WO2014118401A1 - Composicion microbiana útil contra nematodos de cultivos vegetales - Google Patents

Composicion microbiana útil contra nematodos de cultivos vegetales Download PDF

Info

Publication number
WO2014118401A1
WO2014118401A1 PCT/ES2013/070175 ES2013070175W WO2014118401A1 WO 2014118401 A1 WO2014118401 A1 WO 2014118401A1 ES 2013070175 W ES2013070175 W ES 2013070175W WO 2014118401 A1 WO2014118401 A1 WO 2014118401A1
Authority
WO
WIPO (PCT)
Prior art keywords
microbial
composition
source
strain
weight
Prior art date
Application number
PCT/ES2013/070175
Other languages
English (en)
French (fr)
Inventor
Estefanía HINAREJOS ESTEVE
Raquel DEL VAL BUEDO
Nuria TARANCÓN VALERA
Enrique Riquelme Terres
Original Assignee
Investigaciones Y Aplicaciones Biotecnológicas, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Investigaciones Y Aplicaciones Biotecnológicas, S.L. filed Critical Investigaciones Y Aplicaciones Biotecnológicas, S.L.
Publication of WO2014118401A1 publication Critical patent/WO2014118401A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • A01N63/22Bacillus

Definitions

  • the present invention is framed in the field of biopesticides. More specifically, this invention relates to a set of microorganisms, which formulated in a carrier liquid maintains microbial viability, and which by its characteristics, promotes an environment that is unfavorable to phytopathogenic nematodes.
  • Nematodes are the cause of the greatest damage to agriculture in tropical, subtropical and temperate regions around the world. Meloidogyne spp. It is the most significant genus of plant parasitic nematodes; its activity causes losses between 11% and 25% of crops in virtually all tropical regions.
  • nodules or gill-forming nematodes easily reach harmful thresholds in a short time, if they encounter susceptible crops, such as tomatoes. They are so common in horticultural crops of subtropical and tropical climates, which are sometimes taken as "representatives of phytopathogenic nematodes" in general (Luc et al., 1990). Nodules or gill-forming nematodes ⁇ Meloidogyne spp. ) are sedentary endoparasitic nematodes, therefore, the absence of host plant for prolonged periods, would tend to make them disappear.
  • compositions that are capable of controlling a plague of nematodes and simultaneously fertilize the soil or crop surface of a plant.
  • PGPR Plant Growth Promoting Rhizobacteria or bacteria that promote plant root growth
  • IAB SL (Investigations and Biotechnological Applications S. ⁇ L.) r considered PGPR, have been identified as biological control forms and alternatives to the use of pesticides, but without being related to nematode control.
  • a plant Under natural conditions, a plant is a potential host for several phytopathogenic microorganisms, among which relationships that can be of different nature are established. It would be expected that the root colonization of different groups of PGPR could establish, with respect to other phytopathogenic organisms, competitive relationships for occupying the same ecological niche, or simply some kind of interaction, that would improve the host's resistance, against attacks of phytoparasite nematodes. Any beneficial rhizospheric bacteria colonize the same tissues as sedentary phytoparasitic nematodes such as Melo ⁇ dogyne spp .. A priori, there must be some kind of relationship between phytoparasitic nematodes and rhizospheric microorganisms.
  • An example that there are interactions between nematodes and PGPR is the interaction that exists between Rh ⁇ zob ⁇ um spp. and Bradyrh ⁇ zob ⁇ um spp ..
  • the interaction between them can be stimulating or inhibiting, both of the nodulation and nitrogen fixation, depending on the species of nematode that interacts.
  • Another example is mycorrhizae, whose mechanisms to increase the tolerance of the host to nematodes is the modification of root exudates and their influence on the orientation of nematodes towards it, as well as the hatching of eggs and the subsequent development of Nematodes inside the root.
  • root exudates from host plants can inhibit the hatching of eggs or the infection process, repel and even kill some species of nematodes, they can also orient the nematodes towards the root and stimulate the juveniles to infect plant.
  • chitinolytic fungi and Bacteria that share the habitat of nematodes, can maintain a certain biological balance, and somehow limit the proliferation of nematodes.
  • bacterial endophyte microorganisms (PGPR) and fungi have been used for biocontrol of sedentary and migratory endoparasitic nematodes that attack banana and tomato (Hallman and Sikora, 1994; Hallman et al., 2001; Pocasangre et al., 2000 ).
  • PGPR bacterial endophyte microorganisms
  • fungi have been used for biocontrol of sedentary and migratory endoparasitic nematodes that attack banana and tomato (Hallman and Sikora, 1994; Hallman et al., 2001; Pocasangre et al., 2000 ).
  • Bacillus such as B. subtilis, B. megather ⁇ um and B. licheniformis
  • B. subtilis B. subtilis
  • B. megather ⁇ um B. licheniformis
  • B. licheniformis some strains of Bac ⁇ llus spp. that interfere with the normal development of nematode populations.
  • Padgham and Sikora demonstrate the modes of action through which B. megater ⁇ um reduces damage by Meloidogyne graminicola (Padgham and Sikora, 2007). It is also known that Bac ⁇ llus thur ⁇ ng ⁇ ens ⁇ s produces a thermostable toxin that can be toxic to populations of Meloidogyne spp.
  • Tr ⁇ choderma spp. It has enzymatic action through chitinases, which degrade chitin, a component present in nematode eggs (Sharon et al., 2001).
  • Pseudomonas fluorescens can also be an antagonist of different soil pathogens, through different mechanisms, such as the production of siderophores, which inhibit plant pathogens, through competition for iron, the emission of suppressive antibiotics from competition microorganisms, and through the chitinases and glucanases that cause cell lysis of microbial cells (Sharman et al. 2003).
  • microorganisms PGPR both bacteria and fungi
  • antagonistic and suppressive capacity of nematodes including several of the genus Bac ⁇ llus spp ⁇ B. subtilis, B. megather ⁇ um, B. licheniformis, B. thuringi ensis ...), and which are also found naturally in healthy soil, also being of nutritional and biological interest.
  • microbial compositions with any of these types of microorganisms, maintaining microbial viability is complicated, especially when there is more than one microorganism in its composition.
  • the microbial compositions marketed so far for the treatment of nematodes comprise certain species and strains of said microorganisms with other non-microbial components.
  • compositions the effect against the parasite is achieved by the action of the microorganism itself, without the use of non-microbial components related to an additional antiparasitic and / or nutritional effect (eg fertilizer) on the plant.
  • non-microbial components related to an additional antiparasitic and / or nutritional effect (eg fertilizer) on the plant.
  • these compositions do not maintain the viability for long periods of time (less than one year).
  • Gram-positive (Gram +) bacilli are likely to use as a source of nitrogen, mineral nitrogen, particularly ammonia, nitrates, nitrites, and organic nitrogen molecules such as urea, amino acids, nitrogen bases and other low molecular weight compounds. .
  • ammonium has been the best studied. Although it is difficult to say that a single component is responsible for nematode mortality, the nematicidal activity of ammonia was recognized by Eno et al. (Eno et al., 1955), when they carried out a series of works on the use of anhydrous ammonia as a nitrogen fertilizer, when it was found that applied by injection at the concentration of 300-900 mg kg _1 of soil reduced the problems of nematodes.
  • microorganisms present are a combination of fungi and bacteria with nematicidal properties known.
  • this product is not able to keep the introduced microorganisms that it contains viable over time.
  • the present invention proposes a new formulation viable from the microbiological point of view, from suitable PGPR and a non-phytotoxic carrier liquid containing urea, amino acids, nitrogenous bases and / or other compounds of low molecular weight that serve the plant nutrients, and that by the action of the microorganism in the formulation, once diluted in water, promotes an environment unfavorable to the nematodes.
  • This formulation produces a significant decrease in the attack of the nodule-forming nematodes (Meloydog ⁇ ne spp.) In tomato cultivation (Valencian Tomato), as evidenced by the results obtained by bioassay to evaluate the effect or type of interaction that the formulation induces when applied to the soil of a crop exposed to nematodes.
  • said formulation comprises a rhizobacterium of the genus Bac ⁇ llus spp.
  • subt ⁇ l ⁇ s species selected from the cepario de IAB, S.L (Investigades yVeronications Biotecnológica S.L.), which, formulated in a carrier liquid, alone or in conjunction with other rhizobacteria, maintains microbial viability for one year.
  • the formulation of the present invention produces a significant decrease in the attack of nodule-forming nematodes (Meloydog ⁇ ne spp ..) in tomato cultivation (Valencian Tomato), due to some existing effect or type of interaction. This decrease is reflected through the measurement of the root nodulation index in the bioassay.
  • the formulation of the invention is a fertilizer (providing nutritional values to the crop), and at the same time it is able to keep the microorganism viable for long periods of time.
  • the action of the microorganism on the non-microbial components contained in the formulation itself manages to keep the nematode plague below a threshold, which allows the culture to be maintained in adequate growth conditions.
  • a first aspect of the invention refers to a microbial composition for nematode control, useful for preventing and / or treating a nematode infestation in a plant, characterized in that it comprises: a) at least one microbial strain with capable urease activity of enzymatically transforming ammoniacal nitrogen to NH 3 , where preferably said strain is Bac ⁇ llus spp. , b) a liquid fertilizing medium comprising: b. l) a source of amino acids, preferably a protein hydrolyzate, and more preferably a protein hydrolyzate of plant origin;
  • a source of fulvic acids preferably a source of potassium lignosulfate
  • the above microbial composition can be applied to treat and / or prevent a nematode infestation caused by a type of nodule-forming nematode (or gills) in the root or roots of a plant.
  • a nematode infestation caused by a type of nodule-forming nematode (or gills) in the root or roots of a plant Preferably said nematode is an endoparasitic sedentary nematode belonging to a Melo ⁇ dogyne species, and more preferably it is a nematode of the unknown Meloidogyne species.
  • Phytoparasite nematodes gill-forming peptides belonging to the genus Meloidogyne, are considered the most economically important worldwide because of the damage they cause, and are characterized by a significant reduction in yields and the large number of plant species that attack, which includes most of the vegetable, fruit, ornamental and weed flora .
  • the plants that can commonly suffer this type of infestation, and therefore can be treated with the microbial composition described herein are, and without limitation, onion, asparagus, pepper, vine, the carrot and other horticultural crops as usual as for example the tomato (in the case of the test, Valencian tomato).
  • the above microbial composition comprises at least one microorganism with urease activity, that is, a microorganism capable of enzymatically transforming urea nitrogen into ammonia (NH 3 ), which is toxic to these nematodes. .
  • a microorganism capable of enzymatically transforming urea nitrogen into ammonia (NH 3 ), which is toxic to these nematodes.
  • the microorganism generates an unfavorable environment for the population of nematodes, which migrates to other areas, which can also favor the colonization of the root by said microorganism if it is of the rhizospheric type and / or by some other Rhizospheric microorganism that is present in the microbial composition itself or in the farmland.
  • said microorganism with urease activity is a microbial strain of Bac ⁇ llus spp. , as they are and without limitation, strains of the species B. subtilis, B. megatherium, B. thuringiensis and / or Bac ⁇ llus l ⁇ chen ⁇ form ⁇ s. More preferably, the microbial strain is a strain of Bac ⁇ llus subtilis, and even more preferably an isolated strain of Bac ⁇ llus subtilis IAB / BS03 deposited in the DSMZ German type culture collection with Accession No. DSM 24682, or a mutant of said strain, and also deposited in the Spanish Type Crops Collection with access number CECT 7254, owned by the company that presents the present invention.
  • the DSM 24682 strain of Bacillus subtilis previously used as a biological control agent based on its ability to produce antibiotic substances against phytopathogenic fungi, in the present invention is capable of acting on the liquid fertilizing medium to transform ammoniacal nitrogen into NH 3 , and thus generate an environment that is unfavorable for the nematode.
  • the microbial strain with urease activity comprises at least one strain of Bacillus spp. , and in a more preferred embodiment, comprises a strain selected from at least one of the group consisting of: Bacillus subtilis strain (preferably Bacillus subtilis DSM 24682 microbial strain), Bacillus thuringiensis strain (preferably B. thuringiensis var. kurstaki) , Bac ⁇ llus megatherium strain, Bac ⁇ llus l ⁇ chen ⁇ form ⁇ s strain and any combination of the above.
  • Bacillus subtilis strain preferably Bacillus subtilis DSM 24682 microbial strain
  • Bacillus thuringiensis strain preferably B. thuringiensis var. kurstaki
  • Bac ⁇ llus megatherium strain Bac ⁇ llus l ⁇ chen ⁇ form ⁇ s strain and any combination of the above.
  • the microbial strain of Bac ⁇ llus spp. it comprises a strain of Bacillus subtilis with urease activity, and more preferred is strain B.
  • subtilis DSM 24682 when the microbial composition comprises a strain of Bacillus subtilis with urease activity (such as strain B. subtilis DSM 24682), said The composition may further comprise at least one additional Bac ⁇ llus spp. strain.
  • the microbial composition in addition to the Bac ⁇ llus subtilis strain with urease activity which includes those microbial compositions with the strain B. subtilis DSM 24682, comprises a additional microbial strain of Bac ⁇ llus spp ..
  • additional microbial strains of Bac ⁇ llus are, without limitation, some strain selected from at least one of the group consisting of: Bac ⁇ llus thur ⁇ ng ⁇ ens ⁇ s strain
  • composition where the additional microbial strain comprises a combination of a Bac ⁇ llus thur ⁇ ng ⁇ ens ⁇ s strain
  • the microbial composition comprises the strain with urease activity Bac ⁇ llus subtilis DSM 24682, and in addition, the commercial strains Bac ⁇ llus thur ⁇ ng ⁇ ens ⁇ s var. Kurstak ⁇ IAB / BT / 01, Bac ⁇ llus megatherium CECT 7253 and Bac ⁇ llus licheniformis CECT 7252.
  • Bac ⁇ llus subtilis DSM 24682 (CECT 7254), Bac ⁇ llus thur ⁇ ng ⁇ ens ⁇ s var. Kurstak ⁇ IAB / BT / 01, Bac ⁇ llus megatherium CECT 7253 and Bac ⁇ llus l ⁇ chen ⁇ form ⁇ s CECT 7252, mentioned above, are kept in the cepario de IAB, S.L. and they are currently commercial product, dehydrated and lyophilized. These rhizospheric bacteria have been identified by the Official Association of Weighers and Public Meters of Barcelona (COPMB) by molecular identification of the 16S rRNA sequence in the Genbank database.
  • COPMB Official Association of Weighers and Public Meters of Barcelona
  • Bac ⁇ llus thur ⁇ ng ⁇ ens ⁇ s var. Kurstaki is a commercially accessible strain of commercial reference IAB / BT / 01.
  • the Bac ⁇ llus l ⁇ chen ⁇ form ⁇ s strain with deposit number CECT 7252 has been deposited on March 30, 2007, in the Spanish Type Crops Collection (CECT), Building 3 CUE, Pare Cientific Universitat de Valencia, Professor Agust ⁇ n Escardino 9, Paterna, 46980 Valencia ( SPAIN), by Raquel del Val Buedo del IAB, SL.E1 deposit of the pure and viable strain, was received by the CECT with the access number CECT 7252.
  • the microbial composition described in the present invention has a microbial viability of 80% for a minimum of at least one year, a percentage of viability difficult to maintain in other compositions known in the state of the art after more than 6 months after its preparation.
  • said liquid fertilizing medium is capable of maintaining 100% microbial viability for at least 6 months, and at least 80% for one year, of different microorganisms such as different bacterial strains of Bac ⁇ llus spp.
  • the liquid fertilizing medium is capable of maintaining microbial viability at least 80% for 6 weeks of bacterial strains of Azotobacter vneland ⁇ and Rh ⁇ zobium legum ⁇ nosarum.
  • Other microorganisms of fungal nature such as Saccharomyces cerev ⁇ s ⁇ ae, have a viability in the 100% fertilizing liquid medium for at least 24 hours.
  • the liquid fertilizer in addition to promoting an environment that is unfavorable to phytopathogenic nematodes, is stable and suitable for supporting the microbial base (the Bac ⁇ llus strain or strains mentioned above, and where appropriate, other microbial strains or fungal microorganisms additional, for example, as previously indicated), maintaining the viability of the microorganisms it contains.
  • the liquid medium of fertilizing characteristics is presented as an interesting formulation, not only for its fertilizing characteristics, but for the characteristic of maintaining the microbial viability of different genera and microbial species, in isolation, or as a microbial consortium.
  • the microbial composition of the invention may comprise other microorganisms that are viable in said formulation, preferably other PRPGs known as other Bacillus spp strains. , for example Bac ⁇ llus thuringiensis var. Kurstak ⁇ , Bac ⁇ llus megather ⁇ um and / or Bac ⁇ llus l ⁇ chen ⁇ form ⁇ s. Therefore, the liquid fertilizer medium can be considered as a novel formulation of the present invention. The amounts of the ingredients of said liquid medium may vary in such a way that they maintain their stability characteristics and / or allow their usefulness to support said microbial base.
  • the source of amino acids may be present in an amount of between 45% and 95% by weight with respect to the total volume of the composition, including between 60% to 80% by weight with respect to the total volume of the composition, including from 70% to 78% by weight with respect to the total volume of the composition.
  • the term "source of amino acids" in the present invention refers to a material where amino acids can be found, not necessarily purified, and can be found as mixtures of amino acids. In this sense, the average specialist in the field can use as sources of amino acids, for example and not limited to, a protein hydrolyzate, amino acids obtained by fermentation and / or even amino acids obtained by synthesis.
  • the source of amino acids can include amino acids such as lysine, alanine, histidine, cystine and cysteine, arginine, valine, hydroxyproline, methionine, aspartic acid, isoleucine, threonine, leucine, serine, tyrosine, glutamic acid, phenylalanine, proline, tryptophan, glycine and other similar amino acids.
  • the source of amino acids is of plant origin, comprising amino acids obtained from plant proteins, such as, for example, and without limitation, a vegetable protein hydrolyzate.
  • the source of fulvic acids may typically be present in an amount of between 1% and 20% by weight with respect to the total volume of the composition, including between 5% to 15% by weight with respect to the total volume of the composition, including between 10% to 15% by weight with respect to the total volume of the composition.
  • the term "source of fulvic acids" in the present invention refers to a material where fulvic acids can be found, known to those skilled in the art, such as lignosulfonic acid and / or any of its salts, preferably cation salts. alkaline such as potassium or sodium. In a preferred embodiment, the source of fulvic acids is potassium lignosulfonate.
  • the source of urea nitrogen may typically be present in an amount of between 1% and 20% by weight with respect to the total volume of the composition, including between 5% to 15% by weight with respect to the total volume of the composition, including between 8% to 12% by weight with respect to the total volume of the composition, including between 10% to 11% by weight with respect to the total volume of the composition.
  • ureic nitrogen source refers to a material where nitrogen of ureic origin can be found, such as urea (CO (H 2 ) 2 ) ⁇ and Calurea (Ca (N0 3 ) 2 * 4CO (NH 2 ) 2 ) ⁇
  • the source of urea nitrogen is urea.
  • source of nutrients refers to a material or substance that provides a varied mixture of nutrients that can be used by microorganisms, and which comprises nutritional compounds essential for the performance of the vital functions of microorganisms as they are among others, sugars, minerals, trace elements, vitamins and / or amino acids.
  • the source of nutrients contributes to the maintenance, growth and / or development of said microorganism.
  • the source of nutrients is typically present in an amount of between 1% and 10% by weight with respect to the total volume of the composition, including between 1% to 5% by weight with respect to the total volume of the composition, including from 2% to 4% by weight with respect to the total volume of the composition, including from 2% to 3% by weight with with respect to the total volume of the composition.
  • a preferred example of a nutrient source is molasses, preferably selected from the group consisting of: sugar cane molasses, beet molasses and any combination thereof.
  • molasses refers to a thick liquid product derived from sugarcane and to a lesser extent of sugar beet, obtained from the remaining residue in the sugar extraction tanks. Nutritionally it has a very high content of carbohydrates, in addition to vitamins of group B and abundant minerals, among which iron, copper and magnesium stand out. Its water content is low.
  • the water content of the microbial composition is present in an amount sufficient to complete 100% by weight (C.S.P.) with respect to the total volume of the composition.
  • water is present in the composition in an amount ranging from 0% to 52% by weight with respect to the total volume of the composition, including from 0% to a 29% by weight with respect to the total volume of the composition, including from 0% to 25% by weight with respect to the total volume of the composition, including from 0% to 8% by weight with respect to volume Total composition.
  • the liquid fertilizer medium of a microbial composition as any of those defined above comprises: b. l) between 45% and 95%, preferably between 60% and 80%, by weight of the source of amino acids with respect to the total volume of composition, including both limits;
  • b. 2 between 1% and 20%, preferably between 5% and 15%, by weight of the source of fulvic acids with respect to the total volume of composition, including both limits; b. 3) between 1% and 20%, preferably between 5% and 15% (and more preferably between 8% and 12%), by weight of the urea nitrogen source with respect to the total volume of composition, both limits included;
  • the liquid fertilizer medium of the microbial composition as any of those defined above comprises: b. l) between 60% and 80%, preferably between 70% and 78%, by weight of the amino acid source with respect to the total volume of composition,
  • the liquid fertilizing medium comprises: b. l) between 70% and 78%, preferably 70%, by weight of the amino acid source with respect to the total volume of composition,
  • the liquid fertilizing medium comprises: b. l) 70% by weight of the source of amino acids, preferably of a vegetable protein hydrolyzate, with respect to the total volume of composition,
  • the total microbial content of the microbial composition is between 10 3 and 10 9 units colony forming (ufe) per milliliter of composition.
  • colony forming units also referred to herein by its abbreviation ufe refers to the number of spores or microbial cells capable of being viable.
  • the microbial compositions comprise a total microbial content of between 10 6 and 10 9 cfu per mL of composition.
  • compositions can be prepared from starting microbial strains of known concentration, for example, between 10 10 and 10 11 pfu / gram, such that in this case in the microbial composition the starting microbial strain or strains are present in an amount comprised between 0.01% and 10% by weight with respect to the total volume of the composition. More preferably, the starting microbial strain or strains are present in the composition between 0.02% and 1% by weight of said microbial strain or strains with respect to the total volume of the composition.
  • the microbial composition as any of those defined above comprises 0.02% by weight of the microbial strain of Bac ⁇ llus spp. with urease activity Bac ⁇ llus subtilis DSM 24682 with respect to the total volume of the composition.
  • Bac ⁇ llus subtilis DSM 24682 in addition to the strain B. subtilis DSM 24682, it comprises other microbial strains of Bac ⁇ llus spp. until reaching a total microbial content of 0.1% by weight of microbial strains with respect to the total volume of the composition, such as a composition comprising 0.02% by weight of B. subtilis (preferably B. subtilis DSM 24682), 0.02% by weight of B. licheniformis (preferably B.
  • B. megatherium preferably B. megatherium CECT 7253
  • B. thuringiensis preferably B. thuringiensis var. Kurstaki IAB / BT / 01
  • the above percentages of the strain or microbial strains refer to the total weight of all strains of microorganisms present in the microbial composition with respect to the total volume of said composition, expressed as a percentage, and comprises the percentage by weight of the strain of Bac ⁇ llus capable of enzymatically transforming ammoniacal nitrogen to NH 3 and also, where appropriate, the percentage by weight of the strain or microbial strains Additional defined above.
  • compositions of the invention are referred to as “microbial compositions of the invention", or simply “compositions of the invention”.
  • the microbial compositions of the invention designed from suitable PGPR and a non-phytotoxic carrier liquid, are microbiologically viable and promote an unfavorable environment as desired. to the nematodes.
  • tests have been carried out in vivo, by bioassay, to evaluate the efficacy of the microbial compositions of the invention.
  • tomato was used as a susceptible crop, using the variety, sensitive to nematode attacks, Valencian tomato.
  • Said culture grows in optimal conditions for infection by phytopathogenic nematodes, and also ensures a reliable source of these nematodes, specifically Meloidogyne spp. Nematodes. In general, those favorable conditions for plant growth, They will also be favorable for the reproduction of Meloidogyne spp ..
  • results of the bioassay show that there is some effect or type of interaction that produces a significant decrease in the attack of nodule-forming nematodes (Meloydogine spp.) in tomato cultivation (Valencian Tomato) .
  • the invention refers to the use of at least one of the microbial compositions of the invention to treat and / or prevent an infestation by a nematode in a plant crop.
  • composition of the invention When the composition of the invention is applied to the soil of a plant or a crop of a plant with an infestation by at least one parasitic nematode forming nodules, preferably Meloidogyne spp. , there is a significant decrease in the attack of these nematodes that is reflected through a decrease in the measurement of the root nodulation index.
  • at least one parasitic nematode forming nodules preferably Meloidogyne spp.
  • a third aspect of the invention relates to a method for treating and / or preventing an infestation of a nematode (preferably Meloidogyne spp., And more preferably, Meloidogyne incognita) in a crop of a plant (preferably tomato, and more preferably, Valencian tomato) which comprises applying at least one of the microbial compositions of the invention defined herein to the soil or surface of said crop.
  • a nematode preferably Meloidogyne spp., And more preferably, Meloidogyne incognita
  • a crop of a plant preferably tomato, and more preferably, Valencian tomato
  • the plants or plant cultures to which the microbial composition of the invention can be applied, to treat and / or prevent infestation by a nematode are not particularly limited, which as mentioned above includes most of the vegetable, fruit, ornamental plants and weed flora.
  • Examples of such plants may include, and are not limited to, cereals (eg, rice, barley, wheat, rye, oats, corn, etc.), vegetables and vegetables (soy, beans, fodder beans, peas, red beans, peanuts, cabbage, tomato, spinach, broccoli, lettuce, onion, scallion, paprika, eggplant, pepper, carrot, potato, sweet potato, spinach, radish, lotus root, turnip, burdock, garlic, squash, cucumber, etc.
  • cereals eg, rice, barley, wheat, rye, oats, corn, etc.
  • vegetables and vegetables soy, beans, fodder beans, peas, red beans, peanuts, cabbage, tomato, spinach, broccoli, lettuce, onion,
  • fruit / fruit apples, citrus fruits, knobs, grapes, peaches, apricots, yellow peaches, bananas, strawberries, watermelon, melon, nuts, chestnuts, almonds, etc.
  • vegetable products for processing cotton, hemp, beet, hops, sugar cane, sugar beet, olive, gum, coffee, tobacco, tea, etc.
  • grass plants ball grass, sorghum, timotea grass, clover, alfalfa, etc.), lawns (grass, agrostis , etc.), ornamental plants, such as scent plants (lavender, rosemary, thyme, parsley, pepper, ginger, etc.), flowering plants (chrysanthemum, rose, carnation, orchid, etc.), garden trees (ginkgo, cherry, Japanese laurel, etc.) and forest trees (Abies sachalinensis, Picea jezoensis, pine, yours, cedar, cypress, etc. ).
  • the application to the soil of the microbial composition comprises: i) a first watering of the plant with an aqueous solution of the microbial composition, wherein said solution has a microbial concentration between 10 3 and 10 9 per liter of solution, at an irrigation dose between 10 and 30 liters of the aqueous solution per hectare of crop.
  • said application in addition to the first irrigation, also comprises: ii) a second irrigation of the plant with an aqueous solution of the microbial composition as defined above in i), after a period of time included between 10 and 20 days, with respect to the first irrigation.
  • the method is to treat and / or prevent an infestation of an endoparasitic nodule-forming nematode of plants such as Meloidogyne spp. , and more preferably, Meloidogyne incognito.
  • the crop plant on which any one of the above methods is applied is tomato, and more preferably, Valencian tomato.
  • a fourth aspect of the invention refers to a kit for preparing a microbial composition of the invention comprising at least one microbial strain with urease activity, as any of those defined above in the first aspect of the invention, and a liquid fertilizer, according to the liquid fertilizer media defined in any of the compositions of the invention defined above.
  • FIGURE 1 Zucchini root, source of inoculum of phytopathogenic nematodes for in vitro assays.
  • FIGURE 2 Serial dilutions for calculating concentrations and viabilities.
  • FIGURE 3 Image at 24h in the in vitro test, performed with 1 ml of the product at 1% v / v in 1 ml of nematode suspension.
  • FIGURE 4 Image at 96 h in the in vitro test performed with 1 ml of the product at 1% v / v in 1 ml of nematode suspension.
  • FIGURE 5 Equipment used in applications.
  • FIGURE 6. First application.
  • FIGURE 7. Root removal for evaluation.
  • FIGURE 8 Prior evaluation with celery.
  • FIGURE 9 Representation of the plot plan.
  • FIGURE 10 General view of the plot where the test has been carried out to evaluate the efficacy of the microbial composition of the invention in the control of Meloidogyne sp. in tomato cultivation.
  • FIGURE 11 Root nodulation indices (on a scale of 0 to 10) obtained with the different treatments evaluated: no treatment (1); treatment with the microbial composition of the invention ⁇ Bac ⁇ llus spp. 10 8 cfu / mL) at an application dose of 10 L / ha (2); treatment with Quillay extract at 35% at an application dose of 10 L / ha (3); treatment with 24% fenamiphos at an application dose of 40 L / ha (4); treatment with the microbial composition of the invention ⁇ Bac ⁇ llus spp. 10 8 cfu / mL) at an application dose of 10 L / ha combined with fermented Tagetes extract applied at an application dose of 10 L / ha (5).
  • FIGURE 12 Efficacy in the level of galling calculated by Abbott's formula (%) with the different treatments evaluated: treatment with the microbial composition of the invention ⁇ Bac ⁇ llus spp. 10 8 cfu / mL) at an application dose of 10 L / ha (2); treatment with Quillay extract at 35% at an application dose of 10 L / ha (3); treatment with 24% fenamiphos at an application dose of 40 L / ha (4); treatment with the microbial composition of the invention ⁇ Bac ⁇ llus spp. 10 8 cfu / mL) at an application dose of 10 L / ha combined with fermented Tagetes extract applied at an application dose of 10 L / ha.
  • FIGURE 13 Root status at the end of the test of untreated plants.
  • FIGURE 14 State of the roots at the end of the test of the plants treated with the microbial composition of the invention.
  • FIGURE 15 Root status at the end of the test of plants treated with Quillay extract.
  • Hemicellulosic waste and urea for control of plant parasitic nematodes effects on soil enzyme activities. Nematropica 13, 37-45. Luc M, Sikora RA and Bridge J, 1990. Plant Parasitic Nematodes in Subtropical and Tropical agriculture. CAB International Institute of Parasitology. p.240. Márquez Gutiérrez ME and Fernández Gonzálvez E, 2006. Selection of Bac ⁇ llus thuringiensis strains with nematicidal effect Integrated Pest Management and Agroecology (Costa Rica) No. 78.
  • Said bacterium is maintained in the cepario of IAB, S.L. and it is currently a commercial product, dehydrated and lyophilized, so the supply for routine tests was taken from determined and identified batches. Moreover, said bacterium is kept in active culture in agar at 4 ° C for routine matters, and frozen at
  • rhizobacteria was carried out by the COPMB (Official College of Weighers and Public Meters of Barcelona) by molecular identification of the 16S rRNA sequence in the Genbank database. This rhizobacterium, once identified, also remains deposited in the Spanish Type Culture Collection of Valencia.
  • the inoculum to proceed to the in vitro tests was obtained from the zucchini roots of a naturally infected greenhouse, located in the Cooperativa del Perelló. Zucchini roots were left in tap water, in petri dish (as illustrated in Figure 1), and incubated for 24-48 hours at room temperature until the egg masses present hatched.
  • a liquid fertilizer was designed, from urea (as a source of ureic nitrogen), potassium lignosulfonate (as a source of fulvic acids), hydrolyzed proteins (as a source of amino acids, obtained from vegetable protein) and molasses (as a source of nutrients).
  • This liquid fertilizer was enriched with strain B. subtilis DSM 24682, resulting in a compound formula with different PGPR and a high organic matter content, high total nitrogen content, and high ureic nitrogen content.
  • the fertilizer formula was prepared in a final total volume of 250 ml, according to the weight / volume percentages ⁇ % w / v, expressed as percentages of the concentration in g / mL) detailed below:
  • the pH was measured at time 0 and at 24 hours, to verify that they are stable and suitable to support the microbial base, and that they do not undergo changes over time.
  • Yobserved I 1 where Xobserved is the number of colonies counted in the previous step, and Yobservado is the positive dilution factor (that is, the potency to which the microbial concentration is elevated, but with a + sign; e.g. For 10 ' ⁇ 6) the dilution factor in positive would be 6).
  • V microbial viability
  • Yteoric is the exponent or positive factor, which should carry the microbial concentration, that is, if theoretically the concentration in cfu / ml should be 10 7 cfu / ml, the Yteoric is 7,
  • Yobservado is the exponent or factor that comes out by count, that is, the concentration in cfu / ml that can be read on the plates,
  • R is the percentage of loss of microbial viability calculated according to the mathematical formula:
  • R 10 (Yteoric - Yobserved) r x is equal to 0.05 if Xtheoric- observed is greater than or equal to 10, or x is equal to 0 if Xtheoric-Xobserved is less than 10, being Xtheoric the number of colonies that theoretically had than read on the plates, and observed the number of colonies that actually read on the plates. That is, in general a cfu / ml count was made, according to the usual laboratory procedures.
  • the medium used was: Nutrient agar II (NUTRIENT AGAR II) for Bac ⁇ llus spp. , prepared according to the following general formula (for 1 L of medium), and finally adjusting the pH to 7.2:
  • the viability of the fertilizer formula has been determined, from the microbial point of view at 24 hours, at 6 weeks, at 6 months and at 12 months of the preparation of the composition.
  • the viabilities for all Bac ⁇ llus spp. were calculated globally, regardless of the species, since it is not possible, morphologically and visu, to study the microbial concentrations of the different species separately.
  • Live nematodes can be easily identified and studied in a preparation with water. In this type of preparation, certain structures, such as stiletto, lumen and excretory apparatus, can be seen more easily than in fixed and dead nematodes (Bezooijen, 2006).
  • the procedure used to fix a nematode was to wash a piece of root with a 0.5% solution of sodium hypochlorite, and leave on a Petri dish, with 10 ml of tap water. Leave 24 hours and try a needle to extract the nematode.
  • a developed camera was used in the Department of Nematology of the University of Wageningen.
  • the model contains a maximum capacity of 10 ml of suspension, with a grid of 7.5 by 3.5 mm and a total diameter of 6.3 cm.
  • the slope of the circumference allows a complete view, and the grid is made on the back of the plate, so that the side on which the suspension is deposited can be easily cleaned.
  • the microscope available is an optical microscope, and not dissection, this camera was reduced by means of a 3 cm diameter petri dish, to be able to work with smaller volumes of water (2 ml), a field of vision smaller, and speed up counting.
  • the nematicidal / nematicotic activity of the microbial composition and the filtrate of said composition was determined.
  • 1 ml of a dilution was taken independently:
  • Table 1 shows the results of the pH readings in the fertilizer formula.
  • Table 2 shows the results obtained from the Microbial viability readings of B. subtilis CECT 7254 at 24 hours.
  • a nematicidal microbial composition is prepared according to the percentage composition presented in Table 8, with a microbial concentration in said composition of l> ⁇ 10 7 cfu / ml.
  • Bacillus subtilis CECT 7254 (0.1% w / v)
  • CSP WATER Said microbial composition useful for nematode control is a product of microbial base, liquid and viable, result of the selection of beneficial microorganisms or PGPR, developed in a matrix that provides macro and micro nutrients and maintains microbial viability. On the other hand, it is a microbial product that does not generate resistance and does not produce waste.
  • microorganisms When applied to the soil, microorganisms initiate a colonization process mainly in the root zone of plants. The colonization process will last 3 to 5 weeks (depending on the application dose, soil type, fertility, humidity and temperature).
  • the soil will have a great variety of microorganisms characteristic of a fertile soil, in which the microorganisms can act directly and indirectly in the fixation and nitrification of atmospheric nitrogen, in the fixation, mineralization and absorption of fertilizers and other nutrients from the soil, whether organic, mineral or synthetic, acting as root and soil regenerators.
  • the product provides an unfavorable environment for nematodes.
  • the application of the microbial composition of the invention is carried out via soil by localized irrigation of 1 to 2 applications, with intervals of 10 to 20 days.
  • the microbial composition of the invention is applied at a dose between 10 and 20 liters per hectare (L x ha or L / ha).
  • the purpose of the microbial composition prepared here is the application of the formula in a subsequent in vivo assay to keep Meloidogyne spp. below the economic damage threshold.
  • the chosen formulation exerts a great reduction in the activity and / or mobility of Meloidogyne spp. at 24 hours, suggesting that the liquid may have some nematostatic effect, since at 96 hours, those same nematodes again exhibit high activity and / or mobility.
  • EXAMPLE 2 Efficacy of the microbial composition of the invention in the control of Meloydoglne sp. in tomato cultivation.
  • the data were analyzed using the analysis of variance (A OVA) of the non-transformed values and of the transformed values when the Barlett test indicated so. If the transformation did not improve the homogeneity assumptions of the variances, the original values were maintained, and therefore, significant differences (if any) should be interpreted with caution.
  • the probability of occurrence of significant differences between treatments was calculated as the value of the probability F (Treatment Prob (F)).
  • the Student-Newman-Keuls (SNK) test was applied when significant differences were found.
  • the comparison of means was analyzed only when AOV Treatment P (F) was significant at the selected level. The results obtained were indicated by letters (mean values with different letters indicate significant differences according to the SNK test at a 95% confidence interval. When the data was transformed, the letters were included in this transformed column. The observed results were:
  • Table 9 collects all the data referring to the different treatments (treatments 1 to 5) performed for the tests carried out in Example 2. Next, in Table 9, the data presented in it is indicated in more detail.
  • Treatment Name Treatment ⁇ ame
  • PHEN., 24%, CS Fenamiphos 24%
  • PHI pre-harvest interval 60 days tomat. , cuc, mel; 30 days pepper
  • BIOEN / ML Biological Entities per milliliter of product
  • % Percentage of Active Ingredient in the product formulated in weight / weight ratio,% AW / W ("Percent Active Ingredient in formulated product on a weight / weight basis; same as% AW / W”.) Type of Composition (“Form Type ”)
  • Soluble Concentrate Soluble concentrate
  • the liquid may contain water-insoluble elements of the composition ("A clear to opalescent liquid to be applied as a solution of the active ingredient after dilution in water.
  • the liquid may contain water insoluble formulants").
  • Capsule Suspension Capsule suspension
  • Stable suspension of capsules in a fluid normally intended for dilution with water before use.
  • Cultivation 1 Transplanted tomato, Lycopersicon LYPXP is., Transplanted
  • Planting Method Planting Method
  • Pest Type 1 Pest Type 1 (Pest 1 Type) Code ("Code 'MELGSP Meloidogyne sp.
  • Root-knot eelworms Nematodes of root nodes
  • Figure 9 shows the arrangement or distribution on the plot of the different repetitions (4 repetitions per treatment) of each of the treatments performed (treatments 1 to 5), as described in Table 11.
  • Figure 10 It is a general image of the land or plot when the test was performed.
  • Fertilization Level Fertilization Level
  • Good Good
  • Table 12 shows the meteorological data (“Weather Data”) referring to the values of minimum, maximum and average temperatures (in ° C), relative humidity and rainfall (in mm) recorded during the period of time in the that the test of example 2 was performed.
  • Time of Morning (“Time of Morning Morning Morning Day”):
  • Air temperature (“Air 22.5 ° C 25.5 ° C 24.8 ° C Temperature"):
  • Wind speed 0 KPH 0 KPH 0 KPH Wind speed 0 KPH 0 KPH 0 KPH
  • Soil Moisture ADEQUATE ADEQUATE ADEQUATE (“Soil Moisture"):
  • MARU-08-1 MARU-07-1 MARU-07-1 MARU-07-1 MARU-07-1 MARU-07-1 MARU-07-1
  • Test Mix Applications of the experimental microbial composition of the invention (COMP.) And Quillay extract (QL) were made in the last 10-15 minutes of the irrigation cycle. The next irrigation is delayed to the maximum to prevent washing of the product. This application was made on wet soil.
  • the dose of application of the fenamiphos was adjusted to the real area treated.
  • Rating Unit 0-10% UNCK
  • Sample Size 10 10
  • Sample size unit (“Sample PLANT PLANT
  • Treatment P (F) is significant at mean comparison OSL "].
  • MELGSP Meloidogyne sp.
  • LYPES, BVSO, Lycopersicon esculentum
  • Part considered (Part Rated)
  • DAMNEM DAMAGES - NEMATOD
  • CONTRO CONTROL / BURNDOWN or KNOCKDOWN
  • Rating Unit Rating Unit
  • % UNCK PERCENT OF UNTREATED CHECK
  • TAB [2] Abbott (% of Untreated -% of Untreated-) [2]
  • Footnote 1 root nodulation index on a 0-10 scale ("Root gall Index in a 0-10 scale").
  • Footnote 2 (“Footnote 2"): Abbott efficacy (%) on root nodulation [Abbott efficacy (%) on root galling]. s untreated v Raw Data 'Tables 17 to 21
  • Example 2 performed, with a mean population of nematodes, a composition of the invention (COMP.) As described in Table 8 of Example 1 showed a control in the population of nematodes comparable to that obtained with a chemical standard. such as phenamiphos (PHEN.), and better than when using Quillay extract (QL).
  • a chemical standard such as phenamiphos (PHEN.)
  • QL Quillay extract
  • the composition of the previous invention applied three times at a dose of 10 liters per hectare, was safe for cultivation.
  • the application of a fermented Tagetes extract (EXT. TAC) prior to the application of the composition of the invention did not improve the results obtained with said composition.

Abstract

La presente invención hace referencia a una composición microbiana, o a un kit para su preparación, que comprende al menos una cepa microbiana con actividad ureasa, preferentemente de la especie Bacillus, y un medio líquido fertilizante que comprende una fuente de aminoácidos, una fuente de ácidos fúlvicos, una fuente de nitrógeno ureico y una fuente de nutrientes en solución acuosa. La composición anterior presenta una viabilidad microbiana del 80% durante al menos un año y es útil para prevenir y/o tratar las infestaciones de las plantas por nematodos, preferentemente por Meloidogyne spp. Por ello, la presente invención también protege el uso de la composición microbiana para tal finalidad, así como un método para tratar y/o prevenir una infestación por nematodos en un cultivo de una planta mediante la aplicación de dicha composición en la superficie de cultivo.

Description

COMPOSICION MICROBIANA ÚTIL CONTRA NEMATODOS DE CULTIVOS
VEGETALES
DESCRIPCIÓN
Sector de la invención
La presente invención se enmarca en el campo de los biopesticidas . Más concretamente, esta invención se relaciona con un conjunto de microorganismos, que formulados en un liquido portador mantiene la viabilidad microbiana, y que por sus características, promueve un ambiente desfavorable a los nematodos fitopatógenos .
Estado de la técnica anterior
Los nematodos son los causantes de los mayores daños a la agricultura en las regiones tropicales, subtropicales y templadas de todo el mundo. Meloidogyne spp. es el género de nematodos parásitos de plantas más significativo; su actividad provoca pérdidas entre el 11% y el 25% de los cultivos en prácticamente todas las regiones tropicales.
Los nematodos formadores de nodulos o agallas, llegan fácilmente a alcanzar umbrales dañinos en poco tiempo, si se encuentran con cultivos susceptibles, como por ejemplo el tomate. Son tan comunes en cultivos hortícolas de climas subtropicales y tropicales, que a veces se toman como "representantes de los nematodos fitopatógenos" en general (Luc et al., 1990). Los nematodos formadores de nodulos o agallas {Meloidogyne spp. ) son nematodos sedentarios endoparásitos , por lo tanto, la ausencia de planta huésped durante periodos prolongados, tendería a hacerlos desaparecer.
En general, condiciones favorables para el crecimiento de las plantas, también serán favorables para la reproducción de Meloidogyne spp. , lo que supone un problema para el control de la población de estos parásitos. Por tanto, es interesante desarrollar composiciones que sean capaces de controlar una plaga de nematodos y simultáneamente fertilizar el suelo o la superficie de cultivo de una planta.
Es conocido que las PGPR (Plant Growth Promoting Rhizobacteria o bacterias promotoras del crecimiento radicular de las plantas), pueden mejorar el crecimiento de las plantas y rendimiento de los cultivos, de distintas formas, y a través de distintos mecanismos (Nelson, 2007). Algunas de las cepas aisladas por IAB, S.L. (Investigaciones y Aplicaciones Biotecnológicas S.~L.)r consideradas PGPR, han sido identificadas como formas de control biológicas y alternativas al uso de plaguicidas, pero sin estar relacionadas con el control de nematodos . En concreto, Bacíllus thuringiensis var. kurstakí, cepa IAB/BT/01, Bacíllus subtilis, cepa CECT 7254, Pseudomonas fluorescens, cepa CECT 7255, Trichoderma harzíanum, cepa IAB/TH/01 (Hinarejos, 2008) .
En condiciones naturales, una planta es un huésped potencial para varios microorganismos fitopatógenos , entre los cuales se establecen relaciones que pueden ser de diferente naturaleza. Cabria esperar que, la colonización de raíz de diferentes grupos de PGPR pudiera establecer, respecto a otros organismos fitopatógenos , relaciones de competencia por ocupar el mismo nicho ecológico, o simplemente algún tipo de interacción, que mejorase la resistencia del hospedante, frente a ataques de nematodos fitoparásitos . Cualquier bacteria beneficiosa rizosférica coloniza los mismos tejidos que los nematodos fitoparásitos sedentarios como Meloídogyne spp.. A priori, debe de existir algún tipo de relación entre los nematodos fitoparásitos y los microorganismos rizosféricos .
Un ejemplo de que existen interacciones entre nematodos y PGPR, es la interacción que existe entre Rhí zobíum spp. y Bradyrhí zobíum spp.. Sin embargo, la interacción entre éstos, puede ser estimuladora o inhibidora, tanto de la nodulación como de la fijación del nitrógeno, dependiendo de la especie de nematodo que interactúe . Otro ejemplo son las micorrizas, cuyos mecanismos para incrementar la tolerancia del huésped a los nematodos es la modificación de los exudados de la raíz y su influencia sobre la orientación de los nematodos hacia ésta, asi como la eclosión de huevos y el posterior desarrollo de los nematodos dentro de la raíz. No obstante, aunque los exudados radiculares de las plantas hospedantes pueden inhibir la eclosión de huevos o el proceso de infección, repeler e incluso matar a algunas especies de nematodos, también pueden orientar a los nematodos hacia la raíz y estimular a los juveniles para que infecten la planta.
Asimismo, es conocido que los hongos quitinoliticos y las bacterias que comparten el hábitat de los nematodos, pueden mantener un cierto equilibrio biológico, y de alguna manera limitar la proliferación de los nematodos. De hecho, microorganismos endófitos bacterianos (PGPR) y hongos han sido empleados con fines de biocontrol de nematodos endoparásitos sedentarios y migratorios que atacan a plátano y tomate (Hallman y Sikora, 1994; Hallman et al., 2001; Pocasangre et al., 2000). Estos estudios revelaron que estos microorganismos endófitos de raíz son capaces de dar en múltiples puntos de vulnerabilidad del ciclo de vida de los nematodos, a través de la inhibición de la penetración, reduciendo la capacidad reproductiva y retardando la movilidad de los nematodos y la eclosión de los huevos .
Varias especies de Bacíllus , como lo son B. subtilis , B. megatheríum y B. licheniformis, han demostrado efecto supresor de hongos patógenos o poblaciones bacterianas del suelo. Además, se han descrito algunas cepas de Bacíllus spp. que interfieren en el desarrollo normal de poblaciones de nematodos . En concreto, Padgham y Sikora demuestran los modos de acción a través de los cuales B. megateríum reduce el daño por Meloidogyne graminicola (Padgham y Sikora, 2007). También se conoce que Bacíllus thuríngíensís produce una toxina termoestable que puede ser tóxica a poblaciones de Meloidogyne spp. y evita o previene, que las larvas de nematodos formen nodulos en las raices de tomate (Sayre, 1980) . Y por otro lado, Márquez y Fernández han revisado una selección de cepas de Bacíllus thuríngíensís var kurstakí con efecto nematicida (Márquez y Fernández, 2006).
Tríchoderma spp. posee acción enzimática a través de las quitinasas, las cuales degradan quitina, componente presente en los huevos de nematodos (Sharon et al., 2001). Pseudomonas fluorescens puede también, ser antagonista de distintos patógenos de suelo, a través de distintos mecanismos, como por ejemplo, la producción de sideróforos, que inhiben a los patógenos de plantas, a través de la competencia por hierro, la emisión de antibióticos supresores de microorganismos competencia, y a través de las quitinasas y glucanasas que provocan lisis celular de células microbianas (Sharman et al. 2003) . ampliamente conocido que existen distintos microorganismos PGPR, tanto bacterias como hongos, con capacidad antagonista y supresora de nematodos, entre ellos varios del género Bacíllus spp {B. subtilis, B. megatheríum, B. licheniformis, B. thuringi ensis...) , y que además se encuentran de forma natural en el suelo sano, resultando también de interés desde el punto de vista nutricional y biológico. Sin embargo, en el desarrollo de composiciones microbianas con cualquiera de estos tipos de microorganismos, el mantenimiento de la viabilidad microbiana resulta complicado, especialmente cuando existe más de un microorganismo en su composición. Las composiciones microbianas comercializadas hasta el momento para el tratamiento de nematodos comprenden especies y cepas determinadas de dichos microorganismos con otros componentes no microbianos . En dichas composiciones, el efecto contra el parásito se consigue por la propia acción del microorganismo, sin que componentes no microbianos empleados se hayan relacionado con un efecto adicional antiparasitario y/o nutricional (p. ej . fertilizante) sobre la planta. Sin embargo, aunque los componentes no microbianos empleados se asocian a un aumento de viabilidad de los microorganismos, estas composiciones no mantienen la viabilidad durante periodos de tiempo largos (inferiores al año) .
Bello y col. han descrito que los contenidos de ureasa y quitinasa en el suelo están inversamente correlacionados con el número de nodulos de M. arenaria (Bello et al., 1996) .
En general, los bacilos Gram-positivos (Gram +) son susceptibles de utilizar como fuente de nitrógeno, nitrógeno mineral, particularmente amoniaco, nitratos, nitritos, y moléculas de nitrógeno orgánico como urea, aminoácidos, bases nitrogenadas y otros compuestos de bajo peso molecular.
De todos los productos químicos que pueden tener acción nematicida, obtenidos por la actividad de los microorganismos en la descomposición de la materia orgánica, el amonio ha sido el mejor estudiado. Aunque es difícil afirmar que un solo componente sea responsable de la mortalidad de los nematodos, la actividad nematicida del amonio fue reconocida por Eno et al. (Eno et al., 1955), cuando realizaban una serie de trabajos sobre el empleo de amoniaco anhidro como fertilizante nitrogenado, al comprobar que aplicado por inyección a la concentración de 300-900 mg kg_1 de suelo reducía los problemas de nematodos . Experimentos posteriores con urea, que se convierte en amonio por acción de la ureasa existente en el suelo, muestran que es un buen nematicida si se aplica en cantidades superiores a 300 mg de N kg_1 de suelo (Huebner et al. , 1983) .
Por otra parte, en la búsqueda de alternativas para el control de nemátodos, se ha demostrado que la materia orgánica, con una relación C/N entre 8-20, tiene actividad nematicida sin efecto fitotóxico ( Rodriguez-Kabana et al., 1987), y que la incorporación de materiales orgánicos en el suelo, reduce las densidades de nematodos formadores de nodulos (Muller y Gooch, 1982) . De hecho, se han utilizado con cierto éxito residuos de oleaginosas, serrín y urea (Singh y Sitaramaiah, 1966, 1967; Sikora et al., 1973a) . También se han ensayado como enmiendas al suelo para el control de nematodos y otros patógenos de plantas, materiales con alto contenido en nitrógeno que generan amoniaco, el cual actúa como un nematicida en el suelo (Canullo et al., 1992b) . Además, Tenuta, Hobbs y Lazarovits han estudiado también los mecanismos asociados con el control de organismos patógenos con materia orgánica, indicando que está asociada al NH3, efecto que se mantiene durante 4 días en suelos arenosos . Según estos autores, los nematodos fitoparásitos se ven afectados en resumidas cuentas, por el uso de urea y otras fuentes de nitrógeno (Tenuta et al., 1997).
Aunque el uso de enmiendas orgánicas para el control de nematodos reduciría la densidad poblacional de nematodos en diferente grado, su uso está limitado por las grandes cantidades que se necesitan (Luc et al., 1990). Un ejemplo de ello es la remarcable reducción de la actividad y movilidad que se observó en el segundo estado de los juveniles de Meloidogyne spp. tratados con extractos de emmiendas orgánicas, sugiriendo que esas sustancias se excretan por descomposición de las enmiendas y tienen efecto nematostático (Miaño, 1999) .
Existen productos en el mercado cuya composición está basada en diversas cepas de microorganismos extraídos del suelo y elementos nutritivos que le aportan un alto contenido de nitrógeno. Concretamente, los microorganismos presentes (PGPRs de las especies Bacíllus thuringiensis, Bacíllus círculans, Brachyrhí zobíum spp. , Rhí zobíum spp. y Azotobacter) son una combinación de hongos y bacterias con propiedades nematicidas conocidas. Sin embargo, este roducto no es capaz de mantener viables a lo largo del tiempo los microorganismos introducidos que contiene.
En consecuencia, actualmente existe la necesidad de preparar composiciones fertilizantes con acción contra nematodos donde cualquier microorganismo sea capaz de mantener su viabilidad durante largos periodos de tiempo en presencia de los elementos nutritivos de la composición, y donde la eficacia del producto venga dada por los elementos fertilizantes y por la acción del microorganismo en la formulación, no por la acción del microorganismo en el nematodo fitopatógeno .
Descripción de la invención
En base a lo anterior, la presente invención propone una nueva formulación viable desde el punto de vista microbiológico, a partir de PGPR adecuados y de un liquido portador, no fitotóxico, que contiene urea, aminoácidos, bases nitrogenadas y/u otros compuestos de bajo peso molecular que sirvan a la planta de nutrientes, y que por la acción del microorganismo en la formulación, una vez diluida en agua, promueve un ambiente desfavorable a los nematodos. Esta formulación produce una disminución significativa del ataque de los nematodos formadores de nodulos (Meloydogíne spp. ) en cultivo de tomate (Tomate Valenciano), como demuestran los resultados obtenidos mediante bioensayo para evaluar el efecto o tipo de interacción que induce la formulación cuando se aplica al suelo de un cultivo expuesto a nematodos. En particular, dicha formulación comprende una rizobacteria del género Bacíllus spp. , en concreto , especie subtílís, seleccionada del cepario de IAB, S.L (Investigaciones y Aplicaciones Biotecnológicas S.L.), que formulada en un liquido portador, únicamente o en conjunto con otras rizobacterias , mantiene la viabilidad microbiana durante un año. Además, se ha demostrado que mediante ensayos "in vitro" y bioensayo, la formulación de la presente invención produce una disminución significativa del ataque de los nematodos formadores de nodulos (Meloydogíne spp.. ) en cultivo de tomate (Tomate Valenciano), debido a algún efecto o tipo de interacción existente. Dicha disminución, queda reflejada a través de la medida del índice de nodulación en raíz, en el bioensayo.
La formulación de la invención es un fertilizante (aportando valores nutricionales al cultivo) , y a la misma vez es capaz de mantener al microorganismo viable durante largos periodos de tiempo. Además, la acción del microorganismo sobre los componentes no microbianos que contiene la propia formulación, consigue mantener a la plaga de nematodos por debajo de un umbral, el cual permite mantener el cultivo en condiciones adecuadas de crecimiento.
Los resultados obtenidos aquí presentados, han permitido el diseño de la composición, que una vez probado en campo, ha dado lugar a un producto de notable interés comercial .
En consecuencia, un primer aspecto de la invención hace referencia a una composición microbiana para control de nematodos, útil para prevenir y/o tratar una infestación por nematodos en una planta, caracterizada porque comprende: a) al menos una cepa microbiana con actividad ureasa capaz de transformar enzimáticamente nitrógeno amoniacal a NH3, donde preferentemente dicha cepa es Bacíllus spp. , b) un medio liquido fertilizante que comprende: b . l ) una fuente de aminoácidos, preferentemente un hidrolizado de proteínas, y más preferentemente un hidrolizado de proteínas de origen vegetal;
b . 2 ) una fuente de ácidos fúlvicos, preferentemente una fuente de lignosulfato potásico;
b . 3) una fuente de nitrógeno ureico, preferentemente urea;
b . 4 ) una fuente de nutrientes, preferentemente melaza; y
b . 5) agua.
La composición microbiana anterior, puede ser aplicada para tratar y/o prevenir una infestación por nematodos producida por un tipo de nematodo formador de nodulos (o agallas) en la raíz o raíces de una planta. Preferentemente dicho nematodo es un nematodo sedentario endoparásito que pertenece a una especie de Meloídogyne, y más preferentemente es un nematodo de la especie Meloidogyne incógnita. Los nematodos fitoparásitos , los formadores de agallas pertenecientes al género Meloidogyne , son considerados los de mayor importancia económica a nivel mundial por los daños que causan, y están caracterizados por una reducción notable de los rendimientos y el gran número de especies de plantas que atacan, que incluye la mayoría de los vegetales, frutales, ornamentales y flora arvense. Entre las plantas que comúnmente pueden sufrir este tipo de infestaciones, y por tanto pueden ser tratadas con la composición microbiana descrita en el presente documento, se encuentran, y sin que sirva de limitación, la cebolla, el espárrago, el pimiento, la vid, la zanahoria y otros cultivos hortícolas tan habituales como por ejemplo el tomate (en el caso del ensayo, tomate valenciano ) .
Para conseguir el efecto deseado contra los nemátodos definidos previamente, la composición microbiana anterior comprende al menos un microorganismo con actividad ureasa, es decir, un microorganismo capaz de transformar enzimáticamente el nitrógeno ureico en amoniaco (NH3) , el cual resulta tóxico para estos nemátodos. De este modo, el microorganismo genera un ambiente desfavorable para la población de nemátodos, que migra a otras zonas, lo que además puede favorecer la colonización de la raíz por parte de dicho microorganismo si es de tipo rizosférico y/o por parte de algún otro microorganismo rizosférico que se encuentre presente en la propia composición microbiana o en la tierra de cultivo. Preferentemente, dicho microorganismo con actividad ureasa es una cepa microbiana de Bacíllus spp. , como son y sin que sirva de limitación, cepas de las especies B. subtilis, B. megatherium, B. thuringiensis y/o Bacíllus lícheníformís. Más preferentemente, la cepa microbiana es una cepa de Bacíllus subtilis, y aún más preferentemente una cepa aislada de Bacíllus subtilis IAB/BS03 depositada en la colección de cultivos tipo Alemana DSMZ con N° de Acceso DSM 24682, o un mutante de dicha cepa, y también depositada en la Colección de Cultivos Tipo Española con número de acceso CECT 7254, propiedad de la empresa que presenta la presente invención.
Cepa Bacíllus subtilis DSM 24682
La siguiente cepa ha sido depositada el 06 de junio de 2011, en la Colección de Cultivos Tipo Alemana (DSMZ) , Inhoffenstrape 7
B , 38124 Braunschweig (Alemania), por Dña . Estefanía Hinarejos Esteve, IAB, S.L. (Investigaciones y Aplicaciones Biotecnológicas S.l¡.), Avda. Paret del Patriarca 11-B, Ap.30, 46113 Moneada, Valencia (España) .
El depósito de la cepa depositada cuya referencia es Baclllus subtilis var. sübtllls designada, como IAB/BS03, CECT 7254, fue identificado por la DSMZ con el número de acceso DSM 24 682 una vez dicha Autoridad Internacional para el Depósito declaró que dicha cepa en cuestión era viable, bajo las estipulaciones del Tratado de Budapest sobre el Reconocimiento Internacional del Depósito de Microorganismos con Fines de Procedimiento de Patente .
La cepa DSM 24682 de Bacíllus subtilis, empleada anteriormente como agente de control biológico en base a su capacidad para producir sustancias antibióticas frente a hongos fitopatógenos , en la presente invención es capaz de actuar sobre el medio liquido fertilizante para transformar el nitrógeno amoniacal en NH3, y generar asi un ambiente que resulta desfavorable para el nematodo .
Además, como se indica previamente la cepa anterior ha sido depositada el 30 de marzo de 2007, en la Colección Española de Cultivos Tipo (CECT) , Edificio 3 CUE, Pare Cientific Universitat de Valencia, Catedrático Agustín Escardino 9, Paterna, 46980 Valencia (ESPAÑA), por Raquel del Val Buedo del IAB, S.L.. El depósito de la cepa pura y viable, fue recibido por la CECT con el número de acceso CECT 7253.
En una realización preferida de la composición microbiana anteriormente definida, la cepa microbiana con actividad ureasa comprende al menos una cepa de Bacíllus spp. , y en una realización más preferida comprende una cepa seleccionada de al menos una del grupo que consiste en: cepa de Bacíllus subtilis ( preferentemente la cepa microbiana de Bacíllus subtilis DSM 24682), cepa de Bacíllus thuringiensis (preferentemente B. thuringiensis var. kurstaki), cepa de Bacíllus megatherium, cepa de Bacíllus lícheníformís y cualquier combinación de las anteriores. En una realización aún más preferida de la anterior, la cepa microbiana de Bacíllus spp. comprende una cepa de Bacíllus subtilis con actividad ureasa, y más preferente es la cepa B. subtilis DSM 24682. No obstante, cuando la composición microbiana comprende una cepa de Bacíllus subtilis con actividad ureasa (como p. ej . la cepa B. subtilis DSM 24682), dicha composición puede comprender además al menos una cepa adicional de Bacíllus spp.. Asi, en realizaciones preferidas, la composición microbiana además de la cepa de Bacíllus subtilis con actividad ureasa, que incluye aquellas composiciones microbianas con la cepa B. subtilis DSM 24682, comprende una cepa microbiana adicional de Bacíllus spp.. Ejemplos de cepas microbianas adicionales de Bacíllus son, sin que sirva de limitación, alguna cepa seleccionada entre al menos una del grupo compuesto por: cepa de Bacíllus thuríngíensís
(preferentemente B. thuríngíensís var . kurstakí), cepa de Bacíllus megatherium, cepa de Bacíllus lícheníformís y cualquier combinación de las mismas. Resulta aún más preferida, una composición donde la cepa microbiana adicional comprende una combinación de una cepa de Bacíllus thuríngíensís
(preferentemente B. thuríngíensís var. kurstakí) , una cepa de Bacíllus megatherium y una cepa de Bacíllus lícheníformís . De hecho, en un ejemplo de realización preferido, la composición microbiana comprende la cepa con actividad ureasa Bacíllus subtilis DSM 24682, y además, las cepas comerciales Bacíllus thuríngíensís var. kurstakí IAB/BT/01, Bacíllus megatherium CECT 7253 y Bacíllus licheniformis CECT 7252.
Las cepas Bacíllus subtilis DSM 24682 (CECT 7254), Bacíllus thuríngíensís var. kurstakí IAB/BT/01, Bacíllus megatherium CECT 7253 y Bacíllus lícheníformís CECT 7252, anteriormente mencionadas, se mantienen en el cepario de IAB, S.L. y son actualmente producto comercial, deshidratado y liofilizado. Dichas bacterias rizosféricas han sido identificadas por el Colegio Oficial de Pesadores y Medidores Públicos de Barcelona (COPMB) mediante identificación molecular de la secuencia del ARNr 16S en la base de datos del Genbank. Y además, las rizobacterias Bacíllus subtilis DSM 24682 (CECT 7254), Bacíllus megatherium CECT 7253 y Bacíllus licheniformis CECT 7252, una vez identificadas se mantienen depositadas en la Colección Española de Cultivos Tipo (CECT) de Valencia, con los correspondientes números de acceso o de depósito CECT aquí indicados, aunque en estos casos dichos depósitos no se realizaron según el Tratado de Budapest.
La cepa de Bacíllus thuríngíensís var. kurstakí es una cepa comercialmente accesible de referencia comercial IAB/BT/01.
La cepa Bacíllus megatherium con número de depósito CECT 7253 ha sido depositada el 30 de marzo de 2007, en la Colección Española de Cultivos Tipo (CECT), Edificio 3 CUE, Pare Cientific Universitat de Valencia, Catedrático Agustín Escardino 9, Paterna, 46980 Valencia (ESPAÑA), por Raquel del Val Buedo del IAB, S.L..E1 depósito de la cepa pura y viable, fue recibido por la CECT con el número de acceso CECT 7253.
La cepa Bacíllus lícheníformís con número de depósito CECT 7252ha sido depositada el 30 de marzo de 2007, en la Colección Española de Cultivos Tipo (CECT) , Edificio 3 CUE, Pare Cientific Universitat de Valencia, Catedrático Agustín Escardino 9, Paterna, 46980 Valencia (ESPAÑA), por Raquel del Val Buedo del IAB, S.L..E1 depósito de la cepa pura y viable, fue recibido por la CECT con el número de acceso CECT 7252.
Ventajosamente, y debido a la formulación característica del medio líquido fertilizante, la composición microbiana descrita en la presente invención presenta una viabilidad microbiana del 80% durante un mínimo de al menos un año, un porcentaje de viabilidad difícil de mantener en otras composiciones conocidas en el estado de la técnica una vez transcurridos más de 6 meses desde su preparación. De hecho, dicho medio líquido fertilizante es capaz de mantener la viabilidad microbiana al 100% durante al menos 6 meses, y al menos un 80% durante un año, de distintos microorganismos como pueden ser distintas cepas bacterianas de Bacíllus spp. , como por ejemplo son entre otras las cepas de Bacíllus subtílís, Bacíllus thuríngíensís, Bacíllus megatheríum y Bacíllus lícheníformís anteriormente mencionadas. Asimismo, el medio líquido fertilizante, es capaz de mantener la viabilidad microbiana al menos a un 80% durante 6 semanas de cepas bacterianas de Azotobacter vínelandíí y Rhí zobium legumínosarum. Otros microorganismos de naturaleza fúngica, tales como Saccharomyces cerevísíae, presentan una viabilidad en el medio líquido fertilizante del 100% al menos durante 24 horas.
Característicamente, el fertilizante líquido, además de promover un ambiente desfavorable a los nematodos fitopatógenos , es estable y resulta adecuado para soportar la base microbiana (la cepa o cepas de Bacíllus mencionadas anteriormente, y en su caso también, otras cepas microbianas o de microorganismos fúngicos adicionales, por ejemplo como los previamente indicados), manteniendo la viabilidad de los microorganismos que contiene. El medio líquido de características fertilizantes, se presenta como una formulación interesante, no solo por sus características fertilizantes, sino por la característica de mantener la viabilidad microbiana de distintos géneros y especies microbianas, de forma aislada, o como consorcio microbiano. En consecuencia, la composición microbiana de la invención, puede comprender otros microorganismos que sean viables en dicha formulación, preferentemente otros PRPG conocidos como pueden ser otras cepas de Bacíllus spp. , por ejemplo Bacíllus thuringiensis var. kurstakí, Bacíllus megatheríum y/o Bacíllus lícheníformís. Por esto, el medio líquido fertilizante puede ser considerado como una formulación novedosa de la presente invención. Las cantidades de los ingredientes de dicho medio líquido pueden variar de tal manera que permitan mantener sus características de estabilidad y/o que permitan su utilidad para soportar la mencionada base microbiana .
Típicamente, la fuente de aminoácidos puede estar presente en una cantidad de entre un 45% y un 95% en peso con respecto al volumen total de la composición, incluyendo de entre un 60% a un 80% en peso con respecto al volumen total de la composición, incluyendo de entre un 70% a un 78% en peso con respecto al volumen total de la composición. El término "fuente de aminoácidos" en la presente invención hace referencia a un material donde se pueden encontrar aminoácidos, no necesariamente purificados, pudiendo encontrarse como mezclas de aminoácidos. En este sentido, el especialista medio del campo puede emplear como fuentes de aminoácidos, por ejemplo y sin limitarse a, un hidrolizado de proteína, aminoácidos obtenidos por fermentación y/o incluso también aminoácidos obtenidos mediante síntesis. Sin que sirva de limitación, la fuente de aminoácidos puede incluir aminoácidos como por ejemplo lisina, alanina, histidina, cistina y cisteína, arginina, valina, hidroxiprolina, metionina, ácido aspártico, isoleucina, treonina, leucina, serina, tirosina, ácido glutámico, fenilalanina, prolina, triptófano, glicina y otros aminoácidos similares. Preferiblemente, la fuente de aminoácidos es de origen vegetal, comprendiendo aminoácidos obtenidos a partir de proteínas de plantas, como por ejemplo es, y sin que sirva de limitación, un hidrolizado de proteína vegetal.
La fuente de ácidos fúlvicos puede estar típicamente presente en una cantidad de entre un 1% y un 20% en peso con respecto al volumen total de la composición, incluyendo de entre un 5% a un 15% en peso con respecto al volumen total de la composición, incluyendo de entre un 10% a un 15% en peso con respecto al volumen total de la composición. El término "fuente de ácidos fúlvicos" en la presente invención hace referencia a un material donde se pueden encontrar ácidos fúlvicos, conocidos por el experto medio de la técnica, tales como el ácido lignosulfónico y/o cualquiera de sus sales, preferentemente sales de cationes alcalinos como por ejemplo potasio o sodio. En una realización preferida, la fuente de ácidos fúlvicos es lignosulfonato potásico .
La fuente de nitrógeno ureico puede estar típicamente presente en una cantidad de entre un 1% y un 20% en peso con respecto al volumen total de la composición, incluyendo de entre un 5% a un 15% en peso con respecto al volumen total de la composición, incluyendo de entre un 8% a un 12% en peso con respecto al volumen total de la composición, incluyendo de entre un 10% a un 11% en peso con respecto al volumen total de la composición. En la presente invención, el término "fuente de nitrógeno ureico" hace referencia a un material donde se puede encontrar nitrógeno de origen ureico, tal como urea (CO( H2)2) Í y Calurea (Ca (N03) 2 * 4CO (NH2) 2) · Preferentemente, la fuente de nitrógeno ureico es urea.
El término "fuente de nutrientes" en la presente invención hace referencia a un material o sustancia que aporte una mezcla variada de nutrientes que puedan ser empleados por los microorganismos, y que comprende compuestos nutritivos esenciales para el desempeño de las funciones vitales de los microorganismos como son entre otros, azúcares, minerales, oligoelementos , vitaminas y/o aminoácidos. Así, cuando se añade al menos un microorganismo al medio líquido fertilizante, la fuente de nutrientes contribuye al mantenimiento, crecimiento y/o desarrollo de dicho microorganismo. La fuente de nutrientes típicamente se encuentra presente en una cantidad de entre un 1% y un 10% en peso con respecto al volumen total de la composición, incluyendo de entre un 1% a un 5% en peso con respecto al volumen total de la composición, incluyendo de entre un 2% a un 4% en peso con respecto al volumen total de la composición, incluyendo de entre un 2% a un 3% en peso con respecto al volumen total de la composición. Un ejemplo preferido de fuente de nutrientes es la melaza, preferentemente seleccionada del grupo que consiste en: melaza de caña de azúcar, melaza de remolacha y cualquier combinación de las mismas .
El término melaza, como se entiende en la presente invención, se refiere a un producto liquido espeso derivado de la caña de azúcar y en menor medida de la remolacha azucarera, obtenido del residuo restante en las cubas de extracción de los azúcares. Nutricionalmente presenta un altísimo contenido en hidratos de carbono, además de vitaminas del grupo B y abundantes minerales, entre los que destacan el hierro, cobre y magnesio. Su contenido de agua es bajo.
El contenido de agua de la composición microbiana está presente en cantidad suficiente para completar el 100% en peso (C.S.P.) con respecto al volumen total de la composición. En función de las cantidades de los componentes anteriores, el agua está presente en la composición en una cantidad que varía de entre un 0% y un 52% en peso con respecto al volumen total de la composición, incluyendo de entre un 0% a un 29% en peso con respecto al volumen total de la composición, incluyendo de entre un 0% a un 25% en peso con respecto al volumen total de la composición, incluyendo de entre un 0% a un 8% en peso con respecto al volumen total de la composición.
A menos que se especifique otra cosa, todos los porcentajes como se usan en este documento son en peso con respecto al volumen total de la composición total (% p/v) , pudiendo ser igualmente entendidos como los pesos expresados en gramos por cada 100 mililitros de composición total. Los intervalos numéricos como se usan en el presente documento pretenden incluir cada número y sub-conjunto de números dentro del intervalo, se haya descrito específicamente o no. Por ejemplo, un intervalo numérico de 45% a 95% debería considerarse como que soporta un intervalo de 60% a 80%, de 70% a 78% y similares.
En una realización preferida, el medio líquido fertilizante de una composición microbiana como cualquiera de las definidas anteriormente comprende : b . l ) entre un 45% y un 95%, preferentemente entre un 60% y un 80%, en peso de la fuente de aminoácidos con respecto al volumen total de composición, incluidos ambos limites;
b . 2 ) entre un 1% y un 20%, preferentemente entre un 5% y un 15%, en peso de la fuente de ácidos fúlvicos con respecto al volumen total de composición, incluidos ambos limites; b . 3) entre un 1% y un 20%, preferentemente entre un 5% y un 15% (y más preferentemente entre un 8% y un 12%), en peso de la fuente de nitrógeno ureico con respecto al volumen total de composición, incluidos ambos limites;
b . 4 ) entre un 1% y un 10%, preferentemente entre un 1% y un 5% (y más preferentemente entre un 2% y un 4%), en peso de la fuente de nutrientes con respecto al volumen total de composición, incluidos ambos limites; y
b . 5) entre un 0% y un 52% (preferentemente entre un 0% y un 29%, y más preferentemente entre un 0% y un 25%), en peso de agua con respecto al volumen total de composición, incluidos ambos limites, de tal manera que la suma total de los porcentajes en peso de todos los componentes de la composición sea del 100%.
En otra realización preferida, el medio liquido fertilizante de la composición microbiana como cualquiera de las definidas anteriormente comprende : b . l ) entre un 60% y un 80%, preferentemente entre un 70% y un 78%, en peso de la fuente de aminoácidos con respecto al volumen total de composición,
b . 2 ) entre un 5% y un 15%, preferentemente entre un 10% y un 15%, en peso de la fuente de ácidos fúlvicos con respecto al volumen total de composición,
b . 3) entre un 8% y un 12%, preferentemente entre un 10% y un 11%, en peso de la fuente de nitrógeno ureico con respecto al volumen total de composición,
b . 4 ) entre un 2% y un 4%, preferentemente entre un 2% y un 3%, en peso de la fuente de nutrientes con respecto al volumen total de composición, y
b . 5) entre un 0% y un 25%, preferentemente entre un 0% y un 8%, en peso de agua con respecto al volumen total de composición, de tal manera que la suma total de los porcentajes en peso de todos los componentes de la composición sea del 100%. Y en una realización más preferida de la anterior, el medio liquido fertilizante comprende: b . l ) entre un 70% y un 78%, preferentemente un 70%, en peso de la fuente de aminoácidos con respecto al volumen total de composición,
b . 2 ) entre un 10% y un 15%, preferentemente un 10%, en peso de la fuente de ácidos fúlvicos con respecto al volumen total de composición,
b . 3) entre un 10% y un 11%, preferentemente un 10%, en peso de la fuente de nitrógeno ureico con respecto al volumen total de composición,
b . 4 ) entre un 2% y un 3%, preferentemente un 3%, en peso de la fuente de nutrientes con respecto al volumen total de composición, y
b . 5) entre un 0% y un 8% en peso de agua con respecto al volumen total de composición, de tal manera que la suma total de los porcentajes en peso de todos los componentes de la composición sea del 100%.
Y en una realización aún más preferida de la anterior, el medio liquido fertilizante comprende: b . l ) un 70% en peso de la fuente de aminoácidos, preferentemente de un hidrolizado de proteina vegetal, con respecto al volumen total de composición,
b . 2 ) un 10% en peso de la fuente de ácidos fúlvicos, preferentemente de lignosulfato potásico, con respecto al volumen total de composición,
b . 3) un 10% en peso de la fuente de nitrógeno ureico, preferentemente urea, con respecto al volumen total de composición,
b . 4 ) un 3% en peso de la fuente de nutrientes, preferentemente melaza, con respecto al volumen total de composición, y
b . 5) un porcentaje en peso de agua con respecto al volumen total de composición (hasta un máximo del 7%) para que la suma total de los porcentajes en peso de todos los componentes de la composición sea del 100%.
Según la presente invención, el contenido microbiano total de la composición microbiana como cualquiera de las definidas anteriormente, está comprendido entre entre 103 y 109 unidades formadoras de colonias (ufe) por mililitro de composición. El término "unidades formadoras de colonia" (también referido en esta memoria por su abreviatura ufe) hace referencia al número de esporas o células microbianas capaces de ser viables. En realizaciones preferidas, las composiciones microbianas comprenden un contenido microbiano total de entre 106 y 109 ufe por mL de composición. Estas composiciones pueden prepararse a partir de cepas microbianas de partida de concentración conocida, por ejemplo, comprendida entre 1010 y 1011 ufe/gramo, de tal manera que en este caso en la composición microbiana la cepa o cepas microbianas de partida están presentes en una cantidad comprendida entre un 0,01% y un 10% en peso con respecto al volumen total de la composición. Más preferentemente, la cepa o cepas microbianas de partida se encuentran presentes en la composición entre un 0,02% y un 1% en peso de dicha cepa o cepas microbianas con respecto al volumen total de la composición.
En una realización preferida, la composición microbiana como cualquiera de las definidas anteriormente comprende un 0,02% en peso de la cepa microbiana de Bacíllus spp. con actividad ureasa Bacíllus subtilis DSM 24682 con respecto al volumen total de la composición. En una realización preferida de la anterior, además de la cepa B. subtilis DSM 24682, comprende otras cepas microbianas de Bacíllus spp. hasta alcanzar un contenido microbiano total de un 0,1% en peso de cepas microbianas con respecto al volumen total de la composición, como por ejemplo es una composición que comprende un 0,02% en peso de B. subtilis (preferentemente B. subtilis DSM 24682), un 0,02% en peso de B. licheniformis (preferentemente B. licheniformis CECT 7252), un 0,02% en peso de B. megatherium (preferentemente B. megatherium CECT 7253) y un 0,04% de B. thuringiensis (preferentemente B. thuringiensis var . kurstaki IAB/BT/01), con respecto al volumen total de la composición.
Los anteriores porcentajes de la cepa o cepas microbianas, se refieren al peso total de todas las cepas de microorganismos presentes en la composición microbiana con respecto al volumen total de dicha composición, expresado en tanto por cien, y comprende el porcentaje en peso de la cepa de Bacíllus capaz de transformar enzimáticamente nitrógeno amoniacal a NH3 y además, en su caso, el porcentaje en peso de la cepa o cepas microbianas adicionales definidas anteriormente.
En adelante, todas las composiciones microbianas definidas anteriormente serán denominadas como "composiciones microbianas de la invención", o simplemente "composiciones de la invención".
Tal y como se ha demostrado en ensayos in vi tro, las composiciones microbianas de la invención, diseñadas a partir de PGPR adecuados y de un liquido portador, no fitotóxico, son viables desde el punto de vista microbiológico y promueven como se desea un ambiente desfavorable a los nematodos .
Por otra parte, se han llevado a cabo pruebas in vivo, mediante un bioensayo, para evaluar la eficacia de las composiciones microbianas de la invención. De cara al bioensayo, se utilizó como cultivo susceptible el tomate, empleando la variedad, sensible a los ataques de nematodos, tomate Valenciano. Dicho cultivo crece en condiciones óptimas para que se produzca la infección por parte de los nematodos fitopatógenos , y asimismo asegura una fuente fiable de estos nematodos, concretamente de nematodos de Meloidogyne spp.. En general, aquellas condiciones favorables para el crecimiento de las plantas, también serán favorables para la reproducción de Meloidogyne spp.. Los resultados del bioensayo muestran que existe algún efecto o tipo de interacción que produce una disminución significativa del ataque de los nematodos formadores de nodulos (Meloydogine spp.) en cultivo de tomate (Tomate Valenciano) .
Por lo tanto, en un segundo aspecto, la invención hace referencia al uso de al menos una de las composiciones microbianas de la invención para tratar y/o prevenir una infestación por un nematodo en un cultivo vegetal.
Cuando la composición de la invención se aplica al suelo de una planta o un cultivo de una planta con una infestación por al menos un nematodo parásito formador de nodulos, preferentemente Meloidogyne spp. , se produce una disminución significativa del ataque de dichos nematodos que queda reflejada a través de una disminución en la medida del índice de nodulación de raíz .
En consecuencia, un tercer aspecto de la invención se refiere a un método para tratar y/o prevenir una infestación de un nematodo (preferentemente Meloidogyne spp. , y más preferentemente, Meloidogyne incógnita) en un cultivo de una planta (preferentemente tomate, y más preferentemente, tomate valenciano) que comprende aplicar al suelo o a la superficie de dicho cultivo al menos una de las composiciones microbianas de la invención definidas en el presente documento.
Las plantas o cultivos vegetales a los que se puede aplicar la composición microbiana de la invención, para tratar y/o prevenir la infestación por un nematodo, no están particularmente limitadas, que tal como se mencionó anteriormente incluyen la mayoría de los vegetales, frutales, plantas ornamentales y flora arvense. Como ejemplos de dichas plantas se pueden incluir, y sin limitarse a, cereales (p.ej., arroz, cebada, trigo, centeno, avena, maíz, etc.), verduras y hortalizas (soja, judías, habas forrajeras, guisantes, alubias rojas, cacahuetes, col, tomate, espinaca, brécol, lechuga, cebolla, cebolleta, pimentón, berenjena, pimiento, zanahoria, patata, batata, aráceas, rábano, raíz de loto, nabo, bardana, ajo, calabaza, pepino, etc.), frutas/frutales (manzanas, frutas cítricas, pomos, uvas, melocotones, albaricoques , melocotones amarillos, plátanos, fresas, sandía, melón, nueces, castañas, almendras, etc.), productos vegetales para procesar (algodón, cáñamo, remolacha, lúpulo, caña de azúcar, remolacha azucarera, aceituna, goma, café, tabaco, té, etc.), plantas de pasto (pasto ovillo, sorgo, hierba timotea, trébol, alfalfa, etc.), céspedes (césped, agrostis, etc.), plantas ornamentales, tales como plantas de olor (lavanda, romero, tomillo, perejil, pimienta, jengibre, etc.), plantas con flores (crisantemo, rosa, clavel, orquídea, etc.), árboles de jardín (ginkgo, cerezo, laurel Japonés, etc.) y árboles forestales (Abies sachalinensis , Picea jezoensis, pino, tuya, cedro, ciprés, etc.) .
En una realización preferida, la aplicación al suelo de la composición microbiana comprende: i ) un primer riego de la planta con una disolución acuosa de la composición microbiana, donde dicha disolución presenta una concentración microbiana comprendida entre 103 y 109 ufe por litro de disolución, a una dosis de riego comprendida entre 10 y 30 litros de la disolución acuosa por hectárea de cultivo. En una realización más preferida de la anterior, además del primer riego, dicha aplicación también comprende: ii) un segundo riego de la planta con una disolución acuosa de la composición microbiana como se definió anteriormente en i) , después de un periodo de tiempo comprendido entre 10 y 20 días, respecto del primer riego .
En realizaciones preferidas de uno cualquiera de los métodos descritos anteriormente en este aspecto de la invención, el método es para tratar y/o prevenir una infestación de un nematodo formador de nodulos endoparásito de plantas como Meloidogyne spp. , y más preferentemente, Meloidogyne incógnita.
En otras realizaciones preferidas del método este aspecto de la invención, la planta del cultivo sobre la que se aplica uno cualquiera de los métodos anteriores, es tomate, y más preferentemente, tomate valenciano.
Un cuarto aspecto de la invención hacer referencia a un kit para preparar una composición microbiana de la invención que comprende al menos una cepa microbiana con actividad ureasa, como cualquiera de las que se han definido anteriormente en el primer aspecto de la invención, y un liquido fertilizante, de acuerdo a los medios líquidos fertilizantes definidos en alguna de las composiciones de la invención anteriormente definidas.
Descripción de las figuras
FIGURA 1. Raíz de calabacín, fuente de inoculo de nematodos fitopatógenos para los ensayos in vitro .
FIGURA 2. Diluciones seriadas para cálculo de concentraciones y viabilidades .
FIGURA 3. Imagen a las 24h en el test in vitro, realizado con 1 mi del producto al l%v/v en 1 mi de suspensión de nematodos.
FIGURA 4. Imagen a las 96 h en el test in vitro realizado con 1 mi del producto al 1% v/v en 1 mi de suspensión de nematodos.
FIGURA 5. Equipamiento empleado en las aplicaciones.
FIGURA 6. Primera aplicación. FIGURA 7. Extirpación de raices para evaluación.
FIGURA 8. Evaluación previa con apio .
FIGURA 9. Representación del plano de la parcela.
FIGURA 10. Vista general de la parcela donde se ha realizado el ensayo para evaluar la eficacia de la composición microbiana de la invención en el control de Meloidogyne sp. en cultivo de tomate .
FIGURA 11. índices de nodulación en raíz (en una escala de 0 a 10) obtenidos con los distintos tratamientos evaluados: sin tratamiento (1); tratamiento con la composición microbiana de la invención {Bacíllus spp. 108 ufc/mL) a una dosis de aplicación de 10 L/ha (2); tratamiento con extracto de Quillay al 35% a una dosis de aplicación de 10 L/ha (3); tratamiento con fenamifos al 24% a una dosis de aplicación de 40 L/ha (4); tratamiento con la composición microbiana de la invención {Bacíllus spp. 108 ufc/mL) a una dosis de aplicación de 10 L/ha combinado con extracto de Tagetes fermentado aplicado en dosis de aplicación de 10 L/ha (5) .
FIGURA 12. Eficacia en el nivel de agallamiento calculada mediante la fórmula de Abbott (%) con los distintos tratamientos evaluados: tratamiento con la composición microbiana de la invención {Bacíllus spp. 108 ufc/mL) a una dosis de aplicación de 10 L/ha (2); tratamiento con extracto de Quillay al 35% a una dosis de aplicación de 10 L/ha (3); tratamiento con fenamifos al 24% a una dosis de aplicación de 40 L/ha (4); tratamiento con la composición microbiana de la invención {Bacíllus spp. 108 ufc/mL) a una dosis de aplicación de 10 L/ha combinado con extracto de Tagetes fermentado aplicado en dosis de aplicación de 10 L/ha.
FIGURA 13. Estado de las raices al final del ensayo de las plantas no tratadas .
FIGURA 14. Estado de las raices al final del ensayo de las plantas tratadas con la composición microbiana de la invención.
FIGURA 15. Estado de las raices al final del ensayo de las plantas tratadas con extracto de Quillay. Bibliografía
Bello,A. , López-Pérez, L. , García-Álvarez , (1996). Biofumigation as an alternative to methyl bromide .
Bezooijen J. 2006. Revised versión. Methods and techniques for nematology . University of Wageningen.
Bridge J. , S. L. J. Page, 1980. Estimation of root-knot nematodes infestation levéis on roots using a rating chart . Tropical pest management 26: 296-298.
Canullo, G. H.; R. Rodríguez-Kábana; J. W. Kloepper. 1992b. Changes in soil microflora associated with control of Sclerotium rolfsii by furfuraldehyde . Biocontrol Science and Technology 2, 159-169.
Eno, C. F. ;Blue WG;Good JM. 1955. The effect of anhydrous ammonia on nematodes, fungi, bacteria, and nitrification in some Florida soils . Proc. Soil Science Society of America 19, 55-58.
Hallman, J. , Sikora, R.A. , 1994. Influence of Fusaríum oxísporum, a mutualistic fungal endophyte, on Meloidogyne incógnita infection of tomato. Zeit. Pflanznkrank . Pflanzenschutz .101,475-481. Hallman, J. ,Quadt, H.A. Miller, W.G., Sikora R.A. , Lindow, S.E., 2001. Endophytic colonization of plants by the biocontrol agent Rhi zobium etli G12 in relation to Meloidogyne incógnita infection. Phytopathology 91, 415-422.
Hinarejos E, 2008. IAB, S.L. {Investigaciones y Aplicaciones Biotecnológicas S.L.).
Huebner, R A; Rodríguez-Kábana R; Patterson RM. 1983.
Hemicellulosic waste and urea for control of plant parasitic nematodes: effects on soil enzyme activities. Nematropica 13, 37-45. Luc M, Sikora R.A and Bridge J, 1990. Plant Parasitic Nematodes in Subtropical and Tropical agriculture. C.A.B. International Institute of Parasitology. p.240. Márquez Gutiérrez ME y Fernández Gonzálvez E, 2006. Selección de cepas de Bacíllus thuringiensis con efecto nematicida Manejo Integrado de Plagas y Agroecologia (Costa Rica) No. 78.
Miaño, DW, 1999. optimization of carbón : nitrogen ratios in organic soil amendments for the control of root-knowt nematodes (Meloidogyne spp. ) in tomato . Msc.Thesis University of Nairobi.
Moy, Terence I.; Anthony R. Ball, Zafia Anklesaria, Gabriele Casadei, Kim Lewis, and Frederick M. Ausubel* Contributed by Frederick M. Ausubel, 2006. Identification of novel antimicrobials using a live-animal infection model.
Muller, R.and Gooch, P.S.,1982. Organic amendments in nematode control. An exmination of the literature. Nematropica, 12: 319- 326.
Nelson W, 2007. A Review on Benefficial effects of rhizosphere bacteria on soil nutrient availability and plant nutrient uptake. Rev. Fac . Nal . Agr .Medellin . Vol .60 , Nol .p .3621-3643.
Padgham JL and Sikora R.A, 2007. Biological control potential and modes of action of Bacíllus megatheríum against Meloidogyne gramínícola on rice. Crop Protection, Volume 26, Issue 7, July 2007, Pages 971-977. J.L.
Pocasangre, L. , Sikora, R.A. ,Vilich,V. , Schuster, R. P. , 2000. Survey of banana endophytic fungi from Central America and screening for biological control of Radopholus similis. Act . Hort .531, 283- 289. Riksen J, 2008. Laboratory of Nematology. Wageningen University and Research Center. www . nem. wur . nl/UK/Webshop/Products/Nematode+counting+dishes/ . (Ref. Dr. Joost Riksen Joost . Riksen@wur . ni ) .
Rodriguez-Kabana R. , G. Morgan-Jones , 1987. Biological control of nematodes: Soil amendments and microbial antagonists . Plant and Soil 100.
Sayre, R.M. 1980. Biocontrol: Bacíllus penetrans and related parasites of nematodes. Journal of Nematology. 12: 261-270. Sharman, A., B.N.Johri, A.K. Sharma y B.R. Glick. 2003. Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean {Vigna radiata L. Wilzeck) . Soil Biology and Biochemistry . 35: 887-894. Sharon, E., M. Bar Eyal, A. Herrera Estrella, O. Kleifeld y Y. Spiegel . 2001. Biologicalcontrol of the root-knot nematode Meloídogyne javaníca by Tríchoderma harzíanum. Phytopathology . 91: 687-693.
Simón J, 2008. Laboratory of Nematology. Reading University and Research Center.
Singh, R.S. and Sitaramaiah, K (1966) . Incidente of root-knot of okra and tomatoes in oil cake amended soil. Plant Disease Reproter, 50:668-672.
Singh R.S. and Sitaramaiah K ,1967. Effect of decomposing green leaves, sawdust and urea on the incidence of root-knot to okra and tomato. Indian phytopatology, 20:349-355.
Sikora R.S. and Sitaramaiah K. 1973a. Control of root-knot throught organic and inorganic soil amendments .3. Effect of rice husk and sugarcane bagasse. Haryana Journal of Horticultural Science, 2:123-127.
Tenuta, M. ; S. Hobbs & G. Lazarovits ,1997. Mechanisms Associated with Disease Control by Organic Soil Amendments. pp. 4-1 - 4-3 in: 1997 Annual International Research Conference on Methyl Bromide Alternatives and Emission Reductions. San Diego, USA. November 3 - 5, 1997.
Zeck W M, 1971. A rating scheme for field evaluation of root- knot nematode infestation. Plazenshutz-Nacht . 24, 141-144.
EJEMPLOS
A continuación se detallan los materiales y métodos que fueron empleados para el desarrollo de la presente invención, asi como sus ejemplos de realización. Dichos ejemplos se incluyen solamente con fines ilustrativos y no han de ser interpretados como limitaciones a la invención que aquí se reivindica. Por tanto, los ejemplos descritos más adelante ilustran la invención sin limitar el campo de aplicación de la misma. EJEMPLO 1: Diseño de la formulación y ensayos irt vitro
1 .1. MATERIALES Y METODOS
1 .1.1. Identificación de las rizobacterias escogidas
Se ha realizado un estudio de viabilidad microbiana sobre la composición microbiana de la invención, con la siguiente PGPR del cepario de IAB, S.L.: Bacillus subtilis, cepa CECT 7254 (B. subtilis DSM 24682).
Dicha bacteria se mantiene en el cepario de IAB, S.L. y es actualmente producto comercial, deshidratado y liofilizado, por lo que el suministro para los ensayos de rutina, se tomó de lotes determinados e identificados. Por otra parte, dicha bacteria se mantiene en cultivo activo en agar a 4°C para cuestiones de rutina, y congelada a
-80°C en 30% de glicerol para almacenamiento a largo plazo. La identificación de la rizobacteria fue llevada a cabo por el COPMB (Colegio Oficial de Pesadores y Medidores Públicos de Barcelona) mediante identificación molecular de la secuencia del ARNr 16S en la base de datos del Genbank. Esta rizobacteria, una vez identificada, se mantiene también depositada en la Colección Española de Cultivos Tipo de Valencia.
1.1.2. Fuente de nematodos fitopatógenos .
El inoculo para proceder a los ensayos in vi tro, se obtuvo de las raices de calabacín de un invernadero naturalmente infectado, situado en la Cooperativa del Perelló. Las raíces de calabacín se dejaron en agua del grifo, en placa petri (como se ilustra en la Figura 1), y se incubaron durante 24-48 horas a temperatura ambiente hasta que eclosionaron las masas de huevos presentes .
1.1.3. Desarrollo del medio líquido fertilizante (fórmula fertilizante) .
Se diseñó un fertilizante líquido, a partir de urea (como fuente de nitrógeno ureico), lignosulfonato potásico (como fuente de ácidos fúlvicos), proteínas hidrolizadas (como fuente de aminoácidos, obtenidos de proteína vegetal) y melaza (como fuente de nutrientes) . Este fertilizante líquido se enriqueció con la cepa B. subtilis DSM 24682, dando como resultado, una fórmula compuesta con distintas PGPR y un alto contenido en materia orgánica, alto contenido en nitrógeno total, y alto contenido en nitrógeno ureico.
Para trabajar la fórmula, se escogieron las siguientes materias primas :
- AMINOÁCIDOS OBTENIDOS DE PROTEÍNA VEGETAL (aporte de materia orgánica y aminoácidos)
- LIGNOSULFONATO POTÁSICO (aporte de ácidos fúlvicos)
- UREA (aporte de N ureico)
- MELAZA (fuente orgánica y aporte de nutrientes)
- AGUA
Con estas materias primas, se preparó la fórmula fertilizante en un volumen total final de 250 mi, según los porcentajes peso/volumen {% p/v, expresado como porcentajes de la concentración en g/mL) que se detallan a continuación:
FORMULA % p/v
AMINOÁCIDOS 70
LIGNOSULFONATO POTÁSICO 10
UREA 10
MELAZA 3
AGUA C.S.P
De esta fórmula, antes de añadir los microorganismos, se midieron los pH a tiempo 0 y a las 24 horas, para comprobar que son estables y adecuados para soportar la base microbiana, y que no sufren cambios con el tiempo.
Se llevó a cabo un análisis de viabilidad en la fórmula fertilizante, según el método de análisis general que se describe a continuación. Para ello se añadió primeramente la cantidad de microorganismo por mililitro que se indica en la Tabla 3. Teniendo en cuenta que en este estudio se trabajó con un producto mínimo de 1010 ufc/g, se utilizó una cantidad que varió entre 0,1 a 0,2 gramos/ml. No obstante, dependiendo de las concentraciones microbianas de partida, estas cantidades podrían variar
1.1.4. Método de análisis microbiano general y cálculo de viabilidad microbiana: Para la determinación de 1 viabilidad microbiana de cada cepa en la fórmula fertilizante reparada anteriormente, se emplearon los siguientes materiales: tubos de vidrio con rosca de 10 mi de solución salina estéril,
puntas azules (1 mi) estériles,
9 placas de medio de cultivo correspondientes al microorganismo a evaluar; y se siguió un procedimiento que consta de los siguientes pasos:
1. Recoger 1 mi del producto liquido de la fórmula fertilizante a analizar que contiene una determinada cepa, donde dicha cepa está presente en una concentración microbiana teórica inicial (Cteórica) calculada según la siguiente expresión matemática:
C-teórica (ufc/ml) [Mmicrobiana x Cmicrobiana partida] / "^"formulación donde Mmlcroblana se refiere al peso del inoculante microbiano expresada en gramos, Cmlcroblana partida se refiere a la concentración microbiana de partida del inoculante microbiano o cultivo puro del microorganismo expresada en ufc/g, y Vformuiaclón se refiere al volumen sobre el que se pone el microorganismo expresado en mililitros.
2. Disolver el producto liquido recogido en un tubo de rosca de 10 mi de solución salina (NaCl 0,9% en agua) estéril.
3. Realizar diluciones seriadas 1/10 en tubos de rosca de 10ml de solución salina estéril hasta la concentración teórica menos una unidad (Figura 2), agitando 30 segundos cada vez con vórtex.
4. Plaquear en césped 0,1 mi de las tres últimas diluciones por triplicado en placa.
5. Incubar a 27 °C el tiempo necesario para cada microorganismo .
6. Lectura de resultados mediante lectura de aquellas placas que contengan entre 5-50 colonias crecidas.
7. Calcular la concentración microbiana observada (o experimental) de la formula fertilizante, expresada en unidades formadoras de colonias por mililitro (ufc/ml) , de acuerdo a la fórmula matemática:
Concentración microbiana observada (ufc/ml) = (Xobservado *
Yobservado) I 1 donde Xobservado es el número de colonias contadas en el paso anterior, e Yobservado es el factor de dilución en positivo (es decir, la potencia a la que está elevada la concentración microbiana, pero con signo +; que p. ej . para 10 '~6) el factor de dilución en positivo seria 6) . Calcular la viabilidad microbiana (V) en la formulación, que es :
- V = 100 %, si Yteórico - Yobservado es menor o igual a cero,
- V = (100 - R)*(l+rx) %, SÍ Yteórico " Yobservado está comprendido entre 0 y 3,
- V = No Viable, si Yteórico - Yobservado es mayor que 3; donde :
Yteórico es el exponente o factor en positivo, que debería llevar la concentración microbiana, es decir, que si teóricamente la concentración en ufc/ml debía ser 107 ufc/ml, el Yteórico es 7,
Yobservado es el exponente o factor que sale por recuento, es decir, la concentración en ufc/ml que se puede leer en las placas,
R es el porcentaje de pérdida de viabilidad microbiana calculado según la fórmula matemática:
R 10 (Yteórico Yobservado) rx es igual a 0,05 si Xteórico- observado es mayor o igual a 10, o rx es igual a 0 si Xteórico-Xobservado es menor que 10, siendo Xteórico el número de colonias que teóricamente tenían que leerse en las placas, y Xobservado el número de colonias que efectivamente se lee en las placas . Es decir, en general se hizo un recuento en ufc/ml, conforme a los procedimientos habituales de laboratorio.
El medio empleado fue: Agar nutriente II (NUTRIENT AGAR II) para cepas de Bacíllus spp. , preparado según la siguiente fórmula general (para 1 L de medio), y ajusfando finalmente el pH a 7,2:
Extracto de carne lg
Extracto de levadura 2g
Tryptona 5g
NaCl 5g
Agar 20g
Agua destilada 1L
Se ha determinado la viabilidad de la fórmula fertilizante, desde el punto de vista microbiano a las 24 horas, a las 6 semanas, a los 6 meses y a los 12 meses de la preparación de la composición. Las viabilidades para todos los Bacíllus spp. se calcularon de forma global, sin tener en cuenta la especie, pues no es posible, morfológicamente y de visu, el estudiar las concentraciones microbianas de las diferentes especies por separado .
1.1.4. Método de recuperación y conteo de nematodos .
La forma más sencilla de aislar nematodos de su planta hospedante, es sumergiendo la muestra en agua y seleccionando los nematodos bajo el microscopio, aunque ésta es una labor tediosa, y solamente puede hacerse si se necesita recoger pequeñas muestras (Bezooijen, 2006).
Los nematodos vivos pueden ser fácilmente identificados y estudiados en una preparación con agua. En este tipo de preparación, ciertas estructuras, como el estilete, el lumen y el aparato excretor, se pueden ver más fácilmente que en nematodos fijados y muertos (Bezooijen, 2006) .
El procedimiento empleado para conseguir fijar un nematodo consistió en lavar un trocito de raíz con una solución al 0,5% de hipoclorito sódico, y dejar en una placa Petri, con 10 mi de agua del grifo. Dejar 24 horas e intentar con una aguja extraer el nematodo.
Para el conteo de nematodos, se empleó una cámara desarrollada en el Departamento de Nematologia de la Universidad de Wageningen. El modelo contiene una capacidad máxima de 10 mi de suspensión, con una cuadricula de 7,5 por 3,5 mm y un diámetro total de 6,3 cm. La pendiente de la circunferencia permite una visión completa, y la cuadricula está hecha en la parte posterior de la placa, de forma que el lado en el que se deposita la suspensión se puede limpiar fácilmente. Debido a que el microscopio del que se dispone, es un microscopio óptico, y no de disección, esta cámara se redujo mediante placa petri de 3 cm de diámetro, para poder trabajar con menores volúmenes de agua (2 mi), un campo de visión más reducido, y agilizar de esta forma el conteo .
Para realizar el conteo de nematodos, se emplearon las recomendaciones seguidas directamente por el Doctor Joost Riksen (Laboratorio de Nematologia de la Universidad de Wageningen, Holanda;
www . nem. wur . nl/UK/Webshop/Products/Nematode+counting+dishes/ ; Ref. Dr. Joost Riksen -Joost . Riksen@wur . ni- ) , utilizando el aumento 4X. Para obtener mejores resultados, se procede de la forma siguiente (Bezooijen, 2006), pero ajustado al volumen de nuestra cámara de conteo (2 mi) :
- Recoger la suspensión de nematodos, extraída directamente de las raíces noduladas por nematodos (según recomendaciones de Dr. Simón, profesor de la Universidad de Reading, Reino Unido, 2008 -Simón, 2008-) . Una vez tenemos la suspensión recogida, en una probeta de 20 mi, dejar los especímenes durante 10 minutos.
- Ajusfar el volumen de la suspensión a 10ml añadiendo o quitando agua.
- Agitar la suspensión soplando con una pipeta, durante 15 segundos .
- Inmediatamente coger una submuestra de 2 mi de la suspensión con una pipeta graduada de 2 mi y pasar directamente a la cámara de conteo .
- Bajo el microscopio, identificar y contar con un contador de mano .
Volver a dejar la muestra en su lugar, y contar 2 veces más. - Calcular la media de especimenes/ml .
1.1.5. Metodología para el test in vi tro de actividad nematicida/nematostática .
Se determinó la actividad nematicida/nematostática de la composición microbiana y del filtrado de dicha composición. Para determinar el efecto en los nematodos, se tomó independientemente 1 mi de una dilución:
- 1% v/v de la composición microbiana.
- 1% v/v del filtrado, mediante filtro de 20 mieras, de la composición microbiana.
- Composición microbiana al 1% v/v dejada fermentar durante 24 horas .
Dichas preparaciones se depositaron en placas petri, de diámetro 3 cm, con 1 mi de agua desionizada, en los cuales existía una suspensión de nematodos contabilizados por la metodología anterior. Los nematodos se contaron en esa misma placa, a las 0 h, 24 h y 96 h, utilizando de base la cámara de Wageningen, y contabilizándolos como muertos cuando no se movían, probando con una fina aguja, y/o cuando presentaban un aspecto rígido (Moy et al., 2006) . De hecho, existe una diferente morfología observada al microscopio entre nematodos vivos y nematodos muertos .
1.2. Resultados del ensayo de formulación.
En la Tabla 1 se presentan los resultados de las lecturas de pH en la fórmula fertilizante.
Tabla 1. Lecturas de pH en el medio líquido fertilizante (fórmula fertilizante definida en el punto 1.1.3) .
Figure imgf000033_0001
Según esta tabla, podemos considerar los pH como estables en la fórmula fertilizante.
En la Tabla 2 se muestran los resultados obtenidos de las lecturas de viabilidad microbiana de B. subtilis CECT 7254 a las 24 horas.
Tabla 2. Viabilidad de las cepas B. subtilis CECT 7254 en la fórmula fertilizante a las 24 horas.
Figure imgf000034_0001
Puesto que las viabilidades de todos los microorganismos fue excelente en la fórmula fertilizante, se escogió como válida y se prepararon 100 mi con la siguiente composición:
COMPOSICION DE LA FÓRMULA FERTILIZANTE ESCOGIDA COMO VÁLIDA: ELEMENTOS % p/v
AMINOÁCIDOS 70
LIGNOSÜLFONATO POTÁSICO 10
UREA 10
MELAZA 3
AGUA C.S.P.
Sobre la composición de la fórmula fertilizante anterior, se añade una cantidad de microorganismos según se indican en la Tabla 3, dando lugar a la composición microbiana experimental, cuya concentración microbiana se evalúa posteriormente, a las 6 semanas, a los 6 meses y a los 12 meses (Tabla 4) para comprobar la viabilidad de los microorganismos en dicha fórmula.
Tabla 3. Concentraciones teóricas microbianas sobre la fórmula fertilizante en función del microorganismo escogido.
MICROORGANISMO CANTIDAD CONCENTRACION
%p/v INICIAL
Bacillus subtilis CECT 7254 0,15 g/ml 1·10<10) ufc/g Tabla 4. Viabilidad de la fórmula fertilizante diseñada con microorganismos de Bacíllus spp. a las 6 semanas, a los 6 meses y a los 12 meses.
Figure imgf000035_0001
(*) Se refiere a la viabilidad de la cepa Bacíllus subtilis CECT
Teniendo en cuenta que la concentración de Bacíllus totales inicial (teórica) estaba comprendida entre 1 · 10 <8) -1 · 10 <9) ufc/ml, y que la concentración de Bacíllus totales observada a los 6 meses es de 1·10<6) ufc/ml, esto supone una viabilidad comprendida entre el 70% y 80%. Los resultados muestran que los microorganismos Bacíllus spp. {Bacíllus subtilis CECT 7254) son capaces de ser viables durante 6 meses y un año en la fórmula fertilizante .
1.3. Resultados de los ensayos in vitro .
A continuación, en las Tablas 5-7 se presentan los resultados por triplicado del ensayo in vitro de actividad nematicida/nematostática obtenidos para la fórmula fertilizante anterior que comprende los microorganismos de la especie Bacíllus subtilis CECT 7254 (DSM 24682) .
Tabla 5. Lectura de nematodos vivos y muertos a tiempo 0, 24 y 96 horas con 1 mi del producto fermentado al 1% v/v y filtrado con filtro de 20 μιη, en 1 mi de suspensión de nematodos.
Media Tiempo
nematodos
0 horas 24 horas 96 horas
vivos 315 95 129 muertos 0 11 19 Tabla 6. Lectura de nematodos vivos y muertos a tiempo 0, 24 y
96 horas con 1 mi del producto al 1% v/v y filtrado con filtro de 20 um en 1 mi de suspensión de nematodos .
Figure imgf000036_0001
Tabla 7. Lectura de nematodos vivos y muertos a t 0, 24 y 96 h con 1 mi del producto al 1% v/v en 1 mi de suspensión de nematodos .
Figure imgf000036_0002
En la tabla 7, se observa como a las 24 horas se produce una gran reducción en la actividad y/o movilidad de los nematodos (Figura 3), mientras que a las 96 horas (Figura 4), se presenta una alta actividad de esos mismos nematodos .
1.4. Diseño final del producto empleado para evaluar mediante bioensayo
Se prepara una composición microbiana nematicida de acuerdo a la composición porcentual que se presenta en la Tabla 8, con una concentración microbiana en dicha composición de l><107ufc/ml.
Tabla 8. Composición porcentual de la fórmula nematicida preparada .
ELEMENTOS % p/v
PROTEINAS HIDROLIZADAS 70
LIGNOSULFONATO POTÁSICO 10
UREA 10
MELAZA 3
MICROORGANISMOS 0,1
Bacillus subtilis CECT 7254 (0,1% p/v)
AGUA C.S.P. Dicha composición microbiana útil para control de nemátodos se trata de un producto de base microbiana, liquido y viable, resultado de la selección de microorganismos benéficos o PGPR, desarrollados en una matriz que aporta macro y micro nutrientes y mantiene la viabilidad microbiana. Por otra parte, se trata de un producto microbiano que no genera resistencias y no produce residuos. Al ser aplicado al suelo, los microorganismos inician un proceso de colonización principalmente en la zona radicular de las plantas. El proceso de colonización durará de 3 a 5 semanas (dependiendo de la dosis de aplicación, tipo de suelo, fertilidad, humedad y temperatura) . Una vez que las colonias hayan sido establecidas, el suelo contará con una gran variedad de microorganismos propios de un suelo fértil, en el que los microorganismos podrán actuar directa e indirectamente en la fijación y nitrificación de nitrógeno atmosférico, en la fijación, mineralización y absorción de fertilizantes y otros nutrientes del suelo sean de tipo orgánico, mineral o sintético, actuando como regeneradores de raíz y suelo. A su vez, el producto propicia un ambiente desfavorable para los nemátodos .
Preferentemente, la aplicación de la composición microbiana de la invención se realiza vía suelo mediante riego localizado de 1 a 2 aplicaciones, con intervalos de 10 a 20 días. Para ello, la composición microbiana de la invención se aplica a una dosis comprendida entre 10 y 20 litros por hectárea (L x ha o L/ha) .
El propósito de la composición microbiana aquí preparada es la aplicación de la fórmula en un posterior ensayo in vivo para mantener controlado a Meloidogyne spp. por debajo del umbral económico de daño.
Como conclusión a los resultados obtenidos en los ensayos in vitro, y según se demuestra en dichos ensayos, la formulación escogida ejerce una gran reducción en la actividad y/o movilidad de Meloidogyne spp. a las 24 horas, sugiriendo que el liquido puede tener algún efecto nematostático , ya que a las 96 horas, esos mismos nemátodos vuelven a presentar una alta actividad y/o movilidad .
EJEMPLO 2 : Eficacia de la composición microbiana de la invención en el control de Meloydoglne sp. en cultivo de tomate.
2.1. Resumen Se ha realizado un ensayo en tomate protegido, codificado como SRS09-003-106NE . El objetivo del ensayo fue determinar la eficacia y selectividad nematicida de una composición microbiana de la invención como la definida en la Tabla 8 del ejemplo 1
{Bacíllus spp, 1><108 UFC/ml), aplicada 3 veces a través del riego a goteo en un suelo arenoso. Se ensayó contra Meloidogyne spp. a una única dosis (10 1 p.f/ha -litros de producto por hectárea, L/ha-) sola y combinada con una aplicación previa de extracto de Tagetes fermentado (Extr. Ferm. Tagetes 100%) . Los productos estándar fueron phenamiphos (suspensión de cápsulas - CS, capsule suspensión-) en solución acuosa al 24% aplicado a una dosis de 40 1 p.f./ha (L/ha) y extracto de Quillay
(concentrado soluble) en solución acuosa al 35% aplicado a una dosis 10 1 p.f./ha (L/ha).
Para el desarrollo del ensayo, se seleccionó una parcela comercial de tomate protegido cv. Valenciano en El Perelló (Valencia); el suelo era arenoso. Se realizó un diseño en bloques al azar, con 4 repeticiones por tratamiento. Las parcelas elementales eran de 10,8 m2, con 22 plantas/parcela.
Para el extracto de Quillay y la composición microbiana de la invención {Bacíllus spp, 1*108 UFC/ml) se realizaron tres aplicaciones, mientras que para el phenamiphos, sólo se realizó una. Todas las aplicaciones se hicieron con una mochila a motor, directamente acoplada al riego por goteo como se ilustra en la Figura 5, con una presión de trabajo de 1,5 atm y 5000 l/ha de volumen de caldo (excepto para las aplicaciones D y E, dónde se requirieron 6000 l/ha) .
La primera aplicación [22 Mayo 2009 (aplicación A) ] se realizó en un estado fenológico de 14 BBCH (4a hoja completamente desplegada), como se observa en la Figura 6, y la última [19 Junio 2009 (aplicación E)] en un estado fenológico de 51 BBCH (primera inflorescencia visible) . Se realizó una evaluación del nivel de agallamiento (el 17/06/2009) mediante extirpación de las raices (Figura 7) . Antes del comienzo del ensayo, se había realizado otra evaluación sobre apio (Figura 8), con el fin de determinar las áreas de infestación y hacer una distribución de bloques adecuada. Se evaluaron también los posibles síntomas de fitotoxicidad . La eficacia se calculó mediante la fórmula de Abbott . El análisis de los resultados obtenidos, cuyos datos sin tratar se encuentran recogidos en las Tablas posteriormente mostradas, se realizó con el software ARM Revisión 7.4.2., de Gylling Data Managment. Los datos se analizaron usando el análisis de la varianza (A OVA) de los valores no transformados y de los valores transformados cuando el test de Barlett asi lo indicó. Si la transformación no mejoró las premisas de homogeneidad de las varianzas, se mantuvieron los valores originales, y por lo tanto, las diferencias significativas (si las hubiera) deben ser interpretadas con precaución. La probabilidad de aparición de diferencias significativas entre tratamientos se calculó como el valor de la probabilidad F (Treatment Prob(F)) . El test de Student-Newman-Keuls (S-N-K) se aplicó cuando se encontraron diferencias significativas. La comparación de medias se analizó solo cuando AOV Treatment P(F) fue significativo al nivel seleccionado. Los resultados obtenidos se indicaron mediante letras (valores medios con letras diferentes indican diferencias significativas de acuerdo con el test de S-N-K a un intervalo de confianza del 95%. Cuando los datos se transformaron, las letras se incluyeron en esta columna transformada. Los resultados observados fueron:
Los niveles poblacionales fueron medios durante el ensayo, alcanzando las raices de las plantas no tratadas un índice de 5 (en una escala de 0-10) al final del ensayo (aprox.2 meses tras el transplante) .
El resto de tratamientos mostraron valores similares. La composición microbiana de la invención (COMP.) sola y combinada con extracto de Tagetes fermentado (COMP. + EXT. TAG.) mostraron los valores de agallamiento más bajos, seguido del estándar químico phenamiphos (PHEN. ) . El índice más elevado se observó para el estándar biológico de extracto de Quillay (QL) . No se hallaron diferencias estadísticas.
Los mejores resultados de eficacia se obtuvieron con el estándar químico, seguido muy de cerca por la composición microbiana de la invención experimental, tanto sóla (COMP.) como combinada con extracto de Tagetes fermentado (COMP. + EXT. TAG.) . El estándar biológico de extracto de Quillay (QL) obtuvo el valor más bajo de eficacia. No se hallaron diferencias estadísticas . No se observaron síntomas de fitotoxicidad en ningún tratamiento .
No se observaron problemas de manejo del producto experimental .
2.2. Tratamientos experimentales
La Tabla 9 recoge todos los datos referentes a los diferentes tratamientos (tratamientos 1 a 5) realizados para llevados a cabo en el ensayo del ejemplo 2. A continuación de la Tabla 9 se indican más detalladamente los datos presentados en la misma.
Tabla 9.
Figure imgf000040_0001
Tabla 9. (Cont. )
Figure imgf000040_0002
Información adicional del tratamiento
Tipo ("Type")
CHK = Check o No Tratado ("Untreated")
INSE = Insecticida o Nematicida
Nombre del Tratamiento ("Treatment Ñame")
Untreated Check = No tratado
COMP., 10000000, BIOEN/ML, SL = Bacillus spp|108 UFC/ml
QL, 35%, SL = Extracto de Quillay
PHEN., 24%, CS = Fenamifos 24%|PHI (intervalo pre-cosecha) 60 days tomat . , cuc, mel; 30 days pepper
COMP.+EXTR. TAG., 10000000, BIOEN/ML, SL = Bacillus spp+ Extr . Ferm. Tagetes | 10000000 UFC/g+100% Unidades de la formulación ("Form Unit")
BIOEN/ML = Entidades biológicas por mililitro de producto ("Biological Entities per milliliter product")
% = Porcentaje de Ingrediente Activo en el producto formulado en relación peso/peso, %AW/W ("Percent Active Ingredient in formulated product on a weight/weight basis; same as %AW/W".) Tipo de Composición ("Form Type")
SL = Concentrado Soluble ("Soluble concéntrate"); Liquido claro a opalescente para ser aplicado como solución del ingrediente activo después de su disolución en agua. El liquido puede contener elementos de la composición insolubles en agua ("A clear to opalescent liquid to be applied as a solution of the active ingredient after dilution in water. The liquid may contain water insoluble formulants") .
CS = Suspensión de Cápsulas ("Capsule suspensión"); Suspensión estable de cápsulas en un fluido, normalmente destinada para disolución en agua previamente a su uso ("A stable suspensión of capsules in a fluid, normally intended for dilution with water before use") .
Unidad de la Tasa de Aplicación ("Rate Unit")
L/HA = Litros de Producto por Hectárea ("Liters Product per
Hectare" (US=QT/A) ; Q
Otra Unidad de la Tasa de Aplicación ("Other Rate Unit")
g A/ha = Gramos de Ingrediente Activo por Hectárea ("Grams
Active Ingredient per Hectare")
Modo de aplicación ("Application Directions" o Appl . Code):
A = al transplantar ("at transplanting" )
B = 7 días después de A ("7 days after A")
C = 15 días después de A ("15 days after A")
D = 7 días después de B ("7 days after B")
E = 15 días después de C ("15 days after C")
Repeticiones ("Replications") : 4, Tratamientos no tratados ("Untreated treatments") : 1, Número del tratamiento de referencia ("Reference treatment number" ) : 3, Realizado bajo directrices de buenas prácticas de laboratorio [GLP] / directrices de buenas experimentales [GEP] ("Conduct under GLP/GEP") : Si - GEP sin protección ("GEP with no protection" ) , Diseño ("Design"): Bloque completo aleatorio ("Randomized Complete Block") , Unidades del tratamiento ("Treatment units") : Tamaño de terreno tratado ("Treated plot size"), Unidad de composición formulada en seco ("Dry Form. Unit") : %, Ancho del tamaño del terreno tratado ("Treated plot size Width") : 3 metros, Longitud del tamaño del terreno tratado ("Treated plot size Length"): 8 metros, Volumen de aplicación ("Application volumen") : 5000 1/ha, Tamaño de mezcla ("Mix size") : 2 litros, Definiciones de formato ("Format definitions" ) : G-A117.DEF, G- A117. FRM
2.3. Descripción del emplazamiento ("Site Description" )
2.3.1. Localización del ensayo.
El Perelló (Valencia), España. Se sabe que la parcela seleccionada tiene buena infestación por nematodos ya que el cultivo anterior de apio estaba infectado. La evaluación previa y distribución de la parcela se hizo de acuerdo a su infestación inicial .
2.3.2. Directrices de Buenas Prácticas Experimentales (GEP) del ensayo .
Tabla 10.
Figure imgf000042_0001
2.3.3. Descripción del cultivo ("Crop Description")
Cultivo 1 ("Crop 1"): Tomate transplantado, LYPXP Lycopersicon es., transplantado
Variedad ("Variety"): Valenciano Descripción ("Description") : Protegido ( "Protected" ) Escala BBCH ("BBCH Scale") : BVSO Fecha de plantado
("Planting Date") : May/21/2009
Método de plantado ("Planting Method") Transplantado a mano
("TRANSPLANTED - HA D" )
Espaciado entre filas, unidad ("Row Spacing, Unit"): 1,2 m
Espaciado en la fila, unidad ("Spacing Within Row, Unit") : 0,4 m
2.3.4. Descripción de la plaga ("Pest Description'
Tipo de Plaga 1 (Pest 1 Type) Código ("Code' MELGSP Meloidogyne sp .
Nombre Común ("Common ame") Nemátodos de los nudos de la raíz ("Root-knot eelworms")
2.3.5. Emplazamiento y Diseño ("Site and Design") .
Ancho del terreno, unidad Plot Width, Unit"): 1,2 m
Plot Length, Unit: 9 M
Tipo de emplazamiento ("Site Type Invernadero 'GREENHOUSE") Tipo de cultivo ("Tillage Type") Convencional "CONVENTIONAL- TILL")
Repeticiones ( "Replications" ) : 4
Diseño del studio ("Study Design") Bloque Completo Aleatorio ("Randomized Complete Block")
Drenaje de la tierra ("Soil Drainage : Bueno (G, "Good")
En la Figura 9 se representa la disposición o distribución en la parcela de las diferentes repeticiones (4 repeticiones por tratamiento) de cada uno de los tratamientos realizados (tratamientos 1 a 5), conforme a como se describen en la Tabla 11. La Figura 10 es una imagen general del terreno o parcela cuando se realizó el ensayo.
Tabla 11 .
Trt Treatment Rate Plot No . By Rep .
No. Ñame Rate Unit 1 2 3 4
1 Untreated Check 103 201 303 404
2 COMP. 10 L/HA 105 205 304 405
3 QL 10 L/HA 101 203 302 403
4 PHEN. 40 L/HA 102 202 301 402
5 COMP . + 10 L/HA
104 204 305 401 EXTR. TAG. 10 L/HA Previamente al ensayo sobre tomate valenciano se hizo una evaluación de la nodulación de la raíz de apio (Figura 8) para identificar áreas de infestación en el terreno y hacer una distribución adecuada por bloques .
2.3.6. Descripción del terreno ("Soil Description") . Textura ("Texture") : Arena ("SA D")
Nivel de Fertilización ("Fert. Level"): Bueno ("GOOD")
2.3.7. Humedad y Condiciones Metereológicas ("Moisture and Weather Conditions") .
Condiciones de Humedad Global ("Overall Moisture Conditions"): NORMAL
Estación climatológica más cercana ("Closest Weather Station") : Polinya del Xuquer Distancia ("Distance") : 5 km
En la Tabla 12 se presentan los datos meteorológicos ("Weather Data") referentes a los valores de temperaturas mínimas, máximas y medias (en °C) , de humedades relativas y de precipitaciones (en mm) registrados durante el periodo de tiempo en el que se realizó el ensayo del ejemplo 2.
Tabla 12 .
Fecha Temp . Temp . Temp . Hum. Precip .
Media Max . Min . Reí . (mm)
(°C) (°C) (°C) (%)
21/05/2009 19, 9 25, 91 14, 41 75,5 0
22/05/2009 20, 04 24, 15 16, 44 81, 9 0
23/05/2009 21,76 28, 48 17, 74 71,5 0
24/05/2009 20,59 23, 94 17, 55 81, 1 0
25/05/2009 20,72 25 15, 39 73 0
26/05/2009 21,21 27, 94 14,73 60, 94 0
27/05/2009 18,54 23, 04 12, 77 65, 48 0
28/05/2009 19,58 27,28 11,26 53,34 0
29/05/2009 19, 48 25, 45 12, 77 59, 98 0
30/05/2009 20, 66 26, 44 13, 82 65, 05 0
31/05/2009 19,54 26, 13 16, 04 82,2 3, 8
01/06/2009 20, 16 25,2 14, 41 76,3 0,2
02/06/2009 20, 68 25, 98 15, 26 78, 4 0
03/06/2009 21,71 25, 91 16, 31 77, 1 0
04/06/2009 22, 11 26, 11 18, 07 75, 8 0 Tabla 12. (Cont. )
Fecha emp . emp . emp . Humedad Precip .
Media Max . Min . Relativa (mm) (°C) (°C) (°C) (%)
05/06/2009 24, 43 32, 32 18, 07 49, 82 0
06/06/2009 22, 62 29, 12 15, 32 41,72 1
07/06/2009 21, 37 28, 6 15, 13 49, 73 0
08/06/2009 22,74 28,2 14, 87 42,53 0
09/06/2009 22,79 30, 16 14, 99 46, 98 0
10/06/2009 23,54 30, 88 15, 85 51,55 0
11/06/2009 23, 35 30,36 15, 59 63, 5 0
12/06/2009 22, 48 27,36 17, 62 70, 1 0
13/06/2009 23, 07 28,53 17, 56 71, 8 0
14/06/2009 23,57 29, 97 17, 55 69, 27 0
15/06/2009 24, 06 29, 37 19, 06 66, 92 0
16/06/2009 23,34 26, 11 19, 25 76,2 0
17/06/2009 23,55 29,24 18,27 71,3 0
18/06/2009 24, 05 29, 27 18,53 70 0
19/06/2009 24, 82 31,22 20, 17 63, 65 0
20/06/2009 23,53 27, 8 18,34 73,7 0
21/06/2009 22, 63 25, 45 19, 45 70, 6 0
22/06/2009 23, 87 28,2 19, 32 70, 8 0
23/06/2009 22, 99 27, 94 17, 42 74 0
24/06/2009 24,38 34, 81 18, 47 72 0
25/06/2009 24, 84 30, 07 19, 97 71, 1 0
26/06/2009 25,73 34, 48 19, 84 56, 91 0
27/06/2009 23, 67 27, 93 18, 67 73, 4 0
28/06/2009 24,74 31,21 19, 38 68, 41 0
29/06/2009 23, 88 28, 91 17, 55 75, 6 0
30/06/2009 24, 66 30, 42 18, 93 72, 1 0
01/07/2009 25,77 33, 5 20,24 67, 91 0
02/07/2009 26, 06 32, 39 21, 09 75,2 0
03/07/2009 25,59 29, 95 21, 35 74, 6 0
04/07/2009 25,77 32, 78 19, 45 70, 4 0
05/07/2009 26,1 31, 14 21, 41 73,3 0
06/07/2009 26, 62 31, 07 22, 85 74,3 0
07/07/2009 25, 82 29, 11 23,51 77, 6 0
08/07/2009 22,72 24, 94 20,5 87, 6 25,2
09/07/2009 24, 06 27,49 21, 68 82,3 0
10/07/2009 25, 64 29, 77 21, 81 78, 4 0
11/07/2009 26,1 29, 05 23, 11 75 0 Tabla 12. (Cont. )
Figure imgf000046_0001
2.3.8. Descripción de la Aplicación ("Application Description" ) : Tabla 13.
Tabla 13 .
A B C
Fecha de aplicación May/22/2009 May/29/2009 Jun/05/2009 ("Application Date") :
Hora del día ("Time of Morning Morning Morning Day") :
Método de aplicación DRIP DRIP DRIP
("Application Method") :
Regulación de la POSPOS POSPOS POSPOS aplicación ("Application
Timing") :
Lugar de la aplicación BANSOI BANSOI BANSOI ("Application Placement") :
Aplicado por ("Applied MB MB MB
By" ) :
Temperatura del aire ("Air 22,5 °C 25,5 °C 24,8 °C Temperature" ) :
% Humedad Relativa ("% 82 42 80
Relative Humidity") :
Velocidad del viento 0 KPH 0 KPH 0 KPH ("Wind Velocity") :
Presencia de Roció ("Dew N N N
Presence") (Y/N) :
Temperatura de la tierra 20,1 °C 20 °C 22 °C ("Soil Temperature") :
Humedad de la tierra ADEQUATE ADEQUATE ADEQUATE ("Soil Moisture") :
% Nubosidad ("% Cloud 70 0 0
Cover") :
Tabla 13. (Cont.)
Figure imgf000048_0001
2.3.9. Etapa de cosecha en cada aplicación ("Crop Stage At Each Application") : Tabla 14
Tabla 14.
A B c
Código cosecha 1, Escala
BBCH
LYPXP BVSO LYPXP BVSO LYPXP BVSO
("Crop 1 Code, BBCH
Scale") :
Escala de etapa utilizada
BBCH BBCH BBCH
("Stage Scale Used") :
Mayoría de la etapa,
porcentaj e
14 100 16 100 19 100 ("Stage Majority,
Percent") : Tabla 14. (Cont. )
Figure imgf000049_0001
Equipo de la aplicación ("Application Equipment") : Tabl
Tabla 15.
A B C D E
Equipo de
aplicación
MARU-08-1 MARU-07-1 MARU-07-1 MARU-07-1 MARU-07-1 ("Appl.
Equipment") :
Presión de
operación
1 , 5 ATM 1 , 5 ATM 1 , 5 ATM 1 , 5 ATM 1 , 5 ATM ( "Operating
Pressure") :
Vehículo Agua Agua Agua Agua Agua ( "Carrier" ) : ("WATER") ("WATER") ("WATER") ("WATER") ("WATER")
Volumen
pulverizado
5000 L/HA 5000 L/HA 5000 L/HA 6000 L/HA 6000 L/HA ( "Spray
Volume") :
Tamaño de
mezcla 2 2 2 2 2
("Mix Size") :
pH ("Spray
7 7 7 7 7 pH") :
Propulsor Bomba Bomba Bomba Bomba Bomba ("Propellant") : ("PUMP") ("PUMP") ("PUMP") ("PUMP") ("PUMP")
Mezcla en
depósito (Y/N) N N N N N
("Tank Mix") : Las aplicaciones de la composición microbiana experimental de la invención (COMP.) y de extracto de Quillay (QL) se realizaron en los últimos 10-15 minutos del ciclo de riego. El siguiente riego se retraso al máximo para prevenir el lavado del producto. Dicha aplicación se realizó sobre suelo húmedo.
De acuerdo con las indicaciones sobre la aplicación del fenamifos (PHEN., phenamíphos) en riego por goteo o por franjas, teniendo en cuenta que su dosis es para el tratamiento masivo, la dosis de aplicación del fenamifos se ajustó al área real tratada .
2.4. Resultados
2.4.1. Resumen normalizado ("Standardized Summary") : Tabla 16.
Tabla 16 .
Código de plaga ("Pest Code") MELGSP MELGSP
Código de cultivo ("Crop Code") LYPES LYPES
Parte valorada ("Part Rated") ROOT C ROOT C
Fecha de valoración ("Rating Date") Jul/17/2009 Jul/17/2009
Tipo de datos valorados ("Rating Data DAMNEM CONTRO
Type")
Unidad de valoración ("Rating Unit") 0-10 %UNCK
Tamaño de muestra ("Sample Size") 10 10
Unidad de tamaño de muestra ("Sample PLANT PLANT
Size Unit")
Número de nota al pie ("Footnote 1 1
Number" )
Trt-Eval Interval 28 DA-E 28 DA-E
ARM Action Codes TAB [ 2 ]
Trt Treatme Rate
No . Ñame Rate Unit 2 3
1 Untreated Check 5, 0 0, 0
2 COMP. 10 L/HA 3,5 30, 0
3 QL 10 L/HA 5,2 7,0
4 PHEN. 40 L/HA 4,0 30,5
5 COMP. + 10 L/HA
EXTR. TAG. 10 L/HA 3, 6 26,8 Tabla 16. (cont.)
Standard Deviation 1,41 20, 61
CV 33, 27 109,21
Grand Mean 4,23 18, 87
Bartlett's X2 8,424 2,481
P(Bartlett's X2 ) 0, 077 0,479
Replícate F 0,826 0, 207
Replícate Prob(F) 0, 5046 0,8899
Treatment F 1,279 1, 927
Treatment Prob(F) 0, 3317 0, 1706
Las medias seguidas por la misma letra no son significativamente diferentes ["Means followed by same letter do not significantly differ"] (P=.05, LSD)
Las comparaciones de las medias se llevaron a cabo sólo cuando el tratamiento P(F) AOV es significativo en la comparación con la media OSL ["Mean comparisons performed only when AOV
Treatment P(F) is significant at mean comparison OSL"] .
Código de plaga ("Pest Code")
MELGSP, = Meloidogyne sp . |
Código de cultivo ("Crop Code")
LYPES, BVSO, = Lycopersicon esculentum
Parte considerada ("Part Rated")
ROOT = Raíz
C = El cultivo es considerado en parte ("Crop is Part Rated") Tipo de datos valorados ("Rating Data Type")
DAMNEM = DAÑOS - NEMÁTODO ("DAMAGE - NEMATODE")
CONTRO = CONTROL / BURNDOWN or KNOCKDOWN
Unidad de valoración ("Rating Unit")
0-10 = 0-10 INDEX/ SCALE
%UNCK = PERCENT OF UNTREATED CHECK
Unidad de tamaño de muestra ("Sample Size Unit")
PLANT = Planta ("Plant")
ARM Action Codes
TAB [ 2 ] = Abbott (% de No tratados -% of Untreated-) [2]
Número de nota al pie ("Footnote Number")
Nota al pié n° 1 ("Footnote 1") : índice de nodulación en raíz en una escala 0-10 ("Root gall Index in a 0-10 scale") .
Nota al pié n° 2 ("Footnote 2") : Eficacia Abbott (%) sobre la nodulación en raíz [Abbott efficacy (%) on root galling] . s sin tratar vRaw Data' Tablas 17 a 21
Tabla 17
Pest Code MELGSP MELGSP
Crop Code APUGV LYPES
Part Rated ROOT C ROOT C
Rating Date May/06/2009 Jul/17/2009
Rating Data Type DAMNEM DAMNEM
Rating Unit 0-10 0-10
Sample Size 10 10
Sample Size Unit PLANT PLANT
Footnote Number 1 1
Trt-Eval Interval -16 DA-A 28 DA-E
ARM Action Codes
Trt No. Plot Sub
1 103 1 2 3
2 3 3
3 2 6
4 3 3
5 2 5
6 2 3
7 4 2
8 2 6
9 2 3
10 2 4
1 201 1 4 5
2 2 7
3 3 5
4 2 5
5 2 8
6 2 5
7 2 9
8 4 6
9 4 7
10 3 6 Tabla 17 (Cont.)
Pest Code MELGSP MELGSP
Crop Code APUGV LYPES
Part Rated ROOT C ROOT C
Rating Date May/06/2009 Jul/17/2009
Rating Data Type DAMNEM DAMNEM
Rating Unit 0-10 0-10
Sample Size 10 10
Sample Size Unit PLANT PLANT
Footnote Number 1 1
Trt-Eval Interval -16 DA-A 28 DA-E
ARM Action Codes
Trt No. Plot Sub
1 303 1 2 6
2 2 4
3 2 7
4 3 3
5 3 4
6 2 4
7 3 4
8 2 6
9 4 7
10 2 8
1 404 1 0 5
2 1 4
3 0 4
4 1 3
5 1 3
6 2 5
7 3 5
8 2 6
9 1 4
10 3 5 Tabla 18
Pest Code MELGSP MELGSP
Crop Code APUGV LYPES
Part Rated ROOT C ROOT C
Rating Date May/06/2009 Jul/17/2009
Rating Data Type DAMNEM DAMNEM
Rating Unit 0-10 0-10
Sample Size 10 10
Sample Size Unit PLANT PLANT
Footnote Number 1 1
Trt-Eval Interval -16 DA-A 28 DA-E
ARM Action Codes
Trt No. Plot Sub
2 105 1 1 3
2 2 3
3 2 2
4 2 2
5 1 1
6 2 4
7 2 4
8 1 2
9 4 1
10 3 2
2 205 1 2 2
2 1 1
3 2 5
4 1 3
5 0 2
6 0 1
7 1 2
8 1 5
9 2 2
10 2 3 Tabla 18 (Cont.)
Pest Code MELGSP MELGSP
Crop Code APUGV LYPES
Part Rated ROOT C ROOT C
Rating Date May/06/2009 Jul/17/2009
Rating Data Type DAMNEM DAMNEM
Rating Unit 0-10 0-10
Sample Size 10 10
Sample Size Unit PLANT PLANT
Footnote Number 1 1
Trt-Eval Interval -16 DA-A 28 DA-E
ARM Action Codes
Trt No. Plot Sub
2 304 1 1 1
2 3 5
3 2 2
4 2 6
5 3 2
6 2 3
7 4 5
8 2 7
9 0 3
10 2 6
2 405 1 3 0
2 3 7
3 3 5
4 5 6
5 3 6
6 4 8
7 7 3
8 3 3
9 3 6
10 2 6 Tabla 19
Pest Code MELGSP MELGSP
Crop Code APUGV LYPES
Part Rated ROOT C ROOT C
Rating Date May/06/2009 Jul/17/2009
Rating Data Type DAMNEM DAMNEM
Rating Unit 0-10 0-10
Sample Size 10 10
Sample Size Unit PLANT PLANT
Footnote Number 1 1
Trt-Eval Interval -16 DA-A 28 DA-E
ARM Action Codes
Trt No. Plot Sub
3 101 1 2 6
2 2 8
3 4 7
4 2 6
5 0 7
6 2 5
7 2 5
8 4 5
9 6 4
10 2 3
3 203 1 2 5
2 3 7
3 3 4
4 2 3
5 2 3
6 5 6
7 3 6
8 2 8
9 2 4
10 2 4 Tabla 19 (Cont.)
Pest Code MELGSP MELGSP
Crop Code APUGV LYPES
Part Rated ROOT C ROOT C
Rating Date May/06/2009 Jul/17/2009
Rating Data Type DAMNEM DAMNEM
Rating Unit 0-10 0-10
Sample Size 10 10
Sample Size Unit PLANT PLANT
Footnote Number 1 1
Trt-Eval Interval -16 DA-A 28 DA-E
ARM Action Codes
Trt No. Plot Sub
3 302 1 3 4
2 0 5
3 2 3
4 1 3
5 2 4
6 1 6
7 3 7
8 2 6
9 1 4
10 2 7
3 403 1 2 3
2 2 6
3 2 7
4 2 2
5 0 6
6 1 7
7 0 7
8 1 6
9 1 6
10 2 3 Tabla 20
Pest Code MELGSP MELGSP
Crop Code APUGV LYPES
Part Rated ROOT C ROOT C
Rating Date May/06/2009 Jul/17/2009
Rating Data Type DAMNEM DAMNEM
Rating Unit 0-10 0-10
Sample Size 10 10
Sample Size Unit PLANT PLANT
Footnote Number 1 1
Trt-Eval Interval -16 DA-A 28 DA-E
ARM Action Codes
Trt No. Plot Sub
4 102 1 2 2
2 2 3
3 2 2
4 3 4
5 2 2
6 3 2
7 2 0
8 3 2
9 3 4
10 2 3
4 202 1 1 8
2 4 7
3 3 2
4 2 6
5 1 5
6 3 5
7 1 5
8 3 3
9 2 3
10 5 4 Tabla 20 (Cont. )
Pest Code MELGSP MELGSP
Crop Code APUGV LYPES
Part Rated ROOT C ROOT C
Rating Date May/06/2009 Jul/17/2009
Rating Data Type DAMNEM DAMNEM
Rating Unit 0-10 0-10
Sample Size 10 10
Sample Size Unit PLANT PLANT
Footnote Number 1 1
Trt-Eval Interval -16 DA-A 28 DA-E
ARM Action Codes
Trt No. Plot Sub
4 301 1 4 4
2 3 6
3 5 6
4 4 7
5 4 9
6 2 8
7 3 9
8 4 2
9 4 8
10 2 10
4 402 1 2 8
2 2 2
3 1 1
4 1 0
5 2 2
6 2 0
7 1 0
8 1 0
9 2 2
10 1 2 Tabla 21
Pest Code MELGSP MELGSP
Crop Code APUGV LYPES
Part Rated ROOT C ROOT C
Rating Date May/06/2009 Jul/17/2009
Rating Data Type DAMNEM DAMNEM
Rating Unit 0-10 0-10
Sample Size 10 10
Sample Size Unit PLANT PLANT
Footnote Number 1 1
Trt-Eval Interval -16 DA-A 28 DA-E
ARM Action Codes
Trt No. Plot Sub
5 104 1 1 4
2 2 3
3 1 1
4 2 1
5 3 2
6 3 9
7 2 2
8 1 5
9 2 3
10 2 5
5 204 1 3 7
2 2 5
3 4 2
4 4 2
5 5 2
6 5 2
7 5 8
8 3 6
9 7 8
10 7 7 Tabla 21 (Cont. )
Figure imgf000061_0001
2.5. Discusión
2.5.1. Agallamiento de raíz (Figuras 11 y 13 a 15) .
Los niveles poblacionales del parásito fueron medios durante el ensayo, alcanzando las raices de las plantas no tratadas un índice de 5 [Figura 11, columna (1); Figura 13] en una escala de 0-10 al final del ensayo (aprox.2 meses tras el transplante) . Los tratamientos ensayados mostraron valores similares . La composición microbiana de la invención sola (COMP., columna (2) de la Figura 11) y combinada con extracto de Tagetes fermentado
(COMP. + EXT. TAC, columna (5) de la Figura 11 y Figura 14) mostraron los valores de agallamiento más bajos (3,5 y 3,6, respectivamente) , seguido del estándar químico phenamiphos
(PHEN., columna (4) de la Figura 11) con un índice de 4,0. El índice más elevado se observó para el estándar biológico de extracto de Quillay (QL) , con un índice de agallamiento de 5,2
[Figura 11, columna (3); y Figura 15] . No se hallaron diferencias estadísticas .
2.5.2. Eficacia (Figura 12)
Cuando se evaluó la eficacia en el agallamiento de la raíz, los mejores resultados se obtuvieron con el estándar químico phenamiphos (PHEN., 30,5% de eficacia), seguido muy de cerca por la composición microbiana de la invención experimental, tanto sóla (COMP.) como combinada con extracto de Tagetes fermentado
(COMP. + EXT. TAC), con un 30% y un 26,8% de eficacia, respectivamente. El estándar biológico de extracto de Quillay
(QL) obtuvo el valor más bajo de eficacia. No se hallaron diferencias estadísticas .
2.5.3. Otros resultados relevantes
No se observaron síntomas de fitotoxicidad en ningún tratamiento, ni tampoco se observaron problemas de manejo de la composición microbiana de la invención.
2.6. Conclusión
En el ensayo del ejemplo 2 realizado, con una población media de nematodos, una composición de la invención (COMP.) tal como se describe en la Tabla 8 del ejemplo 1 mostró un control en la población de nematodos comparable al obtenido con un estándar químico como el phenamiphos (PHEN.), y mejor que cuando se utiliza el extracto de Quillay (QL) . Además, se comprobó que la composición de la invención anterior, aplicada tres veces a una dosis de 10 litros por hectárea, fue segura para el cultivo. Asimismo, la aplicación de un extracto de Tagetes fermentado (EXT. TAC) previa a la aplicación de la composición de la invención no mejoraron los resultados obtenidos con dicha composición .

Claims

REIVINDICACIONES
1. Composición microbiana útil para prevenir y/o tratar una infestación por nematodos en una planta, caracterizada por que comprende : a) al menos una cepa microbiana con actividad ureasa; b) un medio liquido fertilizante que comprende: b. • 1) una fuente de aminoácidos ,
b. • 2) una fuente de ácidos fúlvicos ,
b. .3) una fuente de nitrógeno ureico,
b. • 4) una fuente de nutrientes ,
b. .5) agua .
2. Composición microbiana según la reivindicación 1, que presenta una viabilidad microbiana de al menos un 80% durante al menos un año .
3. Composición microbiana según una cualquiera de las reivindicaciones 1 ó 2, donde la cepa microbiana es Bacíllus spp.
4. Composición microbiana según una cualquiera de las reivindicaciones 1 a 3, donde la cepa microbiana comprende una cepa de Bacíllus subtilis .
5. Composición microbiana según una cualquiera de las reivindicaciones 1 a 4, donde la cepa microbiana comprende Bacíllus subtilis DSM 24682.
6. Composición microbiana según una de las reivindicaciones 4 ó 5 que, además de la cepa de Bacíllus subtilis, comprende una cepa microbiana adicional de Bacíllus spp. que se selecciona entre al menos una del grupo compuesto por: cepa de Bacíllus thuríngíensís, cepa de Bacíllus megatheríum, cepa de Bacíllus lícheníformís y cualquier combinación de las mismas.
7. Composición microbiana según una cualquiera de las reivindicaciones 1 a 6, donde el medio liquido fertilizante comprende : b.l) entre un 45% y un 95% en peso de la fuente de aminoácidos con respecto al volumen total de composición, b . 2 ) entre un 1% y un 20% en peso de la fuente de ácidos fúlvicos con respecto al volumen total de composición, b . 3) entre un 1% y un 20% en peso de la fuente de nitrógeno ureico con respecto al volumen total de composición,
b . 4 ) entre un 1% y un 10% en peso de la fuente de nutrientes con respecto al volumen total de composición, y b . 5) entre un 0% y un 52% en peso de agua con respecto al volumen total de composición, de tal manera que la suma total de los porcentajes en peso de todos los componentes de la composición sea del 100%.
8. Composición microbiana según una cualquiera de las reivindicaciones 1 a 7, donde el medio liquido fertilizante comprende : b . l ) entre un 60% y un 80% en peso de la fuente de aminoácidos con respecto al volumen total de composición, b . 2 ) entre un 5% y un 15% en peso de la fuente de ácidos fúlvicos con respecto al volumen total de composición, b . 3) entre un 8% y un 12% en peso de la fuente de nitrógeno ureico con respecto al volumen total de composición,
b . 4 ) entre un 2% y un 4% en peso de la fuente de nutrientes con respecto al volumen total de composición, y b . 5) entre un 0% y un 25% en peso de agua con respecto al volumen total de composición, de tal manera que la suma total de los porcentajes en peso de todos los componentes de la composición sea del 100%.
9. Composición microbiana según una cualquiera de las reivindicaciones 1 a 8, caracterizada porque la fuente aminoácidos es de origen vegetal .
10. Composición microbiana según una cualquiera de las reivindicaciones 1 a 8, caracterizada porque la fuente de aminoácidos es un hidrolizado de proteina vegetal.
11. Composición microbiana según una cualquiera de las reivindicaciones 1 a 10, caracterizada porque la fuente de ácidos fúlvicos es una sal de ácido lignosulfónico .
12. Composición microbiana según la reivindicación 11, caracterizada porque la fuente de ácidos fúlvicos es lignosulfonato potásico .
13. Composición microbiana según una de las reivindicaciones 1 a
12, caracterizada porque la fuente de nitrógeno ureico es urea.
14. Composición microbiana según una de las reivindicaciones 1 a
13, caracterizada porque la fuente de nutrientes es melaza.
15. Composición microbiana según una de las reivindicaciones 1 a
14, caracterizada porque la cepa o cepas microbianas se encuentran en una cantidad comprendida entre 103 y 109 unidades formadoras de colonias por mililitro de composición.
16. Uso de una composición de una cualquiera de las reivindicaciones 1 a 15 para tratar y/o prevenir una infestación por nematodos en un cultivo vegetal.
17. Un método para tratar y/o prevenir una infestación por un nematodo en un cultivo de una planta que comprende aplicar a la superficie de dicho cultivo una composición microbiana de una cualquiera de las reivindicaciones 1 a 15.
18. El método según la reivindicación 17, caracterizado porque dicha aplicación comprende: i . un primer riego de la planta con una disolución acuosa de la composición microbiana, donde dicha disolución presenta una concentración microbiana comprendida entre 103 y 109 ufe por litro de disolución, a una dosis de riego comprendida entre 10 y 30 litros de la disolución acuosa por hectárea de cultivo.
19. Un método según la reivindicación 18, caracterizado porque, además del primer riego, dicha aplicación también comprende: ii . un segundo riego de la planta con una disolución acuosa de la composición microbiana como la definida en i para el primer riego, después de un periodo de tiempo comprendido entre 10 y 20 días, respecto del primer riego .
20 . Un método según una cualquiera de las reivindicaciones 17 a
19, caracterizado porque el nematodo es Meloidogyne spp..
21 . Un método según una cualquiera de las reivindicaciones 17 a
20, caracterizado porque la planta es tomate.
22. Un kit que comprende una cepa microbiana con actividad ureasa y un liquido fertilizante, según se definen en una cualquiera de las reivindicaciones 1 a 15.
PCT/ES2013/070175 2013-01-31 2013-03-15 Composicion microbiana útil contra nematodos de cultivos vegetales WO2014118401A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201330111 2013-01-31
ES201330111A ES2490395B1 (es) 2013-01-31 2013-01-31 Composición microbiana útil contra nematodos de cultivos vegetales

Publications (1)

Publication Number Publication Date
WO2014118401A1 true WO2014118401A1 (es) 2014-08-07

Family

ID=51261493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070175 WO2014118401A1 (es) 2013-01-31 2013-03-15 Composicion microbiana útil contra nematodos de cultivos vegetales

Country Status (2)

Country Link
ES (2) ES2490395B1 (es)
WO (1) WO2014118401A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9622484B2 (en) 2014-12-29 2017-04-18 Fmc Corporation Microbial compositions and methods of use for benefiting plant growth and treating plant disease

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008025108A1 (en) * 2006-08-29 2008-03-06 Empresa Brasileira De Pesquisa Agropecuária - Embrapa Composition based on bacillus spp. and correlate genera and their use in pest control
BRPI0604602A (pt) * 2006-10-13 2008-05-27 Marcus Macedo Cazarre utilização de rizobactérias do gênero bacillus subtilis e bacillus licheniformis no controle de fitonematóides de solo
WO2012020014A1 (en) * 2010-08-10 2012-02-16 Chr. Hansen A/S Nematocidal composition comprising bacillus subtilis and bacillus licheniformis
WO2012037352A2 (en) * 2010-09-15 2012-03-22 Microbes, Inc. Methods and compositions for reducing pathogens in soil and improving plant growth

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008025108A1 (en) * 2006-08-29 2008-03-06 Empresa Brasileira De Pesquisa Agropecuária - Embrapa Composition based on bacillus spp. and correlate genera and their use in pest control
BRPI0604602A (pt) * 2006-10-13 2008-05-27 Marcus Macedo Cazarre utilização de rizobactérias do gênero bacillus subtilis e bacillus licheniformis no controle de fitonematóides de solo
WO2012020014A1 (en) * 2010-08-10 2012-02-16 Chr. Hansen A/S Nematocidal composition comprising bacillus subtilis and bacillus licheniformis
WO2012037352A2 (en) * 2010-09-15 2012-03-22 Microbes, Inc. Methods and compositions for reducing pathogens in soil and improving plant growth

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9622484B2 (en) 2014-12-29 2017-04-18 Fmc Corporation Microbial compositions and methods of use for benefiting plant growth and treating plant disease
US10375964B2 (en) 2014-12-29 2019-08-13 Fmc Corporation Microbial compositions and methods of use for benefiting plant growth and treating plant disease

Also Published As

Publication number Publication date
ES2490395A1 (es) 2014-09-03
ES2555674A1 (es) 2016-01-07
ES2490395B1 (es) 2015-06-16
ES2555674B1 (es) 2016-10-11

Similar Documents

Publication Publication Date Title
ES2378040B1 (es) Un preparado biológico bionematicida y estimulador del crecimiento vegetal y cultivos puros de las cepas denominadas n11, sr11 y alo1, contenidas en el mismo.
ES2774163T3 (es) Cepa de Bacillus sp. con actividad antifúngica, antibacteriana y de promoción del crecimiento
CN104508116B (zh) 杀虫黄杆菌菌株和生物活性组合物、代谢物和用途
CN101891548B (zh) 一种三株地衣芽孢杆菌制作的多效微生物菌肥
CN101864378B (zh) 细黄链霉菌
CN109679884B (zh) 一株能减少氮磷肥施用的玉米高效促生菌及其应用
Salman et al. Potential for integrated biological and chemical control of damping-off disease caused by Pythium ultimum in tomato
Gnanamangai et al. Evaluation of various fungicides and microbial based biocontrol agents against bird’s eye spot disease of tea plants
BR112013002854B1 (pt) Uso de uma composição nematocida compreendendo bacillus subtilis e bacillus licheniformis, e processos para controle e/ou combate de fitonematoides, e para conferir resistência
CN101481668A (zh) 杀棉叶螨苏云金芽孢杆菌悬浮剂、制备方法及应用
CN101822273B (zh) 一株细黄链霉菌在苜蓿病害防治中的应用
Anahosur Mundkur Memorial Award Lecture-Integrated management of potato Sclerotium wilt caused by Sclerotium rolfsii
WO2017089641A1 (es) Composiciones bioestimulantes de plantas que comprenden cepas de microorganismos
Sabeti et al. Effect of plant growth promoting Rhizobacteria (PGPR) on the seed germination, seedling growth and photosynthetic pigments of Astragalus caragana under drought stress
Dekak et al. Endophytic passenger bacteria associated with Genista cinerea nodules growing in North African drylands
CN107427011A (zh) 预防农作物和观赏植物中,优选葡萄种植和木本植物中的感染的方法
Khaeruni et al. Induction of soybean resistance to bacterial pustule disease (Xanthomonas axonopodis pv. glycines) by rhizobacteria and organic material treatment
CN107306999A (zh) 一种基于申嗪霉素的杀菌组合物及含有该组合物的杀菌剂
US11737466B2 (en) Method of improving the ability of plants to resistance diseases
Yücel et al. Alternative treatments to methyl bromide in the Eastern Mediterranean region of Turkey
ES2555674B1 (es) Composicion microbiana util contra nematodos de cultivos vegetales
Patkowska et al. Occurrence of antagonistic fungi in the soil after cover crops cultivation.
CN110800761B (zh) 一种用于防治根结线虫的含信号蛋白组合物及其制备方法和应用
ES2307870T3 (es) Composicion bactericida, bacteriostatica y fingicida que comprende dos o mas especies vivas de trichoderma.
Dircio et al. Bacillus licheniformis M2-7 improves growth, development and yield of Capsicum annuum L.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874167

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: P201590038

Country of ref document: ES

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874167

Country of ref document: EP

Kind code of ref document: A1