WO2014117411A1 - 一种液晶透镜和立体显示装置 - Google Patents
一种液晶透镜和立体显示装置 Download PDFInfo
- Publication number
- WO2014117411A1 WO2014117411A1 PCT/CN2013/071369 CN2013071369W WO2014117411A1 WO 2014117411 A1 WO2014117411 A1 WO 2014117411A1 CN 2013071369 W CN2013071369 W CN 2013071369W WO 2014117411 A1 WO2014117411 A1 WO 2014117411A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- strip
- sub
- substrate
- electrode strip
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/12—Fluid-filled or evacuated lenses
- G02B3/14—Fluid-filled or evacuated lenses of variable focal length
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/26—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
- G02B30/27—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
- G02B30/28—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/302—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
- H04N13/305—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/356—Image reproducers having separate monoscopic and stereoscopic modes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134363—Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/294—Variable focal length devices
Definitions
- Liquid crystal lens and stereo display device Liquid crystal lens and stereo display device
- the present invention relates to the field of stereoscopic display technology, and in particular to a liquid crystal lens and a stereoscopic display device.
- the current stereoscopic display device generally adopts a stereoscopic display, that is, a 3D (Three Dimensions) display, which is mainly displayed by a liquid crystal lens such as a liquid crystal lens attached to the light output side of a 2D (Two Dimensions, 2D) display panel.
- a stereoscopic display that is, a 3D (Three Dimensions) display, which is mainly displayed by a liquid crystal lens such as a liquid crystal lens attached to the light output side of a 2D (Two Dimensions, 2D) display panel.
- the left and right parallax images displayed on the panel are respectively sent to the observer's left and right eyes, and then merged through the brain to obtain stereoscopic perception of the viewer.
- the liquid crystal lens and the like are mainly made of a transparent material to form a cylindrical lens array of a certain size, and the light of different pixels in the display panel is emitted in different polarization directions by the refraction action, thereby obtaining the separation of the parallax images.
- 1 is a schematic structural view of a liquid crystal lens in the prior art. As shown in FIG. 1, when no voltage is applied to the liquid crystal lens 100, the center and the edge of the liquid crystal layer corresponding to the adjacent two strip electrode groups 110 and 120 are not The difference in refractive index, which the user views through the liquid crystal lens 100, is a 2D image without parallax.
- the liquid crystal lens 100 When the operating voltage is applied to the liquid crystal lens 100, due to the distribution of the electric field, the refractive index difference occurs at the center and the edge of the liquid crystal layer corresponding to the strip electrode groups 110 and 120, and a lens-like phase distribution is formed when the focusing mode is satisfied, and the user passes
- the liquid crystal lens 100 views a 2D image having left and right parallax, and a 3D image can be seen at an optimal viewing distance.
- the current stereoscopic display devices generally progress toward a large size, and the size of the liquid crystal lens 100 corresponding to the corresponding ones also increases.
- the width of the electrode strips of the adjacent liquid crystal layers is large, and the corresponding electric resistance is large, resulting in a large capacitance of the strip-shaped electrode group, so that a serious delay in resistance and capacitance is easily generated (RC Delay). ), causing insufficient charging of the rear end of the liquid crystal lens 100, thereby affecting the viewing effect of the 3D display.
- the technical problem to be solved by the present invention is to provide a liquid crystal lens and a stereoscopic display device, which can not only switch the 2D/3D display, but also reduce the resistance of the electrode strip, reduce the capacitance of the strip electrode group, and reduce the strip electrode group.
- the RC delay phenomenon is to provide a liquid crystal lens and a stereoscopic display device, which can not only switch the 2D/3D display, but also reduce the resistance of the electrode strip, reduce the capacitance of the strip electrode group, and reduce the strip electrode group.
- a technical solution adopted by the present invention is to provide a liquid crystal lens including a first substrate and a second substrate disposed opposite to each other and a liquid crystal layer sandwiched therebetween, and the second substrate is provided with a plurality of strip electrode groups arranged along a first direction parallel to the second substrate, each strip electrode group comprising at least two electrode strips sequentially insulated and stacked in a second direction perpendicular to the second substrate, and at least two The width of the layer electrode strip is sequentially decreased in a direction toward the first substrate, wherein an electrode between the electrode strip closest to the second substrate or the first substrate closest to the first substrate and the electrode strip closest to the second substrate is at least two of the electrode strips
- the strip is divided into a first sub-electrode strip along the first direction and two second sub-electrode strips spaced apart from each other on the two sides of the first sub-electrode strip, and the first sub-electrode strip and the at least two of the electrode strips are away from the second substrate.
- Each of the strip electrode groups includes a first electrode strip, a second electrode strip, and a third electrode strip that are sequentially insulated and stacked in the second direction, wherein the first electrode strip is closest to the second substrate.
- the first electrode strip is divided into a first sub-electrode strip and a second sub-electrode strip.
- the second electrode strip is divided into a first sub-electrode strip and a second sub-electrode strip.
- a liquid crystal lens including a first substrate and a second substrate disposed opposite to each other and a liquid crystal layer sandwiched therebetween, and disposed on the second substrate Having a plurality of strip electrode groups spaced along a first direction parallel to the second substrate, each strip electrode group including at least two electrode strips sequentially insulated in a second direction perpendicular to the second substrate, and at least The width of the two electrode strips is sequentially decreased along the direction toward the first substrate, wherein one of the at least two electrode strips is divided into the first sub-electrode strips in the first direction and spaced apart from the sides of the first sub-electrode strips.
- the two second sub-electrode strips are electrically connected to the most adjacent one of the at least two electrode strips away from the second substrate.
- the first substrate is provided with a common electrode opposite to the plurality of strip electrode groups.
- the electrode strip of the at least two electrode strips closest to the second substrate is divided into a first sub-electrode strip and a second sub-electrode strip in a first direction.
- the electrode strips between the electrode strips closest to the first substrate and the electrode strips closest to the second substrate of the at least two electrode strips are divided into the first sub-electrode strips and the second sub-electrodes disposed at intervals in the first direction. article.
- Each of the strip electrode groups includes a first electrode strip, a second electrode strip, and a third electrode strip that are sequentially insulated and stacked in the second direction, wherein the first electrode strip is closest to the second substrate.
- the first electrode strip is divided into a first sub-electrode strip and a second sub-electrode strip.
- the second electrode strip is divided into a first sub-electrode strip and a second sub-electrode strip.
- a projection area of each of the at least two electrode strips on the second substrate falls on a projection area of the other electrode strips on the second substrate closer to the second substrate.
- the width of the first sub-electrode strip is smaller than that of the second sub-electrode strip, and the voltages received by the two when operating are different from each other.
- a stereoscopic display device comprising: a display panel and the liquid crystal lens, wherein the liquid crystal lens is disposed on a light emitting side of the display panel, and includes a first substrate and a relatively disposed a second substrate and a liquid crystal layer sandwiched therebetween, the second substrate being provided with a plurality of strip electrode groups arranged at intervals in a first direction parallel to the second substrate, each strip electrode group comprising vertical And sequentially insulating at least two electrode strips stacked in the second direction of the second substrate, and the widths of the at least two electrode strips are sequentially decreased in a direction toward the first substrate, wherein one of the at least two electrode strips Dividing into a first sub-electrode strip and two second sub-electrode strips disposed at two sides of the first sub-electrode strip, the first sub-electrode strip and the most adjacent one of the at least two layers of the electrode strips away from the second substrate.
- the electrode strip of the at least two electrode strips closest to the second substrate is divided into a first sub-electrode strip and a second sub-electrode strip in a first direction.
- At least two of the electrode strips are located adjacent to the first substrate and the second adjacent substrate
- the electrode strips between the electrode strips are divided into spaced first and second sub-electrode strips in a first direction.
- Each of the strip electrode groups includes a first electrode strip, a second electrode strip, and a third electrode strip that are sequentially insulated and stacked in the second direction, wherein the first electrode strip is closest to the second substrate.
- the first electrode strip is divided into a first sub-electrode strip and a second sub-electrode strip.
- the second electrode strip is divided into a first sub-electrode strip and a second sub-electrode strip.
- the present invention has the following advantages:
- the present invention divides one of the at least two electrode strips in each strip electrode group of the conventional liquid crystal lens into the first sub-electrode strips and is disposed at intervals on both sides of the first sub-electrode strip Two second sub-electrode strips, and the first sub-electrode strip is electrically connected to the most adjacent one of the at least two electrode strips away from the second substrate, thereby not only switching the 2D/3D display, but also
- the resistance of the electrode strip can be reduced, and the capacitance of the strip electrode group can be reduced, and the RC delay phenomenon of the strip electrode group can be reduced.
- the present invention since the width of the first sub-electrode strip is small and the distance from the second sub-electrode strips on both sides is small, the present invention has less influence on the electric field distribution of the liquid crystal layer, and can ensure good concentrating of the liquid crystal lens and 3D display viewing effect.
- FIG. 1 is a schematic structural view of a liquid crystal lens in the prior art
- FIG. 2 is a schematic structural view of an embodiment of a liquid crystal lens of the present invention.
- FIG. 3 is a schematic diagram of a current Neff profile corresponding to the liquid crystal lens shown in FIG. 2;
- FIG. 4 is a schematic structural view of an embodiment of a stereoscopic display device of the present invention.
- the present invention provides a liquid crystal lens and a stereoscopic display device.
- the liquid crystal lens is mainly formed by dividing one of the at least two electrode strips in each strip electrode group of the conventional liquid crystal lens into a first sub-electrode strip and at intervals. Two second sub-electrode strips on one side of the sub-electrode strip, and the first sub-electrode strip is electrically connected to the most adjacent one of the at least two electrode strips away from the second substrate, thereby not only The switching of the 2D/3D display can be performed, and the resistance of the electrode strip can be reduced, and the capacitance of the strip electrode group can be reduced, and the RC delay phenomenon of the strip electrode group can be reduced.
- the liquid crystal lens 200 of the present embodiment includes a first substrate 210 and a second substrate 220 which are disposed opposite to each other, and a liquid crystal layer 230 sandwiched therebetween.
- the second substrate 220 is provided with a plurality of strip electrode groups 221 arranged in the first direction X, wherein the first direction X is parallel to the horizontal direction in which the second substrate 220 is located.
- Each of the strip electrode groups 221 includes a first layer electrode strip 222 and a second layer electrode strip 223 which are sequentially insulated and stacked in the second direction Y.
- the second direction Y is perpendicular to the horizontal direction of the second substrate 220, that is, perpendicular to the first direction X.
- the width dl of the first layer electrode strip 222 is greater than the width d2 of the second layer electrode strip 223, and the projection area of the second layer electrode strip 223 on the second substrate 220 falls on the first layer electrode strip 222 on the second substrate 220.
- each strip electrode group 221 may include a plurality of electrode strips, wherein a projection area of each of the electrode strips on the second substrate falls on other electrode strips closer to the second substrate on the second substrate. The projection area.
- the first electrode strip 222 includes a first sub-electrode strip 224 and a second sub-electrode strip 225a, 225b spaced apart in a first direction X, and the first sub-electrode strip 224 and the second layer of electrode strips 223 are electrically connected by an electrode 226.
- the electrode 226 since the electrode 226 is only electrically connected, its width d6 is as small as possible.
- the width d3 of the first sub-electrode strip 224 is much smaller than the width d4 of the second sub-electrode strip 225a or the width d5 of the second sub-electrode strip 225b.
- the voltages received by the first sub-electrode strip 224 and the second sub-electrode strip 225a or the second sub-electrode strip 225b during operation are different from each other.
- the width d4 of the second sub-electrode strip 225a and the width d5 of the second sub-electrode strip 225b, and the voltage v4 received by the second sub-electrode strip 225a and the voltage v5 received by the second sub-electrode strip 225b the embodiment Without limitation, those skilled in the art can define them according to specific needs.
- the width d3 of the first sub-electrode strip 224 can be modified as needed, and the voltages received by the second sub-electrode strip 225a and the second sub-electrode strip 225b during operation can also be different from each other.
- the first substrate 210 is provided with a common electrode 211 opposite to the plurality of strip electrode groups 221, and preferably the common electrode 211 is a whole transparent ITO (indium tin oxide) layer.
- Figure 3 is a schematic diagram of the current Neff profile corresponding to the liquid crystal lens shown in Figure 2.
- the working principle and process of realizing 2D/3D display switching of the liquid crystal lens of this embodiment will be described in detail below with reference to FIG. 2 and FIG.
- the voltage v1 received by the first layer electrode strip 222 is smaller than that received by the second layer electrode strip 223.
- the first sub-electrode strip 224 electrically connected to the second electrode strip 223 receives the voltage v2 to generate an electric field
- the second sub-electrode strip 225a, 225b receives the voltage to generate an electric field, so that the corresponding liquid crystal molecules are generated as shown in FIG. The deflection shown.
- the inherent resistance of the first sub-electrode strip 224 is R1
- the inherent resistance of the first sub-electrode strip 224 is R2, as shown in the following formula:
- the first sub-electrode strip 224 has an effective resistance R that is smaller than the intrinsic resistance R1 when the operating voltage is applied, and the first sub-electrode strip 224 is electrically connected to the second layer of the electrode strip 223, thereby reducing the strip electrode group. Capacitance between 221, which can effectively avoid RC Delay.
- the width d3 of the first sub-electrode strip 224 is small and the interval between the second sub-electrode strips 225a, 225b is small, the electric field distribution of the liquid crystal layer 230 when the first layer electrode strip 222 receives the operating voltage The influence is small, so that the Neff profile L1 of the liquid crystal lens 200 as a whole is not significantly different from the Neff profile L corresponding to the liquid crystal lens 100 shown in FIG.
- liquid crystal lens of the above embodiment and the arrangement of the sub-electrode strips thereof are only for illustrative purposes, such as electrodes between the electrode strip closest to the first substrate and the electrode strip closest to the second substrate.
- the strip is divided into a first sub-electrode strip in the first direction X and two second sub-electrode strips spaced apart from each other on the two sides of the first sub-electrode strip, and is not limited to being divided into the two-layer electrode strips exemplified in the foregoing,
- the first sub-electrode strip is electrically connected to the most adjacent one of the electrode strips away from the second substrate, so that the RC delay of the strip-shaped electrode group can be avoided.
- each of the strip electrode groups includes a first electrode strip, a second electrode strip, and a third electrode strip that are sequentially insulated and stacked in the second substrate direction, wherein the first electrode strip is closest to the second substrate.
- the first electrode strip is divided into a first sub-electrode strip and two second sub-electrode strips disposed on two sides of the first sub-electrode strip, and the first sub-electrode strip is electrically connected to the second electrode strip.
- the second electrode strip is divided into a first sub-electrode strip and two second sub-electrode strips disposed on two sides of the first sub-electrode strip, and the first sub-electrode strip is electrically connected to the third electrode strip.
- the stereoscopic display device 400 of the present embodiment includes: a display panel 410 and a liquid crystal lens 420 of the above embodiment.
- the liquid crystal lens 420 is disposed on the light exiting side of the display panel 410.
- the liquid crystal lens 420 When the liquid crystal lens 420 is energized, the light of the different pixels P1 and P2 in the display panel 410 is emitted in different polarization directions by the refraction action described in the above embodiments, so that the left and right parallax images displayed on the display panel 410 are respectively sent.
- the left eye and the right eye R of the observer at the optimal viewing distance are then fused by the observer's brain to obtain stereoscopic perception and view the 3D image.
- the present invention can not only switch the 2D/3D display, but also reduce the resistance of the electrode strip, reduce the capacitance of the strip electrode group, and reduce the RC delay phenomenon of the strip electrode group; further, The width of one sub-electrode strip is small and the distance from the second sub-electrode strip on both sides is small. Therefore, the present invention has less influence on the electric field distribution of the liquid crystal layer, and can ensure good condensing property of the liquid crystal lens and viewing effect of the 3D display. .
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Liquid Crystal (AREA)
Abstract
一种液晶透镜和立体显示装置。该液晶透镜包括第一基板(210)、第二基板(220)以及液晶层(230),第二基板(220)上设置有多个条状电极组(221),每一条状电极组(221)包括至少两层电极条,且宽度依次减小,其中至少两层电极条中的一电极条分割成第一子电极条(224)以及间隔设置于其两侧的两个第二子电极条(225a、225b),第一子电极条(224)与至少两层电极条中远离第二基板的最相邻的另一电极条电连接。该液晶透镜和立体显示装置不仅可以进行2D/3D显示的切换,而且可以降低电极条的电阻,同时降低条状电极组的电容,减少条状电极组的RC延迟现象。
Description
一种液晶透镜和立体显示装置
【技术领域】
本发明涉及立体显示技术领域, 具体而言涉及一种液晶透镜和立体显示装 置。
【背景技术】
当前的立体显示装置一般采用自由立体显示,即棵视 3D( Three Dimensions, 三维)显示, 其主要通过加装在 2D ( Two Dimensions, 二维)显示面板出光侧 的液晶透镜等分光器件, 将显示面板上显示的左、 右视差图像分别送入观察者 的左、 右眼, 再经过大脑融合从而使观看者获得立体感知。
其中, 液晶透镜等分光器件主要采用透明材质来制作一定尺寸的柱透镜阵 列, 通过其折射作用使显示面板中不同像素的光以不同偏振方向出射, 从而获 得视差图像的分离。 图 1是现有技术中液晶透镜的结构示意图, 如图 1所示, 液晶透镜 100在未施加电压时, 相邻两个条状电极组 110、 120所对应的液晶层 的中心和边缘均没有折射率差, 用户通过液晶透镜 100观看的是没有视差的 2D 图像。
液晶透镜 100在施加工作电压时, 由于电场的分布, 条状电极组 110、 120 对应的液晶层的中心和边缘出现折射率差, 并在满足聚焦模式时会形成类似透 镜的相位分布, 用户通过液晶透镜 100观看的是具有左、 右视差的 2D图像, 且 在最佳观看距离处即可看到 3D图像。
随着市场的需求, 当前的立体显示装置普遍向大尺寸的趋势发展, 对应所 需要的液晶透镜 100的尺寸也随之增大。 然而, 在大尺寸液晶透镜 100的结构 中, 相邻液晶层的电极条的宽度大, 对应的电阻大, 导致条状电极组的电容大, 因此极易产生严重的电阻电容延迟现象(RC Delay ), 造成液晶透镜 100的后端 充电不足, 从而影响 3D显示的观看效果。
综上所述, 有必要提供一种液晶透镜和立体显示装置, 以解决上述问题。
【发明内容】
本发明主要解决的技术问题是提供一种液晶透镜和立体显示装置, 不仅可 以进行 2D/3D显示的切换, 而且可以降低电极条的电阻, 同时降低条状电极组 的电容, 减少条状电极组的 RC延迟现象。
为解决上述技术问题, 本发明采用的一个技术方案是: 提供一种液晶透镜, 包括相对设置的第一基板和第二基板以及夹持于两者之间的液晶层, 第二基板 上设置有沿平行于第二基板的第一方向间隔排布的多个条状电极组, 每一条状 电极组包括沿垂直于第二基板的第二方向依次绝缘堆叠的至少两层电极条, 且 至少两层电极条的宽度沿朝向第一基板的方向依次减小, 其中至少两层电极条 中最邻近第二基板或最邻近第一基板的电极条和最邻近第二基板的电极条之间 的电极条沿第一方向分割成第一子电极条以及间隔设置于第一子电极条两侧的 两个第二子电极条, 第一子电极条与至少两层电极条中远离第二基板的最相邻 的另一电极条电连接。
其中, 每一条状电极组包括沿第二方向依次绝缘堆叠的第一电极条、 第二 电极条和第三电极条, 其中第一电极条最邻近第二基板。
其中, 第一电极条分割成第一子电极条和第二子电极条。
其中, 第二电极条分割成第一子电极条和第二子电极条。
为解决上述技术问题, 本发明采用的另一个技术方案是: 提供一种液晶透 镜, 包括相对设置的第一基板和第二基板以及夹持于两者之间的液晶层, 第二 基板上设置有沿平行于第二基板的第一方向间隔排布的多个条状电极组, 每一 条状电极组包括沿垂直于第二基板的第二方向依次绝缘堆叠的至少两层电极 条, 且至少两层电极条的宽度沿朝向第一基板的方向依次减小, 其中至少两层 电极条中的一电极条沿第一方向分割成第一子电极条以及间隔设置于第一子电 极条两侧的两个第二子电极条, 第一子电极条与至少两层电极条中远离第二基 板的最相邻的另一电极条电连接。
其中, 第一基板设置有与多个条状电极组相对的公共电极。
其中, 至少两层电极条中最邻近第二基板的电极条沿第一方向分割成第一 子电极条和第二子电极条。
其中, 至少两层电极条中位于最邻近第一基板的电极条和最邻近第二基板 的电极条之间的电极条沿第一方向分割成间隔设置的第一子电极条和第二子电 极条。
其中, 每一条状电极组包括沿第二方向依次绝缘堆叠的第一电极条、 第二 电极条和第三电极条, 其中第一电极条最邻近第二基板。
其中, 第一电极条分割成第一子电极条和第二子电极条。
其中, 第二电极条分割成第一子电极条和第二子电极条。
其中, 至少两层电极条中的每一电极条在第二基板上的投影区域均落在更 靠近第二基板的其他电极条在第二基板上的投影区域。
其中, 第一子电极条的宽度小于第二子电极条, 且二者在工作时接收的电 压彼此不同。
为解决上述技术问题, 本发明采用的又一个技术方案是: 提供一种立体显 示装置, 包括: 显示面板以及上述液晶透镜, 液晶透镜设置于显示面板的出光 侧, 包括相对设置的第一基板和第二基板以及夹持于两者之间的液晶层, 第二 基板上设置有沿平行于第二基板的第一方向间隔排布的多个条状电极组, 每一 条状电极组包括沿垂直于第二基板的第二方向依次绝缘堆叠的至少两层电极 条, 且至少两层电极条的宽度沿朝向第一基板的方向依次减小, 其中至少两层 电极条中的一电极条沿第一方向分割成第一子电极条以及间隔设置于第一子电 极条两侧的两个第二子电极条, 第一子电极条与至少两层电极条中远离第二基 板的最相邻的另一电极条电连接。
其中, 至少两层电极条中最邻近第二基板的电极条沿第一方向分割成第一 子电极条和第二子电极条。
其中, 至少两层电极条中位于最邻近第一基板的电极条和最邻近第二基板
的电极条之间的电极条沿第一方向分割成间隔设置的第一子电极条和第二子电 极条。
其中, 每一条状电极组包括沿第二方向依次绝缘堆叠的第一电极条、 第二 电极条和第三电极条, 其中第一电极条最邻近第二基板。
其中, 第一电极条分割成第一子电极条和第二子电极条。
其中, 第二电极条分割成第一子电极条和第二子电极条。
本发明的有益效果是: 本发明通过将传统液晶透镜中每一条状电极组中至 少两层电极条中的一电极条分割成第一子电极条以及间隔设置于第一子电极条 两侧的两个第二子电极条, 并且使得第一子电极条与至少两层电极条中远离第 二基板的最相邻的另一电极条电连接, 进而不仅可以进行 2D/3D显示的切换, 而且可以降低电极条的电阻, 同时降低条状电极组的电容, 减少条状电极组的 RC延迟现象。 进一步地, 由于第一子电极条的宽度较小且与两侧第二子电极条 的间距较小, 因此本发明对液晶层的电场分布影响较小, 能够保证液晶透镜良 好的聚光性以及 3D显示的观看效果。
【附图说明】
图 1是现有技术中液晶透镜的结构示意图;
图 2是本发明液晶透镜一实施例的结构示意图;
图 3是图 2所示液晶透镜对应的当前 Neff profile示意图;
图 4是本发明的立体显示装置一实施例的结构示意图。
【具体实施方式】
本发明提供一种液晶透镜和立体显示装置, 该液晶透镜主要通过将传统液 晶透镜中每一条状电极组中至少两层电极条中的一电极条分割成第一子电极条 以及间隔设置于第一子电极条两侧的两个第二子电极条, 并且使得第一子电极 条与至少两层电极条中远离第二基板的最相邻的另一电极条电连接, 进而不仅
可以进行 2D/3D显示的切换, 而且可以降低电极条的电阻, 同时降低条状电极 组的电容, 减少条状电极组的 RC延迟现象。
下面结合附图和实施例对本发明进行详细说明。
图 2是本发明液晶透镜一实施例的结构示意图。 如图 2所示, 本实施的液 晶透镜 200包括相对设置的第一基板 210和第二基板 220以及夹持于两者之间 的液晶层 230。
在本实施例中, 第二基板 220上设置有沿第一方向 X间隔排布的多个条状 电极组 221 , 其中第一方向 X平行于第二基板 220所在的水平方向。
每一条状电极组 221 包括沿第二方向 Y依次绝缘堆叠的第一层电极条 222 和第二层电极条 223。 其中, 第二方向 Y垂直于第二基板 220所在的水平方向, 即与第一方向 X互相垂直。 第一层电极条 222的宽度 dl大于第二层电极条 223 的宽度 d2, 且第二层电极条 223在第二基板 220上的投影区域落在第一层电极 条 222在第二基板 220上的投影区域中。 在其他实施例中, 每一条状电极组 221 可包括多层电极条, 其中的每一电极条在第二基板上的投影区域均落在更靠近 第二基板的其他电极条在第二基板上的投影区域。
第一层电极条 222包括沿第一方向 X间隔设置的第一子电极条 224和第二 子电极条 225a、 225b, 第一子电极条 224与第二层电极条 223通过电极 226电 连接。在本实施例中, 由于电极 226仅为电连接作用, 因此其宽度 d6尽可能小。 第一子电极条 224的宽度 d3远小于第二子电极条 225a的宽度 d4或第二子电极 条 225b的宽度 d5。 另外, 第一子电极条 224与第二子电极条 225a或第二子电 极条 225b在工作时接收的电压彼此不同。 对于第二子电极条 225a的宽度 d4和 第二子电极条 225b的宽度 d5 , 以及在工作时第二子电极条 225a接收的电压 v4 和第二子电极条 225b接收的电压 v5 , 本实施例不做限制, 本领域人员可根据具 体需要进行限定。 在其他实施例中, 第一子电极条 224的宽度 d3可根据需要进 行更改, 并且, 第二子电极条 225a与第二子电极条 225b在工作时接收的电压 也可彼此不同。
在本实施例中, 第一基板 210上设置有与多个条状电极组 221相对的公共 电极 211 , 优选公共电极 211为一整片透明 ITO (氧化铟锡)层。
图 3是图 2所示液晶透镜对应的当前 Neff profile (有效折射率曲线)示意 图。 下面结合图 2和图 3详细介绍本实施例的液晶透镜实现 2D/3D显示切换的 工作原理及过程:
液晶透镜 200在未施加电压时, 每一条状电极组 221对应的液晶层的中心 和边缘均没有折射率差, 此时图像光线通过液晶透镜 200时不会发生折射现象, 即不会产生视差。
当对液晶透镜 200施加工作电压时, 由于越靠近液晶层 230需要使液晶层 230中液晶分子偏转的能量越大, 因此第一层电极条 222接收的电压 vl小于第 二层电极条 223接收的电压 v2。 与此同时, 与第二层电极条 223电连接的第一 子电极条 224接收电压 v2产生电场, 第二子电极条 225a、 225b接收电压产生 电场, 使其分别对应的液晶分子产生如图 2所示的偏转。 另外, 由于第一子电 极条 224与第二层电极条 223电连接,第一子电极条 224的本身固有电阻为 R1 , 第一子电极条 224的固有电阻为 R2, 参见如下公式:
El * R2 可知, 在施加工作电压时第一子电极条 224起到的有效电阻 R小于固有电 阻 R1 , 并且第一子电极条 224与第二层电极条 223电连接, 降低了条状电极组 221之间的电容, 从而能够有效避免 RC Delay。 进一步地, 由于第一子电极条 224的宽度 d3较小且与第二子电极条 225a、 225b之间的间隔较小, 因此第一层 电极条 222接收工作电压时对液晶层 230的电场分布影响较小, 从而使得整体 的液晶透镜 200对应的 Neff profile L1相比较于图 1所示液晶透镜 100对应的 Neff profile L并没有明显的差异。
应理解, 上述实施例的液晶透镜及其所包含的子电极条的设置仅供说明举 电极条, 例如最邻近第一基板的电极条和最邻近第二基板的电极条之间的电极
条, 沿第一方向 X分割成第一子电极条以及间隔设置于第一子电极条两侧的两 个第二子电极条, 不限于划分为前文所举例的二层电极条, 只需将第一子电极 条与远离第二基板的最相邻的另一电极条电连接, 能够避免条状电极组的 RC 延迟即可。 例如, 每一条状电极组包括沿第二基板方向依次绝缘堆叠的第一电 极条、 第二电极条和第三电极条, 其中第一电极条最邻近第二基板。 第一电极 条分割成第一子电极条和设置于第一子电极条两侧的两个第二子电极条, 第一 子电极条与第二电极条电连接。 或者, 第二电极条分割成第一子电极条和设置 于第一子电极条两侧的两个第二子电极条, 第一子电极条与第三电极条电连接。
图 4是本发明的立体显示装置一实施例的结构示意图。 如图 4所示, 本实 施例的立体显示装置 400包括: 显示面板 410和上述实施例的液晶透镜 420。 其 中, 液晶透镜 420设置于显示面板 410的出光侧。
液晶透镜 420未通电时, 观看者观看的是没有视差的 2D图像;
液晶透镜 420通电时, 其通过上述实施例所述的折射作用使显示面板 410 中不同像素 Pl、 P2的光以不同偏振方向出射,从而将显示面板 410上显示的左、 右视差图像分别送入处于最佳观看距离处的观察者的左眼 右眼 R,再经过观 察者大脑的融合从而获得立体感知, 观看 3D图像。
综上所述, 本发明进而不仅可以进行 2D/3D显示的切换, 而且可以降低电 极条的电阻, 同时降低条状电极组的电容, 减少条状电极组的 RC延迟现象; 进 一步地, 由于第一子电极条的宽度较小且与两侧第二子电极条的间距较小, 因 此本发明对液晶层的电场分布影响较小, 能够保证液晶透镜良好的聚光性以及 3D显示的观看效果。
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利 用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运 用在其他相关的技术领域, 均同理包括在本发明的专利保护范围内。
Claims
1. 一种液晶透镜, 其中, 所述液晶透镜包括相对设置的第一基板和第二基 板以及夹持于两者之间的液晶层, 所述第二基板上设置有沿平行于所述第二基 板的第一方向间隔排布的多个条状电极组, 每一所述条状电极组包括沿垂直于 所述第二基板的第二方向依次绝缘堆叠的至少两层电极条, 且所述至少两层电 极条的宽度沿朝向所述第一基板的方向依次减小, 其中所述至少两层电极条中 最邻近所述第二基板或位于最邻近所述第一基板的电极条和最邻近所述第二基 板的电极条之间的电极条沿所述第一方向分割成第一子电极条以及间隔设置于 所述第一子电极条两侧的两个第二子电极条, 所述第一子电极条与所述至少两 层电极条中远离所述第二基板的最相邻的另一电极条电连接。
2. 根据权利要求 1所述的液晶透镜, 其中, 每一所述条状电极组包括沿所 述第二方向依次绝缘堆叠的第一电极条、 第二电极条和第三电极条, 其中第一 电极条最邻近所述第二基板。
3. 根据权利要求 2所述的液晶透镜, 其中, 所述第一电极条分割成所述第 一子电极条和所述第二子电极条。
4. 根据权利要求 2所述的液晶透镜, 其中, 所述第二电极条分割成所述第 一子电极条和所述第二子电极条。
5. 一种液晶透镜, 其中, 所述液晶透镜包括相对设置的第一基板和第二基 板以及夹持于两者之间的液晶层, 所述第二基板上设置有沿平行于所述第二基 板的第一方向间隔排布的多个条状电极组, 每一所述条状电极组包括沿垂直于 所述第二基板的第二方向依次绝缘堆叠的至少两层电极条, 且所述至少两层电 极条的宽度沿朝向所述第一基板的方向依次减小, 其中所述至少两层电极条中 的一电极条沿所述第一方向分割成第一子电极条以及间隔设置于所述第一子电 极条两侧的两个第二子电极条, 所述第一子电极条与所述至少两层电极条中远 离所述第二基板的最相邻的另一电极条电连接。
6. 根据权利要求 5所述的液晶透镜, 其中, 所述第一基板设置有与所述多 个条状电极组相对的公共电极。
7. 根据权利要求 5所述的液晶透镜, 其中, 所述至少两层电极条中最邻近 所述第二基板的电极条沿所述第一方向分割成所述第一子电极条和所述第二子 电极条。
8. 根据权利要求 5所述的液晶透镜, 其中, 所述至少两层电极条中位于最 邻近所述第一基板的电极条和最邻近所述第二基板的电极条之间的电极条沿所 述第一方向分割成间隔设置的所述第一子电极条和所述第二子电极条。
9. 根据权利要求 8所述的液晶透镜, 其中, 每一所述条状电极组包括沿所 述第二方向依次绝缘堆叠的第一电极条、 第二电极条和第三电极条, 其中第一 电极条最邻近所述第二基板。
10. 根据权利要求 9所述的液晶透镜, 其中, 所述第一电极条分割成所述第 一子电极条和所述第二子电极条。
11. 根据权利要求 9所述的液晶透镜, 其中, 所述第二电极条分割成所述第 一子电极条和所述第二子电极条。
12. 根据权利要求 5所述的液晶透镜, 其中, 所述至少两层电极条中的每一 电极条在所述第二基板上的投影区域均落在更靠近所述第二基板的其他电极条 在所述第二基板上的投影区域。
13. 根据权利要求 5所述的液晶透镜, 其中, 所述第一子电极条的宽度小于 所述第二子电极条, 且二者在工作时接收的电压彼此不同。
14. 一种立体显示装置, 其中, 所述立体显示装置包括:
显示面板以及液晶透镜, 所述液晶透镜设置于所述显示面板的出光侧, 包 括相对设置的第一基板和第二基板以及夹持于两者之间的液晶层, 所述第二基 板上设置有沿平行于所述第二基板的第一方向间隔排布的多个条状电极组, 每 一所述条状电极组包括沿垂直于所述第二基板的第二方向依次绝缘堆叠的至少 两层电极条, 且所述至少两层电极条的宽度沿朝向所述第一基板的方向依次减
小, 其中所述至少两层电极条中的一电极条沿所述第一方向分割成第一子电极 条以及间隔设置于所述第一子电极条两侧的两个第二子电极条, 所述第一子电 极条与所述至少两层电极条中远离所述第二基板的最相邻的另一电极条电连 接。
15. 根据权利要求 14所述的立体显示装置, 其中, 所述至少两层电极条中 最邻近所述第二基板的电极条沿所述第一方向分割成所述第一子电极条和所述 第二子电极条。
16. 根据权利要求 14所述的立体显示装置, 其中, 所述至少两层电极条中 位于最邻近所述第一基板的电极条和最邻近所述第二基板的电极条之间的电极 条沿所述第一方向分割成间隔设置的所述第一子电极条和所述第二子电极条。
17. 根据权利要求 16所述的立体显示装置, 其中, 每一所述条状电极组包 括沿所述第二方向依次绝缘堆叠的第一电极条、 第二电极条和第三电极条, 其 中第一电极条最邻近所述第二基板。
18. 根据权利要求 17所述的立体显示装置, 其中, 所述第一电极条分割成 所述第一子电极条和所述第二子电极条。
19. 根据权利要求 17所述的立体显示装置, 其中, 所述第二电极条分割成 所述第一子电极条和所述第二子电极条。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310036138.2A CN103091930B (zh) | 2013-01-30 | 2013-01-30 | 一种液晶透镜和立体显示装置 |
CN201310036138.2 | 2013-01-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014117411A1 true WO2014117411A1 (zh) | 2014-08-07 |
Family
ID=48204693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/071369 WO2014117411A1 (zh) | 2013-01-30 | 2013-02-05 | 一种液晶透镜和立体显示装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103091930B (zh) |
WO (1) | WO2014117411A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016177835A1 (fr) | 2015-05-07 | 2016-11-10 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Modulateur spatial de lumiere a cristal liquide et son procede de fabrication |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103605245B (zh) * | 2013-11-20 | 2016-04-20 | 深圳市华星光电技术有限公司 | 一种液晶透镜和立体显示装置 |
KR20150066363A (ko) * | 2013-12-06 | 2015-06-16 | 삼성디스플레이 주식회사 | 액정 렌즈 모듈 |
CN104122718A (zh) * | 2014-07-18 | 2014-10-29 | 深圳超多维光电子有限公司 | 液晶透镜及立体显示装置 |
CN104166283B (zh) | 2014-08-27 | 2016-03-30 | 深圳市华星光电技术有限公司 | 液晶显示面板及其阵列基板 |
CN104865771B (zh) | 2015-06-18 | 2019-03-15 | 京东方科技集团股份有限公司 | 显示装置、液晶透镜及其制作方法 |
CN106851256A (zh) * | 2017-03-30 | 2017-06-13 | 宁波万维显示科技有限公司 | 一种实现2d3d共融显示的方法、装置及2d3d显示系统 |
CN110596986A (zh) * | 2019-09-03 | 2019-12-20 | 深圳市华星光电技术有限公司 | 彩膜基板的制备方法、彩膜基板及液晶显示面板 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070296911A1 (en) * | 2006-06-27 | 2007-12-27 | Hyung-Ki Hong | Liquid crystal lens and image display device including the same |
CN101718936A (zh) * | 2009-11-18 | 2010-06-02 | 友达光电股份有限公司 | 显示装置及其液晶透镜 |
CN102323702A (zh) * | 2011-10-13 | 2012-01-18 | 福州华映视讯有限公司 | 液晶透镜 |
CN102621763A (zh) * | 2012-02-15 | 2012-08-01 | 华映光电股份有限公司 | 显示装置及液晶透镜 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101528143B1 (ko) * | 2007-11-02 | 2015-06-15 | 엘지디스플레이 주식회사 | 액정전계렌즈를 이용한 입체표시장치 |
KR101015846B1 (ko) * | 2009-01-16 | 2011-02-23 | 삼성모바일디스플레이주식회사 | 전자 영상 기기 |
KR101696806B1 (ko) * | 2010-08-18 | 2017-01-17 | 엘지디스플레이 주식회사 | 액정렌즈를 포함하는 영상표시장치 및 그 구동방법 |
-
2013
- 2013-01-30 CN CN201310036138.2A patent/CN103091930B/zh active Active
- 2013-02-05 WO PCT/CN2013/071369 patent/WO2014117411A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070296911A1 (en) * | 2006-06-27 | 2007-12-27 | Hyung-Ki Hong | Liquid crystal lens and image display device including the same |
CN101718936A (zh) * | 2009-11-18 | 2010-06-02 | 友达光电股份有限公司 | 显示装置及其液晶透镜 |
CN102323702A (zh) * | 2011-10-13 | 2012-01-18 | 福州华映视讯有限公司 | 液晶透镜 |
CN102621763A (zh) * | 2012-02-15 | 2012-08-01 | 华映光电股份有限公司 | 显示装置及液晶透镜 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016177835A1 (fr) | 2015-05-07 | 2016-11-10 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Modulateur spatial de lumiere a cristal liquide et son procede de fabrication |
FR3035975A1 (fr) * | 2015-05-07 | 2016-11-11 | Commissariat Energie Atomique | Modulateur spatial de lumiere a cristal liquide et son procede de fabrication |
Also Published As
Publication number | Publication date |
---|---|
CN103091930B (zh) | 2016-05-11 |
CN103091930A (zh) | 2013-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014117411A1 (zh) | 一种液晶透镜和立体显示装置 | |
US8786683B2 (en) | Stereoscopic display unit | |
US8773600B2 (en) | Liquid crystal lens and display device | |
TWI391738B (zh) | A device for multifunctional liquid crystal parallax gratings | |
JP5841131B2 (ja) | 切り替え可能なシングル−マルチビュー・モード表示装置 | |
US20160131918A1 (en) | Stereoscopic imaging apparatus and method, and display | |
WO2016110256A1 (zh) | 显示装置、立体显示装置及其应用的终端 | |
GB2439564A (en) | Liquid crystal lens and image display device including the same | |
WO2015035726A1 (zh) | 电驱动液晶透镜、显示设备和3d液晶显示方法 | |
WO2014054520A1 (ja) | 立体表示装置 | |
CN104317133A (zh) | 液晶透镜及显示装置 | |
CN102749769A (zh) | 基于双层液晶透镜的2d/3d可切换自由立体显示装置 | |
WO2014117410A1 (zh) | 一种液晶透镜和立体显示装置 | |
WO2016045110A1 (zh) | 一种液晶透镜及液晶显示装置 | |
TWI467245B (zh) | 顯示裝置及液晶透鏡 | |
KR101580362B1 (ko) | 시차 장벽 및 디스플레이 장치 | |
US9557570B2 (en) | Display device and liquid crystal lens panel for the same | |
CN103472650A (zh) | 液晶透镜及3d显示装置 | |
JP2013218133A (ja) | 液晶レンズおよび立体表示装置 | |
CN103605245B (zh) | 一种液晶透镜和立体显示装置 | |
US9081198B2 (en) | Liquid crystal lens and stereo display device | |
US20160195739A1 (en) | Display device and liquid crystal lens panel | |
CN106932970A (zh) | 一种液晶透镜及立体显示装置 | |
CN204155049U (zh) | 液晶透镜及显示装置 | |
CN103091856B (zh) | 立体影像显示装置与立体影像驱动方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13873367 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13873367 Country of ref document: EP Kind code of ref document: A1 |