WO2014114200A1 - High-steel-grade anti-sulfur drill pipe material and preparation method thereof - Google Patents

High-steel-grade anti-sulfur drill pipe material and preparation method thereof Download PDF

Info

Publication number
WO2014114200A1
WO2014114200A1 PCT/CN2014/070669 CN2014070669W WO2014114200A1 WO 2014114200 A1 WO2014114200 A1 WO 2014114200A1 CN 2014070669 W CN2014070669 W CN 2014070669W WO 2014114200 A1 WO2014114200 A1 WO 2014114200A1
Authority
WO
WIPO (PCT)
Prior art keywords
drill pipe
pipe material
preparation
resistant drill
grade sulfur
Prior art date
Application number
PCT/CN2014/070669
Other languages
French (fr)
Chinese (zh)
Inventor
韩礼红
李方坡
路彩虹
王航
李金凤
冯耀荣
刘永刚
Original Assignee
中国石油天然气集团公司
中国石油天然气集团公司管材研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气集团公司, 中国石油天然气集团公司管材研究所 filed Critical 中国石油天然气集团公司
Publication of WO2014114200A1 publication Critical patent/WO2014114200A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies

Abstract

The present invention provides a high-steel-grade anti-sulfur drill pipe material and a preparation method thereof. The high-steel-grade anti-sulfur drill pipe material comprises the following components (wt%): 0.15-0.25% of C, 0.20-0.50% of Mn, 0.20-0.30% of Si, 0.50-1.20% of Cr, 0.80-1.5% of Ni, 0.50-1.20% of Mo, 0.01-0.03% of Nb, 0.01-0.03% of V, 0.01-0.03% of Ti, 1.0-3.0% of Al, 0.005-0.01% of La, S with the weight being less than or equal to 0.001%, P with the weight being less than or equal to 0.003%, and the rest being Fe. The preparation method of the high-steel-grade anti-sulfur drill pipe material comprises the following steps: selecting raw materials according to the components; smelting, refining and continuously casting the raw materials to obtain a cast ingot; rolling the cast ingot to obtain a tubular product; and performing heat treatment on the tubular product to obtain the high-steel-grade anti-sulfur drill pipe material. The strength of the high-steel-grade anti-sulfur drill pipe material in the present invention can reach the steel grade range of 105-135 ksi.

Description

一种高钢级抗硫钻杆材料及其制备方法 技术领域  High steel grade sulfur-resistant drill pipe material and preparation method thereof
本发明涉及一种高钢级抗硫钻杆材料及其制备方法, 属于低碳合金钢金属材料技术 领域。 背景技术  The invention relates to a high steel grade sulfur-resistant drill pipe material and a preparation method thereof, and belongs to the technical field of low carbon alloy steel metal materials. Background technique
国内外现有抗硫钻杆最高钢级为 105ksi, 国外的日本 NKK、 法国曼内斯曼、 格兰 特公司, 及国内的宝钢、 渤海能克等公司均有 105ksi钢级的抗硫钻杆。 然而, 国内西部 油气田如四川、 重庆及塔里木等重点油气田普遍井深达到 5000米以上, 又含有不同程 度的硫化氢介质, 对这些 5000米以上的深井, 105ksi钢级无法满足钻井载荷的需要。 而且高钢级钢质钻杆对硫化氢应力腐蚀开裂非常敏感,硫化氢的存在很容易造成高钢级 钻杆发生硫化氢应力腐蚀开裂,造成钻具断裂、掉井等事故,给钻井工程造成极大危害。 高钢级钻杆是否会发生硫化氢应力腐蚀开裂主要取决于钻杆的微观组织特征, 而钢质钻 杆材料的成分设计及制造工艺对钻杆的微观组织特征影响明显, 而且后者还决定了钻杆 的宏观性能特征。  The highest grade of sulfur-resistant drill pipe at home and abroad is 105ksi, and the foreign Japan NKK, France Mannesmann, Grant Company, and domestic Baosteel, Bohai Nengke and other companies have 105ksi steel grade sulfur-resistant drill pipe. However, the major oil and gas fields in western China, such as Sichuan, Chongqing and Tarim, generally have a depth of more than 5,000 meters and contain different degrees of hydrogen sulfide medium. For these deep wells over 5,000 meters, the 105ksi steel grade cannot meet the drilling load requirements. Moreover, the high-grade steel drill pipe is very sensitive to the stress corrosion cracking of hydrogen sulfide. The existence of hydrogen sulfide easily causes the hydrogen sulfide stress corrosion cracking of the high steel grade drill pipe, causing the drilling tool to break and fall out of the well, causing the drilling project. Great harm. Whether the high-grade drill pipe will cause hydrogen sulfide stress corrosion cracking mainly depends on the microstructure characteristics of the drill pipe, and the composition design and manufacturing process of the steel drill pipe material have obvious influence on the microstructure characteristics of the drill pipe, and the latter also decides The macro performance characteristics of the drill pipe.
因此, 仍有必要研发出一种高钢级抗硫钻杆材料, 通过合理的成分及工艺设计, 来 优化材料的微观组织特征, 实现抗硫化氢应力腐蚀开裂。 发明内容  Therefore, it is still necessary to develop a high-grade sulfur-resistant drill pipe material, through reasonable composition and process design, to optimize the microstructure of the material to achieve hydrogen sulfide stress corrosion cracking. Summary of the invention
为解决上述技术问题,本发明的目的在于提供一种高钢级抗硫钻杆材料及其制备方 法。 本发明的高钢级抗硫钻杆材料的强度能够达到 105-135ksi钢级范围, 其能够应用于 含硫化氢的油气田深井钻井工程, 满足含硫化氢油气田 5000-8000米深井安全钻井的需 要。  In order to solve the above technical problems, an object of the present invention is to provide a high steel grade sulfur-resistant drill pipe material and a method of preparing the same. The high-grade sulfur-resistant drill pipe material of the invention can reach the steel-grade range of 105-135 ksi, and can be applied to deep well drilling engineering of oil and gas fields containing hydrogen sulfide, and meets the needs of safe drilling of deep wells of 5000-8000 meters of hydrogen sulfide-containing oil and gas fields.
为达上述目的, 本发明提供一种高钢级抗硫钻杆材料, 以质量百分比计, 其包括以 下成分组成: C: 0.15%-0.25%, Mn: 0.20%-0.50%, Si: 0.20%-0.30%, Cr: 0.50%- 1.20%, Ni: 0.80%- 1.5%, Mo: 0.50%-1.20%, b: 0.01%-0.03%, V: 0.01%-0.03%, Ti: 0.01%-0.03%, Ah 1.0%-3.0%, La: 0.005%-0.01%, S: <0.001%, P: <0.003%, 余量为 Fe。 To achieve the above object, the present invention provides a high-grade sulfur-resistant drill pipe material comprising, by mass percentage, a composition comprising the following composition: C: 0.15%-0.25%, Mn : 0.20%-0.50%, Si: 0.20% -0.30%, Cr: 0.50% - 1.20%, Ni: 0.80% - 1.5%, Mo: 0.50% - 1.20%, b: 0.01% - 0.03%, V: 0.01% - 0.03%, Ti: 0.01% - 0.03 %, Ah 1.0%-3.0%, La: 0.005%-0.01%, S: <0.001%, P: <0.003%, and the balance is Fe.
在上述高钢级抗硫钻杆材料的成分组成中, 碳元素 (C) 含量对于制备该材料时热 处理后形成的碳化物种类、 数量有直接影响。 锰(Mn) 、 硅 (Si)对于材料冶炼中的钢 水流动性影响显著。 铬 (Cr) 、 钼 (Mo) 属于碳化物形成元素, 与碳元素的合理搭配 与调质热处理后第二相弥散物特征及材料的淬透性有直接关系。镍(Ni)溶解于基体中, 对于提高钢的韧性水平具有重要意义, 但其含量过多则会形成游离的镍单质, 对硫化氢 应力腐蚀有负面作用, 而上述的含量则最为合适。 铌 ( b ) 、 钒 (V) 、 钛 (Ti) 属于 微量元素, 适量添加可以抑制在制备该材料时的热轧过程中的晶粒异常长大, 还能够细 化晶粒, 提高晶界强度及稳定性, 但任一元素添加过量将导致弥散物长大粗化, 增加材 料对硫化氢应力腐蚀开裂的敏感性。 铝 (A1 ) 的适量添加, 可以提高抗氧化性, 材料表 面可以自发形成致密的 A1203薄膜, 阻止硫化氢分子及活性氢原子渗入基体, 从而提高 材料的耐腐蚀性, 过量添加则会引起钢水冶炼中的自氧化, 形成夹杂物, 增加材料对硫 化氢应力腐蚀开裂的敏感性。 稀土元素镧(La)可以净化材料内夹杂物, 降低不同物相 界及晶界残余应力, 提高第二相粒子形核位置均匀性, 保证相界及晶界在硫化氢环境下 不会发生应力腐蚀开裂。 硫 (S ) 、 磷 (P ) 属于钢中的杂质元素, 需要严格控制, 实现 材料的纯净度。 In the composition of the above-mentioned high-grade sulfur-resistant drill pipe material, the carbon (C) content has a direct influence on the type and amount of carbides formed after heat treatment. Manganese (Mn) and silicon (Si) have significant effects on the fluidity of molten steel in material smelting. Chromium (Cr) and molybdenum (Mo) are carbide-forming elements, which are directly related to the reasonable combination of carbon and the second-phase dispersion characteristics and hardenability of the material after heat treatment. Nickel (Ni) is dissolved in the matrix, It is of great significance to improve the toughness level of steel, but if it is too much, it will form a free element of nickel, which has a negative effect on the stress corrosion of hydrogen sulfide, and the above content is most suitable.铌(b), vanadium (V), and titanium (Ti) are trace elements. Appropriate addition can inhibit the abnormal growth of crystal grains during hot rolling during the preparation of the material, and can refine grains and increase grain boundary strength. And stability, but the excessive addition of any element will lead to the coarsening of the dispersion and increase the sensitivity of the material to the stress corrosion cracking of hydrogen sulfide. The addition of aluminum (A1) can improve the oxidation resistance. The surface of the material can spontaneously form a dense A1 2 0 3 film, preventing the hydrogen sulfide molecules and active hydrogen atoms from penetrating into the matrix, thereby improving the corrosion resistance of the material. It causes auto-oxidation in molten steel smelting to form inclusions and increase the sensitivity of the material to hydrogen sulfide stress corrosion cracking. The rare earth element lanthanum (La) can purify the inclusions in the material, reduce the phase boundary and residual stress of the grain boundary, improve the nucleation uniformity of the second phase particles, and ensure that the phase boundary and the grain boundary do not stress under the hydrogen sulfide environment. Corrosion cracking. Sulfur (S) and phosphorus (P) are impurity elements in steel and need to be strictly controlled to achieve the purity of the material.
在本发明中, 优选地, 所述的高钢级抗硫钻杆材料具备以下力学性能指标: 室温屈 服强度为 724-932MPa、 室温抗拉强度为 850-1050MPa、 延伸率为 25-35%、 室温冲击韧 性为 145-180J、 晶粒度为 9.0-12.0级、 硬度为 HRC18-HRC25。  In the present invention, preferably, the high-grade sulfur-resistant drill pipe material has the following mechanical properties: room temperature yield strength is 724-932 MPa, room temperature tensile strength is 850-1050 MPa, elongation is 25-35%, The room temperature impact toughness is 145-180J, the grain size is 9.0-12.0, and the hardness is HRC18-HRC25.
根据本发明的具体实施方式,优选地,所述的高钢级抗硫钻杆材料满足 NACE 0177 标准中 A法试验的性能要求, 即在 A溶液内, 对所述高钢级抗硫钻杆材料施加 85%名 义屈服强度, 其持续 720 小时受载不发生断裂。 其中, A溶液为含有 5wt%NaCl 和 0.5wt%CH3COOH的饱和 H2S水溶液。 According to a specific embodiment of the present invention, preferably, the high-grade sulfur-resistant drill pipe material satisfies the performance requirement of the A method test in the NACE 0177 standard, that is, in the A solution, the high-grade sulfur-resistant drill pipe The material exerts a nominal yield strength of 85%, which does not break for 720 hours. Among them, the A solution is a saturated H 2 S aqueous solution containing 5 wt% NaCl and 0.5 wt% CH 3 COOH.
根据本发明的具体实施方式, 优选地, 在透射电子显微镜下观察, 所述高钢级抗硫 钻杆材料在平均每 100平方微米面积中包含渗碳体及合金元素碳化物粒子颗粒数为 5-15 个, 粒子的长径比为 1-1.5, 晶界上粒子间距与晶粒内粒子间距比值为 0.8-1。 该材料具 有晶粒等轴化、第二相粒子等轴化及弥散分布的特征, 可以实现钻杆材料微观组织的均 匀化特征, 降低材料微观应力集中效应。  According to a specific embodiment of the present invention, preferably, the high-grade sulfur-resistant drill pipe material comprises cementite and alloying element carbide particles in an area of 5 square micrometers on average, as observed under a transmission electron microscope. -15, the aspect ratio of the particles is 1-1.5, and the ratio of the particle spacing on the grain boundary to the particle spacing in the grain is 0.8-1. The material has the characteristics of equiaxed grains and equiaxed and dispersed distribution of the second phase particles, which can realize the homogenization characteristics of the microstructure of the drill pipe material and reduce the micro stress concentration effect of the material.
本发明还提供一种上述高钢级抗硫钻杆材料的制备方法, 其包括以下步骤: 按照所 述高钢级抗硫钻杆材料的成分组成选取原料, 将所述原料进行熔炼、 精炼及连铸后, 得 到铸锭; 将所述铸锭进行轧制得到管材; 然后对所述管材进行热处理, 得到所述的高钢 级抗硫钻杆材料。  The invention also provides a preparation method of the above-mentioned high-grade sulfur-resistant drill pipe material, which comprises the following steps: selecting raw materials according to the composition of the high-grade sulfur-resistant drill pipe material, and smelting and refining the raw materials; After continuous casting, an ingot is obtained; the ingot is rolled to obtain a pipe; and then the pipe is heat-treated to obtain the high-grade sulfur-resistant drill pipe material.
在上述的制备方法中, 优选地, 所述热处理的步骤包括依次进行的正火处理、 调质 处理及球化处理三个阶段。  In the above preparation method, preferably, the step of heat treatment comprises three stages of normalizing treatment, quenching and tempering treatment, and spheroidizing treatment.
在上述的制备方法中, 优选地, 所述正火处理包括: 使所述管材在 900-930°C下保 温 30-60分钟, 随后空冷至室温, 得到正火后的管材。 In the above preparation method, preferably, the normalizing treatment comprises: maintaining the pipe at 900-930 ° C The temperature was 30-60 minutes, then air cooled to room temperature to obtain a tube after normalizing.
在上述的制备方法中, 优选地, 所述调质处理包括: 使所述正火后的管材在 900-950°C下保温 45-60分钟, 随后水淬至室温, 之后在 600-640 °C下保温(回火) 45-90 分钟, 然后水冷至室温, 得到调质后的管材。  In the above preparation method, preferably, the quenching and tempering treatment comprises: maintaining the normalized pipe at 900-950 ° C for 45-60 minutes, then water quenching to room temperature, and then at 600-640 ° Heat (tempering) at C for 45-90 minutes, then cool to room temperature to obtain a tempered tube.
在上述的制备方法中, 优选地, 所述球化处理包括: 使所述调质后的管材在 In the above preparation method, preferably, the spheroidizing treatment comprises: causing the tempered pipe to be in
680-720°C下保温 30-45分钟, 随后水冷至室温, 得到所述的高钢级抗硫钻杆材料。 The tempering at 680-720 ° C for 30-45 minutes, followed by water cooling to room temperature, to obtain the high steel grade sulfur-resistant drill pipe material.
在上述热处理的过程中, 正火处理能够消除管材的残余应力、 使微观组织均匀化。 调质处理能够获得单一、 均匀的回火索氏体组织, 控制奥氏体化温度及时间, 可以保证 管材实现全奥氏体化, 又不会发生晶粒粗化现象。 球化处理能够对回火索氏体组织上第 二相粒子进行球化, 降低其长径比, 以降低管材的第二相粒子周围的微观应力集中, 降 低所得到的钻杆材料对硫化氢应力腐蚀裂纹的敏感性。回火及球化阶段的水冷处理可以 控制第二相粒子数量及形态特征, 防止其进一步长大和粗化。  In the above heat treatment process, the normalizing treatment can eliminate the residual stress of the pipe and homogenize the microstructure. The quenching and tempering treatment can obtain a single and uniform tempered sorbite structure, control the austenitizing temperature and time, and ensure that the pipe is fully austenitized without grain coarsening. The spheroidizing treatment can spheroidize the second phase particles on the tempered sorbite structure, reduce the aspect ratio thereof, reduce the microscopic stress concentration around the second phase particles of the pipe, and reduce the hydrogen sulfide of the obtained drill pipe material. The sensitivity of stress corrosion cracking. The water cooling treatment in the tempering and spheroidizing stage can control the number and morphological characteristics of the second phase particles to prevent further growth and coarsening.
在上述的制备方法中, 优选地, 所述熔炼、 精炼及连铸的步骤包括: 在纯铁水中添 加合金元素作为原料, 将所述原料通过转炉熔炼, 然后经真空脱气、 炉外精炼及电渣重 熔处理后, 浇铸成铸锭。 其中, 转炉熔炼、 真空脱气、 炉外精炼以及电渣重熔均为本领 域冶炼钢材的常规工艺, 其具体操作步骤为本领域技术人员公知的。 更优选地, 所述铸 锭为外径为 Φ230— Φ350的圆柱形铸锭。 采用上述工艺可以实现材料的纯净化目标, 满 足?、 S杂质含量较低的技术要求。  In the above preparation method, preferably, the steps of smelting, refining, and continuous casting include: adding an alloying element as a raw material in pure iron water, smelting the raw material through a converter, and then vacuum degassing, refining outside the furnace, and After the electroslag remelting treatment, it is cast into an ingot. Among them, converter smelting, vacuum degassing, re-refining and electroslag remelting are all conventional processes for smelting steel in the field, and specific operation steps thereof are well known to those skilled in the art. More preferably, the ingot is a cylindrical ingot having an outer diameter of Φ230 - Φ350. Can the material purification target be achieved by using the above process? , S technical requirements for lower impurity content.
在上述的制备方法中, 优选地, 所述轧制的步骤包括: 使所述铸锭在 950°C-1150°C 下保温 45-60分钟, 得到具有全奥氏体组织的材料, 随后在 900-1100°C下使所述具有全 奥氏体组织的材料进行依次进行穿孔、 轧管后, 得到管材。 其中, 穿孔和轧管的温度可 以相同或不同, 只要在 900-1100°C的范围内即可。 更优选地, 所述管材的截面积为所述 铸锭的截面积的 4-10%。 按照上述轧制工艺处理后的材料具有细小的晶粒度尺寸, 为后 续热处理提供基础材料性能。  In the above preparation method, preferably, the step of rolling comprises: holding the ingot at 950 ° C to 1150 ° C for 45-60 minutes to obtain a material having a full austenite structure, followed by The material having the full austenite structure was sequentially perforated and rolled at 900-1100 ° C to obtain a pipe. Among them, the temperature of the perforation and the rolling tube may be the same or different as long as it is in the range of 900-1100 °C. More preferably, the cross-sectional area of the pipe is 4-10% of the cross-sectional area of the ingot. The material treated in accordance with the above rolling process has a fine grain size to provide basic material properties for subsequent heat treatment.
在上述轧制的过程中, 对于轧制温度的控制可以有效利用 Cr、 Mo、 b、 V、 Ti合 金元素在特定温度区间的游离单质态特征, 增加动态再结晶异质形核作用, 实现晶粒细 化和均匀化。 对于保温时间的控制可以保证铸锭完全实现奥氏体化, 但不会发生晶粒粗 化。 对于管材截面积的控制, 即对于轧制变形量的控制, 其能够充分利用机械变形进一 步细化晶粒, 同时提高材料的强韧性。  In the above rolling process, the control of the rolling temperature can effectively utilize the free elemental characteristics of Cr, Mo, b, V, Ti alloy elements in a specific temperature range, increase the dynamic recrystallization heterogeneous nucleation, and realize the crystal Grain refinement and homogenization. The control of the holding time ensures that the ingot is fully austenitized, but no grain coarsening occurs. For the control of the cross-sectional area of the pipe, that is, for the control of the amount of rolling deformation, it is possible to make full use of the mechanical deformation to further refine the grain while improving the toughness of the material.
本发明提供的高钢级抗硫钻杆材料通过攻螺纹、 钻孔等常规的工艺能够制备得到 105-135ksi钢级范围的抗硫钻杆产品。 该抗硫钻杆产品能够应用于含硫化氢的油气田深 井钻井工程, 满足四川、 重庆、 塔里木等含硫化氢油气田 5000-8000米深井安全钻井的 需要。 附图说明 The high-grade sulfur-resistant drill pipe material provided by the invention can be prepared by conventional techniques such as tapping and drilling. 105-135ksi steel grade range of sulfur-resistant drill pipe products. The anti-sulfur drill pipe product can be applied to deep well drilling engineering of oil and gas fields containing hydrogen sulfide, and meets the needs of safe drilling of deep wells of 5000-8000 meters in hydrogen sulfide oil and gas fields such as Sichuan, Chongqing and Tarim. DRAWINGS
图 1为实施例 1的高钢级抗硫钻杆材料的金相图。  1 is a metallographic diagram of the high-grade sulfur-resistant drill pipe material of Example 1.
图 2为实施例 1的高钢级抗硫钻杆材料的第二相粒子的透射电子显微镜照片。 图 3为实施例 1-3的高钢级抗硫钻杆材料经抗硫化氢应力腐蚀开裂性能测试后的照 片。 具体实施方式  2 is a transmission electron micrograph of a second phase particle of the high-grade sulfur-resistant drill pipe material of Example 1. Figure 3 is a photograph of the high-grade sulfur-resistant drill pipe material of Examples 1-3 after being tested for resistance to hydrogen sulfide stress corrosion cracking. detailed description
为了对本发明的技术特征、 目的和有益效果有更加清楚的理解, 现对本发明的技术 方案进行以下详细说明, 但不能理解为对本发明的可实施范围的限定。  The technical features of the present invention are described in detail below, but are not to be construed as limiting the scope of the invention.
实施例 1-3  Example 1-3
实施例 1-3分别提供一种高钢级抗硫钻杆材料, 其制备方法包括以下步骤: 按照所述高钢级抗硫钻杆材料的成分选取原料, 其中, 实施例 1-3的高钢级抗硫钻 杆材料的成分组成如表 1所示;  Embodiments 1-3 respectively provide a high-grade sulfur-resistant drill pipe material, and the preparation method thereof comprises the following steps: selecting raw materials according to the composition of the high-grade sulfur-resistant drill pipe material, wherein the height of the embodiment 1-3 is high. The composition of the steel grade sulfur-resistant drill pipe material is shown in Table 1;
在纯铁水中添加合金元素作为原料, 将所述原料通过转炉熔炼, 然后经真空脱气、 炉外精炼及电渣重熔处理后, 浇铸成铸锭, 其中, 实施例 1-3所得到的铸锭的外径如表 An alloying element is added as raw material in pure iron water, and the raw material is smelted by a converter, and then subjected to vacuum degassing, refining outside the furnace, and electroslag remelting treatment, and then cast into an ingot, wherein, the obtained in Example 1-3 The outer diameter of the ingot is as shown
2所示; 2;
然后使所述铸锭在一定温度下保温一定时间, 得到具有全奥氏体组织的材料, 随后 在一定温度下使所述具有全奥氏体组织的材料进行依次进行穿孔、 轧管后, 形成管材, 其中, 实施例 1-3的轧制工艺中的穿孔前保温工艺、 穿孔温度、 轧管温度以及轧制后的 管材与轧制前的铸锭的截面积比均如表 2所示;  Then, the ingot is kept at a certain temperature for a certain time to obtain a material having a full austenite structure, and then the material having the full austenite structure is sequentially perforated and rolled at a certain temperature to form The pipe material, wherein the pre-perforation heat-insulation process, the perforation temperature, the pipe temperature, and the cross-sectional area ratio of the ingot after rolling and the ingot before rolling are as shown in Table 2;
随后使所述管材进行热处理, 所述热处理包括正火、 调质及球化, 形成所述高钢级 抗硫钻杆材料, 其中, 实施例 1-3的热处理工艺中的正火、 调制以及球化的工艺参数如 表 3所示。  Subsequently, the pipe is subjected to heat treatment, the normal heat treatment including normalizing, quenching and tempering and spheroidizing to form the high-grade grade sulfur-resistant drill pipe material, wherein the normalizing, modulating and the heat treatment in the heat treatment process of Examples 1-3 The process parameters of spheroidization are shown in Table 3.
表 1 实施例 1-3的高钢级抗硫钻杆材料的成分组成, wt% 实施例 C Si Mn P S Cr Ni Table 1 Example 1-3 high steel grade sulfur-resistant drill pipe material composition, wt% Example C Si Mn P S Cr Ni
1 0.16 0.21 0.22 0.0026 0.00075 1.15 1.451 0.16 0.21 0.22 0.0026 0.00075 1.15 1.45
2 0.20 0.25 0.35 0.0024 0.00082 0.83 1.192 0.20 0.25 0.35 0.0024 0.00082 0.83 1.19
3 0.24 0.29 0.48 0.0019 0.00078 0.56 0.86 实施例 Mo V b Ti Al La Fe3 0.24 0.29 0.48 0.0019 0.00078 0.56 0.86 Example Mo V b Ti Al La Fe
1 1.16 0.012 0.026 0.013 1.15 0.0052 余量1 1.16 0.012 0.026 0.013 1.15 0.0052
2 0.97 0.020 0.016 0.028 1.82 0.0075 余量2 0.97 0.020 0.016 0.028 1.82 0.0075 balance
3 0.58 0.028 0.011 0.019 2.85 0.0096 余量 表 2 实施例 1-3的铸锭外径及轧制工艺参数 3 0.58 0.028 0.011 0.019 2.85 0.0096 Balance Table 2 Example 1-3 Ingot outer diameter and rolling process parameters
Figure imgf000007_0001
Figure imgf000007_0001
表 3 实施例 1-3的热处理工艺参数  Table 3 Example 1-3 heat treatment process parameters
Figure imgf000007_0002
Figure imgf000007_0002
对于实施例 1-3的高钢级抗硫钻杆材料进行室温屈服强度、室温抗拉强度、延伸率、 室温冲击韧性、 洛氏硬度的测定以及抗硫化氢应力腐蚀开裂性能测试, 试验结果如表 4 所示。 各项力学性能测定按照 API Spec 5D钻杆标准进行, 由表 4可知, 实施例 1-3的 高钢级抗硫钻杆材料的力学性能指标符合 105-135ksi钢级范围,材料的塑性、韧性良好。 抗硫化氢应力腐蚀开裂性能测试按照 NACE TM0177标准 A法进行, 具体步骤如下: 使 高钢级抗硫钻杆材料在 A溶液 (含有 5wt%NaCl和 0.5wt%CH3COOH的饱和 H2S水溶 液) 中按 85%的名义钢级(即屈服强度)恒载荷下保持 720小时, 若该高钢级抗硫钻杆 材料不断裂, 则代表其通过测试, 评价为合格。 图 3为实施例 1-3的高钢级抗硫钻杆材 料经抗硫化氢应力腐蚀开裂性能测试后的照片, 由上至下依次为实施例 1、 实施例 2、 实施例 3的高钢级抗硫钻杆材料(图 3中材料表面的螺纹为测试时用于设备夹持连接而 加工的螺纹) 。 由图 3可知, 实施例 1-3的钻杆材料均通过抗硫化氢应力腐蚀开裂性能 表 4 实施例 1-3的高钢级抗硫钻杆材料的性能试验结果 The high-grade sulfur-resistant drill pipe materials of Examples 1-3 were tested for room temperature yield strength, room temperature tensile strength, elongation, room temperature impact toughness, Rockwell hardness, and hydrogen sulfide stress corrosion cracking resistance test. Table 4 shows. The mechanical properties were measured according to the API Spec 5D drill pipe standard. It can be seen from Table 4 that the mechanical properties of the high-grade sulfur-resistant drill pipe materials of Examples 1-3 are in the range of 105-135 ksi steel grade, and the plasticity and toughness of the materials. good. The hydrogen sulfide stress corrosion cracking resistance test is carried out according to the NACE TM0177 standard A method. The specific steps are as follows: The high steel grade sulfur-resistant drill pipe material is placed in the A solution (a saturated H 2 S aqueous solution containing 5 wt% NaCl and 0.5 wt% CH 3 COOH). In the case of 85% of the nominal steel grade (ie yield strength) under constant load for 720 hours, if the high-grade grade sulfur-resistant drill pipe material does not break, it means that it passed the test and was evaluated as qualified. 3 is a photograph of the high-grade sulfur-resistant drill pipe material of Example 1-3 after being tested for resistance to hydrogen sulfide stress corrosion cracking, and the high steel of Example 1, Example 2, and Example 3 is sequentially from top to bottom. Grade anti-sulfur drill pipe material (the thread on the surface of the material in Figure 3 is the thread processed for the device clamping connection during the test). As can be seen from FIG. 3, the drill pipe materials of Examples 1-3 are all subjected to hydrogen sulfide stress corrosion cracking resistance. Table 4 Performance test results of high steel grade sulfur-resistant drill pipe materials of Examples 1-3
Figure imgf000008_0001
Figure imgf000008_0001
图 1显示实施例 1的高钢级抗硫钻杆材料的金相组织特征。 图 1中的金相组织形貌 表明, 该材料的晶粒度细小, 等轴状, 晶粒度直径为 5μιη左右, 处于 9-12级范围内; 并且材料组织均匀, 无带状偏析现象。 图 2显示实施例 1的高钢级抗硫钻杆材料在透射 电子显微镜下的第二相粒子特征。 图 2表明该材料的第二相粒子为等轴状、 尺寸细小, 直径约 0.2μιη, 无粒子聚集现象, 弥散分布特征良好。 因此, 实施例 1的高钢级抗硫钻 杆材料实现了微观组织的均匀化特征, 降低了微观应力集中效应, 进而降低了该钻杆材 料对硫化氢应力腐蚀裂纹的敏感性。  Figure 1 shows the metallographic structure of the high steel grade sulfur-resistant drill pipe material of Example 1. The morphology of the metallographic structure in Fig. 1 indicates that the grain size of the material is small, equiaxed, and the grain size is about 5 μm, which is in the range of 9-12; and the material structure is uniform and there is no banding segregation. Figure 2 shows the characteristics of the second phase particles of the high steel grade sulfur-resistant drill pipe material of Example 1 under a transmission electron microscope. Figure 2 shows that the second phase particles of the material are equiaxed, small in size, about 0.2 μm in diameter, free from particle aggregation, and have good dispersion distribution characteristics. Therefore, the high-grade sulfur-resistant drill pipe material of the first embodiment achieves the homogenization characteristics of the microstructure, reduces the microscopic stress concentration effect, and further reduces the sensitivity of the drill pipe material to hydrogen sulfide stress corrosion cracking.

Claims

权利要求书 claims
1、 一种高钢级抗硫钻杆材料, 以质量百分比计, 其包括以下成分组成: C : 0.15%-0.25%, Mn: 0.20%-0.50%, Si: 0.20%-0.30%, Cr: 0.50%- 1.20%, Ni: 0.80%- 1.5%, Mo: 0.50%- 1.20%, b: 0.01%-0.03%, V: 0.01%-0.03%, Ti: 0.01%-0.03%, Ah 1.0%-3.0%, La: 0.005%-0.01%, S: <0.001%, P: <0.003%, 余量为 Fe。 1. A high-grade sulfur-resistant drill pipe material, which consists of the following ingredients in terms of mass percentage: C: 0.15%-0.25%, Mn : 0.20%-0.50%, Si: 0.20%-0.30%, Cr: 0.50%- 1.20%, Ni: 0.80%- 1.5%, Mo: 0.50%- 1.20%, b: 0.01%-0.03%, V: 0.01%-0.03%, Ti: 0.01%-0.03%, Ah 1.0%- 3.0%, La: 0.005%-0.01%, S: <0.001%, P: <0.003%, the balance is Fe.
2、 如权利要求 1所述的高钢级抗硫钻杆材料, 其具备以下力学性能指标: 室温屈 服强度为 724-932MPa、 室温抗拉强度为 850-1050MPa、 延伸率为 25-35%、 室温冲击韧 性为 145-180J、 晶粒度为 9.0-12.0级、 硬度为 HRC18-HRC25。 2. The high-grade sulfur-resistant drill pipe material as claimed in claim 1, which has the following mechanical performance indicators: room temperature yield strength is 724-932MPa, room temperature tensile strength is 850-1050MPa, elongation is 25-35%, The room temperature impact toughness is 145-180J, the grain size is 9.0-12.0, and the hardness is HRC18-HRC25.
3、 如权利要求 1所述的高钢级抗硫钻杆材料, 其满足 NACE 0177 标准中 A法试 验的性能要求, 即在 A溶液内, 对所述高钢级抗硫钻杆材料施加 85%名义屈服强度, 其持续 720小时受载不发生断裂。 3. The high-grade sulfur-resistant drill pipe material according to claim 1, which meets the performance requirements of the A method test in the NACE 0177 standard, that is, in the A solution, the high-grade sulfur-resistant drill pipe material is subjected to 85 % nominal yield strength, which can sustain load for 720 hours without breaking.
4、 如权利要求 1所述的高钢级抗硫钻杆材料, 在透射电子显微镜下观察, 所述高 钢级抗硫钻杆材料在平均每 100平方微米面积中包含渗碳体及合金元素碳化物粒子颗粒 数为 5-15个, 粒子的长径比为 1-1.5, 晶界上粒子间距与晶粒内粒子间距比值为 0.8-1。 4. The high-grade sulfur-resistant drill pipe material according to claim 1, when observed under a transmission electron microscope, the high-grade sulfur-resistant drill pipe material contains cementite and alloying elements in an average area of 100 square microns. The number of carbide particles is 5-15, the aspect ratio of the particles is 1-1.5, and the ratio of the particle spacing on the grain boundary to the particle spacing within the grain is 0.8-1.
5、 权利要求 1-4任一项所述的高钢级抗硫钻杆材料的制备方法, 其包括以下步骤: 按照所述高钢级抗硫钻杆材料的成分组成选取原料, 将所述原料进行熔炼、 精炼及连铸 后, 得到铸锭; 将所述铸锭进行轧制得到管材; 然后对所述管材进行热处理, 得到所述 的高钢级抗硫钻杆材料。 5. The method for preparing the high-grade sulfur-resistant drill pipe material according to any one of claims 1 to 4, which includes the following steps: selecting raw materials according to the composition of the high-grade sulfur-resistant drill pipe material, and After the raw materials are smelted, refined and continuously cast, an ingot is obtained; the ingot is rolled to obtain a pipe; and the pipe is then heat treated to obtain the high-grade sulfur-resistant drill pipe material.
6、 如权利要求 5所述的制备方法, 其中, 所述热处理的步骤包括依次进行的正火 处理、 调质处理及球化处理三个阶段。 6. The preparation method according to claim 5, wherein the heat treatment step includes three stages of normalizing treatment, quenching and tempering treatment and spheroidizing treatment in sequence.
7、 如权利要求 6 所述的制备方法, 其中, 所述正火处理包括: 使所述管材在 900-930°C下保温 30-60分钟, 随后空冷至室温, 得到正火后的管材。 7. The preparation method according to claim 6, wherein the normalizing treatment includes: insulating the pipe at 900-930°C for 30-60 minutes, and then air-cooling to room temperature to obtain the normalized pipe.
8、 如权利要求 6或 7所述的制备方法, 其中, 所述调质处理包括: 使正火后的管 材在 900-950°C下保温 45-60分钟, 随后水淬至室温, 之后在 600-640°C下保温 45-90分 钟, 然后水冷至室温, 得到调质后的管材。 8. The preparation method according to claim 6 or 7, wherein the quenching and tempering treatment includes: insulating the normalized pipe at 900-950°C for 45-60 minutes, then quenching with water to room temperature, and then Keep it at 600-640°C for 45-90 minutes, and then water-cool to room temperature to obtain a quenched and tempered pipe.
9、 如权利要求 6-8任一项所述的制备方法, 其中, 所述球化处理包括: 使调质后 的管材在 680-720°C下保温 30-45分钟, 随后水冷至室温, 得到所述的高钢级抗硫钻杆 材料。 9. The preparation method according to any one of claims 6 to 8, wherein the spheroidization treatment includes: insulating the tempered pipe at 680-720°C for 30-45 minutes, and then water-cooling to room temperature, The high-grade sulfur-resistant drill pipe material is obtained.
10、 如权利要求 5所述的制备方法, 其中, 所述熔炼、 精炼及连铸的步骤包括: 在 纯铁水中添加合金元素作为原料, 将所述原料通过转炉熔炼, 然后经真空脱气、 炉外精炼及电渣重熔处理后, 浇铸成铸锭。 10. The preparation method according to claim 5, wherein the steps of smelting, refining and continuous casting include: adding alloying elements as raw materials to pure molten iron, smelting the raw materials through a converter, and then vacuum degassing, After refining outside the furnace and electroslag remelting, it is cast into ingots.
11、 如权利要求 10所述的制备方法, 其中, 所述铸锭为外径为 Φ230-Φ350的圆 柱形铸锭。 11. The preparation method according to claim 10, wherein the ingot is a cylindrical ingot with an outer diameter of Φ230-Φ350.
12、 如权利要求 5所述的制备方法, 其中, 所述轧制的步骤包括: 使所述铸锭在 950°C - 1150 °C下保温 45-60分钟, 得到具有全奥氏体组织的材料, 随后在 900-1100°C 下使所述具有全奥氏体组织的材料进行依次进行穿孔、 轧管后, 得到管材。 12. The preparation method according to claim 5, wherein the rolling step includes: keeping the ingot at 950°C-1150°C for 45-60 minutes to obtain a fully austenite structure. The material is then pierced and rolled at 900-1100° C. to obtain a pipe.
13、 如权利要求 12所述的制备方法, 其中, 所述管材的截面积为所述铸锭的截面 积的 4-10%。 13. The preparation method according to claim 12, wherein the cross-sectional area of the pipe is 4-10% of the cross-sectional area of the ingot.
PCT/CN2014/070669 2013-01-22 2014-01-15 High-steel-grade anti-sulfur drill pipe material and preparation method thereof WO2014114200A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310024023.1A CN103060713B (en) 2013-01-22 2013-01-22 High-steel-grade anti-sulfur drill pipe material and preparation method thereof
CN201310024023.1 2013-01-22

Publications (1)

Publication Number Publication Date
WO2014114200A1 true WO2014114200A1 (en) 2014-07-31

Family

ID=48103602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070669 WO2014114200A1 (en) 2013-01-22 2014-01-15 High-steel-grade anti-sulfur drill pipe material and preparation method thereof

Country Status (2)

Country Link
CN (1) CN103060713B (en)
WO (1) WO2014114200A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109930066A (en) * 2019-03-15 2019-06-25 包头钢铁(集团)有限责任公司 A kind of hydrogen sulfide corrosion resistant low temperature seamless line pipe and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060713B (en) * 2013-01-22 2015-07-08 中国石油天然气集团公司 High-steel-grade anti-sulfur drill pipe material and preparation method thereof
CN104694833B (en) * 2015-03-20 2017-01-25 苏州赛斯德工程设备有限公司 Thermal treatment method of high-strength steel used for anti-theft door frame
CN106544483A (en) * 2016-10-26 2017-03-29 首钢总公司 A kind of heat treatment method of the anti-SSCC performances of raising C Mn steel plates
CN108048737A (en) * 2017-11-28 2018-05-18 兰州兰石集团有限公司 Main load-bearing part steel of drilling lifting means and preparation method thereof
CN109266816B (en) * 2018-10-18 2021-01-15 本钢板材股份有限公司 Petroleum drill rod adapter and method for improving transverse impact toughness thereof
CN112048669A (en) * 2020-08-28 2020-12-08 南京钢铁股份有限公司 High-strength and high-toughness steel for drill pipe joint and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231273A (en) * 2006-02-28 2007-09-13 Clariant Internatl Ltd Wax composition and its use
CN101570836A (en) * 2008-04-30 2009-11-04 中国石油天然气集团公司 Method for preparing polyphase structure drill rod materials
WO2011142356A1 (en) * 2010-05-10 2011-11-17 新日本製鐵株式会社 High-strength steel sheet and method for producing same
CN102453841A (en) * 2010-10-22 2012-05-16 江阴兴澄特种钢铁有限公司 Steel used for sea oil extraction platform R4S grade mooring chain and its manufacture method
CN103060713A (en) * 2013-01-22 2013-04-24 中国石油天然气集团公司 High-steel-grade anti-sulfur drill pipe material and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101117683A (en) * 2006-07-31 2008-02-06 宝山钢铁股份有限公司 High-performance hydrogen sulfide corrosion resistant oil drill rocker and its heat treatment process
CN101935808B (en) * 2010-09-19 2012-01-04 天津钢管集团股份有限公司 130ksi steel-grade low-temperature drill rod with high toughness and corrosion resistance and manufacturing method thereof
CN102409240B (en) * 2010-09-21 2013-06-19 宝山钢铁股份有限公司 Hydrogen sulfide corrosion-resistant steel for petroleum drill rod and manufacturing method for hydrogen sulfide corrosion-resistant steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231273A (en) * 2006-02-28 2007-09-13 Clariant Internatl Ltd Wax composition and its use
CN101570836A (en) * 2008-04-30 2009-11-04 中国石油天然气集团公司 Method for preparing polyphase structure drill rod materials
WO2011142356A1 (en) * 2010-05-10 2011-11-17 新日本製鐵株式会社 High-strength steel sheet and method for producing same
CN102453841A (en) * 2010-10-22 2012-05-16 江阴兴澄特种钢铁有限公司 Steel used for sea oil extraction platform R4S grade mooring chain and its manufacture method
CN103060713A (en) * 2013-01-22 2013-04-24 中国石油天然气集团公司 High-steel-grade anti-sulfur drill pipe material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109930066A (en) * 2019-03-15 2019-06-25 包头钢铁(集团)有限责任公司 A kind of hydrogen sulfide corrosion resistant low temperature seamless line pipe and preparation method thereof

Also Published As

Publication number Publication date
CN103060713B (en) 2015-07-08
CN103060713A (en) 2013-04-24

Similar Documents

Publication Publication Date Title
WO2014114200A1 (en) High-steel-grade anti-sulfur drill pipe material and preparation method thereof
CN113088826B (en) Microalloyed high-strength-toughness low-density steel and preparation method thereof
Liu et al. Simultaneously increasing both strength and ductility of Fe-Mn-C twinning-induced plasticity steel via Cr/Mo alloying
CN110527911B (en) Low-density high-strength high-corrosion-resistance gear bearing steel and preparation method thereof
CN109988971B (en) Method for producing ultra-grade pure high-speed tool steel
CN108220807B (en) Low-density high-aluminum ultrahigh-carbon bearing steel and preparation method thereof
CN104878248B (en) High temperature alloy 625H and its manufacturing process
WO2014139453A1 (en) Ultrahigh strength ferritic steel strengthened by using cu-rich nanoclusters, and manufacturing thereof
CN107779746B (en) Ultra-fine grain alloy steel with ultrahigh strength, high toughness, corrosion resistance, oxidation resistance and preparation method thereof
WO2012018239A2 (en) High carbon chromium bearing steel, and preparation method thereof
CN113322410B (en) High-strength bolt steel with excellent delayed fracture resistance and preparation method thereof
WO2020078472A1 (en) 800 mpa-grade hot-stamped axle housing steel and manufacturing method therefor
CN106756509B (en) A kind of high-temperature alloy structural steel and its Technology for Heating Processing
CN100439550C (en) Long-life alloy die-casting module and manufacturing method thereof
JP2022516182A (en) 690MPa grade extra-thick steel sheet and its manufacturing method
CN105624563B (en) The high-strength bolt steel and wire rod reforming technology of wire rod flow can be shortened
WO2021208181A1 (en) Low-temperature, high-toughness, high-temperature, high-intensity and high-hardenability hot mold steel and preparation method therefor
CN110484768A (en) A kind of copper chromium alloy material that high-strength highly-conductive is heat-resisting and its preparation process
CN107974632B (en) Austenite hot-work die steel and preparation method thereof
CN106086630B (en) A kind of tough ferrite steel plate of the high strength and low cost containing nanometer precipitated phase and its manufacture method
JP3544131B2 (en) Manufacturing method of medium carbon steel
RU2751629C1 (en) Low temperature resistant oil casing pipe with high strength and high viscosity, as well as method for its manufacture
WO2022247752A1 (en) 1000 mpa grade magnetic yoke steel for manufacturing rotor of hydroelectric generator, and production method
Ye et al. Segregation engineering in a promising heat-resistant AlCoCrFeMo0. 05Ni2 high entropy alloy
JPH1192881A (en) Ferritic heat resistant steel having lath martensitic structure and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743757

Country of ref document: EP

Kind code of ref document: A1