ、マルバーン社製:測定条件;実施例3と同様)でz-平均粒子径を測定した。残りのコーティング組成物は室温で1時間、8時間、1日、2日および3日の撹拌の後にサンプリングを行い、同様の条件で希釈し、z-平均粒子径を測定した。
 水、炭化水素系洗浄剤(NSクリーン100、JX日鉱日石エネルギー社製)およびイソプロパノール中で超音波による洗浄を各10分間ずつ行ったPC樹脂基板(80×80mm)に、サンプリングした各コーティング用組成物約0.5mlドロップし、キムワイプで均一に塗り延ばしたのち、120℃のオーブンで10分間の加熱硬化を行い、処理基板を得、目視にて塗りムラの有無を確認した(外観評価)。塗りムラがない場合を○判定、塗りムラがある場合を×判定とした。また、得られた成膜をキムワイプで10回軽く擦り、目視にて傷の有無を確認した(ラビング試験)。傷がない場合を○判定、傷がある場合を×判定とした。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 以上のことから、平均粒径が5nm以下では、十分な硬度の膜が得られず、平均粒径50nm以上では、塗膜の塗工性が悪く、塗り斑がところどころに見られることがわかった。
[Example 6] (Confirmation of effect of z-average particle diameter in composition of hydrolysis condensation product of GPTMS)
After mixing 2.0 g of GPTMS, 0.5 g of diethylenetriamine, 0.22 g of water and 8.0 g of n-pentanol, the mixture was stirred at room temperature to prepare a coating composition. Sampling was performed immediately after mixing, diluted 10-fold with n-pentanol, and the z-average particle size was measured with a particle size distribution meter (Zetersizer Nano, Malvern: measurement conditions; the same as in Example 3). The remaining coating composition was sampled after 1 hour, 8 hours, 1 day, 2 days and 3 days of stirring at room temperature, diluted under similar conditions, and the z-average particle size was measured.
For each coating sampled on a PC resin substrate (80 x 80 mm) which was cleaned with water, hydrocarbon cleaner (NS Clean 100, manufactured by JX Nippon Oil & Energy Corporation) and ultrasonic waves for 10 minutes each. About 0.5 ml of the composition was dropped and spread evenly with Kimwipe, and then heat-cured for 10 minutes in an oven at 120 ° C. to obtain a treated substrate, which was visually checked for the presence of coating unevenness (appearance evaluation). . The case where there was no coating unevenness was judged as “◯”, and the case where there was coating unevenness was judged as “x”. Further, the obtained film was lightly rubbed 10 times with Kimwipe, and the presence or absence of scratches was confirmed visually (rubbing test). The case where there was no flaw was judged as ◯, and the case where there was a flaw was judged as x. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
From the above, it was found that when the average particle size was 5 nm or less, a film with sufficient hardness could not be obtained, and when the average particle size was 50 nm or more, the coatability of the coating film was poor and smears were seen in some places. .
[実施例7]アルコール類と水の比率による保存安定性の差
 2.0gのGPTMS、0.5gのジエチレントリアミン、水とイソプロパノール(IPA)の質量比(水/IPA)が5/2である混合溶媒8.0gを混合し、室温で2時間撹拌し、さらに水/IPAの質量比が5/2の混合溶媒90gで希釈して固形分の質量濃度換算で2.5%のコーティング組成物(A-4)を調製した。
 2.0gのGPTMS、0.5gのジエチレントリアミン、水とイソプロパノール(IPA)の質量比(水/IPA)が5/2である混合溶媒8.0gを混合し、室温で2時間撹拌し、IPA90gで希釈して固形分の質量濃度換算で2.5%のコーティング組成物(A-41)を調製した。
 (A-4)及び(A-41)を密栓した瓶に入れ、25℃で保存し、組成物中の固形分のz-平均粒径を粒度分布計(ゼーターサイザーナノ、マルバーン社製:測定条件;実施例3と同様)により測定し、その経時変化を測定した。その結果を図3に示す。
[Example 7] Difference in storage stability depending on the ratio of alcohols to water 2.0 g of GPTMS, 0.5 g of diethylenetriamine, and a mixture of water and isopropanol (IPA) in a mass ratio (water / IPA) of 5/2 8.0 g of the solvent was mixed, stirred at room temperature for 2 hours, and further diluted with 90 g of a mixed solvent having a mass ratio of water / IPA of 5/2 to obtain a coating composition (2.5% in terms of mass concentration of solid content) A-4) was prepared.
2.0 g of GPTMS, 0.5 g of diethylenetriamine, and 8.0 g of a mixed solvent having a mass ratio of water and isopropanol (IPA) (water / IPA) of 5/2 are mixed and stirred at room temperature for 2 hours. Dilution was performed to prepare a coating composition (A-41) having a solid content of 2.5% in terms of mass concentration.
(A-4) and (A-41) are put in a tightly sealed bottle, stored at 25 ° C., and the z-average particle size of the solid content in the composition is measured by a particle size distribution meter (Zetersizer Nano, manufactured by Malvern: measurement) Conditions; the same as in Example 3), and the change with time was measured. The result is shown in FIG.
 [実施例8]
 2.0gのGPTMS、0.5gのジエチレントリアミン、水とイソプロパノール(IPA)の質量比(水/IPA)が5/2である混合溶媒8.0gを混合し、室温で2時間撹拌し、さらに、2,2,2-トリフルオロエタノール(TFE)を16g、32g、48g、または0.5g、1.0g、2.0gの1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール(HFIP)を加え、さらに水/IPA質量比が5/2の混合溶媒で、組成物全体が100gになるように希釈してコーティング組成物(A-51)~(A-56)を調製した。また、TFE及びHFIPを添加しない以外上記方法と同じ方法で調製し、コーティング組成物(A-50)を得た。
 (A-50)~(A-54)を密栓した瓶に入れ、25℃で保存し、組成物中の固形分のz-平均粒径を粒度分布計(ゼーターサイザーナノ、マルバーン社製:測定条件;実施例3と同様)により測定し、その経時変化を測定した。その結果を図4に示す。
 以上のことから、長期保存するためには、TFEを組成物全体の30質量%以上用いるのが好ましいことがわかった。また、HFIPを少量添加した場合であっても、ある程度の保存安定性が確保できることがわかった。
[Example 8]
2.0 g of GPTMS, 0.5 g of diethylenetriamine, and 8.0 g of a mixed solvent having a mass ratio of water and isopropanol (IPA) (water / IPA) of 5/2 are mixed and stirred at room temperature for 2 hours. 2,2,2-trifluoroethanol (TFE) 16 g, 32 g, 48 g, or 0.5 g, 1.0 g, 2.0 g of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) was added, and the mixture was diluted with a mixed solvent having a water / IPA mass ratio of 5/2 to a total composition of 100 g to prepare coating compositions (A-51) to (A-56). . Further, a coating composition (A-50) was obtained by the same method as that described above except that TFE and HFIP were not added.
(A-50) to (A-54) are put in a tightly stoppered bottle, stored at 25 ° C., and the z-average particle size of the solid content in the composition is measured by a particle size distribution meter (Zeta Sizer Nano, manufactured by Malvern: measurement) Conditions; the same as in Example 3), and the change with time was measured. The result is shown in FIG.
From the above, it was found that it is preferable to use TFE at 30% by mass or more of the entire composition for long-term storage. Moreover, even when a small amount of HFIP was added, it was found that a certain degree of storage stability could be secured.
[実施例9]
1.コーティング組成物の調製
 2.0gのGPTMS、0.5gのジエチレントリアミン、0.5gの安息香酸、70.0gの水および28.0gのIPAを混合した後、室温で2時間撹拌し、固形分の質量濃度換算で3%のコーティング組成物(A-6)を調製した。コーティング用組成物中の固形分の平均粒径を粒度分布計(ゼーターサイザーナノ、マルバーン社製)により測定したところ、コーティング組成物調製1日後の粒径は8.5nmであった。
[Example 9]
1. Preparation of coating composition After mixing 2.0 g GPTMS, 0.5 g diethylenetriamine, 0.5 g benzoic acid, 70.0 g water and 28.0 g IPA, the mixture was stirred for 2 hours at room temperature to A coating composition (A-6) of 3% in terms of mass concentration was prepared. When the average particle size of the solid content in the coating composition was measured by a particle size distribution meter (Zeta Sizer Nano, manufactured by Malvern), the particle size one day after preparation of the coating composition was 8.5 nm.
2.PC樹脂基板への成膜
 PC樹脂基板(80×80mm)を水、炭化水素系溶媒(NSクリーン100)およびIPA中で超音波による洗浄を各10分間行った。洗浄後PC樹脂基板に、調製したコーティング用組成物を、バーコードを用いて成膜し、100℃に温度管理された循環型オーブン内で10分間の加熱乾燥を行い、コーティング組成物(A-6)から形成された塗膜の膜厚が約50nmの処理基板(B-8)を得た。
2. Film formation on a PC resin substrate A PC resin substrate (80 × 80 mm) was washed with ultrasonic waves in water, a hydrocarbon solvent (NS Clean 100) and IPA for 10 minutes each. After the cleaning, the prepared coating composition is formed on a PC resin substrate using a barcode, and is heated and dried for 10 minutes in a circulation type oven controlled at 100 ° C. The coating composition (A- A treated substrate (B-8) having a film thickness of about 50 nm formed from 6) was obtained.
3.処理基板(B-8)の濁度及び色彩評価
 色彩・濁度測定器(COH400、日本電子工業株式会社製)を用いて、(B-8)のヘイズ率、及びL値、a値、b値をそれぞれ求めた。比較のために、無処理のPC樹脂基板も同様に測定した。その結果を表5に表す。
Figure JPOXMLDOC01-appb-T000005
 以上のことから、本発明の塗膜は、無色、透明な塗膜であることがわかった。
3. Turbidity and color evaluation of treated substrate (B-8) Using color / turbidity measuring device (COH400, manufactured by JEOL Ltd.), haze ratio, L * value, a * value of (B-8) , B * values were determined. For comparison, an untreated PC resin substrate was measured in the same manner. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
From the above, it was found that the coating film of the present invention was a colorless and transparent coating film.
4.各種基材への密着性評価
 各種基材を用いて、表5に示す条件でコーティング組成物(A-6)を用いて処理した基板を、JIS K5400(1999年)に記載の碁盤目テープ剥離試験に準じた方法で、試験を行った。その結果を表6に示す。
4). Evaluation of adhesion to various base materials Using various base materials, a substrate treated with the coating composition (A-6) under the conditions shown in Table 5 was peeled off from the cross-cut tape described in JIS K5400 (1999) The test was performed by the method according to the test. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 以上のことより、無機、有機、金属問わず、あらゆる基材に対して密着性の優れた塗膜を形成することができることがわかった。 From the above, it was found that a coating film having excellent adhesion to any substrate can be formed regardless of inorganic, organic or metal.
5.X線光電子分光法(ESCA)による測定
 コーティング用組成物処理基板(B-8)について、X線光電子分光装置(Quantera II、アルバック・ファイ社製:測定条件;電圧:1kV、100サイクル数、約200nm深さまで測定。)による測定を実施した。測定結果を図5に示す。
5. Measurement by X-ray photoelectron spectroscopy (ESCA) For the coating composition-treated substrate (B-8), an X-ray photoelectron spectrometer (Quantera II, manufactured by ULVAC-PHI): measurement conditions; voltage: 1 kV, 100 cycles, about Measurement was performed to a depth of 200 nm.). The measurement results are shown in FIG.
6.表面改質の検討
 約0.5mLのコーティング組成物(A-6)をPETフィルム上にバーコードを用いて成膜し、オーブンにて100℃で10分間の加熱を行い、コーティング組成物処理PETフィルム(B-9)を得た。さらに、(B-9)のコーティング面を10分間のUVオゾン処理(約12000mJ/cm)したフィルム(B-10)を得た。さらに、(B-10)をSAMLAY(登録商標)に5分間浸漬し、その後、その表面をNSクリーン100中で超音波洗浄し、SAM処理フィルム(C-4)を得た。
 無処理PETフィルムをSAMLAY(登録商標)で処理したフィルム(cC-4)を比較のために作成した。
 無処理のPETフィルム、(B-9)、(B-10)、(C-4)、及び(cC-4)それぞれのフィルムについて前記と同様の方法で静的接触角を測定した。その結果を表7にまとめて示す。
6). Examination of surface modification About 0.5 mL of coating composition (A-6) was formed on a PET film using a barcode, heated in an oven at 100 ° C. for 10 minutes, and treated with coating composition PET. A film (B-9) was obtained. Further, a film (B-10) obtained by subjecting the coated surface of (B-9) to UV ozone treatment (about 12000 mJ / cm 2 ) for 10 minutes was obtained. Furthermore, (B-10) was immersed in SAMLAY (registered trademark) for 5 minutes, and then the surface was ultrasonically cleaned in NS Clean 100 to obtain a SAM-treated film (C-4).
A film (cC-4) obtained by treating an untreated PET film with SAMLAY® was prepared for comparison.
The static contact angle of each of the untreated PET films (B-9), (B-10), (C-4), and (cC-4) was measured by the same method as described above. The results are summarized in Table 7.
Figure JPOXMLDOC01-appb-T000007
 以上のことから、本発明の塗膜を用いることにより、ポリマー上に、ガラスと同様な表面処理を行うことができることがわかった。
Figure JPOXMLDOC01-appb-T000007
From the above, it was found that the same surface treatment as that of glass can be performed on the polymer by using the coating film of the present invention.
[実施例10]
 2.0gのGPTMS、0.5gのジエチレントリアミン、0.5g、0.2g、0.08gの安息香酸、70.0gの水および28.0gのIPAを混合した後、室温で2時間撹拌し、コーティング組成物(A-71)~(A-73)を調製した。安息香酸を用いない組成物(A-70)も同様に調製した。得られた(A-70)及び(A-71)~(A-73)を、密栓した瓶に入れ、25℃で保存し、組成物中の固形分のz-平均粒径の経時変化を粒度分布計(ゼーターサイザーナノ、マルバーン社製)により測定した。その結果を図6に示す。
[Example 10]
After mixing 2.0 g GPTMS, 0.5 g diethylenetriamine, 0.5 g, 0.2 g, 0.08 g benzoic acid, 70.0 g water and 28.0 g IPA, the mixture was stirred at room temperature for 2 hours, Coating compositions (A-71) to (A-73) were prepared. A composition without benzoic acid (A-70) was prepared in the same manner. The obtained (A-70) and (A-71) to (A-73) were put in a sealed bottle and stored at 25 ° C., and the change over time in the z-average particle diameter of the solid content in the composition was measured. The particle size distribution was measured with a particle size distribution meter (Zeta Sizer Nano, manufactured by Malvern). The result is shown in FIG.
[実施例11]
 0.5gのGPTMS、0.125gのジエチレントリアミン、0.171gのp-ニトロ安息香酸、17.5gの水および7.0gのIPAを混合した後、室温で2時間撹拌し、コーティング組成物(A-80)を調製した。同様の操作にて、p-ニトロ安息香酸のかわりに0.156gのp-アニス酸、または0.0615gの酢酸を用いたコーティング組成物(A-81)又は(A-82)を調製した。
 (A-80)、(A-81)及び(A-82)を密栓した瓶に入れ、25℃で保存し、組成物中の固形分のz-平均粒径を粒度分布計(ゼーターサイザーナノ、マルバーン社製:測定条件;実施例3と同様)により測定し、その経時変化を測定した。その結果を図7に示す。
 約0.5mLのコーティング組成物(A-80)、(A-81)及び(A-82)をPETフィルム上にバーコードを用いて成膜し、オーブンにて100℃で10分間の加熱を行い、コーティング組成物処理PETフィルム(B-11)、(B-12)及び(B-13)を得た。さらに、コーティング面を10分間のUVオゾン処理(約12000mJ/cm)した後、SAMLAY(登録商標)に5分間浸漬し、その後、その表面をNSクリーン100中で超音波洗浄し、SAM処理フィルム(C-5)、(C-6)及び(C-7)を得た。それぞれのフィルムについて前記と同様の方法で静的接触角測定を行った。その結果を表8にまとめて示す。
[Example 11]
After mixing 0.5 g GPTMS, 0.125 g diethylenetriamine, 0.171 g p-nitrobenzoic acid, 17.5 g water and 7.0 g IPA, the mixture was stirred at room temperature for 2 hours to obtain a coating composition (A -80) was prepared. In the same manner, a coating composition (A-81) or (A-82) was prepared using 0.156 g of p-anisic acid or 0.0615 g of acetic acid instead of p-nitrobenzoic acid.
(A-80), (A-81) and (A-82) are put in a sealed bottle and stored at 25 ° C., and the z-average particle size of the solid content in the composition is measured by a particle size distribution meter (Zetersizer Nano). , Manufactured by Malvern: Measurement conditions; the same as in Example 3), and the change with time was measured. The result is shown in FIG.
About 0.5 mL of the coating composition (A-80), (A-81) and (A-82) was formed on a PET film using a barcode, and heated in an oven at 100 ° C. for 10 minutes. The coating composition-treated PET films (B-11), (B-12) and (B-13) were obtained. Further, the coating surface was subjected to UV ozone treatment (about 12000 mJ / cm 2 ) for 10 minutes, then immersed in SAMLAY (registered trademark) for 5 minutes, and then the surface was ultrasonically cleaned in NS Clean 100 to obtain a SAM-treated film. (C-5), (C-6) and (C-7) were obtained. Each film was subjected to static contact angle measurement in the same manner as described above. The results are summarized in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
[実施例12]
 0.5gのGPTMS、0.05gの3,3,4,4,5,5,6,6,6-ノナフルオロヘキシルトリメトキシシラン0.05g、0.125gのジエチレントリアミン、0.125gの安息香酸、2,2,2-トリフルオロエタノール2.0g、16.0gの水および6.5gのIPAを混合した後、室温で24時間撹拌し、コーティング組成物(A-8)を調製した。
 PC樹脂基板(80×80mm)を水、NSクリーンおよびIPA中で超音波による洗浄を各10分間行った。洗浄後PC樹脂基板に、調製したコーティング用組成物(A-8)を、バーコードを用いて成膜し、120℃に温度管理された循環型オーブン内で20分間の加熱乾燥を行い、処理基板(B-11)を得た。
 得られた処理基板(B-11)及び該処理基板(B-11)をさらにラビングした処理基板(B-12)の前記と同様の方法で静的接触角を測定した。比較のために、フルオロトリメトキシシランを添加せずに調製した得られた処理基板(R-1)についても同様の測定を行った。その結果を表9に示す。
[Example 12]
0.5 g GPTMS, 0.05 g 3,3,4,4,5,5,6,6,6-nonafluorohexyltrimethoxysilane 0.05 g, 0.125 g diethylenetriamine, 0.125 g benzoic acid Then, 2.0 g of 2,2,2-trifluoroethanol, 16.0 g of water and 6.5 g of IPA were mixed and then stirred at room temperature for 24 hours to prepare a coating composition (A-8).
The PC resin substrate (80 × 80 mm) was washed with ultrasonic waves in water, NS clean and IPA for 10 minutes each. After cleaning, the prepared coating composition (A-8) is formed on a PC resin substrate using a barcode, and heated and dried for 20 minutes in a circulation oven controlled at 120 ° C. A substrate (B-11) was obtained.
The static contact angle of the obtained processed substrate (B-11) and the processed substrate (B-12) obtained by further rubbing the processed substrate (B-11) were measured by the same method as described above. For comparison, the same measurement was performed on the resulting treated substrate (R-1) prepared without adding fluorotrimethoxysilane. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
[比較例1]
1 コーティング組成物の調製
 16.5gの3-グリシドキシプロピルトリメトキシシラン(信越化学社製 KBM-403)に1vol%酢酸水溶液1.27gを加え、室温で3日間の撹拌を行なった。得られた反応液に0.54gの2-メチルイミダゾールを加え、94.3gのアルコール系混合溶媒ソルミックス(登録商標)(AP-7、日本アルコール販売株式会社製)を加え、固形分20wt%のコーティング組成物(cA-2)を得た。
[Comparative Example 1]
1 Preparation of Coating Composition 1.27 g of 1 vol% acetic acid aqueous solution was added to 16.5 g of 3-glycidoxypropyltrimethoxysilane (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.), and the mixture was stirred at room temperature for 3 days. 0.54 g of 2-methylimidazole was added to the obtained reaction solution, 94.3 g of alcohol-based mixed solvent Solmix (registered trademark) (AP-7, manufactured by Nippon Alcohol Sales Co., Ltd.) was added, and the solid content was 20 wt%. Coating composition (cA-2) was obtained.
2 コーティング組成物の成膜および撥液処理
 PC樹脂基板に、調製したコーティング組成物(cA-2)をディップコートした。コートした基板はオーブン内で乾燥し(120℃、20分)、コーティング組成物処理基板(cB-1)を得た。得られた処理基板にフッ素系のガラス表面撥液処理剤超ガラコ(登録商標)(株式会社ソフト99コーポレーション製)を塗工し、コーティング組成物‐撥液処理PC基板(cC-2)を得た。
 比較のために、ソーダライムガラスにフッ素系のガラス表面撥液処理剤超ガラコ(登録商標)(株式会社ソフト99コーポレーション製)を塗工処理した基板(cC-3)を得た。
2 Film Formation and Liquid Repellency Treatment of Coating Composition The prepared coating composition (cA-2) was dip coated on a PC resin substrate. The coated substrate was dried in an oven (120 ° C., 20 minutes) to obtain a coating composition-treated substrate (cB-1). Fluorine glass surface liquid repellent treatment agent Super Galaco (registered trademark) (manufactured by Soft99 Corporation) was applied to the resulting treated substrate to obtain a coating composition-liquid repellent treated PC substrate (cC-2). It was.
For comparison, a substrate (cC-3) obtained by coating soda-lime glass with a fluorine-based glass surface liquid repellent treatment agent Super Galaco (registered trademark) (manufactured by Soft99 Corporation) was obtained.
3 撥液性の評価
 得られた(cC-2)、(cC-3)の静的接触角を前記と同様の方法で測定した。その結果を表10に示す。 
3 Evaluation of liquid repellency The static contact angles of the obtained (cC-2) and (cC-3) were measured by the same method as described above. The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000010
 その値はソーダ石灰ガラス(SLG)基材に超ガラコ処理を行なった場合と同等の撥液性であったが、コーティング組成物の調製に3日も要した。
Figure JPOXMLDOC01-appb-T000010
The value was the same as the liquid repellency when super-galaxy treatment was performed on a soda-lime glass (SLG) substrate, but it took 3 days to prepare the coating composition.

Claims (15)

  1. エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物を、水、及び水素原子が1以上結合しているアミノ基又はイミノ基を2以上1分子内に有するポリアミン類またはイミダゾール類と混合、撹拌する、エポキシ基含有トリアルコキシシラン加水分解縮合物の製造方法。 Mixing and stirring the epoxy group-containing trialkoxysilane and / or its hydrolysis condensate with water and polyamines or imidazoles having 2 or more amino groups or imino groups to which one or more hydrogen atoms are bonded in one molecule A process for producing an epoxy group-containing trialkoxysilane hydrolysis condensate.
  2. 室温で、混合、撹拌する、請求項1に記載のエポキシ基含有トリアルコキシシラン加水分解縮合物の製造方法。 The method for producing an epoxy group-containing trialkoxysilane hydrolysis condensate according to claim 1, wherein the mixture is stirred and stirred at room temperature.
  3. ポリアミン類が、ポリアルキレンポリアミン類である、請求項1に記載のエポキシ基含有トリアルコキシシラン加水分解縮合物の製造方法。 The method for producing an epoxy group-containing trialkoxysilane hydrolysis condensate according to claim 1, wherein the polyamines are polyalkylene polyamines.
  4. エポキシ基含有トリアルコキシシランが、グリシドキシアルキルトリアルコキシシランである、請求項1に記載のエポキシ基含有トリアルコキシシラン加水分解縮合物の製造方法。 The method for producing an epoxy group-containing trialkoxysilane hydrolysis condensate according to claim 1, wherein the epoxy group-containing trialkoxysilane is glycidoxyalkyltrialkoxysilane.
  5. 水を、エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物1モルに対して、0.5モル以上の範囲で用いる、請求項1に記載のエポキシ基含有トリアルコキシシラン加水分解縮合物の製造方法。 The epoxy group-containing trialkoxysilane hydrolysis condensate according to claim 1, wherein water is used in an amount of 0.5 mol or more per 1 mol of the epoxy group-containing trialkoxysilane and / or hydrolysis condensate thereof. Production method.
  6. 酸とともに、混合、撹拌する、請求項1~5のいずれかに記載のエポキシ基含有トリアルコキシシラン加水分解縮合物の製造方法。 The process for producing an epoxy group-containing trialkoxysilane hydrolysis condensate according to any one of claims 1 to 5, wherein the mixture is stirred together with an acid.
  7. (A)エポキシ基含有トリアルコキシシランの加水分解縮合物、
    (B)ポリアミン類、及び
    (C-1)n-ペンタノール
    を含有する組成物。
    (A) Hydrolysis condensate of epoxy group-containing trialkoxysilane,
    (B) A composition containing polyamines and (C-1) n-pentanol.
  8. (A)エポキシ基含有トリアルコキシシランの加水分解縮合物、
    (B)ポリアミン類、並びに
    (C-2)25℃におけるpKaが2.0~6.0の範囲の有機酸又はパーフルオロアルキル基及び/又はパーフルオロアルキレン基を有する炭素数2~5のアルコール類
    を含有する組成物。
    (A) Hydrolysis condensate of epoxy group-containing trialkoxysilane,
    (B) polyamines and (C-2) organic acids having a pKa in the range of 2.0 to 6.0 at 25 ° C. or alcohols having 2 to 5 carbon atoms having a perfluoroalkyl group and / or a perfluoroalkylene group A composition containing a kind.
  9. エポキシ基含有トリアルコキシシランの加水分解縮合物の動的光散乱法で測定したz-平均粒子径が5~50nmの範囲である、請求項8に記載の組成物。 The composition according to claim 8, wherein the z-average particle diameter of the hydrolysis-condensation product of the epoxy group-containing trialkoxysilane measured by a dynamic light scattering method is in the range of 5 to 50 nm.
  10. ポリアミン類が、アルキレンポリアミン、ポリアルキレンポリアミン、ポリ(フェニレンアルキレン)ポリアミン、及びシクロアルキレンアルキルポリアミンからなる群から選ばれる少なくとも1種のポリアミンである、請求項8に記載の組成物。 The composition according to claim 8, wherein the polyamine is at least one polyamine selected from the group consisting of an alkylene polyamine, a polyalkylene polyamine, a poly (phenylene alkylene) polyamine, and a cycloalkylene alkyl polyamine.
  11. ポリアミン類を、エポキシ基含有トリアルコキシシラン及び/又はその加水分解縮合物中のエポキシ基1モルに対して、1/(ポリアミン類1分子中の全窒素原子上の全水素原子数)モル以上、1/(ポリアミン類1分子中の全窒素原子上の全水素原子数)の10倍モル以下の範囲で用いる、請求項8に記載の組成物。 Polyamines are 1 / (total number of hydrogen atoms on all nitrogen atoms in one molecule of polyamines) mol or more with respect to 1 mol of epoxy groups in epoxy group-containing trialkoxysilane and / or its hydrolysis condensate, The composition according to claim 8, which is used in a range of 10 times or less of 1 / (total number of hydrogen atoms on all nitrogen atoms in one molecule of polyamine).
  12. pKaが2.0~6.0の範囲の有機酸をポリアミン類1モルに対して、0.3~1.2モルの範囲で用いる、請求項8に記載の組成物。 The composition according to claim 8, wherein an organic acid having a pKa in the range of 2.0 to 6.0 is used in a range of 0.3 to 1.2 mol per mol of the polyamines.
  13. パーフルオロアルキル基及び/又はパーフルオロアルキレン基を有する炭素数2~5のアルコール類が、組成物全体の30質量%以上である、請求項8に記載の組成物。 The composition according to claim 8, wherein the alcohol having 2 to 5 carbon atoms having a perfluoroalkyl group and / or a perfluoroalkylene group is 30% by mass or more of the entire composition.
  14. さらに、パーフルオロアルキル基及び/又はパーフルオロアルキレン基を有する炭素数2~5のアルコール類以外の炭素数1~5のアルコール及び水を含む、請求項8に記載の組成物。 The composition according to claim 8, further comprising an alcohol having 1 to 5 carbon atoms other than the alcohol having 2 to 5 carbon atoms having a perfluoroalkyl group and / or a perfluoroalkylene group, and water.
  15. 請求項8~14のいずれかに記載の組成物を基材上に塗布し室温乾燥及び/又は加熱して得られる薄膜。 A thin film obtained by applying the composition according to any one of claims 8 to 14 on a substrate, drying at room temperature and / or heating.
PCT/JP2014/000407 2013-01-29 2014-01-28 Organosilane composition WO2014119282A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014559566A JP5951050B2 (en) 2013-01-29 2014-01-28 Organosilane composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-013845 2013-01-29
JP2013013845 2013-01-29
JP2013-104509 2013-05-16
JP2013104509 2013-05-16

Publications (1)

Publication Number Publication Date
WO2014119282A1 true WO2014119282A1 (en) 2014-08-07

Family

ID=51262000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000407 WO2014119282A1 (en) 2013-01-29 2014-01-28 Organosilane composition

Country Status (3)

Country Link
JP (1) JP5951050B2 (en)
TW (1) TWI503375B (en)
WO (1) WO2014119282A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006212A1 (en) * 2014-07-11 2016-01-14 日本曹達株式会社 Laminate
WO2016009617A1 (en) * 2014-07-16 2016-01-21 日本曹達株式会社 Silane coating composition
JP2016131215A (en) * 2015-01-14 2016-07-21 日本曹達株式会社 Organic thin film transistor
WO2016121316A1 (en) * 2015-01-26 2016-08-04 日本曹達株式会社 Substrate equipped with electroconductive film
JP2017155124A (en) * 2016-03-01 2017-09-07 セイコーインスツル株式会社 Coating agent, method for producing coating agent and method of forming coating film
CN107267031A (en) * 2017-08-02 2017-10-20 合肥万之景门窗有限公司 A kind of preparation method of New insulated coating for plastic-steel door and window
WO2020203869A1 (en) * 2019-03-29 2020-10-08 三井化学株式会社 Method for producing optical material, and polymerizable composition for optical material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014198419A (en) * 2013-03-29 2014-10-23 大日本印刷株式会社 Thermal transfer image receiving sheet and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525469A (en) * 1978-08-14 1980-02-23 Japan Atom Energy Res Inst Thermosetting resin composition
JPS58171455A (en) * 1982-03-16 1983-10-08 アンステイテユ・ナシヨナル・ド・ルシエルシエ・シミク・アプリケ Base liquid composition suitable to form transparent coating or varnish on solid surface, manufacture and varnish
JPS6348363A (en) * 1986-08-19 1988-03-01 Japan Synthetic Rubber Co Ltd Coating composition
JPH01108272A (en) * 1987-09-22 1989-04-25 Gentex Corp Dyeable coating based on siloxane base
JP2011006592A (en) * 2009-06-26 2011-01-13 Jgc Catalysts & Chemicals Ltd Process for producing polyorganosiloxane particle
JP2011523424A (en) * 2008-04-08 2011-08-11 ウオーターズ・テクノロジーズ・コーポレイシヨン Nanoparticle-containing composites and their use in chromatography
JP2012197443A (en) * 2005-11-28 2012-10-18 Welding Inst Process for production of organosilsesquioxane

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3949142B2 (en) * 2005-03-18 2007-07-25 旭ファイバーグラス株式会社 Aqueous binder for inorganic fiber and heat insulating sound absorbing material for inorganic fiber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525469A (en) * 1978-08-14 1980-02-23 Japan Atom Energy Res Inst Thermosetting resin composition
JPS58171455A (en) * 1982-03-16 1983-10-08 アンステイテユ・ナシヨナル・ド・ルシエルシエ・シミク・アプリケ Base liquid composition suitable to form transparent coating or varnish on solid surface, manufacture and varnish
JPS6348363A (en) * 1986-08-19 1988-03-01 Japan Synthetic Rubber Co Ltd Coating composition
JPH01108272A (en) * 1987-09-22 1989-04-25 Gentex Corp Dyeable coating based on siloxane base
JP2012197443A (en) * 2005-11-28 2012-10-18 Welding Inst Process for production of organosilsesquioxane
JP2011523424A (en) * 2008-04-08 2011-08-11 ウオーターズ・テクノロジーズ・コーポレイシヨン Nanoparticle-containing composites and their use in chromatography
JP2011006592A (en) * 2009-06-26 2011-01-13 Jgc Catalysts & Chemicals Ltd Process for producing polyorganosiloxane particle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006212A1 (en) * 2014-07-11 2016-01-14 日本曹達株式会社 Laminate
JPWO2016006212A1 (en) * 2014-07-11 2017-05-25 日本曹達株式会社 Laminate
WO2016009617A1 (en) * 2014-07-16 2016-01-21 日本曹達株式会社 Silane coating composition
JP2016131215A (en) * 2015-01-14 2016-07-21 日本曹達株式会社 Organic thin film transistor
WO2016121316A1 (en) * 2015-01-26 2016-08-04 日本曹達株式会社 Substrate equipped with electroconductive film
JPWO2016121316A1 (en) * 2015-01-26 2017-11-24 日本曹達株式会社 Substrate with conductive film
JP2017155124A (en) * 2016-03-01 2017-09-07 セイコーインスツル株式会社 Coating agent, method for producing coating agent and method of forming coating film
CN107267031A (en) * 2017-08-02 2017-10-20 合肥万之景门窗有限公司 A kind of preparation method of New insulated coating for plastic-steel door and window
WO2020203869A1 (en) * 2019-03-29 2020-10-08 三井化学株式会社 Method for producing optical material, and polymerizable composition for optical material
JPWO2020203869A1 (en) * 2019-03-29 2021-10-28 三井化学株式会社 Method for producing optical material, polymerizable composition for optical material
JP7299306B2 (en) 2019-03-29 2023-06-27 三井化学株式会社 Method for producing optical material, polymerizable composition for optical material

Also Published As

Publication number Publication date
JPWO2014119282A1 (en) 2017-01-26
TWI503375B (en) 2015-10-11
JP5951050B2 (en) 2016-07-13
TW201441307A (en) 2014-11-01

Similar Documents

Publication Publication Date Title
JP5951050B2 (en) Organosilane composition
JP5178199B2 (en) Using polysilazane for coating metal strips.
JP2007291408A (en) Composition for providing abrasion resistant coating on substrate having improved adhesion and improved resistance to crack formation
KR102551987B1 (en) Wear-resistant coating composition having inorganic metal oxides
KR20160089361A (en) Transparent hydrophobic coating materials with improved durability and methods of making same
TW201823258A (en) Liquid composition for film formation and method for producing same
RU2015129545A (en) COVERING COMPOSITION, METHOD FOR PRODUCING IT AND ITS APPLICATION
JP5276024B2 (en) Organic thin film forming solution and method for producing the same
Seok et al. Preparation of corrosion protective coatings on galvanized iron from aqueous inorganic–organic hybrid sols by sol–gel method
JPWO2014010219A1 (en) Thin film laminate with self-assembled film
JP2007146031A (en) Curable polymethylsiloxane resin, method for producing the same, curable polymethylsiloxane resin composition and article having cured film thereof
Pathak et al. Sol gel derived organic-inorganic hybrid coating: A new era in corrosion protection of material
CN108384443B (en) Organic/inorganic hybrid super-hydrophobic coating and preparation method and application thereof
JPH09291251A (en) Coating composition
TWI550043B (en) Silane coating composition
CN111065694A (en) Curable surface protective coating composition, process for its preparation and application to metal substrates and resulting coated metal substrates
JP6480781B2 (en) Transparent film forming coating liquid, method for producing transparent film forming coating liquid, substrate with transparent film, and method for producing substrate with transparent film
JP2021143220A (en) Organopolysiloxane, coating composition, and coated article
WO2016121316A1 (en) Substrate equipped with electroconductive film
WO2015056772A1 (en) Glass substrate having protective film
JP6077659B2 (en) Coating composition
JP2016117820A (en) Organosilane composition for dip coating
JP2016050276A (en) Surface treatment agent for coated steel panel
JP2001181862A (en) Method for imparting contamination preventability to base material and member having contamination preventability
CN113692432B (en) Protective coating composition and coated metal substrate comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559566

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14745644

Country of ref document: EP

Kind code of ref document: A1