WO2014116946A1 - Substrat non-tissé par voie humide ayant des nanofibres polymères - Google Patents
Substrat non-tissé par voie humide ayant des nanofibres polymères Download PDFInfo
- Publication number
- WO2014116946A1 WO2014116946A1 PCT/US2014/012946 US2014012946W WO2014116946A1 WO 2014116946 A1 WO2014116946 A1 WO 2014116946A1 US 2014012946 W US2014012946 W US 2014012946W WO 2014116946 A1 WO2014116946 A1 WO 2014116946A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- nanofibers
- polymeric
- wet laid
- wet
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/1607—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
- B01D39/1623—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H13/00—Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
- D21H13/02—Synthetic cellulose fibres
- D21H13/06—Cellulose esters
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4374—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H13/00—Other non-woven fabrics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/02—Types of fibres, filaments or particles, self-supporting or supported materials
- B01D2239/025—Types of fibres, filaments or particles, self-supporting or supported materials comprising nanofibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/06—Filter cloth, e.g. knitted, woven non-woven; self-supported material
- B01D2239/065—More than one layer present in the filtering material
- B01D2239/0654—Support layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2201/00—Cellulose-based fibres, e.g. vegetable fibres
- D10B2201/20—Cellulose-derived artificial fibres
- D10B2201/28—Cellulose esters or ethers, e.g. cellulose acetate
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/04—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2501/00—Wearing apparel
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2505/00—Industrial
- D10B2505/02—Reinforcing materials; Prepregs
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2505/00—Industrial
- D10B2505/04—Filters
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2509/00—Medical; Hygiene
Definitions
- the present invention relates generally to forming wet laid substrates that contain polymeric nanofibers. More specifically, the invention relates to forming a substrate with wet laid staple polymeric nanofibers of short lengths.
- the polymeric nanofibers can be surface coated on a non-woven or woven substrates, wet laid with other fiber types to create a nonwoven substrate or wet laid onto themselves to form a nanofiber-only mat.
- Fibers form, in part or in whole, a large variety of both consumer and industrial materials such as, for example, clothing and other textile materials, medical prostheses, construction materials and reinforcement materials, and barrier, filtration and absorbent materials.
- materials such as, for example, clothing and other textile materials, medical prostheses, construction materials and reinforcement materials, and barrier, filtration and absorbent materials.
- Wet lay technology is essentially a paper machine process to form nonwoven substrates.
- fibers are suspended in liquids and specialized paper machines are used to separate the water from the fibers to form a uniform sheet of material, which is then bonded and dried.
- Nanofibers are increasingly being investigated for use in various applications. Nanofibers may attain a high surface area comparable with the finest nanoparticle powders, yet are fairly flexible, and retain one macroscopic dimension which makes them easy to handle, orient and organize.
- the present invention comprises a fabric substrate of cotton, synthetic or blend fibers containing wet laid polymeric, staple nanofibers of short cut lengths (Figure 1).
- the staple polymeric nanofibers can be wet laid onto a fabric substrate of natural, synthetic or blend fibers or the nanofibers can be wet laid with other fibers to form a nonwoven mat or the nanofibers can be wet laid onto themselves to form a nonwoven containing only nanofibers.
- Figure 1 is a schematic of nanofibers and micro fibers wet-laid into a composite substrate.
- Figure 2 is a scanning electron micrograph of the cross-section of a wet-laid substrate consisting of 70% by weight PET micro fibers ( ⁇ 10 micron diameter) and 30% cellulose acetate nanofibers (-500 nm diameter).
- Figure 3 is a scanning electron micrograph of the surface of a PET microfiber substrate coated on the top with cellulose acetate nanofibers.
- Figure 4 is a scanning electron micrograph of the cross-section of a PET microfiber substrate coated on the top with cellulose acetate nanofibers.
- the term nano fiber refers generally to an elongated fiber structure having an average diameter ranging from less than 50 nm - 2 ⁇ .
- the "average" diameter may take into account not only that the diameters of individual nanofibers making up a plurality of nanofibers formed by implementing the presently disclosed method may vary somewhat, but also that the diameter of an individual nanofiber may not be perfectly uniform over its length in some implementations of the method.
- the average length of the nanofibers may range from 10 micros or greater. In other examples, the average length may range from 110 microns to over 25 centimeters.
- the aspect ratio (length/diameter) of the nanofibers may range from 10: 1 or greater.
- nanofibers according to the invention have aspect ratios of at least 10,000: 1.
- the diameter of the nanofiber may be on the order of two microns or less, for convenience the term “nanofiber” as used herein encompasses both nano-scale fibers and extremely small micro-scale fibers (microfibers).
- fibril refers generally to a fine, filamentous non-uniform structure in animals or plants having an average diameter ranging from about 1 nm - 1 ,000 nm in some examples, in other examples ranging from about 1 nm - 500 nm, and in other examples ranging from about 25 nm - 250 nm.
- fibrils are formed by phase separation from nanofibers.
- a fibril may be composed of an inorganic precursor or an inorganic compound.
- the term "fibrils" distinguishes these structures from the polymer nanofibers utilized to form the inorganic fibrils.
- the length of the fibrils may be about same as the polymer nanofibers or may be shorter.
- Polymers encompassed by the present disclosure generally may be any naturally- occurring or synthetic polymers capable of being fabricated into nanofibers.
- examples of polymers include many high molecular weight (MW) solution-processable polymers such as polyethylene (more generally, various polyolefms), polystyrene, cellulose, cellulose acetate, poly(L-lactic acid) (PLA), polyacrylonitrile (PAN), polyvinylidene difluoride (PVDF), conjugated organic semiconducting and conducting polymers, biopolymers such as polynucleotides (DNA) and polypeptides, etc.
- MW high molecular weight
- solution-processable polymers such as polyethylene (more generally, various polyolefms), polystyrene, cellulose, cellulose acetate, poly(L-lactic acid) (PLA), polyacrylonitrile (PAN), polyvinylidene difluoride (PVDF), conjugated organic semiconducting and conducting polymers, biopoly
- Suitable polymers to form nanofibers include vinyl polymers such as, but not limited to, cellulose acetate propionate, cellulose acetate butyrate, polyethylene, polypropylene, poly(vinyl chloride), polystyrene, polytetrafluoroethylene, poly(a- methylstyrene), poly(acrylic acid), poly(isobutylene), poly(acrylonitrile), poly(methacrylic acid), poly(methyl methacrylate), poly(l-pentene), poly( 1,3 -butadiene), poly(vinyl acetate), poly(2- vinyl pyridine), 1 ,4-polyisoprene, and 3,4-polychloroprene.
- vinyl polymers such as, but not limited to, cellulose acetate propionate, cellulose acetate butyrate, polyethylene, polypropylene, poly(vinyl chloride), polystyrene, polytetrafluoroethylene, poly(a- methylstyren
- nonvinyl polymers such as, but not limited to, poly(ethylene oxide), polyformaldehyde, polyacetaldehyde, poly(3-propionate), poly(lO-decanoate), poly(ethylene terephthalate), polycaprolactam, poly(l 1-undecanoamide), poly(hexamethylene sebacamide), poly(m-phenylene terephthalate), poly(tetramethylene-m-benzenesulfonamide).
- nonvinyl polymers such as, but not limited to, poly(ethylene oxide), polyformaldehyde, polyacetaldehyde, poly(3-propionate), poly(lO-decanoate), poly(ethylene terephthalate), polycaprolactam, poly(l 1-undecanoamide), poly(hexamethylene sebacamide), poly(m-phenylene terephthalate), poly(tetramethylene-m-benzenesulfonamide).
- Additional polymers include those falling within one of the following polymer classes: polyolefm, poly ether (including all epoxy resins, polyacetal, polyetheretherketone, polyetherimide, and poly(phenylene oxide)), polyamide (including polyureas), polyamideimide, polyarylate, polybenzimidazole, polyester (including polycarbonates), polyurethane, polyimide, polyhydrazide, phenolic resins, polysilane, polysiloxane, polycarbodiimide, polyimine, azo polymers, polysulfide, and polysulfone.
- polyolefm poly ether (including all epoxy resins, polyacetal, polyetheretherketone, polyetherimide, and poly(phenylene oxide)), polyamide (including polyureas), polyamideimide, polyarylate, polybenzimidazole, polyester (including polycarbonates), polyurethane, polyimide, polyhydrazide, phenolic resins, polysilane, polysiloxane
- the polymer used to form nano fibers can be synthetic or naturally- occurring.
- natural polymers include, but are not limited to, polysaccharides and derivatives thereof such as cellulosic polymers (e.g., cellulose and derivatives thereof as well as cellulose production byproducts such as lignin) and starch polymers (as well as other branched or non-linear polymers, either naturally occurring or synthetic).
- exemplary derivatives of starch and cellulose include various esters, ethers, and graft copolymers.
- the polymer may be crosslinkable in the presence of a multifunctional crosslinking agent or crosslinkable upon exposure to actinic radiation or other type of radiation.
- the polymer may be homopolymers of any of the foregoing polymers, random copolymers, block copolymers, alternating copolymers, random tripolymers, block tripolymers, alternating tripolymers, derivatives thereof (e.g., graft copolymers, esters, or ethers thereof), and the like.
- web is meant a fibrous material capable of being wound into a roll.
- nonwoven web is meant a web of individual fibers or filaments which are interlaid and positioned in a random manner to form a planar material without identifiable pattern, as opposed to a knitted or woven fabric.
- Nonwoven webs have been in the past formed by a variety of processes known to those skilled in the art such as, for example, meltblown, spunbound, wet-laid, dry-laid, and bonded carded web processes.
- a nonwoven or woven fabric substrate or web can be made from natural or synthetic fabrics and may be composed of fibers of cotton, cellulose, Lyocell, acetate, cellulose acetate, rayon, silk, wool, hemp, spandex (including LYCRA), polyolefms (polypropylene, polyethylene, etc.), polyamide (nylon 6, nylon 6-6, etc.), aramids (e.g. Kevlar®, Twaron®, Nomex, etc.), acrylic, or polyester (polyethylene teraphthalate, trimethylene terephthalate), polyurethane, glass microfibers, fiberglass, etc.
- fabric blends is meant fabrics of two or more types of fibers. Typically these blends are a combination of a natural fiber and a synthetic fiber, but can also include a blend of two natural fibers or two synthetic fibers.
- Nanofibers can be wet laid deposited onto a non-woven or woven substrate, which is placed on a filter mesh of 27-200 microns pore size as per the following example:
- a wet-dry shop vacuum (Shop- Vac 6-Gallon 3 Peak HP) was used to pull vacuum to drain the liquid through the filter fabric and lay the nanofibers down on top of the polyester fabric substrate. The sample was then washed and then heat pressed or oven baked.
- Nanofibers can also be deposited onto themselves without a substrate with basis weights ranging from 4 to 800 GSM or higher. In this case the length is important as longer length fibers provide mat integrity and strength.
- Polymeric nanofibers can also be wet laid together with other nano- or microfibers to form a nonwoven substrate containing many types of fibers.
- nanofibers are typically produced as long (> 20 cm) dry fibers by electrospinning and me ltb lowing technologies.
- the nanofibers used here are produced by the XanoShear process. This method allows production of polymeric nanofibers in a liquid based process.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nonwoven Fabrics (AREA)
Abstract
L'invention concerne des substrats ayant des nanofibres polymères de brin obtenues par voie humide de courtes longueurs. Les nanofibres polymères peuvent être à surface revêtue sur un substrat non tissé ou tissé, obtenues par voie humide avec d'autres types de fibres pour créer un substrat non tissé ou obtenues par voie humide sur elles-mêmes pour former un mat seulement de nanofibre.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/762,758 US20150354139A1 (en) | 2013-01-25 | 2014-01-24 | Wet laid non-woven substrate containing polymeric nanofibers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361756949P | 2013-01-25 | 2013-01-25 | |
US61/756,949 | 2013-01-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014116946A1 true WO2014116946A1 (fr) | 2014-07-31 |
Family
ID=51228063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/012946 WO2014116946A1 (fr) | 2013-01-25 | 2014-01-24 | Substrat non-tissé par voie humide ayant des nanofibres polymères |
Country Status (2)
Country | Link |
---|---|
US (1) | US20150354139A1 (fr) |
WO (1) | WO2014116946A1 (fr) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9149749B2 (en) | 2012-11-13 | 2015-10-06 | Hollingsworth & Vose Company | Pre-coalescing multi-layered filter media |
US9149748B2 (en) | 2012-11-13 | 2015-10-06 | Hollingsworth & Vose Company | Multi-layered filter media |
US10195542B2 (en) | 2014-05-15 | 2019-02-05 | Hollingsworth & Vose Company | Surface modified filter media |
US10399024B2 (en) | 2014-05-15 | 2019-09-03 | Hollingsworth & Vose Company | Surface modified filter media |
US10400355B2 (en) | 2013-08-15 | 2019-09-03 | Sabic Global Technologies B.V. | Shear spun sub-micrometer fibers |
US10625196B2 (en) | 2016-05-31 | 2020-04-21 | Hollingsworth & Vose Company | Coalescing filter media |
US10828587B2 (en) | 2015-04-17 | 2020-11-10 | Hollingsworth & Vose Company | Stable filter media including nanofibers |
US10845360B2 (en) | 2016-02-25 | 2020-11-24 | Massachusetts Institue Of Technology | Neuronal axon mimetics for in vitro analysis of neurological diseases, myelination, and drug screening |
US11090590B2 (en) | 2012-11-13 | 2021-08-17 | Hollingsworth & Vose Company | Pre-coalescing multi-layered filter media |
US11535826B2 (en) | 2017-05-10 | 2022-12-27 | Massachusetts Institute Of Technology | Engineered 3D-printed artificial axons |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10160833B2 (en) | 2012-04-26 | 2018-12-25 | The Regents Of The University Of Michigan | Synthesis and use of aramid nanofibers |
US11846072B2 (en) | 2016-04-05 | 2023-12-19 | Fiberlean Technologies Limited | Process of making paper and paperboard products |
ES2857512T3 (es) | 2016-04-05 | 2021-09-29 | Fiberlean Tech Ltd | Productos de papel y cartón |
US20170306563A1 (en) | 2016-04-20 | 2017-10-26 | Clarcor Inc. | Fine fiber pulp from spinning and wet laid filter media |
US10676614B2 (en) | 2016-04-20 | 2020-06-09 | Clarcor Inc. | High molecular and low molecular weight fine fibers and TPU fine fibers |
US11332888B2 (en) | 2018-08-23 | 2022-05-17 | Eastman Chemical Company | Paper composition cellulose and cellulose ester for improved texturing |
US11299854B2 (en) * | 2018-08-23 | 2022-04-12 | Eastman Chemical Company | Paper product articles |
US11332885B2 (en) | 2018-08-23 | 2022-05-17 | Eastman Chemical Company | Water removal between wire and wet press of a paper mill process |
US11421385B2 (en) | 2018-08-23 | 2022-08-23 | Eastman Chemical Company | Soft wipe comprising cellulose acetate |
US11441267B2 (en) | 2018-08-23 | 2022-09-13 | Eastman Chemical Company | Refining to a desirable freeness |
US11519132B2 (en) | 2018-08-23 | 2022-12-06 | Eastman Chemical Company | Composition of matter in stock preparation zone of wet laid process |
US11466408B2 (en) | 2018-08-23 | 2022-10-11 | Eastman Chemical Company | Highly absorbent articles |
US11390991B2 (en) | 2018-08-23 | 2022-07-19 | Eastman Chemical Company | Addition of cellulose esters to a paper mill without substantial modifications |
US11401659B2 (en) | 2018-08-23 | 2022-08-02 | Eastman Chemical Company | Process to produce a paper article comprising cellulose fibers and a staple fiber |
US11639579B2 (en) | 2018-08-23 | 2023-05-02 | Eastman Chemical Company | Recycle pulp comprising cellulose acetate |
US11492757B2 (en) | 2018-08-23 | 2022-11-08 | Eastman Chemical Company | Composition of matter in a post-refiner blend zone |
US11421387B2 (en) | 2018-08-23 | 2022-08-23 | Eastman Chemical Company | Tissue product comprising cellulose acetate |
US11230811B2 (en) | 2018-08-23 | 2022-01-25 | Eastman Chemical Company | Recycle bale comprising cellulose ester |
US11479919B2 (en) | 2018-08-23 | 2022-10-25 | Eastman Chemical Company | Molded articles from a fiber slurry |
US11339537B2 (en) | 2018-08-23 | 2022-05-24 | Eastman Chemical Company | Paper bag |
US11525215B2 (en) | 2018-08-23 | 2022-12-13 | Eastman Chemical Company | Cellulose and cellulose ester film |
US11492756B2 (en) | 2018-08-23 | 2022-11-08 | Eastman Chemical Company | Paper press process with high hydrolic pressure |
US11530516B2 (en) | 2018-08-23 | 2022-12-20 | Eastman Chemical Company | Composition of matter in a pre-refiner blend zone |
US11286619B2 (en) | 2018-08-23 | 2022-03-29 | Eastman Chemical Company | Bale of virgin cellulose and cellulose ester |
US11408128B2 (en) * | 2018-08-23 | 2022-08-09 | Eastman Chemical Company | Sheet with high sizing acceptance |
US11306433B2 (en) | 2018-08-23 | 2022-04-19 | Eastman Chemical Company | Composition of matter effluent from refiner of a wet laid process |
US11492755B2 (en) | 2018-08-23 | 2022-11-08 | Eastman Chemical Company | Waste recycle composition |
US11414818B2 (en) | 2018-08-23 | 2022-08-16 | Eastman Chemical Company | Dewatering in paper making process |
US11313081B2 (en) | 2018-08-23 | 2022-04-26 | Eastman Chemical Company | Beverage filtration article |
US11414791B2 (en) | 2018-08-23 | 2022-08-16 | Eastman Chemical Company | Recycled deinked sheet articles |
US11390996B2 (en) | 2018-08-23 | 2022-07-19 | Eastman Chemical Company | Elongated tubular articles from wet-laid webs |
US11420784B2 (en) | 2018-08-23 | 2022-08-23 | Eastman Chemical Company | Food packaging articles |
US11512433B2 (en) | 2018-08-23 | 2022-11-29 | Eastman Chemical Company | Composition of matter feed to a head box |
US11401660B2 (en) | 2018-08-23 | 2022-08-02 | Eastman Chemical Company | Broke composition of matter |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050142973A1 (en) * | 2003-10-22 | 2005-06-30 | Bletsos Ioannis V. | Porous fibrous sheets of nanofibers |
US7144533B2 (en) * | 2002-01-31 | 2006-12-05 | Koslow Technologies Corporation | Microporous filter media, filtration systems containing same, and methods of making and using |
US20100136865A1 (en) * | 2006-04-06 | 2010-06-03 | Bletsos Ioannis V | Nonwoven web of polymer-coated nanofibers |
US20110210061A1 (en) * | 2010-02-26 | 2011-09-01 | Clarcor Inc. | Compressed nanofiber composite media |
US20110226697A1 (en) * | 2009-09-18 | 2011-09-22 | Nano Terra Inc. | Functional Nanofibers and Methods of Making and Using the Same |
US20120091072A1 (en) * | 2009-03-19 | 2012-04-19 | Millipore Corporation | Removal of microorganisms from fluid samples using nanofiber filtration media |
US20120295165A1 (en) * | 2011-05-20 | 2012-11-22 | Morin Brian G | Single-layer lithium ion battery separator |
WO2013013241A2 (fr) * | 2011-07-21 | 2013-01-24 | Emd Millipore Corporation | Nanofibre contenant des structures composites |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7287650B2 (en) * | 2002-01-31 | 2007-10-30 | Kx Technologies Llc | Structures that inhibit microbial growth |
-
2014
- 2014-01-24 US US14/762,758 patent/US20150354139A1/en not_active Abandoned
- 2014-01-24 WO PCT/US2014/012946 patent/WO2014116946A1/fr active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7144533B2 (en) * | 2002-01-31 | 2006-12-05 | Koslow Technologies Corporation | Microporous filter media, filtration systems containing same, and methods of making and using |
US20050142973A1 (en) * | 2003-10-22 | 2005-06-30 | Bletsos Ioannis V. | Porous fibrous sheets of nanofibers |
US20100136865A1 (en) * | 2006-04-06 | 2010-06-03 | Bletsos Ioannis V | Nonwoven web of polymer-coated nanofibers |
US20120091072A1 (en) * | 2009-03-19 | 2012-04-19 | Millipore Corporation | Removal of microorganisms from fluid samples using nanofiber filtration media |
US20110226697A1 (en) * | 2009-09-18 | 2011-09-22 | Nano Terra Inc. | Functional Nanofibers and Methods of Making and Using the Same |
US20110210061A1 (en) * | 2010-02-26 | 2011-09-01 | Clarcor Inc. | Compressed nanofiber composite media |
US20120295165A1 (en) * | 2011-05-20 | 2012-11-22 | Morin Brian G | Single-layer lithium ion battery separator |
WO2013013241A2 (fr) * | 2011-07-21 | 2013-01-24 | Emd Millipore Corporation | Nanofibre contenant des structures composites |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9149748B2 (en) | 2012-11-13 | 2015-10-06 | Hollingsworth & Vose Company | Multi-layered filter media |
US10080985B2 (en) | 2012-11-13 | 2018-09-25 | Hollingsworth & Vose Company | Multi-layered filter media |
US9149749B2 (en) | 2012-11-13 | 2015-10-06 | Hollingsworth & Vose Company | Pre-coalescing multi-layered filter media |
US10279291B2 (en) | 2012-11-13 | 2019-05-07 | Hollingsworth & Vose Company | Pre-coalescing multi-layered filter media |
US11090590B2 (en) | 2012-11-13 | 2021-08-17 | Hollingsworth & Vose Company | Pre-coalescing multi-layered filter media |
US10400355B2 (en) | 2013-08-15 | 2019-09-03 | Sabic Global Technologies B.V. | Shear spun sub-micrometer fibers |
US10195542B2 (en) | 2014-05-15 | 2019-02-05 | Hollingsworth & Vose Company | Surface modified filter media |
US10399024B2 (en) | 2014-05-15 | 2019-09-03 | Hollingsworth & Vose Company | Surface modified filter media |
US11266941B2 (en) | 2014-05-15 | 2022-03-08 | Hollingsworth & Vose Company | Surface modified filter media |
US10828587B2 (en) | 2015-04-17 | 2020-11-10 | Hollingsworth & Vose Company | Stable filter media including nanofibers |
US11819789B2 (en) | 2015-04-17 | 2023-11-21 | Hollingsworth & Vose Company | Stable filter media including nanofibers |
US10845360B2 (en) | 2016-02-25 | 2020-11-24 | Massachusetts Institue Of Technology | Neuronal axon mimetics for in vitro analysis of neurological diseases, myelination, and drug screening |
US10625196B2 (en) | 2016-05-31 | 2020-04-21 | Hollingsworth & Vose Company | Coalescing filter media |
US11338239B2 (en) | 2016-05-31 | 2022-05-24 | Hollingsworth & Vose Company | Coalescing filter media |
US11535826B2 (en) | 2017-05-10 | 2022-12-27 | Massachusetts Institute Of Technology | Engineered 3D-printed artificial axons |
Also Published As
Publication number | Publication date |
---|---|
US20150354139A1 (en) | 2015-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150354139A1 (en) | Wet laid non-woven substrate containing polymeric nanofibers | |
CN106541683A (zh) | 一种用于空气中颗粒物过滤的多层次结构纳米纤维复合膜的制备方法 | |
Zhou et al. | Manufacturing technologies of polymeric nanofibres and nanofibre yarns | |
Abbasipour et al. | Nanofiber bundles and yarns production by electrospinning: A review | |
KR102240743B1 (ko) | 맞춤형 액체 위킹 능력을 가진 부직포 셀룰로오스 섬유 직물 | |
KR102240773B1 (ko) | 증가된 보수성과 낮은 평량을 가지는 부직포 셀룰로오스 섬유 직물 | |
CN104711775B (zh) | 一种连续分散型长丝纤维针刺毡及其制备方法 | |
Raghvendra et al. | Fabrication techniques of micro/nano fibres based nonwoven composites: a review | |
KR102240716B1 (ko) | 오일 흡수 능력이 향상된 부직포 셀룰로오스 섬유 직물 | |
TWI812613B (zh) | 具有均勻合併的纖維的非織纖維素纖維織物、製造其之方法及裝置、包含其之產品或複合物及其使用方法 | |
CN110582602B (zh) | 具有纤维直径分布的纤维素纤维非织造织物 | |
Zhang et al. | One-step melt blowing process for PP/PEG micro-nanofiber filters with branch networks | |
JP2010534559A5 (fr) | ||
CN105435538B (zh) | 一种复合纳米纤维空气过滤材料及其制备方法 | |
KR20190127978A (ko) | 상이한 기공 세트를 갖는 부직포 셀룰로오스 섬유 직물 | |
US10406565B2 (en) | Cleaning cloth | |
Hemamalini et al. | Wet laying nonwoven using natural cellulosic fibers and their blends: process and technical applications. A review | |
CN109046040A (zh) | 基于纳米纤维的梯度过滤膜材料及其制备方法 | |
JP2018523028A (ja) | ナノ繊維基盤複合仮撚糸およびその製造方法 | |
TW200912071A (en) | Microfiber split film filter felt and method of making same | |
JP2015196263A (ja) | ナノファイバー積層材、ナノファイバー積層材の製造方法、フィルター基材又はフィルター、及び、マスク又はマスク基材 | |
Niu et al. | Composite yarns fabricated from continuous needleless electrospun nanofibers | |
Wilson | The formation of dry, wet, spunlaid and other types of nonwovens | |
TW201900963A (zh) | 包含具有非圓形截面之纖維的非織纖維素纖維織物 | |
CN111850823B (zh) | 金属一维纳米材料与纤维复合网状结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14743210 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14762758 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14743210 Country of ref document: EP Kind code of ref document: A1 |