WO2014112762A1 - 돌연변이가 유발된 단세포 생물체의 선별방법 및 이에 사용되는 미세유체 장치 - Google Patents

돌연변이가 유발된 단세포 생물체의 선별방법 및 이에 사용되는 미세유체 장치 Download PDF

Info

Publication number
WO2014112762A1
WO2014112762A1 PCT/KR2014/000373 KR2014000373W WO2014112762A1 WO 2014112762 A1 WO2014112762 A1 WO 2014112762A1 KR 2014000373 W KR2014000373 W KR 2014000373W WO 2014112762 A1 WO2014112762 A1 WO 2014112762A1
Authority
WO
WIPO (PCT)
Prior art keywords
organism
light
single cell
photosynthetic
microfluidic
Prior art date
Application number
PCT/KR2014/000373
Other languages
English (en)
French (fr)
Inventor
심상준
김영환
곽호석
Original Assignee
고려대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교산학협력단 filed Critical 고려대학교산학협력단
Priority to EP14740606.0A priority Critical patent/EP2947154B1/en
Priority to JP2015553650A priority patent/JP6316316B2/ja
Priority to US14/760,607 priority patent/US9650659B2/en
Publication of WO2014112762A1 publication Critical patent/WO2014112762A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"

Definitions

  • the present invention relates to a method for screening a mutant-induced unicellular organism and a microfluidic device used therein. More specifically, the method for screening mutant unicellular organisms using daylighting, wherein the method is characterized by irradiating light to a single cell organism Inducing; Calculating a daylight index of the single cell organism; And comparing with the control group, when the luminescence index of the single cell organisms is changed, selecting the single mutant cells in which the desired mutation is induced.
  • bacteria and yeast are widely used for the expression of pharmaceutical proteins, and in particular, microalgae have the ability to produce large amounts of neutral lipids that can be converted from light energy and carbon dioxide and inorganic materials into biodiesel. It is attracting attention as one of the alternatives to solve the problem of depletion of energy resources and global warming due to greenhouse gas emission.
  • Microalgae contain pigments such as chlorophyll, carotenoids, and phycobilins, and unicellular algae that can synthesize cell growth and organic materials through photosynthesis are called microalgae, and most phytoplankton It belongs to this. To date, more than hundreds of thousands of microalgae have been reported to exist in freshwater and marine ecosystems, and research and development have been attempted for various purposes. However, due to the limitations of genetic manipulation, there are many difficulties in improving the strain for productivity improvement.
  • One of the methods of developing an optimal strain is to induce a specific or random mutation in the genome of a microalgae, and then to find a strain exhibiting characteristics such as increased photosynthetic efficiency, high lipid yield or rapid growth rate. To dig.
  • US Patent Publication No. 2008-00254493 relates to a method for screening a mutant microbial strain that does not express protease, wherein the mutated strain is cultured on a gel containing a protease substrate, thereby degrading the substrate. Disclosed is the selection of mutant strains via.
  • Korean Unexamined Patent Publication No. 2011-0018798 relates to a microfluidic cell chip, apoptosis quantitative analysis method and cell image analysis apparatus using the same, and an apparatus and method for analyzing and imaging apoptosis in real time using a microfluidic system. Is starting.
  • the present inventors have made diligent efforts to solve the above problems and develop a method for efficiently selecting single cell organisms. As a result, it is possible to effectively select improved single cell organisms based on daylighting using a microfluidic photoreaction device. It confirmed and completed this invention.
  • An object of the present invention is to provide a method and apparatus capable of quickly and efficiently selecting an optimal single cell organism in which a genetic variation with characteristics such as improved photoreactivity is induced.
  • the present invention comprises the steps of: (a) irradiating light to a single cell organism to induce daylighting; (b) calculating the daylight index of the single cell organism; And (c) selecting the mutant unicellular organisms using the photogenicity and selecting the mutant unicellular organisms including the step of selecting the target mutant-induced mutant single cell organisms when compared to the control group. Provide a mutant single cell organism.
  • the present invention also provides a light-transmitting object inlet; An individual reaching unit formed separately from the individual inlet; A channel portion in fluid communication with the object inlet and the object reaching part; And it provides a microfluidic photoreaction device comprising a measurement unit formed between both ends of the channel portion.
  • Figure 1 is a schematic diagram of the overall process for selecting the photosynthetic microalgae strains strains specific for the photoreaction using the photosensitivity in the microfluidic system according to an embodiment of the present invention.
  • FIG. 2A is a plan view of various exemplary microfluidic photoreaction devices that may be used in the present invention.
  • Figure 2b is a plan view (top), a perspective view (bottom) of the microfluidic photoreaction device used in one embodiment of the present invention.
  • Figure 3a is a graph measuring the optical response of the microalgae using LEDs of various wavelengths in accordance with an embodiment of the present invention, in order to determine the wavelength of light effective for microalgae selection through daylight.
  • FIG. 3B is a graph measuring photoreaction of microalgae due to daylighting by using each microfluidic photoreaction device shown in FIG. 2A, wherein 1, 2, 3, and 4 on the graph are numbers described in each device of FIG. It is equivalent to.
  • Figure 4 is a graph showing the ratio (a / b ratio) of chlorophyll a and chlorophyll b in the microalgae strain used in one embodiment of the present invention.
  • FIG. 5 is a histogram showing the number of cells of a microalgae strain exhibiting photoreactions using a microfluidic photoreaction device according to an embodiment of the present invention as a number of cells. It indicates the degree of photoreaction of (colony).
  • Figure 6a is a graph analyzing the photoreactivity through the ratio of the number of cells showing the photoreaction to the total number of cells in each of the control and mutant strains.
  • Figure 6b is a graph showing the deviation of the average time it takes for the control and mutant strains to move a certain distance (3 cm) by daylight, showing the photosensitivity between the mutant strains.
  • FIG. 7A is a graph showing the correlation between the chlorophyll a / b ratio and NPQ.
  • 7B is a graph showing the correlation between the chlorophyll a / b ratio and qP (Photochemical quenchin), and the higher the chlorophyll a / b ratio, the higher the qP value, indicating a higher photosynthetic efficiency.
  • FIG. 8A is a correlation graph between average arrival time and NPQ, which is an indicator of photosynthetic efficiency, according to an embodiment of the present invention. Strains with increased photosensitivity showed higher photosynthetic efficiency.
  • FIG. 8B is a correlation graph between the mean arrival time and qP, a measure of photosynthetic efficiency, as a daylight index, according to an embodiment of the present invention. As shown by the relationship, the strain with increased photosensitivity, similar to NPQ, shows high photosynthetic efficiency.
  • FIG. 9 is a graph comparing the correlation between the number of cells moving in a certain distance (3 cm) for a predetermined time (5 minutes) and dividing the number of cells in the control group by NPQ and NPQ. This means that mutant strains with a value of 1 or more shifted more cell numbers than control strains over a period of time, indicating a strain with excellent photosensitivity and photoresponsiveness, and these strains show a low correlation with NPQ values. Therefore, it indicates that the strain is increased photosynthetic efficiency.
  • ⁇ 40 optical microscope
  • the present invention is based on the discovery that mutants having improved photoreactivity in motility photosynthetic single cell organisms can be effectively selected through the difference in photogenicity. Specifically, the present invention is directed to the differences in photosensitivity and / or photoreactivity of single cell organisms. Statistical analysis of individual movements of mutated cells in the microfluidic system enables the rapid and efficient selection of mutated strains with specific changes in the light response to light. It was.
  • the present invention in one aspect, the step of (a) irradiating light to a single-celled organism to cause daylighting; (b) calculating the daylight index of the single cell organism; And (c) when compared to the control group, the selection of the mutant single-cell organisms using the photogenicity comprising the step of selecting, if the change in the daylight index of the single-celled organisms, the desired mutation-induced single-cell organisms.
  • single cell organism As used herein, the terms “single cell organism”, “cell” or “strain” are used interchangeably, which refers to a variety of single cell organisms that are motile and respond to light, including photosensitivity. For example, photosynthetic bacteria or Bacteria, protozoa such as euglena capable of photosynthesis or microalgae. In one embodiment, particularly representatively, the algae Chlamydomonas reinhardtii is used.
  • daylight includes both a positive daylight that moves along the light or a negative daylight that moves away from the light by the movement of a single-celled organism in response to light. If the intensity of light exceeds a certain intensity, it may show negative daylight.
  • mutation refers to a mutation at the gene level compared to a control in which no mutation is induced, resulting in a difference in characteristics such as phenotype, particularly photoreactivity, photoreactivity and / or photosensitivity.
  • characteristics such as phenotype, particularly photoreactivity, photoreactivity and / or photosensitivity.
  • Mutations include all mutations occurring at random or at specific positions, by addition, deletion, and / or substitution of nucleotides constituting the gene.
  • mutant of interest or “mutation of purpose of characteristic” refers to one or more characteristics of one or more characteristics that are intended to be improved in a single cell organism due to such genetic changes.
  • improved, improved and may include various properties depending on the end use of the single cell organism.
  • microalgae when used as single-celled organisms, these include changes in photosynthetic properties, photosynthetic efficiency, photosynthetic efficiency, including photosynthetic pigments, or changes in growth rate, Changes in lipid content and / or lipid components, and the like, but are not limited thereto.
  • At least about 5%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, Improvements of at least about 100% may be selected for mutated single cell organisms.
  • Single-celled organisms used in the methods of the present invention for screening individuals for inducing mutations exhibiting improved characteristics are derived from mutation libraries comprising a variety of single-celled organisms that are expected to have one or more mutations in the genome, caused by natural or artificial mutations. Can be.
  • the methods of the present invention may be from a single colony derived from one cell or multiple colonies derived from multiple cells, each comprising one or more mutations, the same or different, which are predicted to include one type of mutation. For example, from a single colony, characterization, or selection of mutant unicellular organisms that exhibit optimal properties through individual characterization of a single colony, or genetic variation with desired properties from a mutation library if multiple colony mixtures are used. The desired mutations induced can be used for efficient selection.
  • the method of the present invention is a rapid and simple analysis using pluripotency, which can be effectively used for the selection of variants found in nature, or individuals from tens to tens of thousands of mutations contained in an artificially mutated mutation library. Can be.
  • the method of the present invention can be repeatedly performed to select a single cell organism in which a large amount of mutation has been induced, quickly and efficiently.
  • photoreactive refers to a property that, when light is irradiated to a single-celled organism, moves to the opposite side of the light by daylight, which is constant for a certain period of time, for example, 30 minutes.
  • 30 ⁇ mol photon m ⁇ 2 s ⁇ 1 it can be measured by the number of cells introduced on the opposite side by daylightity in the total cells introduced, for example about 3,000 cells.
  • photosensitivity refers to how quickly a single cell organism is irradiated to the opposite side of the light by the daylight, when a constant brightness, for example, 30 ⁇ mol photon m -2 s -1 If irradiated, it can be measured by the time it takes for a certain distance, for example 3 cm, to reach by daylight.
  • the method according to the present invention is based on the response of single-celled organisms to light, wherein the main photoactive response index or the main photoindicative index used in the present invention is an indicator capable of indicating a characteristic change of a single cell organism in response to light. And may be calculated through measurement of one or more of photoreactivity or photosensitivity.
  • daylight indicators are included as long as they can measure changes related to the response to light, compared to the control, and (i) are shifted per unit time in response to daylightiness for the total number of single cell organisms used in the method of the present invention.
  • Ratio of single cell organisms (ii) histogram peak analysis based on the distribution of single cell organisms moved per unit time; Or (iii) the average time, or speed, or deviation thereof spent per unit distance of the single cell organism used in the method.
  • it can be calculated in various ways as described in the embodiments of the present invention and in FIGS. For example, it is possible to observe the peak movement of the reaction arrival time of the wild type strain and the mutant strain through the peak analysis of FIG. 5, and to analyze the maximum reaction time of the cell and the ratio of the cells that reacted through the peak analysis.
  • the method when the method is used in a device according to the invention described below, it is for example moved to the reaching part for some time through the channel relative to the total number of cells used in the method (i). Ratio of one total cell number; (ii) an average time or a deviation thereof for a certain number of cells to migrate to the reach; (iii) the rate of migration of the cells used in the method to the reach; And (iv) cell number distribution over time for the cells used in the method to migrate to the reach.
  • microalgae Single cell organisms that can be used in the methods of the invention are as described above, for example photosynthetic single cell organisms exhibiting daylighting and motility, preferably microalgae are used.
  • the microalgae are green algae, diatoms, red algae, flagella, biliary algae, brown flagella algae, yellow green algae, warpellae, or cyanobacteria, for example green algae (Chlorella, Dunaliella, Scenedesmus, Haematococcus, Nannochloris, etc.).
  • Diatoms (Skeletonema, Thalassiosira, Phaeodactylum, Chaetoceros, etc.), red algae (Porphyridium cruentum, Galdieria, etc.), flagella (Isochrysis, Pavlova, etc.), bile algae (Tetraselmis, Pyramimonas), brown flagella (Chlamhodomonas, Chlamhodomonas, etc.) ), Yellow-green algae (Olistodiscus, etc.), coccyx (Crypthecodinium, Alexandrium, Gymnodinium, Chattonella, Karenia, etc.), cyanobacteria (Spirulina, Synechococcus, Synechocystis, Cyanidium, etc.).
  • brown flagella algae preferably Chlamydomonas spp., Rhodomonas spp., Chroomonas spp., More preferably Chlamydomonas reinhardtii are used, but not limited thereto.
  • the method may further include a pretreatment step of culturing the single-celled organisms under dark conditions.
  • the pretreatment step is to maintain the best activity of the cells by culturing in continuous light conditions, and culturing in dark conditions immediately before the daylight measurement increases the sensitivity of light to increase the photoreactivity of the cells by daylighting. For sake.
  • the continuous light condition is sufficient as long as the amount of light that the microalgae growing through photosynthesis can be in the state of the most active phase is not particularly limited.
  • light can be continuously illuminated for faster arrival in the high season.
  • the amount of light and the irradiation time are not limited as long as these conditions are satisfied, but for example, the continuous light conditions may be, for example, light of about 20-50 ⁇ mol photon m-2s-1 century, preferably about 40 ⁇ mol photon m- 2 Irradiation of light of s ⁇ 1 intensity for about 12 to 24 hours is not limited thereto.
  • the wavelength used may differ depending on the specific type of single cell organism to be tested. For single-celled organisms capable of photosynthesis, there is a wavelength of light that can be efficiently perceived. For example, microalga Chlamydomonas has a part that detects light called an eyespot. The wavelength of light that is recognized by this part is generally 540 ⁇ 600 nm or about 430 ⁇ 500 nm. Therefore, it is preferable to use light in this wavelength range.
  • the culture of the pretreatment stage is used in the next stage after incubation to the exponentail phase, which is an optimal state of the cell growth cycle.
  • the growth of single-celled organisms is largely due to lag phase (induction phase); Logarithmic growth phase (exponential phase, log phase, growth phase); Stationary phase; And a death phase, those skilled in the art will be able to determine the logarithmic multiplier.
  • Daylighting according to the method of the present invention includes both positive and negative daylighting.
  • daylighting in one embodiment according to the present invention causes negative daylighting.
  • strong light should be irradiated to induce negative daylight in single cell organisms that cause positive daylighting.
  • the intensity of light that can cause negative daylight may vary depending on the target organism, and light of various intensities may be used to achieve such an effect, and those skilled in the art may select an appropriate range of intensity based on the degree of daylight.
  • the light intensity may be about 30 ⁇ molphoton m -2 s -1 cm -1 , It is not limiting.
  • the wavelength of light as mentioned above.
  • Single cell organisms selected according to the method of the present invention have increased photoreactivity and photosensitivity compared to controls, i.e. strains without mutation, or comparison strains to be used as a reference, the changes of which are described above. It can be measured as a daylight index, and can be selected as a strain causing the desired mutation for improved daylight index.
  • the degree of improvement of the daylight indicator may vary depending on the analyte or the type of indicator, for example, at least about 5%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, as compared to the control group. It will be possible to select single-celled organisms for which mutations are desired that are desired to be improved by at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%.
  • the method of the present invention may comprise additional steps depending on the purpose of making the mutant strain. For example, if the selection of mutations is for the modification of photosynthetic characteristics, the modification of lipid production, and the growth rate, additional steps are included for each characterization analysis. For example, it may include, but is not limited to, further analyzing the cells for changes in photosynthetic apparatus, including photosynthetic indicators, preferably photosynthetic pigments, photosynthetic efficiency, and light conversion efficiency. Such analytical methods are well known in the art, and those skilled in the art may select appropriate ones, for example, various indicators described in the examples of the present invention and FIGS. 3 to 9, for example, non-photochemical quenching (NPQ), or qP ( Photochemical quenchin) and / or chlorophyll a / b ratios, and the like.
  • NPQ non-photochemical quenching
  • qP Photochemical quenchin
  • the present invention relates to a single-celled organism selected through a method for screening mutant single-celled organisms using the daylighting properties of the present invention.
  • the strain can be applied for the production of useful substances, etc. in various fields in accordance with the aspect of the mutation.
  • Chlamydomonas reinhardtii is one of the most studied species of microalgae to date, and it is easier to genetically engineer such as transformation and related tools than other strains. It is known to be a model organism of microalgae. Therefore, mutant strains with improved photosynthetic mechanisms can be selected and used for lipid-related studies and hydrogen production studies for biodiesel production.
  • the present invention provides a light-transmitting individual such as a single cell organism inlet; An individual reaching unit formed separately from the individual inlet; A channel portion in fluid communication with the object inlet and the object reaching part; And a measurement unit formed between both ends of the channel unit.
  • the method of the present invention can be used in a variety of devices as long as the method of the present invention is achieved. That is, the device of the present invention, as well as other devices capable of achieving this object, having a portion corresponding to each component of the device of the present invention, can be used.
  • a configuration included in the apparatus of the present invention and a name thereof will be described as an example, but are not limited thereto. In understanding and interpreting the present invention, a corresponding configuration should be interpreted.
  • the device of the present invention includes an object inlet 110 and an object reachr 120 formed at regular intervals between which channels 130 of various shapes are located.
  • the individual inlet 110 and the individual reaching unit 120 may be formed in a space, a shape and a size to accommodate the single-celled organism to be analyzed, the size, characteristics and the number of objects used, for example, a single-celled organism.
  • size and / or material can be formed.
  • One embodiment is made of a light transmissive material in order to see the response to daylight.
  • the shape and the size are not limited to the specific shape, and may be formed the same or different.
  • the channel is formed so that fluid can be in communication with the object inlet and the object reach.
  • the culture medium and the single cell organisms introduced together with the single cell organism at the individual inlet through the channel are moved. Therefore, the channel is manufactured in a structure and size capable of minimizing resistance so that movement of single cell organisms is not disturbed.
  • the channel is formed equal to or smaller than the diameter of the object inlet or reach.
  • Other embodiments may have the same size as described in FIG. 2B, but this is exemplary and is not limited thereto.
  • the measuring unit 140 is formed at a portion between both ends of the channel.
  • the measurement unit is a site for observing a moving single cell organism using a microscopic method at a single cell level, and is formed in a structure and size capable of individually observing the movement of the single cell organism.
  • the diameter of the cells to be used in the device can be produced in a size enough to pass through, for example 1 to about 5 cells, depending on the specific size of the target single-cell organisms used could be.
  • the diameter may be about 50 ⁇ m to 100 ⁇ m, but is not limited thereto.
  • Each component included in the microfluidic photoreaction device of the present invention has no toxicity to single-celled organisms used as a transparent material with light transmission, and is porous and easily transfers materials necessary for biological activity, and does not prevent movement of single-celled organisms. It is preferable to be made of a material, or a material pretreated to have the above characteristics. Such materials include, but are not limited to, for example, poly (methyl methacrylate) (PMMA), polystyrene (PS), or polydimethylsiloxane (PDMS).
  • PMMA poly (methyl methacrylate)
  • PS polystyrene
  • PDMS polydimethylsiloxane
  • the microfluidic photoreaction device of the present invention may further include a light source.
  • Light sources and wavelengths are selected that can cause the desired optimal daylighting for single cell organisms used in the device of the present invention, and as long as these effects are exhibited, light of various light sources and wavelengths may be used depending on the object and purpose of analysis.
  • the light source may be any one capable of emitting a constant wavelength.
  • a laser diode or an LED (Light Emitting Diode) may be used.
  • a microalgae is used as an analysis target, and in particular, in the case of Chlamydomonas reinhardtii, an LED light source emitting green and blue wavelengths is used.
  • FIG. 1 is a schematic diagram showing an example of a device of the present invention and a mutant unicellular organism, i.e., a strain selection method using the same.
  • the microfluidic photoreaction device according to the present invention can be used for screening organisms whose characteristics are responsive to light by using the daylighting properties of motile single-celled organisms that exhibit daylighting.
  • a single cell organism derived from a single or multiple colonies having a certain amount of daylighting and motility, for example microalgae is introduced into the cell inlet of the device according to the present invention. Cells move through the channel in a direction away from the direction in which the light source is irradiated.
  • microalgae may include the following steps.
  • the method using the device of the present invention includes, for example, (a) a pretreatment step of culturing a single cell organism under continuous light conditions and then culturing the single cell organism under dark conditions; (b) introducing the pretreated single cell organism into the cell inlet of the photoreaction device; (c) irradiating a light source to the cell inlet so as to induce a daylighting of the single cell organism introduced into the cell inlet; (d) observing the single-celled organism moving to the reaching part through the channel by the daylight in the measuring unit, collecting a daylight response indicator; And (e) when compared to the control, when the daylight index is changed, it may include the step of selecting as a mutation-induced cells, but is not limited thereto.
  • the pretreatment step may optionally include.
  • Each term and description used in the method may refer to what has been said above in connection with the method of the invention.
  • the strain used in this example was obtained from the professor's lab of Hanyang University, the species is Chlamydomonas renihardtii.
  • the strain is a wild type strain JL428, and random mutations are induced in the wild type strain by insertional mutation, and then, a strain having a high ratio of chlorophyll a / b, which is commonly known, may have high photosynthetic efficiency.
  • a strain having a high ratio of chlorophyll a / b which is commonly known, may have high photosynthetic efficiency.
  • strains with a higher chlorophyll a / b ratio than wild type strains were selected and used for the validation of the method of the present invention.
  • the medium used for microalgal culture was TAP medium, and their components are shown in Table 1.
  • the microfluidic device was fabricated by photo-lithography by rotating the negative sensitizer SU-8 50 on a silicon substrate, and then covering the designed mask and exposing it to ultraviolet rays using an ultraviolet exposure machine.
  • Polymer PDMS (Polydimethylsiloxane) And a curing agent were mixed in a ratio of 10: 1 to prepare a SU-8 mold manufactured by photolithography.
  • the completed PDMS microfluidic device was combined with the slide glass through plasma treatment.
  • the manufactured device is as shown in FIG.
  • the cell motility according to the width and shape of the channel was analyzed as in Example 3 below.
  • the green LED light source (540 nm) was illuminated on the inlet cell inlet section into which the cells were placed, and the number of cells reaching the opposite site located at a certain distance, the cell reachr, was measured on each device, and the results were measured.
  • Figure 3b it was confirmed that the movement of the cell according to the main daylight due to the width of the channel in close proximity to the cell inlet in the microfluidic device.
  • the channel width of the channel shape is constantly reduced from 4 mm to 100 ⁇ m outlet width
  • the included device design was selected and fabricated as described above.
  • Chlamydomonas reinhardtii wild type strain JL428, and the mutant strain of Example 1, which did not cause anthropogenic mutations, were treated in TAP agar medium. Seed culture. Specifically, the TAP liquid medium was incubated for 24 days at 40 ⁇ mol photon m ⁇ 2 s ⁇ 1 intensity at 24 hours of continuous light conditions and 23 ° C. temperature conditions. After incubation for 2 days, when entering the logarithmic growth phase, it was diluted to 7.5 ⁇ 10 3 cells ml -1 and stored for 1 hour in dark conditions.
  • the cell concentration and the conditions were kept constant as described above, and then the wavelength of the LED light source used was adjusted differently.
  • Photoreaction analysis was carried out through the daylight of the microalgae in a total of five conditions of green (540 nm), red (650 nm), blue (470 nm), white (full wavelength) and dark conditions.
  • the microalgae showed a sensitive response at a specific wavelength, the reactivity was very high in green (540 nm) and blue (470 nm), the response to light in red (650 nm) Not shown.
  • the wavelength of light basically used in the present invention used a green LED light source of 540 nm.
  • the green LED light source (540 nm) was illuminated at the cell inlet with an intensity of 30 ⁇ mol photon m ⁇ 2 s ⁇ 1 , and the number of cells reaching the measurement unit was measured in 30 minutes.
  • a histogram of a certain form was obtained.
  • the histograms of the mutant strains with the histograms of the control group, it was confirmed that the peaks of the photoreaction histogram shifted to the left side in the case of mutations 1, 2, and 3 compared to the control group.
  • mutations 4 and 5 did not show a significant difference from the control.
  • This result is related to the chlorophyll a / b ratio which is indirectly related to photosynthetic efficiency.
  • a strain having a high chlorophyll a / b ratio is likely to be a high photosynthetic strain.
  • the chlorophyll a / b ratio increased the number of cells to be moved by light, and the mutant strains showing no significant difference between the control and chlorophyll a / b ratios showed little difference in the number of cell migration due to daylighting. 5
  • the pattern analysis of the histogram of FIG. 5 alone shows that mutations induced by increased photosynthetic efficiency can be easily and efficiently observed in the daylight reaction.
  • the sensitivity to light can be compared and analyzed. It is possible. In the case of mutations 1, 2, and 3, it was confirmed that the average time was reduced compared to the control as shown in FIG. 6B, and mutations 4 and 5 did not show a significant decrease compared to the control. This result indicates that mutant strains that have increased photosynthetic efficiency by increasing the chlorophyll a / b ratio are more sensitive than control strains for certain light intensities, which are related to the rate of cell migration. Strains with increased sensitivity to light for the same light intensity show faster time to move and less time to take a certain distance (3 cm). In the case of the strain having relatively little difference between the control strain and the chlorophyll a / b ratio, the sensitivity to a certain light intensity is similar, indicating that the time taken to reach a certain distance is almost no difference compared to the control strain.
  • NPQ is an energy that is not used for photosynthesis but disappears among the photo energy received for photosynthesis.
  • the lower NPQ value means higher photosynthetic efficiency
  • the qP means energy used for photosynthesis. It means that the efficiency is high.
  • Chlorophyll measurement was performed by known methods based on absorbance measurements (Hartumut K. Lichtenthaler and Claus Buschmann (2001) F4.3.1-F4.3.8).
  • chlorophyll measurements were performed when entering the logarithmic growth phase.
  • the flask was shaken well and 1 ml was transferred to a 1.5 ml tube and centrifuged for 1 minute at 15,000 rpm. After centrifugation, the supernatant was removed, and 1 ml of methanol was added thereto, followed by vortex to extract chlorophyll. Subsequently, after centrifugation at 15,000 rpm for 1 minute, the absorbance was measured at A663.2 and A646.8 wavelengths. Subsequently, the chlorophyll a / b ratio was measured by measuring chlorophyll a and b by substituting the following equation.
  • Chl a (g / ml) 16.72 x A665.2-9.16 x A652.4
  • Chl b (g / ml) 34.09 x A652.4-15.28 x A665.2
  • Chl a / b Chl a ⁇ Chl b
  • NPQ and qP were measured using Imaging-PAM chlorophyll fluorescence spectrometer (Heinz Walz GmbH, Germany) after culturing the strain at 23 in agar medium containing agar in TAP medium.
  • the present invention can effectively select the improved single-celled organisms using the daylight, using a microfluidic system, can be easily monitored at the cell unit, and the light changed through various analysis including statistical analysis of the collected results Mutant strains having reactive and / or photosensitivity can be easily and quickly selected, which can be useful for correlating daylighting and light conversion efficiency, and for selecting improved single cell organisms with improved light conversion efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 미세유체 광반응 장치 및 광반응 특성이 변화된 단세포 생물체를 선별하는 방법을 개시한다. 본 발명에 따르면, 상기 미세유체 시스템을 이용하여 주광성을 기반으로 개량된 단세포 생물체를 효과적으로 이용할 수 있다. 또한, 세포 단위에서 용이한 모니터링이 가능하고, 수집한 결과의 통계적 분석을 포함한 다양한 분석을 통해 변화된 광반응성 및/또는 광민감성을 갖는 돌연변이 균주를 쉽게 또한 고속으로 선별할 수 있어, 주광성 및 광전환 효율의 상관관계 규명, 광전환 효율이 향상된 개량된 단세포 생물체 선별에 유용하게 활용될 수 있다.

Description

돌연변이가 유발된 단세포 생물체의 선별방법 및 이에 사용되는 미세유체 장치
본 발명은 돌연변이가 유발된 단세포 생물제의 선별방법 및 이에 사용되는 미세유체 장치에 관한 것으로, 더욱 자세하게는 주광성을 이용한 돌연변이 단세포 생물체의 선별방법으로, 상기 방법은 단세포 생물체에 광을 조사하여 주광성을 유발하는 단계; 상기 단세포 생물체의 주광성 지표를 산출하는 단계; 및 대조군과 비교하여, 상기 단세포 생물체의 주광성 지표가 변화된 경우, 이를 목적하는 돌연변이가 유발된 단세포 생물체로 선별하는 단계를 포함한다.
박테리아, 효모, 및 미세조류를 포함하는 여러 단세포 생물체는 농업, 축산, 수산, 의약 및 자원 분야에서 다양한 목적으로 이용된다. 예를 들면 박테리아 및 효모는 의약용 단백질 발현에 널리 사용되며, 특히 미세조류는 광에너지와 이산화탄소 및 무기물질로부터 바이오디젤로 전환이 가능한 중성지질을 다량 생산할 수 있는 능력이 있어 근래 화석연료 사용량의 급증으로 인한 에너지자원 고갈문제 및 온실가스 배출에 따른 지구온난화 문제를 해결할 수 있는 대안의 하나로 주목받고 있다.
미세조류는 클로로필, 카로티노이드, 파이코빌린스 등과 같은 색소를 함유하고 있으며 광합성을 통해 세포성장 및 이에 필요한 유기물질을 합성할 수 있는 단세포성 조류를 미세조류 (microalgae)라 하며, 대부분의 식물성 플랑크톤이 이에 속한다. 현재까지 수십만 종이 넘는 미세조류가 담수 및 해양생태계에 존재하는 것으로 보고되고 있으며 여러 목적을 위해 연구개발이 시도되고 있으나 유전자 조작의 한계 등으로 인하여 생산성 향상을 위한 균주개량 등에 많은 어려움에 직면해 있다.
이러한 미세조류의 효율적 이용을 위해, 목적에 맞는 최적의 균주개발, 배지 최적화, 최적 반응기 설계, 대사공정과 생산물 정제 등을 위한 연구가 필요하다.
이 중 최적의 균주를 개발하는 방법 중의 하나가 미세조류의 유전체에 특정 또는 무작위 돌연변이를 유발한 후, 목적하는 성질 예를 들면 광합성 효율 증대, 높은 지질 생산량 또는 신속한 생장속도와 같은 특징을 나타내는 균주를 발굴하는 것이다.
미국 공개특허 공보 제2008-00254493호는 단백질 분해효소를 발현하지 않는 돌연변이 미생물 균주의 선별 방법에 관한 것으로, 돌연변이가 발생된 균주를 단백질 분해효소의 기질이 포함된 젤 상에서 배양하여, 기질의 분해여부를 통한 돌연변이 균주를 선별하는 것에 관하여 개시하고 있다.
대한민국 공개특허 공보 제2011-0018798호는 미세유체 세포칩, 이를 이용한 세포사멸 정량 분석법 및 세포영상분석장치에 관한 것으로, 미세유체 시스템을 이용하여 세포사멸을 실시간으로 분석 및 영상화 할 수 있는 장치 및 방법을 개시하고 있다.
하지만 이는 많은 경우 복잡한 생화학적 및 분자생물학적 분석이 수반되는 수만 개의 균주에 대한 스크리닝을 요구한다. 따라서 스크리닝 초기 단계에서 균주를 고속 선별할 수 있는 방법의 개발이 요구된다.
이에, 본 발명자들은 상기 문제를 해결하고 효율적으로 단세포 생물체를 선별하기 위한 방법을 개발하기 위해 예의 노력한 결과, 미세유체 광반응 장치를 이용하여 주광성을 기반으로 개량된 단세포 생물체를 효과적으로 선별할 수 있는 것을 확인하고, 본 발명을 완성하게 되었다.
발명의 요약
본 발명의 목적은 개량된 광반응성 등의 특징을 가지는 유전자 변이가 유발된 최적의 단세포 생물체를 신속하고 효율적으로 선별할 수 있는 방법 및 장치를 제공하는 데 있다.
상기 목적을 달성하기 위해서 본 발명은, (a) 단세포 생물체에 광을 조사하여 주광성을 유발하는 단계; (b) 상기 단세포 생물체의 주광성 지표를 산출하는 단계; 및 (c) 대조군과 비교하여, 상기 단세포 생물체의 주광성 지표가 변화된 경우, 이를 목적하는 돌연변이가 유발된 단세포 생물체로 선별하는 단계를 포함하는 주광성을 이용한 돌연변이 단세포 생물체의 선별방법 및 상기 방법으로 선별된 돌연변이 단세포 생물체를 제공한다.
본 발명은 또한, 광투과성 개체 유입부; 상기 개체 유입부와 별개로 형성되는 개체 도달부; 상기 개체 유입부 및 상기 개체 도달부에 유체 소통가능하게 연결된 채널부; 및 상기 채널부의 양 말단 사이에 형성된 계측부를 포함하는 미세유체 광반응장치를 제공한다.
도 1은 광합성 미세조류 균주들을 본 발명의 일 구현예에서 따른 미세 유체 시스템 내에서 주광성을 이용하여 광반응이 특이적인 균주를 선별하는 전체적인 과정을 도식화한 개략도이다.
도 2a는 본 발명에 사용될 수 있는 다양한 예시적 미세유체 광반응 장치의 평면도이다.
도 2b는 본 발명의 일 구현예에서 사용된 미세유체 광반응 장치의 평면도(상단), 사시도 (하단)이다.
도 3a는 주광성을 통한 미세조류 선별에 효과적인 빛의 파장을 결정하기 위해, 본 발명 일 구현예에 따라 다양한 파장의 LED를 사용하여 미세조류의 광반응을 측정한 그래프이다.
도 3b는 도 2a에 도시된 각각의 미세유체 광반응 장치를 이용하여 주광성에 의한 미세조류의 광반응을 측정한 그래프로, 그래프 상의 1, 2, 3, 4는 도 2a의 각 장치에 기재된 번호에 상응하는 것이다.
도 4는 본 발명의 일 구현예에서 사용된 미세조류 균주 내 클로로필 a와 클로로필 b의 비(a/b ratio)를 나타낸 그래프이다.
도 5는 본 발명의 일 구현예에 따른 미세유체 광반응 장치를 이용하여 광반응을 나타내는 미세조류 균주의 시간에 따른 분포를 세포 수로 나타낸 히스토그램으로, 대조군으로 사용한 야생형 (wild type)과 돌연변이 균주 군집(colony)의 광반응 정도를 나타낸다.
도 6a는 대조군 및 돌연변이 균주 각각에서 전체 세포 수에 대한 광반응을보인 세포 수의 비율을 통해 광반응성을 분석한 그래프이다.
도 6b는 대조군과 돌연변이 균주가 주광성에 의해 일정거리 (3 cm)를 이동하는데 소요된 평균 소요 시간의 편차를 나타낸 그래프로써, 돌연변이 균주간의 광민감도를 나타낸다.
도 7a는 클로로필 a/b 비율과 NPQ의 상관관계를 나타낸 그래프로써, 클로로필 a/b 비율이 높을수록 NPQ (non-photochemical quenching) 값이 낮은 역비례 상관관계를 나타내어 광합성 효율이 높음을 나타낸다.
도 7b는 클로로필 a/b 비율과 qP (Photochemical quenchin)의 상관관계를 나타내는 그래프로써, 클로로필 a/b 비율이 높을수록 qP 값이 높은 상관관계를 나타내어 광합성 효율이 높다는 것을 나타낸다.
도 8a는 본 발명의 일 실시예에 따른 주광성 지표로 평균 도달 시간과 광합성 효율 측정 지표인 NPQ와의 상관관계 그래프로써, 주광성을 통해 평균 도달 시간이 빨라진 돌연변이 균주는 광합성 효율 측정 지표인 NPQ 값이 낮은 상관관계를 나타내어 광민감성이 증가된 균주는 광합성 효율이 높음을 나타낸다.
도 8b는 본 발명의 일 실시예에 따른 주광성 지표로 평균 도달 시간과 광합성 효율 측정 지표인 qP와의 상관관계 그래프로써, 주광성을 통해 평균 도달 시간이 빨라진 돌연변이 균주는 광합성 효율 측정 지표인 qP와 높은 상관관계를 나타내어 NPQ와 동일하게 광민감성이 증가된 균주가 광합성 효율이 높음을 나타낸다.
도 9는 주광성을 통해 일정시간(5분) 간 일정거리(3cm)를 이동하는 세포 수를 대조군의 세포 수로 나눈 값을 나타낸 이동 세포 개체수 비율과 NPQ와의 상관관계를 비교한 그래프이다. 이는 값이 1 이상인 돌연변이 균주는 일정시간 동안 대조군 균주에 대비하여 더 많은 세포수가 이동한 것으로, 광민감성 및 광반응성이 우수한 돌연변이가 유발된 균주를 나타내며, 이러한 균주는 NPQ 값이 낮은 상관관계를 나타내므로, 광합성 효율이 증가된 균주임을 나타낸다.
도 10은 본 발명의 일 구현예에 따른 미세유체 광반응 장치를 이용하여 주광성에 의한 미세조류의 실제 움직임을 보여주는 광학현미경(×40) 이미지이다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명은 운동성을 지닌 광합성 단세포 생물체에서 개량된 광반응성을 갖는 돌연변이체를 주광성의 차이를 통해 효과적으로 선별할 수 있다는 발견에 근거한 것으로, 구체적으로 단세포 생물체가 지닌 광민감성 및/또는 광반응성의 차이를 이용하여 미세유체 시스템 내에서 돌연변이가 유발된 세포의 개체별 운동의 통계적 분석을 통해 빛에 대한 광반응이 특이적으로 변화된 특징을 지닌 돌연변이가 유발된 균주를 신속하고 효율적으로 선별할 수 있음을 발견하였다.
따라서 본 발명은 일 관점에서, (a) 단세포 생물체에 광을 조사하여 주광성을 유발하는 단계; (b) 상기 단세포 생물체의 주광성 지표를 산출하는 단계; 및 (c) 대조군과 비교하여, 상기 단세포 생물체의 주광성 지표가 변화된 경우, 이를 목적하는 돌연변이가 유발된 단세포 생물체로 선별하는 단계를 포함하는 주광성을 이용한 돌연변이 단세포 생물체의 선별방법에 관한 것이다.
본 발명에서 사용된 용어 “단세포 생물체”, “세포” 또는 “균주”는 상호교환적으로 사용되며, 이는 운동성이 있으며 빛에 대해 반응, 주광성을 나타내는 다양한 단세포 생물을 일컫는 것으로 예를 들면 광합성 세균 또는 박테리아, 광합성을 할 수 있는 유글레나와 같은 원생동물 또는 미세조류를 포함한다. 한 구현예에서는 특히 대표적으로 미세조류인 클라미도모나스 레인하드티아이(Chlamydomonas reinhardtii)가 사용된다.
본 발명에서 사용된 용어 “주광성”은 빛에 반응한 단세포 생물체의 운동으로 빛을 따라 이동하는 양성 주광성 또는 빛을 피해 이동하는 음성 주광성을 모두 포함하는 것이며, 특정 광량에서는 양성 주광성을 나타내는 경우라도, 빛의 광도가 일정 강도를 넘는 경우 음성 주광성을 나타내는 경우도 있다.
본 발명에서 사용된 용어 “돌연변이”는 변이가 유발되지 않은 대조군과 비교하여 유전자 수준에서 변이가 발생하여, 이러한 변이로 인해 표현형 특히 주광성, 광반응성 및/또는 광민감도 등의 특징에 차이가 유발된 것으로, 자연에서 발견되는 돌연변이는 물론 인위적으로 도입된 돌연변이를 모두 포함하는 것이다. 돌연변이는 무작위 또는 특정 위치에서 발생한 돌연변이, 유전자를 이루는 뉴클레오타이드의 부가, 결실, 및/또는 치환 등에 의한 돌연변이를 모두 포함하는 것이다.
본 발명에서 사용된 용어 “목적하는 돌연변이” 또는 “목적하는 특성을 갖는” “목적하는 특징이 유발된 돌연변이”는 상기와 같은 유전적 변화로 인해서 단세포 생물체에서 개량하고자 하는 하나 이상의 특성이 변화 예를 들면 개선, 향상된 것으로, 단세포 생물체의 최종 용도에 따라 다양한 특성이 포함될 수 있다. 예를 들면 단세포 생물체로서 미세조류가 사용되는 경우, 광합성과 관련된 특성 또는 지표, 예를 들면 광합성 색소를 포함하는 광합성 기구의 변화, 광합성 효율, 광전환 효율을 포함하며, 그 외 성장속도의 변화, 지질함량 및/또는 지질성분의 변화 등을 포함할 수 있으나 이로 제한하는 것은 아니다. 개선된 정도를 파악하기 위해, 돌연변이가 유발된 단세포 생물체에서 상응하는 특성과 비교할 수 있으며, 당업자라면, 개선된 특징을 고려하여 적절한 기준을 선택할 수 있을 것이며, 예를 들면 대조군과 대비하여 예를 들면 약 5% 이상, 약 10% 이상, 약 20% 이상, 약 30% 이상, 약 40% 이상, 약 50% 이상, 약 60% 이상, 약 70% 이상, 약 80% 이상, 약 90% 이상, 약 100% 이상 개선된 것을 목적하는 돌연변이가 유발된 단세포 생물체로 선별할 수 있을 것이다.
개선된 특징을 나타내는 돌연변이가 유발된 개체를 선별하는 본 발명의 방법에 사용되는 단세포 생물체는 자연적 또는 인위적 돌연변이가 유발되어, 유전체에 하나 이상의 돌연변이를 갖는 것으로 예측되는 다양한 단세포 생물체를 포함하는 돌연변이 라이브러리 유래일 수 있다. 또한 본 발명의 방법에는 한 종류의 돌연변이를 포함할 것으로 예측되는, 하나의 세포로부터 유래된 단일 콜로니 또는 각각 동일 또는 상이한 하나 이상의 돌연변이를 포함하는 다수의 세포로부터 유래된 다수 콜로니 유래일 수 있다. 예를 들면 단일 콜로니 유래의 경우, 특성 확인, 또는 단일 콜로니의 개별적 특성 확인을 통한 최적의 특성을 나타내는 돌연변이 단세포 생물체의 선별, 또는 다수의 콜로니 혼합물이 사용되는 경우 돌연변이 라이브러리로부터 원하는 특성을 갖는 유전자 변이가 유발된 목적하는 돌연변이를 효율적 선별에 사용될 수 있다.
본 발명 방법은 주광성을 이용한 신속하고 간단한 분석으로, 자연에서 발견되는 변이체, 또는 인위적으로 돌연변이가 유발된 돌연변이 라이브러리에 포함된 수 개에서 수 만개의 돌연변이 중 원하는 돌연변이가 유발된 개체의 선별에 효과적으로 사용될 수 있다. 특히 후자의 경우, 본 발명의 방법을 반복적으로 수행하여, 다량의 돌연변이가 유발된 단세포 생물체를 신속하고 효율적으로 선별할 수 있다.
본 발명에서 사용된 용어 “광반응성”은 단세포 생물체에 광이 조사되는 경우, 주광성에 의해 광의 반대편으로 이동하는 특성을 나타내는 것으로, 이는 일정시간, 예를 들면 30분 동안, 일정한 광도, 예를 들면 30 μmol photon m-2s-1가 조사된 경우, 도입한 총 세포, 예를 들면 약 3,000개 세포 중에 주광성에 의해 반대편으로 도달한 세포수의 수로 측정될 수 있다.
본 발명에서 사용된 용어 광민감성은 단세포 생물체에 광이 조사되는 경우, 주광성에 의해 광의 반대편으로 얼마나 신속하게 이동하는 지를 나타내는 것으로, 일정한 광도 예를 들면 30 μmol photon m-2s-1의 빛이 조사된 경우, 일정거리, 예를 들면 3 cm를 주광성에 의해 도달하는데 걸리는 시간으로 측정될 수 있다.
본 발명에 따른 방법은 광에 대한 단세포 생물체의 반응을 기본으로 하는 것으로, 본 발명에서 사용된 주광성 반응 지표 또는 주광성 지표는 광에 반응한 단일세포 생물체의 특징 변화를 나타낼 수 있는 지표로 다양한 수치를 포함할 수 있으며, 광반응성 또는 광민감성 중 하나 이상의 측정을 통해 산출될 수 있다. 이러한 주광성 지표는 대조군과 비교하여, 빛에 대한 반응과 관련된 변화를 측정할 수 있는 것이면 다 포함되며, 본 발명의 방법에 사용된 총 단세포 생물체 수에 대한 주광성에 반응하여 (i) 단위 시간당 이동한 단세포 생물체 수의 비; (ii) 단위 시간 당 이동한 단세포 생물체 수의 분포를 기초로 한 히스토그램 정점 분석; 또는 (iii) 상기 방법에 사용된 단세포 생물체의 단위 거리당 이동에 소요된 평균 시간, 또는 속도 또는 그 편차를 포함한다. 예를 들면 본 발명의 실시예 및 도 3 내지 9에 기재된 다양한 방식으로 산출될 수 있다. 예를 들면 도 5의 정점 분석을 통해 야생형 균주와 돌연변이 균주의 반응 도달시간의 정점 이동을 관찰할 수 있으며, 정점분석을 통해 세포의 최대 반응 시간과 반응한 세포의 비율 분석 등이 가능하다.
본 발명에 따른 일 구현예에서, 본 방법이 후술하는 본 발명에 따른 장치에 사용되는 경우는 예를 들면 상기 방법에 (i) 사용된 총 세포 수 대비 상기 채널을 통해 일정 시간 동안 상기 도달부로 이동한 총 세포 수의 비; (ii) 일정한 수의 세포가 상기 도달부로 이동하는데 소요된 평균 시간 또는 그 편차; (iii) 상기 방법에 사용된 세포의 상기 도달부까지 이동속도; 및 (iv) 상기 방법에 사용된 세포가 상기 도달부까지 이동하는데 걸리는 시간에 따른 세포 수 분포를 포함하나, 이로 제한하는 것은 아니다.
본 발명의 방법에 사용될 수 있는 단세포 생물체는 앞서 언급한 바와같으며, 예를 들면 주광성 및 운동성을 나타내는 광합성 단세포 생물체, 바람직하게 미세조류가 사용된다. 한 구현예에서, 미세조류는 녹조류, 규조류, 홍조류, 편모류, 담록조류, 갈색 편모조류, 황녹색조류, 와편모류, 또는 남조류인, 예를 들면 녹조류 (Chlorella, Dunaliella, Scenedesmus, Haematococcus, Nannochloris 등), 규조류 (Skeletonema, Thalassiosira, Phaeodactylum, Chaetoceros 등), 홍조류 (Porphyridium cruentum, Galdieria 등), 편모류 (Isochrysis, Pavlova 등), 담록조류 (Tetraselmis, Pyramimonas), 갈색 편모조류 (Chlamydomonas, Rhodomonas, Chroomonas 등), 황녹색조류 (Olistodiscus 등), 와편모류 (Crypthecodinium, Alexandrium, Gymnodinium, Chattonella, Karenia 등), 남조류 (Spirulina, Synechococcus, Synechocystis, Cyanidium 등)를 들 수 있으나, 이로 제한하는 것은 아니다. 일 구현예에서는 갈색 편모조류, 바람직하게는 Chlamydomonas spp., Rhodomonas spp., Chroomonas spp., 더 바람직하게는 클라미도모나스 레인하드티아이(Chlamydomonas reinhardtii)가 사용되나, 이로 제한하는 것은 아니다.
본 발명 방법에서 단세포 생물체를 지속적 광조건에서 배양한 후, 상기 단세포 생물체를 암조건에서 배양하는 전처리 단계를 추가로 포함할 수 있다. 전처리 단계는 지속적인 광조건에서 배양함으로써 세포의 활성이 가장 우수한 대수기 상태로 유지하기 위한 것이고, 주광성 측정 직전에 암조건에서 배양하는 것은 빛에 대한 민감성을 증가시켜 주광성에 의한 세포의 광반응성을 증가시키기 위함이다.
즉 전처리 단계는 지속적 광조건은 광합성을 통해 성장하는 미세조류가 활동성이 가장 우수한 대수기 상태로 될 수 있는 광량이면 충분한 것이며, 특별히 한정되는 것은 아니다. 또한 대수기에 보다 신속한 도달을 위해 광이 지속적으로 조사될 수 있다. 이러한 조건을 만족하는 한 광량 및 조사 시간은 한정되지 않으나, 예를 들면 지속적 광조건은 예를 들면 약 20 -50 μmol photon m-2s-1세기의 광을, 바람직하게는 약 40 μmol photon m-2s-1 세기의 광을 약 12 내지 24시간 동안 조사하는 것이나, 이로 제한하는 것은 아니다.
상기 목적을 달성하는 한 다양한 범위의 광도 및 시간이 사용될 수 있다. 사용되는 파장은 실험 대상 단세포 생물체의 구체적 종류에 따라 상이할 수 있다. 광합성이 가능한 단세포 생물체 별로, 효율적으로 인지하는 빛의 파장이 있으며, 당업자라면 이러한 사항을 고려하여 적절한 파장을 선택할 수 있을 것이다. 예를 들면 미세조류 클라미도모나스의 경우 안점 (eyespot) 이라고 하는 빛을 감지하는 부분이 있는데, 이 부분이 인지하는 광 파장이 일반적으로 540 ~ 600 nm 또는 약 430 ~ 500 nm 파장의 빛을 인지하기 때문에 이 파장 영역대의 빛을 사용하는 것이 바람직하다.
또한 전처리 단계의 배양은 세포 생장 주기의 최적의 상태인 대수증식기(exponentail phase) 까지 배양한 후 다음 단계에서 사용된다. 단세포 생물체의 생장은 크게 유도기 (lag phase: induction phase); 대수증식기 (exponential phase, log phase, growth phase); 정지기 (stationary phase); 및 사멸기 (death phase)로 구성되며, 당업자라면 대수증식기를 판별할 수 있을 것이다.
본 발명의 방법에 따른 주광성은 양성 및 음성 주광성을 모두 포함하는 것이다. 주광성에 관하여는 앞서 설명한 바와 같으며, 본 발명에 따른 일 구현예에서는 음성 주광성을 유발된다. 통상적인 빛의 강도에서는 양성 주광성을 유발하는 단세포 생물체에서 음성 주광성을 유발하기 위해서 강한 강도의 빛이 조사되어야 한다. 즉 음성 주광성을 유발할 수 있는 빛의 강도는 목적하는 대상 생물체에 따라 달라질 수 있으며, 이러한 효과를 달성할 수 있는 다양한 광도의 빛이 사용될 수 있으며, 당업자라면 주광성 정도를 기준으로 적절한 범위의 강도를 선택할 수 있을 것이다. 본 발명에 따른 일 구현예에서는 미세조류, 특히 클라미도모나스 레인하드티아이(Chlamydomonas reinhardtii)가 사용되며, 이 경우, 빛의 강도는 약 30 μmolphoton m-2s-1cm-1일 수 있으나, 이로 제한하는 것은 아니다. 빛의 파장과 관련되서는 앞서 언급한 바와 같다.
본 발명의 방법에 따라 선별된 단세포 생물체는 대조군, 즉 돌연변이가 유발되지 않은 균주, 또는 참조로 사용하는 비교대상 균주와 비교하여, 광반응성 및 광민감성이 증가된 것으로, 이러한 특징의 변화는 상술한 주광성 지표로 측정될 수 있으며, 주광성 지표가 개선된 것을 목적하는 돌연변이가 유발된 균주로 선별할 수 있다. 주광성 지표의 개선 정도는 분석대상 또는 지표의 종류에 따라 달라질 수 있으며, 예를 들면 대조군과 비교하여 약 5% 이상, 약 10% 이상, 약 20% 이상, 약 30% 이상, 약 40% 이상, 약 50% 이상, 약 60% 이상, 약 70% 이상, 약 80% 이상, 약 90% 이상, 약 100% 이상 개선된 것을 목적하는 돌연변이가 유발된 단세포 생물체로 선별할 수 있을 것이다.
본 발명의 방법은 돌연변이 균주를 제작하는 목적에 따라 추가의 단계를 포함할 수 있다. 예를 들면 돌연변이의 선별이 광합성 특징의 개질, 지질 생산의 개질, 성장속도 개선을 위한 것이라면, 각각의 특징 분석을 위한 추가의 단계를 포함한다. 예를 들면 광합성 지표, 바람직하게는 광합성 색소를 포함하는 광합성 기구의 변화, 광합성 효율, 광전환 효율을 포를 추가로 분석하는 단계를 포함할 수 있으나, 이로 제한하는 것은 아니다. 이러한 분석방법은 당업계에 공지되어 있으며, 당업자라면 적절한 것을 선택할 수 있으며, 예를 들면 본 발명의 실시예 및 도 3 내지 9 에 기재된 다양한 지표 예를 들면 NPQ(non-photochemical quenching), 또는 qP(Photochemical quenchin) 및/또는 클로로필 a/b 비 등을 포함하나, 이로 제한하는 것은 아니다.
본 발명은 다른 관점에서, 본 발명의 주광성을 이용한 돌연변이 단세포 생물체의 선별방법을 통해 선별된 단세포 생물체에 관한 것이다.
상기 균주는 돌연변이의 양태에 맞추어 다양한 분야에서 유용물질의 생산 등을 위해 응용될 수 있다. 예를들어 클라미도모나스 레인하드티아이(Chlamydomonas reinhardtii)는 현재까지 미세조류 중 가장 많은 연구가 진행된 종으로 다른 균주에 비해 형질전환 등의 유전자 조작이 용이하고 관련 도구들이 개발되어 있을 뿐만 아니라 유전체 서열도 밝혀져 있어 미세조류의 모델 생물체로 여겨지고 있다. 따라서 광합성 기작이 개선된 돌연변이 균주를 선별하여, 이를 바이오 디젤 생산을 위한 지질관련 연구, 수소생산 연구 등에 활용할 수 있다.
본 발명 방법에 따라 선별된 균주는 실시예 및 도 7 내지 9에 기재된 바와 같이 클로로필 a/b 비율과 광합성 효율 측정 지표인 NPQ와 qP가 상관관계를 분석을 통해, 목적하는 돌연변이가 유발되었으며, 이는 본 방법의 우수성을 나타내는 것이다.
본 발명은 또 다른 관점에서, 광투과성 개체 예를 들면 단세포 생물체 유입부; 상기 개체 유입부와 별개로 형성되는 개체 도달부; 상기 개체 유입부 및 상기 개체 도달부에 유체 소통가능하게 연결된 채널부; 및 상기 채널부의 양 말단 사이에 형성된 계측부를 포함하는, 미세유체 광반응 장치에 관한 것이다.
본 발명의 방법은 본 발명의 방법을 달성하는 한 다양한 장치에 사용될 수 있음은 당업자에게 자명한 것이다. 즉 본 발명의 장치는 물론, 본 발명의 장치의 각 구성과 상응하는 부위를 갖는 이러한 목적을 달성할 수 있는 다른 장치가 사용될 수 있다. 이하 본 발명의 장치에 포함된 구성 및 그에 따른 명칭을 예로 들어 설명하나, 이에 한정되는 것은 아니며, 발명을 이해하고 해석함에 있어서는 상응하는 구성으로 해석되어야 한다.
도 2a 및 2b를 참조하면, 본 발명의 장치는 일정한 간격을 두고 형성된 개체 유입부 (110) 및 개체 도달부 (120)를 포함하며, 그 사이에 다양한 모양의 채널 (130)이 위치한다. 상기 개체 유입부 (110) 및 개체 도달부 (120)는 분석대상인 단세포 생물체를 들어갈 수 있는 공간, 모양 및 크기로 형성될 수 있으며, 대상 개체 예를 들면 단세포 생물체의 크기, 특성 및 사용되는 개체 수에 따라 다양한 모양, 크기 및/또는 재질로 형성될 수 있다. 주광성에 관한 반응을 보기위해 한 구현예에서는 광투과성 물질로 제작된다. 모양, 크기는 특정 형상으로 제한되는 것은 아니며, 동일 또는 상이하게 형성될 수 있다.
상기 채널은 개체 유입부 및 개체 도달부와 유체가 소통될 수 있도록 형성된다. 상기 채널을 통해 개체 유입부에 단세포 생물체와 함께 도입된 배양액 및 단세포 생물체가 이동을 한다. 따라서 상기 채널은 단세포 생물체의 이동이 방해되지 않도록 저항성이 최소화 할 수 있는 구조 및 크기로 제작된다. 일 구현예에서는 상기 채널은 상기 개체 유입부 또는 도달부의 직경과 같거나 작게 형성된다. 다른 구현예에서는 도 2b에 기재된 것과 같은 크기를 가질 수 있으나, 이는 예시적인 것으로 이에 한정되는 것은 아니다.
상기 채널의 양 말단 사이의 일부에 계측부 (140) 가 형성된다. 도 10을 참조하면 상기 계측부는 이동하는 단세포 생물체를 단일 세포 수준에서 현미경적 방법을 이용하여 관찰하는 부위로, 단세포 생물체의 운동의 개별적 관찰이 가능한 구조 및 크기로 형성된다. 예를 들면 본 장치에 사용하고자하는 세포의 직경을 기준으로 예를 들면 1 개 내지 약 5 개의 세포가 통과할 수 있는 정도의 크기로 제작될 수 있으며, 사용되는 대상 단세포 생물체의 구체적 크기에 따라 달라질 수 있을 것이다. 예를 들면 약 10㎛ 내지 200㎛, 예를 들면 특히 미세조류 클라미도모나스가 사용되는 경우, 직경은 약 50㎛ 내지 100㎛ 일 수 있으나, 이로 제한하는 것은 아니다.
본 발명의 미세유체 광반응 장치에 포함되는 각 구성은 광투과성이 있는 투명한 재질로 사용되는 단세포 생물체에 대한 독성이 없고 다공성으로 생물활성에 필요한 물질전달이 용이하며, 단세포 생물체의 이동을 방해하지 않는 재질, 또는 상기 특징을 갖도록 전처리된 재질로 제작되는 것이 바람직하다. 이러한 물질로는 예를 들면 PMMA(Poly(methyl methacrylate)), PS(Polystyrene), 또는 PDMS(polydimethylsiloxane) 등을 들 수 있으나 이로 제한하는 것은 아니다.
도 1을 참조하면 본 발명의 미세유체 광반응 장치는 광원을 추가로 포함할 수 있다. 본 발명 장치에 사용되는 단세포 생물체에 목적하는 최적의 주광성을 유발할 수 있는 광원 및 파장이 선택되며, 이러한 효과를 나타내는 한, 분석하는 대상 및 목적에 맞추어 다양한 광원 및 파장의 빛이 사용될 수 있다.
광원의 종류로는 일정한 파장을 방출할 수 있는 것이면 가능하며, 예를 들면 레이저 다이오드, 또는 LED (Light Emitting Diode)가 사용될 수 있다. 본 발명의 일 구현예에서는 분석 대상으로 미세조류가 사용되며, 특히 클라미도모나스 레인하드티아이(Chlamydomonas reinhardtii)의 경우, 초록과 청색 파장을 내는 LED 광원이 이용된다.
도 1은 본 발명의 장치 및 이를 이용한 돌연변이 단세포 생물체 즉 균주 선별 방법을 예시적으로 나타낸 모식도이다. 본 발명에 따른 미세유체 광반응 장치는 주광성을 나타내는 운동성이 있는 단세포 생물체의 주광성을 이용하여 빛에 반응하는 특징이 변이된 생물체의 선별에 사용될 수 있다. 예를 들면 본 발명에 따른 장치의 세포 유입부에 일정량의 주광성 및 운동성을 갖는 단일 또는 다수 콜로니 유래의 단일 세포 생물체 예를 들면 미세조류를 도입 한 후, 특정 강도의 강한 광을 조사하면, 이에 반응하여 세포가 광원이 조사되는 방향으로부터 멀어지는 방향으로 채널을 통해 이동한다. 채널을 통해 이동하는 세포는 계측부를 통과할 때 현미경적 관찰을 통해, 주광성 지표 산정을 위한 각종 데이터 예를 들면 일정 거리 이동 시간, 이동 세포 수 등 다양한 데이터가 수집되며, 이와 관련해서는 앞서 설명한 기재를 참조할 수 있다. 본 발명에 따른 일 구현예에서, 주광성을 이용한 돌연변이가 유발된 단세포 생물체로서, 미세조류가 사용되는 경우 다음의 단계를 포함할 수 있다.
예를 들면 일 구현예에서, 본 발명의 장치를 이용한 방법은 예를 들면 (a) 단세포 생물체를 지속적 광조건에 배양한 후, 상기 단세포 생물체를 암조건에서 배양하는 전처리 단계; (b) 상기 전처리된 단세포 생물체를 상기 광반응 장치의 세포 유입부에 도입하는 단계; (c) 세포 유입부에 도입된 상기 단세포 생물체의 주광성을 유발할 수 있도록, 상기 세포 유입부에 광원을 조사하는 단계; (d) 상기 주광성에 의해 상기 채널을 통해 상기 도달부로 이동하는 상기 단세포 생물체를 상기 계측부에서 관찰하여, 주광성 반응 지표를 수집하는 단계; 및 (e) 대조군과 비교하여, 상기 주광성 지표가 변화된 경우, 이를 돌연변이가 유발된 세포로 선별하는 단계를 포함할 수 있으나, 이로 제한하는 것은 아니다. 상기 전처리 단계는 선택적으로 포함할 수 있다. 본 방법에 사용되는 각 용어 및 설명은 앞서 본 발명 방법과 관련되서 언급한 것을 참조할 수 있다.
이하, 본 발명의 이해를 돕기 위해서 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시예에 한정되는 것은 아니다.
실시예
실시예 1 : 돌연변이가 유발된 균주의 제조
본 실시예에 사용된 균주는 한양대학교 진언선 교수님 연구실에서 입수한 것으로, 종은 Chlamydomonas renihardtii 이다.
상기 균주는 야생형 (wild type) 균주 JL428로, 야생형 균주에 삽입돌연변이 유발법 (insertional mutation)으로 무작위 돌연변이를 유발한 후, 통상적으로 알려져 있는 클로로필 a/b 비율이 높은 균주가 광합성효율이 높을 가능성이 크다는 점(Anastasions Melis (2012) Vol.158 930-945)을 이용하여, 1 차적으로 클로로필 a/b 비율이 야생형 균주보다 높은 균주들을 선별하여 본 발명 방법의 효능 검증을 위해 사용하였다.
미세조류 배양에 사용된 배지는 TAP 배지이고, 이들의 구성성분은 [표 1]에 나타내었다.
실시예 2 : 미세조류 배양 및 미세유체 장치 제작
미세유체 장치는 실리콘 기판에 음성감광제 SU-8 50을 회전도포한 후, 디자인된 마스크를 덮고 자외선노광기를 이용하여 자외선에 노출시켜 포토리소그래피 (photo-lithography)를 통해 제작되었으며, 고분자 PDMS(Polydimethylsiloxane)와 경화제를 10:1의 비율로 혼합하여 포토리소그래피로 제작된 SU-8 몰드위에 제작하였다. 완성된 PDMS 미세유체 장치는 플라즈마 처리를 통해 슬라이드 글라스와 결합시켰다. 제작된 장치는 도 2b와 같다.
상기 장치는 도 2a에서 보는 바와 같이, 최적의 채널 구조를 선별하기 위하여, 채널의 폭 및 형태에 따른 세포 운동성을 하기 실시예 3과 같이 분석하였다. 요약하면, 초록색 LED 광원 (540 nm)을 세포를 넣어준 입구 세포 유입부 부분에 비추면서 일정 거리에 위치하는 반대쪽 부위 즉 세포 도달부에 도달하는 세포수를 각각의 장치에서 측정하였고, 그 결과를 비교한 결과, 도 3b에 보는 바와 같이 미세유체 장치 내 세포 유입부과 근접한 채널의 폭에 의해 세포의 주광성에 따른 운동이 영향을 받는 현상을 확인하였다. 따라서 세포의 운동에 대한 저항성을 최소화하면서, 계측부에서의 개별 세포의 관찰 및 통계적 분석을 용이하게 하기위해 도 2b와 같이 채널 입구 폭이 4 mm에서 출구 폭이 100 ㎛로 일정하게 줄어드는 형태의 채널이 포함된 장치 디자인을 선정하여, 상술한 바와 같이 제작하였다.
실시예 3 : 빛의 파장에 따른 미세조류의 광반응 분석.
빛에 대한 세포의 광반응성 및 광민감성을 효율적으로 일정하게 조절하기 위한 적응하기 위한 전처리 과정으로, 인위적 돌연변이가 유발되지 않은 Chlamydomonas reinhardtii 야생형 균주 (JL428) 및 실시예 1의 돌연변이 균주를 TAP agar 배지에서 종배양 (seed culture)하였다. 구체적으로 TAP 액체배지에 40μmol photon m-2s-1 세기의 24시간 지속적인 광조건 및 23℃ 온도조건에서 2일간배양하였다. 2일간 배양한 후, 대수성장 단계에 접어들면, 7.5×103 cells ml-1로 희석하여 암실조건에서 1시간 동안 보관하였다.
이후, 암실조건에서 1시간 동안 보관한 세포를 하기 도 2b의 세포 유입구 부분에 40 ㎕ 넣고, 세포 도달부에는 40 ㎕ TAP 배지를 넣은 후, 계측부에서 도립 광학현미경에서 주광성에 의한 미세조류 세포의 움직임을 관찰하였다.
빛의 파장별 미세조류의 광반응을 분석하기 위해 세포 농도와 조건을 상기 조건과 같이 일정하게 유지한 후, 사용하는 LED 광원의 파장을 다르게 조절하였다. 초록색 (540 nm), 적색 (650 nm), 청색 (470 nm), 백색 (전파장) 그리고 암실 조건의 총 5개의 조건에서 미세조류의 주광성을 통한 광반응 분석을 실시하였다.
그 결과, 도 3a에서 보는 바와 같이, 미세조류는 특정 파장에서 민감한 반응을 보였는데, 초록색 (540 nm)과 파란색 (470 nm)에서 반응성이 크게 나타났고, 빨간색 (650 nm)에서는 빛에 대한 반응을 나타내지 않았다. 이를 통해, 본 발명에서 기본적으로 사용되는 빛의 파장은 540 nm의 초록색 LED 광원을 사용하였다.
실시예 4 : 야생형 및 돌연변이 균주의 주광성에 의한 광반응 패턴 분석 및 선별
초록색 LED 광원 (540 nm)을 30 μmol photon m-2s-1의 세기로 세포 유입부에 빛을 비춰주고, 계측부에 도달하는 세포 수를 30분간 분단위로 측정하였다. 결과는 도 5에서 보는 바와 같이, 광반응에 의한 각 균주별 시간에 따른 이동 개체수를 분석한 결과 일정한 형태의 히스토그램을 얻었다. 돌연변이 균주들의 히스토그램을 대조군의 히스토그램과 비교한 결과, 돌연변이 1, 2, 3의 경우 대조군에 비해 광반응 히스토그램의 정점이 왼쪽으로 이동한 것을 확인하였다. 반면 돌연변이 4, 5의 경우 대조군과 큰 차이를 보이지 않았다. 이 결과는 광합성 효율과 간접적으로 관련되는 클로로필 a/b 비율과 관련하여, 일반적으로 클로로필 a/b 비율이 높은 균주가 광합성 효율이 높은 균주일 확률이 높은데, 주광성에 의해 얻은 히스토그램을 분석해보면, 대조군에 비하여 클로로필 a/b 비율이 증가된 균주가 광에 의해 이동하는 세포수가 증가하였고, 대조군과 클로로필 a/b 비율이 큰 차이를 보이지 않는 돌연변이 균주는 주광성에 의한 이동 세포수가 차이가 거의 없는 것으로 보아, 도 5의 히스토그램의 패턴 분석만으로도 광합성 효율이 증가된 돌연변이가 유발된 균주를 주광성 반응으로 쉽고 효율적인 관측이 가능하다는 것을 알 수 있다.
또한, 도 6a에서 보는 바와 같이, 전체 세포 수 대비 광반응으로 이동한 개체 수의 비율로부터 대조군 균주와 돌연변이 균주들의 광반응성을 비교한 결과 대조군 균주의 경우 전체 세포의 65%가 광반응을 보인 것에 비해 돌연변이 1은 85%가 광반응을 보여 이동하였으며 돌연변이 2, 3도 80% 가량의 세포가 광반응을 보였다. 반면 돌연변이 4, 5는 광반응 비율에 있어서도 대조군과 유사한 비율을 보였다. 이 결과는 클로로필 a/b 비율의 증가로 인한 광합성 효율이 증가된 돌연변이 균주는 동일 광세기에 대하여 반응하는 정도가 대조군에 비해 더 크다는 것을 의미하고, 대조군에 비하여 클로로필 a/b 비율의 증가가 크지 않은 돌연변이 균주는 광합성 효율의 정도가 대조군과 비슷함을 의미하고, 이러한 균주는 동일 광세기에 대한 광반응성 역시 대조군과 비슷하다는 것을 의미한다.
대조군과 돌연변이 균주의 빛에 대한 주광성에 의해 일정시간 내 세포 개체의 이동에 걸리는 평균시간의 편차를 분석함으로써, 빛에 대한 민감성을 비교 분석할 수 있으며 이를 통해 간단히 광반응이 특이적인 균주를 선별하는 것이 가능하다. 돌연변이 1, 2, 3의 경우 도 6b에서 보는 바와 같이 대조군에 비해 평균시간이 감소한 것을 확인할 수 있었으며, 돌연변이 4, 5는 대조군에 비해 크게 감소하지 않는 결과를 보였다. 이 결과는 클로로필 a/b 비율이 증가함으로써 광합성 효율이 증가된 돌연변이 균주는 일정 광세기에 대하여 대조군 균주보다 민감함을 의미하며, 이는 세포의 이동 속도와 관련되어 나타난다. 동일한 광세기에 대하여 광에 대한 민감성이 증가된 균주는 더 빠른 반응으로 이동하여 일정거리 (3cm)를 가는데 걸리는 소요시간이 줄어드는 것을 나타낸다. 상대적으로 대조군 균주와 클로로필 a/b 비율이 차이가 거의 없는 균주의 경우에는 일정 광세기에 대한 민감성이 비슷하여 일정 거리를 가는데 걸리는 시간이 대조군 균주와 비교하여 거의 차이가 없음을 나타낸다.
한편, 도 5, 6a, 6b에서 보이는 바와 같이 미세조류 대조군 및 돌연변이 균주의 주광성에 의한 광반응성은 도 4에 나타난 클로로필 a/b의 비율과 상당히 유사한 패턴을 보였으며 이는 본 발명에서 적용한 균주의 개체별 광반응성에 대한 통계적 분석법에 의해 얻은 각종 지표 (히스토그램의 정점, 이동평균시간, 광반응 세포의 비율 등)들이 주광성에 의한 광반응성, 광민감성뿐만 아니라 돌연변이에 의해 발생하는 클로로필 등 광합성기구의 변화와도 연관성을 가질 수 있음을 나타낸다.
따라서 본 발명에서 사용된 미세유체 시스템 내 미세조류의 주광성에 대한 분석방법을 이용하여 1차 선별된 균주를 대상으로 광합성 효율이 향상된 균주를 보다 효율적으로 탐색할 수 있다.
실시예 5 : 선별된 돌연변이 균주의 광합성 지표 분석
본 실시예에서는 상기와 같이 주광성에 의해 선별된 돌연변이 균주의 광합성 효율을 측정하였다. 지표로서 NPQ와 qP를 사용하였다. NPQ는 광합성을 위해 받은 광에 너지 중 광합성으로 사용하지 못하고 소멸하는 에너지로, NPQ값이 낮을수록 광합성 효율이 높다는 것을 의미하며, qP는 광합성을 사용되는 에너지를 의미하는 것으로 qP 값이 높을수록 광합성 효율이 높다는 것을 의미한다.
5-1 선별된 균주의 클로로필 a/b 비율과 NPQ, qP과 상관관계 분석
선별된 균주의 클로로필 a/b 비율과 NPQ, qP과 상관관계를 다음과 같이 분석하였다. 클로로필 측정법은 흡광도 측정을 기본으로 하는 공지된 방법(Hartumut K. Lichtenthaler와 Claus Buschmann (2001) F4.3.1-F4.3.8)을 통해 측정하였다.
요약하면, 플라스크에서 광도 40 μmol photon m-2s-1에서 3 일간 배양한 후, 대수성장기에서 접어들었을 때 클로로필 측정을 실시하였다. 플라스크를 잘 흔들어 1 ml을 1.5 ml 튜브로 옮겨 15,000 rpm에서 1 분간 원심분리를 하였다. 원심분리 후 상층액을 제거하고, 메탄올 1 ml을 넣은 후 볼텍스를 수행하여 클로로필을 추출하였다. 이어 15,000 rpm에서 1 분간 원심분리 한 후 상층액에 대하여 A663.2, A646.8 파장에서 흡광도를 측정하였다. 그 다음 다음 식에 대입하여 클로로필 a와 b를 측정하여 클로로필 a/b 비율을 측정하였다.
Chl a (g/ml) = 16.72×A665.2 ― 9.16×A652.4
Chl b (g/ml) = 34.09×A652.4 ―15.28×A665.2
Chl a/b = Chl a ÷ Chl b
NPQ 및 qP는 TAP 배지에 아가를 포함하는 아가 배지에서 23에서 균주를 배양한 후 Imaging-PAM 클로로필 형광분석 장비(Heinz Walz GmbH, Germany)를 이용하여 측정하였다.
이후, 실시예 3 내지 5에서와 같은 분석을 통해 수득한 데이터 즉 평균 이동 시간, 단위 시간 동안 도달된 세포 군집의 세포 비율 등과 클로로필 a/b 비율, NPQ 그리고 qP와의 분석을 실시하였다.
결과는 도 7a 및 7b에 기재되어 있다. 이에 나타난 바와 같이 클로로필 a/b 비율이 높을수록 NPQ 값이 낮은 상관관계를 나타내고 qP 값은 높은 상관관계를 나타내어 광합성 효율이 높음을 나타내는 것이다.
5-2 선별된 균주의 평균 도달 시간과 NPQ와의 상관관계 분석
실시예 4에 기재된 바와 같이 각 균주에 대해 얻은 주광성 지표 중 평균 도달 시간과 실시예 5에 기재된 광합성 효율 측정 지표와의 분석을 실시하였다.
결과는 도 8a 및 8b에 기재되어 있다. 이에 나타난 바와 같이 두 지표 간의 상관성을 나타내는 r2 값이 1에 가까울수록 상관성이 높다는 것으로, 종전에 사용되는, 클로로필 a/b 비율 보다는 본 발명 방법에 따른 주광성을 통해서 얻은 지표가 광합성 효율이 증가된 돌연변이 균주를 선별하는데 유용함을 나타내는 것이다.
5-3 선별된 균주의 대조군 대비 이동 세포수의 비와 NPQ와의 상관관계 분석
실시예 4에 기재된 바와 같이 각 균주에 대해 얻은 주광성 지표 중 대조군 대비 이동 세포수의 비와 실시예 5에 기재된 광합성 효율 측정 지표와의 분석을 실시하였다.
결과는 도 9에 기재되어 있다. 이에 나타난 바와 같이 그 비율이 1 이상인 돌연변이 균주는 일정시간 동안 대조군 균주에 대비하여 더 많은 세포수가 이동한 것으로, 이는 광민감성 및 광반응성이 우수한 돌연변이 균주를 의미하고, 이러한 균주가 NPQ 값이 낮은 상관관계를 나타내므로, 이는 광합성 효율이 증가된 균주임을 나타낸다. 따라서 이러한 결과는 주광성을 이용한 본 발명 방법을 이용할 경우, 광합성 효율이 높은 균주의 선별이 가능함을 나타내는 것이다.
본 발명 발명은 주광성을 이용하여 개량된 단세포 생물체를 미세유체 시스템을 이용하여 효과적으로 선별할 수 있는 것으로, 세포 단위에서 용이한 모니터링이 가능하고, 수집한 결과의 통계적 분석을 포함한 다양한 분석을 통해 변화된 광반응성 및/또는 광민감성을 갖는 돌연변이 균주를 쉽게 또한 고속으로 선별할 수 있어, 주광성 및 광전환 효율의 상관관계 규명, 광전환 효율이 향상된 개량된 단세포 생물체 선별에 유용하게 활용될 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (24)

  1. 다음 단계를 포함하는 주광성을 이용한 돌연변이 단세포 생물체의 선별방법:
    (a) 단세포 생물체에 광을 조사하여 주광성을 유발하는 단계;
    (b) 상기 단세포 생물체의 주광성 지표를 산출하는 단계; 및
    (c) 대조군과 비교하여, 상기 단세포 생물체의 주광성 지표가 변화된 경우, 이를 목적하는 돌연변이가 유발된 단세포 생물체로 선별하는 단계.
  2. 제1항에 있어서, 상기 방법은 상기 (a) 단계 전에 상기 단세포 생물체를 지속적 광조건에 배양한 후, 상기 단세포 생물체를 암조건에서 배양하는 전처리 단계를 추가로 포함하는 것을 특징으로 하는 돌연변이 단세포 생물체의 선별방법.
  3. 제2항에 있어서, 상기 지속적 광조건은 540 ~ 600 nm 또는 430 ~ 500 nm 파장을 갖는 20 ~ 50μmol photon m-2s-1 세기의 광을 12 내지 24 시간 동안 조사하는 것을 특징으로 하는 돌연변이 단세포 생물체의 선별방법.
  4. 제2항에 있어서, 상기 전처리 단계의 배양은 대수증식기 (exponentail phase) 까지 배양하는 것을 특징으로 하는 돌연변이 단세포 생물체의 선별방법.
  5. 제1항에 있어서, 상기 단세포 생물체는 단일 콜로니 유래 또는 다수의 콜로니 유래인 것을 특징으로 하는 돌연변이 단세포 생물체의 선별방법.
  6. 제1항에 있어서, 상기 주광성은 음성 또는 양성 주광성인 것을 특징으로 하는 돌연변이 단세포 생물체의 선별방법.
  7. 제6항에 있어서, 상기 주광성은 음성 주광성으로, 상기 음성 주광성은 540 ~ 600 nm 또는 430 ~ 500 nm 파장의 빛을 20 ~ 50 μmol photon m-2s-1cm-1 광도의 조사에 의해 유발되는 것을 특징으로 하는 돌연변이 단세포 생물체의 선별방법.
  8. 제1항에 있어서, 상기 주광성지표는 광반응성 또는 광민감성 중 하나 이상의 측정을 통해 산출되는 것을 특징으로 하는 돌연변이 단세포 생물체의 선별방법.
  9. 제1항에 있어서, 상기 목적하는 돌연변이가 유발된 단세포 생물체는 대조군과 비교하여 광합성 색소를 포함하는 광합성 기구의 변화, 광합성 효율, 또는 광전환 효율을 포함하는 광합성 지표, 또는 성장속도 중 하나 이상이 개선된 것을 특징으로 하는 돌연변이 단세포 생물체의 선별방법.
  10. 제1항에 있어서, 상기 주광성 지표는, (i) 사용된 총 단세포 생물체 수에 대한 주광성에 반응하여 단위 시간당 이동한 단세포 생물체 수의 비; (ii) 단위 시간 당 이동한 단세포 생물체 수의 분포를 기초로 한 히스토그램 정점분석; 또는 (iii) 상기 방법에 사용된 단세포 생물체의 단위 거리당 이동에 소요된 평균 시간, 또는 속도 또는 그 편차를 포함하는 것을 특징으로 하는 돌연변이 단세포 생물체의 선별방법.
  11. 제1항에 있어서, 상기 선별된 돌연변이 단세포 생물체에 대하여 광합성 지표를 추가로 분석하는 단계를 포함하는 것을 특징으로 하는 돌연변이 단세포 생물체의 선별방법.
  12. 제11항에 있어서, 상기 광합성 지표는 광합성 색소를 포함하는 광합성 기구의 변화, 광합성 효율 또는 광전환 효율을 포함하는 것을 특징으로 하는 돌연변이 단세포 생물체의 선별방법.
  13. 제1항에 있어서, 상기 단세포 생물체는 미세조류인 것을 특징으로 하는 돌연변이 단세포 생물체의 선별방법.
  14. 제13항에 있어서, 상기 미세조류는 녹조류, 규조류, 홍조류, 편모류, 담록조류, 갈색 편모조류, 황녹색조류, 와편모류, 또는 남조류인 것을 특징으로 하는 돌연변이 단세포 생물체의 선별방법.
  15. 제14항에 있어서, 상기 갈색 편모조류는 클라미도모나스 속(Chlamydomonas spp.), 로도모나스 속(Rhodomonas spp.), 크루모나스 속(Chroomonas spp.) 중 하나 이상인 것을 특징으로 하는 돌연변이 단세포 생물체의 선별방법.
  16. 제15항에 있어서, 상기 클라미도모나스 속은 클라미도모나스 레인하드티아이(Chlamydomonasreinhardtii)인 것을 특징으로 하는 돌연변이 단세포 생물체의 선별방법.
  17. 제1항 내지 제16항 중 어느 한 항의 방법에 따라 선별된 돌연변이 단세포 생물체.
  18. 광투과성 개체 유입부;
    상기 개체 유입부와 별개로 형성되는 개체 도달부;
    상기 개체 유입부 및 상기 개체 도달부에 유체 소통가능하게 연결된 채널부;
    및 상기 채널부의 양 말단 사이에 형성된 계측부를 포함하는, 미세유체 광반응장치.
  19. 제18항에 있어서, 상기 계측부는 상기 채널부의 직경보다 같거나 작게 형성되는 것을 특징으로 하는 미세유체 광반응 장치.
  20. 제19항에 있어서, 상기 계측부의 직경은 상기 개체 유입부에 도입된 개체 운동의 개별적 관찰이 가능한 크기로 형성되는 것을 특징으로 하는 미세유체 광반응 장치.
  21. 제19항에 있어서, 상기 계측부의 직경은 10㎛ 내지 100㎛ 인 것을 특징으로 하는 미세유체 광반응 장치.
  22. 제18항에 있어서, 상기 미세유체 광반응기는 광원을 추가로 포함하는 것을 특징으로 하는 미세유체 광반응 장치.
  23. 제22항에 있어서, 상기 광원은 LED 또는 레이저 다이오드를 포함하는 것을 특징으로 하는 미세유체 광반응 장치.
  24. 제18항에 있어서, 상기 장치는 제1항 내지 제17항 중 어느 한 항에 따른 방법에 사용되는 것을 특징으로 하는 미세유체 광반응 장치.
PCT/KR2014/000373 2013-01-21 2014-01-14 돌연변이가 유발된 단세포 생물체의 선별방법 및 이에 사용되는 미세유체 장치 WO2014112762A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14740606.0A EP2947154B1 (en) 2013-01-21 2014-01-14 Discrimination method for mutation-induced unicellular organism and microfluidic device used therefor
JP2015553650A JP6316316B2 (ja) 2013-01-21 2014-01-14 突然変異が誘発された単細胞生物体の選別方法及びこれに用いられる微細流体装置
US14/760,607 US9650659B2 (en) 2013-01-21 2014-01-14 Discrimination method for mutation-induced unicellular organism and microfluidic device used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130006466A KR101471270B1 (ko) 2013-01-21 2013-01-21 돌연변이가 유발된 단세포 생물체의 선별방법 및 이에 사용되는 미세유체 장치
KR10-2013-0006466 2013-01-21

Publications (1)

Publication Number Publication Date
WO2014112762A1 true WO2014112762A1 (ko) 2014-07-24

Family

ID=51209817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000373 WO2014112762A1 (ko) 2013-01-21 2014-01-14 돌연변이가 유발된 단세포 생물체의 선별방법 및 이에 사용되는 미세유체 장치

Country Status (5)

Country Link
US (1) US9650659B2 (ko)
EP (1) EP2947154B1 (ko)
JP (1) JP6316316B2 (ko)
KR (1) KR101471270B1 (ko)
WO (1) WO2014112762A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015095085A2 (en) 2013-12-16 2015-06-25 Brubacher John Miles Microorganism evaluation system
KR101699232B1 (ko) * 2014-11-12 2017-01-24 고려대학교 산학협력단 주광성 또는 주화성이 우수한 미세조류 균주 선별용 마이크로 장치 및 이를 이용한 미세조류 균주 선별방법
KR101872401B1 (ko) * 2016-10-12 2018-06-28 고려대학교 산학협력단 주광성 및 광합성 효율이 향상된 미세조류
US10106861B2 (en) 2016-10-12 2018-10-23 Korea University Research And Business Foundation Microalgae with improved phototaxis and photosynthetic efficiency

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5652098A (en) * 1993-03-12 1997-07-29 The United States Of America As Represented By The United States Department Of Energy Method for rapid isolation of sensitive mutants
US20080044887A1 (en) * 2006-07-24 2008-02-21 George Maltezos Meandering channel fluid device and method
US20080254493A1 (en) 2005-02-16 2008-10-16 Marcus Hartmann Screening Method Identifying Protease Secretion-Deficient Mutants of Microorganisms
KR20110018798A (ko) 2009-08-18 2011-02-24 한양대학교 산학협력단 미세유체 세포칩, 이를 이용한 세포사멸 정량 분석법 및 세포영상분석장치
US20120225475A1 (en) * 2010-11-16 2012-09-06 1087 Systems, Inc. Cytometry system with quantum cascade laser source, acoustic detector, and micro-fluidic cell handling system configured for inspection of individual cells
US20120329089A1 (en) * 2010-03-11 2012-12-27 Jacob Edrei Methods of generating hydrogen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPM666694A0 (en) * 1994-07-06 1994-07-28 Unisearch Limited Natural antifouling compositions
CA2486812A1 (en) * 2002-05-22 2004-05-21 Platypus Technologies, Llc Substrates, devices, and methods for cellular assays
US20080194029A1 (en) * 2004-05-07 2008-08-14 Peter Hegemann Method for Increasing the Ratio of Homologous to Non-Homologous Recombination

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5652098A (en) * 1993-03-12 1997-07-29 The United States Of America As Represented By The United States Department Of Energy Method for rapid isolation of sensitive mutants
US20080254493A1 (en) 2005-02-16 2008-10-16 Marcus Hartmann Screening Method Identifying Protease Secretion-Deficient Mutants of Microorganisms
US20080044887A1 (en) * 2006-07-24 2008-02-21 George Maltezos Meandering channel fluid device and method
KR20110018798A (ko) 2009-08-18 2011-02-24 한양대학교 산학협력단 미세유체 세포칩, 이를 이용한 세포사멸 정량 분석법 및 세포영상분석장치
US20120329089A1 (en) * 2010-03-11 2012-12-27 Jacob Edrei Methods of generating hydrogen
US20120225475A1 (en) * 2010-11-16 2012-09-06 1087 Systems, Inc. Cytometry system with quantum cascade laser source, acoustic detector, and micro-fluidic cell handling system configured for inspection of individual cells

Also Published As

Publication number Publication date
EP2947154B1 (en) 2018-05-30
EP2947154A1 (en) 2015-11-25
JP2016505269A (ja) 2016-02-25
KR20140094143A (ko) 2014-07-30
US20150353981A1 (en) 2015-12-10
JP6316316B2 (ja) 2018-04-25
US9650659B2 (en) 2017-05-16
EP2947154A4 (en) 2016-07-13
KR101471270B1 (ko) 2014-12-10

Similar Documents

Publication Publication Date Title
Kim et al. Microfluidic systems for microalgal biotechnology: A review
Franco et al. Monoalgal and mixed algal cultures discrimination by using an artificial neural network
Bodénès et al. Microfluidic techniques for enhancing biofuel and biorefinery industry based on microalgae
WO2014112762A1 (ko) 돌연변이가 유발된 단세포 생물체의 선별방법 및 이에 사용되는 미세유체 장치
Peniuk et al. Identification and quantification of suspended algae and bacteria populations using flow cytometry: applications for algae biofuel and biochemical growth systems
Cui et al. In situ identification of environmental microorganisms with Raman spectroscopy
CN106238112A (zh) 一种微流控芯片及其在病原体的鉴定与药敏实验中的应用
Alam et al. Standard techniques and methods for isolating, selecting and monitoring the growth of microalgal strain
Doppler et al. Make microalgal cultures axenic again–a fast and simple workflow utilizing fluorescence-activated cell sorting
Albertano et al. A complex photoreceptive structure in the cyanobacterium Leptolyngbya sp.
Bashir et al. Viable protoplast formation of the coral endosymbiont alga Symbiodinium spp. in a microfluidics platform
Smith et al. Non-destructive machine vision analysis of pigment-producing cell cultures
Mazzelli et al. Development of semi-theoretical light radiation and photosynthetic growth model for the optimal exploitation of wastewaters by microalgae
CN110819692A (zh) 一种高纯种超微藻的分离和鉴定方法
Zhang et al. Microalgae in microwell arrays exhibit differences with those in flasks: evidence from growth rate, cellular carotenoid, and oxygen production
RU93990U1 (ru) Устройство для мультисубстратной флуоресцентной идентификации биологических микрообъектов и их биологических свойств
CN110241047B (zh) 一种利用三氯生筛选直线形螺旋藻藻丝的方法
Lazcano-Hernández et al. Off-line and on-line optical monitoring of microalgal growth
Kelbauskas et al. Simultaneous multiparameter cellular energy metabolism profiling of small populations of cells
Samek et al. Characterization of microorganisms using Raman tweezers
CN110241048B (zh) 一种利用三唑酮筛选螺旋形螺旋藻藻丝的方法
KR101699232B1 (ko) 주광성 또는 주화성이 우수한 미세조류 균주 선별용 마이크로 장치 및 이를 이용한 미세조류 균주 선별방법
Sadvakasova et al. Pigment mutants of the green microalga Chlamydomonas reinhardtii: Morphological properties and photosynthetic performance
KR101745415B1 (ko) 주화성을 이용하여 이산화탄소 고정효율과 성장성이 우수한 균주를 선별할 수 있는 미세유체장치 및 주화성을 이용하여 이산화탄소 고정효율과 성장성이 우수한 균주의 선별방법
de Haan et al. Decoupling cell size homeostasis in diatoms from the geometrical constraints of the silica cell-wall

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740606

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14760607

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015553650

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014740606

Country of ref document: EP