WO2014117665A1 - 链路状态检测装置及其工作方法 - Google Patents

链路状态检测装置及其工作方法 Download PDF

Info

Publication number
WO2014117665A1
WO2014117665A1 PCT/CN2014/071019 CN2014071019W WO2014117665A1 WO 2014117665 A1 WO2014117665 A1 WO 2014117665A1 CN 2014071019 W CN2014071019 W CN 2014071019W WO 2014117665 A1 WO2014117665 A1 WO 2014117665A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
detection
core network
sampling
data
Prior art date
Application number
PCT/CN2014/071019
Other languages
English (en)
French (fr)
Inventor
韩文勇
周文涛
刘清顺
沈智敏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2014117665A1 publication Critical patent/WO2014117665A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present invention relates to the field of communications, and in particular, to a link state detecting apparatus and a working method thereof. Background technique
  • Embodiments of the present invention provide a link state detecting apparatus and a method of operating the same, which are invented for efficiently evaluating link communication quality of a mobile broadband.
  • a detecting network element including:
  • a communication module configured to interact with a core network gateway
  • the link detection initiation request carries a startup parameter, where the startup parameter includes a detection mode, where the detection mode includes an access network detection mode or a core network Detection mode
  • the link state parameter includes a link detected in the access network detection mode or the core network detection mode Data transmission delay and data transmission rate in each sampling period;
  • the startup parameter further includes: a user equipment identifier, a bearer identifier, a sampling period, a sampling window, and a reporting period, where the sampling window is data in the sampling period. Sampling for a continuous period of time.
  • the determining, by the processor, whether the link state is faulty according to the link state parameter specifically:
  • the processor is configured to: if a data transmission delay in one sampling period is greater than a specified delay and a data transmission rate in the one sampling period is less than a predetermined rate, determining that the one sampling period is a sampling with a poor link state Period; if the sampling period of the bad link state occupies a proportion in the total number of sampling periods greater than a prescribed ratio, it is determined that the detected link state is bad.
  • the specified ratio is 30% to 80%.
  • the processor is further configured to:
  • a core network gateway including:
  • a communication module configured to interact with the detecting network element
  • the link detection initiation request carries a startup parameter
  • the startup parameter includes a detection mode
  • the detection mode is a core network detection mode
  • the startup parameter further includes: a user equipment identifier, a bearer identifier, a sampling period, a sampling window, and a reporting period, where the sampling window is data in the sampling period. Sampling for a continuous period of time.
  • the processor is configured to sample data transmitted on the link according to the link detection initiation request, and specifically includes:
  • the processor is used to:
  • the processor is configured to perform a first operation on the sampled data to obtain a link state parameter, where the method includes: In:
  • the that is used by the processor to send the link state parameter to the detecting network element by using the communications module includes:
  • a core network gateway including:
  • a communication module configured to interact with a detection network element or an access network
  • the link detection initiation request carries a startup parameter
  • the startup parameter includes a detection mode
  • the detection mode is an access network detection mode
  • the processor is configured to forward, by using the communications module, the link detection initiation request to the access network, specifically:
  • the processor is configured to forward, by the communication module, the link detection initiation request to the access network by using an extension header of a general packet radio service GPRS tunneling protocol user plane part in a downlink data packet.
  • the processor is configured to receive, by using the communications module, a link state parameter from the access network, specifically:
  • the processor is configured to receive, by the communication module, a link state parameter from the access network using an extended header of a user plane portion of a general packet radio service GPRS tunneling protocol in an uplink data packet.
  • an access network element including:
  • a communication module configured to interact with a core network gateway
  • the link detection initiation request carries a startup parameter, where the startup parameter includes a detection mode, and the detection mode
  • the mode is an access network detection mode
  • the startup parameter further includes: a user equipment identifier, a bearer identifier, a sampling period, a sampling window, and a reporting period, where the sampling window is data in the sampling period. Sampling for a continuous period of time.
  • the processor is configured to sample data transmitted on the link according to the link detection start request, and specifically includes:
  • the processor is used to:
  • Data transmitted on the link is sampled within the sampling window in the respective sampling periods, each of the sampling periods including one of the sampling windows.
  • the processor is configured to perform a second operation on the sampled data to obtain a link state parameter, where the method includes: , for:
  • All packets flowing through the sampling window in each of the sampling periods are added by the time of the radio link control RLC layer of the air interface protocol stack and divided by the number of the data packets to obtain each of the samples. Data transmission delay in the period.
  • a link state detection method including:
  • the detecting network element sends a link detection start request to the core network gateway, and the link detection start request Carrying a startup parameter, where the startup parameter includes a detection mode, the detection mode includes an access network detection mode or a core network detection mode, and the detection network element is a network component connected to the core network gateway; the detection network element Receiving a link state parameter from the core network gateway, where the link state parameter includes a data transmission delay in each sampling period of the link detected in the access network detection mode or the core network detection mode And data transmission rate;
  • the detecting network element determines whether the link status is bad according to the link state parameter.
  • the startup parameter further includes: a user equipment identifier, a bearer identifier, a sampling period, a sampling window, and a reporting period, where the sampling window is data in the sampling period. Sampling for a continuous period of time.
  • the step of determining, by the detecting network element, whether the link state is bad according to the link state parameter specifically includes:
  • the data transmission delay in one sampling period is greater than a specified delay and the data transmission rate in the one sampling period is less than a specified rate, determining that the one sampling period is a sampling period with a poor link state;
  • the sampling period of the bad link state occupies a proportion in the total number of sampling periods greater than a prescribed ratio, it is determined that the detected link state is bad.
  • the specified ratio is 30% to 80%.
  • the method further includes:
  • the detecting network element sends a link detection stop request to the core network gateway.
  • a link state detection method including:
  • the core network gateway receives a link detection initiation request from the detection network element, where the link detection initiation request carries a startup parameter, the startup parameter includes a detection mode, and the detection mode is a core network detection mode, and the detection network element is a network element connected to the core network gateway;
  • the core network gateway extracts data transmitted on the link according to the link detection initiation request.
  • the core network gateway performs a first operation on the sampled data to obtain a link state parameter, where the link state parameter includes a data transmission delay in each sampling period of the link detected in the core network detection mode.
  • Data transmission rate includes a data transmission delay in each sampling period of the link detected in the core network detection mode.
  • the core network gateway sends the link state parameter to the detection network element.
  • the startup parameter further includes: a user equipment identifier, a bearer identifier, a sampling period, a sampling window, and a reporting period, where the sampling window is data in the sampling period. Sampling for a continuous period of time.
  • the step of the core network gateway sampling the data transmitted on the link according to the link detection initiation request includes:
  • the core network gateway samples data transmitted on the link within the sampling window in the respective sampling periods, and each of the sampling periods includes one sampling window.
  • the step that the core network gateway performs the first operation on the sampled data to obtain the link state parameter includes:
  • the core network gateway divides the amount of data flowing in the sampling window in each of the sampling periods by the sampling window to obtain a data transmission rate in each sampling period;
  • the core network gateway adds, in a sampling window in each of the sampling periods, a delay of all data streams included in the link, and then divides the number of data streams in the link to obtain a data transmission delay in each sampling period, where the delay of the data stream is a transmission control protocol TCP packet from the Internet to which the core network gateway receives the data stream to the core network
  • the time between the receipt of the response message from the user equipment for the Transmission Control Protocol TCP packet is returned by the gateway.
  • the step that the core network gateway sends the link state parameter to the detecting network element specifically includes: the core network The gateway periodically sends the link state parameter to the detection network element according to the reporting period.
  • a link state detection method including:
  • the core network gateway receives a link detection initiation request from the detection network element, where the link detection initiation request carries a startup parameter, the startup parameter includes a detection mode, and the detection mode is an access network detection mode, and the detection network element a network component connected to the core network gateway;
  • the core network gateway forwards the link detection initiation request to the access network
  • the core network gateway receives a link state parameter from the access network, where the link state parameter includes data transmission delay and data in each sampling period of the link detected in the access network detection mode. Transmission rate;
  • the core network gateway forwards the link state parameter to the detection network element.
  • the step of the core network gateway forwarding the link detection initiation request to the access network includes:
  • the core network gateway forwards the link detection initiation request to the access network by using an extension header of a user plane part of a general packet radio service GPRS tunneling protocol in a downlink data packet.
  • the step of the core network gateway receiving the link state parameter from the access network includes:
  • the core network gateway receives link state parameters from the access network through an extension header of a user plane portion of a general packet radio service GPRS tunneling protocol in an uplink data packet.
  • a link state detection method including:
  • the access network receives a link detection initiation request from the core network gateway, where the link detection initiation request carries a startup parameter, the startup parameter includes a detection mode, and the detection mode is an access network detection mode;
  • the access network samples data transmitted on the link according to the link detection initiation request;
  • the access network performs a second operation on the sampled data to obtain a link state parameter, where the link state parameter includes a data transmission delay in each sampling period of the link detected in the access network detection mode. And data transmission rate;
  • the access network sends the link state parameter to the core network gateway.
  • the startup parameter further includes: a user equipment identifier, a bearer identifier, a sampling period, a sampling window, and a reporting period, where the sampling window is data in the sampling period. Sampling for a continuous period of time.
  • the step of the access network sampling the data transmitted on the link according to the link detection initiation request includes:
  • each of the sampling periods includes one of the sampling windows.
  • the step of performing a second operation on the sampled data by the access network to obtain the link state parameter specifically includes:
  • the access network divides the amount of data flowing in the sampling window in each of the sampling periods by the sampling window to obtain a data transmission rate in each of the sampling periods;
  • the access network divides all data packets flowing in the sampling window in each sampling period by the time of the radio link control RLC layer of the air interface protocol stack, and divides the number of the data packets to obtain The data transmission delay in each of the sampling periods.
  • a detecting network element including:
  • a first sending unit configured to send a link detection initiation request to the core network gateway, where the link detection initiation request carries a startup parameter, where the startup parameter includes a detection mode, where the detection mode includes an access network detection mode or a core network a detection mode, where the detection network element is a network component connected to the core network gateway;
  • a first receiving unit configured to receive a link state parameter from the core network gateway, where the link state parameter includes each sample of a link detected in the access network detection mode or the core network detection mode Data transmission delay and data transmission rate in the period;
  • a determining unit configured to determine, according to the link state parameter, whether the link state is bad.
  • the startup parameter further includes: a user equipment identifier, a bearer identifier, a sampling period, a sampling window, and a reporting period, where the sampling window is data in the sampling period. Sampling for a continuous period of time.
  • the determining unit is specifically configured to: if a data transmission delay in one sampling period is greater than a specified delay and a data transmission rate in the one sampling period is less than Determining a rate, determining that the one sampling period is a sampling period with a bad link state;
  • the sampling period of the bad link state occupies a proportion in the total number of sampling periods greater than a prescribed ratio, it is determined that the detected link state is bad.
  • the first sending unit is further configured to: send a link detection stop request to the core network gateway.
  • a core network gateway including:
  • a second receiving unit configured to receive a link detection initiation request from the detection network element, where the link detection initiation request carries a startup parameter, the startup parameter includes a detection mode, and the detection mode is a core network detection mode, Detecting the network element as a network component connected to the core network gateway;
  • a first sampling unit configured to sample data transmitted on the link according to the link detection initiation request
  • a first calculating unit configured to perform a first operation on the sampled data to obtain a link state parameter, where the link state parameter includes data transmission in each sampling period of the link detected in the core network detection mode Deferred data transmission rate;
  • the second sending unit is configured to send the link state parameter to the detecting network element.
  • the startup parameter further includes: A backup identifier, a bearer identifier, a sampling period, a sampling window, and a reporting period, wherein the sampling window is a continuous period of time during which the data is sampled during the sampling period.
  • the first sampling unit is specifically configured to:
  • Data transmitted on the link is sampled within the sampling window in the respective sampling periods, each of the sampling periods including one of the sampling windows.
  • the first calculating unit is specifically configured to:
  • the second sending unit is specifically configured to:
  • a core network gateway including:
  • a third receiving unit configured to receive a link detection initiation request from the detection network element, where the link detection initiation request carries a startup parameter, the startup parameter includes a detection mode, and the detection mode is an access network detection mode, where
  • the detecting network element is a network component connected to the core network gateway;
  • a forwarding unit configured to forward the link detection initiation request to the access network
  • the third receiving unit is further configured to receive a link state parameter from the access network, where
  • the link state parameter includes a data transmission delay and a data transmission rate in each sampling period of the link detected in the access network detection mode;
  • the forwarding unit is further configured to forward the link state parameter to the detection network element.
  • the forwarding unit is specifically configured to: send, by using an extension header of a user plane part of a GPRS tunneling protocol in a downlink data packet, the link detection start request Network forwarding.
  • the third receiving unit is specifically configured to:
  • the link state parameters from the access network are received by an extension header of the user plane portion of the GPRS tunneling protocol in the upstream data packet.
  • an access network including:
  • a fourth receiving unit configured to receive a link detection initiation request from a core network gateway, where the link detection initiation request carries a startup parameter, the startup parameter includes a detection mode, and the detection mode is an access network detection mode; Sampling
  • a second calculating unit configured to perform a second operation on the sampled data to obtain a link state parameter, where the link state parameter includes data transmission in each sampling period of the link detected in the access network detection mode Delay and data transmission rate;
  • a fourth sending unit configured to send the link state parameter to the core network gateway.
  • the starting parameter further includes: a user equipment identifier, a bearer identifier, a sampling period, a sampling window, and a reporting period, where the sampling window is performed in the sampling period A continuous period of time for data sampling.
  • the second sampling unit is specifically configured to:
  • the second calculating unit is specifically configured to:
  • All packets flowing through the sampling window in each of the sampling periods are added by the time of the radio link control RLC layer of the air interface protocol stack and divided by the number of the data packets to obtain each of the samples. Data transmission delay in the period.
  • the link state detecting apparatus and the working method thereof provided by the embodiment can send a link detection start request to the core network gateway through the detecting network element set at the core network gateway, so that the core network gateway or the connection
  • the network access samples the data transmitted on the link to obtain the link state parameter.
  • the detecting network element can determine the link according to the link state parameter. Whether the status is bad, so that the link communication quality of mobile broadband can be effectively evaluated, which provides conditions for link optimization and improvement.
  • FIG. 1 is a schematic structural diagram of a link state detecting apparatus according to an embodiment of the present invention
  • FIG. 2 is another schematic structural diagram of a link state detecting apparatus according to an embodiment of the present invention
  • FIG. 3 is an implementation of the present invention.
  • FIG. 4 is a schematic diagram of a delay measurement of a link state detecting apparatus according to an embodiment of the present invention.
  • FIG. 5 is another schematic structural diagram of a link state detecting apparatus according to an embodiment of the present invention
  • FIG. 6 is another schematic structural diagram of a link state detecting apparatus according to an embodiment of the present invention
  • Another delay measurement diagram of the link state detecting device provided by the embodiment is another schematic structural diagram of a link state detecting apparatus according to an embodiment of the present invention.
  • FIG. 8 is another schematic structural diagram of a link state detecting apparatus according to an embodiment of the present invention
  • FIG. 9 is another schematic structural diagram of a link state detecting apparatus according to an embodiment of the present invention
  • FIG. 11 is another schematic structural diagram of a link state detecting apparatus according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram of a link state detecting apparatus according to an embodiment of the present invention
  • FIG. 13 is another flowchart of a link state detection method according to an embodiment of the present invention
  • FIG. 15 is another flowchart of a link state detection method according to an embodiment of the present invention
  • FIG. 16 is a specific flowchart of a link state detection method according to an embodiment of the present invention
  • FIG. 17 is another specific flowchart of a link state detection method according to an embodiment of the present invention.
  • An embodiment of the present invention provides a detecting network element 1, as shown in FIG. 1, including:
  • a communication module 11 configured to interact with a core network gateway
  • the processor 12 is configured to:
  • a link detection initiation request to the core network gateway, where the link detection initiation request carries a startup parameter, where the startup parameter includes a detection mode, and the detection mode includes Access network detection mode or core network detection mode;
  • the detecting network element 1 provided in this embodiment can send a link detection start request to the core network gateway, and receive a link state parameter from the core network gateway, and then determine according to the link state parameter. Whether the link status is bad, so that the link communication quality of the mobile broadband can be effectively evaluated, which provides conditions for link optimization and improvement.
  • the processor 12 detects, by using the link detection initiation request sent by the communication module 11, the detection mode in the startup parameter may be an access network detection mode or a core network detection mode.
  • the detection mode is the access network detection mode
  • the detecting network element indicates, by using the startup parameter, that the core network gateway continues to forward the link detection initiation request to the access network, so as to detect the link state on the access network side;
  • the detection mode is the core network detection mode
  • the detecting network element instructs the core network gateway to detect the link state at the core network gateway by using the startup parameter.
  • the detecting network element 1 is a separate device connected to the core network gateway but independent of the core network gateway, but the present invention is not limited thereto.
  • the detecting network Element 1 can also be integrated as a module in the core network gateway device, or presented in other ways, as long as it can perform its corresponding function.
  • the detecting network element 1 receives a link state parameter from the core network gateway, where the link state parameter may include data of multiple forms and different characteristics, as long as the data can represent the detected link.
  • the data transfer effect is sufficient. For example, in one embodiment of the invention, the data transmission rate.
  • the processor 12 of the detecting network element 1 can determine whether the link state is bad according to the data transmission delay and the data transmission rate in each sampling period, and the processor 12 is specifically configured to: If the data transmission delay in the sampling period is greater than the specified delay and the data transmission rate in the one sampling period is less than the specified rate, it is determined that the sampling period is a sampling period with a bad link state; if the sampling period of the link state is poor, the sampling period is If the proportion occupied by the total number of sampling periods is greater than the prescribed ratio, it is determined that the detected link state is bad.
  • the specified ratio may be adjusted according to different requirements of the link status, for example, may be 30% to 80%.
  • the link state is required to be high, and the specified ratio is determined to be 30%, that is, when the sampling period of the link state is poor, the proportion occupied by the total number of sampling periods is greater than a prescribed ratio. At 30%, the link status is determined to be bad. In another embodiment, the link state requirement is low, and it may be determined that the specified ratio may be, for example, 60%.
  • the startup parameter includes the detection mode, but the embodiment of the present invention is not limited thereto.
  • the startup parameters may further include, for example, one or more of a user equipment identification, a bearer identification, a sampling period, a sampling window, and a reporting period.
  • the sampling window is a continuous period of time during which data is sampled during the sampling period.
  • the processor 12 may indicate the specific location of the link that the core network gateway needs to detect according to the user equipment identifier and the bearer identifier. In this way, it is beneficial to determine the specific conditions of each link more accurately.
  • the detecting network element may instruct the core network gateway how long to sample the data transmitted on the link (sampling period), and the sampling time in each sampling period (sampling window) How long does it take to report to the detection network element (the reporting period)? Therefore, the data transmission state of the link is periodically measured and timed up, so as to stably know the data transmission state of the link.
  • the processor 12 can determine whether the link status is bad according to the link state parameters in the sampling periods. Further, the processor 12 is further configured to send a link detection stop by using the communication module 11. Request to the core network gateway to stop link state detection.
  • each user equipment can establish one or more bearers in communication. Since each bearer has different quality requirements for the mobile broadband network, the present invention The embodiment only analyzes the network quality based on the bearer granularity. As for which specific bearer needs to be measured and the correspondence between the bearer and the service, it is beyond the scope of this case.
  • an embodiment of the present invention further provides a core network gateway 2, including:
  • the communication module 21 is configured to interact with the detecting network element.
  • the processor 22 is configured to:
  • a link detection initiation request from the detection network element, where the link detection initiation request carries a startup parameter, the startup parameter includes a detection mode, and the detection mode is a core network detection mode;
  • the link state parameter is sent by the communication module 21 to the detection network element.
  • the core network gateway 2 provided in this embodiment can receive a link detection initiation request from the detection network element, and sample and transmit the data transmitted on the link according to the link detection initiation request.
  • the data is subjected to a first operation to obtain a link state parameter, and then the link state parameter is sent to the detecting network element, so that the detecting network element determines whether the link state is bad, thereby effectively evaluating the link communication quality of the mobile broadband. , provides conditions for link optimization and improvement.
  • the core network gateway 2 may be a PGW (Packet Data Network Gateway) or a GGSN (Gateway GPRS Support Node), or may be another type of core network gateway. This is not a limitation.
  • the core network gateway 2 may first send a response message of the link detection initiation request to the detection network element through the communication module 21, and then process the link detection. Start the request.
  • the core The processor 22 of the network gateway 2 can learn that the detection mode in the startup parameter is the core network detection mode, and it is also known that the link state detection task will be executed by the core network gateway 2 itself.
  • the startup parameter may further include other, such as a user equipment identifier, a bearer identifier, a sampling period, a sampling window, and a reporting period, etc.
  • the sampling window is a continuous time for sampling the data in the sampling period.
  • the processor 22 may determine the specific location of the link to be detected according to the user equipment identifier and the bearer identifier, thereby facilitating more accurate determination of the specific status of each link.
  • the startup parameters include a sampling period, a sampling window
  • the processor 22 may sample data transmitted on the link within a sampling window in each sampling period, wherein each sampling period includes one sampling window. As shown in FIG. 3, the sampling period T_sample is the time interval between two samples, and the sampling window T_window is a period of sampling the link transmission data in each sampling period T_sample.
  • the processor 22 of the core network gateway 2 performs a first operation on the sampled data to obtain a link state parameter
  • the link state parameter may include data of multiple forms and different characteristics, as long as the data can be characterized.
  • the data transmission effect in the link can be.
  • the link state parameter includes a data transmission delay and a data transmission rate for each sampling period of the detected link.
  • a mobile broadband link bearer may include one or more data streams, for example, in one embodiment of the present invention, one link It contains five data streams, namely 5-tuple (Source IP (Internet Protocol) and destination IP, source port and destination port, protocol number).
  • the data transmission on the link is continuous, and the processor 22 samples the data transmitted on the link according to the period, and only the time of each sampling period is Sampling of the sampling window.
  • the data transmission delay in the sampling period is the average of the delays of all data streams carried by the link within the sampling window of this sampling period.
  • the data transmission delay in the link can be estimated by utilizing the transmission characteristics of the TCP packet. Specifically, in a sampling window in each of the sampling periods, the core network gateway adds the delays of all data streams included in the measured link, and then divides the number of data streams in the link. Obtaining a respective data transmission delay in each sampling period, where a delay of the data stream is received by the core network gateway from the TCP packet of the Internet to the core network gateway to the core network gateway. The time between the response message to the TCP packet returned by the user equipment. That is, the data transmission delay measured by the core network gateway side is the data transmission delay of the link between the user equipment and the core network gateway PGW/GGSN.
  • a data stream such as a source IP, records the TCP packet when receiving a downlink TCP packet for the first time.
  • the sequence number m and the time t1 to the core network gateway PGW/GGSN are then waited to receive a TCP response message for the data packet from the user equipment. If the core network gateway receives the response message of the TCP packet at time t2, the response message corresponding to the TCP packet corresponds to a sequence number of n. If n is greater than m, the downlink TCP packet is considered to have been correctly received by the user equipment, and the downlink RTT (round-trip time) of the data packet is t2-tl.
  • the core network gateway During the sampling window, if there is no data transmission on the detected link, the core network gateway does not sample the data transmission. That is to say, the data transmission sampling by the core network gateway is triggered by data, so that the core network gateway can avoid sampling and processing invalid data, and improve the data sampling efficiency of the core network gateway. At the same time, to avoid resampling, each data stream can be sampled at most once during a sampling window.
  • the TCP response message may be sent as a separate message from the user equipment to the core network gateway, or may be merged with the uplink real data to the core.
  • Heart network gateway transmission these two transmission methods are effective ways to transmit the response message of the TCP packet to the core network gateway, and the time passed to the core network gateway can be used as the basis for calculating the data transmission delay.
  • the core network gateway can divide the amount of data flowing in the sampling window in each sampling period by the sampling window to obtain the data transmission rate in each sampling period.
  • the amount of data flowing in the sampling window in the sampling period may be dispersed in multiple data packets (such as TCP packets) of multiple data streams, and one data packet of one data stream may be the foregoing measurement data.
  • the TCP packet recorded by the transmission delay.
  • the sampling period is T_Sample seconds
  • the sampling window is T-Window seconds
  • S data is sampled in the sampling window of the first sampling period (the first sampling point).
  • the communication module 21 can periodically send the link state parameter to the detection network element according to the reporting period T_Report.
  • the reporting period T—Report can be included in the startup parameters.
  • the reporting period is the period in which the core network gateway 2 reports the link state parameters to the detecting network element.
  • the reporting period T_Report is greater than the sampling period T_Sample, and the data reported to the detecting network element each time may be a link state parameter of one sampling period or several sampling periods.
  • an embodiment of the present invention further provides a core network gateway 3, including: a communication module 31, configured to interact with a detection network element or an access network;
  • the processor 32 is configured to:
  • a link detection initiation request from the detection network element, where the link detection initiation request carries a startup parameter, the startup parameter includes a detection mode, and the detection mode is an access network detection mode;
  • the link state parameter is forwarded to the detection network element by the communication module 31.
  • the core network gateway 3 provided in this embodiment can receive a link detection initiation request from the detection network element, and forward the link detection initiation request to the access network, so that the access network according to the The link detection initiation request obtains the link state parameter of the detected link, and also receives the link state parameter from the access network, and forwards the link state parameter to the detection network element, so that the detection network element is detected. It is determined whether the link status is bad, so that the link communication quality of the mobile broadband is effectively evaluated, which provides conditions for link optimization and improvement.
  • the processor 32 of the core network gateway 3 may first send a response message of the link detection initiation request to the detection network element, and then process the link detection start request.
  • the core network gateway can learn that the detection mode in the startup parameter is the access network detection mode, and it is learned that the link state detection task will be performed by the access gateway.
  • the startup parameters may further include other, such as user equipment identification, bearer identification, sampling period, sampling window, and reporting period.
  • the processor 3 of the core network gateway 3 can use the communication module 31 to detect the link by using an extension header of a GTP-U (GPRS Tunneling Protocol-User plane) in the downlink data packet.
  • the start request is forwarded to the access network.
  • the processor 32 of the core network gateway 3 can use the communication module 31 to receive the link state parameters from the access network through the extension header of the user plane portion of the GPRS tunneling protocol in the uplink data packet.
  • the core network gateway can also forward the link detection initiation request to the access network through other messages or data structures, or receive the link state parameters from the access network, which is not limited by the present invention.
  • an embodiment of the present invention further provides an access network element 4, including: a communication module 41, configured to interact with a core network gateway;
  • the processor 42 is configured to: Receiving, by the communication module 41, a link detection initiation request from the core network gateway, where the link detection initiation request carries a startup parameter, the startup parameter includes a detection mode, and the detection mode is an access network detection mode;
  • the link state parameter is sent by the communication module 41 to the core network gateway.
  • the access network element 4 can receive a link detection initiation request from the core network gateway, and sample and transmit the data transmitted on the link according to the link detection initiation request.
  • the data is subjected to a second operation to obtain a link state parameter, and then the link state parameter is sent to the core network gateway, so that the core network gateway sends the link state parameter to the detection network element, so that the detection network element is determined. Whether the link status is bad, and the link communication quality of the mobile broadband is effectively evaluated to provide conditions for link optimization and improvement.
  • the processor 42 of the access network element 4 may first send a response message of the link detection initiation request to the core network gateway, and then process the link detection initiation request. .
  • the processor 42 of the access network element 4 can use the communication module 41 to receive the link detection initiation request by using an extension header of the user plane part of the GPRS tunneling protocol in the received downlink data packet, and detecting the link through the link.
  • the detection mode in the startup parameters in the start request is learned that the link state detection will be performed by the access network.
  • the startup parameter may further include other components, such as a user equipment identifier, a bearer identifier, a sampling period, a sampling window, and a reporting period, where the sampling window is a continuous period of time during which the data is sampled in the sampling period.
  • the processor 42 of the access network element 4 can determine the specific location of the link to be detected according to the user equipment identifier and the bearer identifier, thereby facilitating more accurate determination. The specific status of each link.
  • the processor 42 of the access network element 4 may The data transmitted on the link is sampled within a sampling window in each sampling period, wherein each sampling period includes a sampling window.
  • the sampling period T_sample is the time interval between two samples
  • the sampling window T_window is a period of sampling the link transmission data in each sampling period T_sample.
  • the processor 42 of the access network element 4 performs a second operation on the sampled data to obtain a link state parameter, where the link state parameter may include data of multiple forms and different characteristics, as long as the data can be characterized
  • the data transmission effect in the detected link can be.
  • the link state parameter includes a data transmission delay and a data transmission rate for each sampling period of the detected link.
  • the processor 42 can be specifically used to:
  • All the packets flowing through the sampling window in each sampling period are added by the time of the RLC (radio link control) layer of the air interface protocol stack, and divided by the number of packets flowing through to obtain The data transmission delay in each of the sampling periods.
  • RLC radio link control
  • the detection mode is the access network detection mode
  • the data transmission delay detected by the access network element 4 is the time of data transmission from the access network to the user equipment.
  • Delay that is, the delay of data passing through the air interface.
  • FIG. 7 shows the RAN (Radio Access Network) in the UMTS (Universal Mobile Telecommunication System) / LTE (Long Term Evolution) mobile broadband network.
  • UP Application
  • PDCP Packet Data Convergence Protocol
  • RLC->MAC Media Access Control
  • L1 Long Term Evolution
  • the link state detection may be performed on the access network side even though the link state detection may be performed on the core network gateway side, but the links of the link states reflected by the two detections are detected.
  • the range is different.
  • the link state detection on the core network gateway side reflects the state of the link between the user equipment and the core network gateway PGW/GGSN, and the link range is large; and the access network side detects the slave access network to the user equipment.
  • the link state between the data that is, the state in which the data passes through the air interface, and the link range is small.
  • the specific range of links to be determined can be selected according to the range of links to be determined.
  • an embodiment of the present invention further provides a detection network element 10, including: a first sending unit 101, configured to send a link detection initiation request to a core network gateway, where the link detection is started.
  • the request carries a startup parameter, where the startup parameter includes a detection mode, where the detection mode includes an access network detection mode or a core network detection mode, and the detection network element is a network component connected to the core network gateway;
  • the first receiving unit 102 is configured to receive a link state parameter from the core network gateway, where the link state parameter includes each link detected in the access network detection mode or the core network detection mode. Data transmission delay and data transmission rate during the sampling period;
  • the determining unit 103 is configured to determine, according to the link state parameter, whether the link state is bad.
  • the detecting network element 10 provided in this embodiment, the first sending unit 101 can send a link detection initiation request to the core network gateway, and the first receiving unit 102 receives the link state parameter from the core network gateway.
  • the determining unit 103 further determines whether the link state is bad according to the link state parameter, so that the link communication quality of the mobile broadband can be effectively evaluated, which provides conditions for link optimization and improvement.
  • the detecting network element 10 is connected to the core network element but is independent. A separate device is set up in the core network gateway, but the present invention is not limited thereto. In other embodiments of the present invention, the detecting network element 10 may also be integrated as a module in the core network gateway device, or in other manners. Rendering, as long as it can complete its corresponding function.
  • the startup parameter may further include one or more of a user equipment identifier, a bearer identifier, a sampling period, a sampling window, and a reporting period, where the sampling window is a segment for performing data sampling in the sampling period. Continuous time.
  • the detecting network element 10 receives the link state parameter from the core network gateway, where the link state parameter may include data of multiple forms and different characteristics, as long as the data can represent the detected link. The data transfer effect is sufficient.
  • the determining unit 3 may be specifically configured to: if a data transmission delay in one sampling period is greater than a specified delay and a data transmission rate in the one sampling period is less than a specified rate, determining the one sampling period as a chain A sampling period in which the path state is poor; if the sampling period in which the link state is bad is occupied by a predetermined ratio in the total number of sampling periods, it is determined that the detected link state is bad.
  • the determining unit 103 can determine whether the link state is bad according to the link state parameters in the sampling periods. Further, the first sending unit 101 is further configured to: send a link detection stop request. Go to the core network gateway.
  • an embodiment of the present invention further provides a core network gateway 20, including: a second receiving unit 201, configured to receive a link detection initiation request from a detection network element, where the link detection is performed.
  • the startup request carries a startup parameter, the startup parameter includes a detection mode, the detection mode is a core network detection mode, the detection network element is a network component connected to the core network gateway, and the first sampling unit 202 is configured to The link detection initiation request samples data transmitted on the link;
  • the first calculating unit 203 is configured to perform a first operation on the sampled data to obtain a link state parameter, where the link state parameter includes data transmission in each sampling period of the link detected in the core network detection mode. Delay and data transmission rate;
  • the second sending unit 204 is configured to send the link state parameter to the detecting network element.
  • the core receiving gateway 201 of the core network gateway 20 in this embodiment can receive a link detection start request from the detecting network element, and the first sampling unit 202 can detect the start request according to the link.
  • the data transmitted on the link is sampled, and the first calculating unit 203 performs a first operation on the sampled data to obtain a link state parameter, and then the second sending unit 204 sends the link state parameter to the detecting network element to enable detection.
  • the network element determines whether the link status is bad, so that the link communication quality of the mobile broadband is effectively evaluated, which provides conditions for link optimization and improvement.
  • the core network gateway 20 may be a PGW or a GGSN, or may be another type of core network gateway, which is not limited by the embodiment of the present invention.
  • the second receiving unit 201 may first send a response message of the link detection initiation request to the detection network element by using the second sending unit 204, and then process the link detection start. request. Specifically, the second receiving unit 201 can perform the parsing of the link detection start request, so that the core network gateway 20 can learn that the detection mode in the startup parameter is the core network detection mode, and the link state detection task is determined by the core network gateway. 20 is executed by itself.
  • the startup parameter may further include at least one of a user equipment identifier, a bearer identifier, a sampling period, a sampling window, and a reporting period.
  • the sampling window is a continuous period of time during which data is sampled during the sampling period.
  • the startup parameter includes the user equipment identifier and the bearer identifier
  • the first sampling unit 202 may determine the specific location of the link to be detected according to the user equipment identifier and the bearer identifier, thereby facilitating more accurate determination of each link. The specific situation.
  • the startup parameters include a sampling period, a sampling window
  • the first sampling unit 202 may sample data transmitted on the link within a sampling window in each sampling period, wherein each sampling period includes one sampling window.
  • the first calculating unit 203 performs a first operation on the sampled data to obtain a link state parameter, where the link state parameter may include data of multiple forms and different characteristics, as long as the data can be characterized in the detected link.
  • the data transfer effect is enough.
  • the first calculating unit 203 is configured to: divide an amount of data flowing in a sampling window in each of the sampling periods by the sampling window, to obtain a data transmission rate in each sampling period.
  • the TCP response message may be sent by the user equipment to the core network gateway as a separate message, or may be combined with the uplink real data to be transmitted to the core network gateway. It is an effective way to transmit the response message of the TCP packet to the core network gateway, and the time passed to the core network gateway can be used as the basis for calculating the data transmission delay.
  • the data transmission on the link is continued, and the first sampling unit 202 samples the data transmitted on the link according to the period, and Only samples of the sampling window are taken for each sampling period.
  • the data transmission delay during the sampling period is the average of the delays of all data streams carried by the link within the sampling window of this sampling period.
  • the second sending unit 204 is configured to send the link state parameter to the detecting network element according to the reporting period.
  • the reporting period can be included in the startup parameters.
  • the reporting period is a period in which the core network gateway 20 reports the link state parameter to the detecting network element.
  • the reporting period is greater than the sampling period, and the data reported to the detecting network element each time may be a link state parameter of one sampling period or several sampling periods.
  • an embodiment of the present invention further provides a core network gateway 30, which includes:
  • the third receiving unit 301 is configured to receive a link detection start request from the detecting network element, where The link detection initiation request carries a startup parameter, the startup parameter includes a detection mode, the detection mode is an access network detection mode, the detection network element is a network component connected to the core network gateway, and the forwarding unit 302 is used by The third link receiving unit 301 is further configured to receive a link state parameter from the access network, where the link state parameter is included in the Data transmission delay and data transmission rate in each sampling period of the link detected in the network detection mode;
  • the forwarding unit 302 is further configured to forward the link state parameter to the detecting network element.
  • the core network gateway 30 of the embodiment provides a third link receiving unit 301 capable of receiving a link detection start request from the detecting network element, and the forwarding unit 302 can forward the link detection start request. Giving the access network to enable the access network to obtain the link state parameter of the detected link according to the link detection initiation request.
  • the third receiving unit 301 further receives the link state parameter from the access network, and forwards The unit 302 is further configured to forward the link state parameter to the detecting network element, so that the detecting network element determines whether the link state is bad, thereby effectively evaluating the link communication quality of the mobile broadband, and optimizing the link. And improved conditions.
  • the core network gateway 30 may first send a response message of the link detection initiation request to the detection network element, and then process the link detection start request.
  • the core network gateway can learn that the detection mode in the startup parameter is the access network detection mode, and it is learned that the link state detection task will be performed by the access gateway.
  • the forwarding unit 302 is specifically configured to forward, by using an extended header of the user plane part of the GPRS tunneling protocol in the downlink data packet, the link detection initiation request to the access network.
  • the forwarding unit 302 is further configured to forward the link detection initiation request to the access network by using a special instruction or message.
  • the embodiments of the present invention do not limit this.
  • the third receiving unit 301 is specifically configured to: receive, by using an extended header of a user plane part of the GPRS tunneling protocol in the uplink data packet, a link state parameter from the access network.
  • an embodiment of the present invention further provides an access network element 40, including:
  • the fourth receiving unit 401 is configured to receive a link detection start request from the core network gateway, where the link detection start request carries a start parameter, the start parameter includes a detection mode, and the detection mode is an access network detection mode; According to the sampling;
  • a second calculating unit 403 configured to perform a second operation on the sampled data to obtain a link state parameter, where the link state parameter includes data in each sampling period of the link detected in the access network detection mode Transmission delay and data transmission rate;
  • the fourth sending unit 404 is configured to send the link state parameter to the core network gateway.
  • the access network element 40 provided by the embodiment, the fourth receiving unit 401 can receive the link detection initiation request from the core network gateway, and the second sampling unit 402 can start according to the link detection. Requesting to sample the data transmitted on the link, the second calculating unit 403 can perform a second operation on the sampled data to obtain a link state parameter, and the fourth sending unit 404 sends the link state parameter to the core network gateway.
  • the core network gateway sends the link state parameter to the detecting network element, so that the detecting network element determines whether the link state is bad, and effectively evaluates the link communication quality of the mobile broadband, and provides conditions for link optimization and improvement. .
  • the startup parameter further includes: one or more of a user equipment identifier, a bearer identifier, a sampling period, a sampling window, and a reporting period.
  • the sampling window is a continuous period of time during which data is sampled during the sampling period.
  • the second sampling unit 402 may determine the specific location of the link to be detected according to the user equipment identifier and the bearer identifier, thereby facilitating more accurate determination of each chain.
  • the specific condition of the road When the startup parameters include the sampling period and the sampling window, the second sampling unit 402 may sample the data transmitted on the link within the sampling window in each sampling period, wherein each sampling period includes one sampling window.
  • the second sampling unit 402 performs a second operation on the sampled data to obtain a link state parameter, where the link state parameter may include data of multiple forms and different characteristics, as long as the data can It is enough to characterize the data transmission effect in the detected link. For example, in one embodiment of the invention and data transmission rate.
  • the second calculating unit 403 is specifically configured to: divide the amount of data flowing in the sampling window in each of the sampling periods by the sampling window, to obtain the sampling period Data transmission rate; all the data packets flowing in the sampling window in each of the sampling periods are added by the time of the radio link control RLC layer of the air interface protocol stack and divided by the number of the data packets to obtain The data transmission delay in each of the sampling periods.
  • the detection mode is the access network detection mode
  • the data transmission delay detected by the access network element 40 is the time of data transmission from the access network to the user equipment.
  • Delay that is, the delay of data passing through the air interface.
  • an embodiment of the present invention provides a link state detection method, as shown in FIG. 12, including:
  • the detecting network element sends a link detection start request to the core network gateway, where the link detection start request carries a startup parameter, where the startup parameter includes a detection mode, and the detection mode includes an access network detection mode or a core network detection mode.
  • the detecting network element is a network component connected to the core network gateway;
  • the detecting network element receives a link state parameter from the core network gateway.
  • the detecting network element determines, according to the link state parameter, whether a link state is bad.
  • the link state detection method provided in this embodiment can send a link detection start request to the core network gateway through the detection network element set at the core network gateway, and receive the link state parameter from the core network gateway. Then, according to the link state parameter, it is determined whether the link state is bad, so that the link communication quality of the mobile broadband can be effectively evaluated, which provides conditions for link optimization and improvement.
  • the detection mode in the startup parameter may be an access network detection mode or a core network detection mode.
  • the detection network element passes The startup parameter indicates that the core network gateway continues to forward the link detection initiation request to the access network, so as to detect the link state on the access network side; when the detection mode is the core network detection mode, the detection network element passes the A start parameter instructs the core network gateway to detect the link status at the core network gateway.
  • the detecting network element is a separate device independent of the core network gateway, but the present invention is not limited thereto. In other embodiments of the present invention, the detecting network element may also serve as a module. It is integrated into the core network gateway device, or presented in other ways, as long as its corresponding function can be completed.
  • the detecting network element receives the link state parameter from the core network gateway, where the link state parameter may include data of multiple forms and different characteristics, as long as the data can be characterized and detected.
  • the data transmission effect in the link can be. For example, in the present invention, a transmission delay and a data transmission rate.
  • the detecting network element can determine whether the link state is bad according to the data transmission delay and the data transmission rate in each sampling period: if the data transmission delay in one sampling period is greater than the specified delay and If the data transmission rate in the one sampling period is less than the predetermined rate, determining that the sampling period is a sampling period with a bad link state; if the sampling period with a bad link state occupies a proportion in the total number of sampling periods greater than a prescribed ratio, Determine that the detected link status is bad.
  • the specified ratio may be adjusted according to different requirements of the link state, for example, may be 30% to 80%.
  • the link state is required to be high, and the specified ratio is determined to be 30%, that is, when the sampling period of the link state is poor, the proportion occupied by the total number of sampling periods is greater than a prescribed ratio. At 30%, the link status is determined to be bad. In yet another embodiment, the link state requirements are lower, and it may be determined that the prescribed ratio may be, for example, 60%.
  • the startup parameter includes the detection mode, but the embodiment of the present invention is not limited thereto.
  • the startup parameter may further include other, for example, one or more of a user equipment identifier, a bearer identifier, a sampling period, a sampling window, and a reporting period.
  • the sampling window is a continuous period of time during which data is sampled during the sampling period.
  • the detecting network element may indicate the specific location of the link that the core network gateway needs to detect according to the user equipment identifier and the bearer identifier. In this way, it is advantageous to determine the specific condition of each link more accurately.
  • the detecting network element may instruct the core network gateway how long to sample the data transmitted on the link (sampling period), and the sampling time in each sampling period (sampling window) How long does it take to report to the detection network element (the reporting period)? Therefore, timing measurement and timing of the data transmission state of the link are performed to stably know the data transmission state of the link.
  • the detecting network element can determine whether the link state is bad according to the link state parameter in the sampling period. Further, after the step S13, the method further includes: the detecting the network element The transmission link detects a stop request to the core network gateway, thereby causing link state detection to stop.
  • the embodiment of the present invention further provides a link state detection method, as shown in FIG. 13, including:
  • the core network gateway receives a link detection initiation request from the detection network element, where the link detection initiation request carries a startup parameter, the startup parameter includes a detection mode, and the detection mode is a core network detection mode, and the detection network is The element is a network element connected to the core network gateway;
  • the core network gateway samples data transmitted on the link according to the link detection initiation request.
  • the core network gateway performs a first operation on the sampled data to obtain a link state parameter.
  • the core network gateway sends the link state parameter to the detection network element.
  • the core network gateway can receive a link detection initiation request from the detection network element, and perform data transmission on the link according to the link detection initiation request. Sampling and performing a first operation on the sampled data to obtain a link state parameter, and then sending the link state parameter to the detecting network element, so that the detecting network element determines whether the link state is bad, thereby connecting the mobile broadband Effective evaluation of communication quality, excellent for links Conditions and improvements are provided.
  • the core network gateway may first send a response message of the link detection initiation request to the detection network element, and then process the link detection start request.
  • the core network gateway can learn that the detection mode in the startup parameter is the core network detection mode, and it is known that the link state detection task will be performed by the core network gateway itself.
  • the startup parameters may further include other, such as user equipment identification, bearer identification, sampling period, sampling window, and reporting period.
  • the core network gateway may determine the specific location of the link to be detected according to the user equipment identifier and the bearer identifier, thereby facilitating more accurate determination of each strip. The specific status of the link.
  • the core network gateway may sample the data transmitted on the link within the sampling window in each sampling period, wherein each sampling period includes one sampling window.
  • the core network gateway performs a first operation on the sampled data to obtain a link state parameter, where the link state parameter may include data of multiple forms and different characteristics, as long as the data can be characterized
  • the data transmission effect in the link can be.
  • the link state parameter includes a data transmission delay and a data transmission rate for each sampling period of the detected link.
  • a mobile broadband link bearer may include one or more data flows.
  • one link bearer It includes five data streams, namely 5-tuple (source IP and destination IP, source port and destination port, protocol number).
  • the data transmission on the link is continued, and the data transmitted on the link is sampled in cycles in step S22, and only the time is performed for each sampling period. Sampling of the sampling window.
  • the data transmission delay in the sampling period is the average of the delays of all data streams carried by the link within the sampling window of this sampling period.
  • the data transmission delay in the sampling period can be estimated in various ways, and the present invention does not limit this. However, in order to reduce the timer overhead of measuring the data transmission delay, in one embodiment of the present invention, the data transmission delay in the link can be estimated by utilizing the transmission characteristics of the TCP packet.
  • the core network gateway adds the delays of all data streams included in the measured link, and then divides the number of data streams in the link. Obtaining a respective data transmission delay in each sampling period, where a delay of the data stream is received by the core network gateway from the TCP packet of the Internet to the core network gateway to the core network gateway.
  • the core network gateway During the sampling window, if there is no data transmission on the detected link, the core network gateway does not sample the data transmission. That is to say, the data transmission sampling by the core network gateway is triggered by data, so that the core network gateway can avoid sampling and processing invalid data, and improve the data sampling efficiency of the core network gateway. At the same time, to avoid resampling, each data stream is sampled at most once during a sampling window.
  • the TCP response message may be sent by the user equipment to the core network gateway as a separate message, or may be combined with the uplink real data to be transmitted to the core network gateway. It is an effective way to transmit the response message of the TCP packet to the core network gateway, and the time passed to the core network gateway can be used as the basis for calculating the data transmission delay.
  • the core network gateway can divide the amount of data flowing in the sampling window in each sampling period by the sampling window to obtain the data transmission rate in each sampling period.
  • the amount of data flowing in the sampling window in the sampling period may be dispersed in multiple data packets (such as TCP packets) of multiple data streams, and one data packet of one data stream may be the foregoing measurement data.
  • TCP packet recorded by the transmission delay.
  • the sampling period is T_Sample seconds
  • the sampling window is T-Window seconds
  • the data transmission rate within the sampling window represents the data transmission rate during the sampling period in which the sampling window is located.
  • the step of the core network gateway sending the link state parameter to the detecting network element may be specifically The core network gateway periodically sends the link state parameter to the detecting network element according to the reporting period.
  • the reporting period can be included in the startup parameters. Generally, the reporting period is greater than the sampling period, and the data reported to the detecting network element each time may be a link state parameter of one sampling period or several sampling periods.
  • the embodiment of the present invention further provides a link state detecting method, as shown in FIG. 14, including the following steps:
  • the core network gateway receives a link detection initiation request from the detection network element, where the link detection initiation request carries a startup parameter, the startup parameter includes a detection mode, and the detection mode is an access network detection mode, where the detection is performed.
  • the network element is a network component connected to the core network gateway;
  • the core network gateway forwards the link detection initiation request to the access network.
  • the core network gateway receives a link state parameter from the access network.
  • the core network gateway forwards the link state parameter to the detection network element.
  • the core network gateway receives a link detection start request from the detection network element, and forwards the link detection start request to the access network to enable access.
  • the detecting network element determines whether the link state is bad, thereby effectively evaluating the link communication quality of the mobile broadband, and provides conditions for link optimization and improvement.
  • the core network gateway may first send a response message of the link detection initiation request to the detection network element, and then process the link. Detect start request.
  • the core network gateway can learn that the detection mode in the startup parameter is the access network detection mode, and it is learned that the link state detection task will be performed by the access gateway.
  • the startup parameters may further include other, such as user equipment identification, bearer identification, sampling period, sampling window, and reporting period.
  • the core network gateway may forward the link detection initiation request to the access network by using an extension header of the GTP-U in the downlink data packet.
  • the core network gateway may receive the link state parameter from the access network through the extended header of the user plane part of the GPRS tunneling protocol in the uplink data packet.
  • the core network gateway can also forward the link detection initiation request to the access network through other messages or data structures, or receive the link state parameter from the access network, which is not limited by the present invention.
  • an embodiment of the present invention further provides a link state detection method, including the following steps:
  • the access network receives a link detection start request from the core network gateway, the link detection start request carries a start parameter, the start parameter includes a detection mode, and the detection mode is an access network detection mode, and the detecting
  • the network element is a network component connected to the core network gateway;
  • the access network samples the data transmitted on the link according to the link detection initiation request.
  • the access network performs a second operation on the sampled data to obtain a link state parameter, where the transmission rate is
  • the access network sends the link state parameter to the core network gateway.
  • the access network receives a link detection start request from the core network gateway, and samples the data transmitted on the link according to the link detection start request. Performing a second operation on the sampled data to obtain a link state parameter, and then sending the link state parameter to the core network gateway, so that the core network gateway sends the link state parameter to the detection network element, thereby enabling detection.
  • the network element determines whether the link status is bad, for mobile Broadband link communication quality is effectively evaluated to provide conditions for link optimization and improvement.
  • the access network may first send a response message of the link detection initiation request to the core network gateway, and then process the link detection initiation request. Specifically, the access network may receive the link detection start request by using an extended header of the user plane part of the GPRS tunneling protocol in the received downlink data packet, and detect the link in the detection mode in the start parameter in the start request by the link detection link. Status detection will be performed by the access network.
  • the startup parameter may further include other components, such as a user equipment identifier, a bearer identifier, a sampling period, a sampling window, and a reporting period, where the sampling window is a continuous period of time for sampling the data in the sampling period.
  • the access network may determine the specific location of the link to be detected according to the user equipment identifier and the bearer identifier, thereby facilitating more accurate determination of each link. The specific situation.
  • the startup parameters include the sampling period and the sampling window
  • the access network may sample the data transmitted on the link within the sampling window in each sampling period, wherein each sampling period includes one sampling window.
  • the access network performs a second operation on the sampled data to obtain a link state parameter, where the link state parameter may include data of multiple forms and different characteristics, as long as the data can be characterized
  • the data transmission effect in the link can be.
  • the link state parameter includes a data transmission delay and a data transmission rate for each sampling period of the detected link.
  • step S43 may specifically include the following steps:
  • All data packets flowing through the sampling window in each sampling period are added by the time of the RLC layer of the air interface protocol stack and divided by the number of flowing data packets to obtain data transmission in each of the sampling periods. Delay.
  • the detection mode is an access network detection mode
  • the data transmission delay detected by the network access is the delay of data transmission from the access network to the user equipment, that is, the delay of data passing through the air interface.
  • the link state detection method provided by the embodiment of the present invention is described in detail by using a PGW/GGSN as a core network gateway.
  • Figure 16 is a detailed flow chart of the link state detection method in which the detection mode is the core network gateway detection mode.
  • the detecting network element when link state detection is required, the detecting network element first sends a link detection initiation request to the core network gateway to notify the core network gateway PGW/GGSN to start the link state detection process.
  • the link detection initiation request carries a startup parameter, where the startup parameter includes a detection mode, a user equipment identifier, a bearer identifier, a sampling period, a sampling window, and a reporting period, and the detection mode is a core network detection mode.
  • the core network gateway PGW/GGSN After receiving the link detection initiation request, the core network gateway PGW/GGSN first sends a response message to the detection network element, and then starts the detection process: the core network gateway detects the data transmitted on the link according to the link detection initiation request. Sampling is performed; the core network gateway performs a first operation on the sampled data to obtain a link state parameter.
  • the core network gateway After receiving the link detection initiation request, the core network gateway PGW/GGSN first sends a response message to the detection network element, and then starts the detection process: the core network gateway detects the data transmitted on the link according to the link detection initiation request. Sampling is performed; the core network gateway performs a first operation on the sampled data to obtain a link state parameter.
  • the core network gateway PGW/GGSN may report the link state parameter to the detecting network element.
  • the detection network may be timed according to the reporting period in the startup parameter.
  • the element sends the link state parameter. In one test, it can be reported multiple times.
  • the detecting network element may first return a response to the PGW/GGSN, and confirm that the link state parameter is received. Then, the detecting network element starts to determine whether the link status is bad according to the link state parameter.
  • the detecting network element When the detecting network element receives the link state parameter of the sampling period with sufficient sampling period through multiple reporting periods, it can determine whether the link state is bad. Then, in step 8n, the detecting network element can send a link detection stop to the core network gateway. Request to terminate link state detection;
  • the core network gateway PGW/GGSN After receiving the link detection stop request, the core network gateway PGW/GGSN is in step 8n+1. Return a response message to the detecting network element and stop link state detection.
  • the link state detection in the core network detection mode can effectively evaluate whether the link state between the user equipment and the core network gateway PGW/GGSN meets the requirements, and provides conditions for optimizing and improving the link.
  • the detecting network element when the link state detection is required, the detecting network element first sends a link detection start request to the core network gateway to notify the PGW/GGSN to start the link state detection process.
  • the link detection initiation request carries a startup parameter, where the startup parameter includes a detection mode, a user equipment identifier, a bearer identifier, a sampling period, a sampling window, and a reporting period, and the detection mode is an access network detection mode.
  • the core network gateway PGW/GGSN after receiving the link detection initiation request, the core network gateway PGW/GGSN first sends a response message to the detection network element, 92b, and then uses the GTP-U extension header to carry the link detection start request in the downlink data packet. Access to the network side.
  • the access network After receiving the link detection start request, the access network samples the data transmitted on the link according to the link detection start request, and performs a second operation on the sampled data to obtain the link state parameter, and the detailed process may be performed. See the foregoing embodiment, and details are not described herein again.
  • the link state parameter is used to report the link state parameter in the uplink data packet by using the GTP-U extension header, and optionally, may be timed according to the reporting period in the startup parameter. Sending the link state parameter to the core network gateway;
  • the core network gateway PGW/GGSN reports the link state parameters to the detection network element.
  • the detecting network element receives the link state parameter each time, first returns a response confirmation to the PGW/GGSN, and then determines whether the link state is bad according to the link state parameter.
  • the detecting network element When the detecting network element receives the link state parameter of the sampling period with sufficient sampling period, the link state may be determined to be bad. Then, in step 9m, the detecting network element may go to the core network gateway. Sending a link detection stop request to terminate link state detection;
  • the core network gateway PGW/GGSN After receiving the link detection stop request, the core network gateway PGW/GGSN returns a response message to the detection network element in step 9m+1, and notifies the RAN through the downlink data packet using the GTP-U extension interface in step 9m+2. The side stops the network quality measurement.
  • the link state detection in the core network detection mode can effectively evaluate whether the air interface is congested, and provides conditions for link optimization and improvement.

Abstract

本发明实施例提供一种链路状态检测装置及其工作方法,涉及通讯技术领域,为对移动宽带的链路通信质量进行有效评估而发明。所述装置包括:通信模块,用于与核心网网关进行交互;处理器,用于:通过所述通信模块发送链路检测启动请求到所述核心网网关,所述链路检测启动请求携带启动参数,所述启动参数包括检测模式,所述检测模式包括接入网检测模式或核心网检测模式;通过所述通信模块接收来自所述核心网网关的链路状态参数,所述链路状态参数包括在所述接入网检测模式或所述核心网检测模式下检测的链路的各个采样周期内的数据传输时延和数据传输速率;根据所述链路状态参数确定链路状态是否不良。本发明可用于无线网络检测中。

Description

链路状态检测装置及其工作方法 技术领域
本发明涉及通信领域, 尤其涉及一种链路状态检测装置及其工作方法。 背景技术
在移动互联网时代, 智能终端的快速增长使移动流量每年翻番。 然而, 与传统的有线网络相比, 移动宽带网络的稳定性相对较差, 用户的一些数据 业务可能由于网络稳定性的问题而不能顺利进行, 在一定程度上影响了用户 体验。
相应的, 采用某种手段确定移动终端应用的移动宽带的链路传输状态是 否良好, 以便采取进一步措施对链路传输状态不好的移动宽带进行优化和改 进是提升用户体验的有效途径。 目前比较缺乏检测链路状态的有效办法。 发明内容
本发明的实施例提供一种链路状态检测装置及其工作方法, 为对移动宽 带的链路通信质量进行有效评估而发明。
为达到上述目的, 本发明的实施例采用如下技术方案:
根据本发明的第一方面, 提供一种检测网元, 包括:
通信模块, 用于与核心网网关进行交互;
处理器, 用于:
通过所述通信模块发送链路检测启动请求到所述核心网网关, 所述链路 检测启动请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式包 括接入网检测模式或核心网检测模式;
通过所述通信模块接收来自所述核心网网关的链路状态参数, 所述链路 状态参数包括在所述接入网检测模式或所述核心网检测模式下检测的链路的 各个采样周期内的数据传输时延和数据传输速率;
根据所述链路状态参数确定链路状态是否不良。
在第一方面的第一种可能的实现方式中, 所述启动参数还包括: 用户设 备标识、 承载标识、 采样周期、 采样窗口以及上报周期, 其中所述采样窗口 为所述采样周期内进行数据采样的一段连续的时间。
在第一方面的第二种可能的实现方式中, 所述处理器用于根据所述链路 状态参数确定链路状态是否不良, 具体包括:
所述处理器用于: 如果一个所述采样周期内的数据传输时延大于规定时 延且所述一个采样周期内的数据传输速率小于规定速率, 确定所述一个采样 周期为链路状态不良的采样周期; 如果所述链路状态不良的采样周期在采样 周期总数中所占据的比例大于规定比值, 确定被检测的链路状态不良。
结合第一方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述规定比值为 30%至 80%。
在第一方面的第四种可能的实现方式中, 所述处理器还用于:
通过所述通信模块发送链路检测停止请求到所述核心网网关。
根据本发明的第二方面, 提供一种核心网网关, 包括:
通信模块, 用于与检测网元进行交互;
处理器, 用于:
通过所述通信模块接收来自所述检测网元的链路检测启动请求, 所述链 路检测启动请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式 为核心网检测模式;
根据所述链路检测启动请求对链路上传输的数据进行采样;
对采样的数据进行第一运算以获知链路状态参数, 所述链路状态参数包 数据传输速率;
通过所述通信模块发送所述链路状态参数到所述检测网元。 在第二方面的第一种可能的实现方式中, 所述启动参数还包括: 用户设 备标识、 承载标识、 采样周期、 采样窗口以及上报周期, 其中所述采样窗口 为所述采样周期内进行数据采样的一段连续的时间。
结合第二方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述处理器用于根据所述链路检测启动请求对链路上传输的数据进行采样, 具体包括:
所述处理器用于:
根据所述用户设备标识和所述承载标识确定检测的链路; 在所述各个采 样周期中的所述采样窗口内对所述链路上传输的数据进行采样, 每个所述采 样周期包括一个所述采样窗口。
结合第二方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述处理器用于对采样的数据进行第一运算以获知链路状态参数,具体包括: 所述处理器用于:
将每个所述采样周期中的采样窗口内流过的数据量除以所述采样窗口, 以获得所述每个采样周期内的数据传输速率;
在每个所述采样周期中的采样窗口内, 将所述链路中包括的所有数据流 的时延相加之后除以所述链路中的数据流的数目, 以获得所述每个采样周期 内的数据传输时延, 其中, 所述数据流的时延为所述核心网网关接收到所述 数据流的来自互联网的一个传输控制协议 TCP数据包到所述核心网网关接收 到来自用户设备返回的对所述传输控制协议 TCP数据包的响应消息之间的时 间。
结合第二方面的第一种可能的实现方式, 在第四种可能的实现方式中, 所述处理器用于通过所述通信模块发送所述链路状态参数到所述检测网元, 具体包括:
所述处理器用于, 通过所述通信模块按照所述上报周期定时发送所述链 根据本发明的第三方面, 提供一种核心网网关, 包括:
通信模块, 用于与检测网元或者接入网进行交互;
处理器, 用于:
通过所述通信模块接收来自所述检测网元的链路检测启动请求, 所述链 路检测启动请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式 为接入网检测模式;
通过所述通信模块将所述链路检测启动请求向所述接入网转发; 通过所述通信模块接收来自所述接入网的链路状态参数, 所述链路状态 参数包括在所述接入网检测模式下检测的链路的各个采样周期内的数据传输 时延和数据传输速率;
通过所述通信模块将所述链路状态参数向所述检测网元转发。
在第三方面的第一种可能的实现方式中, 所述处理器用于通过所述通信 模块将所述链路检测启动请求向所述接入网转发, 具体包括:
所述处理器用于, 通过所述通信模块使用下行数据包中的通用分组无线 服务 GPRS隧道协议用户面部分的扩展头将所述链路检测启动请求向所述接 入网转发。
在第三方面的第二种可能的实现方式中,,所述处理器用于通过所述通信 模块接收来自所述接入网的链路状态参数, 具体包括:
所述处理器用于, 通过所述通信模块使用上行数据包中的通用分组无线 服务 GPRS隧道协议用户面部分的扩展头接收来自所述接入网的链路状态参 数。
根据本发明的第四方面, 提供一种接入网网元, 包括:
通信模块, 用于与核心网网关进行交互;
处理器, 用于:
通过所述通信模块接收来自所述核心网网关的链路检测启动请求, 所述 链路检测启动请求携带启动参数, 所述启动参数包括检测模式, 所述检测模 式为接入网检测模式;
根据所述链路检测启动请求对链路上传输的数据进行采样;
对采样的数据进行第二运算以获知链路状态参数, 所述链路状态参数包 数据传输速率;
通过所述通信模块发送所述链路状态参数到所述核心网网关。
在第四方面的第一种可能的实现方式中, 所述启动参数还包括: 用户设 备标识、 承载标识、 采样周期、 采样窗口以及上报周期, 其中所述采样窗口 为所述采样周期内进行数据采样的一段连续的时间。
结合第四方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述处理器用于根据所述链路检测启动请求对链路上传输的数据进行采样, 具体包括:
所述处理器用于:
根据所述用户设备标识和所述承载标识确定检测的链路;
在所述各个采样周期中的所述采样窗口内对所述链路上传输的数据进行 采样, 每个所述采样周期包括一个所述采样窗口。
结合第四方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述处理器用于对采样的数据进行第二运算以获知链路状态参数,具体包括: 所述处理器, 用于:
将每个所述采样周期中的采样窗口内流过的数据量除以所述采样窗口, 以获得所述每个所述采样周期内的数据传输速率;
将每个所述采样周期中的采样窗口内流过的所有数据包通过空口协议栈 的无线链路控制 RLC层的时间相加后除以所述数据包的数目, 以获得每个所 述采样周期内的数据传输时延。
根据本发明的第五方面, 提供一种链路状态检测方法, 包括:
检测网元发送链路检测启动请求到核心网网关, 所述链路检测启动请求 携带启动参数, 所述启动参数包括检测模式, 所述检测模式包括接入网检测 模式或核心网检测模式,所述检测网元为与所述核心网网关相连的网络元件; 所述检测网元接收来自所述核心网网关的链路状态参数, 所述链路状态 参数包括在所述接入网检测模式或所述核心网检测模式下检测的链路的各个 采样周期内的数据传输时延和数据传输速率;
所述检测网元根据所述链路状态参数确定链路状态是否不良。
在第五方面的第一种可能的实现方式中, 所述启动参数还包括: 用户设 备标识、 承载标识、 采样周期、 采样窗口以及上报周期, 其中所述采样窗口 为所述采样周期内进行数据采样的一段连续的时间。
在第五方面的第二种可能的实现方式中, 所述检测网元根据所述链路状 态参数确定链路状态是否不良的步骤具体包括:
如果一个所述采样周期内的数据传输时延大于规定时延且所述一个采样 周期内的数据传输速率小于规定速率, 确定所述一个采样周期为链路状态不 良的采样周期;
如果所述链路状态不良的采样周期在采样周期总数中所占据的比例大于 规定比值, 确定被检测的链路状态不良。
结合第五方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述规定比值为 30%至 80%。
在第五方面的第四种可能的实现方式中, 所述检测网元根据所述链路状 态参数确定链路状态是否不良的步骤之后, 所述方法还包括:
所述检测网元发送链路检测停止请求到所述核心网网关。
根据本发明的第六方面, 提供一种链路状态检测方法, 包括:
核心网网关接收来自检测网元的链路检测启动请求, 所述链路检测启动 请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式为核心网检 测模式, 所述检测网元为与所述核心网网关相连的网络元件;
所述核心网网关根据所述链路检测启动请求对链路上传输的数据进行采 样;
所述核心网网关对采样的数据进行第一运算以获知链路状态参数, 所述 链路状态参数包括在所述核心网检测模式下检测的链路的各个采样周期内的 数据传输时延和数据传输速率;
所述核心网网关发送所述链路状态参数到所述检测网元。
在第六方面的第一种可能的实现方式中, 所述启动参数还包括: 用户设 备标识、 承载标识、 采样周期、 采样窗口以及上报周期, 其中所述采样窗口 为所述采样周期内进行数据采样的一段连续的时间。
结合第六方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述核心网网关根据所述链路检测启动请求对链路上传输的数据进行采样的 步骤具体包括:
所述核心网网关根据所述用户设备标识和所述承载标识确定检测的链 路;
所述核心网网关在所述各个采样周期中的所述采样窗口内对所述链路上 传输的数据进行采样, 每个所述采样周期包括一个所述采样窗口。
结合第六方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述核心网网关对采样的数据进行第一运算以获知链路状态参数的步骤具体 包括:
所述核心网网关将每个所述采样周期中的采样窗口内流过的数据量除以 所述采样窗口, 以获得所述每个采样周期内的数据传输速率;
所述核心网网关在每个所述采样周期中的采样窗口内, 将所述链路中包 括的所有数据流的时延相加之后除以所述链路中的数据流的数目, 以获得所 述每个采样周期内的数据传输时延, 其中, 所述数据流的时延为所述核心网 网关接收到所述数据流的来自互联网的一个传输控制协议 TCP数据包到所述 核心网网关接收到来自用户设备返回的对所述传输控制协议 TCP数据包的响 应消息之间的时间。 结合第六方面的第一种可能的实现方式, 在第四种可能的实现方式中, 所述核心网网关发送所述链路状态参数到所述检测网元的步骤具体包括: 所述核心网网关按照所述上报周期定时发送所述链路状态参数到所述检 测网元。
根据本发明的第七方面, 提供一种链路状态检测方法, 包括:
核心网网关接收来自检测网元的链路检测启动请求, 所述链路检测启动 请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式为接入网检 测模式, 所述检测网元为与所述核心网网关相连的网络元件;
所述核心网网关将所述链路检测启动请求向所述接入网转发;
所述核心网网关接收来自所述接入网的链路状态参数, 所述链路状态参 数包括在所述接入网检测模式下检测的链路的各个采样周期内的数据传输时 延和数据传输速率;
所述核心网网关将所述链路状态参数向所述检测网元转发。
在第七方面的第一种可能的实现方式中, 所述核心网网关将所述链路检 测启动请求向所述接入网转发的步骤具体包括:
所述核心网网关通过下行数据包中的通用分组无线服务 GPRS隧道协议 用户面部分的扩展头将所述链路检测启动请求向所述接入网转发。
在第七方面的第二种可能的实现方式中, 所述核心网网关接收来自所述 接入网的链路状态参数的步骤具体包括:
所述核心网网关通过上行数据包中的通用分组无线服务 GPRS隧道协议 用户面部分的扩展头接收来自所述接入网的链路状态参数。
根据本发明的第八方面, 提供一种链路状态检测方法, 包括:
接入网接收来自核心网网关的链路检测启动请求, 所述链路检测启动请 求携带启动参数, 所述启动参数包括检测模式, 所述检测模式为接入网检测 模式;
所述接入网根据所述链路检测启动请求对链路上传输的数据进行采样; 所述接入网对采样的数据进行第二运算以获知链路状态参数, 所述链路 状态参数包括在所述接入网检测模式下检测的链路的各个采样周期内的数据 传输时延和数据传输速率;
所述接入网发送所述链路状态参数到所述核心网网关。
在第八方面的第一种可能的实现方式中, 所述启动参数还包括: 用户设 备标识、 承载标识、 采样周期、 采样窗口以及上报周期, 其中所述采样窗口 为所述采样周期内进行数据采样的一段连续的时间。
结合第八方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述接入网根据所述链路检测启动请求对链路上传输的数据进行采样的步骤 具体包括:
所述接入网根据所述用户设备标识和所述承载标识确定检测的链路; 所述接入网在所述各个采样周期中的所述采样窗口内对所述链路上传输 的数据进行采样, 每个所述采样周期包括一个所述采样窗口。
结合第八方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述接入网对采样的数据进行第二运算以获知链路状态参数的步骤具体包 括:
所述接入网将每个所述采样周期中的采样窗口内流过的数据量除以所述 采样窗口, 以获得所述每个所述采样周期内的数据传输速率;
所述接入网将每个所述采样周期中的采样窗口内流过的所有数据包通过 空口协议栈的无线链路控制 RLC层的时间相加后除以所述数据包的数目, 以 获得每个所述采样周期内的数据传输时延。
根据本发明的第九方面, 提供一种检测网元, 包括:
第一发送单元, 用于发送链路检测启动请求到核心网网关, 所述链路检 测启动请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式包括 接入网检测模式或核心网检测模式, 所述检测网元为与所述核心网网关相连 的网络元件; 第一接收单元, 用于接收来自所述核心网网关的链路状态参数, 所述链 路状态参数包括在所述接入网检测模式或所述核心网检测模式下检测的链路 的各个采样周期内的数据传输时延和数据传输速率;
确定单元, 用于根据所述链路状态参数确定链路状态是否不良。
在第九方面的第一种可能的实现方式中, 所述启动参数还包括: 用户设 备标识、 承载标识、 采样周期、 采样窗口以及上报周期, 其中所述采样窗口 为所述采样周期内进行数据采样的一段连续的时间。
在第九方面的第二种可能的实现方式中, 所述确定单元具体用于: 如果一个所述采样周期内的数据传输时延大于规定时延且所述一个采样 周期内的数据传输速率小于规定速率, 确定所述一个采样周期为链路状态不 良的采样周期;
如果所述链路状态不良的采样周期在采样周期总数中所占据的比例大于 规定比值, 确定被检测的链路状态不良。
在第九方面的第三种可能的实现方式中, 所述第一发送单元还用于: 发送链路检测停止请求到所述核心网网关。
根据本发明的第十方面, 提供一种核心网网关, 包括:
第二接收单元, 用于接收来自检测网元的链路检测启动请求, 所述链路 检测启动请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式为 核心网检测模式, 所述检测网元为与所述核心网网关相连的网络元件;
第一采样单元, 用于根据所述链路检测启动请求对链路上传输的数据进 行采样;
第一计算单元, 用于对采样的数据进行第一运算以获知链路状态参数, 所述链路状态参数包括在所述核心网检测模式下检测的链路的各个采样周期 内的数据传输时延和数据传输速率;
第二发送单元, 用于发送所述链路状态参数到所述检测网元。
在第十方面的第一种可能的实现方式中, 所述启动参数还包括: 用户设 备标识、 承载标识、 采样周期、 采样窗口以及上报周期, 其中所述采样窗口 为所述采样周期内进行数据采样的一段连续的时间。
结合第十方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述第一采样单元具体用于:
根据所述用户设备标识和所述承载标识确定检测的链路;
在所述各个采样周期中的所述采样窗口内对所述链路上传输的数据进行 采样, 每个所述采样周期包括一个所述采样窗口。
结合第十方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述第一计算单元具体用于:
将每个所述采样周期中的采样窗口内流过的数据量除以所述采样窗口, 以获得所述每个采样周期内的数据传输速率;
在每个所述采样周期中的采样窗口内, 将所述链路中包括的所有数据流 的时延相加之后除以所述链路中的数据流的数目, 以获得所述每个采样周期 内的数据传输时延, 其中, 所述数据流的时延为所述核心网网关接收到所述 数据流的来自互联网的一个传输控制协议 TCP数据包到所述核心网网关接收 到来自用户设备返回的对所述传输控制协议 TCP数据包的响应消息之间的时 间。
结合第十方面的第三种可能的实现方式, 在第四种可能的实现方式中, 所述第二发送单元具体用于:
按照所述上报周期定时发送所述链路状态参数到所述检测网元。
根据本发明的第十一方面, 提供一种核心网网关, 包括:
第三接收单元, 用于接收来自检测网元的链路检测启动请求, 所述链路 检测启动请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式为 接入网检测模式, 所述检测网元为与所述核心网网关相连的网络元件;
转发单元, 用于将所述链路检测启动请求向所述接入网转发;
所述第三接收单元, 还用于接收来自所述接入网的链路状态参数, 所述 链路状态参数包括在所述接入网检测模式下检测的链路的各个采样周期内的 数据传输时延和数据传输速率;
所述转发单元, 还用于将所述链路状态参数向所述检测网元转发。
在第十一方面的第一种可能的实现方式中, 所述转发单元具体用于: 通过下行数据包中的 GPRS隧道协议用户面部分的扩展头将所述链路检 测启动请求向所述接入网转发。
结合第十一方面的第一种可能的实现方式,在第二种可能的实现方式中, 所述第三接收单元具体用于:
通过上行数据包中的 GPRS隧道协议用户面部分的扩展头接收来自所述 接入网的链路状态参数。
根据本发明的第十二方面, 提供一种接入网, 包括:
第四接收单元, 用于接收来自核心网网关的链路检测启动请求, 所述链 路检测启动请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式 为接入网检测模式; 行采样;
第二计算单元, 用于对采样的数据进行第二运算以获知链路状态参数, 所述链路状态参数包括在所述接入网检测模式下检测的链路的各个采样周期 内的数据传输时延和数据传输速率;
第四发送单元, 用于发送所述链路状态参数到所述核心网网关。
在第十二方面的第一种可能的实现方式中, 所述启动参数还包括: 用户 设备标识、 承载标识、 采样周期、 采样窗口以及上报周期, 其中所述采样窗 口为所述采样周期内进行数据采样的一段连续的时间。
结合第十二方面的第一种可能的实现方式,在第二种可能的实现方式中, 所述第二采样单元具体用于:
根据所述用户设备标识和所述承载标识确定检测的链路; 在所述各个采样周期中的所述采样窗口内对所述链路上传输的数据进行 采样, 每个所述采样周期包括一个所述采样窗口。
结合第十二方面的第二种可能的实现方式,在第三种可能的实现方式中, 所述第二计算单元具体用于:
将每个所述采样周期中的采样窗口内流过的数据量除以所述采样窗口, 以获得所述每个所述采样周期内的数据传输速率;
将每个所述采样周期中的采样窗口内流过的所有数据包通过空口协议栈 的无线链路控制 RLC层的时间相加后除以所述数据包的数目, 以获得每个所 述采样周期内的数据传输时延。
采用上述技术方案后,本实施例提供的链路状态检测装置及其工作方法, 能够通过核心网网关处设置的检测网元向核心网网关发送链路检测启动请 求, 以使核心网网关或接入网对链路上传输的数据进行采样从而获得链路状 态参数, 当核心网网关将该链路状态参数传输给检测网元时, 检测网元即可 根据所述链路状态参数确定链路状态是否不良, 这样, 就能对移动宽带的链 路通信质量进行有效评估, 为链路的优化和改进提供了条件。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明的实施例提供的链路状态检测装置的一种结构示意图; 图 2是本发明的实施例提供的链路状态检测装置的另一种结构示意图; 图 3 是本发明的实施例提供的链路状态检测装置的一种数据采样示意 图;
图 4 是本发明的实施例提供的链路状态检测装置的一种时延测量示意 图;
图 5是本发明的实施例提供的链路状态检测装置的另一种结构示意图; 图 6是本发明的实施例提供的链路状态检测装置的另一种结构示意图; 图 7是本发明的实施例提供的链路状态检测装置的另一种时延测量示意 图;
图 8是本发明的实施例提供的链路状态检测装置的另一种结构示意图; 图 9是本发明的实施例提供的链路状态检测装置的另一种结构示意图; 图 10是本发明的实施例提供的链路状态检测装置的另一种结构示意图; 图 11是本发明的实施例提供的链路状态检测装置的另一种结构示意图; 图 12是本发明的实施例提供的链路状态检测方法的一种流程图; 图 13是本发明的实施例提供的链路状态检测方法的另一种流程图; 图 15是本发明的实施例提供的链路状态检测方法的另一种流程图; 图 16是本发明的实施例提供的链路状态检测方法的一种具体流程图; 图 17是本发明的实施例提供的链路状态检测方法的另一种具体流程图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明的一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明的实施例提供一种检测网元 1 , 如图 1所示, 包括:
通信模块 11 , 用于与核心网网关进行交互;
处理器 12, 用于:
通过通信模块 11发送链路检测启动请求到所述核心网网关,所述链路检 测启动请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式包括 接入网检测模式或核心网检测模式;
通过通信模块 11接收来自所述核心网网关的链路状态参数,所述链路状 态参数包括在所述接入网检测模式或所述核心网检测模式下检测的链路的各 个采样周期内的数据传输时延和数据传输速率;
根据所述链路状态参数确定链路状态是否不良。
采用上述技术方案后, 本实施例提供的检测网元 1 , 能够通过向核心网 网关发送链路检测启动请求, 并且接收来自核心网网关的链路状态参数, 再 根据所述链路状态参数确定链路状态是否不良, 这样, 就能对移动宽带的链 路通信质量进行有效评估, 为链路的优化和改进提供了条件。
可选的, 处理器 12通过通信模块 11发送的链路检测启动请求中, 启动 参数中的检测模式可以为接入网检测模式也可以为核心网检测模式。 当该检 测模式为接入网检测模式时, 检测网元通过这一启动参数指示核心网网关继 续将链路检测启动请求向接入网转发,以便在接入网侧对链路状态进行检测; 当该检测模式为核心网检测模式时, 检测网元通过这一启动参数指示核心网 网关在该核心网网关处检测链路状态。
需要说明的是, 本实施例中, 检测网元 1是与核心网网关相连但独立于 核心网网关的一个单独的装置, 但本发明不限于此, 在本发明的其他实施例 中, 检测网元 1也可以作为一个模块集成在核心网网关装置之中, 或者以其 他的方式呈现, 只要能够完成其相应的功能即可。
具体的, 检测网元 1接收来自所述核心网网关的链路状态参数, 其中, 该链路状态参数可以包括多种形式和不同特征的数据, 只要该数据能够表征 被检测的链路中的数据传输效果即可。 例如, 在本发明的一个实施例中, 所 数据传输速率。
这样,检测网元 1的处理器 12即可根据各个采样周期内的数据传输时延 和数据传输速率确定链路状态是否不良, 处理器 12具体用于: 如果一个所述 采样周期内的数据传输时延大于规定时延且所述一个采样周期内的数据传输 速率小于规定速率, 则确定这个采样周期为链路状态不良的采样周期; 如果 链路状态不良的采样周期在采样周期总数中所占据的比例大于规定比值, 则 确定被检测的链路状态不良。 可选的, 这一规定比值可以根据对链路状态的 不同要求而调整, 例如, 可以为 30%至 80%。 在本发明的一个实施例中, 对 链路状态要求较高, 确定这一规定比值为 30%, 也就是说, 当链路状态不良 的采样周期在采样周期总数中所占据的比例大于规定比值 30%时, 即可确定 链路状态不良。 而在另一个实施例中, 对链路状态要求较低, 则可确定这一 规定比值例如可以为 60%。
上述实施例中, 启动参数包括检测模式, 但本发明的实施例不限于此。 在本发明的其他实施例中, 启动参数还可以包括其他, 例如, 还可以包括用 户设备标识、 承载标识、 采样周期、 采样窗口以及上报周期中的一个或多个。 其中所述采样窗口为所述采样周期内进行数据采样的一段连续的时间。 当启 动参数包括用户设备标识和承载标识时,处理器 12可以根据用户设备标识和 承载标识来指示核心网网关需要检测的链路的具体位置。 这样, 有利于更精 确地确定每条链路的具体状况。 当启动参数包括采样周期、 采样窗口以及上 报周期时, 检测网元可以指示核心网网关多长时间对链路上传输的数据采样 一次(采样周期), 每个采样周期中的采样时间 (采样窗口), 多长时间向检 测网元上报一次(上报周期)。 从而对链路的数据传输状态进行定时测量和定 时上 4艮, 以便稳定地获知链路的数据传输状态。
当经过若干个采样周期的采样后,处理器 12已经可以根据这些采样周期 中的链路状态参数确定链路状态是否不良, 进一步地, 处理器 12还用于通过 通信模块 11发送链路检测停止请求到所述核心网网关,从而使链路状态检测 停止。
需要说明的是, 在移动宽带网络中, 每个用户设备在通信中可以建立一 到多个承载。 由于每个承载对移动宽带网络的质量要求不一样, 因此本发明 的实施例只分析基于承载粒度的网络质量情况。 至于需要测量哪个具体的承 载以及明确承载与业务的对应关系, 本不在本案的讨论范围之内。
相应的, 本发明的实施例还提供一种核心网网关 2, 包括:
通信模块 21 , 用于与检测网元进行交互;
处理器 22, 用于:
通过通信模块 21接收来自所述检测网元的链路检测启动请求,所述链路 检测启动请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式为 核心网检测模式;
根据所述链路检测启动请求对链路上传输的数据进行采样;
对采样的数据进行第一运算以获知链路状态参数, 所述链路状态参数包 数据传输速率;
通过通信模块 21发送所述链路状态参数到所述检测网元。
采用上述技术方案后, 本实施例提供的核心网网关 2, 能够接收来自检 测网元的链路检测启动请求, 根据所述链路检测启动请求对链路上传输的数 据进行采样并对采样的数据进行第一运算从而获得链路状态参数, 然后再将 该链路状态参数发送到检测网元, 以使检测网元确定链路状态是否不良, 从 而对移动宽带的链路通信质量进行有效评估, 为链路的优化和改进提供了条 件。
其中, 核心网网关 2可以为 PGW ( Packet data network Gateway, 分组数 据网关)或者 GGSN ( Gateway GPRS Support Node , 网关 GPRS支持节点;), 也可以为其他类型的核心网网关, 本发明的实施例对此不作限制。 可选的, 当核心网网关 2通过通信模块 21接收到链路检测启动请求后, 可以先通过通信模块 21向检测网元发送一个链路检测启动请求的响应消息, 然后再处理该链路检测启动请求。 通过对该链路检测启动请求的解析, 核心 网网关 2的处理器 22可获知启动参数中的检测模式为核心网检测模式,也就 获知链路状态检测任务将由核心网网关 2 自身执行。 在本发明的其他实施例 中, 启动参数还可以包括其他, 例如用户设备标识、 承载标识、 采样周期、 采样窗口以及上报周期等, 采样窗口为所述采样周期内进行数据采样的一段 连续的时间。 其中, 当启动参数包括用户设备标识和承载标识时, 处理器 22 可以根据用户设备标识和承载标识来确定需要检测的链路的具体位置, 从而 有利于更精确地确定每条链路的具体状况。 当启动参数包括采样周期、 采样 窗口时,处理器 22可以在各个采样周期中的采样窗口内对链路上传输的数据 进行采样, 其中, 每个采样周期包括一个采样窗口。 如图 3所示, 采样周期 T— sample为两次采样之间间隔的时间, 采样窗口 T— window为每个采样周期 T— sample中对链路传输数据进行采样的一段时间。
具体的,核心网网关 2的处理器 22对采样的数据进行第一运算以获知链 路状态参数, 该链路状态参数可以包括多种形式和不同特征的数据, 只要该 数据能够表征被检测的链路中的数据传输效果即可。 例如, 在本发明的一个 实施例中, 所述链路状态参数包括被检测的链路的各个采样周期内的数据传 输时延和数据传输速率。
需要说明的是, 对于核心网网关 2—侧的数据传输时延而言, 一个移动 宽带的链路承载可以包括一到多个数据流, 例如, 在本发明的一个实施例中, 一个链路 载包括五个数据流, 即 5元组(源 IP ( Internet Protocol, 网间互 联协议)和目的 IP, 源端口和目的端口, 协议号)。
正常情况下, 当用户正在进行数据业务时, 链路上的数据传输是持续进 行的, 而处理器 22对链路上传输的数据是按照周期进行采样的, 且每个采样 周期仅进行时间为采样窗口的采样。 对于一个采样周期而言, 该采样周期内 的数据传输时延即为在这个采样周期的采样窗口内, 该链路承载的所有数据 流的时延的平均值。
可以采用多种方法估算采样周期内的数据传输时延, 本发明对此不做限 制。但为了减少测量数据传输时延的定时器开销, 在本发明的一个实施例中, 可以利用 TCP数据包的传输特性估算出链路中的数据传输时延。 具体的, 可 以在每个所述采样周期中的采样窗口内, 核心网网关将被测量的链路中包括 的所有数据流的时延相加之后除以该链路中的数据流的数目, 以获得每个采 样周期内各自的数据传输时延, 其中, 数据流的时延为所述核心网网关接收 到所述数据流的来自互联网的一个 TCP数据包到所述核心网网关接收到来自 用户设备返回的对所述 TCP数据包的响应消息之间的时间。 即, 核心网网关 侧测量的数据传输时延为用户设备到核心网网关 PGW/GGSN之间的链路的 数据传输时延。
例如, 如图 4所示, 在本发明的一个实施例中, 在采样窗口 T— Window 内, 一个数据流, 如源 IP, 第一次收到一个下行 TCP数据包时, 记录该 TCP 数据包的序列号 m以及到达核心网网关 PGW/GGSN的时刻 tl , 然后再等待 接收来自用户设备的对该数据包的 TCP响应消息。如果核心网网关在 t2时刻 收到该 TCP数据包的响应消息,该 TCP数据包的响应消息对应的序列号为 n。 如果 n大于 m, 则认为该下行的 TCP数据包已经被用户设备正确接收, 该数 据包的下行 RTT ( Round-Trip Time, 往返时延)为 t2-tl。
举例说明, 如果一个链路承载有 k个 TCP数据流, 则, 一个采样周期内 的数据传输时延 tde为 tde=∑ ( t2i-tli ) / k, i=l,2,…… k。 由于每个采样周期 只进行一次采样, 每个采样周期的这次采样也筒称为采样点。
在采样窗口期间, 如果被检测的链路上没有数据传输, 则核心网网关也 不进行数据传输的采样。 也就是说, 核心网网关进行的数据传输采样是由数 据触发的, 从而能够使核心网网关避免对无效数据的采样和处理, 提高了核 心网网关的数据采样效率。 与此同时, 为了避免重复采样, 在一个采样窗口 期间, 每个数据流可以最多只采样一次。
需要说明的是, 在 TCP协议中, TCP响应消息既可以作为一条单独的消 息由用户设备向核心网网关发送, 也可能与上行的真实数据合并到一起向核 心网网关传输, 这两种传输方式都是将对 TCP数据包的响应消息传输给核心 网网关的有效方式, 其传递到核心网网关的时间都可以作为计算数据传输时 延的依据。
而对于数据传输速率来讲, 核心网网关可以将每个采样周期中的采样窗 口内流过的数据量除以采样窗口, 以获得每个采样周期内的数据传输速率。 其中, 采样周期中的采样窗口内流过的数据量, 可以分散在多个数据流的多 个数据包(如 TCP数据包) 中, 其中一个数据流的一个数据包, 可以为前述 的测量数据传输时延所记录的 TCP数据包。例如,在本发明的一个实施例中, 采样周期为 T— Sample秒, 采样窗口为 T— Window秒, 在第一个采样周期(第 一个采样点 ) 的采样窗口内, 共采样 S个数据包, 采样窗口内的数据传输速 率为: v=∑Xi*8 / T— Window比特, 其中, Xi 为第 1至第 S个数据包的大小, i=l,2... ... S。需要指出的是,该采样窗口内的数据传输速率代表了该采样窗口 所在的采样周期内的数据传输速率。
核心网网关 2的处理器 22对采样的数据进行第一运算以获知链路状态参 数后, 可以通过通信模块 21按照上报周期 T— Report定时发送该链路状态参 数到检测网元。 其中, 上报周期 T— Report可以包含在启动参数中。 上报周期 为核心网网关 2 向检测网元上报链路状态参数的周期。 通常, 上报周期 T— Report大于采样周期 T— Sample ,每次上报给检测网元的数据可以为一个采 样周期或几个采样周期的链路状态参数。
相应的, 如图 5所示, 本发明的实施例还提供一种核心网网关 3 , 包括: 通信模块 31 , 用于与检测网元或者接入网进行交互;
处理器 32, 用于:
通过通信模块 31接收来自所述检测网元的链路检测启动请求,所述链路 检测启动请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式为 接入网检测模式;
通过通信模块 31将所述链路检测启动请求向所述接入网转发; 通过通信模块 31接收来自所述接入网的链路状态参数,所述链路状态参 数包括在所述接入网检测模式下检测的链路的各个采样周期内的数据传输时 延和数据传输速率;
通过通信模块 31将所述链路状态参数向所述检测网元转发。
采用上述技术方案后, 本实施例提供的核心网网关 3 , 能够接收来自检 测网元的链路检测启动请求, 并将该链路检测启动请求转发给接入网以使接 入网根据所述链路检测启动请求获得被检测链路的链路状态参数, 同时还接 收来自接入网的链路状态参数,并将所述链路状态参数向所述检测网元转发, 以使检测网元确定链路状态是否不良, 从而对移动宽带的链路通信质量进行 有效评估, 为链路的优化和改进提供了条件。
可选的,核心网网关 3的处理器 32接收到链路检测启动请求后,可以先 向检测网元发送一个链路检测启动请求的响应消息, 然后再处理该链路检测 启动请求。 通过对该链路检测启动请求的解析, 核心网网关可获知启动参数 中的检测模式为接入网检测模式, 也就获知链路状态检测任务将由接入网关 执行。 在本发明的其他实施例中, 启动参数还可以包括其他, 例如用户设备 标识、 承载标识、 采样周期、 采样窗口以及上报周期等。
可选的,核心网网关 3的处理器 3可以利用通信模块 31通过下行数据包 中的 GTP-U ( GPRS 隧道协议用户面部分, GPRS Tunneling Protocol-User plane ) 的扩展头将所述链路检测启动请求向接入网转发。 同样可选的, 核心 网网关 3的处理器 32可以利用通信模块 31通过上行数据包中的 GPRS隧道 协议用户面部分的扩展头接收来自接入网的链路状态参数。 当然, 核心网网 关还可以通过其它的消息或数据结构向接入网转发链路检测启动请求, 或者 接收来自接入网的链路状态参数, 本发明对此不做限制。
相应的, 如图 6所示, 本发明的实施例还提供一种接入网网元 4, 包括: 通信模块 41 , 用于与核心网网关进行交互;
处理器 42, 用于: 通过通信模块 41接收来自所述核心网网关的链路检测启动请求,所述链 路检测启动请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式 为接入网检测模式;
根据所述链路检测启动请求对链路上传输的数据进行采样;
对采样的数据进行第二运算以获知链路状态参数, 所述链路状态参数包 数据传输速率;
通过通信模块 41发送所述链路状态参数到所述核心网网关。
采用上述技术方案后, 本实施例提供的接入网网元 4能够接收来自核心 网网关的链路检测启动请求, 根据所述链路检测启动请求对链路上传输的数 据进行采样并对采样的数据进行第二运算从而获得链路状态参数, 然后再将 该链路状态参数发送到核心网网关, 以使核心网网关将该链路状态参数发送 到检测网元, 从而使检测网元确定链路状态是否不良, 对移动宽带的链路通 信质量进行有效评估, 为链路的优化和改进提供条件。
可选的, 当接入网网元 4的处理器 42接收到链路检测启动请求后,可以 先向核心网网关发送一个链路检测启动请求的响应消息, 然后再处理该链路 检测启动请求。 具体的, 接入网网元 4的处理器 42可以利用通信模块 41 , 通过接收的下行数据包中的 GPRS隧道协议用户面部分的扩展头接收所述链 路检测启动请求, 通过该链路检测启动请求中启动参数中的检测模式获知链 路状态检测将由接入网执行。
当然, 可选的, 启动参数还可以包括其他, 例如用户设备标识、 承载标 识、 采样周期、 采样窗口以及上报周期等, 所述采样窗口为所述采样周期内 进行数据采样的一段连续的时间。 其中, 当启动参数包括用户设备标识和承 载标识时,接入网网元 4的处理器 42可以根据用户设备标识和承载标识来确 定需要检测的链路的具体位置, 从而有利于更精确地确定每条链路的具体状 况。 当启动参数包括采样周期、 采样窗口时, 接入网网元 4的处理器 42可以 在各个采样周期中的采样窗口内对链路上传输的数据进行采样, 其中, 每个 采样周期包括一个采样窗口。 如图 3所示, 采样周期 T— sample为两次采样之 间间隔的时间, 采样窗口 T— window为每个采样周期 T— sample中对链路传输 数据进行采样的一段时间。
具体的,接入网网元 4的处理器 42对采样的数据进行第二运算以获知链 路状态参数, 该链路状态参数可以包括多种形式和不同特征的数据, 只要该 数据能够表征被检测的链路中的数据传输效果即可。 例如, 在本发明的一个 实施例中, 所述链路状态参数包括被检测的链路的各个采样周期内的数据传 输时延和数据传输速率。
此时, 处理器 42可以具体用于:
将每个采样周期中的采样窗口内流过的数据量除以采样窗口, 以获得所 述每个采样周期内的数据传输速率;
将每个采样周期中的采样窗口内流过的所有数据包通过空口协议栈的 RLC ( radio link control, 无线链路控制 )层的时间相加后除以流过的数据包 的数目, 以获得每个所述采样周期内的数据传输时延。
需要说明的是, 本实施例中, 检测模式为接入网检测模式, 相应的, 接 入网网元 4检测到的数据传输时延为从接入网到用户设备之间的数据传输的 时延, 也就是数据通过空口的时延。
图 7所示为 UMTS ( Universal Mobile Telecommunication System, 通用移 动通信系统 ) /LTE(Long Term Evolution,长期演进)的移动宽带网络中 RAN ( Radio Access Network, 无线接入网) 空口侧用户面协议栈的结构示意图。 如图 7 所示, 用户设备接收的下行数据包在空口中经过协议栈顺序为 APP ( Application, 应用)-> PDCP(Packet Data Convergence Protocol, 分组数据汇 聚协议)- >RLC->MAC ( Media Access Control, 媒体存取控制 ) ->L1 (层 1 )。 在数据包通过空口的过程中, 数据包经过每一层都有一定的时延。 本发明的 实施例主要通过检测 RLC层的数据传输来计算数据传输时延。当网络拥塞时, MAC层调度慢, 数据包就会在 RLC中緩存, 数据包通过 RLC层的时间就会 延长, 所以, 通过测量数据包通过 RLC协议栈的时延就可以估算空口是否拥 塞。 本实施例中, 如果大小为 X的数据包在 RLC层传送成功, 则这个数据包 在 RLC中的时延为 t = tc-tb。
需要说明的是, 上述实施例中, 虽然即可以在核心网网关侧进行链路状 态检测也可以在接入网侧进行链路状态检测, 但这两种检测所反映的链路状 态的链路范围是不同的。 核心网网关侧进行链路状态检测反映的是用户设备 到核心网网关 PGW/GGSN之间的链路的状态, 链路范围较大; 而接入网侧 检测的为从接入网到用户设备之间的链路状态,也就是数据通过空口的状态, 链路范围较小。 可以根据需要确定的链路的范围来选定具体需要在哪侧进行 检测。
相应的, 如图 8所示, 本发明的实施例还提供一种检测网元 10, 包括: 第一发送单元 101 , 用于发送链路检测启动请求到核心网网关, 所述链 路检测启动请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式 包括接入网检测模式或核心网检测模式, 所述检测网元为与所述核心网网关 相连的网络元件;
第一接收单元 102, 用于接收来自所述核心网网关的链路状态参数, 所 述链路状态参数包括在所述接入网检测模式或所述核心网检测模式下检测的 链路的各个采样周期内的数据传输时延和数据传输速率;
确定单元 103 , 用于根据所述链路状态参数确定链路状态是否不良。 采用上述技术方案后,本实施例提供的检测网元 10,其第一发送单元 101 能够向核心网网关发送链路检测启动请求, 其第一接收单元 102接收来自核 心网网关的链路状态参数, 确定单元 103再根据所述链路状态参数确定链路 状态是否不良, 这样, 就能对移动宽带的链路通信质量进行有效评估, 为链 路的优化和改进提供了条件。
需要说明的是, 虽然本实施例中,检测网元 10是与核心网网元相连但独 立于核心网网关的一个单独的装置, 但本发明不限于此, 在本发明的其他实 施例中,检测网元 10也可以作为一个模块集成在核心网网关装置之中, 或者 以其他的方式呈现, 只要能够完成其相应的功能即可。
可选的, 所述启动参数还可包括用户设备标识、 承载标识、 采样周期、 采样窗口以及上报周期中的一种或几种, 其中所述采样窗口为所述采样周期 内进行数据采样的一段连续的时间。
具体的, 检测网元 10接收来自所述核心网网关的链路状态参数, 其中, 该链路状态参数可以包括多种形式和不同特征的数据, 只要该数据能够表征 被检测的链路中的数据传输效果即可。
此时, 确定单元 3可具体用于: 如果一个所述采样周期内的数据传输时 延大于规定时延且所述一个采样周期内的数据传输速率小于规定速率, 确定 所述一个采样周期为链路状态不良的采样周期; 如果所述链路状态不良的采 样周期在采样周期总数中所占据的比例大于规定比值, 确定被检测的链路状 态不良。
当经过若干个采样周期的采样后, 确定单元 103已经可以根据这些采样 周期中的链路状态参数确定链路状态是否不良,进一步地,第一发送单元 101 还用于: 发送链路检测停止请求到所述核心网网关。
相应的,如图 9所示,本发明的实施例还提供一种核心网网关 20, 包括: 第二接收单元 201 , 用于接收来自检测网元的链路检测启动请求, 所述 链路检测启动请求携带启动参数, 所述启动参数包括检测模式, 所述检测模 式为核心网检测模式, 所述检测网元为与所述核心网网关相连的网络元件; 第一采样单元 202, 用于根据所述链路检测启动请求对链路上传输的数 据进行采样;
第一计算单元 203 , 用于对采样的数据进行第一运算以获知链路状态参 数, 所述链路状态参数包括在所述核心网检测模式下检测的链路的各个采样 周期内的数据传输时延和数据传输速率; 第二发送单元 204 , 用于发送所述链路状态参数到所述检测网元。
采用上述技术方案后, 本实施例提供的核心网网关 20, 其第二接收单元 201 能够接收来自检测网元的链路检测启动请求, 第一采样单元 202能够根 据所述链路检测启动请求对链路上传输的数据进行采样, 第一计算单元 203 对采样的数据进行第一运算从而获得链路状态参数, 然后第二发送单元 204 将该链路状态参数发送到检测网元, 以使检测网元确定链路状态是否不良, 从而对移动宽带的链路通信质量进行有效评估, 为链路的优化和改进提供了 条件。
其中, 核心网网关 20可以为 PGW或者 GGSN, 也可以为其他类型的核 心网网关, 本发明的实施例对此不作限制。
可选的, 当第二接收单元 201接收到链路检测启动请求后, 可以先通过 第二发送单元 204向检测网元发送一个链路检测启动请求的响应消息, 然后 再处理该链路检测启动请求。 具体的, 第二接收单元 201通过对该链路检测 启动请求进行解析,可使核心网网关 20获知启动参数中的检测模式为核心网 检测模式, 也就获知链路状态检测任务将由核心网网关 20自身执行。
当然,在本发明的其他实施例中,所述启动参数还可包括用户设备标识、 承载标识、 采样周期、 采样窗口以及上报周期中的至少一种。 其中所述采样 窗口为所述采样周期内进行数据采样的一段连续的时间。 其中, 当启动参数 包括用户设备标识和承载标识时, 第一采样单元 202可以根据用户设备标识 和承载标识来确定需要检测的链路的具体位置, 从而有利于更精确地确定每 条链路的具体状况。 当启动参数包括采样周期、 采样窗口时, 第一采样单元 202 可以在各个采样周期中的采样窗口内对链路上传输的数据进行采样, 其 中, 每个采样周期包括一个采样窗口。
具体的, 第一计算单元 203对采样的数据进行第一运算以获知链路状态 参数, 该链路状态参数可以包括多种形式和不同特征的数据, 只要该数据能 够表征被检测的链路中的数据传输效果即可。 例如, 在本发明的一个实施例 中, 具体的, 第一计算单元 203可用于: 将每个所述采样周期中的采样窗口 内流过的数据量除以所述采样窗口, 以获得所述每个采样周期内的数据传输 速率; 在每个所述采样周期中的采样窗口内, 将所述链路中包括的所有数据 流的时延相加之后除以所述链路中的数据流的数目, 以获得所述每个采样周 期内的数据传输时延, 其中, 所述数据流的时延为所述核心网网关接收到所 述数据流的来自互联网的一个传输控制协议 TCP数据包到所述核心网网关接 收到来自用户设备返回的对所述传输控制协议 TCP数据包的响应消息之间的 时间。
需要说明的是, 在 TCP协议中, TCP响应消息既可以作为一条单独的消 息由用户设备向核心网网关发送, 也可能与上行的真实数据合并到一起向核 心网网关传输, 这两种传输方式都是将对 TCP数据包的响应消息传输给核心 网网关的有效方式, 其传递到核心网网关的时间都可以作为计算数据传输时 延的依据。
还需要说明的是, 正常情况下, 当用户正在进行数据业务时, 链路上的 数据传输是持续进行的, 而第一采样单元 202对链路上传输的数据是按照周 期进行采样的, 且每个采样周期仅进行时间为采样窗口的采样。 对于一个采 样周期而言, 该采样周期内的数据传输时延即为在这个采样周期的采样窗口 内, 该链路承载的所有数据流的时延的平均值。
具体的, 第二发送单元 204可用于按照所述上报周期定时发送所述链路 状态参数到所述检测网元。 其中, 上报周期可以包含在启动参数中。 上报周 期为核心网网关 20向检测网元上报链路状态参数的周期。 通常, 上报周期大 于采样周期, 每次上报给检测网元的数据可以为一个采样周期或几个采样周 期的链路状态参数。
相应的, 如图 10所示, 本发明的实施例还提供一种核心网网关 30, 包 括:
第三接收单元 301 , 用于接收来自检测网元的链路检测启动请求, 所述 链路检测启动请求携带启动参数, 所述启动参数包括检测模式, 所述检测模 式为接入网检测模式, 所述检测网元为与所述核心网网关相连的网络元件; 转发单元 302 , 用于将所述链路检测启动请求向所述接入网转发; 第三接收单元 301 , 还用于接收来自所述接入网的链路状态参数, 所述 链路状态参数包括在所述接入网检测模式下检测的链路的各个采样周期内的 数据传输时延和数据传输速率;
转发单元 302 , 还用于将所述链路状态参数向所述检测网元转发。
采用上述技术方案后, 本实施例提供的核心网网关 30, —方面, 其第三 接收单元 301能够接收来自检测网元的链路检测启动请求, 转发单元 302能 够将该链路检测启动请求转发给接入网以使接入网根据所述链路检测启动请 求获得被检测链路的链路状态参数, 另一方面, 第三接收单元 301还接收来 自接入网的链路状态参数, 转发单元 302还用于将所述链路状态参数向所述 检测网元转发, 以使检测网元确定链路状态是否不良, 从而对移动宽带的链 路通信质量进行有效评估, 为链路的优化和改进提供了条件。
可选的,核心网网关 30接收到链路检测启动请求后,可以先向检测网元 发送一个链路检测启动请求的响应消息, 然后再处理该链路检测启动请求。 通过对该链路检测启动请求的解析, 核心网网关可获知启动参数中的检测模 式为接入网检测模式, 也就获知链路状态检测任务将由接入网关执行。
可选的, 所述转发单元 302可具体用于通过下行数据包中的 GPRS隧道 协议用户面部分的扩展头将所述链路检测启动请求向所述接入网转发。 或者 所述转发单元 302还可具体用于通过一个专门的指令或消息将链路检测启动 请求向所述接入网转发。 本发明的实施例对此不做限制。
可选的, 所述第三接收单元 301具体用于: 通过上行数据包中的 GPRS 隧道协议用户面部分的扩展头接收来自所述接入网的链路状态参数。
相应的, 如图 11所示, 本发明的实施例还提供一种接入网网元 40, 包 括: 第四接收单元 401 , 用于接收来自核心网网关的链路检测启动请求, 所 述链路检测启动请求携带启动参数, 所述启动参数包括检测模式, 所述检测 模式为接入网检测模式; 据进行采样;
第二计算单元 403 , 用于对采样的数据进行第二运算以获知链路状态参 数, 所述链路状态参数包括在所述接入网检测模式下检测的链路的各个采样 周期内的数据传输时延和数据传输速率;
第四发送单元 404, 用于发送所述链路状态参数到所述核心网网关。 采用上述技术方案后, 本实施例提供的接入网网元 40, 其第四接收单元 401 能够接收来自核心网网关的链路检测启动请求, 第二采样单元 402能够 根据所述链路检测启动请求对链路上传输的数据进行采样,第二计算单元 403 能够对采样的数据进行第二运算从而获得链路状态参数, 第四发送单元 404 再将该链路状态参数发送到核心网网关, 以使核心网网关将该链路状态参数 发送到检测网元, 从而使检测网元确定链路状态是否不良, 对移动宽带的链 路通信质量进行有效评估, 为链路的优化和改进提供条件。
可选的, 所述启动参数还包括: 用户设备标识、 承载标识、 采样周期、 采样窗口以及上报周期中的一种或几种。 其中所述采样窗口为所述采样周期 内进行数据采样的一段连续的时间。
其中, 当启动参数包括用户设备标识和承载标识时, 所述第二采样单元 402 可以根据用户设备标识和承载标识来确定需要检测的链路的具体位置, 从而有利于更精确地确定每条链路的具体状况。 当启动参数包括采样周期、 采样窗口时, 第二采样单元 402可以在各个采样周期中的采样窗口内对链路 上传输的数据进行采样, 其中, 每个采样周期包括一个采样窗口。
具体的, 第二采样单元 402对采样的数据进行第二运算以获知链路状态 参数, 该链路状态参数可以包括多种形式和不同特征的数据, 只要该数据能 够表征被检测的链路中的数据传输效果即可。 例如, 在本发明的一个实施例 和数据传输速率。
这种情况下, 第二计算单元 403可具体用于: 将每个所述采样周期中的 采样窗口内流过的数据量除以所述采样窗口, 以获得所述每个所述采样周期 内的数据传输速率; 将每个所述采样周期中的采样窗口内流过的所有数据包 通过空口协议栈的无线链路控制 RLC 层的时间相加后除以所述数据包的数 目, 以获得每个所述采样周期内的数据传输时延。
需要说明的是, 本实施例中, 检测模式为接入网检测模式, 相应的, 接 入网网元 40检测到的数据传输时延为从接入网到用户设备之间的数据传输 的时延, 也就是数据通过空口的时延。
相应的, 本发明的实施例提供一种链路状态检测方法, 如图 12所示, 包 括:
511 ,检测网元发送链路检测启动请求到核心网网关,所述链路检测启动 请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式包括接入网 检测模式或核心网检测模式, 所述检测网元为与所述核心网网关相连的网络 元件;
512, 所述检测网元接收来自所述核心网网关的链路状态参数;
513 , 所述检测网元根据所述链路状态参数确定链路状态是否不良。 采用上述技术方案后, 本实施例提供的链路状态检测方法, 能够通过核 心网网关处设置的检测网元向核心网网关发送链路检测启动请求, 并且接收 来自核心网网关的链路状态参数, 再根据所述链路状态参数确定链路状态是 否不良, 这样, 就能对移动宽带的链路通信质量进行有效评估, 为链路的优 化和改进提供了条件。
可选的, 步骤 S11中, 启动参数中的检测模式可以为接入网检测模式也 可以为核心网检测模式。 当该检测模式为接入网检测模式时, 检测网元通过 这一启动参数指示核心网网关继续将链路检测启动请求向接入网转发, 以便 在接入网侧对链路状态进行检测; 当该检测模式为核心网检测模式时, 检测 网元通过这一启动参数指示核心网网关在该核心网网关处检测链路状态。
需要说明的是, 虽然本实施例中, 检测网元是独立于核心网网关的一个 单独的装置, 但本发明不限于此, 在本发明的其他实施例中, 检测网元也可 以作为一个模块集成在核心网网关装置之中, 或者以其他的方式呈现, 只要 能够完成其相应的功能即可。
具体的, 在步骤 S 12中, 检测网元接收来自所述核心网网关的链路状态 参数, 其中, 该链路状态参数可以包括多种形式和不同特征的数据, 只要该 数据能够表征被检测的链路中的数据传输效果即可。 例如, 在本发明的一个 据传输时延和数据传输速率。
于是, 在步骤 S13中, 检测网元即可根据各个采样周期内的数据传输时 延和数据传输速率确定链路状态是否不良: 如果一个所述采样周期内的数据 传输时延大于规定时延且所述一个采样周期内的数据传输速率小于规定速 率, 则确定这个采样周期为链路状态不良的采样周期; 如果链路状态不良的 采样周期在采样周期总数中所占据的比例大于规定比值, 则确定被检测的链 路状态不良。 可选的, 这一规定比值可以根据对链路状态的不同要求而调整, 例如, 可以为 30%至 80%。 在本发明的一个实施例中, 对链路状态要求较高, 确定这一规定比值为 30%, 也就是说, 当链路状态不良的采样周期在采样周 期总数中所占据的比例大于规定比值 30%时, 即可确定链路状态不良。 而在 另一个实施例中, 对链路状态要求较低, 则可确定这一规定比值例如可以为 60%。
上述实施例中, 启动参数包括检测模式, 但本发明的实施例不限于此。 在本发明的其他实施例中, 启动参数还可以包括其他, 例如, 还可以包括用 户设备标识、 承载标识、 采样周期、 采样窗口以及上报周期中的一个或多个。 其中所述采样窗口为所述采样周期内进行数据采样的一段连续的时间。 当启 动参数包括用户设备标识和承载标识时, 检测网元可以根据用户设备标识和 承载标识来指示核心网网关需要检测的链路的具体位置。 这样, 有利于更精 确地确定每条链路的具体状况。 当启动参数包括采样周期、 采样窗口以及上 报周期时, 检测网元可以指示核心网网关多长时间对链路上传输的数据采样 一次(采样周期), 每个采样周期中的采样时间 (采样窗口), 多长时间向检 测网元上报一次(上报周期)。 从而对链路的数据传输状态进行定时测量和定 时上 ^艮, 以便稳定地获知链路的数据传输状态。
当经过若干个采样周期的采样后, 检测网元已经可以根据这些采样周期 中的链路状态参数确定链路状态是否不良, 进一步地, 在步骤 S13之后, 该 方法还包括: 所述检测网元发送链路检测停止请求到所述核心网网关, 从而 使链路状态检测停止。
相应的, 本发明的实施例还提供一种链路状态检测方法, 如图 13所示, 包括:
521 ,核心网网关接收来自检测网元的链路检测启动请求,所述链路检测 启动请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式为核心 网检测模式, 所述检测网元为与所述核心网网关相连的网络元件;
522,所述核心网网关根据所述链路检测启动请求对链路上传输的数据进 行采样;
523 , 所述核心网网关对采样的数据进行第一运算以获知链路状态参数;
524, 所述核心网网关发送所述链路状态参数到所述检测网元。
采用上述技术方案后, 本实施例提供的链路状态检测方法中, 核心网网 关能够接收来自检测网元的链路检测启动请求, 根据所述链路检测启动请求 对链路上传输的数据进行采样并对采样的数据进行第一运算从而获得链路状 态参数, 然后再将该链路状态参数发送到检测网元, 以使检测网元确定链路 状态是否不良, 从而对移动宽带的链路通信质量进行有效评估, 为链路的优 化和改进提供了条件。
可选的, 当核心网网关接收到链路检测启动请求后, 可以先向检测网元 发送一个链路检测启动请求的响应消息, 然后再处理该链路检测启动请求。 通过对该链路检测启动请求的解析, 核心网网关可获知启动参数中的检测模 式为核心网检测模式,也就获知链路状态检测任务将由核心网网关自身执行。 在本发明的其他实施例中, 启动参数还可以包括其他, 例如用户设备标识、 承载标识、 采样周期、 采样窗口以及上报周期等。 其中, 当启动参数包括用 户设备标识和承载标识时, 在步骤 S22中, 核心网网关可以根据用户设备标 识和承载标识来确定需要检测的链路的具体位置, 从而有利于更精确地确定 每条链路的具体状况。 当启动参数包括采样周期、 采样窗口时, 在步骤 S22 中, 核心网网关可以在各个采样周期中的采样窗口内对链路上传输的数据进 行采样, 其中, 每个采样周期包括一个采样窗口。
具体的, 在步骤 S23中, 核心网网关对采样的数据进行第一运算以获知 链路状态参数, 该链路状态参数可以包括多种形式和不同特征的数据, 只要 该数据能够表征被检测的链路中的数据传输效果即可。 例如, 在本发明的一 个实施例中, 所述链路状态参数包括被检测的链路的各个采样周期内的数据 传输时延和数据传输速率。
需要说明的是, 对于核心网网关一侧的数据传输时延而言, 一个移动宽 带的链路承载可以包括一到多个数据流, 例如, 在本发明的一个实施例中, 一个链路承载包括五个数据流, 即 5元组(源 IP和目的 IP, 源端口和目的端 口, 协议号)。
正常情况下, 当用户正在进行数据业务时, 链路上的数据传输是持续进 行的, 而步骤 S22中对链路上传输的数据是按照周期进行采样的, 且每个采 样周期仅进行时间为采样窗口的采样。 对于一个采样周期而言, 该采样周期 内的数据传输时延即为在这个采样周期的采样窗口内, 该链路承载的所有数 据流的时延的平均值。 可以采用多种方法估算采样周期内的数据传输时延, 本发明对此不做限 制。但为了减少测量数据传输时延的定时器开销, 在本发明的一个实施例中, 可以利用 TCP数据包的传输特性估算出链路中的数据传输时延。 具体的, 可 以在每个所述采样周期中的采样窗口内, 核心网网关将被测量的链路中包括 的所有数据流的时延相加之后除以该链路中的数据流的数目, 以获得每个采 样周期内各自的数据传输时延, 其中, 数据流的时延为所述核心网网关接收 到所述数据流的来自互联网的一个 TCP数据包到所述核心网网关接收到来自 用户设备返回的对所述 TCP数据包的响应消息之间的时间。 即, 核心网网关 侧测量的数据传输时延为用户设备到核心网网关 PGW/GGSN之间的链路的 数据传输时延。
在采样窗口期间, 如果被检测的链路上没有数据传输, 则核心网网关也 不进行数据传输的采样。 也就是说, 核心网网关进行的数据传输采样是由数 据触发的, 从而能够使核心网网关避免对无效数据的采样和处理, 提高了核 心网网关的数据采样效率。 与此同时, 为了避免重复采样, 在一个采样窗口 期间, 每个数据流最多只采样一次。
需要说明的是, 在 TCP协议中, TCP响应消息既可以作为一条单独的消 息由用户设备向核心网网关发送, 也可能与上行的真实数据合并到一起向核 心网网关传输, 这两种传输方式都是将对 TCP数据包的响应消息传输给核心 网网关的有效方式, 其传递到核心网网关的时间都可以作为计算数据传输时 延的依据。
而对于数据传输速率来讲, 核心网网关可以将每个采样周期中的采样窗 口内流过的数据量除以采样窗口, 以获得每个采样周期内的数据传输速率。 其中, 采样周期中的采样窗口内流过的数据量, 可以分散在多个数据流的多 个数据包(如 TCP数据包) 中, 其中一个数据流的一个数据包, 可以为前述 的测量数据传输时延所记录的 TCP数据包。例如,在本发明的一个实施例中, 采样周期为 T— Sample秒, 采样窗口为 T— Window秒, 在第一个采样周期(第 一个采样点) 的采样窗口内, 共采样 S个数据包, 采样窗口内的数据传输速 率为: v=∑Xi*8 / T— Window比特, 其中, Xi 为第 1至第 S个数据包的大小, i=l,2... ... S。需要指出的是,该采样窗口内的数据传输速率代表了该采样窗口 所在的采样周期内的数据传输速率。
当在步骤 S23中, 核心网网关对采样的数据进行第一运算以获知链路状 态参数后, 在步骤 S24中, 核心网网关发送该链路状态参数到所述检测网元 的步骤具体可以为核心网网关按照上报周期定时发送该链路状态参数到检测 网元。 其中, 上报周期可以包含在启动参数中。 通常, 上报周期大于采样周 期, 每次上报给检测网元的数据可以为一个采样周期或几个采样周期的链路 状态参数。
相应的, 本发明的实施例还提供一种链路状态检测方法, 如图 14所示, 包括以下步骤:
531 ,核心网网关接收来自检测网元的链路检测启动请求,所述链路检测 启动请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式为接入 网检测模式, 所述检测网元为与所述核心网网关相连的网络元件;
532, 所述核心网网关将所述链路检测启动请求向所述接入网转发;
533 , 所述核心网网关接收来自所述接入网的链路状态参数;
534, 所述核心网网关将所述链路状态参数向所述检测网元转发。
采用上述技术方案后, 本实施例提供的链路状态检测方法中, 核心网网 关接收来自检测网元的链路检测启动请求, 并将该链路检测启动请求转发给 接入网以使接入网根据所述链路检测启动请求获得被检测链路的链路状态参 数, 同时还接收来自接入网的链路状态参数, 并将所述链路状态参数向所述 检测网元转发, 以使检测网元确定链路状态是否不良, 从而对移动宽带的链 路通信质量进行有效评估, 为链路的优化和改进提供了条件。
可选的, 在步骤 S31中, 当核心网网关接收到链路检测启动请求后, 可 以先向检测网元发送一个链路检测启动请求的响应消息, 然后再处理该链路 检测启动请求。 通过对该链路检测启动请求的解析, 核心网网关可获知启动 参数中的检测模式为接入网检测模式, 也就获知链路状态检测任务将由接入 网关执行。 在本发明的其他实施例中, 启动参数还可以包括其他, 例如用户 设备标识、 承载标识、 采样周期、 采样窗口以及上报周期等。
可选的, 步骤 S32中,核心网网关可以通过下行数据包中的 GTP-U的扩 展头将所述链路检测启动请求向接入网转发。 同样可选的, 在步骤 S33中, 核心网网关可以通过上行数据包中的 GPRS隧道协议用户面部分的扩展头接 收来自接入网的链路状态参数。 当然, 核心网网关还可以通过其它的消息或 数据结构向接入网转发链路检测启动请求, 或者接收来自接入网的链路状态 参数, 本发明对此不做限制。
相应的, 如图 15所示, 本发明的实施例还提供一种链路状态检测方法, 包括如下步骤:
541 ,接入网接收来自核心网网关的链路检测启动请求,所述链路检测启 动请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式为接入网 检测模式, 所述检测网元为与所述核心网网关相连的网络元件;
542 ,所述接入网根据所述链路检测启动请求对链路上传输的数据进行采 样;
543 ,所述接入网对采样的数据进行第二运算以获知链路状态参数,所述 输速率;
544, 所述接入网发送所述链路状态参数到所述核心网网关。
采用上述技术方案后, 本实施例提供的链路状态检测方法中, 接入网接 收来自核心网网关的链路检测启动请求, 根据所述链路检测启动请求对链路 上传输的数据进行采样并对采样的数据进行第二运算从而获得链路状态参 数, 然后再将该链路状态参数发送到核心网网关, 以使核心网网关将该链路 状态参数发送到检测网元, 从而使检测网元确定链路状态是否不良, 对移动 宽带的链路通信质量进行有效评估, 为链路的优化和改进提供条件。
可选的, 当接入网接收到链路检测启动请求后, 可以先向核心网网关发 送一个链路检测启动请求的响应消息, 然后再处理该链路检测启动请求。 具 体的, 接入网可以通过接收的下行数据包中的 GPRS隧道协议用户面部分的 扩展头接收所述链路检测启动请求, 通过该链路检测启动请求中启动参数中 的检测模式获知链路状态检测将由接入网执行。
当然, 可选的, 启动参数还可以包括其他, 例如用户设备标识、 承载标 识、 采样周期、 采样窗口以及上报周期等, 其中所述采样窗口为所述采样周 期内进行数据采样的一段连续的时间。 当启动参数包括用户设备标识和承载 标识时, 在步骤 S42中, 接入网可以根据用户设备标识和承载标识来确定需 要检测的链路的具体位置, 从而有利于更精确地确定每条链路的具体状况。 当启动参数包括采样周期、 采样窗口时, 在步骤 S42中, 接入网可以在各个 采样周期中的采样窗口内对链路上传输的数据进行采样, 其中, 每个采样周 期包括一个采样窗口。
具体的, 在步骤 S43中, 接入网对采样的数据进行第二运算以获知链路 状态参数, 该链路状态参数可以包括多种形式和不同特征的数据, 只要该数 据能够表征被检测的链路中的数据传输效果即可。 例如, 在本发明的一个实 施例中, 所述链路状态参数包括被检测的链路的各个采样周期内的数据传输 时延和数据传输速率。
此时, 步骤 S43可以具体包括如下步骤:
将每个采样周期中的采样窗口内流过的数据量除以采样窗口, 以获得所 述每个采样周期内的数据传输速率;
将每个采样周期中的采样窗口内流过的所有数据包通过空口协议栈的 RLC层的时间相加后除以流过的数据包的数目, 以获得每个所述采样周期内 的数据传输时延。
需要说明的是, 本实施例中, 检测模式为接入网检测模式, 相应的, 接 入网检测到的数据传输时延为从接入网到用户设备之间的数据传输的时延, 也就是数据通过空口的时延。
下面以 PGW/GGSN为核心网网关, 通过具体实施例对本发明的实施例 提供的链路状态检测方法进行详细的说明。
图 16 为检测模式为核心网网关检测模式的链路状态检测方法的详细流 程图。
如图 16所示, 当需要进行链路状态检测时, 则 81、 检测网元首先向核 心网网关发送链路检测启动请求, 以通知核心网网关 PGW/GGSN 启动链路 状态检测流程。 其中, 所述链路检测启动请求携带启动参数, 所述启动参数 包括检测模式、 用户设备标识、 承载标识、 采样周期、 采样窗口以及上报周 期, 所述检测模式为核心网检测模式。
当核心网网关 PGW/GGSN接收到链路检测启动请求后, 82、 首先给检 测网元发送响应消息, 然后启动检测过程: 核心网网关根据所述链路检测启 动请求对链路上传输的数据进行采样; 核心网网关对采样的数据进行第一运 算以获知链路状态参数。 详细过程可以参见前述实施例, 此处不再赘述。
当核心网网关 PGW/GGSN 获知链路状态参数后, 83、 核心网网关 PGW/GGSN可以向检测网元上报该链路状态参数, 可选的, 可以按照启动参 数中的上报周期定时向检测网元发送该链路状态参数。 在一次检测中, 可以 上报多次。 84、 检测网元接收到链路状态参数后, 可以先向 PGW/GGSN返 回响应, 确认收到该链路状态参数。 然后检测网元开始根据该链路状态参数 确定链路状态是否不良。 具体的确定方法已经在前面的实施例中进行了详细 的说明, 此处不再赘述。
当检测网元经过多个上报周期接收了足够多采样周期的链路状态参数时 即可确定链路状态是否不良, 然后, 在步骤 8n中, 检测网元可以向核心网网 关发送链路检测停止请求, 以终止链路状态检测;
核心网网关 PGW/GGSN接收到该链路检测停止请求后,在步骤 8n+l中, 向检测网元返回应答消息并停止链路状态检测。
本实施例中, 通过核心网检测模式的链路状态检测, 可以有效评估用户 设备到核心网网关 PGW/GGSN之间的链路状态是否满足要求, 为链路的优 化和改进提供了条件。
图 17为检测模式为接入网检测模式的链路状态检测方法的详细流程图。 如图 17所示, 当需要进行链路状态检测时, 则 91、 检测网元先向核心 网网关发送链路检测启动请求, 以通知 PGW/GGSN启动链路状态检测流程。 其中, 所述链路检测启动请求携带启动参数, 所述启动参数包括检测模式、 用户设备标识、 承载标识、 采样周期、 采样窗口以及上报周期, 所述检测模 式为接入网检测模式。
92a, 当核心网网关 PGW/GGSN接收到链路检测启动请求后, 首先给检 测网元发送响应消息, 92b、 然后在下行的数据包中, 使用 GTP-U扩展头携 带链路检测启动请求到接入网侧。
接入网收到该链路检测启动请求后, 根据所述链路检测启动请求对链路 上传输的数据进行采样,并对采样的数据进行第二运算以获知链路状态参数, 详细过程可以参见前述实施例, 此处不再赘述。
当接入网获知链路状态参数后, 93、 将该链路状态参数在上行的数据包 中用 GTP-U扩展头上报链路状态参数, 可选的, 可以按照启动参数中的上报 周期定时向核心网网关发送该链路状态参数;
94、 核心网网关 PGW/GGSN每次收到链路状态参数都直接上报到检测 网元处理。
95、 检测网元每次收到链路状态参数, 先向 PGW/GGSN返回响应确认 收到参数, 然后开始根据该链路状态参数确定链路状态是否不良。 具体的确 定方法已经在前面的实施例中进行了详细的说明, 此处不再赘述。
当检测网元经过多个上报周期接收了足够多采样周期的链路状态参数时 即可确定链路状态是否不良, 然后, 在步骤 9m, 检测网元可以向核心网网关 发送链路检测停止请求, 以终止链路状态检测;
核心网网关 PGW/GGSN接收到该链路检测停止请求后, 在步骤 9m+l 中,向检测网元返回应答消息并在步骤 9m+2中,通过下行数据包使用 GTP-U 扩展接口通知 RAN侧停止网络质量测量。
本实施例中, 通过核心网检测模式的链路状态检测, 可以有效评估空口 是否拥塞, 为链路的优化和改进提供了条件。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机 可读存储介质中, 所述存储介质可以是只读存储器、 磁盘或光盘等。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种检测网元, 其特征在于, 包括:
通信模块, 用于与核心网网关进行交互;
处理器, 用于:
通过所述通信模块发送链路检测启动请求到所述核心网网关, 所述链路 检测启动请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式包 括接入网检测模式或核心网检测模式;
通过所述通信模块接收来自所述核心网网关的链路状态参数, 所述链路 状态参数包括在所述接入网检测模式或所述核心网检测模式下检测的链路的 各个采样周期内的数据传输时延和数据传输速率;
根据所述链路状态参数确定链路状态是否不良。
2、 根据权利要求 1所述的检测网元, 其特征在于, 所述启动参数还包括: 用户设备标识、 承载标识、 采样周期、 采样窗口以及上报周期, 其中所述采 样窗口为所述采样周期内进行数据采样的一段连续的时间。
3、 根据权利要求 1所述的检测网元, 其特征在于, 所述处理器用于根据 所述链路状态参数确定链路状态是否不良, 具体包括:
所述处理器用于: 如果一个所述采样周期内的数据传输时延大于规定时 延且所述一个采样周期内的数据传输速率小于规定速率, 确定所述一个采样 周期为链路状态不良的采样周期; 如果所述链路状态不良的采样周期在采样 周期总数中所占据的比例大于规定比值, 确定被检测的链路状态不良。
4、 根据权利要求 3所述的检测网元, 其特征在于, 所述规定比值为 30% 至 80%。
5、 根据权利要求 1所述的检测网元, 其特征在于, 所述处理器还用于: 通过所述通信模块发送链路检测停止请求到所述核心网网关。
6、 一种核心网网关, 其特征在于, 包括:
通信模块, 用于与检测网元进行交互; 处理器, 用于:
通过所述通信模块接收来自所述检测网元的链路检测启动请求, 所述链 路检测启动请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式 为核心网检测模式;
根据所述链路检测启动请求对链路上传输的数据进行采样;
对采样的数据进行第一运算以获知链路状态参数, 所述链路状态参数包 数据传输速率;
通过所述通信模块发送所述链路状态参数到所述检测网元。
7、 根据权利要求 6所述的核心网网关, 其特征在于, 所述启动参数还包 括: 用户设备标识、 承载标识、 采样周期、 采样窗口以及上报周期, 其中所 述采样窗口为所述采样周期内进行数据采样的一段连续的时间。
8、 根据权利要求 7所述的核心网网关, 其特征在于, 所述处理器用于根 据所述链路检测启动请求对链路上传输的数据进行采样, 具体包括:
所述处理器用于:
根据所述用户设备标识和所述承载标识确定检测的链路; 在所述各个采 样周期中的所述采样窗口内对所述链路上传输的数据进行采样, 每个所述采 样周期包括一个所述采样窗口。
9、 根据权利要求 8所述的核心网网关, 其特征在于, 所述处理器用于对 采样的数据进行第一运算以获知链路状态参数, 具体包括:
所述处理器用于:
将每个所述采样周期中的采样窗口内流过的数据量除以所述采样窗口, 以获得所述每个采样周期内的数据传输速率;
在每个所述采样周期中的采样窗口内, 将所述链路中包括的所有数据流 的时延相加之后除以所述链路中的数据流的数目, 以获得所述每个采样周期 内的数据传输时延, 其中, 所述数据流的时延为所述核心网网关接收到所述 数据流的来自互联网的一个传输控制协议 TCP数据包到所述核心网网关接收 到来自用户设备返回的对所述传输控制协议 TCP数据包的响应消息之间的时 间。
10、 根据权利要求 7所述的核心网网关, 其特征在于, 所述处理器用于通 过所述通信模块发送所述链路状态参数到所述检测网元, 具体包括:
所述处理器用于, 通过所述通信模块按照所述上报周期定时发送所述链 路状态参数到所述检测网元。
11、 一种核心网网关, 其特征在于, 包括:
通信模块, 用于与检测网元或者接入网进行交互;
处理器, 用于:
通过所述通信模块接收来自所述检测网元的链路检测启动请求, 所述链 路检测启动请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式 为接入网检测模式;
通过所述通信模块将所述链路检测启动请求向所述接入网转发; 通过所述通信模块接收来自所述接入网的链路状态参数, 所述链路状态 参数包括在所述接入网检测模式下检测的链路的各个采样周期内的数据传输 时延和数据传输速率;
通过所述通信模块将所述链路状态参数向所述检测网元转发。
12、 根据权利要求 11所述的核心网网关, 其特征在于, 所述处理器用于 通过所述通信模块将所述链路检测启动请求向所述接入网转发, 具体包括: 所述处理器用于, 通过所述通信模块使用下行数据包中的通用分组无线 服务 GPRS隧道协议用户面部分的扩展头将所述链路检测启动请求向所述接 入网转发。
13、 根据权利要求 11所述的核心网网关, 其特征在于, 所述处理器用于 通过所述通信模块接收来自所述接入网的链路状态参数, 具体包括:
所述处理器用于, 通过所述通信模块使用上行数据包中的通用分组无线 服务 GPRS隧道协议用户面部分的扩展头接收来自所述接入网的链路状态参 数。
14、 一种接入网网元, 其特征在于, 包括:
通信模块, 用于与核心网网关进行交互;
处理器, 用于:
通过所述通信模块接收来自所述核心网网关的链路检测启动请求, 所述 链路检测启动请求携带启动参数, 所述启动参数包括检测模式, 所述检测模 式为接入网检测模式;
根据所述链路检测启动请求对链路上传输的数据进行采样;
对采样的数据进行第二运算以获知链路状态参数, 所述链路状态参数包 数据传输速率;
通过所述通信模块发送所述链路状态参数到所述核心网网关。
15、 根据权利要求 14所述的接入网网元, 其特征在于, 所述启动参数还 包括: 用户设备标识、 承载标识、 采样周期、 采样窗口以及上报周期, 其中 所述采样窗口为所述采样周期内进行数据采样的一段连续的时间。
16、 根据权利要求 15所述的接入网网元, 其特征在于, 所述处理器用于 根据所述链路检测启动请求对链路上传输的数据进行采样, 具体包括:
所述处理器用于:
根据所述用户设备标识和所述承载标识确定检测的链路;
在所述各个采样周期中的所述采样窗口内对所述链路上传输的数据进行 采样, 每个所述采样周期包括一个所述采样窗口。
17、 根据权利要求 16所述的接入网网元, 其特征在于, 所述处理器用于 对采样的数据进行第二运算以获知链路状态参数, 具体包括:
所述处理器, 用于:
将每个所述采样周期中的采样窗口内流过的数据量除以所述采样窗口, 以获得所述每个所述采样周期内的数据传输速率;
将每个所述采样周期中的采样窗口内流过的所有数据包通过空口协议栈 的无线链路控制 RLC层的时间相加后除以所述数据包的数目, 以获得每个所 述采样周期内的数据传输时延。
18、 一种链路状态检测方法, 其特征在于, 包括:
检测网元发送链路检测启动请求到核心网网关, 所述链路检测启动请求 携带启动参数, 所述启动参数包括检测模式, 所述检测模式包括接入网检测 模式或核心网检测模式,所述检测网元为与所述核心网网关相连的网络元件; 所述检测网元接收来自所述核心网网关的链路状态参数, 所述链路状态 参数包括在所述接入网检测模式或所述核心网检测模式下检测的链路的各个 采样周期内的数据传输时延和数据传输速率;
所述检测网元根据所述链路状态参数确定链路状态是否不良。
19、 根据权利要求 18所述的方法, 其特征在于, 所述启动参数还包括: 用户设备标识、 承载标识、 采样周期、 采样窗口以及上报周期, 其中所述采 样窗口为所述采样周期内进行数据采样的一段连续的时间。
20、 根据权利要求 18所述的方法, 其特征在于, 所述检测网元根据所述 链路状态参数确定链路状态是否不良的步骤具体包括:
如果一个所述采样周期内的数据传输时延大于规定时延且所述一个采样 周期内的数据传输速率小于规定速率, 确定所述一个采样周期为链路状态不 良的采样周期;
如果所述链路状态不良的采样周期在采样周期总数中所占据的比例大于 规定比值, 确定被检测的链路状态不良。
21、 根据权利要求 20所述的方法, 其特征在于, 所述规定比值为 30%至 80%。
22、 根据权利要求 18所述的方法, 其特征在于, 所述检测网元根据所述 链路状态参数确定链路状态是否不良的步骤之后, 所述方法还包括: 所述检测网元发送链路检测停止请求到所述核心网网关。
23、 一种链路状态检测方法, 其特征在于, 包括:
核心网网关接收来自检测网元的链路检测启动请求, 所述链路检测启动 请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式为核心网检 测模式, 所述检测网元为与所述核心网网关相连的网络元件;
所述核心网网关根据所述链路检测启动请求对链路上传输的数据进行采 样;
所述核心网网关对采样的数据进行第一运算以获知链路状态参数, 所述 链路状态参数包括在所述核心网检测模式下检测的链路的各个采样周期内的 数据传输时延和数据传输速率;
所述核心网网关发送所述链路状态参数到所述检测网元。
24、 根据权利要求 23所述的方法, 其特征在于, 所述启动参数还包括: 用户设备标识、 承载标识、 采样周期、 采样窗口以及上报周期, 其中所述采 样窗口为所述采样周期内进行数据采样的一段连续的时间。
25、 根据权利要求 24所述的方法, 其特征在于, 所述核心网网关根据所 述链路检测启动请求对链路上传输的数据进行采样的步骤具体包括:
所述核心网网关根据所述用户设备标识和所述承载标识确定检测的链 路;
所述核心网网关在所述各个采样周期中的所述采样窗口内对所述链路上 传输的数据进行采样, 每个所述采样周期包括一个所述采样窗口。
26、 根据权利要求 25所述的方法, 其特征在于,
所述核心网网关对采样的数据进行第一运算以获知链路状态参数的步骤 具体包括:
所述核心网网关将每个所述采样周期中的采样窗口内流过的数据量除以 所述采样窗口, 以获得所述每个采样周期内的数据传输速率;
所述核心网网关在每个所述采样周期中的采样窗口内, 将所述链路中包 括的所有数据流的时延相加之后除以所述链路中的数据流的数目, 以获得所 述每个采样周期内的数据传输时延, 其中, 所述数据流的时延为所述核心网 网关接收到所述数据流的来自互联网的一个传输控制协议 TCP数据包到所述 核心网网关接收到来自用户设备返回的对所述传输控制协议 TCP数据包的响 应消息之间的时间。
27、 根据权利要求 24所述的方法, 其特征在于, 所述核心网网关发送所 述链路状态参数到所述检测网元的步骤具体包括:
所述核心网网关按照所述上报周期定时发送所述链路状态参数到所述检 测网元。
28、 一种链路状态检测方法, 其特征在于, 包括:
核心网网关接收来自检测网元的链路检测启动请求, 所述链路检测启动 请求携带启动参数, 所述启动参数包括检测模式, 所述检测模式为接入网检 测模式, 所述检测网元为与所述核心网网关相连的网络元件;
所述核心网网关将所述链路检测启动请求向所述接入网转发;
所述核心网网关接收来自所述接入网的链路状态参数, 所述链路状态参 数包括在所述接入网检测模式下检测的链路的各个采样周期内的数据传输时 延和数据传输速率;
所述核心网网关将所述链路状态参数向所述检测网元转发。
29、 根据权利要求 28所述的方法, 其特征在于, 所述核心网网关将所述 链路检测启动请求向所述接入网转发的步骤具体包括:
所述核心网网关通过下行数据包中的通用分组无线服务 GPRS隧道协议 用户面部分的扩展头将所述链路检测启动请求向所述接入网转发。
30、 根据权利要求 28所述的方法, 其特征在于, 所述核心网网关接收来 自所述接入网的链路状态参数的步骤具体包括:
所述核心网网关通过上行数据包中的通用分组无线服务 GPRS隧道协议 用户面部分的扩展头接收来自所述接入网的链路状态参数。
31、 一种链路状态检测方法, 其特征在于, 包括:
接入网接收来自核心网网关的链路检测启动请求, 所述链路检测启动请 求携带启动参数, 所述启动参数包括检测模式, 所述检测模式为接入网检测 模式;
所述接入网根据所述链路检测启动请求对链路上传输的数据进行采样; 所述接入网对采样的数据进行第二运算以获知链路状态参数, 所述链路 状态参数包括在所述接入网检测模式下检测的链路的各个采样周期内的数据 传输时延和数据传输速率;
所述接入网发送所述链路状态参数到所述核心网网关。
32、 根据权利要求 31所述的方法, 其特征在于, 所述启动参数还包括: 用户设备标识、 承载标识、 采样周期、 采样窗口以及上报周期, 其中所述采 样窗口为所述采样周期内进行数据采样的一段连续的时间。
33、 根据权利要求 32所述的方法, 其特征在于, 所述接入网根据所述链 路检测启动请求对链路上传输的数据进行采样的步骤具体包括:
所述接入网根据所述用户设备标识和所述承载标识确定检测的链路; 所述接入网在所述各个采样周期中的所述采样窗口内对所述链路上传输 的数据进行采样, 每个所述采样周期包括一个所述采样窗口。
34、 根据权利要求 33所述的方法, 其特征在于,
所述接入网对采样的数据进行第二运算以获知链路状态参数的步骤具体 包括:
所述接入网将每个所述采样周期中的采样窗口内流过的数据量除以所述 采样窗口, 以获得所述每个所述采样周期内的数据传输速率;
所述接入网将每个所述采样周期中的采样窗口内流过的所有数据包通过 空口协议栈的无线链路控制 RLC层的时间相加后除以所述数据包的数目, 以 获得每个所述采样周期内的数据传输时延。
PCT/CN2014/071019 2013-01-30 2014-01-21 链路状态检测装置及其工作方法 WO2014117665A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310036158.X 2013-01-30
CN201310036158.XA CN103974295B (zh) 2013-01-30 2013-01-30 链路状态检测装置及其工作方法

Publications (1)

Publication Number Publication Date
WO2014117665A1 true WO2014117665A1 (zh) 2014-08-07

Family

ID=51243227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071019 WO2014117665A1 (zh) 2013-01-30 2014-01-21 链路状态检测装置及其工作方法

Country Status (2)

Country Link
CN (1) CN103974295B (zh)
WO (1) WO2014117665A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107749820A (zh) * 2017-09-14 2018-03-02 深圳市盛路物联通讯技术有限公司 一种通信状态的检测方法和系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3281361B1 (en) * 2015-07-01 2019-06-12 Hewlett-Packard Enterprise Development LP Latency measurer
CN108243177B (zh) * 2016-12-27 2021-01-15 中国移动通信有限公司研究院 一种数据传输方法及装置
WO2018161303A1 (zh) * 2017-03-09 2018-09-13 华为技术有限公司 无线质量支持视频体验的检测方法及装置
CN109392002B (zh) * 2017-08-11 2022-07-12 华为技术有限公司 一种上报网络性能参数的方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101018160A (zh) * 2006-02-09 2007-08-15 华为技术有限公司 实现信令承载可用性检测的方法
CN101119314A (zh) * 2007-09-14 2008-02-06 中国科学院计算技术研究所 一种多模终端业务流的控制系统和装置以及方法
CN102014030A (zh) * 2010-12-31 2011-04-13 湖南神州祥网科技有限公司 一种基于tcp的网络性能测量诊断方法及系统
CN102340802A (zh) * 2010-07-14 2012-02-01 中国联合网络通信集团有限公司 业务质量监测方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667941A (zh) * 2009-09-27 2010-03-10 中兴通讯股份有限公司 链路性能的检测方法及装置
US8995359B2 (en) * 2010-04-05 2015-03-31 Qualcomm Incorporated Method and apparatus to facilitate support for multi-radio coexistence

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101018160A (zh) * 2006-02-09 2007-08-15 华为技术有限公司 实现信令承载可用性检测的方法
CN101119314A (zh) * 2007-09-14 2008-02-06 中国科学院计算技术研究所 一种多模终端业务流的控制系统和装置以及方法
CN102340802A (zh) * 2010-07-14 2012-02-01 中国联合网络通信集团有限公司 业务质量监测方法及系统
CN102014030A (zh) * 2010-12-31 2011-04-13 湖南神州祥网科技有限公司 一种基于tcp的网络性能测量诊断方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107749820A (zh) * 2017-09-14 2018-03-02 深圳市盛路物联通讯技术有限公司 一种通信状态的检测方法和系统
CN107749820B (zh) * 2017-09-14 2021-05-28 深圳市盛路物联通讯技术有限公司 一种通信状态的检测方法和系统

Also Published As

Publication number Publication date
CN103974295A (zh) 2014-08-06
CN103974295B (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
Ferlin et al. BLEST: Blocking estimation-based MPTCP scheduler for heterogeneous networks
JP5864664B2 (ja) 通信リンク品質を決定する方法及び装置
JP6553196B2 (ja) トラフィックフローの監視
Hou et al. Moving bits from 3G to metro-scale WiFi for vehicular network access: An integrated transport layer solution
EP2641359B1 (en) Systems and methods for measuring available capacity and tight link capacity of ip paths from a single endpoint
Kojo et al. Seawind: a Wireless Network Emulator.
US20170359735A1 (en) Automated network diagnostic techniques
US9602383B2 (en) General packet radio service tunnel performance monitoring
WO2021017658A1 (zh) 评估网络节点相关传输性能的系统、方法以及相关设备
WO2014139461A1 (zh) 网络性能监测方法及装置
Fracchia et al. WiSE: Best-path selection in wireless multihoming environments
WO2014117665A1 (zh) 链路状态检测装置及其工作方法
JP2000278320A (ja) 通信システム、通信端末装置、情報サーバ装置、中継装置及び通信方法
CN113872726B (zh) 近场通信场景下调整发送速率的方法、装置及系统
Song et al. Leveraging frame aggregation for estimating WiFi available bandwidth
Kelly et al. Delay-centric handover in SCTP over WLAN
US9635569B2 (en) Method and apparatus for measuring end-to-end service level agreement in service provider network
CN111989979A (zh) 控制通信网络的操作以减少等待时间的方法和系统
Hu et al. Enhancing wireless internet performance
KR20220123083A (ko) 모바일 네트워크의 실시간 모니터링 및 최적화를 위한 시스템 및 방법
Barreto et al. XCP-winf and RCP-winf: congestion control techniques for wireless mesh networks
Zhong et al. Adaptive load balancing algorithm for multiple homing mobile nodes
Hepner et al. Influence of processing delays on the voip performance for ieee 802.11 s multihop wireless mesh networks: Comparison of ns-3 network simulations with hardware measurements
Disperati et al. Smartprobe: A bottleneck capacity estimation tool for smartphones
Deshpande et al. Feedback-based adaptive speedy transmission (FAST) control protocol to improve the performance of TCP over Ad-Hoc networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14746300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14746300

Country of ref document: EP

Kind code of ref document: A1