WO2014117379A1 - 多孔电极组、液流半电池和液流电池堆 - Google Patents

多孔电极组、液流半电池和液流电池堆 Download PDF

Info

Publication number
WO2014117379A1
WO2014117379A1 PCT/CN2013/071239 CN2013071239W WO2014117379A1 WO 2014117379 A1 WO2014117379 A1 WO 2014117379A1 CN 2013071239 W CN2013071239 W CN 2013071239W WO 2014117379 A1 WO2014117379 A1 WO 2014117379A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
flow field
porous electrode
electrolyte
fields
Prior art date
Application number
PCT/CN2013/071239
Other languages
English (en)
French (fr)
Inventor
殷聪
汤浩
宋彦彬
刘志伟
高艳
胡杨月
Original Assignee
中国东方电气集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国东方电气集团有限公司 filed Critical 中国东方电气集团有限公司
Priority to PCT/CN2013/071239 priority Critical patent/WO2014117379A1/zh
Priority to US14/765,175 priority patent/US20150364767A1/en
Publication of WO2014117379A1 publication Critical patent/WO2014117379A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8626Porous electrodes characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2459Comprising electrode layers with interposed electrolyte compartment with possible electrolyte supply or circulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the field of flow battery design, and in particular to a porous electrode group, a liquid flow half-cell, and a flow battery stack.
  • An all-vanadium redox flow battery is an electrochemical reaction device for redox oxidation of vanadium ion electrolytes in different valence states, which can efficiently convert mutual conversion between chemical energy and electrical energy.
  • This type of battery has the advantages of long service life, high energy conversion efficiency, good safety and environmental friendliness. It can be used in large-scale energy storage systems for wind power generation and photovoltaic power generation. It is the main choice for grid peaking and valley filling and balancing load. one.
  • the vanadium redox flow battery uses vanadium ions v 2+ /v 3+ and v 4+ /v 5+ as the positive and negative oxide redox pairs of the battery, and the positive and negative electrolytes are respectively stored in the two stock solutions.
  • the active electrolyte is driven by the acid-resistant liquid pump to the reaction site (battery stack) and then returned to the liquid storage tank to form a circulating liquid flow circuit to realize the charging and discharging process.
  • the performance of the battery stack determines the charge and discharge performance of the entire system, especially the charge and discharge power and efficiency.
  • the battery stack is formed by stacking a plurality of single cells in series and pressing them in series. Among them, the composition of the single-chip flow battery is shown in Figure 1.
  • is a liquid flow frame
  • 2' is a bipolar plate
  • 3' is a porous electrode
  • 4' is an ion exchange membrane
  • each component constitutes a single-piece flow battery
  • the battery stack 5' is composed of a stack of N flow batteries.
  • the flow of the electrolyte inside the existing flow battery stack generally depends on the permeation mass transfer of the porous electrode.
  • the flow mode of the electrolyte causes a large difference in the flow pressure in the battery stack, and the pump consumes too high, thereby causing the liquid flow.
  • the efficiency of the battery system is reduced; on the other hand, the electrolyte inside the battery stack is unevenly flowed, and the concentration polarization is large, causing internal losses of the stack, thereby lowering the voltage efficiency of the battery.
  • the present invention is directed to a porous electrode set, a liquid flow half-cell, and a flow battery stack, which improves the uniformity of electrolyte flow in a porous electrode.
  • a porous electrode group comprising a plurality of stacked porous electrodes, wherein at least two of the porous electrodes are flow channel electrodes having a flow path, and at least two Part of the flow channels of the flow channel electrodes communicate with each other to form a flow field. Further, between the mutually communicating flow paths of the adjacent flow path electrodes, there are overlapping sections which overlap in the stacking direction of the porous electrodes. Further, the flow field is one or more, and each of the flow fields has the same extending direction. Further, the flow field is one, and the flow field is disposed on the center surface of the porous electrode group. Further, the flow field is plural, and the flow field is arranged in the following manner: A.
  • Each flow field is arranged in parallel and closed at both ends, and both ends of each flow field are at the edge of the porous electrode group perpendicular to the direction in which the flow field extends.
  • the distance is the same; or B, each flow field is arranged in parallel and closed at both ends, adjacent flow fields are staggered along the extending direction of the flow channel; or C, each flow field is arranged in parallel and one end is open, and the opening direction of the adjacent flow field is the same Or the opposite; or D, the flow field is divided into a plurality of flow field groups arranged in parallel, the flow field group includes a plurality of flow fields, the extending direction of each flow field group and the extending direction of the flow channels in the flow field group Parallel, and the flow fields in adjacent flow field groups are staggered along the extending direction of the flow channel; or E, the flow field is divided into a plurality of flow field groups arranged in parallel, and the flow field group includes a plurality of flow fields, each The extending direction of the flow field group is perpendic
  • the flow field includes one or more first flow fields composed of flow channels extending in the same direction and one or more second flow fields perpendicular to the extending direction of the first flow field. Further, the flow field is arranged in the following manner: F.
  • the porous electrode group has a plurality of first flow fields, and the plurality of first flow fields are divided into a plurality of first flow field groups, and adjacent two At least one second flow field is disposed between the first-class field groups, and each of the first flow field groups includes a plurality of first flow fields disposed in parallel, and an adjacent first flow field extends along a flow path of the first flow field Or staggered; or
  • the porous electrode group has one or more T-shaped flow field groups, and the T-shaped flow field group includes a first flow field and a second flow field toward the middle of the first flow field, T-shaped The second flow field in the flow field group is not connected to the first flow field.
  • the porous electrode group has one or more I-shaped flow field groups
  • the I-shaped flow field group includes two first flow fields disposed in parallel and opposite ends respectively facing the middle of the two first flow fields a second flow field, the second flow field is not connected to the first flow field, when there are a plurality of I-shaped flow field groups, and each I-shaped flow field group is connected or disconnected with each other; or I, a porous electrode group
  • the zigzag flow field group includes two first flow fields and one second flow field, and the two first flow fields are respectively disposed on two sides of the second flow field, and two The first flow fields are respectively connected to different ends of the second flow field, and when there are a plurality of zigzag flow field
  • a liquid flow half-cell includes: a liquid flow frame having a frame and an electrode receiving cavity formed by the frame, wherein the frame is provided with an electrolyte inlet and an electrolyte outlet;
  • the porous electrode group is embedded in the electrode receiving chamber of the liquid flow frame and communicates with the electrolyte inlet and the electrolyte outlet, the porous electrode group is the above porous electrode group;
  • the bipolar plate is disposed on one side of the liquid flow frame and Parallel to the porous electrode group. Further, between the mutually communicating flow paths of the adjacent flow path electrodes of the above-mentioned porous electrode group, there are overlapping sections which overlap in the stacking direction of the porous electrodes of the porous electrode group.
  • the extension length of the overlapping portion for supplying the electrolyte to the porous electrode remote from the bipolar plate is larger than the extension length of the overlapping portion for supplying the electrolyte to the porous electrode adjacent to the bipolar plate.
  • the liquid flow frame includes an opposite first frame and a second frame, the electrolyte inlet is disposed on the first frame, the electrolyte outlet is disposed on the second frame, and the porous electrode group and the first frame and the second frame are There is a gap between them.
  • the flow field of the porous electrode group has an opening and is perpendicular to the first frame and the second frame, and the gap communicates with the electrolyte inlet and the flow field and the electrolyte outlet and the flow field.
  • the bipolar plate has an electrolyte solution inlet and an electrolyte outlet port corresponding to the electrolyte inlet and the electrolyte outlet.
  • a flow battery stack comprising one or more positive half cells, one or more negative half cells, and an ion exchange membrane disposed between the positive half cells and the negative half cells,
  • the positive half cell and the negative half cell are the above-described liquid flow half cells, and the bipolar plates of the liquid flow half cells are disposed away from the ion exchange membrane.
  • at least one of the porous electrodes of the porous electrode group is provided with a flow field composed of fluid flow paths for the electrolyte to flow, and the flow of the electrolyte in the porous electrode is increased under the flow direction of the flow field.
  • Fig. 1 is a schematic view showing the structure of a prior art flow battery
  • FIG. 4a is a schematic structural view of a porous electrode group according to still another preferred embodiment of the present invention
  • FIG. 4b is a view showing the structure of a porous electrode group according to still another preferred embodiment of the present invention
  • FIG. 5a and FIG. 5b are schematic views showing the structure of a porous electrode group according to still another preferred embodiment of the present invention
  • FIG. 6 is a view showing the structure of a porous electrode group according to still another preferred embodiment of the present invention
  • FIG. 7 is a schematic view showing the structure of a porous electrode group according to still another preferred embodiment of the present invention
  • FIG. 8 is a view showing the structure of a porous electrode group according to still another preferred embodiment of the present invention
  • FIG. 9 is a schematic structural view of a porous electrode group according to still another preferred embodiment of the present invention
  • FIG. 10 is a view showing the structure of a porous electrode group according to still another preferred embodiment of the present invention
  • FIG. 11 is a schematic structural view of a porous electrode group according to still another preferred embodiment of the present invention
  • FIGS. 12a and 12b illustrate Structure of a porous electrode group of still another preferred embodiment of the invention
  • FIG. 13a and 13b are views showing the structure of a porous electrode group according to still another preferred embodiment of the present invention
  • Fig. 14 is a view showing the structure of a liquid half cell according to a preferred embodiment of the present invention.
  • Figure 15 is a schematic view showing the flow of an electrolyte in a porous electrode group of a liquid half-cell according to still another preferred embodiment of the present invention, wherein the arrow is directed to the flow direction of the electrolyte
  • Figure 16 is a flow chart showing the flow of the electrolyte in the porous electrode group of the flow half-cell according to still another preferred embodiment of the present invention, wherein the arrow is directed to the flow direction of the electrolyte
  • Figure 17 shows the flow according to the present invention.
  • FIG. 18 shows a further preferred embodiment according to the present invention.
  • FIG. 19 shows a flow half-cell according to still another preferred embodiment of the present invention.
  • FIG. 20 shows the middle electrolysis of the porous electrode group of the flow half-cell according to still another preferred embodiment of the present invention.
  • Flow diagram of liquid wherein the arrow points to the flow direction of the electrolyte
  • FIG. 21 shows the porous electricity of the liquid half-cell according to still another preferred embodiment of the present invention.
  • FIG. 22 shows the electrolyte in the porous electrode group of the liquid half-cell according to still another preferred embodiment of the present invention.
  • a porous electrode group is provided, the porous electrode group including a plurality of stacked porous electrodes 30, wherein at least one of the porous electrodes 30 has The flow path electrodes of the flow path 31 and the partial flow paths 31 of at least one other flow path electrode communicate with each other to form a flow field.
  • the porous electrode group having the above structure, wherein at least one of the porous electrodes 30 is internally provided with a flow field composed of the flow paths 31 communicating with each other for the flow of the electrolyte, and the flow of the electrolyte in the porous electrode 30 is increased under the flow of the flow field.
  • the surface area of the electrolyte permeating the solid portion of the porous electrode 30 reduces the flow resistance of the porous electrode 30 to the electrolyte flow, effectively reducing the flow pressure difference required for the electrolyte flow; and the electrolyte is in the flow field.
  • the porous electrode 30 on both sides of the flow field is infiltrated, thereby improving the uniformity of the flow of the liquid flow, reducing the concentration polarization caused by the uneven flow of the electrolyte, and improving the flow battery having the same Charge and discharge efficiency.
  • the flow path 31 is also designed in various ways.
  • the flow path 31 can be formed in the stacking direction of the porous electrodes 30.
  • the electrolyte can flow between the different porous electrodes 30 under the flow guiding action of the flow field, and the uniformity of the electrolyte flow in the porous electrode group can be remarkably improved.
  • the thickness of the porous electrode 30 in the porous electrode group of the present invention may be the same or different, and the porous electrode group having different thickness ratios has different effects on the transport direction of the electrolyte and the mass transfer efficiency of the electrolyte in the local region, and the prior art
  • the thickness of the porous electrode 30 can be optimized by a person depending on the demand for mass transfer efficiency.
  • the mutually adjacent flow paths 31 of the adjacent flow path electrodes have overlapping sections which overlap in the stacking direction of the porous electrodes 30.
  • the flow passages 31 are connected by a coincidence section, and it is only necessary to appropriately lengthen the flow passage 31 when the flow passage 31 is formed, the manufacturing method is simple, and the smooth flow of the electrolyte in the porous electrode group can be ensured.
  • the flow fields are one or more, and each of the flow paths 31 in each flow field has the same extension direction.
  • the flow field extends in the lateral direction or in the longitudinal direction, and the flow pressure of the uniform hook formed on the contact surface between the flow field and the porous electrode group is transmitted to the portion of the porous electrode group where the flow field is not provided, and the relatively uniform hook can also be formed.
  • the liquid flow pressure is such that the liquid flow inside the porous electrode group achieves a uniform flow. As shown in Fig.
  • the flow field of the porous electrode group is one, and the flow field is disposed on the center surface of the porous electrode group.
  • the flow field may be disposed on the lateral center plane or on the longitudinal center surface, and the electrolyte inside the porous electrode group distributed on both sides of the flow field is The flow of the electrolyte inside the flow field can achieve uniform hook flow under the strong hooking pressure.
  • the porous electrode group has a plurality of flow fields, and the flow field is arranged in the following manner: A. Each flow field is arranged in parallel, and each flow is arranged.
  • the distance between the two ends of the field to the edge of the porous electrode group perpendicular to the direction in which the flow field extends is the same; or B, the flow fields are arranged in parallel, and adjacent flow fields are staggered along the extending direction of the flow path 31; or C flow
  • the flow field group is divided into a plurality of flow field groups arranged in parallel, and the flow field group includes a plurality of flow fields, each flow is arranged in parallel and open at one end, and the opening directions of the adjacent flow fields are the same or opposite;
  • the extending direction of the field group is parallel to the extending direction of the flow channel 31 in the flow field group, and the flow fields in the adjacent flow field group are staggered along the extending direction of the flow channel 31; or E, the flow field is divided into parallel settings.
  • each flow field group extending in a direction perpendicular to the extending direction of the flow channel 31 in the flow field group, the flow field group including a plurality of flow fields, and each flow field group
  • the fields are staggered along the extending direction of the flow path 31.
  • the spacing between two adjacent flow fields may be equal or different, when the spacing of adjacent flow fields flows along the longitudinal direction of the electrolyte.
  • the volume of the porous electrode region between the flow fields also decreases in the same direction, thereby more effectively avoiding the flow with the electrolyte
  • the flow rate of the extended electrolyte slows down, resulting in a problem that the liquid pressure generated in the porous electrode region becomes small and the flow rate of the electrolyte is further reduced.
  • the electrolyte in the flow field produces a relatively uniform pressure on the porous electrode region through which the electrolyte flows, so that the electrolyte flows uniformly in the porous electrode group, and the flow field can be not only shown in FIG.
  • the arrangement may be arranged in a laterally extending manner, or may be arranged in a longitudinally extending manner, and the spacing of adjacent flow fields may be equal or unequal, preferably the spacing of adjacent flow fields is transverse to the flow of the electrolyte. Reduced.
  • the laterally extending flow fields are staggered in the arrangement B, and the spacing of the adjacent flow fields may be equal or unequal.
  • the spacing of the adjacent flow fields decreases along the longitudinal direction of the electrolyte flow, and as shown in FIG. 4b, the longitudinally extending flow fields are staggered in the arrangement B, and the adjacent flow fields may be equally spaced.
  • the spacing of adjacent flow fields decreases along the lateral flow direction of the electrolyte, so that a certain pressure can be generated between the adjacent flow fields for the electrolyte flow, and the integration of the adjacent flow fields Under the action, the electrolyte flows uniformly in the porous electrode group.
  • the electrolyte enters the porous electrode group from the flow field having the opening, and the entity that penetrates the porous electrode group by the flow field Internally, the electrolyte is shunted to improve the uniformity of the flow of the electrolyte in the porous electrode group.
  • the flow field of the above porous electrode group includes one or more first flow fields composed of flow channels 31 extending in the same direction and one or more second flow fields along an extending direction perpendicular to the first flow field.
  • the first flow field and the second flow field which are perpendicular to each other are arranged in an integrated manner, so that the liquid flow pressure generated in the porous electrode group is more uniform, and the effect of uniform flow of the electrolyte in the porous electrode group is better realized.
  • the flow field is arranged in the following manner: F.
  • the porous electrode 30 has a plurality of first flow fields, and the plurality of The first-class field is divided into a plurality of first flow field groups, and at least one second flow field is disposed between two adjacent first flow field groups, and each of the first flow field groups includes a plurality of first flow fields arranged in parallel.
  • the porous electrode 30 has one or more T-shaped flow field groups, and the T-shaped flow field group includes one a first-stage field and a second flow field facing the middle of the first flow field, wherein the second flow field in the T-shaped flow field group is not connected to the first flow field, and when the T-shaped flow field group is plural, adjacent In the two ⁇ -shaped flow field groups, the two second flow fields are parallel to each other, two The first-class field is located at different ends of the corresponding second flow field, and each adjacent ⁇ -shaped flow field group is connected or disconnected with each other; or H, the porous electrode 30 has one or more I-shaped flow field groups, I The glyph flow field group includes two first flow fields arranged in parallel and two second flow fields respectively extending toward the middle of the two first flow fields, and the second flow field is not connected to the first flow field, and the I-shaped flow is When there are multiple field groups, and each I-
  • the laterally extending second flow field flow path has the porous electrode component as a plurality of porous electrode regions, each of which is uniformly hooked.
  • the longitudinally extending first flow field channels disposed inside the porous electrode regions are parallelly arranged and staggered with each other, so that a small region for better uniform flow of the electrolyte is formed in each of the porous electrode regions, and these small regions When combined, a porous electrode group having a uniform distribution of electrolyte inside is obtained.
  • the group is uniformly distributed inside.
  • the positive zigzag shape and the inverted zigzag shape are arranged alternately.
  • the U shape may be arranged in a regular zigzag shape. They may all be arranged in an inverted zigzag shape, and the distance between the first flow field and the second flow field of each of the ⁇ -shaped shapes may be the same or different.
  • the flow pressure around the ⁇ shape is uniform, and the more the number of ⁇ -shaped, the more flow fields inside the porous electrode group, the smaller the resistance of the electrolyte flow in the porous electrode group, the easier the electrolyte is to achieve uniformity. effect.
  • the I-shape is distributed as shown in Fig. 10, and the flow pressure around the I-shape is uniform, and the I-shaped ones are The more the number, the more the flow field inside the porous electrode group, the smaller the resistance of the electrolyte flow in the porous electrode group, and the electrolyte solution is more likely to achieve a uniform effect.
  • the flow field in the porous electrode group of the present invention is arranged in a mode I, a U-shaped flow field in the porous electrode group is disposed as shown in FIG.
  • the electrolyte enters the porous electrode group from the flow path 31 of the upper flow path electrode, and along the The flow path 31 enters the flow path electrode located below, and then flows along the flow path 31 into the flow path electrode located above, and the electrolyte flows along the flow field of the porous electrode group to the entity of the porous electrode group. Partial penetration makes the electrolyte flow in the entire porous electrode group tend to be uniform, which improves the phenomenon of concentration polarization due to uneven flow of the electrolyte.
  • the flow field in the porous electrode group of the present invention is arranged in a K manner, as shown in FIGS.
  • a liquid half-cell including a liquid flow frame 1, a porous electrode group 3 and a bipolar plate 2, and a liquid flow are provided.
  • the frame 1 has a frame 11 and an electrode receiving cavity formed by the frame 11.
  • the frame 11 is provided with an electrolyte inlet and an electrolyte outlet.
  • the porous electrode group 3 is embedded in the electrode receiving cavity of the liquid flow frame 1 and is connected with the electrolyte.
  • the electrolyte outlet is connected to each other, and the porous electrode group 3 is the above-described porous electrode group; the bipolar plate 2 is disposed on one side of the liquid flow frame 1 and in parallel with the porous electrode group 3.
  • the porous electrode group 3 is in communication with the electrolyte inlet 12 and the electrolyte outlet 13 of the liquid flow frame 1 so that the electrolyte can be quickly transported into the porous electrode group 2 and passed through the porous electrode group 3
  • the flow field flows and permeates in the stacked porous electrode 30 of the porous electrode group 3, and the resistance of the electrolyte flowing in the porous electrode group 3 is reduced due to the presence of the flow field, the uniformity of the liquid flow is improved, and the electrolysis is increased.
  • the mass transfer efficiency of the liquid in the porous electrode group reduces the concentration polarization and the liquid pressure drop, and improves the charge and discharge efficiency of the liquid flow half-cell.
  • the inventors exemplify the structure of the flow half-cell shown in FIG. 14, which does not limit the structure of the flow half-cell of the present invention.
  • the design is to set the cathode electrolyte inlet to be located at the lower left corner of the liquid flow frame 1, and the cathode electrolyte outlet is located at the upper right corner of the liquid flow frame 1 (not shown).
  • the position of the electrolyte inlet and the electrolyte outlet of the liquid flow frame 1 can be appropriately changed according to actual needs, as shown in FIGS. 15 to 22, and can be passed between the electrolyte inlet and the electrolyte outlet and the arrangement of the flow passage 31.
  • the porous electrode group 3 has the porous electrode 30 of the porous electrode group 3 between the mutually communicating flow paths 31 adjacent to the flow path electrodes. A coincident segment that overlaps in the stacking direction.
  • the flow passages 31 are connected by a coincidence section, and it is only necessary to appropriately lengthen the flow passage 31 when the flow passage 31 is formed, the manufacturing method is simple, and the smooth flow of the electrolyte in the porous electrode group can be ensured. As shown in FIG. 21 and FIG.
  • the extension length of the overlapping portion for supplying the electrolyte to the porous electrode 30 away from the bipolar plate 2 is larger than that for the porous electrode 30 for supplying the electrolyte toward the bipolar plate 2.
  • the extension length of the coincidence segment is larger than that for the porous electrode 30 for supplying the electrolyte toward the bipolar plate 2.
  • the reaction efficiency of the porous electrode 30 away from the bipolar plate 2 during the charge and discharge reaction is high, it is preferable that the flow path 31 of the porous electrode 30 away from the bipolar plate 2 is shorter, and the porous electrode 30 has more solid portions;
  • the porous electrode 30 close to the bipolar plate 2 has a low reaction efficiency during the charge and discharge reaction, and it is preferable that the flow path 31 of the porous electrode 30 close to the bipolar plate 2 is long, and the porous electrode has a small solid portion.
  • the above structural design allows the porous electrode 30 remote from the bipolar plate 2 to obtain more electrolyte flow rate in the flow path 31, and the porous electrode 30 close to the bipolar plate 2 obtains less electrolyte flow rate, thereby achieving higher reaction efficiency.
  • the liquid flow frame 1 of the liquid flow half-cell includes an opposite first frame and a second frame, the electrolyte inlet is disposed on the first frame, and the electrolyte outlet is disposed in the second frame.
  • the porous electrode group 3 has a gap between the first frame and the second frame. A gap is provided between the first frame provided with the electrolyte inlet 12 and the second frame of the electrolyte outlet and the porous electrode group 3, and the electrolyte flowing in from the electrolyte inlet is uniformly transported to the porous electrode 30 by using the gap.
  • the flow field of the porous electrode group 3 preferably has an opening and is perpendicular to the first frame and the second frame, and the gap communicates with the electrolyte inlet and Flow field and electrolyte outlet and flow field.
  • the flow fields of the K arrangement shown in Fig. 14a and Fig. 14b each have an opening, and the electrolyte flowing in from the electrolyte inlet simultaneously enters the flow field having the opening by using the gap disposed perpendicular to the flow field, thereby improving the electrolyte in the porous state.
  • the uniformity of the flow in the electrode 30, and the timely transfer of the electrolyte after the reaction out of the porous electrode 30 by the gap and the electrolyte outlet improves the charge and discharge efficiency of the liquid half-cell.
  • the bipolar plate 2 of the liquid flow half-cell has an electrolyte solution inlet and an electrolyte outlet port corresponding to the electrolyte inlet and the electrolyte outlet.
  • the liquid flow frame 1 of the liquid flow half-cell of the present invention can simultaneously be provided with a positive electrode electrolyte inlet, a positive electrode electrolyte outlet, a negative electrode electrolyte inlet and a negative electrode electrolyte outlet, and the bipolar plate 2 can be simultaneously disposed with the positive electrode electrolyte inlet phase.
  • a corresponding positive electrode electrolyte inlet a positive electrolyte outlet corresponding to the positive electrolyte outlet, a negative electrolyte inlet corresponding to the negative electrolyte inlet, and a negative electrolyte corresponding to the negative electrolyte outlet
  • the flow outlet is separated, and the positive electrode electrolyte and the negative electrode electrolyte in the flow are separated by a commonly used sealing ring and a sealing groove.
  • a flow battery stack comprising one or more positive half cells, one or more negative half cells, and disposed between a positive half cell and a negative half cell
  • the ion exchange membrane 4, the positive electrode half cell and the negative electrode half cell are the above-described liquid flow half cells, and the bipolar plate 2 of the liquid flow half cell is disposed away from the ion exchange membrane 4.
  • the above-described flow battery stack has the liquid flow half-cell of the present invention, and therefore, the flow battery stack also has high charge and discharge efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

本发明提供了一种提供了一种多孔电极组、液流半电池和液流电池堆。该多孔电极组包括叠置的多个多孔电极,其中至少两个多孔电极为具有流道的流道电极,且至少两个流道电极的部分流道相互连通形成流场。该多孔电极组的至少一个多孔电极内部设置有供电解液流通的由流道相互连通组成的流场,电解液在流场的导流作用下在多孔电极内流动增加了电解液向多孔电极的实体部分渗透的表面积,减少了多孔电极对电解液流动造成的液流阻力,有效地降低了电解液流动所需的液流压差;而且电解液在流场中流动时,向流场两侧的多孔电极中均勾渗透,提高了液流流动的均一性,减少了因电解液流动不均造成的浓差极化,提高具有其的液流电池的充放电效率。

Description

多孔电极组、 液流半电池和液流电池堆 技术领域 本发明涉及液流电池设计领域, 具体而言, 涉及一种多孔电极组、 液流半电池和 液流电池堆。 背景技术 全钒氧化还原液流电池是一种以不同价态的钒离子电解液进行氧化还原的电化学 反应装置, 能够高效地实现化学能与电能之间的相互转化。该类电池具有使用寿命长, 能量转化效率高, 安全性好, 环境友好等优点, 能用于风能发电和光伏发电配套的大 规模储能系统, 是电网削峰填谷、 平衡负载的主要选择之一。 因此, 近年来全钒氧化 还原液流电池逐渐成为大容量储能电池研究的重点。 全钒氧化还原液流电池分别以钒离子 v2+/v3+和 v4+/v5+作为电池的正负极氧化还 原电对, 将正负极电解液分别存储于两个储液罐中, 由耐酸液体泵驱动活性电解液至 反应场所 (电池堆) 再回至储液罐中形成循环液流回路, 以实现充放电过程。 在全钒 氧化还原液流电池储能系统中, 电池堆性能的好坏决定着整个系统的充放电性能, 尤 其是充放电功率及效率。 电池堆是由多片单电池依次叠放压紧, 串联而成。 其中, 单 片液流电池的组成如图 1所示。 Γ为液流框, 2'为双极板, 3'为多孔电极, 4'为离子交 换膜, 各组件组成单片的液流电池, 通过 N个液流电池的堆叠组成电池堆 5'。 现有的液流电池堆内部电解液的流动一般靠多孔电极的渗透传质, 这种电解液的 流动方式一方面导致电池堆内液流压差很大, 泵消耗过高, 从而使液流电池系统效率 降低; 另一方面, 电池堆内部电解液流动不均勾、 浓差极化较大, 造成电堆内部损耗, 从而使电池的电压效率降低。 发明内容 本发明旨在提供一种多孔电极组、 液流半电池和液流电池堆, 改善了多孔电极内 电解液流动的均一性。 为了实现上述目的, 根据本发明的一个方面, 提供了一种多孔电极组, 多孔电极 组包括叠置的多个多孔电极, 其中至少两个多孔电极为具有流道的流道电极, 且至少 两个流道电极的部分流道相互连通形成流场。 进一步地, 相邻的上述流道电极的相互连通的流道之间具有在多孔电极的叠置方 向上重合的重合段。 进一步地, 上述流场为一个或多个, 各流场中的各个流道的延伸方向相同。 进一步地, 上述流场为一个, 流场设置在多孔电极组的中心面上。 进一步地, 上述流场为多个, 流场的排布方式为: A、 各流场平行设置且两端封 闭, 各流场的两端至与流场延伸方向垂直的多孔电极组的边缘的距离相同; 或者 B、 各流场平行设置且两端封闭, 相邻流场沿流道的延伸方向交错排布; 或者 C、 各流场 平行设置且一端开口, 相邻流场的开口方向相同或相反; 或者 D、 流场被分为平行设 置的多个流场组, 流场组中包括多个流场, 每个流场组的延伸方向与该流场组中的流 道的延伸方向平行, 且相邻流场组中流场沿流道的延伸方向交错排布; 或者 E、 流场 被分为平行设置的多个流场组, 流场组中包括多个流场, 每个流场组的延伸方向与该 流场组中的流道的延伸方向垂直, 且每个流场组中的各流场沿流道的延伸方向交错排 布。 进一步地, 上述流场包括延伸方向相同的流道组成的一个或多个第一流场和垂直 于第一流场的延伸方向的一个或多个第二流场。 进一步地, 上述流场的排布方式为: F、 多孔电极组上具有多个第一流场, 且该多 个第一流场被分为多个第一流场组, 相邻两个第一流场组间设置至少一条第二流场, 各第一流场组中包括平行设置的多个第一流场, 且相邻的第一流场沿第一流场的流道 的延伸方向交错排布; 或者 G、 多孔电极组上具有一个或多个 T字形流场组, T字形 流场组包括一个第一流场和一个朝向该第一流场中部的第二流场, T字形流场组中的 第二流场与第一流场不连通,当 T字形流场组为多个时,相邻的两个 T字形流场组中, 两个第二流场相互平行, 两个第一流场位于相应的第二流场的不同端, 各相邻的 T字 形流场组相互之间连通或不连通; 或者 H、 多孔电极组上具有一个或多个 I字形流场 组, I字形流场组包括平行相对设置的两个第一流场和两端分别朝向两个第一流场中部 的一个第二流场, 第二流场与第一流场不连通, 当 I字形流场组为多个时, 且各 I字 形流场组相互之间连通或不连通; 或者 I、 多孔电极组上具有一个或多个 Z字形流场 组, Z字形流场组包括两个第一流场和一个第二流场, 两个第一流场分别设置在第二 流场的两侧, 且两个第一流场分别与第二流场上不同的端部相连通, 当 Z字形流场组 为多个时, 且各 Z字形流场组相互之间连通或不连通; 或者 J、 多孔电极组上具有一 个或多个两端开口的蛇形流场组, 各蛇形流场组包括多个第一流场和多个第二流场, 处于两端开口处的第一流场和 /或第二流场之间的第一流场和第二流场首尾相连通, 且 各蛇形流畅组连通或不连通; 或者 κ、 多孔电极组上具有一个或多个两端开口的并行 流场组, 各并行流场组包括两个第一流场和多个第二流场, 第二流场设置在第一流场 之间并连通第二流场。 根据本发明的另一方面, 提供了一种液流半电池, 液流半电池包括: 液流框, 具 有边框和由边框形成的电极容纳腔, 边框上设置有电解液进口和电解液出口; 多孔电 极组, 嵌设在液流框的电极容纳腔内并与电解液进口和电解液出口相连通, 多孔电极 组为上述的多孔电极组; 双极板, 设置在液流框的一侧且与多孔电极组平行。 进一步地, 上述多孔电极组的相邻流道电极的相互连通的流道之间具有在多孔电 极组的多孔电极的叠置方向上重合的重合段。 进一步地, 上述多孔电极组中, 供电解液流向远离双极板的多孔电极的重合段的 延伸长度大于供电解液流向靠近双极板的多孔电极的重合段的延伸长度。 进一步地, 上述液流框包括相对的第一边框和第二边框, 电解液进口设置在第一 边框上, 电解液出口设置在第二边框上, 多孔电极组与第一边框和第二边框之间具有 间隙。 进一步地, 上述多孔电极组的流场具有开口且与第一边框和第二边框垂直, 上述 间隙连通电解液进口与流场以及电解液出口与流场。 进一步地, 上述双极板上具有与电解液进口和电解液出口对应的电解液导流入口 和电解液导流出口。 根据本发明的又一方面, 提供了一种液流电池堆, 包括一个或多个正极半电池、 一个或多个负极半电池和设置在正极半电池和负极半电池之间的离子交换膜, 正极半 电池和负极半电池为上述的液流半电池,且液流半电池的双极板远离离子交换膜设置。 应用本发明的技术方案, 多孔电极组的至少一个多孔电极内部设置有供电解液流 通的由流道相互连通组成的流场, 电解液在流场的导流作用下在多孔电极内流动增加 了电解液向多孔电极的实体部分渗透的表面积, 减少了多孔电极对电解液流动造成的 液流阻力, 有效地降低了电解液流动所需的液流压差; 而且电解液在流场中流动时, 向流场两侧的多孔电极中均勾渗透, 提高了液流流动的均一性, 减少了因电解液流动 不均造成的浓差极化, 提高具有其的液流电池的充放电效率。 附图说明 构成本申请的一部分的说明书附图用来提供对本发明的进一步理解, 本发明的示 意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1示出了现有技术中的液流电池的结构示意图; 图 2示出了根据本发明的一种优选的实施例的多孔电极组的结构示意图; 图 3示出了根据本发明的另一种优选的实施例的多孔电极组的结构示意图; 图 4a示出了根据本发明的又一种优选的实施例的多孔电极组的结构示意图; 图 4b示出了根据本发明的又一种优选的实施例的多孔电极组的结构示意图; 图 5a和图 5b示出了根据本发明的又一种优选的实施例的多孔电极组的结构示意 图; 图 6示出了根据本发明的又一种优选的实施例的多孔电极组的结构示意图; 图 7示出了根据本发明的又一种优选的实施例的多孔电极组的结构示意图; 图 8示出了根据本发明的又一种优选的实施例的多孔电极组的结构示意图; 图 9示出了根据本发明的又一种优选的实施例的多孔电极组的结构示意图; 图 10示出了根据本发明的又一种优选的实施例的多孔电极组的结构示意图; 图 11示出了根据本发明的又一种优选的实施例的多孔电极组的结构示意图; 图 12a和图 12b示出了根据本发明的又一种优选的实施例的多孔电极组的结构示
图 13a和图 13b示出了根据本发明的又一种优选的实施例的多孔电极组的结构示 意图; 图 14示出了根据本发明的一种优选的实施例中的液流半电池的结构示意图; 图 15 示出了根据本发明的又一种优选的实施例的液流半电池的多孔电极组的中 电解液的流动示意图, 其中箭头指向为电解液的流动方向; 图 16 示出了根据本发明的又一种优选的实施例的液流半电池的多孔电极组的中 电解液的流动示意图, 其中箭头指向为电解液的流动方向; 图 17 示出了根据本发明的又一种优选的实施例的液流半电池的多孔电极组的中 电解液的流动示意图, 其中箭头指向为电解液的流动方向; 图 18 示出了根据本发明的又一种优选的实施例的液流半电池的多孔电极组的中 电解液的流动示意图, 其中箭头指向为电解液的流动方向; 图 19 示出了根据本发明的又一种优选的实施例的液流半电池的多孔电极组的中 电解液的流动示意图, 其中箭头指向为电解液的流动方向; 图 20 示出了根据本发明的又一种优选的实施例的液流半电池的多孔电极组的中 电解液的流动示意图, 其中箭头指向为电解液的流动方向; 图 21 示出了根据本发明的又一种优选的实施例的液流半电池的多孔电极组的中 电解液的流动示意图, 其中箭头指向为电解液的流动方向; 以及 图 22 示出了根据本发明的又一种优选的实施例的液流半电池的多孔电极组的中 电解液的流动示意图, 其中箭头指向为电解液的流动方向。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 如图 2至图 13b所示, 在本发明的一种典型的实施方式中, 提供了一种多孔电极 组, 多孔电极组包括叠置的多个多孔电极 30, 其中至少一个多孔电极 30为具有流道 31的流道电极, 且至少另个流道电极的部分流道 31相互连通形成流场。 具有上述结构的多孔电极组,其中至少一个多孔电极 30内部设置有供电解液流通 的由流道 31相互连通组成的流场, 电解液在流场的导流作用下在多孔电极 30内流动 增加了电解液向多孔电极 30的实体部分渗透的表面积, 减少了多孔电极 30对电解液 流动造成的液流阻力, 有效地降低了电解液流动所需的液流压差; 而且电解液在流场 中流动时, 向流场两侧的多孔电极 30中均勾渗透, 提高了液流流动的均一性, 减少了 因电解液流动不均造成的浓差极化, 提高具有其的液流电池的充放电效率。 本发明的流场的形成方式有多种,流道 31的设计方式也有多种, 当相邻的流道电 极的部分流道 31之间相连通便能在多孔电极 30的叠置方向上形成流场, 电解液在流 场的导流作用下能够在不同的多孔电极 30之间流动,能够明显地改善多孔电极组内电 解液流动的均一性。 本发明的多孔电极组内的多孔电极 30的厚度可以相同也可以不同,不同厚度比例 的多孔电极组对于电解液的传输方向以及电解液在局部区域的传质效率有不同的影 响, 本领域技术人员可以依据对传质效率的需求对多孔电极 30的厚度进行优选。 在本发明的一种优选的实施例中,上述相邻的流道电极的相互连通的流道 31之间 具有在多孔电极 30的叠置方向上重合的重合段。 流道 31之间采用重合段进行连通, 只需要在制作流道 31时适当延长流道 31的长度, 制作方法简单, 并能保证电解液在 多孔电极组中的顺畅流动。 如图 2至 7所示, 上述流场为一个或多个,各流场中的各个流道 31的延伸方向相 同。 流场沿横向延伸或者沿纵向延伸, 在流场与多孔电极组的接触面上形成的均勾的 液流压强,从而传递到多孔电极组内未设置流场的部位也能形成相对均勾的液流压强, 使多孔电极组内部的液流实现均勾流动。 如图 2所示, 在本发明的一种优选的实施例, 上述多孔电极组的流场为一个, 流 场设置在多孔电极组的中心面上。 当在多孔电极组的中心面上设置一条流场时, 该流 场可以设置在横向中心面上, 也可以设置在纵向中心面上, 分布在流场两侧的多孔电 极组内部的电解液在流场内部的电解液的均勾压强下能实现均勾流动。 如图 3至图 7所示, 在本发明的一种优选的实施例, 上述多孔电极组的流场为多 个, 流场的排布方式为: A、 各流场平行设置, 且各流场的两端至与流场延伸方向垂 直的多孔电极组的边缘的距离相同; 或者 B、 各流场平行设置, 且相邻流场沿流道 31 的延伸方向交错排布; 或者 C各流场平行设置且一端开口, 相邻所述流场的开口方向 相同或相反; 或者 D、 流场被分为平行设置的多个流场组, 流场组中包括多个流场, 每个流场组的延伸方向与该流场组中的流道 31的延伸方向平行,且相邻流场组中流场 沿流道 31的延伸方向交错排布; 或者 E、 流场被分为平行设置的多个流场组, 每个流 场组的延伸方向与该流场组中的流道 31的延伸方向垂直,流场组中包括多个流场, 且 每个流场组中的各流场沿流道 31的延伸方向交错排布。 当多孔电极组中的流场的排布方式为 A时, 如图 3所示, 两个相邻的流场的间距 可以相等也可以不同, 当相邻的流场的间距沿电解液纵向流动的方向减小时, 流场之 间的多孔电极区域的体积也沿着同一方向减小, 因此更有效地避免了随着电解液的流 动路线的延长电解液的流速减慢, 导致对多孔电极区域产生的液体压强变小、 电解液 流速进一步减小的问题。 采用排布方式 A, 流场内的电解液对其要流过的多孔电极区 域产生比较均勾的压强, 从而使电解液在多孔电极组中均一流动, 流场不仅可以以图 3 中所示的横向延伸的方式进行排布, 也可以以纵向延伸的方式进行排布, 而且相邻 的流场的间距可以相等也可以不相等, 优选相邻的流场的间距沿电解液横向流动的方 向减小。 当多孔电极组中的流场的排布方式为 B时, 如图 4a所示, 横向延伸的流场以排 布方式 B进行交错排布, 相邻的流场的间距可以相等也可以不相等, 优选相邻的流场 的间距沿电解液纵向流动的方向减小, 以及如图 4b所示, 纵向延伸的流场以排布方式 B进行交错排布, 相邻的流场的间距可以相等也可以不相等, 优选相邻的流场的间距 沿电解液横向流动的方向减小, 都可以使相邻的流场之间对电解液流动产生一定的压 强, 在相邻的流场的综合作用下, 使得电解液在多孔电极组中均一流动。 当多孔电极组中的流场的排布方式为 C时, 如图 5a和图 5b所示, 电解液由具有 开口的流场进入多孔电极组内, 并由流场渗透进入多孔电极组的实体内, 电解液分流, 改善了电解液在多孔电极组内流动的均一性。 当多孔电极组中的流场的排布方式为 D时, 如图 6所示, 综合了排布方式 A和 B 的优势, 因此, 流场以上述排布方式 D设置降低了电解液流动所需的液流压差在多孔 电极组内部实现均一流动。 当多孔电极组中的流场为 E时, 如图 7所示, 纵向延伸的流场以排布方式 E排布 时也能实现与如图 6所示的排布方式的技术效果。 上述多孔电极组的流场包括延伸方向相同的流道 31 组成的一个或多个第一流场 和沿垂直于第一流场的延伸方向的一个或多个第二流场。 将相互垂直的第一流场和第 二流场综合排布使得电解液在多孔电极组内部产生的液流压强更加均勾, 更好的实现 了电解液在多孔电极组内部均一流动的效果。 如图 8至图 13b所示, 在本发明的又一种优选的实施例中, 上述流场的排布方式 为: F、 多孔电极 30上具有多个第一流场, 且该多个第一流场被分为多个第一流场组, 相邻两个第一流场组间设置至少一条第二流场, 各第一流场组中包括平行设置的多个 第一流场, 且相邻的第一流场沿第一流场的流道 31的延伸方向交错排布; 或者 G、 多 孔电极 30上具有一个或多个 T字形流场组, T字形流场组包括一个第一流场和一个朝 向该第一流场中部的第二流场, T字形流场组中的第二流场与第一流场不连通, 当 T 字形流场组为多个时, 相邻的两个 τ字形流场组中, 两个第二流场相互平行, 两个第 一流场位于相应的第二流场的不同端,各相邻的 τ字形流场组相互之间连通或不连通; 或者 H、 多孔电极 30上具有一个或多个 I字形流场组, I字形流场组包括平行相对设 置的两个第一流场和两端分别朝向两个第一流场中部的一个第二流场, 第二流场与第 一流场不连通, 当 I字形流场组为多个时, 且各 I字形流场组相互之间连通或不连通; 或者 I、 多孔电极组上具有一个或多个 Z字形流场组, Z字形流场组包括两个第一流 场和一个第二流场, 两个第一流场分别设置在第二流场的两侧, 且两个第一流场分别 与第二流场上不同的端部相连通, 当 Z字形流场组为多个时, 且各 Z字形流场组相 互之间连通或不连通; 或者 J、 多孔电极组上具有一个或多个两端开口的蛇形流场组, 各蛇形流场组包括多个第一流场和多个第二流场, 处于两端开口处的第一流场和 /或第 二流场之间的第一流场和第二流场首尾相连通, 且各蛇形流畅组连通或不连通; 或者 κ、 多孔电极组上具有一个或多个两端开口的并行流场组, 各并行流场组包括两个第 一流场和多个第二流场, 第二流场设置在第一流场之间并连通第二流场。 当本发明的多孔电极组中的流场的排布方式为 F时, 如图 8所示, 横向延伸的第 二流场流道将多孔电极组分为均勾的几个多孔电极区域, 每个多孔电极区域内部设置 的纵向延伸的第一流场流道平行分布, 且相互交错排布, 这样在每个多孔电极区域中 形成一个供电解液更好地均一流动的小区域, 这些小区域组合起来便得到一个内部具 有电解液均一分布的多孔电极组, 当使图 7中的第二流场流道纵向延伸且第一流场流 道横向延伸时, 也能实现上述电解液在多孔电极组内部均一分布。 当本发明的多孔电极组中的流场的排布方式为 G时, 如图 9所示, 正 Τ字形和倒 Τ字形交叉排布, 此外, Τ字形也可以全部以正 Τ字形排布也可以全部以倒 Τ字形排 布, 而且, 每个 τ字形的第一流场与第二流场之间的间隔距离可以相同也可以不同。 Τ字形周围的液流压强均一, 而且, Τ字形的个数越多, 多孔电极组内部的流场越多, 在多孔电极组中电解液流动受到的阻力越小, 电解液的更易实现均一的效果。 当本发明的多孔电极组中的流场的排布方式为 Η时,如图 10所示, I字形按图 10 所示进行分布, I字形周围的液流压强均一, 而且, I字形的个数越多, 多孔电极组内 部的流场越多, 在多孔电极组中电解液流动受到的阻力越小, 电解液的更易实现均一 的效果。 当本发明的多孔电极组中的流场的排布方式为 I时, 按照图 11所示设置多孔电极 组中的 Ζ字形的流场, 电解液在该 Ζ字形的流场内流动时, 对该 Ζ字形周围的液流产 生均一的压强, 而且, Ζ字形的个数越多, 多孔电极组内部的流场越多, 在多孔电极 组中电解液流动受到的阻力越小, 电解液的更易实现均一流动的效果。 当本发明的多孔电极组中的流场的排布方式为 J时, 如图 12a和图 12b所示, 电 解液由位于上部的流道电极的流道 31内进入多孔电极组内, 并沿着由流道 31进入位 于下方的流道电极内,然后再沿着流道 31流入位于上方的流道电极内, 电解液沿着该 多孔电极组的流场流动的同时向多孔电极组的实体部分渗透, 使得整个多孔电极组内 的电解液流动趋于均一化, 改善了因为电解液流动不均勾造成的浓差极化的现象。 当本发明的多孔电极组中的流场的排布方式为 K时, 如图 13a至图 13b所示, 电 解液由第一流场进入多孔电极组内, 并流向各第二流场, 然后沿着第二流场流向各层 多孔电极 30, 最后沿着第一流场流出多孔电极组, 在电解液沿着流场流动的同时电解 液向多孔电极组的实体内渗透, 同样也能实现电解液均一流动的效果。 如图 14所示, 在本发明的另一种典型的实施方式中, 提供了一种液流半电池, 液 流半电池包括液流框 1、 多孔电极组 3和双极板 2, 液流框 1具有边框 11和由边框 11 形成的电极容纳腔, 边框 11上设置有电解液进口和电解液出口; 多孔电极组 3嵌设在 液流框 1的电极容纳腔内并与电解液进口和电解液出口相连通, 多孔电极组 3为上述 的多孔电极组; 双极板 2设置在液流框 1的一侧且与多孔电极组 3平行。 具有上述结构的液流半电池,多孔电极组 3与液流框 1的电解液进口 12和电解液 出口 13相连通使得电解液能够快速地输送到多孔电极组 2 内, 并通过多孔电极组 3 的流场在多孔电极组 3的叠置的多孔电极 30内流动、渗透, 由于流场的存在减少了电 解液在多孔电极组 3内流动时的阻力改善了液流的均一性, 增加了电解液在多孔电极 组内的传质效率, 降低了浓差极化和液流压降, 提高了液流半电池的充放电效率。 为了便于本领域技术人员理解本发明的液流半电池的结构,发明人对图 14所示的 液流半电池的结构进行举例性说明, 该说明并不能限制本发明的液流半电池的结构设 计, 设定正极电解液进口位于液流框 1的左下角处, 正极电解液出口位于液流框 1的 右上角处 (图中未示出)。 液流框 1的电解液进口和电解液出口的设置位置可以根据实际需要进行适当的变 化, 如图 15至 22所示,可以通过电解液进口和电解液出口以及流道 31的设置之间的 配合控制电解液流入多孔电极组 3的位置和方向以及流出多孔电极组 3的位置和方向。 如图 15至 22所示, 在本发明的一种优选的实施例中, 上述多孔电极组 3相邻流 道电极的相互连通的流道 31之间具有在多孔电极组 3的多孔电极 30的叠置方向上重 合的重合段。 流道 31之间采用重合段进行连通, 只需要在制作流道 31时适当延长流 道 31的长度, 制作方法简单, 并能保证电解液在多孔电极组中的顺畅流动。 如图 21和图 22所示, 上述多孔电极组 3中, 供电解液流向远离双极板 2的多孔 电极 30的重合段的延伸长度大于供电解液流向靠近双极板 2的多孔电极 30的重合段 的延伸长度。 由于,在充放电反应过程中远离双极板 2的多孔电极 30反应效率较高,优选远离 双极板 2的多孔电极 30的流道 31较短, 而多孔电极 30的实体部分较多; 同样靠近双 极板 2的多孔电极 30在充放电反应过程中的反应效率较低,优选靠近双极板 2的多孔 电极 30的流道 31较长, 而多孔电极的实体部分较少。 上述结构设计使得远离双极板 2的多孔电极 30在流道 31中获得更多的电解液流量, 而靠近双极板 2的多孔电极 30 获得较少的电解液流量,从而在反应效率更高的多孔电极 30中提供更多的电解液流量 与反应离子, 最终提高电极反应和使用效率, 从而进一步提高电池效率。 在本发明的一种优选的实施例中, 上述液流半电池的液流框 1包括相对的第一边 框和第二边框, 电解液进口设置在第一边框上, 电解液出口设置在第二边框上, 多孔 电极组 3与第一边框和第二边框之间具有间隙。 设置有电解液进口 12的第一边框和电解液出口的第二边框与多孔电极组 3之间设 置有间隙,利用该间隙将由电解液进口流入的电解液均勾地输送到与多孔电极 30的流 道内或渗透到多孔电极 30内, 然后在多孔电极组 3的多孔电极 30之间相互流动, 实 现高效率的充放电反应。 本发明为了进一步改善多孔电极组 3和液流框 1之间的电解液的流动性, 优选多 孔电极组 3的流场具有开口且与第一边框和第二边框垂直, 间隙连通电解液进口与流 场以及电解液出口与流场。 当多孔电极组的流场具有开口时, 如图 5a、 图 5b、 图 6a 和图 6b所示的 C排布方式的流场、 图 13a和图 13b所示的 J排布方式的流场、 图 14a 和图 14b所示的 K排布方式的流场均具有开口, 利用与流场垂直设置的间隙将由电解 液进口流入的电解液同时进入具有开口的流场内,改善了电解液在多孔电极 30内流动 的均一性, 并且利用间隙和电解液出口及时地将反应之后的电解液输送出多孔电极 30, 提高了液流半电池的充放电效率。 在本发明的又一种优选的实施例中, 上述液流半电池的双极板 2上具有与电解液 进口和电解液出口对应的电解液导流入口和电解液导流出口。 通过在双极板 2上设置 于电解液进口和电解液出口相对应的电解液导流入口和电解液导流出口, 使电解液依 次经过电解液导流入口、 电解液进口、 多孔电极组 3、 电解液出口和电解液导流出口, 使得电解液流入液流半电池和流出液流半电池的路径尽可能地短, 并且提高了液流半 电池的集成度和结构的紧凑程度。 本发明的液流半电池的液流框 1上可以同时设置正极电解液进口、 正极电解液出 口、 负极电解液进口和负极电解液出口, 双极板 2上可以同时设置与正极电解液进口 相对应的正极电解液导流入口、 与正极电解液出口相对应的正极电解液导流出口、 与 负极电解液进口相对应的负极电解液导流入口以及与负极电解液出口相对应的负极电 解液导流出口, 并且通过目前常用的密封圈与密封槽配合的方式将流动中的正极电解 液和负极电解液隔离开来。 在本发明的另一种典型的实施方式中, 提供了一种液流电池堆, 包括一个或多个 正极半电池、 一个或多个负极半电池和设置在正极半电池和负极半电池之间的离子交 换膜 4, 正极半电池和负极半电池为上述的液流半电池, 且液流半电池的双极板 2远 离离子交换膜 4设置。 上述的液流电池堆具有本发明的液流半电池, 因此, 该液流电池堆也具有较高的 充放电效率。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种多孔电极组,其特征在于,所述多孔电极组包括叠置的多个多孔电极(30), 其中至少两个所述多孔电极 (30) 为具有流道 (31 ) 的流道电极, 且至少两个 所述流道电极的部分所述流道 (31 ) 相互连通形成流场。
2. 根据权利要求 1所述的多孔电极组, 其特征在于, 相邻的所述流道电极的相互 连通的所述流道 (31 ) 之间具有在所述多孔电极 (30) 的叠置方向上重合的重 合段。
3. 根据权利要求 1或 2所述的多孔电极组,其特征在于,所述流场为一个或多个, 各所述流场中的各个所述流道 (31 ) 的延伸方向相同。
4. 根据权利要求 3所述的多孔电极组, 其特征在于, 所述流场为一个, 所述流场 设置在所述多孔电极组的中心面上。
5. 根据权利要求 3所述的多孔电极组, 其特征在于, 所述流场为多个, 所述流场 的排布方式为-
A、 各所述流场平行设置且两端封闭, 各所述流场的两端至与所述流场延 伸方向垂直的所述多孔电极组的边缘的距离相同; 或者
B、 各所述流场平行设置且两端封闭, 相邻所述流场沿所述流道 (31 ) 的 延伸方向交错排布; 或者
C、 各所述流场平行设置且一端开口, 相邻所述流场的开口方向相同或相 反; 或者
D、 所述流场被分为平行设置的多个流场组, 所述流场组中包括多个所述 流场, 每个所述流场组的延伸方向与该流场组中的所述流道 (31 ) 的延伸方向 平行, 且相邻所述流场组中所述流场沿所述流道 (31 ) 的延伸方向交错排布; 或者
E、 所述流场被分为平行设置的多个流场组, 所述流场组中包括多个所述 流场, 每个所述流场组的延伸方向与该流场组中的所述流道 (31 ) 的延伸方向 垂直, 且每个所述流场组中的各所述流场沿所述流道 (31 ) 的延伸方向交错排 布。
6. 根据权利要求 1或 2所述的多孔电极组, 其特征在于, 所述流场包括延伸方向 相同的所述流道 (31 ) 组成的一个或多个第一流场和垂直于所述第一流场的延 伸方向的一个或多个第二流场。
7. 根据权利要求 6所述的多孔电极组, 其特征在于, 所述流场的排布方式为:
F、 所述多孔电极组上具有多个第一流场, 且该多个第一流场被分为多个 第一流场组, 相邻两个第一流场组间设置至少一条所述第二流场, 各第一流场 组中包括平行设置的多个第一流场, 且相邻的所述第一流场沿所述第一流场的 流道 (31 ) 的延伸方向交错排布; 或者
G、 所述多孔电极组上具有一个或多个 T字形流场组, 所述 T字形流场组 包括一个所述第一流场和一个朝向该第一流场中部的所述第二流场, 所述 T字 形流场组中的所述第二流场与所述第一流场不连通, 当所述 T字形流场组为多 个时, 相邻的两个所述 T字形流场组中, 两个第二流场相互平行, 两个第一流 场位于相应的第二流场的不同端, 各相邻的所述 T字形流场组相互之间连通或 不连通; 或者
H、所述多孔电极组上具有一个或多个 I字形流场组, 所述 I字形流场组包 括平行相对设置的两个第一流场和两端分别朝向所述两个第一流场中部的一个 所述第二流场, 所述第二流场与所述第一流场不连通, 当所述 I字形流场组为 多个时, 且各所述 I字形流场组相互之间连通或不连通; 或者
I、 所述多孔电极组上具有一个或多个 Z字形流场组, 所述 Z字形流场组 包括两个第一流场和一个第二流场, 两个所述第一流场分别设置在第二流场的 两侧, 且两个所述第一流场分别与所述第二流场上不同的端部相连通, 当所述 Z字形流场组为多个时, 且各所述 Z字形流场组相互之间连通或不连通; 或者
J、所述多孔电极组上具有一个或多个两端开口的蛇形流场组, 各所述蛇形 流场组包括多个第一流场和多个第二流场,处于所述两端开口处的第一流场和 / 或第二流场之间的所述第一流场和所述第二流场首尾相连通, 且各所述蛇形流 畅组连通或不连通; 或者
K、 所述多孔电极组上具有一个或多个两端开口的并行流场组, 各所述并 行流场组包括两个第一流场和多个第二流场, 所述第二流场设置在所述第一流 场之间并连通所述第二流场。
8. 一种液流半电池, 其特征在于, 所述液流半电池包括: 液流框 (1 ), 具有边框 (11 ) 和由所述边框 (11 ) 形成的电极容纳腔, 所 述边框 (11 ) 上设置有电解液进口和电解液出口;
多孔电极组(3 ), 嵌设在所述液流框(1 )的所述电极容纳腔内并与所述电 解液进口和电解液出口相连通, 所述多孔电极组(3 )为权利要求 1至 7中任一 项所述的多孔电极组;
双极板 (2), 设置在所述液流框 (1 ) 的一侧且与所述多孔电极组 (3 ) 平 行。
9. 根据权利要求 8所述的液流半电池, 其特征在于, 所述多孔电极组(3 ) 的相邻 流道电极的相互连通的所述流道(31 )之间具有在所述多孔电极组(3 ) 的多孔 电极 (30) 的叠置方向上重合的重合段。
10. 根据权利要求 9所述的液流半电池, 其特征在于, 所述多孔电极组(3 ) 中, 供 电解液流向远离所述双极板(2)的多孔电极(30) 的重合段的延伸长度大于供 电解液流向靠近所述双极板 (2) 的多孔电极 (30) 的重合段的延伸长度。
11. 根据权利要求 9所述的液流半电池, 其特征在于, 所述液流框(1 )包括相对的 第一边框和第二边框, 所述电解液进口设置在所述第一边框上, 所述电解液出 口设置在所述第二边框上, 所述多孔电极组(3 )与所述第一边框和所述第二边 框之间具有间隙。
12. 根据权利要求 11所述的液流半电池, 其特征在于, 所述多孔电极组 (3 ) 的流 场具有开口且与所述第一边框和所述第二边框垂直, 所述间隙连通所述电解液 进口与所述流场以及所述电解液出口与所述流场。
13. 根据权利要求 8至 12中任一项所述的液流半电池,其特征在于,所述双极板 (2) 上具有与所述电解液进口和电解液出口对应的电解液导流入口和电解液导流出
Π。
14. 一种液流电池堆, 包括一个或多个正极半电池、 一个或多个负极半电池和设置 在所述正极半电池和所述负极半电池之间的离子交换膜 (1 ), 其特征在于, 所 述正极半电池和所述负极半电池为权利要求 8至 13 中任一项所述的液流半电 池, 且所述液流半电池的双极板 (2) 远离所述离子交换膜 (1 ) 设置。
PCT/CN2013/071239 2013-01-31 2013-01-31 多孔电极组、液流半电池和液流电池堆 WO2014117379A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/071239 WO2014117379A1 (zh) 2013-01-31 2013-01-31 多孔电极组、液流半电池和液流电池堆
US14/765,175 US20150364767A1 (en) 2013-01-31 2013-01-31 Porous electrode assembly, liquid-flow half-cell, and liquid-flow cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/071239 WO2014117379A1 (zh) 2013-01-31 2013-01-31 多孔电极组、液流半电池和液流电池堆

Publications (1)

Publication Number Publication Date
WO2014117379A1 true WO2014117379A1 (zh) 2014-08-07

Family

ID=51261432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071239 WO2014117379A1 (zh) 2013-01-31 2013-01-31 多孔电极组、液流半电池和液流电池堆

Country Status (2)

Country Link
US (1) US20150364767A1 (zh)
WO (1) WO2014117379A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106611861A (zh) * 2015-10-16 2017-05-03 中国科学院大连化学物理研究所 一种液流电池结构
US11557785B2 (en) 2015-11-18 2023-01-17 Invinity Energy Systems (Canada) Corporation Electrode assembly and flow battery with improved electrolyte distribution

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108323092B (zh) * 2017-01-18 2019-07-19 宇瞻科技股份有限公司 具有均匀流道路径的液冷头结构
CN110571437A (zh) * 2018-05-16 2019-12-13 嘉兴市兆业新能源技术有限公司 一种燃料电池的阳极结构
CN117468024A (zh) * 2023-10-31 2024-01-30 温州高企氢能科技有限公司 一种用于碱性电解水制氢的阵列式流场结构及电解槽

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101101992A (zh) * 2007-07-27 2008-01-09 中山大学 板间流道串联式燃料电池流场板
WO2009061682A2 (en) * 2007-10-31 2009-05-14 Electrochem, Inc. Integrated flow field (iff) structure
CN102593491A (zh) * 2012-03-14 2012-07-18 中国东方电气集团有限公司 液流电池堆及包括其的电池系统
CN102751525A (zh) * 2012-06-29 2012-10-24 中国东方电气集团有限公司 液流电池及含有其的液流电池堆和液流电池系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1327275A2 (en) * 2000-09-27 2003-07-16 Proton Energy Systems, Inc. Method and apparatus for improved fluid flow within an electrochemical cell
US6828055B2 (en) * 2001-07-27 2004-12-07 Hewlett-Packard Development Company, L.P. Bipolar plates and end plates for fuel cells and methods for making the same
DE10232870A1 (de) * 2002-07-19 2004-02-05 Daimlerchrysler Ag Brennstoffzelle mit Vorheizzone
US20090280392A2 (en) * 2003-03-25 2009-11-12 E. I. Du Pont De Nemours And Company Electrochemical cell component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101101992A (zh) * 2007-07-27 2008-01-09 中山大学 板间流道串联式燃料电池流场板
WO2009061682A2 (en) * 2007-10-31 2009-05-14 Electrochem, Inc. Integrated flow field (iff) structure
CN102593491A (zh) * 2012-03-14 2012-07-18 中国东方电气集团有限公司 液流电池堆及包括其的电池系统
CN102751525A (zh) * 2012-06-29 2012-10-24 中国东方电气集团有限公司 液流电池及含有其的液流电池堆和液流电池系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106611861A (zh) * 2015-10-16 2017-05-03 中国科学院大连化学物理研究所 一种液流电池结构
CN106611861B (zh) * 2015-10-16 2019-07-02 中国科学院大连化学物理研究所 一种液流电池结构
US11557785B2 (en) 2015-11-18 2023-01-17 Invinity Energy Systems (Canada) Corporation Electrode assembly and flow battery with improved electrolyte distribution
US11824243B2 (en) 2015-11-18 2023-11-21 Invinity Energy Systems (Canada) Corporation Electrode assembly and flow battery with improved electrolyte distribution

Also Published As

Publication number Publication date
US20150364767A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
KR101667123B1 (ko) 혼류를 갖는 플로우 배터리
CN107658480B (zh) 一种温湿度均匀性增强的燃料电池单电池及电堆
CN109904484B (zh) 一种燃料电池双极板结构及燃料电池
TWI696312B (zh) 雙極板、電池框架及電池堆、以及氧化還原液流電池
KR102169179B1 (ko) 바이폴라 플레이트 및 이를 포함하는 레독스 흐름 전지
JPH1012261A (ja) レドックスフロー電池
CN102751525B (zh) 液流电池及含有其的液流电池堆和液流电池系统
CN106997956B (zh) 流体流动组件及含有该流体流动组件的燃料电池电堆
CN105244517B (zh) 一种主动排水质子交换膜燃料电池双极板的流场
WO2014117379A1 (zh) 多孔电极组、液流半电池和液流电池堆
CN104821407B (zh) 叶脉状燃料电池流场结构、燃料电池双极板及燃料电池
CN103094600B (zh) 一种液流半电池和具有其的液流电池堆
WO2013166924A1 (zh) 无泵锂离子液流电池、电池反应器及电极悬浮液配置方法
CN102723501B (zh) 多孔电极及含有其的液流电池、电池堆和电池系统
CN113991136B (zh) 一种阴极双场错排双极板流场结构及一体式可逆燃料电池
CN103117402B (zh) 多孔电极组、液流半电池和液流电池堆
WO2013097595A1 (zh) 一种质子交换膜在铁-铬系液相流体电池中的应用
KR20200037128A (ko) 바나듐 레독스 유동 배터리를 위한 다지점 전해질 유동장 실시형태
KR101406518B1 (ko) 분리판 및 이를 포함하는 연료전지
CN103137983B (zh) 多孔电极组、液流半电池和液流电池堆
KR20170034995A (ko) 플로우 프레임 및 그를 갖는 레독스 플로우 이차전지
CN115441000A (zh) 燃料电池双极板、燃料电池、车辆
CN210805927U (zh) 一种燃料电池双极板
KR102091449B1 (ko) 크로스 전해액 탱크가 마련된 레독스 흐름 전지 시스템.
CN102709571B (zh) 多孔电极及含有其的液流电池、电池堆和电池系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14765175

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13873986

Country of ref document: EP

Kind code of ref document: A1