JP2001086860A - Semiconductor light-emitting illuminating device for culturing plant - Google Patents

Semiconductor light-emitting illuminating device for culturing plant

Info

Publication number
JP2001086860A
JP2001086860A JP26863599A JP26863599A JP2001086860A JP 2001086860 A JP2001086860 A JP 2001086860A JP 26863599 A JP26863599 A JP 26863599A JP 26863599 A JP26863599 A JP 26863599A JP 2001086860 A JP2001086860 A JP 2001086860A
Authority
JP
Japan
Prior art keywords
light
red
blue
emitting
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26863599A
Other languages
Japanese (ja)
Inventor
Tomio Inoue
登美男 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP26863599A priority Critical patent/JP2001086860A/en
Publication of JP2001086860A publication Critical patent/JP2001086860A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting illuminating device capable of performing a good quality plant culture by operating the light intensity ratio and delivered light distribution of its red and blue colors so as to become an optimal for a photosynthesis and photo shape formation of a plant. SOLUTION: This semiconductor light-emitting illuminating device is provided by being equipped with a red color LED 2 as a red colored light source necessary for a photosynthesis of a plant and a blue color LED 3 as a blue color light source necessary for a photo shape formation of the plant, making approximately as (8:1)-(12:1) relative light intensity ratio of the red color to the blue color by reducing the distribution number of the blue color-generating LED 3 than that of the red color-generating LED 2, and widening the delivered light distribution of the blue color LED 3 than that of the red color LED 2 for making the light intensity ratio of the red and blue lights per unit area of a soil as approximately uniform.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、植物工場などにお
いて植物の育成に好適に利用できる半導体発光素子を用
いた植物栽培用の半導体発光照明設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting lighting system for plant cultivation using a semiconductor light emitting element which can be suitably used for growing plants in a plant factory or the like.

【0002】[0002]

【従来の技術】たとえばリーフレタスなどの葉菜類やそ
の他の惣菜用の野菜及びその他の植物の栽培の分野で
は、水耕栽培に人口的な光を利用して季節や天候等に左
右されることなく効率的な操作ができる完全制御型の植
物工場が急速に普及している。
2. Description of the Related Art In the field of cultivation of leafy vegetables such as leaf lettuce and other vegetables for prepared dishes and other plants, hydroponic cultivation uses artificial light without being influenced by seasons and weather. Fully controlled plant factories that can operate efficiently are rapidly spreading.

【0003】完全制御型植物工場に利用される光合成及
び光形態形成のための光源として、高圧ナトリウムラン
プが従来から知られている。高圧ナトリウムランプは、
光合成や光形態形成に大切な赤色(640〜690n
m)と青色(420〜470nm)の波長成分を含むこ
とから、植物工場用の光源として利用されていた。
A high-pressure sodium lamp has been conventionally known as a light source for photosynthesis and photomorphogenesis used in a completely controlled plant factory. High pressure sodium lamp
Red (640-690n) important for photosynthesis and photomorphogenesis
m) and blue (420 to 470 nm) wavelength components, so that it was used as a light source for plant factories.

【0004】ところが、高圧ナトリウムランプのスペク
トル分布を見ると、赤色に比べて青色の成分が少なく、
赤色による植物の光合成については効率が高いものの、
青色による植物の光形態形成の面では十分でないことが
一つの欠点とされている。そして、発光に伴う多量の熱
放射があるので植物工場の栽培ブースに対する空調負荷
が大きくなるほか、熱影響を抑えるためにランプと栽培
植物との間の距離を長くする必要があり、設備が大型に
なる傾向にある。
However, looking at the spectral distribution of a high-pressure sodium lamp, there are fewer blue components than red,
Although the efficiency of red photosynthesis of plants is high,
One of the drawbacks is that the blue is not sufficient in terms of photomorphogenesis of plants. And, because of the large amount of heat radiation accompanying the light emission, the air conditioning load on the cultivation booth of the plant factory increases, and the distance between the lamp and the cultivated plant needs to be increased to suppress the heat effect. Tends to be.

【0005】このように高圧ナトリウムランプを光源と
するものでは、青色発光の成分が赤色発光成分に比べて
光強度比的に劣るので、植物の健全生育と栽培効率の面
で好ましくない。また、設備面では小型化への対応がで
きないことや空調設備とその稼働費用のため、生産コス
トにも影響がある。
[0005] As described above, when the high-pressure sodium lamp is used as a light source, the blue light-emitting component is inferior in light intensity ratio to the red light-emitting component, which is not preferable in terms of healthy plant growth and cultivation efficiency. In addition, production costs are affected due to the inability to cope with downsizing of equipment and the air conditioning equipment and its operating costs.

【0006】そこで、以上のような問題を解消するた
め、高圧ナトリウムランプに比べると格段に小型化でき
ると同時に熱放射もない半導体発光素子(LED)を利
用した半導体発光装置が導入されるようになった。LE
Dの開発は近来になって急速に進み、GaAlAs系化
合物半導体を利用した赤色発光のLEDは660nm程
度の中心波長を持ち、またGaN系化合物半導体の適用
によって高輝度化が実現された青色発光のLEDは45
0nm程度の中心波長を持つものが得られている。そし
て、これらの赤色及び青色の発光波長のスペクトルは植
物の光合成のピークにほぼ同じであることから、植物栽
培用の光源として最適である。しかも、先に述べたよう
に、LEDは小型で熱放射もほとんど無いので設備面で
の大幅な改善が期待されるだけでなく、光合成を大幅に
促進されるパルス発光及び低電圧駆動が可能なので、生
産性の向上とコスト低減までの展開も可能である。
Therefore, in order to solve the above problems, a semiconductor light emitting device using a semiconductor light emitting element (LED), which can be made much smaller than a high pressure sodium lamp and has no heat radiation, has been introduced. became. LE
The development of D has progressed rapidly in recent years, and a red light-emitting LED using a GaAlAs-based compound semiconductor has a center wavelength of about 660 nm. LED is 45
One having a center wavelength of about 0 nm is obtained. And since the spectrum of these red and blue emission wavelengths is almost the same as the peak of photosynthesis of a plant, it is optimal as a light source for plant cultivation. In addition, as described above, LEDs are small and emit little heat, so not only is a significant improvement in facilities expected, but also because pulse emission and low-voltage driving that greatly promote photosynthesis are possible. It is also possible to improve productivity and reduce costs.

【0007】[0007]

【発明が解決しようとする課題】このようなLEDを用
いた植物栽培用の光源については、既に開発が進んでお
り、たとえば「植物工場の基礎と実際」(高辻正基著
裳華房出版)の第96頁所載の図4・9に示されたもの
が基本原理的な構成である。これは培土を入れた栽培ト
レイの上にブースを設け、このブースの天井部分に赤色
と青色の発光のLEDを多数配列するという簡単なもの
で、LEDの発熱がないので専用の空調設備は付帯され
ていない。
A light source for plant cultivation using such an LED has already been developed. For example, "Basic and actual plant factories" (by Masaki Takatsuji)
The basic principle is shown in FIGS. 4 and 9 on page 96 of Shokabo Publishing. This is a simple one in which a booth is set up on a cultivation tray containing cultivated soil, and a large number of red and blue light emitting LEDs are arranged on the ceiling of this booth. It has not been.

【0008】このような赤と青の発光のLEDを配列す
るとき、光合成に必要な赤色と光形態形成のための青色
との光強度比は10:1程度であればよいことは先の文
献にも記載されているとおりである。したがって、単純
に考えると、赤色と青色の個数もこの光強度比に対応す
るものであればよく、特に赤と青のLEDの発光輝度を
同じ程度とすれば光強度比10:1に近づけることがで
きるように思われる。
When such red and blue light emitting LEDs are arranged, the light intensity ratio between red light necessary for photosynthesis and blue light for forming light morphology may be about 10: 1. It is as described in. Therefore, if simply considered, the number of red light and blue light should just correspond to this light intensity ratio. In particular, if the light emission luminance of the red and blue LEDs is the same, the light intensity ratio should be close to 10: 1. Seems to be able to.

【0009】しかしながら、このような考え方に基づく
光強度比とする場合、赤色のLED数が多い分布の中に
青色発光のLEDが点在することになる。このようなL
EDの分布では、赤色の発光は全ての栽培植物にまんべ
んなく行き渡るものの、青色の発光はLEDに近い部分
にだけ集中するので離れたところの栽培植物には十分に
照射されない。したがって、栽培植物の光合成について
は問題はないが、青色発光による光形態形成は植物の全
ての部位に一様化できない。その結果、栽培植物の形態
品質にばらつきを生じてしまい、商品の付加価値を落と
してしまうほか、生産性にも大きく影響する。
However, when the light intensity ratio is based on this concept, blue light emitting LEDs are scattered in a distribution in which the number of red LEDs is large. Such L
In the ED distribution, red light emission is distributed evenly to all the cultivated plants, but blue light emission is concentrated only on the portion near the LED, so that the cultivated plants at a distance are not sufficiently irradiated. Therefore, although there is no problem with photosynthesis of cultivated plants, photomorphogenesis due to blue light emission cannot be uniformed in all parts of the plant. As a result, the morphological quality of the cultivated plant varies, which reduces the added value of the product and greatly affects productivity.

【0010】このように、赤色と青色のLEDを植物栽
培用の光源として用いると主として設備面の改善が図れ
るものの、赤色と青色のLEDの配列パターンが適正で
ないため、良質の植物栽培へ向けての展開に障害があ
る。
As described above, when the red and blue LEDs are used as a light source for plant cultivation, the facility can be mainly improved, but the arrangement pattern of the red and blue LEDs is not appropriate, so that high-quality plant cultivation can be achieved. There is an obstacle in deployment.

【0011】本発明は、植物の光合成と光形態形成に最
適となるように赤色と青色の光強度比及び配光分布を操
作することによって良質の植物栽培ができる植物栽培用
の半導体発光照明設備を提供することを目的とする。
[0011] The present invention provides a semiconductor light-emitting lighting system for plant cultivation that can cultivate high-quality plants by manipulating the light intensity ratio and light distribution of red and blue light so as to be optimal for photosynthesis and photomorphogenesis of plants. The purpose is to provide.

【0012】[0012]

【課題を解決するための手段】本発明の植物栽培用の半
導体発光照明設備は、培土を入れたトレーと対向する位
置に配置され、前記培土に根付かせた植物の光合成を促
す赤色の発光ダイオード及び光形態形成を促す青色の発
光ダイオードとをそれぞれほぼ同一平面上に複数個配列
した半導体発光照明設備であって、前記赤色の発光ダイ
オードの分布数よりも前記青色の発光ダイオードの分布
数を少なくし、且つ前記青色の発光ダイオードの配光分
布を前記赤色の発光ダイオードの配光分布より広くし前
記培土の単位面積当たりについて赤と青の光強度の比を
ほぼ一様化したことを特徴とする。
According to the present invention, there is provided a semiconductor light emitting lighting system for cultivating a plant, which is disposed at a position facing a tray containing cultivated soil, and which promotes photosynthesis of a plant rooted in the cultivated soil. And a plurality of blue light-emitting diodes for promoting light morphology and a plurality of semiconductor light-emitting lighting equipment arranged on substantially the same plane, wherein the distribution number of the blue light-emitting diodes is smaller than the distribution number of the red light-emitting diodes. And, the light distribution of the blue light emitting diode is wider than the light distribution of the red light emitting diode, and the ratio of the light intensity of red and blue light per unit area of the soil is substantially uniform. I do.

【0013】[0013]

【発明の実施の形態】請求項1に記載の発明は、培土を
入れたトレーと対向する位置に配置され、前記培土に根
付かせた植物の光合成を促す赤色の発光ダイオード及び
光形態形成を促す青色の発光ダイオードとをそれぞれほ
ぼ同一平面上に複数個配列した半導体発光照明設備であ
って、前記赤色の発光ダイオードの分布数よりも前記青
色の発光ダイオードの分布数を少なくし、且つ前記青色
の発光ダイオードの配光分布を前記赤色の発光ダイオー
ドの配光分布より広くし前記培土の単位面積当たりにつ
いて赤と青の光強度の比をほぼ一様化したことを特徴と
する植物栽培用の半導体発光照明設備であり、植物の光
合成と光形態形成の両方に必要な条件を満足する赤色と
青色の照明光分布によって植物の健全な育成が図れると
いう作用を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 is arranged at a position facing a tray in which soil is put, and promotes photosynthesis of a plant rooted in the soil and red light-emitting diodes and light morphogenesis. A semiconductor light-emitting lighting apparatus in which a plurality of blue light-emitting diodes are arranged on a substantially same plane, wherein the number of distributions of the blue light-emitting diodes is smaller than the number of distributions of the red light-emitting diodes, and A semiconductor for plant cultivation, characterized in that the light distribution of the light emitting diode is wider than the light distribution of the red light emitting diode and the ratio of light intensity of red and blue is almost uniform per unit area of the soil. It is a luminous lighting facility, and has the effect that healthy growth of plants can be achieved by red and blue illumination light distribution that satisfies the conditions necessary for both photosynthesis and photomorphogenesis of plants.

【0014】請求項2に記載の発明は、前記赤色の発光
ダイオード及び青色の発光ダイオードのそれぞれを、発
光源の全方位に一様に配光拡散する円の配光分布特性と
したことを特徴とする請求項1記載の植物栽培用の半導
体発光照明設備であり、赤色と青色の発光ダイオードを
たとえば縦及び横の配列ピッチが等しい格子状の簡単な
パターンによる設計で対応できるという作用を有する。
According to a second aspect of the present invention, each of the red light emitting diode and the blue light emitting diode has a light distribution characteristic of a circle which distributes and diffuses light uniformly in all directions of the light source. The semiconductor light-emitting lighting equipment for plant cultivation according to claim 1, which has an effect that red and blue light-emitting diodes can be dealt with, for example, by a simple lattice-like pattern in which vertical and horizontal arrangement pitches are equal.

【0015】請求項3に記載の発明は、前記赤色の発光
ダイオードを発光源の全方位に一様に配光拡散する円の
配光分布特性とし、前記青色の発光ダイオードを発光源
からほぼ楕円状に配光拡散する楕円の配光分布特性とし
たことを特徴とする請求項1記載の植物栽培用の半導体
発光照明設備であり、青色の発光ダイオードの楕円の配
光分布の長軸が平行に並ぶような配置とすれば、培土の
単位面積当たりの青色の発光ダイオードの数を減らせる
設備で対応できるという作用を有する。
According to a third aspect of the present invention, the red light emitting diode has a light distribution distribution characteristic of a circle for uniformly distributing and diffusing light in all directions of the light emitting source, and the blue light emitting diode is substantially elliptical from the light emitting source. The semiconductor light-emitting lighting equipment for plant cultivation according to claim 1, wherein the light-distribution characteristics of an ellipse that disperses and diffuses light in a shape are parallel to each other. If the arrangement is such that the number of blue light emitting diodes per unit area of the soil can be reduced, it is possible to cope with such an arrangement.

【0016】以下、本発明の実施の形態を図面を参照し
ながら説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0017】図1は本発明の植物栽培用の半導体発光設
備を備える植物栽培装置の概略縦断面図である。
FIG. 1 is a schematic vertical sectional view of a plant cultivation apparatus provided with a semiconductor light emitting facility for plant cultivation according to the present invention.

【0018】図1に示すように、植物栽培装置は培土を
入れたトレー51とその上方の空間を区画したブース5
2とから構成され、ブース52の天井部分にパネル状の
半導体発光設備1を備えたものである。半導体発光設備
1は平板状のベース1aに赤色LED2と青色LED3
とをそれぞれトレー51側を発光方向としてパターン配
列したもので、図2の(a)にLED2,3の配列と発
光範囲のパターンの概略側面図、(b)にはLED2,
3の平面配列パターンと配光分布を示す概略平面図をそ
れぞれ示す。
As shown in FIG. 1, a plant cultivation apparatus includes a tray 51 containing soil and a booth 5 partitioning a space above the tray.
And a panel-shaped semiconductor light-emitting facility 1 provided on the ceiling of the booth 52. The semiconductor light emitting equipment 1 has a red LED 2 and a blue LED 3 on a flat base 1a.
FIG. 2A is a schematic side view of the arrangement of the LEDs 2 and 3 and the pattern of the light emission range, and FIG.
3 is a schematic plan view showing a planar array pattern and a light distribution.

【0019】図2の(a)に示すように、トレー51内
の培土51a表面とほぼ平行な平面内に赤色LED2と
青色LED3が同じレベルで配列されている。赤色LE
D2及び青色LED3はそれぞれ半導体発光素子をリー
ドフレームの上に実装搭載し、エポキシ樹脂のパッケー
ジによって封止したいわゆる砲弾型のものである。そし
て、図2の例では、パッケージの横断面は円であって配
光特性は軸上輝度の半値となる配光半値角は全ての方位
でほぼ同じ角度であり、その半値の平面上の軌跡は同図
の(b)に示すようにほぼ円となる。
As shown in FIG. 2A, red LEDs 2 and blue LEDs 3 are arranged at the same level in a plane substantially parallel to the surface of the soil 51a in the tray 51. Red LE
Each of the D2 and the blue LED 3 is a so-called shell type in which a semiconductor light emitting element is mounted and mounted on a lead frame and sealed with an epoxy resin package. In the example of FIG. 2, the cross section of the package is a circle, and the light distribution characteristic is a half-value of the half-value of the on-axis luminance. Is substantially a circle as shown in FIG.

【0020】図2の(b)において示す正方形の外郭は
1辺を25cmとしたもので、この25cm×25cm
の領域の中に84個の赤色LED2と16個の青色LE
D3が配置されている。なお、分かりやすくするため、
赤色LED2は白抜きの円で示し青色LED3は黒丸の
円で示して識別した。このような赤と青のLED2,3
の個数の設定は、従来技術の項で説明したように、植物
栽培に好適な単位面積当たりの光強度比は赤色と青色と
でほぼ10:1であることによる。そして、赤色LED
2と青色LED3の配列パターンは、図2の(b)から
明らかなように、縦方向及び横方向の配列ピッチは全て
等しく、青色LED3の周りを合計8個の赤色LED2
が取り囲む関係となっている。
The outline of the square shown in FIG. 2B has a side of 25 cm, which is 25 cm × 25 cm.
84 red LEDs 2 and 16 blue LEs in the area
D3 is arranged. For simplicity,
The red LED 2 is shown by a white circle and the blue LED 3 is shown by a black circle. These red and blue LEDs2,3
Is determined by the fact that the light intensity ratio per unit area suitable for plant cultivation is approximately 10: 1 for red and blue as described in the section of the prior art. And red LED
2 and the arrangement pattern of the blue LEDs 3 is, as is clear from FIG. 2B, the arrangement pitches in the vertical and horizontal directions are all equal, and a total of eight red LEDs 2 are arranged around the blue LED 3.
Is a surrounding relationship.

【0021】ここで、赤色LED2と青色LED3とに
よって、光合成と光形態形成との両方を満たすための必
要な条件は、図2の(b)の全域で必要な光強度の赤及
び青の照射分布とすることである。そして、このような
照射分布は、赤色LED2及び青色LED3のそれぞれ
の配光特性を設定することによって得られる。すなわ
ち、赤色LED2の配光特性による配光分布を図2の
(b)において点線で示す小さい円の領域範囲とすれ
ば、縦及び横に互いに隣り合う赤色LED2による配光
分布の領域がオーバーラップし、培土51aの全表面が
一様な照度となる。一方、青色LED3は光強度比の関
係から赤色LED2よりもきわめて少ない個数であり、
たとえば赤色LED2のように小さい円の配光分布であ
ると、培土51aの表面に達しない部分ができる。これ
に対し、青色LED3の配光分布を広げて図2の(b)
において実線で示す大きい円の領域範囲となるようにす
れば、培土51aの全表面を照射域に含めることができ
る。
Here, the necessary conditions for satisfying both the photosynthesis and the light morphogenesis by the red LED 2 and the blue LED 3 are as follows. Distribution. Such an illumination distribution can be obtained by setting the respective light distribution characteristics of the red LED 2 and the blue LED 3. In other words, if the light distribution according to the light distribution characteristics of the red LED 2 is a small circle area range shown by a dotted line in FIG. 2B, the light distribution distribution areas of the red LEDs 2 vertically and horizontally adjacent to each other overlap. Then, the entire surface of the cultivation soil 51a has uniform illuminance. On the other hand, the number of the blue LEDs 3 is extremely smaller than that of the red LEDs 2 due to the relationship of the light intensity ratio.
For example, if the light distribution is a small circle like the red LED 2, a portion that does not reach the surface of the soil 51a is formed. On the other hand, the light distribution of the blue LED 3 is broadened and is shown in FIG.
In the case of, the entire surface of the cultivated soil 51a can be included in the irradiation area by making the area range of a large circle indicated by a solid line.

【0022】なお、図2の例では、赤色LED2の配光
半値角度は14°程度であり、青色LED3の配光半値
角度は21°程度である。
In the example shown in FIG. 2, the half-value light distribution angle of the red LED 2 is about 14 °, and the half-value light distribution angle of the blue LED 3 is about 21 °.

【0023】このように、光合成と光形態形成のために
必要な光強度比を持たせるために赤色LED2に比べて
少数の青色LED3しか配列できなくても、青色LED
3からの配光範囲を赤色LED2の配光範囲よりも広げ
る操作によって、植物に対して赤と青色の光をそれぞれ
の適切な光強度比で照射できる。したがって、植物の光
合成及び光形態形成を一様に促すことができ、良質の植
物の栽培が可能となる。
As described above, even if only a small number of blue LEDs 3 can be arranged in comparison with the red LEDs 2 to have a light intensity ratio necessary for photosynthesis and light morphology formation,
The plant can be irradiated with red and blue light at appropriate light intensity ratios by performing an operation of expanding the light distribution range from 3 to the light distribution range of the red LED 2. Therefore, photosynthesis and photomorphogenesis of the plant can be uniformly promoted, and high-quality plants can be cultivated.

【0024】図3は本発明の半導体発光設備の別の実施
の形態であって、(a)は赤色,青色LED2,3の配
列と軸上輝度の半値までの発光範囲のパターンの概略側
面図、(b)は赤色,青色LED2,3の平面配列パタ
ーンと軸上輝度の半値の軌跡を示す配光分布の概略平面
図である。なお、図3の(b)において正方形の外郭と
して示すトレー51内の培土51aの表面領域は、先の
例と同様に25cm×25cmの大きさである。
FIG. 3 shows another embodiment of the semiconductor light emitting equipment according to the present invention, in which (a) is a schematic side view of an arrangement of red and blue LEDs 2 and 3 and a pattern of a light emitting range up to a half value of on-axis luminance. (B) is a schematic plan view of a light distribution showing a plane arrangement pattern of red and blue LEDs 2 and 3 and a locus of half-value of on-axis luminance. The surface area of the cultivated soil 51a in the tray 51 shown as a square outline in FIG. 3B has a size of 25 cm × 25 cm as in the previous example.

【0025】この例では、赤色LED2は図2の例と同
様に全方位に円の配光領域を持つもので、その配光半値
角度は14°程度である。そして、青色LED3は楕円
配光としたもので、図4にそのパッケージの形状及び図
5に長軸方向と短軸方向の配光特性をそれぞれ示す。
In this example, the red LED 2 has a circular light distribution area in all directions, as in the example of FIG. 2, and its light distribution half value angle is about 14 °. The blue LED 3 has an elliptical light distribution. FIG. 4 shows the shape of the package and FIG. 5 shows the light distribution characteristics in the major axis direction and the minor axis direction.

【0026】図4に示すように、青色LED3は二股の
リードフレーム3aの先端に発光素子(図示せず)を導
通搭載するとともにエポキシ樹脂による砲弾型のパッケ
ージ3bによってこの発光素子を樹脂封止したものであ
る。パッケージ3bはその先端部を球面状に形成すると
ともに、図4の(c)に示すようにほぼ楕円の横断面形
状を持つ。このようなパッケージ3bの楕円の横断面形
状によって、楕円断面の長軸方向及び短軸方向の配光特
性はそれぞれ図5の(a)及び(b)に示すパターンと
なる。図5の(a)及び(b)は、パッケージ3bの樹
脂レンズの光軸からの角度を横軸にとり、光軸上の発光
強度に対する相対発光強度(%)を縦軸にとったもので
ある。この配光分布の特性図から分かるように、長軸方
向では光軸に対し37°程度の範囲では相対発光強度は
50%以上であり、短軸方向では長軸方向に比べて有効
な配光分布の角度は小さい。したがって、パッケージ3
bからの配光分布はその横断面形状の楕円にほぼ相似の
関係となる。
As shown in FIG. 4, in the blue LED 3, a light emitting element (not shown) is conductively mounted at the tip of a forked lead frame 3a, and this light emitting element is resin-sealed by a shell type package 3b made of epoxy resin. Things. The tip of the package 3b is formed in a spherical shape, and has a substantially elliptical cross-sectional shape as shown in FIG. Due to such an elliptical cross-sectional shape of the package 3b, the light distribution characteristics in the major axis direction and the minor axis direction of the elliptical cross section are patterns shown in FIGS. 5A and 5B, respectively. 5A and 5B, the horizontal axis represents the angle of the resin lens of the package 3b from the optical axis, and the vertical axis represents the relative luminous intensity (%) with respect to the luminous intensity on the optical axis. . As can be seen from the characteristic diagram of the light distribution, the relative light emission intensity is 50% or more in the range of about 37 ° with respect to the optical axis in the long axis direction, and the light distribution is more effective in the short axis direction than in the long axis direction. The distribution angle is small. Therefore, package 3
The light distribution from b has a relationship substantially similar to the ellipse of the cross-sectional shape.

【0027】図3に示した例は、赤色LED2の配光半
値角度は先に述べたように14°程度であり、青色LE
D3はその短軸方向が14°程度で長軸方向が37°程
度の配光角度としたものである。この配光角度とは、図
5に示した配光特性図において角度0°(パッケージ3
bの光軸に一致する)に対する短軸及び長軸方向の角度
であり、長軸方向の配光角度が37°であれば、その角
度範囲での相対発光強度(%)は50以上であることを
示す。
In the example shown in FIG. 3, the half-value light distribution angle of the red LED 2 is about 14 ° as described above, and the blue LE
D3 has a light distribution angle of about 14 ° in the short axis direction and about 37 ° in the long axis direction. This light distribution angle is an angle of 0 ° (package 3 in the light distribution characteristic diagram shown in FIG. 5).
(corresponds to the optical axis of b) in the minor axis and major axis directions. If the light distribution angle in the major axis direction is 37 °, the relative luminous intensity (%) in that angle range is 50 or more. Indicates that

【0028】図3の(b)に示すように、楕円断面のパ
ッケージ3bとした青色LED3は、先の例と比較する
と配列個数は少なく、25cm×25cmの領域を4分
割した正方形の領域にはそれれぞれ2個または3個が含
まれている。そして、左右に縦方向に2列配置された青
色LED3は、赤色LED2を含む格子状の配列ピッチ
の1ピッチ分だけ上下にずらした関係にある。このよう
な青色LED3の配列パターンであれば、図示のような
楕円の配光分布となり、25cm×25cmの領域のほ
ぼ全体を50%以上の相対発光強度による照明が可能で
ある。
As shown in FIG. 3B, the number of arrays of the blue LEDs 3 in the package 3b having an elliptical cross section is smaller than that of the previous example, and the blue LED 3 has a square area obtained by dividing a 25 cm × 25 cm area into four parts. Two or three are respectively included. The blue LEDs 3 arranged in two rows in the vertical direction on the left and right are vertically shifted by one pitch of the grid-like arrangement pitch including the red LEDs 2. With such an array pattern of the blue LEDs 3, an elliptical light distribution as shown in the figure is obtained, and almost the entire area of 25 cm × 25 cm can be illuminated with a relative light emission intensity of 50% or more.

【0029】一方、赤色LED2の配列パターンは、図
2の(b)の例と同様に、1個ごとの発光領域が重なり
合って25cm×25cmの全体の領域に対してほぼ一
様な輝度の照明が得られるようにしている。
On the other hand, in the arrangement pattern of the red LEDs 2, as in the example of FIG. Is to be obtained.

【0030】このような青色LED3によって楕円配光
としても、光合成に必要な赤色LED2による赤と光形
態形成に必要な青色LED3による青とを、培土51a
の全表面に一様に照射できる。そして、青色LED3の
個数は図2の例と比べると少なくなっており、光合成と
光形態形成のために必要な赤と青の光強度比の設定をよ
り一層最適化できる。したがって、GaN系化合物半導
体を利用した青色発光のLEDは、コストが高いという
のが現状であるが、その必要個数の削減によって設備費
用を低減することも可能となる。
Even when the blue LED 3 forms an elliptical light distribution, red by the red LED 2 required for photosynthesis and blue by the blue LED 3 required for light morphology formation are cultivated 51a.
Can be uniformly irradiated on all surfaces. The number of the blue LEDs 3 is smaller than that of the example of FIG. 2, and the setting of the light intensity ratio of red and blue necessary for photosynthesis and light morphology can be further optimized. Therefore, at present, the cost of a blue light emitting LED using a GaN-based compound semiconductor is high, but it is also possible to reduce the equipment cost by reducing the required number.

【0031】[0031]

【発明の効果】本発明では、植物の光合成及び光形態形
成に必要な赤と青の発光の光強度比が8:1〜12:1
好ましくは10:1 程度という条件を満たすために、培
土の単位面積当たりについて青色の発光ダイオードの数
を赤色よりも少なくする必要があっても、青色の発光ダ
イオードの配光分布を赤色より広くすることにより赤と
青の光強度比を一様化することができ、先の条件を十分
に満足する照明形態が得られ、良質の植物の栽培が可能
となる。
According to the present invention, the light intensity ratio of red and blue luminescence necessary for photosynthesis and photomorphogenesis of plants is 8: 1 to 12: 1.
In order to satisfy the condition of preferably about 10: 1, the number of blue light emitting diodes per unit area of the soil must be smaller than that of red, but the light distribution of the blue light emitting diodes is wider than that of red. As a result, the light intensity ratio between red and blue can be made uniform, an illumination mode that sufficiently satisfies the above conditions can be obtained, and high-quality plants can be cultivated.

【0032】また、発光ダイオードではパルス発光や低
電圧駆動が可能であるほか発熱もほとんどないので、パ
ルス発光によって光合成を更に促すとともに、植物に光
源を近づけた配置ができるので装置の小型化が図れると
ともに空調を含め設備及び稼働のための費用も削減でき
る。
Further, since the light emitting diode can perform pulsed light emission and low voltage driving and generate little heat, the light emission can further promote photosynthesis by the pulsed light emission, and the light source can be arranged close to the plant, so that the size of the device can be reduced. In addition, the cost for equipment and operation including air conditioning can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の植物栽培用の半導体発光設備を備えた
植物栽培装置の概略構成図
FIG. 1 is a schematic configuration diagram of a plant cultivation apparatus provided with a semiconductor light emitting facility for plant cultivation of the present invention.

【図2】(a)は赤色及び青色発光のLEDの配列と発
光範囲のパターンの概略側面図 (b)は赤色及び青色発光のLEDの平面配列パターン
と配光分布を示す概略平面図
2A is a schematic side view of an arrangement of red and blue light emitting LEDs and a pattern of a light emitting range. FIG. 2B is a schematic plan view showing a planar array pattern and light distribution of red and blue light emitting LEDs.

【図3】青色LEDを楕円配光とした例であって、
(a)は赤色及び青色発光のLEDの配列と軸上輝度半
値までの発光範囲のパターンの概略側面図 (b)は赤色及び青色発光のLEDの平面配列パターン
と軸上半円の軌跡を示す配光分布の概略平面図
FIG. 3 is an example in which a blue LED has an elliptical light distribution,
(A) is a schematic side view of an arrangement of red and blue light emitting LEDs and a pattern of a light emitting range up to half the on-axis luminance half value. (B) shows a planar arrangement pattern of red and blue light emitting LEDs and a locus of an on-axis semicircle. Schematic plan view of light distribution

【図4】図3の例における青色発光のLEDの要部の詳
細であって、(a)はリードフレームとパッケージ部分
の正面図 (b)は同図の(a)の右側面図 (c)はパッケージの平面図
4 (a) is a front view of a lead frame and a package part, and FIG. 4 (b) is a right side view of FIG. 3 (a). ) Is a plan view of the package

【図5】図4の青色発光のLEDの配光特性図であっ
て、(a)は楕円断面のパッケージの長軸方向の相対発
光強度の特性図 (b)は楕円断面のパッケージの短軸方向の相対発光強
度の特性図
5A and 5B are light distribution characteristics diagrams of the blue light emitting LED of FIG. 4, wherein FIG. 5A is a characteristic diagram of a relative light emission intensity in a major axis direction of an elliptical cross-section package, and FIG. Characteristic diagram of relative emission intensity in each direction

【符号の説明】[Explanation of symbols]

1 半導体発光設備 2 赤色LED 3 青色LED 3a リードフレーム 3b パッケージ 51 トレー 51a 培土 52 ブース DESCRIPTION OF SYMBOLS 1 Semiconductor light emitting equipment 2 Red LED 3 Blue LED 3a Lead frame 3b Package 51 Tray 51a Cultivation 52 Booth

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 培土を入れたトレーと対向する位置に配
置され、前記培土に根付かせた植物の光合成を促す赤色
の発光ダイオード及び光形態形成を促す青色の発光ダイ
オードとをそれぞれほぼ同一平面上に複数個配列した半
導体発光照明設備であって、前記赤色の発光ダイオード
の分布数よりも前記青色の発光ダイオードの分布数を少
なくし、且つ前記青色の発光ダイオードの配光分布を前
記赤色の発光ダイオードの配光分布より広くし前記培土
の単位面積当たりについて赤と青の光強度の比をほぼ一
様化したことを特徴とする植物栽培用の半導体発光照明
設備。
1. A red light-emitting diode for promoting photosynthesis of a plant rooted in the soil and a blue light-emitting diode for promoting light morphogenesis, which are arranged at a position facing the tray containing the soil and are substantially coplanar with each other. A plurality of semiconductor light-emitting lighting equipment, wherein the number of distributions of the blue light-emitting diodes is smaller than the number of distributions of the red light-emitting diodes, and the light distribution of the blue light-emitting diodes is changed to the red light emission. A semiconductor light emitting lighting system for plant cultivation, characterized in that the light distribution is wider than the light distribution of the diode and the ratio of light intensity of red and blue is almost uniform per unit area of the soil.
【請求項2】 前記赤色の発光ダイオード及び青色の発
光ダイオードのそれぞれを、発光源の全方位に一様に配
光拡散する円の配光分布特性としたことを特徴とする請
求項1記載の植物栽培用の半導体発光照明設備。
2. The light-emitting diode according to claim 1, wherein each of the red light-emitting diode and the blue light-emitting diode has a light distribution characteristic of a circle that distributes and diffuses light uniformly in all directions of the light-emitting source. Semiconductor lighting equipment for plant cultivation.
【請求項3】 前記赤色の発光ダイオードを発光源の全
方位に一様に配光拡散する円の配光分布特性とし、前記
青色の発光ダイオードを発光源からほぼ楕円状に配光拡
散する楕円の配光分布特性としたことを特徴とする請求
項1記載の植物栽培用の半導体発光照明設備。
3. An ellipse, wherein the red light emitting diode has a light distribution characteristic of a circle for uniformly distributing and diffusing light in all directions of the light emitting source, and the blue light emitting diode is substantially elliptical from the light emitting source for light distribution and diffusion. The semiconductor light-emitting lighting equipment for plant cultivation according to claim 1, wherein the light distribution characteristics are as follows.
JP26863599A 1999-09-22 1999-09-22 Semiconductor light-emitting illuminating device for culturing plant Pending JP2001086860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26863599A JP2001086860A (en) 1999-09-22 1999-09-22 Semiconductor light-emitting illuminating device for culturing plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26863599A JP2001086860A (en) 1999-09-22 1999-09-22 Semiconductor light-emitting illuminating device for culturing plant

Publications (1)

Publication Number Publication Date
JP2001086860A true JP2001086860A (en) 2001-04-03

Family

ID=17461297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26863599A Pending JP2001086860A (en) 1999-09-22 1999-09-22 Semiconductor light-emitting illuminating device for culturing plant

Country Status (1)

Country Link
JP (1) JP2001086860A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007147242A1 (en) * 2006-06-19 2007-12-27 Theoreme Innovation Inc. Led luminaire
WO2011016521A1 (en) 2009-08-07 2011-02-10 昭和電工株式会社 Multicolour light emitting diode lamp for use in plant cultivation, lighting device and plant cultivation method
JP2011097939A (en) * 2009-11-06 2011-05-19 Everlight Electronics Co Ltd Method for determining number of light source
JP2011101619A (en) * 2009-11-11 2011-05-26 Taiyo Denshi Kk Plant cultivation device
WO2011068182A1 (en) * 2009-12-03 2011-06-09 Okazaki Seiichi Plant cultivation system
WO2011091760A1 (en) * 2010-01-28 2011-08-04 杭州汉徽光电科技有限公司 Led lamp for tissue culture of arethusa
JP2013198484A (en) * 2012-02-23 2013-10-03 Kobe Univ Cultivation method of plant
CN105517240A (en) * 2015-12-29 2016-04-20 中国计量学院 LED intelligent dimming system capable of facilitating plant growth
JP2016518106A (en) * 2013-03-05 2016-06-23 シャント テクノロジーズ, インコーポレイテッドXiant Technologies,Inc. Photon modulation management system
US10568272B1 (en) 2018-07-31 2020-02-25 Ricoh Company, Ltd. Cultivation system
DE102019103805A1 (en) * 2019-02-14 2020-08-20 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung PLANT LIGHTING DEVICE AND METHOD OF OPERATING A LIGHT SOURCE
US11833366B2 (en) 2017-04-03 2023-12-05 Xiant Technologies, Inc. Method of using photon modulation for regulation of hormones in mammals

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007147242A1 (en) * 2006-06-19 2007-12-27 Theoreme Innovation Inc. Led luminaire
US9485919B2 (en) 2009-08-07 2016-11-08 Showa Denko K.K. Multicolor light emitting diode lamp for plant growth, illumination apparatus, and plant growth method
WO2011016521A1 (en) 2009-08-07 2011-02-10 昭和電工株式会社 Multicolour light emitting diode lamp for use in plant cultivation, lighting device and plant cultivation method
JP5393790B2 (en) * 2009-08-07 2014-01-22 昭和電工株式会社 Multicolor light emitting diode lamp for plant growth, lighting device and plant growth method
TWI487139B (en) * 2009-08-07 2015-06-01 Showa Denko Kk Multicolor light emitting diode lamp for plant growth, lighting equipment and method of growing plant
JP2011097939A (en) * 2009-11-06 2011-05-19 Everlight Electronics Co Ltd Method for determining number of light source
JP2011101619A (en) * 2009-11-11 2011-05-26 Taiyo Denshi Kk Plant cultivation device
WO2011068182A1 (en) * 2009-12-03 2011-06-09 Okazaki Seiichi Plant cultivation system
CN102740681A (en) * 2009-12-03 2012-10-17 株式会社顶石科技 Plant cultivation system
WO2011091760A1 (en) * 2010-01-28 2011-08-04 杭州汉徽光电科技有限公司 Led lamp for tissue culture of arethusa
US20120293993A1 (en) * 2010-01-28 2012-11-22 Hangzhou Hanhui Opto-Tech Co., Ltd. LED Mixed Lighting for Tissue Culture of Orchids
US8944631B2 (en) * 2010-01-28 2015-02-03 Hangzhou Hanhui Opto-Tech Co., Ltd. LED mixed lighting for tissue culture of orchids
JP2013198484A (en) * 2012-02-23 2013-10-03 Kobe Univ Cultivation method of plant
JP2016518106A (en) * 2013-03-05 2016-06-23 シャント テクノロジーズ, インコーポレイテッドXiant Technologies,Inc. Photon modulation management system
JP2018148924A (en) * 2013-03-05 2018-09-27 シャント テクノロジーズ, インコーポレイテッドXiant Technologies,Inc. Photon modulation management system
CN105517240A (en) * 2015-12-29 2016-04-20 中国计量学院 LED intelligent dimming system capable of facilitating plant growth
US11833366B2 (en) 2017-04-03 2023-12-05 Xiant Technologies, Inc. Method of using photon modulation for regulation of hormones in mammals
US10568272B1 (en) 2018-07-31 2020-02-25 Ricoh Company, Ltd. Cultivation system
DE102019103805A1 (en) * 2019-02-14 2020-08-20 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung PLANT LIGHTING DEVICE AND METHOD OF OPERATING A LIGHT SOURCE

Similar Documents

Publication Publication Date Title
US9854749B2 (en) Plant growth lighting device and method
US6921182B2 (en) Efficient LED lamp for enhancing commercial and home plant growth
US20120020071A1 (en) High performance led grow light
US20050281027A1 (en) Device and method for observing plant health
US20090199470A1 (en) Device and Method for Observing Plant Health
US20170245440A1 (en) Array of led illumination modules optimized for initial plant growth stage and illumination device including the same for plant factory
JPH08103167A (en) Light source for cultivating plant
JP2001086860A (en) Semiconductor light-emitting illuminating device for culturing plant
KR101730965B1 (en) Light emitting apparatus having variable wavelengths using quantum dots for plant cultivation
WO2020033127A1 (en) Tunable led light array for horticulture
JP2015033367A (en) Illumination device for plants, cultivation shelf, plant factory, and plant cultivation method
JP6810312B2 (en) Biological growth system and lighting device for biological growth that can be illuminated according to the biological growth range
JP5192068B2 (en) Light emitting device and light irradiation device including light emitting device
US9927075B2 (en) LED lighting module for plant factory and LED lighting device for plant factory having same mounted thereon
KR100961066B1 (en) Led illumination system for plant factory
KR101313907B1 (en) Led lighting module for plant-culture factory, and led lighting apparatus for plant-culture factory using the same
CN105405937B (en) Light source and plant cultivation method for plant growth
KR101619461B1 (en) led apparatus for raising seeding
JP2004081110A (en) Apparatus for growing and storing plant
KR20200036102A (en) Led lighting
US20170102132A1 (en) LED Lighting Module for Plant Factory and LED Lighting Device for Plant Factory having Same Mounted thereon
CN105090773A (en) Fluorescent powder diffusion sheet lamp for agricultural lighting
KR20190089122A (en) Package structure of artificial light source device suitable for plant growth of plant factory
KR20190082019A (en) Package structure of artificial light source device suitable for plant growth of plant factory
KR20110075386A (en) Led lighting module for plant cultivation