WO2014118826A1 - Illumination unit and illumination device - Google Patents

Illumination unit and illumination device Download PDF

Info

Publication number
WO2014118826A1
WO2014118826A1 PCT/JP2013/000583 JP2013000583W WO2014118826A1 WO 2014118826 A1 WO2014118826 A1 WO 2014118826A1 JP 2013000583 W JP2013000583 W JP 2013000583W WO 2014118826 A1 WO2014118826 A1 WO 2014118826A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
light sources
lighting
illumination
Prior art date
Application number
PCT/JP2013/000583
Other languages
French (fr)
Japanese (ja)
Inventor
礼彦 杉本
Original Assignee
株式会社ブリリアントサービス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリリアントサービス filed Critical 株式会社ブリリアントサービス
Priority to PCT/JP2013/000583 priority Critical patent/WO2014118826A1/en
Priority to US14/765,083 priority patent/US20160000020A1/en
Priority to PCT/JP2014/000517 priority patent/WO2014119330A1/en
Priority to JP2014559599A priority patent/JP6049767B2/en
Publication of WO2014118826A1 publication Critical patent/WO2014118826A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • F21S2/005Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a lighting unit and a lighting device constituted by the lighting unit.
  • the present invention relates to a lighting device for plant growth.
  • LEDs are arranged in a light source casing having a rectangular cross section. Since the positions of all LEDs in the lighting device are fixed to one substrate, the overall size of the lighting device is fixed and cannot be changed. On the other hand, the place where the lighting device is to be installed and the range where light is to be irradiated vary depending on the type, growth time, growth scale, and the like of the plant to be irradiated with light. However, the illumination device described in Patent Document 1 cannot deal with situations that can vary in various ways, that is, the installation location and the light irradiation range.
  • the present invention has been developed in view of such problems of the prior art. Accordingly, it is an object of the present invention to provide an illumination device that can take a desired size and shape according to various situations in an application using a plurality of light sources having different main wavelengths, and a constituent unit thereof. .
  • An illumination unit includes a plurality of types of light sources and a substrate that fixes the plurality of types of light sources.
  • the plurality of types of light sources emit light having different main wavelengths.
  • the substrate has a shape that can be expanded by coupling with another substrate.
  • a single lighting unit includes a plurality of types of light sources that emit light having different main wavelengths, and the substrate is expandable. Therefore, by combining a plurality of lighting units, a plurality of light sources having different main wavelengths are used.
  • a lighting device having a desired size and shape can be configured in accordance with various situations such as a light irradiation target and / or a lighting device installation location.
  • the shape of the substrate of the lighting unit may be a polygon. As a result, the shape of the lighting unit can be simplified, and the lighting unit can be easily expanded.
  • the shape of the substrate of the lighting unit may be a hexagon. Accordingly, a high degree of freedom can be obtained with respect to the shape of the lighting device configured by extending the lighting unit.
  • Lights having different principal wavelengths emitted from a plurality of types of light sources may be selected from red light, blue light, green light, and infrared light, respectively. Accordingly, the illumination unit can be applied to an application using at least two types of light selected from red light, blue light, green light, and infrared light.
  • the light having different principal wavelengths emitted from a plurality of types of light sources may include at least white light. This facilitates identification of the light irradiation target color of the lighting unit.
  • the brightness of light having different main wavelengths emitted from a plurality of types of light sources may be individually controlled. This facilitates light irradiation with patterns having various dominant wavelengths and / or brightness.
  • the light source may be at least one of a light emitting diode element and an organic electroluminescence element. Thereby, the energy saving and long life of the lighting unit can be achieved.
  • the light sources may be arranged at a pitch at which the average value of the shortest center distance is not less than 0.1 mm and not more than 50 mm.
  • the shortest center-to-center distance between light sources refers to the center (on the substrate) of one light source and the light source closest to the one light source among other light sources adjacent to the one light source. , The distance occupied by a single light source). Thereby, it is possible to make uniform the light having a plurality of main wavelengths emitted from the illumination unit.
  • the lighting unit may be used for plant growth. Thereby, a plant can be grown efficiently.
  • a lighting device is configured by connecting a plurality of lighting units according to one aspect.
  • one lighting unit includes a plurality of light sources that emit light having different main wavelengths and the substrate is expandable
  • a lighting device configured by connecting a plurality of lighting units uses light having different main wavelengths.
  • it can take a desired size and shape according to various situations such as a light irradiation target and / or a lighting device installation location.
  • connection between the lighting units may be at least by daisy chain connection.
  • Daisy chain connection means that the lighting units are electrically connected in series. This makes it possible to simplify the electrical path even when the entire lighting device is composed of a large number of lighting units.
  • the light source in the illuminating device is preferably arranged so that each light emitted from a plurality of types of light sources is mixed with each other on the irradiation target surface. Thereby, each light emitted from a plurality of types of light sources is uniformly irradiated to the same irradiation target.
  • the light sources are arranged at a pitch at which the ratio of the maximum value of the shortest center distance to the minimum value of the shortest center distance is 1 or more and 1.5 or less.
  • the shortest center distance between the light sources is a distance connecting the centers of one light source and the light source closest to the one light source among other light sources adjacent to the one light source. It is.
  • the one light source and the other adjacent light source may both exist in the same illumination unit, or may exist in different illumination units adjacent to each other. Thereby, it is possible to make uniform the light emitted from a plurality of types of light sources.
  • the plurality of lighting units may include a plurality of types of lighting units having different substrate shapes. As a result, a higher degree of freedom can be obtained with respect to the shape of the lighting device configured by extending the lighting unit.
  • a lighting method includes a plurality of lighting units including a plurality of light sources and a substrate on which the plurality of light sources are fixed, and the substrate has a shape that can be expanded by coupling with another substrate. And controlling so that at least two of the light sources independently emit light having different dominant wavelengths and / or brightness. Accordingly, a plurality of lights having different main wavelengths and / or brightness can be emitted from one lighting unit.
  • the lighting unit to be controlled may be a lighting unit in a state of constituting a lighting device.
  • the at least two light sources that are independently controlled may be monochromatic light sources that emit light having different main wavelengths. In this case, the brightness of light emitted from each monochromatic light source controlled independently is controlled.
  • the at least two light sources that are independently controlled may be multicolor light sources.
  • the dominant wavelength or the dominant wavelength and the brightness of the light emitted from each independently controlled multicolor light source is controlled.
  • Control may be performed by remote control.
  • the lighting unit can be remotely operated.
  • an illumination device capable of taking a desired size and shape according to various situations and an illumination unit serving as a component thereof are provided.
  • a lighting device having a size and shape corresponding to each situation can be configured.
  • FIG. 1 is a schematic front view of a lighting unit 100 according to the first embodiment.
  • the lighting unit 100 includes a substrate 110 and a light emitting diode (hereinafter simply referred to as LED) element 120 mounted on the substrate 110.
  • FIG. 2 is a schematic front view of an illumination device 500 configured by connecting and expanding a plurality of illumination units 100.
  • the board 110 is a rigid circuit board having a regular hexagonal shape. As for the size of the substrate 110, a regular hexagonal piece is 2.5 cm.
  • the material of the substrate 110 may include, for example, a material appropriately selected by those skilled in the art from ceramics, synthetic resins, and metals. More specifically, composite materials such as a glass epoxy substrate and a glass composite substrate may be used. Further, it may have been subjected to a surface processing treatment such as application of a thermal barrier paint or a lamination treatment using an insulating layer or the like.
  • LEDs 121, 122, 123, and 124 are fixed as LEDs 120.
  • surface mount type LEDs in which LED elements are mounted in a package material provided with electrodes are used.
  • the main wavelengths of light emitted from the LEDs 121, 122, 123, and 124 are different from each other.
  • LED 121 is red light (hereinafter abbreviated as red LED 121)
  • LED 122 is blue light (hereinafter abbreviated as blue LED 122)
  • LED 123 is infrared light (hereinafter abbreviated as infrared LED 123)
  • LED 124 Emits white light (hereinafter abbreviated as white LED 124).
  • a total of six red LEDs 121, blue LEDs 122, and infrared LEDs 123 are fixed, two for each substrate 110.
  • the six LEDs are all arranged at an equal distance from the center of the substrate 110, and are arranged at equal intervals near each vertex of the regular hexagon so that different types of LEDs are adjacent to each other.
  • One white LED 124 per substrate 110 is disposed and fixed in the center of the substrate 110.
  • red light, blue light and infrared light are recognized by specific receptors possessed by plants.
  • Specific dominant wavelengths of light recognized by plant receptors and specific growth responses e.g., biological reactions leading to photomorphogenesis including seed germination, flower bud differentiation, flowering, cotyledon development, chlorophyll synthesis, and internode elongation, and A correlation has been found with photosynthesis.
  • the lighting unit 100 is preferably used for plant growth.
  • Terminals 130 are provided on each side of the substrate 100. Furthermore, the circuit of the substrate 110 electrically connects the terminal 130 and the package electrodes of the red LED 121, blue LED 122, infrared LED 123, and white LED 124. The circuit and the terminal 130 of the substrate 110 are designed such that the red LED 121, the blue LED 122, the infrared LED 123, and the white LED 124 can be controlled independently. On the other hand, LEDs of the same color may be designed to be controllable in conjunction with each other, or may be designed to be independently controllable. The design that can be controlled independently is made by providing a number of control systems according to the type and / or number of LEDs to be controlled independently so that each control system functions in parallel.
  • the lighting unit 100 is configured such that the substrate 110 is combined with another substrate 110 so that each side is abutted with each other, thereby forming the lighting device 500.
  • the substrates 110 are coupled to each other, the surface of the substrate 110 is expanded two-dimensionally, and the substrate 110 is spread all over. For this reason, arrangement
  • the terminal 130 of the substrate 110 and the terminal 130 of the other substrate 110 are connected.
  • a male coupling portion 111 and a female coupling portion 112 may be formed on each side so that the substrates 110 can be mechanically coupled to each other. Thereby, the illumination unit 100 and the other illumination unit 100 are directly and electrically connected.
  • All the lighting units 100 in the lighting device 500 are daisy chain connected. Specifically, only two of the terminals 130 provided in one lighting unit 100 contribute to electrical and mechanical coupling. In the side where the other terminal 130 exists, it is only mechanically coupled by the male coupling part 111 and the female coupling part 112. Further, in one lighting device 500, there may be only one series circuit by daisy chain connection or a plurality of individually controllable series circuits.
  • FIG. 3 is a block diagram illustrating an example of how the lighting device 500 is used. As shown in FIG. 3, the lighting device 500 is connected to a power source 700 via the control unit 600.
  • the control unit 600 controls the red LED 121, the blue LED 122, the infrared LED 123, and the white LED 124 independently.
  • LEDs of the same color may be controlled in conjunction with each other or may be controlled independently.
  • the brightness is mainly adjusted.
  • the brightness is controlled by changing the current value or pulse width in 256 gradations (0 to 255).
  • 256 gradations (0 to 255).
  • the control part 600 can also control each series circuit independently, when the one illuminating device 500 has a several series circuit. Control as described above can be performed by direct operation or remote operation of the control unit 600. The remote operation may be performed via a wireless LAN, the Internet, and / or the cloud.
  • [Other examples] 4 to 10 show other examples of the first embodiment. In other examples, differences from the first embodiment will be mainly described, and descriptions of the same points will be omitted.
  • FIG. 4 is a schematic front view of an illumination unit 100a that is another example of the illumination unit 100 of the first embodiment.
  • the illumination unit 100a uses a square substrate 110a instead of the regular hexagonal substrate 110.
  • a total of four red LEDs 121 and blue LEDs 122 are fixed, two each for one substrate 110a.
  • Each of the four LEDs is arranged at equal intervals in the vicinity of each vertex of the square so that different kinds of LEDs are adjacent to each other.
  • One white LED 124 is arranged and fixed at the center of the square, one for each substrate 110a.
  • FIG. 5 is a schematic front view of a lighting unit 100b that is another example of the lighting unit 100 according to the first embodiment.
  • the illumination unit 100b uses a deformed rectangular substrate 110b whose outer periphery is composed of four identical point-symmetric curves instead of the regular hexagonal substrate 110.
  • a red LED 121, a blue LED 122, an infrared LED 123, a white LED 124, and a green LED 125 are fixed. Green light, like red light, blue light, and infrared light, is also involved in plant growth reactions.
  • One red LED 121, blue LED 122, infrared LED 123, and green LED 125 are arranged at equal intervals in the vicinity of each vertex of the deformed rectangle, one for each substrate 110b.
  • One white LED 124 is disposed and fixed at the center of the deformed rectangle, one for each substrate 110b.
  • a terminal 130b that enables electrical and mechanical connection with the other substrate 110b, and a male coupling portion 111b and a female die that allow mechanical connection with the other substrate 110b.
  • a coupling portion 112b is formed on the outer periphery of the substrate 110b.
  • FIG. 6 is a schematic front view of an illumination unit 100c that is another example of the illumination unit 100 of the first embodiment.
  • the illumination unit 100 c uses a substrate 110 c having a notch 113 instead of the regular hexagonal substrate 110.
  • the notch 113 is provided at each of the hexagonal apexes of the substrate 110c.
  • a male coupling portion 111c and a female coupling portion 112c that allow mechanical connection with another substrate 110c are formed.
  • FIG. 7 is a schematic front view of a lighting device 500c as another example of the lighting device 500.
  • the illumination device 500c is configured by connecting a plurality of illumination units 100c.
  • the expanded surface S is surrounded by the notch 113 formed in the substrate 110c without covering all the expanded surfaces with the substrate 110c.
  • the formation of the opening S may be preferable from the viewpoint of heat release.
  • FIG. 8 is a schematic front view of a lighting device 500d which is another example of the lighting device 500.
  • the illumination device 500d forms a ring shape as a whole by connecting a plurality of illumination units 100 to each other. Thereby, it is possible to irradiate a wide range with a small number of illumination units.
  • a ring-shaped lighting device or a circular shape in which the inside is laid by the lighting unit 100
  • it is cultivated with a small plant cultivation device. The plant can be irradiated evenly.
  • FIG. 9 is a schematic perspective view of a lighting device 500e which is another example of the lighting device 500.
  • the illumination units 100 and 100e each having substrates 110 and 110e having different shapes are combined and connected.
  • the surfaces of the substrates 110 and 110e are three-dimensionally expanded to form at least a part of the polyhedron (hereinafter referred to as a plane structure).
  • the surface structure is formed such that the LED 120 is fixed to the outer surface of the surface structure.
  • LED120 fixed to the outer surface of the surface structure has faced many directions outside the surface structure. For this reason, even if it uses what has a strong directivity as LED120, it is possible to irradiate a wide range easily.
  • FIG. 10 is a schematic partially cutaway perspective view of a lighting device 500f that is another example of the lighting device 500.
  • FIG. 10 In the illumination device 500f, illumination units 100 and 100e each having substrates 110 and 110e having different shapes are combined and connected. Thereby, the surfaces of the substrates 110 and 110e are three-dimensionally expanded to form at least a part of the polyhedron (hereinafter referred to as a plane structure). At this time, the surface structure is formed such that the LED 120 is fixed to the inner surface of the surface structure. Thereby, in the illuminating device 500f, all of LED120 fixed to the internal surface of a surface structure has faced the inside of a surface structure.
  • the irradiation target inside the surface structure, it is possible to surround or cover the irradiation target and perform intensive irradiation.
  • the surface structure is configured with a size close to the irradiation target, it is possible to perform near-field irradiation evenly.
  • a rigid substrate is exemplified as the substrates 110, 110a, 110b, 110c, and 110e.
  • the present invention is not limited to this, and the substrate 110, 110a, 110b, 110c, and 110e may be selected from a flexible substrate and a rigid flexible substrate.
  • the square, regular pentagon, and regular hexagon are given as the shapes of the substrates 110, 110a, and 110e, other polygons, preferably regular polygons, may be used.
  • the polygon may be any shape that can be expanded by being joined to each other, and may be a convex polygon or a concave polygon.
  • the deformed rectangular shape is used as the shape of the substrate 110b
  • the deformed regular hexagon is used as the shape of the substrate 110c.
  • the deformed polygon includes a shape formed by connecting vertices of a polygon with a curved line instead of a straight line, and a polygon in which each cut portion is formed in a part of the polygon.
  • the notch 113 is formed as a recess at the apex of the regular polygon (regular hexagon) of the substrate 110c.
  • the position and shape of the notch 113 on the substrate are limited to this. Not.
  • it may be a through hole formed inside the substrate, or a recess formed at an end other than the apex in the shape of the substrate.
  • the concave polygon is an example of a substrate shape having a notch.
  • an opening is inevitably formed by combining a plurality of substrates so that the expanded surface is not all covered with the substrate. The formation of such an opening may be preferable from the viewpoint of heat release or the like.
  • the LED 120 is used as the light source.
  • the present invention is not limited to this, and may be selected from organic electroluminescence, a high-pressure sodium lamp, a metal halide lamp, and a fluorescent lamp. Each fixing method can be easily selected by those skilled in the art.
  • the surface mount type LED 120 is used as the LED 120, but a bullet type LED or any other shape LED may be used.
  • the fixing aspect of LED120 may be detachable, for example, using a socket.
  • the light emitted from the light source includes red, blue, green, infrared, and white light used for plant growth. In response, it is arbitrarily selected from visible light and invisible light. Furthermore, the combination of each light which the light source with which one illumination unit was equipped emits is also selected arbitrarily.
  • a monochromatic light source is used as the light source, but the light source may be a monochromatic light source or a multicolor light source.
  • a monochromatic light source has one main wavelength of light that can be developed by one light source, whereas a multicolor light source has a plurality of main wavelengths of light that can be developed by one light source. Control of the dominant wavelength emitted by the multicolor light source is appropriately performed by those skilled in the art.
  • Some or all of the light sources fixed on the substrate may be multicolor light sources.
  • all of the light sources fixed on the substrate are multicolor light sources, at least two light sources are independently controlled to emit at least main wavelengths different from each other.
  • the dominant wavelength of light emitted from each light source to be controlled independently, or the dominant wavelength and brightness are controlled. Thereby, for example, as shown in FIGS. 1, 4, 5, and 6, light having a plurality of main wavelengths can be generated in one illumination unit.
  • the number of light sources fixed to the substrate is not limited to the above example. Specifically, it may vary depending on factors such as the surface area of the substrate, but may be, for example, 2 or more and 20 or less, 2 or more and 15 or less, or 2 or more and 10 or less.
  • the surface area of one substrate is not particularly limited, but is, for example, 150 cm 2 or less.
  • the upper limit value included in the range may be 130 cm 2 , 100 cm 2 , 50 cm 2 , 30 cm 2 , 15 cm 2 , 10 cm 2, or 5 cm 2 .
  • Lower limit contained in the range is not particularly limited, for example, 1cm 2, 5cm 2, 10cm 2, 15cm 2, 30cm 2, 50cm 2, may be 100 cm 2 or 130 cm 2.
  • a lighting unit with a smaller surface area of the substrate is preferable in that the degree of freedom in configuring the lighting device is increased.
  • the outer periphery and / or inner periphery of a specific planar shape such as a ring shape illustrated in FIG. 8 can be configured to be closer to a smooth curve.
  • the outer surface of the specific three-dimensional shape illustrated in FIG. 9 and the inner surface of the specific three-dimensional shape illustrated in FIG. 10 can be configured to be closer to a smooth curved surface.
  • the arrangement pitch of each light source fixed to the substrate is not particularly limited. Specifically, although it may vary depending on the size of the light source, the average of the shortest center distance between adjacent light sources in the illumination unit or the entire illumination device is, for example, 5 times or less and 3 times or less of the maximum diameter of the light source. It is preferably 2 times or less, 1.5 times or less, or 1.3 times or less. Although the lower limit contained in the said range is not specifically limited, For example, it is the same length as the maximum diameter of a light source.
  • the shortest center distance between the light sources is a distance connecting the centers of one light source and the light source closest to the one light source among other light sources adjacent to the one light source. It is. In the lighting device, the one light source and the other adjacent light source may both exist in the same lighting unit, or may exist in different lighting units adjacent to each other.
  • the maximum diameter of the light source is the maximum diameter in the direction parallel to the substrate surface.
  • the average value of the shortest center distance between adjacent light sources in the lighting unit or in the entire lighting device may be 50 mm or less, 30 mm or less, 20 mm or less, 10 mm or less, or 5 mm or less.
  • the lower limit value included in the range is preferably as small as possible, and is not particularly limited, but is, for example, 0.1 mm.
  • the distribution of the light source is nearly uniform in the entire lighting device. That is, it is preferable that the light sources are arranged so that the light beams having different main wavelengths emitted from the light source of the illumination device are mixed with each other on the surface of the irradiation target. Specifically, it is preferable that the shortest center distance between all the light sources is the same in the entire lighting device. That is, it is most preferable that the standard deviation of the shortest center distance between the light sources in the entire lighting device is 0, and it is more preferable that the standard deviation is close to 0.
  • the ratio of the maximum value of the shortest center distance to the minimum value of the shortest center distance is 1 to 1.5.
  • they are 1 or more and 1.3 or less, More preferably, they are 1 or more and 1.2 or less. This makes it possible to equalize a plurality of light beams having different main wavelengths. By making the light uniform, the growth reproducibility can be improved when plant growth is controlled under the same conditions. This is particularly preferred when systemizing light control in plant growth.
  • the daisy chain connection is exemplified as the electrical connection between the lighting units 100, 100c, and 100e in the lighting devices 500, 500c, 500d, 500e, and 500f, but a star-type connection may be used.
  • the surface structures of the lighting devices 500e and 500f are configured by combining the lighting units 100 and 100e having the plurality of shapes of the substrates 110 and 110e.
  • the surface structures have the same shape. You may comprise from a lighting unit.
  • the lighting unit 100, 100a, 100b, 100c, 100e according to the present invention provides the following effects.
  • one illumination unit 100 includes a plurality of types of LEDs 120 that emit light having different main wavelengths, and the substrates 110, 110a, 110b, and 110c.
  • 110e can be expanded, and by combining a plurality of lighting units 100, 100a, 100b, 100c, 100e, in a plant growth application, a desired one can be obtained depending on various situations such as plants and / or plant growth places.
  • a lighting device having a size and a shape can be formed.
  • the substrates 110, 110a, and 110e are polygonal, the shape of the illumination units 100, 100a, and 100e can be simplified, and the illumination units 100, 100a, and 100e can be easily expanded.
  • the substrate 100 is a hexagon and the substrate 100c is a deformed regular hexagon, a high degree of freedom can be obtained with respect to the shapes of the illumination devices 500, 500c, and 500d configured by extending the illumination unit 100.
  • the LED 120 emits light selected from red light, blue light, green light, and infrared light, and therefore can be preferably applied to plant growth applications. Further, by using the white LED 124, the color of the growing plant can be easily identified.
  • the brightness of each of the plurality of types of LEDs 120 is individually controlled, so that various patterns of colors can be emitted depending on the type of plant and / or the growth stage. It becomes easy.
  • the LED 120 is used as the light source, energy saving and long life of the illumination units 100, 100a, 100b, 100c, and 100e can be achieved.
  • the lighting devices 500, 500c, 500d, 500e, and 500f can simplify the electrical path because the lighting units 100, 100c, and 100e are daisy chain connected to each other.
  • the substrates 110 and 110e have different shapes, and the degree of freedom of shape is high due to the combination expansion of the lighting units 100 and 100e.
  • the illumination units 100, 100a, 100b, 100c, and 100e correspond to “illumination units”
  • the substrates 110, 110a, 110b, 110c, and 110e correspond to “substrates”
  • the LEDs 120 correspond to “light sources”.
  • the lighting devices 500, 500c, 500d, 500e, and 500f correspond to “lighting devices”.

Abstract

Provided are: an illumination device capable of providing a desired size and shape in accordance with a variety of conditions, in an application using a plurality of light sources having different dominant wavelengths; and a configuration unit therefor. The illumination unit includes a plurality of light source types and a substrate that fixes the plurality of light source types. The plurality of light source types generate light having different dominant wavelengths and the substrate has a shape that is expandable by joining with other substrates. One illumination unit includes a plurality of light source types that each generate different dominant wavelengths and the substrate is expandable. Therefore, by joining a plurality of illumination units, an illumination device can be configured that has a desired size and shape in accordance with a variety of conditions such as the light irradiation target and/or the illumination device installation location, etc., in an application using a plurality of light sources having different dominant wavelengths.

Description

照明ユニットおよび照明装置Lighting unit and lighting device
 本発明は、照明ユニットおよびそれによって構成される照明装置に関する。特に本発明は、植物生育用の照明装置に関する。 The present invention relates to a lighting unit and a lighting device constituted by the lighting unit. In particular, the present invention relates to a lighting device for plant growth.
 植物の生育環境を人工的に制御する手段として、LEDを用いた人工光源の利用が知られている。そのような人工光源の利用は、例えば、特開2012-39996号公報(特許文献1)に記載されている。具体的には、発光色が異なる3種類のLEDをそれぞれ複数実装した照明装置が開示されている。 The use of artificial light sources using LEDs is known as means for artificially controlling the growth environment of plants. The use of such an artificial light source is described in, for example, Japanese Patent Application Laid-Open No. 2012-39996 (Patent Document 1). Specifically, an illumination device is disclosed in which a plurality of three types of LEDs having different emission colors are mounted.
特開2012-39996号公報JP 2012-39996 A
 特許文献1に記載の照明装置では、断面矩形状の光源筐体にLEDが配置させられている。照明装置における全てのLEDの位置が1個の基板に固定されているため、照明装置全体の大きさは固定され、変更することはできない。
 一方、照明装置を設置すべき場所および光照射すべき範囲は、光照射対象である植物の種類、生育時期および生育規模等によって様々に異なる。
 しかしながら、特許文献1に記載の照明装置では、このように様々に異なりうる状況、すなわち設置場所および光照射範囲等に対応することはできない。
In the illumination device described in Patent Literature 1, LEDs are arranged in a light source casing having a rectangular cross section. Since the positions of all LEDs in the lighting device are fixed to one substrate, the overall size of the lighting device is fixed and cannot be changed.
On the other hand, the place where the lighting device is to be installed and the range where light is to be irradiated vary depending on the type, growth time, growth scale, and the like of the plant to be irradiated with light.
However, the illumination device described in Patent Document 1 cannot deal with situations that can vary in various ways, that is, the installation location and the light irradiation range.
 本発明は、このような従来技術の問題点に鑑み開発されたものである。従って、本発明の目的は、主波長が異なる複数の光源を用いる用途において、様々な状況に応じた所望の大きさおよび形状をとることができる照明装置、およびその構成ユニットを提供することにある。 The present invention has been developed in view of such problems of the prior art. Accordingly, it is an object of the present invention to provide an illumination device that can take a desired size and shape according to various situations in an application using a plurality of light sources having different main wavelengths, and a constituent unit thereof. .
(1)
 一局面に係る照明ユニットは、複数種の光源と、複数種の光源を固定する基板とを含む。複数種の光源は、互いに異なる主波長の光を発する。基板は、他の基板との結合により拡張可能な形状を有する。
(1)
An illumination unit according to one aspect includes a plurality of types of light sources and a substrate that fixes the plurality of types of light sources. The plurality of types of light sources emit light having different main wavelengths. The substrate has a shape that can be expanded by coupling with another substrate.
 1つの照明ユニット中には互いに異なる主波長の光を発する複数種の光源が含まれ、且つ基板が拡張可能であるため、照明ユニットを複数結合させることにより、主波長が異なる複数の光源を用いる用途において、光照射対象および/または照明装置設置場所等の様々な状況に応じ、所望の大きさおよび形状を有する照明装置を構成することができる。 A single lighting unit includes a plurality of types of light sources that emit light having different main wavelengths, and the substrate is expandable. Therefore, by combining a plurality of lighting units, a plurality of light sources having different main wavelengths are used. In use, a lighting device having a desired size and shape can be configured in accordance with various situations such as a light irradiation target and / or a lighting device installation location.
(2)
 照明ユニットの基板の形状は、多角形であってよい。
 これによって、照明ユニットの形状を単純にすることができ、照明ユニットの拡張も容易に行うことができる。
(2)
The shape of the substrate of the lighting unit may be a polygon.
As a result, the shape of the lighting unit can be simplified, and the lighting unit can be easily expanded.
(3)
 照明ユニットの基板の形状は、六角形であってよい。
 これによって、照明ユニットの拡張により構成される照明装置の形状について高い自由度が得られる。
(3)
The shape of the substrate of the lighting unit may be a hexagon.
Accordingly, a high degree of freedom can be obtained with respect to the shape of the lighting device configured by extending the lighting unit.
(4)
 複数種の光源から発せられる、互いに異なる主波長の光は、それぞれ、赤色光、青色光、緑光および赤外光から選ばれてよい。
 これによって、照明ユニットが、赤色光、青色光、緑光および赤外光から選ばれる少なくとも2種の光を用いる用途に適用できる。
(4)
Lights having different principal wavelengths emitted from a plurality of types of light sources may be selected from red light, blue light, green light, and infrared light, respectively.
Accordingly, the illumination unit can be applied to an application using at least two types of light selected from red light, blue light, green light, and infrared light.
(5)
 複数種の光源から発せられる互いに異なる主波長の光には、少なくとも白色光を含んでよい。
 これによって、照明ユニットの光照射対象の色の識別が容易になる。
(5)
The light having different principal wavelengths emitted from a plurality of types of light sources may include at least white light.
This facilitates identification of the light irradiation target color of the lighting unit.
(6)
 複数種の光源から発せられる互いに異なる主波長の光は、それぞれ個別に明るさが制御されてよい。
 これによって、様々な主波長および/または明るさのパターンの光照射が容易になる。
(6)
The brightness of light having different main wavelengths emitted from a plurality of types of light sources may be individually controlled.
This facilitates light irradiation with patterns having various dominant wavelengths and / or brightness.
(7)
 光源は、発光ダイオード素子および有機エレクトロルミネッセンス素子の少なくともいずれかであってよい。
 これによって、照明ユニットの省エネルギー化および長寿命化を図ることができる。
(7)
The light source may be at least one of a light emitting diode element and an organic electroluminescence element.
Thereby, the energy saving and long life of the lighting unit can be achieved.
(8)
 光源は、最短中心間距離の平均値が0.1mm以上50mm以下となるピッチで配置されていてよい。
 ここで、光源間の最短中心間距離とは、一の光源と、当該一の光源と隣り合う他の光源のうち当該一の光源の最も近くに存在する光源との、それぞれの中心(基板上において1個の当該光源が占める範囲の中心)を結ぶ距離である。
 これによって、照明ユニットから照射される複数の主波長の光の均一化を図ることができる。
(8)
The light sources may be arranged at a pitch at which the average value of the shortest center distance is not less than 0.1 mm and not more than 50 mm.
Here, the shortest center-to-center distance between light sources refers to the center (on the substrate) of one light source and the light source closest to the one light source among other light sources adjacent to the one light source. , The distance occupied by a single light source).
Thereby, it is possible to make uniform the light having a plurality of main wavelengths emitted from the illumination unit.
(9)
 照明ユニットは、植物生育用に用いられてよい。
 これによって、植物を効率的に生育させることができる。
(9)
The lighting unit may be used for plant growth.
Thereby, a plant can be grown efficiently.
(10)
 他の局面に係る照明装置は、一の局面に係る照明ユニットが複数連結されることにより構成される。
(10)
A lighting device according to another aspect is configured by connecting a plurality of lighting units according to one aspect.
 1つの照明ユニットには異なる主波長の光を発する複数の光源が含まれ、且つ基板が拡張可能であるため、照明ユニットを複数連結させて構成される照明装置は、異なる主波長の光を用いる用途で、光照射対象および/または照明装置設置場所等の様々な状況に応じ、所望の大きさおよび形状をとることができる。 Since one lighting unit includes a plurality of light sources that emit light having different main wavelengths and the substrate is expandable, a lighting device configured by connecting a plurality of lighting units uses light having different main wavelengths. Depending on the application, it can take a desired size and shape according to various situations such as a light irradiation target and / or a lighting device installation location.
(11)
 照明ユニット同士の連結は、少なくともデイジーチェーン接続によるものであってよい。
 デイジーチェーン接続とは、照明ユニット同士が電気的に直列接続されることをいう。
 これによって、照明装置全体が多数の照明ユニットから構成される場合であっても、電気経路を簡素にすることができる。
(11)
The connection between the lighting units may be at least by daisy chain connection.
Daisy chain connection means that the lighting units are electrically connected in series.
This makes it possible to simplify the electrical path even when the entire lighting device is composed of a large number of lighting units.
(12)
 照明装置における光源は、複数種の光源から発せられるそれぞれの光が、照射対象表面において互いに混合されるように配置されていることが好ましい。
 これによって、複数種の光源から発せられるそれぞれの光が同一の照射対象に対して均一に照射される。
(12)
The light source in the illuminating device is preferably arranged so that each light emitted from a plurality of types of light sources is mixed with each other on the irradiation target surface.
Thereby, each light emitted from a plurality of types of light sources is uniformly irradiated to the same irradiation target.
(13)
 照明装置全体において、光源が、最短中心間距離の最小値に対する最短中心間距離の最大値の比が1以上1.5以下となるピッチで配置されていることが好ましい。
 ここで、光源間の最短中心間距離とは、一の光源と、当該一の光源と隣り合う他の光源のうち当該一の光源の最も近くに存在する光源との、それぞれの中心を結ぶ距離である。なお、照明装置において、当該一の光源と当該隣り合う他の光源とは、両方とも同一照明ユニット内に存在する場合と、それぞれ隣接する異なる照明ユニット内に存在する場合とがある。
 これによって、複数種の光源から発せられる光の均一化を図ることができる。
(13)
In the entire lighting device, it is preferable that the light sources are arranged at a pitch at which the ratio of the maximum value of the shortest center distance to the minimum value of the shortest center distance is 1 or more and 1.5 or less.
Here, the shortest center distance between the light sources is a distance connecting the centers of one light source and the light source closest to the one light source among other light sources adjacent to the one light source. It is. In the illumination device, the one light source and the other adjacent light source may both exist in the same illumination unit, or may exist in different illumination units adjacent to each other.
Thereby, it is possible to make uniform the light emitted from a plurality of types of light sources.
(14)
 複数個の照明ユニットは、基板の形状が異なる複数種の照明ユニットを含んでよい。
 これによって、照明ユニットの拡張により構成される照明装置の形状についてより高い自由度が得られる。
(14)
The plurality of lighting units may include a plurality of types of lighting units having different substrate shapes.
As a result, a higher degree of freedom can be obtained with respect to the shape of the lighting device configured by extending the lighting unit.
(15)
 さらなる他の局面に係る照明方法は、複数個の光源と、当該複数個の光源を固定する基板とを含み且つ基板が他の基板との結合により拡張可能な形状を有する照明ユニットを、複数個の光源のうち少なくとも2個の光源がそれぞれ独立して互いに異なる主波長および/または明るさの光を発するように制御することを含む。
 これによって、1個の照明ユニットから、主波長および/または明るさが異なる複数の光を照射することができる。制御されるべき照明ユニットは、照明装置を構成した状態の照明ユニットであってよい。
(15)
A lighting method according to still another aspect includes a plurality of lighting units including a plurality of light sources and a substrate on which the plurality of light sources are fixed, and the substrate has a shape that can be expanded by coupling with another substrate. And controlling so that at least two of the light sources independently emit light having different dominant wavelengths and / or brightness.
Accordingly, a plurality of lights having different main wavelengths and / or brightness can be emitted from one lighting unit. The lighting unit to be controlled may be a lighting unit in a state of constituting a lighting device.
(16)
 独立して制御される少なくとも2個の光源は、互いに異なる主波長の光を発する単色光源であってよい。
 この場合、独立して制御されるそれぞれの単色光源が発する光の明るさが制御される。
(16)
The at least two light sources that are independently controlled may be monochromatic light sources that emit light having different main wavelengths.
In this case, the brightness of light emitted from each monochromatic light source controlled independently is controlled.
(17)
 独立して制御される少なくとも2個の光源は、複色光源であってよい。
 この場合、独立して制御されるそれぞれの複色光源が発する光の、主波長、または主波長と明るさとが制御される。
(17)
The at least two light sources that are independently controlled may be multicolor light sources.
In this case, the dominant wavelength or the dominant wavelength and the brightness of the light emitted from each independently controlled multicolor light source is controlled.
 (18)
 制御は、遠隔操作によって行われてよい。
 これによって、照明ユニットを遠隔操作することができる。
(18)
Control may be performed by remote control.
As a result, the lighting unit can be remotely operated.
 本発明によれば、主波長が異なる複数の光源を用いる用途において、様々な状況に応じた所望の大きさおよび形状をとることができる照明装置、およびその構成部品となる照明ユニットを提供することができる。
 したがって、例えば光照射対象となりうる植物の種類、生育時期および生育環境等の状況の違いに応じて異なる大きさおよび形状の照明装置を別途用意する必要がなく、照明ユニットの組み合わせ方を変えるだけで、各状況に応じた大きさおよび形状の照明装置を構成することができる。
According to the present invention, in an application using a plurality of light sources having different dominant wavelengths, an illumination device capable of taking a desired size and shape according to various situations and an illumination unit serving as a component thereof are provided. Can do.
Therefore, for example, it is not necessary to prepare separate lighting devices of different sizes and shapes according to differences in conditions such as the types of plants that can be irradiated with light, the growing season and the growing environment, and only the way of combining the lighting units is changed. A lighting device having a size and shape corresponding to each situation can be configured.
第1実施形態の照明ユニットの模式的正面図である。It is a typical front view of the illumination unit of 1st Embodiment. 照明ユニットを複数連結させた照明装置の一部を示す模式的正面図である。It is a typical front view which shows a part of illuminating device which connected multiple illumination units. 照明装置の使用態様の一例を示すブロック図である。It is a block diagram which shows an example of the usage condition of an illuminating device. 第1実施形態の照明ユニットの他の例の模式的正面図である。It is a typical front view of the other example of the illumination unit of 1st Embodiment. 第1実施形態の照明ユニットのさらなる他の例の模式的正面図である。It is a typical front view of the further another example of the illumination unit of 1st Embodiment. 第1実施形態の照明ユニットのさらなる他の例の模式的正面図である。It is a typical front view of the further another example of the illumination unit of 1st Embodiment. 照明装置の他の例の一部を示す模式的正面図である。It is a typical front view which shows a part of other example of an illuminating device. 照明装置のさらなる他の例の一部を示す模式的正面図である。It is a typical front view which shows a part of further another example of an illuminating device. 照明装置のさらなる他の例の一部を示す模式的斜視図である。It is a typical perspective view which shows a part of further another example of an illuminating device. 照明装置のさらなる他の例の一部を示す模式的一部切り欠き斜視図である。It is a typical partial notch perspective view which shows a part of further another example of an illuminating device.
100,100a,100b,100c,100e 照明ユニット
110,110a,110b,110c,110e 基板
120 LED
500,500c,500d,500e,500f 照明装置
100, 100a, 100b, 100c, 100e Illumination unit 110, 110a, 110b, 110c, 110e Substrate 120 LED
500, 500c, 500d, 500e, 500f Lighting device
[第1実施形態]
 以下、図面を参照しつつ、本発明の実施の形態について説明する。
 図1は、第1実施形態の照明ユニット100の模式的正面図である。照明ユニット100は、基板110と、基板110に実装された発光ダイオード(以下、単にLEDと略記する)素子120とを含む。図2は、照明ユニット100を複数連結させて拡張することにより構成される照明装置500の模式的正面図である。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic front view of a lighting unit 100 according to the first embodiment. The lighting unit 100 includes a substrate 110 and a light emitting diode (hereinafter simply referred to as LED) element 120 mounted on the substrate 110. FIG. 2 is a schematic front view of an illumination device 500 configured by connecting and expanding a plurality of illumination units 100.
 基板110は、正六角形の形状を有するリジッド回路基板である。基板110の大きさは、正六角形の一片が2.5cmである。
 基板110の材料には、例えば、セラミックス、合成樹脂および金属から当業者によって適宜選択されるものが含まれてよい。より具体的には、ガラスエポキシ基板及びガラスコンポジット基板などの複合材料が用いられてよい。また、遮熱塗料の塗布等による表面加工処理、絶縁層等による積層処理がなされたものであってよい。
The board 110 is a rigid circuit board having a regular hexagonal shape. As for the size of the substrate 110, a regular hexagonal piece is 2.5 cm.
The material of the substrate 110 may include, for example, a material appropriately selected by those skilled in the art from ceramics, synthetic resins, and metals. More specifically, composite materials such as a glass epoxy substrate and a glass composite substrate may be used. Further, it may have been subjected to a surface processing treatment such as application of a thermal barrier paint or a lamination treatment using an insulating layer or the like.
 基板110の一方の面に、LED120として、LED121,122,123,124の4種類の単色LEDが固定される。これらLEDとしては、電極を備えたパッケージ材料内にLED素子が実装された、表面実装型のものが用いられる。LED121,122,123,124がそれぞれ発する光の主波長は互いに異なる。具体的には、LED121は赤色光(以下、赤色LED121と略記する)、LED122は青色光(以下、青色LED122と略記する)、LED123は赤外光(以下、赤外LED123と略記する)、LED124は白色光(以下、白色LED124と略記する)を発する。 On the one surface of the substrate 110, four types of single-color LEDs, LEDs 121, 122, 123, and 124, are fixed as LEDs 120. As these LEDs, surface mount type LEDs in which LED elements are mounted in a package material provided with electrodes are used. The main wavelengths of light emitted from the LEDs 121, 122, 123, and 124 are different from each other. Specifically, LED 121 is red light (hereinafter abbreviated as red LED 121), LED 122 is blue light (hereinafter abbreviated as blue LED 122), LED 123 is infrared light (hereinafter abbreviated as infrared LED 123), LED 124. Emits white light (hereinafter abbreviated as white LED 124).
 赤色LED121、青色LED122および赤外LED123は、1枚の基板110につきそれぞれ2個ずつ、合計6個固定される。6個のLEDはいずれも基板110の中心から等しい距離で配置され、それぞれ、異種のLEDが隣り合うように、正六角形の各頂点付近に互いに等間隔で配置される。白色LED124は1枚の基板110につき1個、基板110の中央に配置されて固定される。 A total of six red LEDs 121, blue LEDs 122, and infrared LEDs 123 are fixed, two for each substrate 110. The six LEDs are all arranged at an equal distance from the center of the substrate 110, and are arranged at equal intervals near each vertex of the regular hexagon so that different types of LEDs are adjacent to each other. One white LED 124 per substrate 110 is disposed and fixed in the center of the substrate 110.
 赤色光、青色光および赤外光は、植物が持つ特定の受容体によって認識されることが知られている。植物受容体に認識される光の特定の主波長と特定の生育反応(たとえば、種子発芽、花芽分化、開花、子葉展開、葉緑素合成、および節間伸長を含む光形態形成をもたらす生体反応、ならびに光合成)との間には相関関係が見出されている。このため、照明ユニット100は、植物の生育に好ましく用いられる。 It is known that red light, blue light and infrared light are recognized by specific receptors possessed by plants. Specific dominant wavelengths of light recognized by plant receptors and specific growth responses (e.g., biological reactions leading to photomorphogenesis including seed germination, flower bud differentiation, flowering, cotyledon development, chlorophyll synthesis, and internode elongation, and A correlation has been found with photosynthesis. For this reason, the lighting unit 100 is preferably used for plant growth.
 基板100の各辺には端子130が設けられる。さらに基板110の回路は、端子130と赤色LED121、青色LED122、赤外LED123および白色LED124それぞれのパッケージ電極との間を電気的に接続する。基板110の回路および端子130は、赤色LED121、青色LED122、赤外LED123および白色LED124がそれぞれ独立して制御可能であるように設計される。一方、同じ色のLEDは、それぞれ連動して制御可能であるように設計されてもよいし、それぞれ独立して制御可能であるように設計されてもよい。
 独立して制御可能であるような設計は、独立制御すべきLEDの種類および/または数に応じた数の制御系を、それぞれの制御系が並列して機能するように備えることによってなされる。
Terminals 130 are provided on each side of the substrate 100. Furthermore, the circuit of the substrate 110 electrically connects the terminal 130 and the package electrodes of the red LED 121, blue LED 122, infrared LED 123, and white LED 124. The circuit and the terminal 130 of the substrate 110 are designed such that the red LED 121, the blue LED 122, the infrared LED 123, and the white LED 124 can be controlled independently. On the other hand, LEDs of the same color may be designed to be controllable in conjunction with each other, or may be designed to be independently controllable.
The design that can be controlled independently is made by providing a number of control systems according to the type and / or number of LEDs to be controlled independently so that each control system functions in parallel.
 照明ユニット100は、図2に示すように、基板110が、他の基板110と、各辺が互いに突き合わされるように結合され、照明装置500を構成する。基板110が互いに結合されることにより、基板110表面が二次元的に拡張され、基板110が一面に敷き詰められる態様となる。このため、照明装置500全体におけるLED120の配置が好ましく分散され、照射光の均一化を図ることができる。 As shown in FIG. 2, the lighting unit 100 is configured such that the substrate 110 is combined with another substrate 110 so that each side is abutted with each other, thereby forming the lighting device 500. When the substrates 110 are coupled to each other, the surface of the substrate 110 is expanded two-dimensionally, and the substrate 110 is spread all over. For this reason, arrangement | positioning of LED120 in the illuminating device 500 whole is preferably disperse | distributed, and uniformization of irradiated light can be aimed at.
 この場合においては、基板110の端子130と、他の基板110の端子130とが接続される。各辺には、基板110同士が互いに機械的結合が可能となるよう、雄型結合部111および雌型結合部112が形成されていてよい。これにより、照明ユニット100と他の照明ユニット100とは、直接、電気的および機械的に連結される。 In this case, the terminal 130 of the substrate 110 and the terminal 130 of the other substrate 110 are connected. A male coupling portion 111 and a female coupling portion 112 may be formed on each side so that the substrates 110 can be mechanically coupled to each other. Thereby, the illumination unit 100 and the other illumination unit 100 are directly and electrically connected.
 照明装置500における各照明ユニット100は、すべてデイジーチェーン接続されている。具体的には、1個の照明ユニット100に設けられた端子130のうち2個のみが、電気的および機械的な結合に寄与する。その他の端子130が存在する辺においては、雄型結合部111および雌型結合部112によって機械的にのみ結合している。
 また、一の照明装置500には、デイジーチェーン接続による直列回路がただ1つ存在してもよいし、個別に制御可能な直列回路が複数存在してもよい。
All the lighting units 100 in the lighting device 500 are daisy chain connected. Specifically, only two of the terminals 130 provided in one lighting unit 100 contribute to electrical and mechanical coupling. In the side where the other terminal 130 exists, it is only mechanically coupled by the male coupling part 111 and the female coupling part 112.
Further, in one lighting device 500, there may be only one series circuit by daisy chain connection or a plurality of individually controllable series circuits.
 図3は、照明装置500の使用態様の一例を示すブロック図である。図3に示されるように、照明装置500は、制御部600を介して電源700に接続される。
 制御部600は、赤色LED121、青色LED122、赤外LED123および白色LED124それぞれを独立して制御する。一方、同じ色のLEDは、それぞれ連動して制御してもよいし、それぞれ独立して制御してもよい。
FIG. 3 is a block diagram illustrating an example of how the lighting device 500 is used. As shown in FIG. 3, the lighting device 500 is connected to a power source 700 via the control unit 600.
The control unit 600 controls the red LED 121, the blue LED 122, the infrared LED 123, and the white LED 124 independently. On the other hand, LEDs of the same color may be controlled in conjunction with each other or may be controlled independently.
 光源の制御においては、主として明るさを調節する。明るさの制御は、電流値またはパルス幅を256階調(0から255)で変えることによって行われる。具体的には、開花時期、結実時期、植物形態および栄養成分等の調節を行う目的で、植物の様々な光応答反応(生育反応)を利用し、植物の種類および生育ステージ等に応じて特定の主波長の光を単独または組み合わせて照射することができる。
 また、制御部600は、一の照明装置500が複数の直列回路を有する場合、それぞれの直列回路を独立して制御することもできる。
 上述のような制御は、制御部600への直接的操作又は遠隔操作によって行うことができる。遠隔操作は、無線LAN、インターネットおよび/またはクラウドを介して行われてよい。
In controlling the light source, the brightness is mainly adjusted. The brightness is controlled by changing the current value or pulse width in 256 gradations (0 to 255). Specifically, for the purpose of adjusting the flowering time, fruiting time, plant morphology, nutritional components, etc., use various light response reactions (growth reactions) of the plant and specify according to the type of plant and the growth stage, etc. It is possible to irradiate light having the main wavelength of alone or in combination.
Moreover, the control part 600 can also control each series circuit independently, when the one illuminating device 500 has a several series circuit.
Control as described above can be performed by direct operation or remote operation of the control unit 600. The remote operation may be performed via a wireless LAN, the Internet, and / or the cloud.
[他の例]
 図4から図10は、第1実施形態の他の例を示す。他の例においては、主に第1実施形態と異なる点について説明し、同一点については説明を省略する。
[Other examples]
4 to 10 show other examples of the first embodiment. In other examples, differences from the first embodiment will be mainly described, and descriptions of the same points will be omitted.
 図4は、第1実施形態の照明ユニット100の他の例である照明ユニット100aの模式的正面図である。照明ユニット100aは、正六角形の基板110の代わりに正方形の基板110aを用いるものである。基板110aの一方の面には、赤色LED121、青色LED122、白色LED124の3種類の単色LEDが固定される。このうち、赤色LED121および青色LED122は、1枚の基板110aにつきそれぞれ2個ずつ、合計4個固定される。4個のLEDそれぞれは、異種のものが隣り合うように、正方形の各頂点付近に互いに等間隔で配置される。白色LED124は1枚の基板110aにつき1個、正方形の中央に配置されて固定される。 FIG. 4 is a schematic front view of an illumination unit 100a that is another example of the illumination unit 100 of the first embodiment. The illumination unit 100a uses a square substrate 110a instead of the regular hexagonal substrate 110. Three types of single-color LEDs, a red LED 121, a blue LED 122, and a white LED 124, are fixed to one surface of the substrate 110a. Among these, a total of four red LEDs 121 and blue LEDs 122 are fixed, two each for one substrate 110a. Each of the four LEDs is arranged at equal intervals in the vicinity of each vertex of the square so that different kinds of LEDs are adjacent to each other. One white LED 124 is arranged and fixed at the center of the square, one for each substrate 110a.
 図5は、第1実施形態の照明ユニット100の他の例である照明ユニット100bの模式的正面図である。照明ユニット100bは、正六角形の基板110の代わりに、同形の点対称曲線4本で外周が構成される変形矩形状の基板110bを用いるものである。基板110bの一方の面には、赤色LED121、青色LED122、赤外LED123、白色LED124および緑色LED125の5種類の単色LEDが固定される。緑色光も、赤色光、青色光および赤外光と同様、植物の生育反応に関与するものである。赤色LED121、青色LED122、赤外LED123および緑色LED125は、1枚の基板110bにつき1個ずつ、それぞれ変形矩形の各頂点付近に等間隔で配置される。白色LED124は1枚の基板110bにつき1個、変形矩形の中心に配置されて固定される。
 また、基板110bの外周には、他の基板110bとの電気的および機械的接続を可能にする端子130bと、他の基板110bとの機械的接続を可能にする雄型結合部111bおよび雌型結合部112bが形成される。
FIG. 5 is a schematic front view of a lighting unit 100b that is another example of the lighting unit 100 according to the first embodiment. The illumination unit 100b uses a deformed rectangular substrate 110b whose outer periphery is composed of four identical point-symmetric curves instead of the regular hexagonal substrate 110. On one surface of the substrate 110b, five types of single-color LEDs, a red LED 121, a blue LED 122, an infrared LED 123, a white LED 124, and a green LED 125, are fixed. Green light, like red light, blue light, and infrared light, is also involved in plant growth reactions. One red LED 121, blue LED 122, infrared LED 123, and green LED 125 are arranged at equal intervals in the vicinity of each vertex of the deformed rectangle, one for each substrate 110b. One white LED 124 is disposed and fixed at the center of the deformed rectangle, one for each substrate 110b.
Further, on the outer periphery of the substrate 110b, a terminal 130b that enables electrical and mechanical connection with the other substrate 110b, and a male coupling portion 111b and a female die that allow mechanical connection with the other substrate 110b. A coupling portion 112b is formed.
 図6は、第1実施形態の照明ユニット100の他の例である照明ユニット100cの模式的正面図である。照明ユニット100cは、正六角形の基板110の代わりに、欠切部113を有する基板110cを用いるものである。欠切部113は、基板110cの六角形の頂点部それぞれに設けられている。
 また、基板110cの外周には、他の基板110cとの機械的接続を可能にする雄型結合部111cおよび雌型結合部112cが形成される。
FIG. 6 is a schematic front view of an illumination unit 100c that is another example of the illumination unit 100 of the first embodiment. The illumination unit 100 c uses a substrate 110 c having a notch 113 instead of the regular hexagonal substrate 110. The notch 113 is provided at each of the hexagonal apexes of the substrate 110c.
Further, on the outer periphery of the substrate 110c, a male coupling portion 111c and a female coupling portion 112c that allow mechanical connection with another substrate 110c are formed.
 図7は、照明装置500の他の例である照明装置500cの模式的正面図である。照明装置500cは、照明ユニット100cが複数連結されて構成されるものである。照明装置500cは、複数の基板110cが結合されることによって、拡張された表面が全て基板110cで敷き詰められることなく、基板110cに形成された欠切部113によって囲まれた開口部Sが形成される。このような開口部Sの形成は、熱放出の観点から好ましい場合がある。 FIG. 7 is a schematic front view of a lighting device 500c as another example of the lighting device 500. FIG. The illumination device 500c is configured by connecting a plurality of illumination units 100c. In the lighting device 500c, by combining the plurality of substrates 110c, the expanded surface S is surrounded by the notch 113 formed in the substrate 110c without covering all the expanded surfaces with the substrate 110c. The The formation of the opening S may be preferable from the viewpoint of heat release.
 図8は、照明装置500の他の例である照明装置500dの模式的正面図である。照明装置500dは、照明ユニット100同士が複数個連結されることによって、全体としてリング状を形成しているものである。
 これによって、少ない照明ユニット数で広い範囲を照射することができる。また、類似の態様として、より少ない数の照明ユニット100を用いてリング状(または内側が照明ユニット100によって敷き詰められた円状)の照明装置を構成した場合、小型の植物栽培装置で栽培される植物に対してまんべんなく照射することができる。
 
FIG. 8 is a schematic front view of a lighting device 500d which is another example of the lighting device 500. FIG. The illumination device 500d forms a ring shape as a whole by connecting a plurality of illumination units 100 to each other.
Thereby, it is possible to irradiate a wide range with a small number of illumination units. Moreover, as a similar aspect, when a ring-shaped lighting device (or a circular shape in which the inside is laid by the lighting unit 100) is configured using a smaller number of lighting units 100, it is cultivated with a small plant cultivation device. The plant can be irradiated evenly.
 図9は、照明装置500の他の例である照明装置500eの模式的斜視図である。照明装置500eは、互いに異なる形状の基板110,110eをそれぞれ有する照明ユニット100,100eが互いに組み合わされて連結される。これによって、基板110,110eの表面が三次元的に拡張され、多面体の少なくとも一部(以下、面構造体と記載する)を形成する。このとき、面構造体は、LED120が面構造体外部表面に固定されているように形成される。これにより、照明装置500eにおいては、面構造体の外部表面に固定されたLED120が面構造体外部の多くの方向を向いている。このため、LED120として指向性が強いものを使用したものであっても、容易に広範囲を照射することが可能である。 FIG. 9 is a schematic perspective view of a lighting device 500e which is another example of the lighting device 500. FIG. In the illumination device 500e, the illumination units 100 and 100e each having substrates 110 and 110e having different shapes are combined and connected. Thereby, the surfaces of the substrates 110 and 110e are three-dimensionally expanded to form at least a part of the polyhedron (hereinafter referred to as a plane structure). At this time, the surface structure is formed such that the LED 120 is fixed to the outer surface of the surface structure. Thereby, in the illuminating device 500e, LED120 fixed to the outer surface of the surface structure has faced many directions outside the surface structure. For this reason, even if it uses what has a strong directivity as LED120, it is possible to irradiate a wide range easily.
 図10は、照明装置500の他の例である照明装置500fの模式的一部切り欠き斜視図である。照明装置500fは、互いに異なる形状の基板110,110eをそれぞれ有する照明ユニット100,100eが互いに組み合わされて連結される。これによって、基板110,110eの表面が三次元的に拡張され、多面体の少なくとも一部(以下、面構造体と記載する)を形成する。このとき、面構造体は、LED120が面構造体内部表面に固定されているように形成される。これにより、照明装置500fにおいては、面構造体の内部表面に固定されたLED120の全てが面構造体内部を向いている。したがって、面構造体内部に照射対象を配置することによって、照射対象を包囲または被覆し、集中的な照射を行うことが可能である。面構造体を照射対象に近い大きさで構成すると、まんべんなく近接照射を行うことが可能である。 FIG. 10 is a schematic partially cutaway perspective view of a lighting device 500f that is another example of the lighting device 500. FIG. In the illumination device 500f, illumination units 100 and 100e each having substrates 110 and 110e having different shapes are combined and connected. Thereby, the surfaces of the substrates 110 and 110e are three-dimensionally expanded to form at least a part of the polyhedron (hereinafter referred to as a plane structure). At this time, the surface structure is formed such that the LED 120 is fixed to the inner surface of the surface structure. Thereby, in the illuminating device 500f, all of LED120 fixed to the internal surface of a surface structure has faced the inside of a surface structure. Therefore, by arranging the irradiation target inside the surface structure, it is possible to surround or cover the irradiation target and perform intensive irradiation. When the surface structure is configured with a size close to the irradiation target, it is possible to perform near-field irradiation evenly.
[変形例]
 上述の例において、基板110,110a,110b,110c,110eとしてリジッド基板を挙げたが、これに限定されず、フレキシブル基板およびリジッドフレキシブル基板から選択されてもよい。
[Modification]
In the above-described example, a rigid substrate is exemplified as the substrates 110, 110a, 110b, 110c, and 110e. However, the present invention is not limited to this, and the substrate 110, 110a, 110b, 110c, and 110e may be selected from a flexible substrate and a rigid flexible substrate.
 また、基板110,110a,110eの形状として正方形、正五角形、正六角形を挙げたが、他の多角形、好ましくは正多角形であってもよい。また、多角形としては、互いに結合することにより拡張可能な形状であればどのような形状で合ってもよく、凸多角形及び凹多角形も問わない。
 さらに、上述の例において、基板110bの形状として変形矩形状を、基板110cの形状として変形正六角形を挙げたが、他の変形多角形であってもよい。変形多角形には、多角形の頂点同士を直線の代わりに曲線で結んで構成される形状、および多角形の一部に各切部が形成された多角形が含まれる。
Moreover, although the square, regular pentagon, and regular hexagon are given as the shapes of the substrates 110, 110a, and 110e, other polygons, preferably regular polygons, may be used. In addition, the polygon may be any shape that can be expanded by being joined to each other, and may be a convex polygon or a concave polygon.
Furthermore, in the above-described example, the deformed rectangular shape is used as the shape of the substrate 110b, and the deformed regular hexagon is used as the shape of the substrate 110c. However, other deformed polygons may be used. The deformed polygon includes a shape formed by connecting vertices of a polygon with a curved line instead of a straight line, and a polygon in which each cut portion is formed in a part of the polygon.
 上述の例において、欠切部113が、基板110cの正多角形(正六角形)の頂点に凹部として形成された例を挙げたが、欠切部113の基板上の位置および形状はこれに限定されない。たとえば、基板内部に形成された貫通孔であってもよいし、基板の形状における頂点以外の端部に形成された凹部であってもよい。たとえば凹多角形は、欠切部を有する基板形状の一例である。欠切部を有する基板を用いる場合、複数の基板が結合されることにより、拡張された表面が全て基板で敷き詰められることなく必然的に開口部が形成される。このような開口部の形成は、熱放出等の観点から好ましい場合がある。 In the above example, the notch 113 is formed as a recess at the apex of the regular polygon (regular hexagon) of the substrate 110c. However, the position and shape of the notch 113 on the substrate are limited to this. Not. For example, it may be a through hole formed inside the substrate, or a recess formed at an end other than the apex in the shape of the substrate. For example, the concave polygon is an example of a substrate shape having a notch. In the case of using a substrate having a notch, an opening is inevitably formed by combining a plurality of substrates so that the expanded surface is not all covered with the substrate. The formation of such an opening may be preferable from the viewpoint of heat release or the like.
 上述の例において、LED120を光源として挙げたが、これに限定されず、有機エレクトロルミネッセンス、高圧ナトリウムランプ、メタルハライドランプ、および蛍光ランプから選択されてもよい。それぞれの固定方法は、当業者であれば容易に選択可能である。 In the above example, the LED 120 is used as the light source. However, the present invention is not limited to this, and may be selected from organic electroluminescence, a high-pressure sodium lamp, a metal halide lamp, and a fluorescent lamp. Each fixing method can be easily selected by those skilled in the art.
 上述の例において、LED120としては表面実装型のものを挙げたが、砲弾型LEDその他いかなる形状のLEDであってもよい。また、固定方法としては基板表面に直接実装する態様を挙げたが、LED120の固定態様は着脱可能のもの、例えばソケットを使用するものであってもよい。 In the above example, the surface mount type LED 120 is used as the LED 120, but a bullet type LED or any other shape LED may be used. Moreover, although the aspect which mounts directly on the board | substrate surface was mentioned as a fixing method, the fixing aspect of LED120 may be detachable, for example, using a socket.
 上述の例において、光源(LED120)が発する光として、植物生育に用いられる赤、青、緑、および赤外、ならびに白の光を挙げたが、これらに限定されず、照射目的および照射対象に応じ、可視光線および不可視光線から任意に選択される。さらに1個の照明ユニットに備えられた光源が発するそれぞれの光の組み合わせも、任意に選択される。 In the above-described example, the light emitted from the light source (LED 120) includes red, blue, green, infrared, and white light used for plant growth. In response, it is arbitrarily selected from visible light and invisible light. Furthermore, the combination of each light which the light source with which one illumination unit was equipped emits is also selected arbitrarily.
 上述の例において、光源として単色光源を挙げたが、光源は、単色光源および複色光源を問わない。単色光源は、1個の光源が発色可能な光の主波長が1種であることに対し、複色光源は、1個の光源が発色可能な光の主波長が複数である。複色光源が発する主波長の制御は、当業者によって適宜行われる。 In the above example, a monochromatic light source is used as the light source, but the light source may be a monochromatic light source or a multicolor light source. A monochromatic light source has one main wavelength of light that can be developed by one light source, whereas a multicolor light source has a plurality of main wavelengths of light that can be developed by one light source. Control of the dominant wavelength emitted by the multicolor light source is appropriately performed by those skilled in the art.
 基板上に固定される光源は、一部またはすべてが複色光源であってよい。基板上に固定される光源のすべてが複色光源である場合、少なくとも2個の光源がそれぞれ独立して、少なくとも互いに異なる主波長の光を発するように制御される。具体的には、独立して制御すべき光源それぞれが発する光の主波長、または主波長および明るさが制御される。
 これによって、例えば図1、図4、図5、図6に示すように1個の照明ユニット内で複数の主波長を有する光を発生させることができる。
Some or all of the light sources fixed on the substrate may be multicolor light sources. When all of the light sources fixed on the substrate are multicolor light sources, at least two light sources are independently controlled to emit at least main wavelengths different from each other. Specifically, the dominant wavelength of light emitted from each light source to be controlled independently, or the dominant wavelength and brightness are controlled.
Thereby, for example, as shown in FIGS. 1, 4, 5, and 6, light having a plurality of main wavelengths can be generated in one illumination unit.
 また、基板に固定される光源の数は上述の例に限定されない。具体的には基板の表面積などの要因によって異なり得るが、例えば、2個以上20個以下、2個以上15個以下、または2個以上10個以下であってよい。
 1個の基板の表面積も特に限定されないが、例えば、150cm以下である。当該範囲に含まれる上限値は、130cm、100cm、50cm、30cm、15cm、10cmまたは5cmであってもよい。当該範囲に含まれる下限値は特に限定されないが、例えば、1cm、5cm、10cm、15cm、30cm、50cm、100cmまたは130cmであってもよい。基板の表面積が小さい照明ユニットほど、照明装置を構成する際の自由度が大きくなる点で好ましい。たとえば、図8に例示するリング状など特定の平面形状の外周および/または内周を、滑らかな曲線により近くなるように構成することができる。また、図9に例示する特定の立体形状の外表面及び図10に例示する特定の立体形状の内表面を、滑らかな曲面により近くなるように構成することができる。さらに、複雑な凹凸外周および/または凹凸内周を有する平面形状、または複雑な凹凸表面を有する立体形状を構成することがより容易になる。
Further, the number of light sources fixed to the substrate is not limited to the above example. Specifically, it may vary depending on factors such as the surface area of the substrate, but may be, for example, 2 or more and 20 or less, 2 or more and 15 or less, or 2 or more and 10 or less.
The surface area of one substrate is not particularly limited, but is, for example, 150 cm 2 or less. The upper limit value included in the range may be 130 cm 2 , 100 cm 2 , 50 cm 2 , 30 cm 2 , 15 cm 2 , 10 cm 2, or 5 cm 2 . Lower limit contained in the range is not particularly limited, for example, 1cm 2, 5cm 2, 10cm 2, 15cm 2, 30cm 2, 50cm 2, may be 100 cm 2 or 130 cm 2. A lighting unit with a smaller surface area of the substrate is preferable in that the degree of freedom in configuring the lighting device is increased. For example, the outer periphery and / or inner periphery of a specific planar shape such as a ring shape illustrated in FIG. 8 can be configured to be closer to a smooth curve. Further, the outer surface of the specific three-dimensional shape illustrated in FIG. 9 and the inner surface of the specific three-dimensional shape illustrated in FIG. 10 can be configured to be closer to a smooth curved surface. Furthermore, it becomes easier to configure a planar shape having a complex uneven outer periphery and / or an uneven inner periphery, or a three-dimensional shape having a complex uneven surface.
 基板に固定された各光源の配置ピッチも特に限定されない。具体的には光源の大きさによって異なりうるが、照明ユニット内で、または照明装置全体で、隣り合う光源間の最短中心間距離の平均が、たとえば光源の最大径の5倍以下、3倍以下、2倍以下、1.5倍以下または1.3倍以下であることが好ましい。当該範囲に含まれる下限値は特に限定されないが、例えば光源の最大径と同じ長さである。
 ここで、光源間の最短中心間距離とは、一の光源と、当該一の光源と隣り合う他の光源のうち当該一の光源の最も近くに存在する光源との、それぞれの中心を結ぶ距離である。照明装置においては、当該一の光源と当該隣り合う他の光源とは、両方とも同一照明ユニット内に存在する場合と、それぞれ隣接する異なる照明ユニット内に存在する場合とがある。また、光源の最大径とは、基板面と並行な方向における最大径である。
The arrangement pitch of each light source fixed to the substrate is not particularly limited. Specifically, although it may vary depending on the size of the light source, the average of the shortest center distance between adjacent light sources in the illumination unit or the entire illumination device is, for example, 5 times or less and 3 times or less of the maximum diameter of the light source. It is preferably 2 times or less, 1.5 times or less, or 1.3 times or less. Although the lower limit contained in the said range is not specifically limited, For example, it is the same length as the maximum diameter of a light source.
Here, the shortest center distance between the light sources is a distance connecting the centers of one light source and the light source closest to the one light source among other light sources adjacent to the one light source. It is. In the lighting device, the one light source and the other adjacent light source may both exist in the same lighting unit, or may exist in different lighting units adjacent to each other. The maximum diameter of the light source is the maximum diameter in the direction parallel to the substrate surface.
 あるいは、照明ユニット内で、または照明装置全体で、隣り合う光源間の最短中心間距離の平均値が、50mm以下、30mm以下、20mm以下、10mm以下または5mm以下であってよい。当該範囲に含まれる下限値は小さいほど好ましい場合があり、特に限定されるものではないが、たとえば0.1mmである。 Alternatively, the average value of the shortest center distance between adjacent light sources in the lighting unit or in the entire lighting device may be 50 mm or less, 30 mm or less, 20 mm or less, 10 mm or less, or 5 mm or less. The lower limit value included in the range is preferably as small as possible, and is not particularly limited, but is, for example, 0.1 mm.
 さらに、照明装置全体において、光源の配置の分散は均一に近いことが好ましい。つまり、照明装置の光源から発せられる異なる主波長の光それぞれが、照射対象表面において互いに混合されるように、光源が配置されていることが好ましい。具体的には、照明装置全体において、全ての光源間の最短中心間距離が同じであるほど好ましい。つまり、照明装置全体における光源間の最短中心間距離の標準偏差が0であることが最も好ましく、0に近いほど好ましい。
 たとえば、照明装置全体において、最短中心間距離の最小値に対する最短中心間距離の最大値の比(最短中心間距離の最大値/最短中心間距離の最小値)が、1以上1.5以下、好ましくは1以上1.3以下、より好ましくは1以上1.2以下である。
 これによって、複数の異なる主波長の光の均一化を図ることができる。光の均一化によって、同じ条件で植物生育を制御した場合の生育再現性を良くすることができる。これは、植物生育における光制御をシステム化する場合において特に好ましい。
Furthermore, it is preferable that the distribution of the light source is nearly uniform in the entire lighting device. That is, it is preferable that the light sources are arranged so that the light beams having different main wavelengths emitted from the light source of the illumination device are mixed with each other on the surface of the irradiation target. Specifically, it is preferable that the shortest center distance between all the light sources is the same in the entire lighting device. That is, it is most preferable that the standard deviation of the shortest center distance between the light sources in the entire lighting device is 0, and it is more preferable that the standard deviation is close to 0.
For example, in the entire lighting device, the ratio of the maximum value of the shortest center distance to the minimum value of the shortest center distance (maximum value of the shortest center distance / minimum value of the shortest center distance) is 1 to 1.5. Preferably they are 1 or more and 1.3 or less, More preferably, they are 1 or more and 1.2 or less.
This makes it possible to equalize a plurality of light beams having different main wavelengths. By making the light uniform, the growth reproducibility can be improved when plant growth is controlled under the same conditions. This is particularly preferred when systemizing light control in plant growth.
 上述の例において、照明装置500,500c,500d,500e,500fにおけるそれぞれの照明ユニット100,100c,100e同士の電気的接続としてデイジーチェーン接続を挙げたが、スター型接続であってもよい。 In the above-described example, the daisy chain connection is exemplified as the electrical connection between the lighting units 100, 100c, and 100e in the lighting devices 500, 500c, 500d, 500e, and 500f, but a star-type connection may be used.
 上述の例において、照明装置500e,500fの面構造体は、複数の形状の基板110,110eを有する照明ユニット100,100eの組み合わせで構成されるものを挙げたが、同一の形状の基板を有する照明ユニットから構成されてもよい。 In the above example, the surface structures of the lighting devices 500e and 500f are configured by combining the lighting units 100 and 100e having the plurality of shapes of the substrates 110 and 110e. However, the surface structures have the same shape. You may comprise from a lighting unit.
[実施形態により奏される効果]
 本発明に係る照明ユニット100,100a,100b,100c,100eによって、以下の効果が奏される。
[Effects produced by the embodiment]
The lighting unit 100, 100a, 100b, 100c, 100e according to the present invention provides the following effects.
 本発明の照明ユニット100,100a,100b,100c,100eにおいては、1つの照明ユニット100中に、互いに異なる主波長の光を発する複数種のLED120が含まれ、且つ基板110,110a,110b,110c,110eが拡張可能であるため、照明ユニット100,100a,100b,100c,100eを複数結合させることにより、植物生育の用途において、植物および/または植物生育場所等の様々な状況に応じ、所望の大きさおよび形状を有する照明装置を構成することができる。 In the illumination units 100, 100a, 100b, 100c, and 100e of the present invention, one illumination unit 100 includes a plurality of types of LEDs 120 that emit light having different main wavelengths, and the substrates 110, 110a, 110b, and 110c. , 110e can be expanded, and by combining a plurality of lighting units 100, 100a, 100b, 100c, 100e, in a plant growth application, a desired one can be obtained depending on various situations such as plants and / or plant growth places. A lighting device having a size and a shape can be formed.
 また、基板110,110a,110eが多角形であるため、照明ユニット100,100a,100eの形状を単純にすることができ、照明ユニット100,100a,100eの拡張も容易に行うことができる。 Further, since the substrates 110, 110a, and 110e are polygonal, the shape of the illumination units 100, 100a, and 100e can be simplified, and the illumination units 100, 100a, and 100e can be easily expanded.
 特に、基板100は六角形であり、基板100cは変形正六角形であるため、照明ユニット100の拡張により構成される照明装置500,500c,500dの形状について高い自由度を得られる。 Particularly, since the substrate 100 is a hexagon and the substrate 100c is a deformed regular hexagon, a high degree of freedom can be obtained with respect to the shapes of the illumination devices 500, 500c, and 500d configured by extending the illumination unit 100.
 照明ユニット100,100a,100b,100c,100eにおいては、LED120が赤色光、青色光、緑光および赤外光から選ばれる光を発するため、植物生育用途に好ましく適用できる。また、白色LED124を使用することにより、生育中の植物の色の識別が容易になる。 In the lighting units 100, 100a, 100b, 100c, and 100e, the LED 120 emits light selected from red light, blue light, green light, and infrared light, and therefore can be preferably applied to plant growth applications. Further, by using the white LED 124, the color of the growing plant can be easily identified.
 照明ユニット100,100a,100b,100c,100eにおいては、複数種のLED120がそれぞれ個別に明るさ制御されるため、植物の種類および/または生育ステージに応じて様々なパターンの色を照射することが容易になる。 In the lighting units 100, 100a, 100b, 100c, and 100e, the brightness of each of the plurality of types of LEDs 120 is individually controlled, so that various patterns of colors can be emitted depending on the type of plant and / or the growth stage. It becomes easy.
 照明ユニット100,100a,100b,100c,100eにおいては、光源としてLED120が用いられているため、照明ユニット100,100a,100b,100c,100eの省エネルギー化および長寿命化を図ることができる。 In the illumination units 100, 100a, 100b, 100c, and 100e, since the LED 120 is used as the light source, energy saving and long life of the illumination units 100, 100a, 100b, 100c, and 100e can be achieved.
 照明装置500,500c,500d,500e,500fは、照明ユニット100,100c,100eが互いにデイジーチェーン接続されているため、電気経路を簡素にすることができる。 The lighting devices 500, 500c, 500d, 500e, and 500f can simplify the electrical path because the lighting units 100, 100c, and 100e are daisy chain connected to each other.
 照明装置500e,500fは、基板110,110eが互いに異なる形状を有しており、照明ユニット100,100eの組み合わせ拡張により形状の自由度が高い。 In the lighting devices 500e and 500f, the substrates 110 and 110e have different shapes, and the degree of freedom of shape is high due to the combination expansion of the lighting units 100 and 100e.
[実施形態および他の例における各部と請求項の各構成要件との対応関係]
 本発明において、照明ユニット100,100a,100b,100c,100eが「照明ユニット」に相当し、基板110,110a,110b,110c,110eが「基板」に相当し、LED120が「光源」に相当し、照明装置500,500c,500d,500e,500fが「照明装置」に相当する。
[Correspondence Relationship Between Each Part in Embodiment and Other Examples and Each Component in Claim]
In the present invention, the illumination units 100, 100a, 100b, 100c, and 100e correspond to “illumination units”, the substrates 110, 110a, 110b, 110c, and 110e correspond to “substrates”, and the LEDs 120 correspond to “light sources”. The lighting devices 500, 500c, 500d, 500e, and 500f correspond to “lighting devices”.
 本発明の好ましい実施形態は上記の通りであるが、本発明はそれだけに制限されない。本発明の趣旨から逸脱することのない他の様々な実施形態がなされてよい。さらに、本実施形態において、本発明の構成による作用および効果を述べているが、これら作用および効果は、一例であり、本発明を限定するものではない。 The preferred embodiment of the present invention is as described above, but the present invention is not limited thereto. Various other embodiments may be made without departing from the spirit of the invention. Furthermore, in this embodiment, although the effect | action and effect by the structure of this invention are described, these effect | actions and effects are examples and do not limit this invention.

Claims (18)

  1.  複数種の光源と、前記複数種の光源を固定する基板とを含み、
     前記複数種の光源が、互いに異なる主波長の光を発するものであり、
     前記基板が他の基板との結合により拡張可能な形状を有する、照明ユニット。
    Including a plurality of types of light sources, and a substrate for fixing the plurality of types of light sources,
    The plurality of types of light sources emit light having different main wavelengths,
    The lighting unit, wherein the substrate has a shape that can be expanded by coupling with another substrate.
  2.  前記形状が多角形である、請求項1に記載の照明ユニット。 The lighting unit according to claim 1, wherein the shape is a polygon.
  3.  前記形状が六角形である、請求項1又は2に記載の照明ユニット。 The lighting unit according to claim 1 or 2, wherein the shape is a hexagon.
  4.  前記互いに異なる主波長の光が、それぞれ、赤色光、青色光、緑光および赤外光から選ばれる、請求項1から3のいずれか1項に記載の照明ユニット。 The illumination unit according to any one of claims 1 to 3, wherein the lights having different principal wavelengths are selected from red light, blue light, green light, and infrared light, respectively.
  5.  前記異なる主波長の光が少なくとも白色光を含む、請求項1から4のいずれか1項に記載の照明ユニット。 The lighting unit according to any one of claims 1 to 4, wherein the light having the different dominant wavelength includes at least white light.
  6.  前記互いに異なる主波長の光の明るさが、それぞれ個別に制御される、請求項1から5のいずれか1項に記載の照明ユニット。 The lighting unit according to any one of claims 1 to 5, wherein brightness of light having different principal wavelengths is individually controlled.
  7.  前記光源が、発光ダイオード素子および有機エレクトロルミネッセンス素子の少なくともいずれかである、請求項1から6のいずれか1項に記載の照明ユニット。 The illumination unit according to any one of claims 1 to 6, wherein the light source is at least one of a light-emitting diode element and an organic electroluminescence element.
  8.  前記光源が、最短中心間距離の平均値が0.1mm以上50mm以下となるピッチで配置されている、請求項1から7のいずれか1項に記載の照明ユニット。 The lighting unit according to any one of claims 1 to 7, wherein the light sources are arranged at a pitch at which an average value of a shortest center distance is 0.1 mm or more and 50 mm or less.
  9.  植物生育に用いられる、請求項1から8のいずれか1項に記載の照明ユニット。 The lighting unit according to any one of claims 1 to 8, which is used for plant growth.
  10.  請求項1から9のいずれか1項に記載の照明ユニットが複数個連結された照明装置。 An illumination device in which a plurality of illumination units according to any one of claims 1 to 9 are connected.
  11.  前記連結が少なくともデイジーチェーン接続によるものである、請求項10に記載の照明装置。 The lighting device according to claim 10, wherein the connection is at least by daisy chain connection.
  12.  前記複数種の光源から発せられるそれぞれの前記光が、照射対象表面において互いに混合されるように、前記光源が配置されている、請求項10又は11に記載の照明装置。 The lighting device according to claim 10 or 11, wherein the light sources are arranged so that the light emitted from the plurality of types of light sources are mixed with each other on a surface to be irradiated.
  13.  前記光源が、最短中心間距離の最小値に対する最短中心間距離の最大値の比が1以上1.5以下となるピッチで配置されている、請求項10から12のいずれか1項に記載の照明装置。 The said light source is arrange | positioned with the pitch from which the ratio of the maximum value of the shortest center distance with respect to the minimum value of the shortest center distance becomes 1 or more and 1.5 or less. Lighting device.
  14.  前記複数個の照明ユニットが、前記基板の形状が異なる複数種の照明ユニットを含む、請求項10から13のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 10 to 13, wherein the plurality of lighting units include a plurality of types of lighting units having different shapes of the substrate.
  15.  複数個の光源と、前記複数個の光源を固定する基板とを含み、前記基板が他の基板との結合により拡張可能な形状を有する照明ユニットを、前記複数個の光源のうち少なくとも2個の光源がそれぞれ独立して互いに異なる主波長および/または明るさの光を発するように制御することを含む照明方法。 An illumination unit including a plurality of light sources and a substrate for fixing the plurality of light sources, the substrate having a shape that can be expanded by coupling with another substrate, and at least two of the plurality of light sources. A lighting method including controlling the light sources to independently emit light having different dominant wavelengths and / or brightnesses.
  16.  前記少なくとも2個の光源が、互いに異なる主波長の光を発する単色光源である、請求項15に記載の照明方法。 The illumination method according to claim 15, wherein the at least two light sources are monochromatic light sources that emit light having different main wavelengths.
  17.  前記少なくとも2個の光源が複色光源である、請求項15に記載の照明方法。 The illumination method according to claim 15, wherein the at least two light sources are multicolor light sources.
  18.  前記制御を遠隔操作によって行う、請求項15から17のいずれか1項に記載の照明方法。 The lighting method according to any one of claims 15 to 17, wherein the control is performed by remote operation.
PCT/JP2013/000583 2013-02-01 2013-02-01 Illumination unit and illumination device WO2014118826A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2013/000583 WO2014118826A1 (en) 2013-02-01 2013-02-01 Illumination unit and illumination device
US14/765,083 US20160000020A1 (en) 2013-02-01 2014-01-31 Cultivation system, cultivation program, and cultivation method
PCT/JP2014/000517 WO2014119330A1 (en) 2013-02-01 2014-01-31 Cultivation system, cultivation program, and cultivation method
JP2014559599A JP6049767B2 (en) 2013-02-01 2014-01-31 Cultivation system, cultivation program, and cultivation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/000583 WO2014118826A1 (en) 2013-02-01 2013-02-01 Illumination unit and illumination device

Publications (1)

Publication Number Publication Date
WO2014118826A1 true WO2014118826A1 (en) 2014-08-07

Family

ID=51261577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000583 WO2014118826A1 (en) 2013-02-01 2013-02-01 Illumination unit and illumination device

Country Status (1)

Country Link
WO (1) WO2014118826A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504440A (en) * 2015-12-22 2019-02-14 ソッツィ アッレダメンティ エス アール エルSozzi Arredamenti S.R.L. Modular lighting system
CN114923149A (en) * 2022-07-20 2022-08-19 深圳市华慧能节能科技有限公司 Intelligent data acquisition intelligent street lamp and control system thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261039A (en) * 2005-03-18 2006-09-28 Koizumi Sangyo Corp Lighting device and multi-point light source unit
JP2010283152A (en) * 2009-06-04 2010-12-16 Showa Denko Kk Luminaire and light emitting device
JP2012181982A (en) * 2011-03-01 2012-09-20 Rohm Co Ltd Led illumination device
JP2012526349A (en) * 2009-05-08 2012-10-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting unit
JP2012220647A (en) * 2011-04-06 2012-11-12 Nichia Chem Ind Ltd Light emitting device, light emitting unit, and illumination control method of light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261039A (en) * 2005-03-18 2006-09-28 Koizumi Sangyo Corp Lighting device and multi-point light source unit
JP2012526349A (en) * 2009-05-08 2012-10-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting unit
JP2010283152A (en) * 2009-06-04 2010-12-16 Showa Denko Kk Luminaire and light emitting device
JP2012181982A (en) * 2011-03-01 2012-09-20 Rohm Co Ltd Led illumination device
JP2012220647A (en) * 2011-04-06 2012-11-12 Nichia Chem Ind Ltd Light emitting device, light emitting unit, and illumination control method of light emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504440A (en) * 2015-12-22 2019-02-14 ソッツィ アッレダメンティ エス アール エルSozzi Arredamenti S.R.L. Modular lighting system
CN114923149A (en) * 2022-07-20 2022-08-19 深圳市华慧能节能科技有限公司 Intelligent data acquisition intelligent street lamp and control system thereof

Similar Documents

Publication Publication Date Title
JP5079635B2 (en) Lighting equipment
JP5519948B2 (en) Uniform intensity LED lighting system
JP5210342B2 (en) Modular light reflector and assembly for lighting fixtures
US7614771B2 (en) Wireless controlled light emitting assembly
JP4944796B2 (en) Lighting device
US20110019433A1 (en) Led lighting device
JP5056520B2 (en) Lighting device
TWI686567B (en) Modular lighting apparatus
US20090288340A1 (en) LED Grow Light Method and Apparatus
US20100117560A1 (en) Pixilated LED Light Source for Channel Letter Illumination
WO2012034107A2 (en) A reconfigurable luminaire
WO2004025998A3 (en) Led system for producing light
WO2020153448A1 (en) Led illumination sheet for animal and plant cultivation, led illumination module for animal and plant cultivation, shelf plate for cultivation shelf for animals and plants, cultivation shelf for animals and plants, animal and plant cultivation factory, and led illumination device for animal and plant cultivation
TWI522563B (en) Variable light beam led and method thereof
ES2878045T3 (en) Multicolor lights matrix
KR20140014498A (en) Plant cultivation device with light quality-and intensity-controllable led source
CN104798118A (en) Signal column
KR101185253B1 (en) Led illumination apparatus
WO2014118826A1 (en) Illumination unit and illumination device
WO2020081828A1 (en) Growth enhancement using scalar effects and light frequency manipulation
JP2001086860A (en) Semiconductor light-emitting illuminating device for culturing plant
JP7162239B2 (en) Luminaires and aquaculture lighting control systems
DE102008017271A1 (en) Lighting device for use in e.g. pendant lamp, for lighting indoor-and outdoor spaces, has high performance-LED-module and LEDs provided with respective primary radiation directions, which are arranged perpendicular to each other
WO2019148971A1 (en) Filament lamp structure
US10612735B2 (en) Lighting device on grid sheet carrier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP