WO2014115775A1 - Electric motor bobbin structure and method for manufacturing same - Google Patents

Electric motor bobbin structure and method for manufacturing same Download PDF

Info

Publication number
WO2014115775A1
WO2014115775A1 PCT/JP2014/051277 JP2014051277W WO2014115775A1 WO 2014115775 A1 WO2014115775 A1 WO 2014115775A1 JP 2014051277 W JP2014051277 W JP 2014051277W WO 2014115775 A1 WO2014115775 A1 WO 2014115775A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
bobbin
stator core
electric motor
mold resin
Prior art date
Application number
PCT/JP2014/051277
Other languages
French (fr)
Japanese (ja)
Inventor
谷本 勉
金子 雄太郎
山際 正憲
茂夫 桜井
Original Assignee
日産自動車株式会社
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, 株式会社明電舎 filed Critical 日産自動車株式会社
Priority to JP2014558596A priority Critical patent/JP5900662B2/en
Publication of WO2014115775A1 publication Critical patent/WO2014115775A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/12Machines characterised by the bobbins for supporting the windings

Definitions

  • the present invention relates to a bobbin structure of an electric motor that is mounted on a stator core and wound around an outer side, and a manufacturing method thereof.
  • the filler, the bobbin, and the winding are arranged in this order from the stator core side toward the outside. That is, the filler does not flow between the bobbin and the winding, and an air layer having a high thermal resistance exists around the winding. Therefore, the heat generated from the winding is transmitted to the filler via the air layer and the bobbin, and finally radiated from the stator core to the outside of the electric motor. That is, in this conventional electric motor bobbin structure, both the air layer having a high thermal resistance and the bobbin having a relatively high thermal resistance are factors of thermal resistance. For this reason, it is difficult to efficiently conduct heat from the winding to the stator core, and it has not been possible to improve heat transfer.
  • the present invention has been made paying attention to the above problems, and provides a bobbin structure for an electric motor capable of efficiently transferring heat generated from windings to a stator core and improving heat transfer performance, and a method for manufacturing the same. With the goal.
  • the bobbin structure for an electric motor includes a stator core, a bobbin, a winding, and a mold resin.
  • the bobbin is made of an insulator, and is provided on the outside of the stator core and wound with a winding, and a boring portion formed on the winding support and covered with the winding.
  • the mold resin is a resin having higher thermal conductivity than the bobbin, and integrally seals the stator core, the bobbin, and the winding. Furthermore, the mold resin is filled into at least a part of the lightening portion and brought into contact with the stator core and the winding.
  • the stator core, the bobbin, and the winding are integrally sealed with a mold resin having higher thermal conductivity than the bobbin, and at least a part of the lightening portion is filled.
  • a region in which the winding support part and the mold resin are interposed and a region in which only the mold resin is interposed are provided between the stator core and the winding.
  • FIG. 1 is a perspective view showing a bobbin of Example 1.
  • FIG. 3 is a flowchart showing a manufacturing procedure of the molded stator of Example 1. It is explanatory drawing which shows the injection direction at the time of injecting mold resin.
  • FIG. 3 is an explanatory diagram illustrating a heat conduction path in the bobbin structure according to the first embodiment.
  • FIG. 6 is a perspective view showing a bobbin in a bobbin structure according to a second embodiment.
  • FIG. 6 is a perspective view showing a bobbin in a bobbin structure according to a third embodiment.
  • FIG. 6 is a perspective view showing a bobbin in a bobbin structure according to a fourth embodiment. It is principal part sectional drawing which shows the mold stator to which the bobbin structure of Example 4 was applied.
  • FIG. 10 is a perspective view showing a bobbin in a bobbin structure according to a fifth embodiment.
  • Example 1 First, the configuration of the bobbin structure of the electric motor according to the first embodiment will be described by dividing it into “configuration of application example of bobbin structure”, “configuration of mold stator”, “configuration of bobbin”, and “procedure for manufacturing bobbin structure”.
  • FIG. 1 is a longitudinal sectional view showing a motor to which the bobbin structure of the electric motor according to the first embodiment is applied.
  • the application example of the bobbin structure of the electric motor of Example 1 is demonstrated.
  • a motor (electric motor) 1 shown in FIG. 1 includes a cylindrical molded stator 3 fixed inside a motor case 2 and a rotor 4 arranged concentrically with a radial gap inside the molded stator 3. ing.
  • the molded stator 3 is provided with a winding 33 as will be described later, and is fixed to the inner peripheral surface of the motor case 2.
  • a water jacket portion 2 a through which cooling water flows along the outer periphery of the mold stator 3 is formed inside the motor case 2.
  • the rotor 4 includes a rotor rotating shaft 4a, a laminated steel plate 4b, and a permanent magnet (not shown).
  • the rotor rotating shaft 4 a is rotatably supported at one end by a first rotor bearing 5 a provided inside the first side surface 2 b that is one side surface of the motor case 2, and is the second side surface of the motor case 2.
  • the tip protrudes from the opening 5c formed in the two side surfaces 2c.
  • a second rotor bearing 5b is fitted inside the opening 5c, and rotatably supports the rotor rotating shaft 4a.
  • the laminated steel plate 4b is fixed to the outer periphery of an end plate 4c fixed to the outer periphery of the rotor rotating shaft 4a, and a permanent magnet (not shown) is embedded in the vicinity of the outer peripheral surface of the laminated steel plate 4b.
  • FIG. 2A is an external perspective view showing a molded stator to which the bobbin structure of the first embodiment is applied
  • FIG. 2B is a perspective view showing the inside of the mold resin
  • FIG. 3 is a cross-sectional view of a main part showing a molded stator to which the bobbin structure of the first embodiment is applied.
  • the configuration of the molded stator of Example 1 will be described with reference to FIGS. 2A to 3.
  • the molded stator 3 includes a stator holder 31, a stator core 32, a winding wire 33, and a mold resin 34.
  • the stator holder 31 is a metal cylinder having a high roundness, and both ends are open.
  • the stator core 32 is formed by connecting a plurality of core segments 32 a shown in FIG. 3 in the circumferential direction of the molded stator 3 to form an annular shape and fixing the same inside the stator holder 31.
  • Each core segment 32 a is configured by laminating a number of T-shaped stator steel plates formed by press-molding electromagnetic steel plates in the axial direction of the mold stator 3.
  • the core segment 32a is formed at the arcuate back yoke portion 35a along the inner peripheral surface of the stator holder 31, the tooth portion 35b protruding from the back yoke portion 35a to the inside of the mold stator 3, and the tip of the tooth portion 35b. And a flange 35c.
  • the winding wire 33 is an electromagnetic wire wound around the tooth portion 35b of each core segment 32a, and is wound around the tooth portion 35b over a plurality of layers as shown in FIG. Further, a bobbin 36 (see FIG. 3) is provided outside the tooth portion 35b, and the winding 33 is wound around the tooth portion 35b via the bobbin 36.
  • the mold resin 34 is a resin having higher thermal conductivity than at least the bobbin 36, and integrally seals the stator core 32, the winding wire 33, and the bobbin 36.
  • the mold resin 34 is injected between the stator core 32 and the winding wire 33, filled between the winding wire 33 and the winding support portion 36a of the bobbin 36, and a lightening portion formed on the winding support portion 36a. 36b is filled.
  • the mold resin 34 filled in the lightening portion 36 b overflows from the lightening portion 36 b and contacts both the stator core 32 and the winding wire 33.
  • FIG. 4 is a perspective view illustrating the bobbin according to the first embodiment.
  • FIG. 5 is an exploded perspective view illustrating the core segment and the bobbin according to the first embodiment.
  • the configuration of the bobbin according to the first embodiment will be described with reference to FIGS. 4 and 5.
  • the bobbin 36 is formed of an insulating material such as resin, and as shown in FIG. 4, has a winding support part 36a, a lightening part 36b, a first flange part 36c, and a second flange part 36d. is doing. Further, the bobbin 36 has a structure that can be divided into two, and is mounted by sandwiching the teeth portion 35b of the stator core 32 along the axial direction of the molded stator 3 as shown in FIG.
  • the winding support part 36a covers the outside of the tooth part 35b and supports the winding 33 wound around the tooth part 35b.
  • the teeth part 35b has a quadrangular prism shape extending toward the inside of the mold stator 3, and the winding support part 36a is provided outside the four corners 35b 'of the tooth part 35b. That is, the winding support portions 36a in the first embodiment are provided at four locations that respectively cover the corner portions 35b ′ of the teeth portions 35b.
  • the said lightening part 36b is a notch part formed in the winding support part 36a, and is covered with the winding 33 wound around the teeth part 35b.
  • gap portions provided between the four winding support portions 36a correspond to the thinned portions 36b and are formed corresponding to the coil end facing surface 35d and the circumferential side surface 35e of the tooth portion 35b.
  • the “coil end facing surface” is a surface facing the coil end of the winding 33 wound around the stator core 32 and is an end surface in the axial direction of the molded stator 3.
  • the “circumferential side surface” is an end surface in the circumferential direction of the mold stator 3.
  • the first and second flange portions 36c and 36d are respectively provided at the end portions of the winding support portion 36a.
  • the first flange portion 36c is interposed between the back yoke portion 35a of the stator core 32 and the winding wire 33, and
  • the two flange portions 36 d are interposed between the flange portion 35 c of the stator core 32 and the winding wire 33.
  • the first flange portion 36c on the back yoke portion 35a side is formed over the entire circumference of the tooth portion 35b.
  • the second flange portion 36d on the side of the flange portion 35c is formed with a communication portion 36e that cuts out the second flange portion 36d and communicates with the lightening portion 36b. That is, in this 2nd flange part 36d, the part corresponding to the thinning part 36b is notched, and only the part which continues from the winding support part 36a is formed.
  • FIG. 6 is a flowchart illustrating a manufacturing procedure of the molded stator according to the first embodiment. Hereinafter, based on FIG. 6, the manufacturing procedure of the mold stator of Example 1 is demonstrated.
  • step S1 the bobbin 36 is mounted on the teeth 35b of the core segment 32a formed by previously laminating a number of electromagnetic steel plates.
  • step S2 after the bobbin 36 is mounted in step S1, the winding wire 33 is wound into a shape that can be engaged with the tooth portion 35b, and then the winding wire 33 is attached to the tooth portion 35b. At this time, the winding wire 33 is attached to the outside of the bobbin 36, is supported by the winding wire support portion 36a, and covers the lightening portion 36b.
  • step S3 following the attachment of the winding wire 33 in step S2, a plurality of core segments 32a to which the winding wire 33 is attached are arranged in an annular shape, and the stator core 32 is assembled.
  • step S4 following the assembly of the stator core 32 in step S3, the stator holder 31 is heated and expanded, and the assembled stator core 32 is fitted inside the expanded stator holder 31, and then cooled. That is, the stator core 32 is fixed to the stator holder 31 by so-called shrink fitting.
  • step S5 following the fixing of the stator core 32 in step S4, a mold (not shown) is attached to the stator holder 31 and the stator core 32.
  • This mold is, for example, a resin mold that is divided into two in the axial direction of the mold stator 3, and is attached by sandwiching the stator holder 31 and the stator core 32 and clamping the mold.
  • step S6 following the mounting of the mold in step S5, the mold resin 34 is injected (filled) into the mold.
  • the molding resin 34 is injected between the tooth portion 35 b of the stator core 32 and the winding wire 33. That is, the mold resin 34 is injected toward the inside of the winding wire 33.
  • the second flange portion 36d on the flange 35c side of the stator core 32 is passed through the second flange portion 36d, A communication portion 36e that communicates with the lightening portion 36b is formed. Therefore, here, the mold resin 34 is injected toward the communication portion 36e.
  • the mold resin 34 that has flowed into the communication portion 36e is first filled into the lightening portion 36b. After that, it overflows from the lightening portion 36b, flows between the winding support portion 36a and the teeth portion 35b, or between the winding support portion 36a and the winding wire 33, and is filled between them. And the gaps between the windings 33 are filled.
  • step S7 following the injection of the mold resin 34 in step S6, the mold resin 34 is cooled and cured, and then the mold is removed and the assembly of the mold stator 3 is completed.
  • FIG. 8A is an explanatory diagram showing a heat conduction path in the bobbin structure of the first comparative example
  • FIG. 8B is an explanatory diagram showing a heat conduction path in the bobbin structure of the second comparative example
  • FIG. 8C is a diagram of the third comparative example. It is explanatory drawing which shows the heat conduction path
  • FIGS. 8A to 8C the bobbin structure of the comparative example and its problem will be described with reference to FIGS. 8A to 8C.
  • the bobbin 61 is provided outside the stator core 60, and the winding 62 is wound around the outside. And after winding the winding 62, the varnish 63 is dripped and the winding 62 is coated with the varnish 63.
  • the heat generated from the winding 62 is transmitted in the order of the winding 62 ⁇ the air layer 64 ⁇ the bobbin 61 ⁇ the air layer 64 ⁇ the stator core 60 as indicated by an arrow in FIG. 8A. Then, heat is radiated from the stator core 60. That is, the air layer 64 and the bobbin 61 having high thermal resistance are interposed between the winding 62 and the stator core 60. For this reason, there is a problem that the heat of the winding 62 is not easily transmitted to the stator core 60 and the heat conduction efficiency is poor.
  • the mold resin 65 having higher thermal conductivity than the bobbin 61 is filled between the bobbin 61 and the winding 62.
  • a mold resin 65 having higher thermal conductivity than the bobbin 61 is filled between the bobbin 61 and the stator core 60.
  • the air layer is filled with the mold resin 65, and heat is transferred through the mold resin 65 as shown by arrows in FIGS. 8B and 8C.
  • the heat conduction performance can be improved as compared with the first comparative example shown in FIG. 8A.
  • the air layer 64 still remains around the bobbin 61 and heat conduction is always performed through the bobbin 61 having lower heat conductivity than the mold resin 65. For this reason, the air layer 64 and the bobbin 61 become thermal resistance factors, and it is difficult to improve the heat conduction efficiency.
  • FIG. 9 is an explanatory diagram illustrating a heat conduction path in the bobbin structure according to the first embodiment.
  • the heat conductive action in the bobbin structure of Example 1 will be described.
  • the bobbin 36 provided on the tooth portion 35b of the stator core 32 includes a winding support portion 36a and a lightening portion 36b. Then, the winding wire 33 is wound around the outside of the tooth portion 35 b via the bobbin 36. At this time, the winding wire 33 is supported by the winding wire support portion 36a and covers the lightening portion 36b. Further, a mold resin 34 having higher thermal conductivity than the bobbin 36 is filled between the stator core 32 and the winding wire 33.
  • the mold resin 34 filled in the hollow portion 36 b of the bobbin 36 is applied to both the stator core 32 and the winding wire 33. In close contact. Further, the mold resin 34 that flows along the outside of the winding support 36 a cannot enter between the bobbin 36 and the stator core 32, and an air layer 64 is generated between the bobbin 36 and the stator core 32. That is, between the stator core 32 and the winding 33, the region X in which the winding support portion 36 a and the mold resin 34 are interposed, and the lightening portion 36 b are filled and contact both the winding 33 and the stator core 32. A region Y in which only the mold resin 34 is interposed is provided.
  • Example 1 As a heat conduction path at the time of radiating the heat generated from the winding 33, a first heat conduction path indicated by an arrow ⁇ in FIG. There are two heat conduction paths that pass through region Y, the second heat transfer path indicated by arrow ⁇ in FIG.
  • the heat generated from the winding 33 is first transmitted to the mold resin 34 filled around the winding 33. Then, it is transmitted to the winding support portion 36 a of the bobbin 36 and is transmitted to the stator core 32 through the air layer 64. That is, in the first heat conduction path (arrow ⁇ ), heat conduction is performed by the same phenomenon as in the second comparative example.
  • the heat generated from the winding 33 is first transmitted to the mold resin 34 filled around the winding 33.
  • the second heat conduction path (arrow ⁇ ) passes through the region Y in which the thinned portion 36b is filled and the mold resin 34 that contacts both the winding wire 33 and the stator core 32 is interposed. Therefore, in the second heat conduction path (arrow ⁇ ), the heat transferred to the mold resin 34 is directly transferred from the mold resin 34 to the stator core 32 and is radiated from the stator core 32.
  • the winding support portion 36a becomes a thermal resistance factor, but this winding support portion 36a ensures insulation between the winding 33 and the stator core 32. Can be secured. That is, when the mold resin 34 is injected, the winding 33 is likely to be displaced due to the impact of the resin inflow, but the winding support portion 36a prevents the winding 33 from being displaced and ensures insulation. be able to. Further, the insulating property of the lightening portion 36b can be ensured by the mold resin 34 flowing into the lightening portion 36b.
  • the teeth portion 35b of the stator core 32 has a quadrangular prism shape, and the winding support portion 36a is provided outside the four corner portions 35b ′ of the teeth portion 35b. Therefore, the lightening portion 36b is formed corresponding to each of the coil end facing surface 35d and the circumferential side surface 35e of the tooth portion 35b.
  • the area where the thinned portion 36b faces the teeth portion 35b can be ensured to be relatively larger than the area where the winding support portion 36a faces the teeth portion 35b, and the second heat having high thermal conductivity. It is possible to dissipate heat mainly using heat conduction through the transmission path (arrow ⁇ ). Therefore, heat conduction can be performed more efficiently and heat dissipation performance can be improved.
  • the other flange portion 36d on the flange portion 35c side is formed with a communication portion 36e that penetrates the flange portion 36d and communicates with the lightening portion 36b. Therefore, when the mold resin 34 is injected, the mold resin 34 flows into the lightening portion 36b through the communication portion 36e. As a result, the mold resin 34 can be stably filled into the thinned portion 36b, and the mold resin 34 can be injected without entraining air.
  • the mold resin 34 can be reliably poured even in a portion where the teeth portion 35b and the winding wire 33 communicate with each other like the thinned portion 36b. Therefore, it is possible to prevent the winding wire 33 from coming into contact with the tooth portion 35 b by the mold resin 34, and to ensure insulation between the tooth portion 35 b and the winding wire 33.
  • a stator core 32 around which the winding wire 33 is wound An insulator having a winding support portion 36 a that covers the outside of the stator core 32 and supports the winding wire 33, and a lightening portion 36 b that is formed on the winding support portion 36 a and is covered with the winding wire 33.
  • a bobbin 36 comprising: The stator core 32, the bobbin 36, and the winding wire 33 are integrally sealed, and a mold resin 34 having higher thermal conductivity than the bobbin 36 is provided. The mold resin 34 is filled into at least a part of the lightening portion 36 b and is brought into contact with the stator core 32 and the winding wire 33. For this reason, the heat generated from the winding 33 can be efficiently transmitted to the stator core 32, and the heat transfer performance can be improved.
  • the stator core 32 has a prismatic teeth portion 35b
  • the said winding support part 36a was set as the structure provided in the outer side of corner
  • the bobbin 36 includes a flange portion 36d formed on at least one end of the winding support portion 36a; A configuration is adopted in which a communicating portion 36e that penetrates through the flange portion 36d and communicates with the lightening portion 36b is provided. For this reason, the mold resin 34 quickly flows into the lightening portion 36b through the communication portion 36e, and the thinning portion 36b can be stably filled with the mold resin 34.
  • a stator core 32 around which the winding wire 33 is wound;
  • An insulator having a winding support portion 36 a that covers the outside of the stator core 32 and supports the winding wire 33, and a lightening portion 36 b that is formed on the winding support portion 36 a and is covered with the winding wire 33.
  • a bobbin 36 comprising:
  • the bobbin structure of the electric motor (motor) 1 includes the stator core 32, the bobbin 36, and the winding wire 33 integrally sealed and a mold resin 34 having higher thermal conductivity than the bobbin 36.
  • the mold resin 34 is injected toward the inner side of the winding wire 33, and at least a part of the lightening portion 36b is The mold resin 34 is filled, and the mold resin 34 filled in the thinned portion 36 b is brought into contact with the stator core 32 and the winding wire 33. For this reason, it is possible to prevent the winding wire 33 from coming into contact with the tooth portion 35b by the mold resin 34 and to ensure insulation between the winding wire 33 and the tooth portion 35b.
  • the bobbin structure of the second embodiment is an example in which the winding support portion is provided along the axial direction of the stator core.
  • FIG. 10 is a perspective view showing the bobbin of the second embodiment.
  • the bobbin structure of the second embodiment will be described with reference to FIG.
  • the bobbin 70 of the second embodiment includes a winding support portion 71, a lightening portion 72, a first flange portion 73a, and a second flange portion 73b.
  • the said winding support part 71 is provided in the outer side of the circumferential direction side surface 35e (refer FIG. 3) of the teeth part 35b of a quadratic prism shape. That is, the winding support 71 in the second embodiment is provided along the axial direction of the stator core 32.
  • the said thinning part 72 is formed corresponding to the coil end opposing surface 35d (refer FIG. 3) of the teeth part 35b. That is, the thinned portion 72 is formed by cutting out a portion facing the coil end facing surface 35d in the winding support portion that covers the entire circumferential surface of the tooth portion 35b.
  • the pair of flange portions 73a and 73b are respectively formed over the entire circumference of the tooth portion 35b, and extend along the back yoke portion 35a and the flange portion 35c (see FIG. 5).
  • the winding support portion 71 of the bobbin 70 is provided along the axial direction of the stator core 32 (see FIG. 5), and the lightening portion 72 is formed on the coil end facing surface 35d of the teeth portion 35b. It is formed in the corresponding position.
  • the “region where the winding support portion 71 and the mold resin are interposed” generated between the stator core 32 and the winding (not shown), which has a relatively high thermal resistance and low thermal conductivity, is the molded stator 3. (See FIG. 2).
  • the “region where only the mold resin is interposed” generated between the stator core 32 and the winding (not shown) having a relatively low thermal resistance and high thermal conductivity is the coil end of the winding (not shown). It will be provided opposite to.
  • the short-axis molded stator 3 having a relatively short dimension in the axial direction it is possible to improve the heat dissipation performance from the coil end that is difficult to dissipate heat.
  • contact between the circumferential side surface 35e of the stator core 32 and a winding (not shown) can be reliably prevented.
  • the winding support portion 71 is configured to be provided along the axial direction of the stator core 32. For this reason, even if it is a mold stator with a comparatively short axial dimension, while improving heat dissipation performance, the insulation of the stator core 32 in the axial direction can be ensured.
  • the bobbin structure of the third embodiment is an example in which the winding support portion is provided at a position corresponding to the coil end portion of the winding.
  • FIG. 11 is a perspective view showing the bobbin of the third embodiment.
  • the bobbin structure of Example 3 will be described with reference to FIG.
  • the bobbin 74 includes a winding support portion 75, a lightening portion 76, and a pair of flange portions 77a and 77b. Further, the bobbin 74 has a structure that can be divided into two via a dividing line 78, and the teeth portion 35b (see FIG. 3) of the stator core 32 is arranged in the circumferential direction of the molded stator 3 (see FIG. 2). The stator core 32 is attached by being sandwiched along.
  • the said winding support part 75 is provided in the outer side of the coil end opposing surface 35d (refer FIG. 3) of the teeth part 35b of a quadratic prism shape. That is, the winding support 71 in the second embodiment is provided at a position corresponding to the coil end of the winding 33 (see FIG. 3).
  • the said thinning part 76 is formed corresponding to the circumferential side surface 35e (refer FIG. 3) of the teeth part 35b.
  • the thinned portion 76 is formed by cutting out a portion facing the circumferential side surface 35e in the winding support portion that covers the entire circumference of the tooth portion 35b.
  • the pair of flange portions 77a and 77b are respectively formed over the entire circumference of the tooth portion 35b, and extend along the back yoke portion 35a and the flange portion 35c (see FIG. 5).
  • the winding support portion 75 of the bobbin 74 is provided at a position corresponding to the coil end of the winding wire 33 (see FIG. 3), and the lightening portion 76 is a circumferential side surface of the tooth portion 35b. It is formed at a position facing 35e.
  • the “region where the winding support 75 and the mold resin are interposed” generated between the stator core 32 and the winding 33, which has a relatively high thermal resistance and low thermal conductivity, is the coil end of the winding 33. It will be provided opposite to.
  • the “region where only the molding resin is interposed” generated between the stator core 32 and the winding (not shown), which has a relatively low thermal resistance and high thermal conductivity, is the mold stator 3 (see FIG. 2). It will be along the axial direction. Thereby, in the long-axis mold stator 3 having a relatively long dimension in the axial direction, it is possible to improve the heat dissipation performance from the circumferential side surface 35e that is difficult to dissipate heat.
  • the circumferential side surface 35e of the stator core 32 and the winding are high. Insulation can also be secured.
  • the winding support portion 71 is provided at a position corresponding to the coil end of the winding 33. For this reason, even if it is a mold stator with a comparatively long axial dimension, heat dissipation performance can be improved.
  • Example 4 The bobbin structure of Example 4 is an example having a partition portion that partitions the outside of the winding.
  • FIG. 12 is a perspective view showing the bobbin of the fourth embodiment.
  • FIG. 13 is a cross-sectional view of a main part showing a molded stator to which the bobbin structure of the fourth embodiment is applied.
  • the bobbin structure of the fourth embodiment will be described with reference to FIGS. 12 and 13.
  • the bobbin 80 of the fourth embodiment includes a winding support portion 81, a lightening portion 82, a pair of flange portions 83 a and 83 b, and a partition portion 84.
  • the winding support part 81, the lightening part 82, and the pair of flange parts 83a and 83b have the same configuration as in the first embodiment, the description thereof is omitted.
  • the partition portion 84 is a flat plate extending toward the inside of the stator core 32 from a circumferential end portion 83 a ′ of one flange portion 83 a interposed between the back yoke portion 35 a of the stator core 32 and the winding wire 33. .
  • the partition part 84 defines the outside of the winding 33 wound around the tooth part 35 b of the stator core 32.
  • Example 4 the adjacent windings 33 are partitioned by the partition portion 84 as shown in FIG.
  • the bobbin 80 has a partition portion 84 that partitions the outside of the winding wire 33. For this reason, contact between adjacent windings 33 can be prevented and insulation can be secured.
  • the bobbin structure of the fifth embodiment is an example in which a communicating portion is provided in the flange portion on the back yoke portion side of the stator core.
  • FIG. 14 is a perspective view showing the bobbin of the fifth embodiment.
  • the bobbin structure of the fifth embodiment will be described with reference to FIG.
  • the bobbin 85 of the fifth embodiment includes a winding support portion 86, a lightening portion 87, a pair of flange portions 88 a and 88 b, and a communication portion 89.
  • the winding support portion 86, the lightening portion 87, and the pair of flange portions 88a and 88b have the same configuration as that of the second embodiment, and thus description thereof is omitted.
  • the communication portion 89 is formed by cutting out a part of one flange portion 88a extending along the back yoke portion 35a (see FIG. 5) of the stator core 32, and penetrates the one flange portion 88a. It communicates with the meat removal portion 87.
  • the resin filling can be quickly performed into the lightening portion 87 via the communication portion 89.
  • the communication portion 36e is formed only on the other flange portion 36d along the flange portion 35c of the stator core 32.
  • the fifth embodiment only one flange portion 88a along the back yoke portion 35a of the stator core 32 is formed.
  • the example which formed the communication part 89 was shown.
  • the present invention is not limited to this, and any of the pair of flange portions may be formed with a communication portion communicating with the lightening portion.

Abstract

Provided is an electric motor bobbin structure that is capable of efficiently transmitting heat generated from a winding to a stator core and improving heat-transmission performance. This electric motor bobbin structure is provided with: a stator core (32); a bobbin (36) covering the outside of the stator core (32); a winding (33) wound around the outside of the stator core (32) with a bobbin (36) interposed therebetween; and a mold resin (34) for integrally sealing the stator core (32), the bobbin (36), and the winding (33), and having higher heat conductivity than the bobbin (36). The bobbin (36) also has a winding support part (36a) for supporting the winding (33), and a thickness-removing part (36b) formed on the winding support part (36a) and covered by the winding (33). The mold resin (34) is configured to fill at least part of the thickness-removing part (36b), and to contact the stator core (32) and the winding (33).

Description

電動機のボビン構造及びその製造方法Bobbin structure of electric motor and manufacturing method thereof
 本発明は、ステータコアに装着され、外側に巻き線が巻回される電動機のボビン構造及びその製造方法に関するものである。 The present invention relates to a bobbin structure of an electric motor that is mounted on a stator core and wound around an outer side, and a manufacturing method thereof.
 従来、ステータコアの外側に絶縁性を有するボビンを装着し、このボビンの外側に巻き線を巻回すると共に、ステータコアとボビンとの間に高熱伝導性の充填材を充填した電動機のボビン構造が知られている(例えば、特許文献1参照)。 Conventionally, a bobbin structure of an electric motor in which an insulating bobbin is attached to the outside of the stator core, a winding is wound around the outside of the bobbin, and a high thermal conductive filler is filled between the stator core and the bobbin is known. (For example, refer to Patent Document 1).
特開2010-119191号公報JP 2010-119191 A
 ところで、従来の電動機のボビン構造では、ステータコア側から外方に向かって充填材、ボビン、巻き線の順に並んでいる。つまり、充填材はボビンと巻き線との間に流れ込んでおらず、巻き線の周囲には熱抵抗の高い空気層が存在している。そのため、巻き線から発生する熱は、この空気層とボビンを介して充填材に伝達され、最終的にステータコアから電動機の外へと放熱されることになる。
 すなわち、この従来の電動機のボビン構造では、熱抵抗の高い空気層と、比較的熱抵抗が高いボビンとが共に熱抵抗要因になっていた。そのため、巻き線からステータコアへの熱伝導を効率よく行うことが難しく、伝熱性の向上を図ることができなかった。
By the way, in the bobbin structure of the conventional electric motor, the filler, the bobbin, and the winding are arranged in this order from the stator core side toward the outside. That is, the filler does not flow between the bobbin and the winding, and an air layer having a high thermal resistance exists around the winding. Therefore, the heat generated from the winding is transmitted to the filler via the air layer and the bobbin, and finally radiated from the stator core to the outside of the electric motor.
That is, in this conventional electric motor bobbin structure, both the air layer having a high thermal resistance and the bobbin having a relatively high thermal resistance are factors of thermal resistance. For this reason, it is difficult to efficiently conduct heat from the winding to the stator core, and it has not been possible to improve heat transfer.
 本発明は、上記問題に着目してなされたもので、巻き線から発生した熱をステータコアへ効率よく伝達し、伝熱性能を向上することができる電動機のボビン構造及びその製造方法を提供することを目的とする。 The present invention has been made paying attention to the above problems, and provides a bobbin structure for an electric motor capable of efficiently transferring heat generated from windings to a stator core and improving heat transfer performance, and a method for manufacturing the same. With the goal.
 上記目的を達成するため、本発明の電動機のボビン構造では、ステータコアと、ボビンと、巻き線と、モールド樹脂とを備えている。
 前記ボビンは、絶縁体からなり、前記ステータコアの外側に設けられると共に巻き線が巻回される巻き線支持部と、前記巻き線支持部に形成されると共に前記巻き線に覆われる肉抜き部と、を有する。
 前記モールド樹脂は、前記ボビンよりも熱伝導性の高い樹脂であり、前記ステータコアと、前記ボビンと、前記巻き線を一体的に封止する。
 さらに、前記モールド樹脂を、前記肉抜き部の少なくとも一部に充填し、前記ステータコアと前記巻き線に接触させる。
In order to achieve the above object, the bobbin structure for an electric motor according to the present invention includes a stator core, a bobbin, a winding, and a mold resin.
The bobbin is made of an insulator, and is provided on the outside of the stator core and wound with a winding, and a boring portion formed on the winding support and covered with the winding. Have.
The mold resin is a resin having higher thermal conductivity than the bobbin, and integrally seals the stator core, the bobbin, and the winding.
Furthermore, the mold resin is filled into at least a part of the lightening portion and brought into contact with the stator core and the winding.
 本発明の電動機のボビン構造にあっては、ボビンよりも熱伝導性の高いモールド樹脂により、ステータコアとボビンと巻き線を一体的に封止すると共に、肉抜き部の少なくとも一部に充填することでステータコアと巻き線との間に、巻き線支持部とモールド樹脂を介在させた領域と、モールド樹脂のみを介在させた領域と、を設けている。
 これにより、巻き線の周囲はモールド樹脂によって覆われ、巻き線周囲に空気層が存在しない。このため、巻き線から発生した熱はモールド樹脂に伝達され、効率よく熱伝導を行うことができる。
 また、ステータコアと巻き線との間において、モールド樹脂のみを介在させた領域では、巻き線から発生した熱は熱伝導性の高いモールド樹脂のみを介してステータコアに伝えられる。つまり、熱抵抗の比較的高いボビンや空気層を介在させないことで、熱伝導性を向上し、効率よく熱伝導を行うことができる。
 この結果、巻き線から発生した熱をステータコアへ効率よく伝達し、伝熱性能を向上することができる。
In the bobbin structure of the electric motor of the present invention, the stator core, the bobbin, and the winding are integrally sealed with a mold resin having higher thermal conductivity than the bobbin, and at least a part of the lightening portion is filled. Thus, between the stator core and the winding, a region in which the winding support part and the mold resin are interposed and a region in which only the mold resin is interposed are provided.
Thereby, the circumference | surroundings of winding are covered with mold resin, and an air layer does not exist around winding. For this reason, the heat generated from the winding is transmitted to the mold resin, and heat conduction can be performed efficiently.
Further, in a region where only the mold resin is interposed between the stator core and the winding, heat generated from the winding is transmitted to the stator core only through the mold resin having high thermal conductivity. That is, by not interposing a bobbin or air layer having a relatively high thermal resistance, thermal conductivity can be improved and heat conduction can be performed efficiently.
As a result, the heat generated from the winding can be efficiently transferred to the stator core, and the heat transfer performance can be improved.
実施例1のボビン構造が適用されたモータを示す縦断面図である。It is a longitudinal cross-sectional view which shows the motor to which the bobbin structure of Example 1 was applied. 実施例1のボビン構造が適用されたモールドステータを示す外観斜視図である。It is an external appearance perspective view which shows the mold stator to which the bobbin structure of Example 1 was applied. 実施例1のボビン構造が適用されたモールドステータのモールド樹脂の内部を示す斜視図である。It is a perspective view which shows the inside of the mold resin of the mold stator to which the bobbin structure of Example 1 was applied. 実施例1のボビン構造が適用されたモールドステータを示す要部断面図である。It is principal part sectional drawing which shows the mold stator to which the bobbin structure of Example 1 was applied. 実施例1のボビンを示す斜視図である。1 is a perspective view showing a bobbin of Example 1. FIG. 実施例1のコアセグメントとボビンを示す分解斜視図である。It is a disassembled perspective view which shows the core segment and bobbin of Example 1. FIG. 実施例1のモールドステータの製造手順を示すフローチャートである。3 is a flowchart showing a manufacturing procedure of the molded stator of Example 1. モールド樹脂を射出する際の射出方向を示す説明図である。It is explanatory drawing which shows the injection direction at the time of injecting mold resin. 第1比較例のボビン構造における熱伝導経路を示す説明図である。It is explanatory drawing which shows the heat conduction path | route in the bobbin structure of a 1st comparative example. 第2比較例のボビン構造における熱伝導経路を示す説明図である。It is explanatory drawing which shows the heat conduction path | route in the bobbin structure of a 2nd comparative example. 第3比較例のボビン構造における熱伝導経路を示す説明図である。It is explanatory drawing which shows the heat conduction path | route in the bobbin structure of a 3rd comparative example. 実施例1のボビン構造における熱伝導経路を示す説明図である。FIG. 3 is an explanatory diagram illustrating a heat conduction path in the bobbin structure according to the first embodiment. 実施例2のボビン構造におけるボビンを示す斜視図である。FIG. 6 is a perspective view showing a bobbin in a bobbin structure according to a second embodiment. 実施例3のボビン構造におけるボビンを示す斜視図である。FIG. 6 is a perspective view showing a bobbin in a bobbin structure according to a third embodiment. 実施例4のボビン構造におけるボビンを示す斜視図である。FIG. 6 is a perspective view showing a bobbin in a bobbin structure according to a fourth embodiment. 実施例4のボビン構造が適用されたモールドステータを示す要部断面図である。It is principal part sectional drawing which shows the mold stator to which the bobbin structure of Example 4 was applied. 実施例5のボビン構造におけるボビンを示す斜視図である。FIG. 10 is a perspective view showing a bobbin in a bobbin structure according to a fifth embodiment.
 以下、本発明の電動機のボビン構造及びその製造方法を実施するための形態を、図面に示す実施例1~実施例5に基づいて説明する。 Hereinafter, the bobbin structure for an electric motor and the method for manufacturing the same according to the present invention will be described based on Examples 1 to 5 shown in the drawings.
 (実施例1)
 まず、実施例1の電動機のボビン構造における構成を「ボビン構造の適用例の構成」、「モールドステータの構成」、「ボビンの構成」、「ボビン構造の製造手順」に分けて説明する。
(Example 1)
First, the configuration of the bobbin structure of the electric motor according to the first embodiment will be described by dividing it into “configuration of application example of bobbin structure”, “configuration of mold stator”, “configuration of bobbin”, and “procedure for manufacturing bobbin structure”.
 [ボビン構造の適用例の構成] 
 図1は、実施例1の電動機のボビン構造が適用されたモータを示す縦断面図である。以下、図1に基づいて、実施例1の電動機のボビン構造の適用例について説明する。
[Configuration of application example of bobbin structure]
FIG. 1 is a longitudinal sectional view showing a motor to which the bobbin structure of the electric motor according to the first embodiment is applied. Hereinafter, based on FIG. 1, the application example of the bobbin structure of the electric motor of Example 1 is demonstrated.
 図1に示すモータ(電動機)1は、モータケース2の内側に固定した円筒状のモールドステータ3と、このモールドステータ3の内側にラジアルギャップを持たせて同心に配置したロータ4と、を備えている。 A motor (electric motor) 1 shown in FIG. 1 includes a cylindrical molded stator 3 fixed inside a motor case 2 and a rotor 4 arranged concentrically with a radial gap inside the molded stator 3. ing.
 前記モールドステータ3は、後述するように巻き線33を備え、モータケース2の内周面に固定されている。なお、モータケース2の内部には、モールドステータ3の外周に沿って冷却水が流通するウォータジャケット部2aが形成されている。 The molded stator 3 is provided with a winding 33 as will be described later, and is fixed to the inner peripheral surface of the motor case 2. A water jacket portion 2 a through which cooling water flows along the outer periphery of the mold stator 3 is formed inside the motor case 2.
 前記ロータ4は、ロータ回転軸4aと、積層鋼板4bと、図示しない永久磁石と、を有している。
前記ロータ回転軸4aは、モータケース2の一方の側面である第1側面2bの内側に設けられた第1ロータ軸受5aに一端が回転自在に支持され、モータケース2の他方の側面である第2側面2cに形成された開口部5cから先端が突出している。なお、この開口部5cの内側には第2ロータ軸受5bが嵌着され、ロータ回転軸4aを回転自在に支持する。
前記積層鋼板4bは、ロータ回転軸4aの外周に固定されたエンドプレート4cの外周に固設され、この積層鋼板4bの外周面近傍に図示しない永久磁石が埋設されている。
The rotor 4 includes a rotor rotating shaft 4a, a laminated steel plate 4b, and a permanent magnet (not shown).
The rotor rotating shaft 4 a is rotatably supported at one end by a first rotor bearing 5 a provided inside the first side surface 2 b that is one side surface of the motor case 2, and is the second side surface of the motor case 2. The tip protrudes from the opening 5c formed in the two side surfaces 2c. A second rotor bearing 5b is fitted inside the opening 5c, and rotatably supports the rotor rotating shaft 4a.
The laminated steel plate 4b is fixed to the outer periphery of an end plate 4c fixed to the outer periphery of the rotor rotating shaft 4a, and a permanent magnet (not shown) is embedded in the vicinity of the outer peripheral surface of the laminated steel plate 4b.
 [モールドステータの構成]
 図2Aは、実施例1のボビン構造が適用されたモールドステータを示す外観斜視図であり、図2Bは、モールド樹脂の内部を示す斜視図である。また、図3は、実施例1のボビン構造が適用されたモールドステータを示す要部断面図である。以下、図2A~図3に基づいて、実施例1のモールドステータの構成について説明する。
[Configuration of mold stator]
FIG. 2A is an external perspective view showing a molded stator to which the bobbin structure of the first embodiment is applied, and FIG. 2B is a perspective view showing the inside of the mold resin. FIG. 3 is a cross-sectional view of a main part showing a molded stator to which the bobbin structure of the first embodiment is applied. Hereinafter, the configuration of the molded stator of Example 1 will be described with reference to FIGS. 2A to 3.
 前記モールドステータ3は、図2A及び図2Bに示すように、ステータホルダ31と、ステータコア32と、巻き線33と、モールド樹脂34と、を備えている。 2A and 2B, the molded stator 3 includes a stator holder 31, a stator core 32, a winding wire 33, and a mold resin 34.
 前記ステータホルダ31は、高い真円度を持つ金属円筒体であり、両端が開放している。 The stator holder 31 is a metal cylinder having a high roundness, and both ends are open.
 前記ステータコア32は、図3に示すコアセグメント32aをモールドステータ3の周方向に複数連結して円環状に形成し、ステータホルダ31の内側に固定することで構成されている。
各コアセグメント32aは、電磁鋼板をプレス成型して形成されたT字状のステータ鋼板を、モールドステータ3の軸線方向に多数積層して構成されている。このコアセグメント32aは、ステータホルダ31の内周面に沿う円弧状のバックヨーク部35aと、バックヨーク部35aからモールドステータ3の内側に突出したティース部35bと、ティース部35bの先端に形成された鍔部35cと、を有している。
The stator core 32 is formed by connecting a plurality of core segments 32 a shown in FIG. 3 in the circumferential direction of the molded stator 3 to form an annular shape and fixing the same inside the stator holder 31.
Each core segment 32 a is configured by laminating a number of T-shaped stator steel plates formed by press-molding electromagnetic steel plates in the axial direction of the mold stator 3. The core segment 32a is formed at the arcuate back yoke portion 35a along the inner peripheral surface of the stator holder 31, the tooth portion 35b protruding from the back yoke portion 35a to the inside of the mold stator 3, and the tip of the tooth portion 35b. And a flange 35c.
 前記巻き線33は、各コアセグメント32aのティース部35bに巻回される電磁線であり、図3に示すように、ティース部35bに対し複数層に渡って巻きつけられる。また、ティース部35bの外側にはボビン36(図3参照)が設けられ、巻き線33は、このボビン36を介してティース部35bに巻回されることとなる。 The winding wire 33 is an electromagnetic wire wound around the tooth portion 35b of each core segment 32a, and is wound around the tooth portion 35b over a plurality of layers as shown in FIG. Further, a bobbin 36 (see FIG. 3) is provided outside the tooth portion 35b, and the winding 33 is wound around the tooth portion 35b via the bobbin 36.
 前記モールド樹脂34は、少なくともボビン36よりも熱伝導性の高い樹脂であり、ステータコア32と巻き線33とボビン36を一体的に封止する。このモールド樹脂34は、ステータコア32と巻き線33の間に射出され、巻き線33とボビン36の巻き線支持部36aの間に充填されると共に、巻き線支持部36aに形成された肉抜き部36bに充填される。この肉抜き部36bに充填されたモールド樹脂34は、肉抜き部36bから溢れ出し、ステータコア32と巻き線33の両方に接触する。 The mold resin 34 is a resin having higher thermal conductivity than at least the bobbin 36, and integrally seals the stator core 32, the winding wire 33, and the bobbin 36. The mold resin 34 is injected between the stator core 32 and the winding wire 33, filled between the winding wire 33 and the winding support portion 36a of the bobbin 36, and a lightening portion formed on the winding support portion 36a. 36b is filled. The mold resin 34 filled in the lightening portion 36 b overflows from the lightening portion 36 b and contacts both the stator core 32 and the winding wire 33.
 [ボビンの構成]
 図4は、実施例1のボビンを示す斜視図である。図5は、実施例1のコアセグメントとボビンを示す分解斜視図である。以下、図4及び図5に基づき、実施例1のボビンの構成を説明する。
[Bobbin configuration]
FIG. 4 is a perspective view illustrating the bobbin according to the first embodiment. FIG. 5 is an exploded perspective view illustrating the core segment and the bobbin according to the first embodiment. Hereinafter, the configuration of the bobbin according to the first embodiment will be described with reference to FIGS. 4 and 5.
 前記ボビン36は、樹脂等の絶縁体によって形成され、図4に示すように、巻き線支持部36aと、肉抜き部36bと、第1フランジ部36cと、第2フランジ部36dと、を有している。また、このボビン36は、二つに分割可能な構造となっており、図5に示すように、ステータコア32のティース部35bを、モールドステータ3の軸線方向に沿って挟み込むことで装着される。 The bobbin 36 is formed of an insulating material such as resin, and as shown in FIG. 4, has a winding support part 36a, a lightening part 36b, a first flange part 36c, and a second flange part 36d. is doing. Further, the bobbin 36 has a structure that can be divided into two, and is mounted by sandwiching the teeth portion 35b of the stator core 32 along the axial direction of the molded stator 3 as shown in FIG.
 前記巻き線支持部36aは、ティース部35bの外側を覆うと共に、このティース部35bに巻回される巻き線33を支持する。ここでは、ティース部35bがモールドステータ3の内側に向かって延びる四角柱形状を呈しており、巻き線支持部36aは、このティース部35bの四箇所の角部35b´の外側に設けられる。すなわち、この実施例1における巻き線支持部36aは、それぞれティース部35bの角部35b´を覆う4箇所に設けられている。 The winding support part 36a covers the outside of the tooth part 35b and supports the winding 33 wound around the tooth part 35b. Here, the teeth part 35b has a quadrangular prism shape extending toward the inside of the mold stator 3, and the winding support part 36a is provided outside the four corners 35b 'of the tooth part 35b. That is, the winding support portions 36a in the first embodiment are provided at four locations that respectively cover the corner portions 35b ′ of the teeth portions 35b.
 前記肉抜き部36bは、巻き線支持部36aに形成された切欠部分であり、ティース部35bに巻回される巻き線33によって覆われる。ここでは、4箇所の巻き線支持部36aの間に設けられた空隙部分がこの肉抜き部36bに相当し、ティース部35bのコイルエンド対向面35d及び周方向側面35eのそれぞれに対応して形成されている。なお「コイルエンド対向面」とは、ステータコア32に巻回される巻き線33のコイルエンドに対向する面であり、モールドステータ3の軸線方向の端面である。また、「周方向側面」とは、モールドステータ3の周方向の端面である。 The said lightening part 36b is a notch part formed in the winding support part 36a, and is covered with the winding 33 wound around the teeth part 35b. Here, gap portions provided between the four winding support portions 36a correspond to the thinned portions 36b and are formed corresponding to the coil end facing surface 35d and the circumferential side surface 35e of the tooth portion 35b. Has been. The “coil end facing surface” is a surface facing the coil end of the winding 33 wound around the stator core 32 and is an end surface in the axial direction of the molded stator 3. The “circumferential side surface” is an end surface in the circumferential direction of the mold stator 3.
 前記第1,第2フランジ部36c,36dは、それぞれ巻き線支持部36aの端部に設けられ、第1フランジ部36cはステータコア32のバックヨーク部35aと巻き線33の間に介在し、第2フランジ部36dはステータコア32の鍔部35cと巻き線33の間に介在する。
この実施例1では、バックヨーク部35a側の第1フランジ部36cが、ティース部35bの全周にわたって形成されている。一方、鍔部35c側の第2フランジ部36dには、この第2フランジ部36dを切り欠き、肉抜き部36bに連通する連通部36eが形成されている。つまり、この第2フランジ部36dでは、肉抜き部36bに対応した部分が切り欠かれ、巻き線支持部36aから連続する部分のみが形成されている。
The first and second flange portions 36c and 36d are respectively provided at the end portions of the winding support portion 36a. The first flange portion 36c is interposed between the back yoke portion 35a of the stator core 32 and the winding wire 33, and The two flange portions 36 d are interposed between the flange portion 35 c of the stator core 32 and the winding wire 33.
In the first embodiment, the first flange portion 36c on the back yoke portion 35a side is formed over the entire circumference of the tooth portion 35b. On the other hand, the second flange portion 36d on the side of the flange portion 35c is formed with a communication portion 36e that cuts out the second flange portion 36d and communicates with the lightening portion 36b. That is, in this 2nd flange part 36d, the part corresponding to the thinning part 36b is notched, and only the part which continues from the winding support part 36a is formed.
 [モールドステータの製造手順]
 図6は、実施例1のモールドステータの製造手順を示すフローチャートである。以下、図6に基づき、実施例1のモールドステータの製造手順について説明する。
[Mold Stator Manufacturing Procedure]
FIG. 6 is a flowchart illustrating a manufacturing procedure of the molded stator according to the first embodiment. Hereinafter, based on FIG. 6, the manufacturing procedure of the mold stator of Example 1 is demonstrated.
 ステップS1では、予め多数の電磁鋼板を積層して形成されたコアセグメント32aのティース部35bに、ボビン36を装着する。 In step S1, the bobbin 36 is mounted on the teeth 35b of the core segment 32a formed by previously laminating a number of electromagnetic steel plates.
 ステップS2では、ステップS1でのボビン36の装着に続き、巻き線33をティース部35bに係合できる形に巻回した後、この巻き線33をティース部35bに取り付ける。このとき、巻き線33は、ボビン36の外側に取り付けられ、巻き線支持部36aによって支持されると共に、肉抜き部36bを覆う。 In step S2, after the bobbin 36 is mounted in step S1, the winding wire 33 is wound into a shape that can be engaged with the tooth portion 35b, and then the winding wire 33 is attached to the tooth portion 35b. At this time, the winding wire 33 is attached to the outside of the bobbin 36, is supported by the winding wire support portion 36a, and covers the lightening portion 36b.
 ステップS3では、ステップS2での巻き線33の取り付けに続き、巻き線33を取り付けた複数のコアセグメント32aを円環状に並べ、ステータコア32を組み立てる。 In step S3, following the attachment of the winding wire 33 in step S2, a plurality of core segments 32a to which the winding wire 33 is attached are arranged in an annular shape, and the stator core 32 is assembled.
 ステップS4では、ステップS3でのステータコア32の組み立てに続き、ステータホルダ31を加熱して膨張させ、膨張したステータホルダ31の内側に組み立てたステータコア32を嵌め込んでから冷却する。つまり、いわゆる焼きばめによってステータコア32をステータホルダ31に固定する。 In step S4, following the assembly of the stator core 32 in step S3, the stator holder 31 is heated and expanded, and the assembled stator core 32 is fitted inside the expanded stator holder 31, and then cooled. That is, the stator core 32 is fixed to the stator holder 31 by so-called shrink fitting.
 ステップS5では、ステップS4でのステータコア32の固定に続き、ステータホルダ31及びステータコア32に、モールド型(図示せず)を取り付ける。このモールド型は、例えばモールドステータ3の軸線方向に2分割された樹脂成型型であり、ステータホルダ31及びステータコア32を挟み込んで型締めすることで取り付けられる。 In step S5, following the fixing of the stator core 32 in step S4, a mold (not shown) is attached to the stator holder 31 and the stator core 32. This mold is, for example, a resin mold that is divided into two in the axial direction of the mold stator 3, and is attached by sandwiching the stator holder 31 and the stator core 32 and clamping the mold.
 ステップS6では、ステップS5でのモールド型の取り付けに続き、型内にモールド樹脂34を射出(充填)する。このとき、図7に示すように、ステータコア32のティース部35bと巻き線33との間にモールド樹脂34を射出する。すなわち、巻き線33の内側に向けてモールド樹脂34を射出する。
なお、この実施例1では、ボビン36の第1フランジ部36c、第2フランジ部36dのうち、ステータコア32の鍔部35c側の第2フランジ部36dに、この第2フランジ部36dを貫通し、肉抜き部36bに連通する連通部36eが形成されている。そのため、ここでは、この連通部36eに向けてモールド樹脂34を射出する。これにより、連通部36eに流れ込んだモールド樹脂34は、まず、肉抜き部36bに充填される。その後、この肉抜き部36bから溢れ出し、巻き線支持部36aとティース部35bの間や、巻き線支持部36aと巻き線33の間に流れ込んでこれらの間に充填された後、巻き線33の外側や巻き線33の隙間に充填されることとなる。
In step S6, following the mounting of the mold in step S5, the mold resin 34 is injected (filled) into the mold. At this time, as shown in FIG. 7, the molding resin 34 is injected between the tooth portion 35 b of the stator core 32 and the winding wire 33. That is, the mold resin 34 is injected toward the inside of the winding wire 33.
In the first embodiment, of the first flange portion 36c and the second flange portion 36d of the bobbin 36, the second flange portion 36d on the flange 35c side of the stator core 32 is passed through the second flange portion 36d, A communication portion 36e that communicates with the lightening portion 36b is formed. Therefore, here, the mold resin 34 is injected toward the communication portion 36e. As a result, the mold resin 34 that has flowed into the communication portion 36e is first filled into the lightening portion 36b. After that, it overflows from the lightening portion 36b, flows between the winding support portion 36a and the teeth portion 35b, or between the winding support portion 36a and the winding wire 33, and is filled between them. And the gaps between the windings 33 are filled.
 ステップS7では、ステップS6でのモールド樹脂34の射出に続き、冷却してモールド樹脂34を硬化させた後、モールド型を取り外し、モールドステータ3の組み立てを完了する。 In step S7, following the injection of the mold resin 34 in step S6, the mold resin 34 is cooled and cured, and then the mold is removed and the assembly of the mold stator 3 is completed.
 次に、作用を説明する。
 まず、「比較例のボビン構造とその課題」を説明し、続いて、実施例1の電動機のボビン構造における作用を、「熱伝導作用」、「組立時における特徴的作用」に分けて説明する。
Next, the operation will be described.
First, “the bobbin structure of the comparative example and its problems” will be described, and then the operation in the bobbin structure of the electric motor of the first embodiment will be divided into “thermal conduction operation” and “characteristic operation during assembly”. .
 [比較例のボビン構造とその課題]
 図8Aは第1比較例のボビン構造における熱伝導経路を示す説明図であり、図8Bは第2比較例のボビン構造における熱伝導経路を示す説明図であり、図8Cは第3比較例のボビン構造における熱伝導経路を示す説明図である。以下、図8A~図8Cに基づき、比較例のボビン構造とその課題を説明する。
[Comparative bobbin structure and problems]
FIG. 8A is an explanatory diagram showing a heat conduction path in the bobbin structure of the first comparative example, FIG. 8B is an explanatory diagram showing a heat conduction path in the bobbin structure of the second comparative example, and FIG. 8C is a diagram of the third comparative example. It is explanatory drawing which shows the heat conduction path | route in a bobbin structure. Hereinafter, the bobbin structure of the comparative example and its problem will be described with reference to FIGS. 8A to 8C.
 図8Aに示す第1比較例のボビン構造では、ステータコア60の外側にボビン61を設け、その外側に巻き線62を巻回する。そして、巻き線62を巻回後、ワニス63を滴下し、巻き線62をワニス63によってコーティングする。
すなわち、ステータコア60と巻き線62の間にボビン61が介在し、さらに、巻き線62の外側がワニス63によって覆われる。
In the bobbin structure of the first comparative example shown in FIG. 8A, the bobbin 61 is provided outside the stator core 60, and the winding 62 is wound around the outside. And after winding the winding 62, the varnish 63 is dripped and the winding 62 is coated with the varnish 63. FIG.
That is, the bobbin 61 is interposed between the stator core 60 and the winding 62, and the outside of the winding 62 is covered with the varnish 63.
 また、ボビン61の周囲にはワニス63が入り込まないため、このボビン61の周囲空間となるステータコア60とボビン61の間、及び、ボビン61と巻き線62の間には、熱抵抗の高い空気層(空隙)64が存在する。 Further, since the varnish 63 does not enter the periphery of the bobbin 61, an air layer having a high thermal resistance is formed between the stator core 60 and the bobbin 61, and between the bobbin 61 and the winding wire 62. (Void) 64 exists.
 そして、この第1比較例のボビン構造では、巻き線62から発生した熱は、図8Aにおいて矢印で示すように、巻き線62→空気層64→ボビン61→空気層64→ステータコア60と順に伝達され、ステータコア60より放熱される。つまり、巻き線62とステータコア60の間に熱抵抗の高い空気層64やボビン61が介在する。このため、巻き線62の熱はステータコア60に伝達されにくく、熱伝導効率が悪いという問題があった。 In the bobbin structure of the first comparative example, the heat generated from the winding 62 is transmitted in the order of the winding 62 → the air layer 64 → the bobbin 61 → the air layer 64 → the stator core 60 as indicated by an arrow in FIG. 8A. Then, heat is radiated from the stator core 60. That is, the air layer 64 and the bobbin 61 having high thermal resistance are interposed between the winding 62 and the stator core 60. For this reason, there is a problem that the heat of the winding 62 is not easily transmitted to the stator core 60 and the heat conduction efficiency is poor.
 これに対し、図8Bに示す第2比較例のボビン構造では、ボビン61と巻き線62の間に、このボビン61よりも熱伝導性の高いモールド樹脂65を充填している。また、図8Cに示す第3比較例のボビン構造では、ボビン61とステータコア60の間に、このボビン61よりも熱伝導性の高いモールド樹脂65を充填している。 On the other hand, in the bobbin structure of the second comparative example shown in FIG. 8B, the mold resin 65 having higher thermal conductivity than the bobbin 61 is filled between the bobbin 61 and the winding 62. Further, in the bobbin structure of the third comparative example shown in FIG. 8C, a mold resin 65 having higher thermal conductivity than the bobbin 61 is filled between the bobbin 61 and the stator core 60.
 これらの第2比較例及び第3比較例の場合では、モールド樹脂65によって空気層が埋められ、図8B,図8Cに示す矢印のように、このモールド樹脂65を介して伝熱する。これにより、図8Aに示す第1比較例よりも熱伝導性能の向上を図ることができる。しかしながら、ボビン61の周囲には、依然として空気層64が残っている上、熱伝導はモールド樹脂65よりも熱伝導性の低いボビン61を必ず通して行われる。そのため、この空気層64やボビン61が熱抵抗要因となって、熱伝導効率の向上を図ることが困難になっている。 In the case of the second comparative example and the third comparative example, the air layer is filled with the mold resin 65, and heat is transferred through the mold resin 65 as shown by arrows in FIGS. 8B and 8C. Thereby, the heat conduction performance can be improved as compared with the first comparative example shown in FIG. 8A. However, the air layer 64 still remains around the bobbin 61 and heat conduction is always performed through the bobbin 61 having lower heat conductivity than the mold resin 65. For this reason, the air layer 64 and the bobbin 61 become thermal resistance factors, and it is difficult to improve the heat conduction efficiency.
 [熱伝導作用]
 図9は、実施例1のボビン構造における熱伝導経路を示す説明図である。以下、図9に基づき、実施例1のボビン構造における熱伝導作用について説明する。
[Heat conduction]
FIG. 9 is an explanatory diagram illustrating a heat conduction path in the bobbin structure according to the first embodiment. Hereinafter, based on FIG. 9, the heat conductive action in the bobbin structure of Example 1 will be described.
 実施例1のボビン構造では、ステータコア32のティース部35bに設けたボビン36が、巻き線支持部36aと肉抜き部36bを備えている。そして、巻き線33は、ボビン36を介してティース部35bの外側に巻回される。このとき、巻き線33は巻き線支持部36aによって支持されると共に、肉抜き部36bを覆う。さらに、ステータコア32と巻き線33の間に、ボビン36よりも熱伝導性の高いモールド樹脂34が充填されている。 In the bobbin structure of the first embodiment, the bobbin 36 provided on the tooth portion 35b of the stator core 32 includes a winding support portion 36a and a lightening portion 36b. Then, the winding wire 33 is wound around the outside of the tooth portion 35 b via the bobbin 36. At this time, the winding wire 33 is supported by the winding wire support portion 36a and covers the lightening portion 36b. Further, a mold resin 34 having higher thermal conductivity than the bobbin 36 is filled between the stator core 32 and the winding wire 33.
 ここで、巻き線33とボビン36の間に射出(充填)されたモールド樹脂34のうち、ボビン36の肉抜き部36b内に充填されたモールド樹脂34は、ステータコア32と巻き線33の両方に密着する。また、巻き線支持部36aの外側に沿って流れたモールド樹脂34は、ボビン36とステータコア32の間に入り込めず、このボビン36とステータコア32の間には空気層64が生じる。つまり、ステータコア32と巻き線33との間には、巻き線支持部36aとモールド樹脂34を介在させた領域Xと、肉抜き部36bに充填されて巻き線33とステータコア32の両方に接触するモールド樹脂34のみを介在させた領域Yと、が設けられる。 Here, of the mold resin 34 injected (filled) between the winding wire 33 and the bobbin 36, the mold resin 34 filled in the hollow portion 36 b of the bobbin 36 is applied to both the stator core 32 and the winding wire 33. In close contact. Further, the mold resin 34 that flows along the outside of the winding support 36 a cannot enter between the bobbin 36 and the stator core 32, and an air layer 64 is generated between the bobbin 36 and the stator core 32. That is, between the stator core 32 and the winding 33, the region X in which the winding support portion 36 a and the mold resin 34 are interposed, and the lightening portion 36 b are filled and contact both the winding 33 and the stator core 32. A region Y in which only the mold resin 34 is interposed is provided.
 そして、このような実施例1のボビン構造では、巻き線33から発生した熱を放熱する際の熱伝導経路として、領域Xを通過する図9に矢印αで示す第1の熱伝導経路と、領域Yを通過する図9に矢印βで示す第2の熱伝達経路の、二つの熱伝導経路がある。 And in such a bobbin structure of Example 1, as a heat conduction path at the time of radiating the heat generated from the winding 33, a first heat conduction path indicated by an arrow α in FIG. There are two heat conduction paths that pass through region Y, the second heat transfer path indicated by arrow β in FIG.
 矢印αで示す第1の熱伝導経路では、巻き線33から発生した熱は、まず、この巻き線33の周囲に充填されたモールド樹脂34に伝達される。そして、ボビン36の巻き線支持部36aに伝達され、空気層64を介してステータコア32へと伝わっていく。つまり、この第1の熱伝導経路(矢印α)では、上記第2の比較例と同じ現象によって熱伝導が行われる。 In the first heat conduction path indicated by the arrow α, the heat generated from the winding 33 is first transmitted to the mold resin 34 filled around the winding 33. Then, it is transmitted to the winding support portion 36 a of the bobbin 36 and is transmitted to the stator core 32 through the air layer 64. That is, in the first heat conduction path (arrow α), heat conduction is performed by the same phenomenon as in the second comparative example.
 一方、矢印βで示す第2の熱伝導経路では、巻き線33から発生した熱は、まず、この巻き線33の周囲に充填されたモールド樹脂34に伝達される。ここで、第2の熱伝導経路(矢印β)は、肉抜き部36bに充填されて巻き線33とステータコア32の両方に接触するモールド樹脂34を介在させた領域Yを通過する。そのため、この第2の熱伝導経路(矢印β)では、モールド樹脂34に伝わった熱は、このモールド樹脂34からステータコア32へと直接伝達され、ステータコア32から放熱される。つまり、この第2の熱伝導経路(矢印β)では、熱抵抗要因になってしまう空気層64やボビン36を介することなく、高熱伝導樹脂であるモールド樹脂34のみを介して放熱することができる。このため、第2の熱伝導経路(矢印β)では、熱伝導性が向上し、効率よく熱伝導を行うことができる。 On the other hand, in the second heat conduction path indicated by the arrow β, the heat generated from the winding 33 is first transmitted to the mold resin 34 filled around the winding 33. Here, the second heat conduction path (arrow β) passes through the region Y in which the thinned portion 36b is filled and the mold resin 34 that contacts both the winding wire 33 and the stator core 32 is interposed. Therefore, in the second heat conduction path (arrow β), the heat transferred to the mold resin 34 is directly transferred from the mold resin 34 to the stator core 32 and is radiated from the stator core 32. That is, in the second heat conduction path (arrow β), heat can be radiated only through the mold resin 34 which is a high heat conduction resin without going through the air layer 64 or the bobbin 36 which becomes a heat resistance factor. . For this reason, in the second heat conduction path (arrow β), the heat conductivity is improved and heat conduction can be performed efficiently.
 なお、第1の熱伝達経路(矢印α)では、巻き線支持部36aが熱抵抗要因になってしまうが、この巻き線支持部36aによって巻き線33とステータコア32との間の絶縁性を確実に確保することができる。すなわち、モールド樹脂34を射出する際に、樹脂流入の衝撃によって巻き線33の位置ずれが生じやすいが、この巻き線支持部36aによって巻き線33の位置ずれを防止して、絶縁性を確保することができる。
また、肉抜き部36bにおける絶縁性は、この肉抜き部36bに流れ込んだモールド樹脂34によって確保することができる。
In the first heat transfer path (arrow α), the winding support portion 36a becomes a thermal resistance factor, but this winding support portion 36a ensures insulation between the winding 33 and the stator core 32. Can be secured. That is, when the mold resin 34 is injected, the winding 33 is likely to be displaced due to the impact of the resin inflow, but the winding support portion 36a prevents the winding 33 from being displaced and ensures insulation. be able to.
Further, the insulating property of the lightening portion 36b can be ensured by the mold resin 34 flowing into the lightening portion 36b.
 そして、実施例1のボビン構造では、ステータコア32のティース部35bが四角柱形状を呈し、巻き線支持部36aは、このティース部35bの四箇所の角部35b´の外側に設けられている。そのため、肉抜き部36bが、ティース部35bのコイルエンド対向面35d及び周方向側面35eのそれぞれに対応して形成されることとなる。 In the bobbin structure of the first embodiment, the teeth portion 35b of the stator core 32 has a quadrangular prism shape, and the winding support portion 36a is provided outside the four corner portions 35b ′ of the teeth portion 35b. Therefore, the lightening portion 36b is formed corresponding to each of the coil end facing surface 35d and the circumferential side surface 35e of the tooth portion 35b.
 これにより、肉抜き部36bがティース部35bに対向する面積を、巻き線支持部36aがティース部35bに対向する面積よりも比較的大きく確保することができ、熱伝導性の高い第2の熱伝達経路(矢印β)による熱伝導を主体にした放熱を行うことができる。
そのため、さらに効率よく熱伝導を行うことができ、放熱性能を高めることができる。
As a result, the area where the thinned portion 36b faces the teeth portion 35b can be ensured to be relatively larger than the area where the winding support portion 36a faces the teeth portion 35b, and the second heat having high thermal conductivity. It is possible to dissipate heat mainly using heat conduction through the transmission path (arrow β).
Therefore, heat conduction can be performed more efficiently and heat dissipation performance can be improved.
 さらに、実施例1のボビン構造では、鍔部35c側の他方のフランジ部36dに、このフランジ部36dを貫通し、肉抜き部36bに連通する連通部36eが形成されている。
そのため、モールド樹脂34を射出する際に、この連通部36eを介して肉抜き部36bへとモールド樹脂34が流れ込む。これにより、肉抜き部36bへ安定的にモールド樹脂34を充填することができ、空気を巻き込むことなくモールド樹脂34の射出を行うことができる。
Furthermore, in the bobbin structure according to the first embodiment, the other flange portion 36d on the flange portion 35c side is formed with a communication portion 36e that penetrates the flange portion 36d and communicates with the lightening portion 36b.
Therefore, when the mold resin 34 is injected, the mold resin 34 flows into the lightening portion 36b through the communication portion 36e. As a result, the mold resin 34 can be stably filled into the thinned portion 36b, and the mold resin 34 can be injected without entraining air.
 [組立時における特徴的作用]
 実施例1の電動機のボビン構造において、ステータコア32の外側にボビン36を介して巻き線33を巻回した後、ステップS6でのモールド樹脂34の射出の際、図7に示すように、巻き線33の内側に向けてモールド樹脂34を射出する。つまり、ステータコア32のティース部35bと巻き線33との間にモールド樹脂34を射出する。
[Characteristic action during assembly]
In the bobbin structure of the electric motor of Example 1, after winding the winding wire 33 on the outside of the stator core 32 via the bobbin 36, when the molding resin 34 is injected in step S6, as shown in FIG. The mold resin 34 is injected toward the inside of the 33. That is, the mold resin 34 is injected between the tooth portion 35 b of the stator core 32 and the winding wire 33.
 これにより、肉抜き部36bのようにティース部35bと巻き線33の間が連通している部分であっても、モールド樹脂34を確実に流し込むことができる。そのため、モールド樹脂34によって巻き線33がティース部35bに接触することを防止でき、ティース部35bと巻き線33との間の絶縁性を確保することができる。 Thus, the mold resin 34 can be reliably poured even in a portion where the teeth portion 35b and the winding wire 33 communicate with each other like the thinned portion 36b. Therefore, it is possible to prevent the winding wire 33 from coming into contact with the tooth portion 35 b by the mold resin 34, and to ensure insulation between the tooth portion 35 b and the winding wire 33.
 次に、効果を説明する。
 実施例1の電動機のボビン構造及びその製造方法にあっては、下記に挙げる効果を得ることができる。
Next, the effect will be described.
In the bobbin structure of the electric motor and the manufacturing method thereof according to the first embodiment, the following effects can be obtained.
 (1) 巻き線33が巻回されるステータコア32と、
 前記ステータコア32の外側を覆うと共に前記巻き線33を支持する巻き線支持部36aと、前記巻き線支持部36aに形成されると共に前記巻き線33に覆われる肉抜き部36bと、を有する絶縁体からなるボビン36と、
 前記ステータコア32と、前記ボビン36と、前記巻き線33を一体的に封止すると共に、前記ボビン36よりも熱伝導性の高いモールド樹脂34と、を備え、
 前記モールド樹脂34を、前記肉抜き部36bの少なくとも一部に充填し、前記ステータコア32と前記巻き線33とに接触させる構成とした。
 このため、巻き線33から発生した熱をステータコア32へ効率よく伝達し、伝熱性能を向上することができる。
(1) a stator core 32 around which the winding wire 33 is wound;
An insulator having a winding support portion 36 a that covers the outside of the stator core 32 and supports the winding wire 33, and a lightening portion 36 b that is formed on the winding support portion 36 a and is covered with the winding wire 33. A bobbin 36 comprising:
The stator core 32, the bobbin 36, and the winding wire 33 are integrally sealed, and a mold resin 34 having higher thermal conductivity than the bobbin 36 is provided.
The mold resin 34 is filled into at least a part of the lightening portion 36 b and is brought into contact with the stator core 32 and the winding wire 33.
For this reason, the heat generated from the winding 33 can be efficiently transmitted to the stator core 32, and the heat transfer performance can be improved.
 (2) 前記ステータコア32は、角柱状のティース部35bを有し、
 前記巻き線支持部36aを、前記ティース部35bの角部35b´の外側に設ける構成とした。
 このため、肉抜き部36bがティース部35bに対向する面積を、巻き線支持部36aがティース部35bに対向する面積よりも比較的大きく確保し、熱伝導性の高い第2の熱伝導経路(矢印β)を主体とした放熱を行うことができて、放熱性能の更なる向上を図ることができる。
(2) The stator core 32 has a prismatic teeth portion 35b,
The said winding support part 36a was set as the structure provided in the outer side of corner | angular part 35b 'of the said teeth part 35b.
For this reason, the area where the lightening portion 36b faces the teeth portion 35b is ensured to be relatively larger than the area where the winding support portion 36a faces the teeth portion 35b, and the second heat conduction path ( Heat can be radiated mainly by the arrow β), and the heat radiation performance can be further improved.
 (3) 前記ボビン36は、前記巻き線支持部36aの少なくとも一方の端部に形成されるフランジ部36dと、
 前記フランジ部36dを貫通し、前記肉抜き部36bに連通する連通部36eを有する構成とした。
 このため、連通部36eを介して肉抜き部36bへとモールド樹脂34が速やかに流れ込み、肉抜き部36bに安定的にモールド樹脂34を充填することができる。
(3) The bobbin 36 includes a flange portion 36d formed on at least one end of the winding support portion 36a;
A configuration is adopted in which a communicating portion 36e that penetrates through the flange portion 36d and communicates with the lightening portion 36b is provided.
For this reason, the mold resin 34 quickly flows into the lightening portion 36b through the communication portion 36e, and the thinning portion 36b can be stably filled with the mold resin 34.
 (4) 巻き線33が巻回されるステータコア32と、
 前記ステータコア32の外側を覆うと共に前記巻き線33を支持する巻き線支持部36aと、前記巻き線支持部36aに形成されると共に前記巻き線33に覆われる肉抜き部36bと、を有する絶縁体からなるボビン36と、
 前記ステータコア32と、前記ボビン36と、前記巻き線33を一体的に封止すると共に、前記ボビン36よりも熱伝導性の高いモールド樹脂34と、を備えた電動機(モータ)1のボビン構造の製造方法において、
 前記ステータコア32の外側に前記ボビン36を介して前記巻き線33を巻回した後、前記巻き線33の内側に向けて前記モールド樹脂34を射出し、前記肉抜き部36bの少なくとも一部に前記モールド樹脂34を充填すると共に、前記肉抜き部36bに充填されたモールド樹脂34を前記ステータコア32と前記巻き線33とに接触させる構成とした。
 このため、モールド樹脂34により巻き線33がティース部35bに接触することを防止し、巻き線33とティース部35bの間の絶縁性を確保することができる。
(4) a stator core 32 around which the winding wire 33 is wound;
An insulator having a winding support portion 36 a that covers the outside of the stator core 32 and supports the winding wire 33, and a lightening portion 36 b that is formed on the winding support portion 36 a and is covered with the winding wire 33. A bobbin 36 comprising:
The bobbin structure of the electric motor (motor) 1 includes the stator core 32, the bobbin 36, and the winding wire 33 integrally sealed and a mold resin 34 having higher thermal conductivity than the bobbin 36. In the manufacturing method,
After winding the winding wire 33 on the outer side of the stator core 32 via the bobbin 36, the mold resin 34 is injected toward the inner side of the winding wire 33, and at least a part of the lightening portion 36b is The mold resin 34 is filled, and the mold resin 34 filled in the thinned portion 36 b is brought into contact with the stator core 32 and the winding wire 33.
For this reason, it is possible to prevent the winding wire 33 from coming into contact with the tooth portion 35b by the mold resin 34 and to ensure insulation between the winding wire 33 and the tooth portion 35b.
 (実施例2)
 実施例2のボビン構造は、巻き線支持部を、ステータコアの軸線方向に沿って設ける例である。
(Example 2)
The bobbin structure of the second embodiment is an example in which the winding support portion is provided along the axial direction of the stator core.
 図10は、実施例2のボビンを示す斜視図である。以下、図10に基づき、実施例2のボビン構造を説明する。 FIG. 10 is a perspective view showing the bobbin of the second embodiment. Hereinafter, the bobbin structure of the second embodiment will be described with reference to FIG.
 実施例2のボビン70は、図10に示すように、巻き線支持部71と、肉抜き部72と、第1フランジ部73aと、第2フランジ部73bと、を備えている。 As shown in FIG. 10, the bobbin 70 of the second embodiment includes a winding support portion 71, a lightening portion 72, a first flange portion 73a, and a second flange portion 73b.
 前記巻き線支持部71は、四角柱形状のティース部35bの周方向側面35e(図3参照)の外側に設けられる。すなわち、この実施例2における巻き線支持部71は、ステータコア32の軸線方向に沿って設けられる。 The said winding support part 71 is provided in the outer side of the circumferential direction side surface 35e (refer FIG. 3) of the teeth part 35b of a quadratic prism shape. That is, the winding support 71 in the second embodiment is provided along the axial direction of the stator core 32.
 前記肉抜き部72は、ティース部35bのコイルエンド対向面35d(図3参照)に対応して形成されている。すなわち、この肉抜き部72は、ティース部35bの周面を全周にわたって覆う巻き線支持部のうち、コイルエンド対向面35dに対向する部分を切り欠くことで形成される。 The said thinning part 72 is formed corresponding to the coil end opposing surface 35d (refer FIG. 3) of the teeth part 35b. That is, the thinned portion 72 is formed by cutting out a portion facing the coil end facing surface 35d in the winding support portion that covers the entire circumferential surface of the tooth portion 35b.
 前記一対のフランジ部73a,73bは、それぞれティース部35bの全周にわたって形成され、バックヨーク部35aと鍔部35c(図5参照)に沿って延在される。 The pair of flange portions 73a and 73b are respectively formed over the entire circumference of the tooth portion 35b, and extend along the back yoke portion 35a and the flange portion 35c (see FIG. 5).
 つまり、このような実施例2では、ボビン70の巻き線支持部71がステータコア32(図5参照)の軸線方向に沿って設けられ、肉抜き部72がティース部35bのコイルエンド対向面35dに対応する位置に形成されている。 That is, in the second embodiment, the winding support portion 71 of the bobbin 70 is provided along the axial direction of the stator core 32 (see FIG. 5), and the lightening portion 72 is formed on the coil end facing surface 35d of the teeth portion 35b. It is formed in the corresponding position.
 このため、比較的熱抵抗が高くて熱伝導性の低い、ステータコア32と巻き線(不図示)との間に生じる「巻き線支持部71とモールド樹脂を介在させた領域」は、モールドステータ3(図2参照)の軸線方向に沿うこととなる。一方、比較的熱抵抗が低くて熱伝導性の高い、ステータコア32と巻き線(不図示)との間に生じる「モールド樹脂のみを介在させた領域」は、巻き線(不図示)のコイルエンドに対向して設けられることとなる。
これにより、比較的軸線方向寸法の短い短軸のモールドステータ3において、放熱のしにくいコイルエンドからの放熱性能の向上を図ることができる。
また、ステータコア32の周方向側面35eと巻き線(不図示)との接触を確実に防止することができる。
For this reason, the “region where the winding support portion 71 and the mold resin are interposed” generated between the stator core 32 and the winding (not shown), which has a relatively high thermal resistance and low thermal conductivity, is the molded stator 3. (See FIG. 2). On the other hand, the “region where only the mold resin is interposed” generated between the stator core 32 and the winding (not shown) having a relatively low thermal resistance and high thermal conductivity is the coil end of the winding (not shown). It will be provided opposite to.
As a result, in the short-axis molded stator 3 having a relatively short dimension in the axial direction, it is possible to improve the heat dissipation performance from the coil end that is difficult to dissipate heat.
In addition, contact between the circumferential side surface 35e of the stator core 32 and a winding (not shown) can be reliably prevented.
 すなわち、実施例2の電動機のボビン構造にあっては、下記に挙げる効果を得ることができる。 That is, in the bobbin structure of the electric motor of Example 2, the following effects can be obtained.
 (5) 前記巻き線支持部71を、前記ステータコア32の軸線方向に沿って設ける構成とした。
 このため、比較的軸方向寸法の短いモールドステータであっても、放熱性能を向上させると共に、ステータコア32の軸線方向の絶縁性を確保することができる。
(5) The winding support portion 71 is configured to be provided along the axial direction of the stator core 32.
For this reason, even if it is a mold stator with a comparatively short axial dimension, while improving heat dissipation performance, the insulation of the stator core 32 in the axial direction can be ensured.
 (実施例3)
 実施例3のボビン構造は、巻き線支持部を、巻き線のコイルエンド部に対応する位置に設ける例である。
(Example 3)
The bobbin structure of the third embodiment is an example in which the winding support portion is provided at a position corresponding to the coil end portion of the winding.
 図11は、実施例3のボビンを示す斜視図である。以下、図11に基づき、実施例3のボビン構造を説明する。 FIG. 11 is a perspective view showing the bobbin of the third embodiment. Hereinafter, the bobbin structure of Example 3 will be described with reference to FIG.
 実施例3のボビン74は、図11に示すように、巻き線支持部75と、肉抜き部76と、一対のフランジ部77a,77bと、を備えている。また、このボビン74は、分割線78を介して二つに分割可能な構造となっており、ステータコア32のティース部35b(図3参照)を、モールドステータ3(図2参照)の周方向に沿って挟み込むことで、ステータコア32に装着される。 As shown in FIG. 11, the bobbin 74 according to the third embodiment includes a winding support portion 75, a lightening portion 76, and a pair of flange portions 77a and 77b. Further, the bobbin 74 has a structure that can be divided into two via a dividing line 78, and the teeth portion 35b (see FIG. 3) of the stator core 32 is arranged in the circumferential direction of the molded stator 3 (see FIG. 2). The stator core 32 is attached by being sandwiched along.
 前記巻き線支持部75は、四角柱形状のティース部35bのコイルエンド対向面35d(図3参照)の外側に設けられる。すなわち、この実施例2における巻き線支持部71は、巻き線33(図3参照)のコイルエンドに対応する位置に設けられる。 The said winding support part 75 is provided in the outer side of the coil end opposing surface 35d (refer FIG. 3) of the teeth part 35b of a quadratic prism shape. That is, the winding support 71 in the second embodiment is provided at a position corresponding to the coil end of the winding 33 (see FIG. 3).
 前記肉抜き部76は、ティース部35bの周方向側面35e(図3参照)に対応して形成されている。すなわち、この肉抜き部76は、ティース部35bの周面を全周にわたって覆う巻き線支持部のうち、周方向側面35eに対向する部分を切り欠くことで形成される。 The said thinning part 76 is formed corresponding to the circumferential side surface 35e (refer FIG. 3) of the teeth part 35b. In other words, the thinned portion 76 is formed by cutting out a portion facing the circumferential side surface 35e in the winding support portion that covers the entire circumference of the tooth portion 35b.
 前記一対のフランジ部77a,77bは、それぞれティース部35bの全周にわたって形成され、バックヨーク部35aと鍔部35c(図5参照)に沿って延在される。 The pair of flange portions 77a and 77b are respectively formed over the entire circumference of the tooth portion 35b, and extend along the back yoke portion 35a and the flange portion 35c (see FIG. 5).
 つまり、このような実施例3では、ボビン74の巻き線支持部75が巻き線33(図3参照)のコイルエンドに対応する位置に設けられ、肉抜き部76がティース部35bの周方向側面35eに対向する位置に形成されている。 That is, in the third embodiment, the winding support portion 75 of the bobbin 74 is provided at a position corresponding to the coil end of the winding wire 33 (see FIG. 3), and the lightening portion 76 is a circumferential side surface of the tooth portion 35b. It is formed at a position facing 35e.
 このため、比較的熱抵抗が高くて熱伝導性の低い、ステータコア32と巻き線33との間に生じる「巻き線支持部75とモールド樹脂を介在させた領域」は、巻き線33のコイルエンドに対向して設けられることとなる。一方、比較的熱抵抗が低くて熱伝導性の高い、ステータコア32と巻き線(不図示)との間に生じる「モールド樹脂のみを介在させた領域」は、モールドステータ3(図2参照)の軸線方向に沿うこととなる。これにより、比較的軸線方向寸法の長い長軸のモールドステータ3において、放熱のしにくい周方向側面35eからの放熱性能の向上を図ることができる。 Therefore, the “region where the winding support 75 and the mold resin are interposed” generated between the stator core 32 and the winding 33, which has a relatively high thermal resistance and low thermal conductivity, is the coil end of the winding 33. It will be provided opposite to. On the other hand, the “region where only the molding resin is interposed” generated between the stator core 32 and the winding (not shown), which has a relatively low thermal resistance and high thermal conductivity, is the mold stator 3 (see FIG. 2). It will be along the axial direction. Thereby, in the long-axis mold stator 3 having a relatively long dimension in the axial direction, it is possible to improve the heat dissipation performance from the circumferential side surface 35e that is difficult to dissipate heat.
 また、肉抜き部76を、図11に示すように周方向側面35eの長手方向中央部に対向する位置に形成することで、ステータコア32の周方向側面35eと巻き線(不図示)との高い絶縁性も確保することができる。 Further, by forming the thinned portion 76 at a position facing the central portion in the longitudinal direction of the circumferential side surface 35e as shown in FIG. 11, the circumferential side surface 35e of the stator core 32 and the winding (not shown) are high. Insulation can also be secured.
 すなわち、実施例3の電動機のボビン構造にあっては、下記に挙げる効果を得ることができる。 That is, in the bobbin structure of the electric motor of Example 3, the following effects can be obtained.
 (6) 前記巻き線支持部71を、前記巻き線33のコイルエンドに対応する位置に設ける構成とした。
 このため、比較的軸方向寸法の長いモールドステータであっても、放熱性能を向上させることができる。
(6) The winding support portion 71 is provided at a position corresponding to the coil end of the winding 33.
For this reason, even if it is a mold stator with a comparatively long axial dimension, heat dissipation performance can be improved.
 (実施例4)
 実施例4のボビン構造は、巻き線の外側を区画するパーティション部を有する例である。
Example 4
The bobbin structure of Example 4 is an example having a partition portion that partitions the outside of the winding.
 図12は、実施例4のボビンを示す斜視図である。図13は、実施例4のボビン構造を適用したモールドステータを示す要部断面図である。以下、図12及び図13に基づき、実施例4のボビン構造を説明する。 FIG. 12 is a perspective view showing the bobbin of the fourth embodiment. FIG. 13 is a cross-sectional view of a main part showing a molded stator to which the bobbin structure of the fourth embodiment is applied. Hereinafter, the bobbin structure of the fourth embodiment will be described with reference to FIGS. 12 and 13.
 実施例4のボビン80は、図12に示すように、巻き線支持部81と、肉抜き部82と、一対のフランジ部83a,83bと、パーティション部84と、を備えている。
ここで、前記巻き線支持部81、肉抜き部82、一対のフランジ部83a,83bについては、実施例1と同一の構成であるため、説明を省略する。
As shown in FIG. 12, the bobbin 80 of the fourth embodiment includes a winding support portion 81, a lightening portion 82, a pair of flange portions 83 a and 83 b, and a partition portion 84.
Here, since the winding support part 81, the lightening part 82, and the pair of flange parts 83a and 83b have the same configuration as in the first embodiment, the description thereof is omitted.
 前記パーティション部84は、ステータコア32のバックヨーク部35aと巻き線33の間に介在する一方のフランジ部83aの周方向端部83a´から、ステータコア32の内側に向かって延在された平板である。このパーティション部84によって、ステータコア32のティース部35bに巻回された巻き線33の外側が区画される。 The partition portion 84 is a flat plate extending toward the inside of the stator core 32 from a circumferential end portion 83 a ′ of one flange portion 83 a interposed between the back yoke portion 35 a of the stator core 32 and the winding wire 33. . The partition part 84 defines the outside of the winding 33 wound around the tooth part 35 b of the stator core 32.
 つまり、このような実施例4では、パーティション部84により、図13に示すように、隣接する巻き線33同士が仕切られる。 That is, in Example 4 as described above, the adjacent windings 33 are partitioned by the partition portion 84 as shown in FIG.
 これにより、モールド樹脂34の射出時の衝撃によって巻き線33の位置ずれが生じた場合であっても、隣接する巻き線33同士の接触を防止し、絶縁性を確保することができる。 Thereby, even when the position of the winding 33 is displaced due to an impact at the time of injection of the mold resin 34, it is possible to prevent the adjacent windings 33 from contacting each other and to ensure insulation.
 すなわち、この実施例4の電動機のボビン構造にあっては、下記に挙げる効果を得ることができる。 That is, in the bobbin structure of the electric motor of Example 4, the following effects can be obtained.
 (7) 前記ボビン80は、前記巻き線33の外側を区画するパーティション部84を有する構成とした。
 このため、隣接する巻き線33同士の接触を防止し、絶縁性を確保することができる。
(7) The bobbin 80 has a partition portion 84 that partitions the outside of the winding wire 33.
For this reason, contact between adjacent windings 33 can be prevented and insulation can be secured.
 (実施例5)
 実施例5のボビン構造は、ステータコアのバックヨーク部側のフランジ部に連通部を設けた例である。
(Example 5)
The bobbin structure of the fifth embodiment is an example in which a communicating portion is provided in the flange portion on the back yoke portion side of the stator core.
 図14は、実施例5のボビンを示す斜視図である。以下、図14に基づき、実施例5のボビン構造を説明する。 FIG. 14 is a perspective view showing the bobbin of the fifth embodiment. Hereinafter, the bobbin structure of the fifth embodiment will be described with reference to FIG.
 実施例5のボビン85は、図14に示すように、巻き線支持部86と、肉抜き部87と、一対のフランジ部88a,88bと、連通部89と、を備えている。
ここで、前記巻き線支持部86、肉抜き部87、一対のフランジ部88a,88bについては、実施例2と同一の構成であるため、説明を省略する。
As shown in FIG. 14, the bobbin 85 of the fifth embodiment includes a winding support portion 86, a lightening portion 87, a pair of flange portions 88 a and 88 b, and a communication portion 89.
Here, the winding support portion 86, the lightening portion 87, and the pair of flange portions 88a and 88b have the same configuration as that of the second embodiment, and thus description thereof is omitted.
 前記連通部89は、ステータコア32のバックヨーク部35a(図5参照)に沿って延在された一方のフランジ部88aの一部を切り欠いて形成され、この一方のフランジ部88aを貫通し、肉抜き部87に連通する。 The communication portion 89 is formed by cutting out a part of one flange portion 88a extending along the back yoke portion 35a (see FIG. 5) of the stator core 32, and penetrates the one flange portion 88a. It communicates with the meat removal portion 87.
 そして、この連通部89により、モールド樹脂(ここでは不図示)を射出した際に、連通部89を介して肉抜き部87内へ速やかに樹脂充填を行うことができる。 And, when the molding resin (not shown here) is injected by the communication portion 89, the resin filling can be quickly performed into the lightening portion 87 via the communication portion 89.
 以上、本発明の電動機のボビン構造及びその製造方法を実施例1~実施例5に基づき説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 As described above, the bobbin structure of the electric motor and the manufacturing method thereof according to the present invention have been described based on the first to fifth embodiments. However, the specific configuration is not limited to these embodiments, and the scope of the claims is as follows. Design changes and additions are allowed without departing from the spirit of the invention according to each claim.
 実施例1では、ステータコア32の鍔部35cに沿う他方のフランジ部36dのみに連通部36eを形成し、一方、実施例5では、ステータコア32のバックヨーク部35aに沿う一方のフランジ部88aのみに連通部89を形成した例を示した。しかしながら、これに限らず、一対のフランジ部のいずれにも、肉抜き部に連通する連通部を形成してもよい。 In the first embodiment, the communication portion 36e is formed only on the other flange portion 36d along the flange portion 35c of the stator core 32. On the other hand, in the fifth embodiment, only one flange portion 88a along the back yoke portion 35a of the stator core 32 is formed. The example which formed the communication part 89 was shown. However, the present invention is not limited to this, and any of the pair of flange portions may be formed with a communication portion communicating with the lightening portion.
関連出願の相互参照Cross-reference of related applications
 本出願は、2013年1月25日に日本国特許庁に出願された特願2013-12215に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。 This application claims priority based on Japanese Patent Application No. 2013-12215 filed with the Japan Patent Office on January 25, 2013, the entire disclosure of which is fully incorporated herein by reference.

Claims (7)

  1.  ステータコアと、
     前記ステータコアの外側を覆うと共に巻き線が巻回される巻き線支持部と、前記巻き線支持部に形成されて前記巻き線に覆われる肉抜き部と、を有する絶縁体からなるボビンと、
     前記ステータコアと、前記ボビンと、前記巻き線を一体的に封止すると共に、前記ボビンよりも熱伝導性の高いモールド樹脂と、を備え、
     前記モールド樹脂を、前記肉抜き部の少なくとも一部に充填し、前記ステータコアと前記巻き線とに接触させる
     ことを特徴とする電動機のボビン構造。
    A stator core;
    A bobbin made of an insulator having an outer periphery of the stator core and a winding support portion around which the winding is wound, and a lightening portion formed on the winding support portion and covered by the winding;
    The stator core, the bobbin, and the winding are integrally sealed, and includes a mold resin having higher thermal conductivity than the bobbin,
    A bobbin structure for an electric motor, wherein the mold resin is filled in at least a part of the lightening portion and brought into contact with the stator core and the winding.
  2.  請求項1に記載された電動機のボビン構造において、
     前記ステータコアは、角柱状のティース部を有し、
     前記巻き線支持部を、前記ティース部の角部の外側に設ける
     ことを特徴とする電動機のボビン構造。
    In the electric motor bobbin structure according to claim 1,
    The stator core has a prismatic teeth portion,
    The bobbin structure for an electric motor, wherein the winding support portion is provided outside a corner portion of the teeth portion.
  3.  請求項1に記載された電動機のボビン構造において、
     前記巻き線支持部を、前記ステータコアの軸線方向に沿って設ける
     ことを特徴とする電動機のボビン構造。
    In the bobbin structure of the electric motor according to claim 1,
    The bobbin structure for an electric motor, wherein the winding support portion is provided along an axial direction of the stator core.
  4.  請求項1に記載された電動機のボビン構造において、
     前記巻き線支持部を、前記巻き線のコイルエンドに対応する位置に設ける
     ことを特徴とする電動機のボビン構造。
    In the bobbin structure of the electric motor according to claim 1,
    The bobbin structure for an electric motor, wherein the winding support portion is provided at a position corresponding to a coil end of the winding.
  5.  請求項1から請求項4の何れか一項に記載された電動機のボビン構造において、
     前記ボビンは、前記巻き線の外側を区画するパーティション部を有する
     ことを特徴とする電動機のボビン構造。
    In the bobbin structure of the electric motor according to any one of claims 1 to 4,
    The bobbin has a partition part that partitions the outside of the winding. A bobbin structure for an electric motor.
  6.  請求項1から請求項5の何れか一項に記載された電動機のボビン構造において、
     前記ボビンは、前記巻き線支持部の少なくとも一方の端部に形成されるフランジ部と、
     前記フランジ部を貫通し、前記肉抜き部に連通する連通部を有する
     ことを特徴とする電動機のボビン構造。
    In the bobbin structure of the electric motor according to any one of claims 1 to 5,
    The bobbin has a flange portion formed at at least one end of the winding support portion;
    A bobbin structure for an electric motor comprising a communicating portion that penetrates the flange portion and communicates with the lightening portion.
  7.  ステータコアと、
     前記ステータコアの外側を覆うと共に巻き線が巻回される巻き線支持部と、前記巻き線支持部に形成されて前記巻き線に覆われる肉抜き部と、を有する絶縁体からなるボビンと、
     前記ステータコアと、前記ボビンと、前記巻き線を一体的に封止すると共に、前記ボビンよりも熱伝導性の高いモールド樹脂と、を備えた電動機のボビン構造の製造方法において、
     前記ステータコアの外側に前記ボビンを介して前記巻き線を巻回した後、前記巻き線の内側に向けて前記モールド樹脂を射出し、前記肉抜き部の少なくとも一部に前記モールド樹脂を充填すると共に、前記肉抜き部に充填されたモールド樹脂を前記ステータコアと前記巻き線とに接触させる
     ことを特徴とするボビン構造の製造方法。
    A stator core;
    A bobbin made of an insulator having an outer periphery of the stator core and a winding support portion around which the winding is wound, and a lightening portion formed on the winding support portion and covered by the winding;
    In the manufacturing method of the bobbin structure of the electric motor comprising the stator core, the bobbin, and the winding integrally, and a mold resin having higher thermal conductivity than the bobbin,
    After winding the winding on the outside of the stator core via the bobbin, the mold resin is injected toward the inside of the winding, and the mold resin is filled into at least a part of the lightening portion. A method of manufacturing a bobbin structure, wherein the mold resin filled in the lightening portion is brought into contact with the stator core and the winding.
PCT/JP2014/051277 2013-01-25 2014-01-22 Electric motor bobbin structure and method for manufacturing same WO2014115775A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014558596A JP5900662B2 (en) 2013-01-25 2014-01-22 Bobbin structure of electric motor and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013012215 2013-01-25
JP2013-012215 2013-01-25

Publications (1)

Publication Number Publication Date
WO2014115775A1 true WO2014115775A1 (en) 2014-07-31

Family

ID=51227566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051277 WO2014115775A1 (en) 2013-01-25 2014-01-22 Electric motor bobbin structure and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP5900662B2 (en)
WO (1) WO2014115775A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017830A (en) * 2015-06-30 2017-01-19 トヨタ自動車株式会社 Manufacturing method of stator of rotary electric machine
EP3139474A1 (en) * 2015-09-02 2017-03-08 Siemens Aktiengesellschaft Electric machine and method for operating such an electric machine and method for producing same
JP2018078749A (en) * 2016-11-10 2018-05-17 三菱電機株式会社 Magnetic pole, stator arranged with the same, rotary electric machine having the same, and method of manufacturing stator
WO2019121327A1 (en) * 2017-12-18 2019-06-27 Lsp Innovative Automotive Systems Gmbh Stator tooth and stator having good electrical insulation and, at the same time, very high thermal conductivity for increasing the performance of electric motors
WO2019123913A1 (en) * 2017-12-22 2019-06-27 サンデンホールディングス株式会社 Electrically driven compressor
JP2020025428A (en) * 2018-08-08 2020-02-13 群光電能科技股▲ふん▼有限公司 Motor stator structure and stator unit
EP3790170A4 (en) * 2019-03-13 2022-01-26 Top Co., Ltd. Rotating machine and insulator
DE102018004494B4 (en) 2017-06-12 2023-03-16 Fanuc Corporation Engine and method of making it
EP4160881A1 (en) * 2021-10-01 2023-04-05 Minebea Mitsumi Inc. Motor
WO2023234266A1 (en) * 2022-05-31 2023-12-07 株式会社デンソー Stator and rotary electric machine
JP7400436B2 (en) 2019-12-17 2023-12-19 ニデックパワートレインシステムズ株式会社 motor and electric pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283730A (en) * 2007-05-08 2008-11-20 Sumitomo Electric Ind Ltd Split stator for electric motor, stator for electric motor equipped with this split stator, electric motor equipped with this stator for electric motor, and manufacturing method of split stator for electric motor
JP2010136571A (en) * 2008-12-08 2010-06-17 Toyota Motor Corp Stator for rotating electrical machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028914A (en) * 2008-07-16 2010-02-04 Sumitomo Electric Ind Ltd Resin molded coil, resin molded stators, and manufacturing method for the stators

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283730A (en) * 2007-05-08 2008-11-20 Sumitomo Electric Ind Ltd Split stator for electric motor, stator for electric motor equipped with this split stator, electric motor equipped with this stator for electric motor, and manufacturing method of split stator for electric motor
JP2010136571A (en) * 2008-12-08 2010-06-17 Toyota Motor Corp Stator for rotating electrical machine

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017830A (en) * 2015-06-30 2017-01-19 トヨタ自動車株式会社 Manufacturing method of stator of rotary electric machine
CN108028569B (en) * 2015-09-02 2019-07-19 西门子公司 Motor and manufacturing method
EP3139474A1 (en) * 2015-09-02 2017-03-08 Siemens Aktiengesellschaft Electric machine and method for operating such an electric machine and method for producing same
WO2017036745A1 (en) * 2015-09-02 2017-03-09 Siemens Aktiengesellschaft Electric machine, method for operating such an electric machine, and production method
JP2018526956A (en) * 2015-09-02 2018-09-13 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Electric machine and manufacturing method thereof
US10277089B2 (en) 2015-09-02 2019-04-30 Siemens Aktiengesellschaft Electric machine, method for operating such an electric machine, and production method
CN108028569A (en) * 2015-09-02 2018-05-11 西门子公司 Motor and the method and manufacture method for running this motor
JP2018078749A (en) * 2016-11-10 2018-05-17 三菱電機株式会社 Magnetic pole, stator arranged with the same, rotary electric machine having the same, and method of manufacturing stator
DE102018004494B4 (en) 2017-06-12 2023-03-16 Fanuc Corporation Engine and method of making it
WO2019121327A1 (en) * 2017-12-18 2019-06-27 Lsp Innovative Automotive Systems Gmbh Stator tooth and stator having good electrical insulation and, at the same time, very high thermal conductivity for increasing the performance of electric motors
CN111512522A (en) * 2017-12-22 2020-08-07 三电控股株式会社 Electric compressor
WO2019123913A1 (en) * 2017-12-22 2019-06-27 サンデンホールディングス株式会社 Electrically driven compressor
JP2019115141A (en) * 2017-12-22 2019-07-11 サンデンホールディングス株式会社 Motor compressor
US11043869B2 (en) 2018-08-08 2021-06-22 Chicony Power Technology Co., Ltd. Motor stator structure and stator assembly
CN110829666B (en) * 2018-08-08 2021-06-22 群光电能科技股份有限公司 Motor stator structure and stator assembly
CN110829666A (en) * 2018-08-08 2020-02-21 群光电能科技股份有限公司 Motor stator structure and stator assembly
JP2020025428A (en) * 2018-08-08 2020-02-13 群光電能科技股▲ふん▼有限公司 Motor stator structure and stator unit
EP3790170A4 (en) * 2019-03-13 2022-01-26 Top Co., Ltd. Rotating machine and insulator
US11955858B2 (en) 2019-03-13 2024-04-09 Top Co., Ltd. Rotary machine and insulator
JP7400436B2 (en) 2019-12-17 2023-12-19 ニデックパワートレインシステムズ株式会社 motor and electric pump
EP4160881A1 (en) * 2021-10-01 2023-04-05 Minebea Mitsumi Inc. Motor
WO2023234266A1 (en) * 2022-05-31 2023-12-07 株式会社デンソー Stator and rotary electric machine

Also Published As

Publication number Publication date
JP5900662B2 (en) 2016-04-06
JPWO2014115775A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP5900662B2 (en) Bobbin structure of electric motor and manufacturing method thereof
JP5681232B2 (en) Electric motor stator injecting resin by injection molding
JP6358565B2 (en) Reactor and manufacturing method of reactor
JP5267091B2 (en) Stator for rotating electrical machine
JP5785863B2 (en) Electric motor stator and permanent magnet rotating electric machine
WO2015198961A1 (en) Stator of electric motor and cooling structure for dynamo-electric machine
JP5083258B2 (en) Reactor
JP5533285B2 (en) Insulating member and stator manufacturing method
US10536061B2 (en) Method for manufacturing stator of rotary electric machine
JP2013066314A (en) Motor and manufacturing method of the same
US9559573B2 (en) Method of manufacturing stator of electric rotating machine
JP5731338B2 (en) Rotating electric machine
JP5240131B2 (en) Motor cooling structure
JP2009254025A (en) Cylindrical linear motor and its manufacturing method
TWI583101B (en) Axial air gap type rotary motor
JP2010141960A (en) Insulating member
JP2015033299A (en) Cooling structure of stator coil and manufacturing method of the same
JP6818900B2 (en) Manufacturing method of stator and stator of rotary electric machine
KR20200079430A (en) Bobbin structure of armature
JP6595033B2 (en) Axial air gap type rotating electrical machine
JP2010200492A (en) Insulator, stator and motor
JP2011239526A (en) Motor armature
JP2018139332A (en) Reactor and manufacturing method therefor
WO2023181780A1 (en) Rotating electric machine
US20210257868A1 (en) Stator for an electric motor, encompassing an overmolded metal framework through which coolant can flow, having a cover that can be welded on

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743414

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014558596

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743414

Country of ref document: EP

Kind code of ref document: A1