WO2014112733A1 - Heat radiation sheet having attachment part formed in groove thereof - Google Patents

Heat radiation sheet having attachment part formed in groove thereof Download PDF

Info

Publication number
WO2014112733A1
WO2014112733A1 PCT/KR2013/012433 KR2013012433W WO2014112733A1 WO 2014112733 A1 WO2014112733 A1 WO 2014112733A1 KR 2013012433 W KR2013012433 W KR 2013012433W WO 2014112733 A1 WO2014112733 A1 WO 2014112733A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat dissipation
recessed groove
dissipation sheet
heat radiation
Prior art date
Application number
PCT/KR2013/012433
Other languages
French (fr)
Korean (ko)
Inventor
김영일
박현욱
정진영
함흥우
민지영
Original Assignee
주식회사 엘엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘엠에스 filed Critical 주식회사 엘엠에스
Publication of WO2014112733A1 publication Critical patent/WO2014112733A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a heat dissipation sheet that performs heat dissipation in contact with a heat dissipation object, and more particularly, to a heat dissipation sheet provided with an adhesive part in a recessed groove formed in one surface of a heat conductive portion.
  • carbon-containing materials having high thermal conductivity such as graphene and carbon nanotube (CNT) may be used as base materials such as monomers, oligomers, or polymers.
  • CNT carbon nanotube
  • FIG. 1 illustrates a structure of a heat dissipation sheet 1 that is generally applied to an electronic device such as a display.
  • the conventional heat dissipation sheet 1 has a graphite layer 10, and a polymer film 30 for protecting the graphite layer 10 is attached before and after the graphite layer 10. do.
  • one surface of each of the polymer films 30 is provided with an adhesive layer 20 for adhering the heat dissipation sheet 1 to a heat generating portion of an electronic device such as a display.
  • the adhesive layer 20 and the polymer film 30 generally have a thermal conductivity of 0.2 W / mK level, even if a graphite layer 10 having a high thermal conductivity of several thousand W / mK level is used, the entire heat dissipation sheet 1 ) Has a problem that the heat conduction performance is bound to decline.
  • the thermal conductive layer is implemented using a material having high thermal conductivity
  • the vertical direction of the entire heat dissipation sheet 1 is due to the adhesive layer 20 and the polymer film 30 which are essentially provided to apply the same to an electronic device.
  • the heat conduction performance is greatly reduced.
  • An object of the present invention is to solve the above problems, to provide a heat dissipation sheet for solving the problem that the vertical heat conduction performance is greatly reduced due to the adhesive layer and the polymer film.
  • Heat dissipation sheet provided with an adhesive portion in the recessed groove for solving the above process, one or more recessed grooves are formed on one surface, provided in the heat conducting portion and the recessed groove to contact the heat radiation target to perform heat radiation, It includes an adhesive for fixing the heat conductive portion.
  • the thermally conductive portion may include a polymer resin and a carbon-containing powder.
  • the carbon-containing powder may include at least one or more of graphene flakes, carbon nanotubes, and graphite flakes.
  • the polymer resin may further include at least one or more of a metal filler and an oxide filler.
  • front and rear length of the adhesive portion may be formed to be the same as the depth of the recessed groove.
  • the front surface of the adhesive part may have a larger area than the rear surface of the adhesive part, and the recessed groove may be formed to correspond to the shape of the adhesive part.
  • the plurality of recessed grooves may be arranged spaced apart from each other.
  • the recess may be formed along a circumference of the heat conducting portion.
  • the recessed groove may be formed in a line shape.
  • a release portion may be further provided on one surface of the heat conductive portion.
  • a metal coating layer may be further formed on the other surface of the heat conductive portion.
  • the recessed groove may be further formed on the other surface of the heat conductive portion.
  • Heat dissipation sheet provided with an adhesive portion in the recessed groove of the present invention has the following effects.
  • the heat conduction portion is in direct contact with the heat dissipation object, there is an advantage that the heat dissipation can be effectively performed without degrading the vertical heat conductivity of the heat dissipation sheet.
  • FIG. 1 is a cross-sectional view showing the structure of a conventional heat dissipation sheet
  • FIG. 2 is a cross-sectional view showing the state of the heat conduction portion in the heat radiation sheet according to the first embodiment of the present invention
  • FIG. 3 is a perspective view and a cross-sectional view of a heat conducting part formed of a polymer resin in which carbon-containing powder is dispersed in a heat dissipation sheet according to a first embodiment of the present invention
  • FIG. 4 is a cross-sectional view showing a recessed groove formed on one surface of the heat conduction portion in the heat radiation sheet according to the first embodiment of the present invention
  • FIG. 5 is a cross-sectional view showing a state in which an adhesive part is provided in a recessed groove formed in one surface of a heat conductive part in the heat dissipation sheet according to the first embodiment of the present invention
  • Figure 6 is a rear view showing one surface of the heat radiation sheet according to the first embodiment of the present invention.
  • FIG. 7 is a rear view showing one surface of the heat radiation sheet according to the second embodiment of the present invention.
  • FIG. 8 is a rear view showing one surface of a heat radiation sheet according to a third embodiment of the present invention.
  • FIG. 9 is a rear view showing one surface of a heat radiation sheet according to a fourth embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing the structure of a heat radiation sheet according to a fifth embodiment of the present invention.
  • FIG 2 is a cross-sectional view showing a state of the heat conduction unit 110 in the heat radiation sheet 100 according to the first embodiment of the present invention.
  • the heat conduction unit 110 is prepared for the manufacture of the heat dissipation sheet 100 according to the first embodiment of the present invention.
  • 2 is a cross-sectional view of the heat dissipation sheet 100, and for convenience of description, the upper direction of FIG. 2 is defined as front, the lower direction as rear, and the left and right directions as lateral.
  • the direction perpendicular to the top or bottom surface of the heat dissipation sheet 100 is defined as the vertical direction.
  • the heat conductive part 110 may transfer heat generated in the heat dissipation object in contact with the heat dissipation sheet 100 to the outside of the heat dissipation object.
  • the heat conduction unit 110 includes a polymer resin and carbon-containing powder.
  • polymer resin examples include epoxy resins, ethylene resins, propylene resins, vinyl chloride resins, styrene resins, carbonate resins, ester resins, nylon resins, silicone resins, and imide resins. These may be used alone or in combination of two or more.
  • the carbon-containing powder may include graphene flakes, carbon nanotubes or graphite flakes, and these may be used alone or in combination of two or more as carbon-containing powders. Since the carbon-containing powder has a thermal conductivity of several thousand W / mK level, the thermal conductivity of the thermally conductive portion 110 including the carbon-containing powder is significantly higher than that of the metal heat dissipation sheet.
  • Graphene flakes are plate-like structures having a two-dimensional planar structure in which six carbon atoms are connected in a honeycomb-shaped hexagon, and are flake powders having a thickness of several tens to tens of nanometers.
  • the graphene flakes may include graphenes stacked in 1 to 50 layers.
  • Graphene has a thermal conductivity of about 5,300 W / mK.
  • the carbon nanotubes are tubular powders extending in one direction, and the thermal conductivity of the carbon nanotubes in the extending direction may be about 3,000 W / mK to about 3,500 W / mK.
  • Graphite flakes have a structure in which a plurality of graphenes are stacked, and a powder having a larger number of graphene stacks than the graphene flakes is defined as a powder that is distinguished from graphene flakes.
  • 3 illustrates a thermally conductive portion formed of a polymer resin in which carbon-containing powder is dispersed.
  • 3A is a three-dimensional view of the heat conductive portion 110, and (b) is a cross-sectional view of the heat conductive portion 110. As shown in FIG.
  • the graphene flakes (g) dispersed in the polymer resin is in contact with each other to form a heat transfer path. That is, since the graphene flakes (g) having a high thermal conductivity of several thousand W / mK contact each other to form a heat transfer path, the thermal conductivity in the vertical direction of the heat dissipation sheet 100 is greatly improved.
  • the thermally conductive portion 110 may further include a thermally conductive filler (not shown).
  • the thermally conductive filler may include at least one of a metal filler and an oxide filler.
  • the thermally conductive filler may improve the thermal conductivity of the thermally conductive portion 110 together with the carbon-containing powder.
  • Metal fillers include aluminum (Al), beryllium (Be), chromium (Cr), copper (Cu), gold (Au), molybdenum (Mo), nickel (Ni), zinc (Zn), rhodium (Rh), zirconium ( Zr), silver (Ag) or tungsten (W), which may be used alone or in combination of two or more, respectively.
  • the oxide filler may include silicon oxide (SiO 2), aluminum oxide (Al 2 O 3), zinc oxide (ZnO), or the like, and these may be used alone or in combination of two or more.
  • Oxide fillers have lower thermal conductivity than metal fillers, but have good dispersibility to the base material.
  • the heat conduction unit 110 may be formed by curing a 'resin manufacturing composition' in which the base material and the carbon-containing powder, which form the polymer resin, are mixed.
  • the composition for preparing a resin may further include a thermally conductive filler together with the carbon-containing powder.
  • the base material may include monomers, oligomers, or polymers that determine units of the polymer resin.
  • the base material may have fluidity by heat or as such, and the carbon-containing powder or the thermally conductive filler may be dispersed in the base material.
  • the base material may be dissolved in a solvent, and carbon-containing powder or thermally conductive filler may be dispersed in the base material dissolved in the solvent.
  • the base material comprises a polymer
  • the weight average molecular weight of the polymer may be about 100,000 to about 1,000,000 in consideration of the solubility of the base material in a solvent.
  • the thermally conductive portion 110 may be formed by cooling or drying the resin manufacturing composition.
  • the resin composition may further include a crosslinking agent.
  • the base material may be a polymer resin having a high mechanical strength and a chemically stable structure by a crosslinking agent.
  • FIG. 4 is a cross-sectional view illustrating a recessed groove formed on one surface of a heat conductive part in the heat radiation sheet according to the first embodiment of the present invention.
  • a step of forming one or more recessed grooves 112 on one surface of the heat conductive part 110 is performed.
  • One or more recessed grooves 112 may be formed, and each recessed groove 112 may be formed in various forms. That is, although the shape of the cross-section of the recessed groove 112 is 'c' is shown in Figure 4 is not limited to this may be formed in a polygonal shape of various forms.
  • the cross-sectional shape of the recessed groove 112 may include a curve, such as a semi-circle or semi-ellipse, may include a bend.
  • FIG 5 is a cross-sectional view showing a state in which the adhesive portion 120 is provided in the recessed groove 112 formed on one surface of the heat conducting portion 110 in the heat radiation sheet 100 according to the first embodiment of the present invention.
  • the adhesive part 120 includes an adhesive material and then serves to fix the heat dissipation sheet 100 to the heat dissipation target.
  • the adhesive portion 120 is preferably formed in a shape corresponding to the recessed groove 112.
  • the front and rear lengths of the adhesive part 120 are formed to be equal to the depth of the recessed groove 112
  • the rear surface of the heat conductive part 110 is formed flat without bending, and both the heat conductive part 100 and the adhesive part 120 are externally formed. It has a shape exposed to.
  • the adhesive part 120 is formed only in a partial region of one surface of the heat conductive part 100, the heat dissipation sheet 100 is stably fixed to the heat dissipation target by the adhesive part 120.
  • the heat conduction unit 110 is in direct contact with the heat dissipation object, there is an advantage that heat dissipation can be effectively performed without degrading the heat conductivity in the vertical direction of the heat dissipation sheet 100.
  • the graphite layer may not be in direct contact with the heat dissipation target by the adhesive layer 20 or the polymer film 30, thereby solving the problem that thermal conductivity has to be reduced.
  • the structure of the heat dissipation sheet 100 itself can be simpler and lighter than the conventional structure.
  • the heat dissipation sheet 100 may further include a release part 130 provided on one surface of the heat conduction part 110.
  • the release unit 130 may prevent the adhesive force that may be generated due to the adhesion of the adhesive 120 to the outside until the heat dissipation sheet 100 is installed on the heat dissipation target.
  • a metal coating layer may be further formed on the other surface of the heat conductive part 110.
  • the metal coating layer formed on the other surface of the heat conductive part 100 has an advantage of improving the thermal conductivity of the heat dissipation sheet 100.
  • FIG. 6 is a rear view showing one surface of the heat radiation sheet 100 according to the first embodiment of the present invention.
  • a plurality of recessed recesses 112 are spaced apart from the recessed recesses in the rear of the heat conducting unit 110, and a plurality of adhesive units 120 may be spaced apart from each other.
  • each adhesive portion 120 and the distance between the adhesive portion 120 may be variously adjusted in consideration of the surface shape of the heat dissipation target, the required adhesion, and the like. However, as shown in FIG. 6, the adhesive parts 120 may be arranged to have the same distance from each other.
  • FIG. 7 is a rear view showing one surface of the heat radiation sheet 200 according to the second embodiment of the present invention.
  • the adhesive part 220 may be formed along the circumference of the heat conductive part 210. Accordingly, the heat dissipation sheet 200 of the second embodiment can be concentrated in the center portion without dispersing the exposed area of the heat conducting portion 210 that performs heat dissipation, thereby enabling more effective heat dissipation according to the shape of the heat dissipation target.
  • FIG. 8 is a rear view showing one surface of the heat radiation sheet 300 according to the third embodiment of the present invention.
  • the adhesive part 320 may be formed in a line shape.
  • the number, length, width, and spacing between the adhesive parts 320 may be adjusted in various ways depending on the required adhesive force or the shape of the heat dissipation object.
  • the extending direction of the adhesive part 320 having a line shape is parallel to the top surface of the heat dissipation sheet 300, but the extending direction of the adhesive part 320 may also be appropriately selected as necessary.
  • FIG. 9 is a rear view showing one surface of the heat radiation sheet 400 according to the fourth embodiment of the present invention.
  • the adhesive part 420 may be formed in an intersecting line shape. 9 illustrates a shape in which lines parallel to each other in the up, down, left, and right directions cross each other, but an extension direction of each line may be appropriately adjusted as necessary.
  • the adhesive part 420 may be formed in a curved shape that crosses each other.
  • the adhesive force of the heat dissipation sheet 400 is greatly increased, which may be effective when the front and rear lengths of the heat conductive part 410 are long to increase in volume and weight.
  • FIG. 10 is a cross-sectional view showing the structure of a heat radiation sheet 500 according to a fifth embodiment of the present invention.
  • the areas of the upper and lower surfaces of the adhesive part 520 may be different from each other.
  • the front surface of the adhesive portion 520 may have a larger area than the rear surface of the adhesive portion 520.
  • the side surface of the recessed groove 522 may be formed to be inclined, thereby preventing the adhesive part 520 from being separated from the heat conductive part 510.
  • a recessed groove may be further formed on the other surface of the heat conductive portion.
  • the heat dissipation target may be disposed on both surfaces of the heat conductive portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A heat radiation sheet having an attachment part formed in a groove thereof according to the present invention includes: a heat conductive part having at least one groove formed in one surface thereof and radiating heat by coming into contact with an object to which heat is radiated; and an attachment part formed in the groove, for fixing the heat conductive part to the heat radiating object.

Description

함몰홈에 접착부가 구비된 방열시트Heat dissipation sheet with adhesive part in recessed groove
본 발명은 방열 대상에 접촉되어 방열을 수행하는 방열시트에 관한 것으로서, 보다 구체적으로는 열전도부의 일면에 형성된 함몰홈에 접착부가 구비된 방열시트에 관한 것이다.The present invention relates to a heat dissipation sheet that performs heat dissipation in contact with a heat dissipation object, and more particularly, to a heat dissipation sheet provided with an adhesive part in a recessed groove formed in one surface of a heat conductive portion.
종래에는 디스플레이 등 전자기기의 방열을 위해 알루미늄 재질의 방열판이 널리 사용되었다. 이와 달리 최근에는 디스플레이 등 전자기기의 소형화 및 슬림화 추세에 따라, 그래파이트(Graphite)로 형성된 방열시트의 적용이 확대되고 있는 상황이다.Conventionally, aluminum heat sinks have been widely used for heat dissipation of electronic devices such as displays. On the contrary, in recent years, in accordance with the trend of miniaturization and slimming of electronic devices such as displays, the application of heat-dissipating sheets formed of graphite is expanding.
하지만, 그래파이트로 형성된 방열시트는 고온 및 고압 조건에서 제작되어야 하므로 대량 생산 측면에 있어 그 한계점이 노출되었으며, 이에 따라 제품의 단가가 매우 높게 형성되어 있는 실정이다.However, since the heat dissipation sheet formed of graphite has to be manufactured under high temperature and high pressure conditions, its limitation point is exposed in terms of mass production, and thus the unit price of the product is very high.
이를 극복하기 위해 그래핀(Graphene), 탄소나노튜브(CNT: Carbon Nanotube) 등의 높은 열전도도를 가지고 있는 탄소 함유 재료를 단량체들(Monomers), 올리고머(Oligomer) 또는 폴리머(Polymer) 등의 베이스 재료에 분산시켜 코팅하는 방식으로 대량 생산이 가능하도록 하는 기술적 접근이 이루어지고 있지만, 아직 상용화에는 이르지 못하고 있다.In order to overcome this, carbon-containing materials having high thermal conductivity such as graphene and carbon nanotube (CNT) may be used as base materials such as monomers, oligomers, or polymers. Although a technical approach has been made to allow mass production by dispersing in a coating method, it has not been commercialized yet.
그리고 도 1에는, 종래 일반적으로 디스플레이 등 전자기기에 적용되고 있는 방열시트(1)의 구조를 도시한 것이다.1 illustrates a structure of a heat dissipation sheet 1 that is generally applied to an electronic device such as a display.
도 1에 도시된 바와 같이, 종래의 방열시트(1)는 그래파이트층(10)을 가지며, 이와 같은 그래파이트층(10)을 보호하기 위한 고분자 필름(30)이 그래파이트층(10)의 전후에 부착된다. 그리고 각 고분자 필름(30) 중 어느 하나의 일면에는 디스플레이 등 전자기기의 발열부에 방열시트(1)를 접착시키기 위한 접착층(20)이 구비된다.As shown in FIG. 1, the conventional heat dissipation sheet 1 has a graphite layer 10, and a polymer film 30 for protecting the graphite layer 10 is attached before and after the graphite layer 10. do. In addition, one surface of each of the polymer films 30 is provided with an adhesive layer 20 for adhering the heat dissipation sheet 1 to a heat generating portion of an electronic device such as a display.
이때 접착층(20) 및 고분자 필름(30)은 일반적으로 0.2W/mK 수준의 열전도도를 가지므로 수천 W/mK 수준의 높은 열전도도를 가지고 있는 그래파이트층(10)이 사용되더라도 전체 방열시트(1)의 열전도 성능은 하락될 수 밖에 없는 문제가 있었다.At this time, since the adhesive layer 20 and the polymer film 30 generally have a thermal conductivity of 0.2 W / mK level, even if a graphite layer 10 having a high thermal conductivity of several thousand W / mK level is used, the entire heat dissipation sheet 1 ) Has a problem that the heat conduction performance is bound to decline.
즉 높은 열전도도를 가지고 있는 재료를 사용하여 열전도층을 구현한다고 하더라도, 전자기기에 이를 적용하기 위해 필수적으로 구비되어야 하는 접착층(20) 및 고분자 필름(30)으로 인해 전체 방열시트(1)의 수직 열전도 성능은 크게 하락하게 되는 문제가 있었다.That is, even if the thermal conductive layer is implemented using a material having high thermal conductivity, the vertical direction of the entire heat dissipation sheet 1 is due to the adhesive layer 20 and the polymer film 30 which are essentially provided to apply the same to an electronic device. There was a problem that the heat conduction performance is greatly reduced.
따라서 상기와 같은 문제점을 해결하기 위한 방법이 요구되고 있는 상황이다.Therefore, there is a need for a method for solving the above problems.
본 발명의 목적은 상기한 종래의 문제점을 해결하기 위한 것으로서, 접착층 및 고분자 필름 등으로 인해 수직 열전도 성능이 크게 하락되던 문제를 해결하기 위한 방열시트를 제공함에 있다.An object of the present invention is to solve the above problems, to provide a heat dissipation sheet for solving the problem that the vertical heat conduction performance is greatly reduced due to the adhesive layer and the polymer film.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects that are not mentioned will be clearly understood by those skilled in the art from the following description.
상기한 과정을 해결하기 위한 함몰홈에 접착부가 구비된 방열시트는, 일면에 하나 이상의 함몰홈이 형성되며, 방열 대상에 접촉되어 방열을 수행하는 열전도부 및 상기 함몰홈에 구비되어, 방열 대상에 상기 열전도부를 고정시키는 접착부를 포함한다.Heat dissipation sheet provided with an adhesive portion in the recessed groove for solving the above process, one or more recessed grooves are formed on one surface, provided in the heat conducting portion and the recessed groove to contact the heat radiation target to perform heat radiation, It includes an adhesive for fixing the heat conductive portion.
그리고 상기 열전도부는, 고분자 수지 및 탄소 함유 분체를 포함할 수 있다.The thermally conductive portion may include a polymer resin and a carbon-containing powder.
또한 상기 탄소 함유 분체는 그래핀 플레이크, 탄소 나노 튜브 및 그래파이트 플레이크 중 적어도 어느 하나 이상을 포함할 수 있다.In addition, the carbon-containing powder may include at least one or more of graphene flakes, carbon nanotubes, and graphite flakes.
그리고 상기 고분자 수지에는 금속 필러 및 산화물 필러 중 적어도 어느 하나 이상이 더 포함될 수 있다.The polymer resin may further include at least one or more of a metal filler and an oxide filler.
또한 상기 접착부의 전후 길이는 상기 함몰홈의 깊이와 동일하게 형성될 수 있다.In addition, the front and rear length of the adhesive portion may be formed to be the same as the depth of the recessed groove.
그리고 상기 접착부의 전면은 상기 접착부의 후면보다 넓은 면적을 가지며, 상기 함몰홈은 상기 접착부의 형상에 대응되도록 형성될 수 있다.The front surface of the adhesive part may have a larger area than the rear surface of the adhesive part, and the recessed groove may be formed to correspond to the shape of the adhesive part.
또한 상기 함몰홈은 복수 개가 서로 이격되어 배열될 수 있다.In addition, the plurality of recessed grooves may be arranged spaced apart from each other.
그리고 상기 함몰홈은 상기 열전도부의 둘레를 따라 형성될 수 있다.The recess may be formed along a circumference of the heat conducting portion.
또한 상기 함몰홈은 라인 형상으로 형성될 수 있다.In addition, the recessed groove may be formed in a line shape.
그리고 상기 열전도부의 일면에는 이형부가 더 구비될 수 있다.And a release portion may be further provided on one surface of the heat conductive portion.
또한 상기 열전도부의 타면에는 금속코팅층이 더 형성될 수 있다.In addition, a metal coating layer may be further formed on the other surface of the heat conductive portion.
그리고 상기 열전도부의 타면에 상기 함몰홈이 더 형성될 수 있다.The recessed groove may be further formed on the other surface of the heat conductive portion.
본 발명의 함몰홈에 접착부가 구비된 방열시트는 다음과 같은 효과가 있다.Heat dissipation sheet provided with an adhesive portion in the recessed groove of the present invention has the following effects.
첫째, 열전도부가 방열 대상에 직접 접촉되므로, 방열시트의 수직 열전도도 성능을 하락시키지 않고 효과적으로 방열을 수행할 수 있다는 장점이 있다.First, since the heat conduction portion is in direct contact with the heat dissipation object, there is an advantage that the heat dissipation can be effectively performed without degrading the vertical heat conductivity of the heat dissipation sheet.
둘째, 접착부의 형상 및 접착 면적을 다양화하여 방열 대상과의 적절한 접착력을 구현할 수 있다는 장점이 있다.Second, there is an advantage that it is possible to implement an appropriate adhesive force with the heat radiation target by varying the shape and the adhesive area of the adhesive portion.
셋째, 방열시트 자체의 구조가 종래에 비해 단순해져 경량화 및 슬림화를 꾀할 수 있다는 장점이 있다.Third, there is an advantage that the structure of the heat dissipation sheet itself is simpler than the conventional one to achieve light weight and slim.
넷째, 방열 대상으로부터 효과적으로 열을 방출시킬 수 있게 되어 방열 대상의 기기적 신뢰성을 향상시키고 수명을 연장시킬 수 있다는 장점이 있다.Fourth, there is an advantage that can effectively release heat from the heat radiation target to improve the mechanical reliability of the heat radiation target and extend the life.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.
도 1은 종래 방열시트의 구조를 나타낸 단면도;1 is a cross-sectional view showing the structure of a conventional heat dissipation sheet;
도 2는 본 발명의 제1실시예에 따른 방열시트에 있어서, 열전도부의 모습을 나타낸 단면도;2 is a cross-sectional view showing the state of the heat conduction portion in the heat radiation sheet according to the first embodiment of the present invention;
도 3은 본 발명의 제1실시예에 따른 방열시트에 있어서, 탄소 함유 분체가 분산된 고분자 수지로 형성된 열전도부를 도시한 사시도 및 단면도;3 is a perspective view and a cross-sectional view of a heat conducting part formed of a polymer resin in which carbon-containing powder is dispersed in a heat dissipation sheet according to a first embodiment of the present invention;
도 4는 본 발명의 제1실시예에 따른 방열시트에 있어서, 열전도부의 일면에 함몰홈을 형성한 모습을 나타낸 단면도;4 is a cross-sectional view showing a recessed groove formed on one surface of the heat conduction portion in the heat radiation sheet according to the first embodiment of the present invention;
도 5는 본 발명의 제1실시예에 따른 방열시트에 있어서, 열전도부의 일면에 형성된 함몰홈에 접착부를 구비한 모습을 나타낸 단면도;5 is a cross-sectional view showing a state in which an adhesive part is provided in a recessed groove formed in one surface of a heat conductive part in the heat dissipation sheet according to the first embodiment of the present invention;
도 6은 본 발명의 제1실시예에 따른 방열시트의 일면을 나타낸 배면도;Figure 6 is a rear view showing one surface of the heat radiation sheet according to the first embodiment of the present invention;
도 7은 본 발명의 제2실시예에 따른 방열시트의 일면을 나타낸 배면도;7 is a rear view showing one surface of the heat radiation sheet according to the second embodiment of the present invention;
도 8은 본 발명의 제3실시예에 따른 방열시트의 일면을 나타낸 배면도;8 is a rear view showing one surface of a heat radiation sheet according to a third embodiment of the present invention;
도 9는 본 발명의 제4실시예에 따른 방열시트의 일면을 나타낸 배면도; 및9 is a rear view showing one surface of a heat radiation sheet according to a fourth embodiment of the present invention; And
도 10은 본 발명의 제5실시예에 따른 방열시트의 구조를 나타낸 단면도이다.10 is a cross-sectional view showing the structure of a heat radiation sheet according to a fifth embodiment of the present invention.
이하 본 발명의 목적이 구체적으로 실현될 수 있는 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 본 실시예를 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일 부호가 사용되며 이에 따른 부가적인 설명은 생략하기로 한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of this embodiment, the same name and the same reference numerals are used for the same configuration and additional description thereof will be omitted.
도 2는 본 발명의 제1실시예에 따른 방열시트(100)에 있어서, 열전도부(110)의 모습을 나타낸 단면도이다.2 is a cross-sectional view showing a state of the heat conduction unit 110 in the heat radiation sheet 100 according to the first embodiment of the present invention.
도 2에 도시된 바와 같이, 본 발명의 제1실시예에 따른 방열시트(100)의 제작을 위해 열전도부(110)가 준비된다. 도 2는 방열시트(100)의 단면을 나타낸 것으로서, 이하 설명의 편의를 위해 도 2의 상측 방향을 전방, 하측 방향을 후방, 좌우 방향을 측방이라 정의하도록 한다. 또한 방열시트(100)의 상면 또는 하면과 수직을 이루는 방향을 수직 방향으로 정의하도록 한다.As shown in FIG. 2, the heat conduction unit 110 is prepared for the manufacture of the heat dissipation sheet 100 according to the first embodiment of the present invention. 2 is a cross-sectional view of the heat dissipation sheet 100, and for convenience of description, the upper direction of FIG. 2 is defined as front, the lower direction as rear, and the left and right directions as lateral. In addition, the direction perpendicular to the top or bottom surface of the heat dissipation sheet 100 is defined as the vertical direction.
열전도부(110)는 방열 시트(100)와 접촉하는 방열 대상의 내부에서 발생하는 열을 상기 방열 대상의 외부로 전달시킬 수 있다. 열전도부(110)는 고분자 수지 및 탄소 함유 분체를 포함한다.The heat conductive part 110 may transfer heat generated in the heat dissipation object in contact with the heat dissipation sheet 100 to the outside of the heat dissipation object. The heat conduction unit 110 includes a polymer resin and carbon-containing powder.
상기 고분자 수지의 구체적인 예로서는, 에폭시계 수지, 에틸렌계 수지, 프로필렌계 수지, 염화비닐계 수지, 스티렌계 수지, 카보네이트계 수지, 에스테르계 수지, 나일론계 수지, 실리콘계 수지 또는 이미드계 수지 등을 들 수 있고, 이들은 각각 단독으로 또는 2 이상이 혼합되어 이용될 수 있다.Specific examples of the polymer resin include epoxy resins, ethylene resins, propylene resins, vinyl chloride resins, styrene resins, carbonate resins, ester resins, nylon resins, silicone resins, and imide resins. These may be used alone or in combination of two or more.
탄소 함유 분체는 그래핀 플레이크, 탄소 나노 튜브 또는 그래파이트 플레이크를 포함할 수 있고, 이들은 각각 단독으로 또는 2 이상이 조합되어 탄소 함유 분체로 이용될 수 있다. 탄소 함유 분체는 수천 W/mK 수준의 열전도도를 가지고 있기 때문에, 탄소 함유 분체를 포함하는 열전도부(110)의 열전도도는 금속 방열 시트에 비해 현저하게 높다.The carbon-containing powder may include graphene flakes, carbon nanotubes or graphite flakes, and these may be used alone or in combination of two or more as carbon-containing powders. Since the carbon-containing powder has a thermal conductivity of several thousand W / mK level, the thermal conductivity of the thermally conductive portion 110 including the carbon-containing powder is significantly higher than that of the metal heat dissipation sheet.
그래핀 플레이크는 탄소 원자 6개가 벌집 모양의 6각형으로 연결된 2차원 평면 구조를 갖는 판상 구조체로서, 수 내지 수십 나노미터의 두께를 갖는 조각형의 분체이다. 예를 들어, 그래핀 플레이크는 1층 내지 50층으로 적층된 그래핀들을 포함할 수 있다. 그래핀의 열전도도는 약 5,300 W/mK이다.Graphene flakes are plate-like structures having a two-dimensional planar structure in which six carbon atoms are connected in a honeycomb-shaped hexagon, and are flake powders having a thickness of several tens to tens of nanometers. For example, the graphene flakes may include graphenes stacked in 1 to 50 layers. Graphene has a thermal conductivity of about 5,300 W / mK.
탄소 나노 튜브는 일 방향으로 연장된 튜브형 분체로서, 탄소 나노 튜브의 연장 방향으로의 열전도도는 약 3,000 W/mK 내지 약 3,500 W/mK일 수 있다.The carbon nanotubes are tubular powders extending in one direction, and the thermal conductivity of the carbon nanotubes in the extending direction may be about 3,000 W / mK to about 3,500 W / mK.
그래파이트 플레이크는 다수의 그래핀들이 적층된 구조를 갖되, 상기 그래핀 플레이크보다 그래핀의 적층 수가 많은 분체로서, 그래핀 플레이크와 구분되는 분체로 정의한다.Graphite flakes have a structure in which a plurality of graphenes are stacked, and a powder having a larger number of graphene stacks than the graphene flakes is defined as a powder that is distinguished from graphene flakes.
도 3은 탄소 함유 분체가 분산된 고분자 수지로 형성된 열전도부를 도시한 것이다. 그리고 도 3의 (a)는 열전도부(110)의 입체 도면이며, (b)는 열전도부(110)의 단면도이다. 3 illustrates a thermally conductive portion formed of a polymer resin in which carbon-containing powder is dispersed. 3A is a three-dimensional view of the heat conductive portion 110, and (b) is a cross-sectional view of the heat conductive portion 110. As shown in FIG.
도 3에 도시된 바와 같이, 고분자 수지 내에 분산된 그래핀 플레이크(g)는 서로 접촉이 되어 열전달 경로를 형성한다. 즉, 수천 W/mK 수준의 높은 열전도도를 갖는 그래핀 플레이크(g)가 서로 접촉을 하여 열전달 경로를 형성하므로 방열 시트(100)의 수직 방향으로의 열전도도가 크게 향상된다.As shown in Figure 3, the graphene flakes (g) dispersed in the polymer resin is in contact with each other to form a heat transfer path. That is, since the graphene flakes (g) having a high thermal conductivity of several thousand W / mK contact each other to form a heat transfer path, the thermal conductivity in the vertical direction of the heat dissipation sheet 100 is greatly improved.
열전도부(110)는 열전도성 필러(미도시)를 더 포함할 수 있다. 열전도성 필러는 금속 필러 및 산화물 필러 중 적어도 어느 하나 이상을 포함할 수 있다. 열전도성 필러는 탄소 함유 분체와 함께 열전도부(110)의 열전도성을 향상시킬 수 있다.The thermally conductive portion 110 may further include a thermally conductive filler (not shown). The thermally conductive filler may include at least one of a metal filler and an oxide filler. The thermally conductive filler may improve the thermal conductivity of the thermally conductive portion 110 together with the carbon-containing powder.
금속 필러는 알루미늄(Al), 베릴륨(Be), 크롬(Cr), 구리(Cu), 금(Au), 몰리브덴(Mo), 니켈(Ni), 아연(Zn), 로듐(Rh), 지르코늄(Zr), 은(Ag) 또는 텅스텐(W)을 포함할 수 있고, 이들은 각각 단독으로 또는 2 이상이 조합되어 이용될 수 있다.Metal fillers include aluminum (Al), beryllium (Be), chromium (Cr), copper (Cu), gold (Au), molybdenum (Mo), nickel (Ni), zinc (Zn), rhodium (Rh), zirconium ( Zr), silver (Ag) or tungsten (W), which may be used alone or in combination of two or more, respectively.
산화물 필러는 산화 실리콘(SiO2), 산화 알루미늄(Al2O3) 또는 산화 아연(ZnO) 등을 포함할 수 있고, 이들은 각각 단독으로 또는 2 이상이 조합되어 이용될 수 있다. 산화물 필러는 금속 필러에 비해 열전도성은 낮은 편이나 상기 베이스 재료에 대한 분산성이 좋다.The oxide filler may include silicon oxide (SiO 2), aluminum oxide (Al 2 O 3), zinc oxide (ZnO), or the like, and these may be used alone or in combination of two or more. Oxide fillers have lower thermal conductivity than metal fillers, but have good dispersibility to the base material.
열전도부(110)는 상기 고분자 수지를 형성하는 베이스 재료와 탄소 함유 분체가 혼합된 ‘수지 제조용 조성물’을 경화시킴으로써 형성할 수 있다. 이때, 상기 수지 제조용 조성물은 탄소 함유 분체와 함께 열전도성 필러를 더 포함할 수 있다. 상기 베이스 재료는 상기 고분자 수지의 단위체를 결정하는 단량체들(monomers), 올리고머(oligomer) 또는 폴리머(polymer)를 포함할 수 있다.The heat conduction unit 110 may be formed by curing a 'resin manufacturing composition' in which the base material and the carbon-containing powder, which form the polymer resin, are mixed. In this case, the composition for preparing a resin may further include a thermally conductive filler together with the carbon-containing powder. The base material may include monomers, oligomers, or polymers that determine units of the polymer resin.
상기 베이스 재료는 열에 의해서 또는 그 자체로서 유동성을 가질 수 있고, 탄소 함유 분체나 열전도성 필러는 상기 베이스 재료에 분산될 수 있다. 이와 달리, 상기 베이스 재료는 용매에 용해될 수 있고, 탄소 함유 분체나 열전도성 필러가 상기 용매에 용해된 베이스 재료에 분산될 수 있다. 상기 베이스 재료가 폴리머를 포함하는 경우, 상기 베이스 재료의 용매에 대한 용해성을 고려하여 폴리머의 중량 평균 분자량은 약 100,000 내지 약 1,000,000일 수 있다. 상기 수지 제조용 조성물을 냉각 또는 건조시켜 열전도부(110)를 형성할 수 있다.The base material may have fluidity by heat or as such, and the carbon-containing powder or the thermally conductive filler may be dispersed in the base material. Alternatively, the base material may be dissolved in a solvent, and carbon-containing powder or thermally conductive filler may be dispersed in the base material dissolved in the solvent. When the base material comprises a polymer, the weight average molecular weight of the polymer may be about 100,000 to about 1,000,000 in consideration of the solubility of the base material in a solvent. The thermally conductive portion 110 may be formed by cooling or drying the resin manufacturing composition.
상기 수지 제조용 조성물은 가교제를 더 포함할 수 있다. 열전도부(110)를 형성하는 공정에서, 상기 베이스 재료는 가교제에 의해 기계적 강도가 높고 화학적으로 안정한 구조의 고분자 수지가 될 수 있다.The resin composition may further include a crosslinking agent. In the process of forming the thermally conductive portion 110, the base material may be a polymer resin having a high mechanical strength and a chemically stable structure by a crosslinking agent.
도 4는 본 발명의 제1실시예에 따른 방열시트에 있어서, 열전도부의 일면에 함몰홈을 형성한 모습을 나타내는 단면도이다.4 is a cross-sectional view illustrating a recessed groove formed on one surface of a heat conductive part in the heat radiation sheet according to the first embodiment of the present invention.
도 4에 도시된 바와 같이, 본 발명의 제1실시예에 따른 방열시트(100)의 제작 과정에서는 열전도부(110)의 일면에 하나 이상의 함몰홈(112)을 형성하는 단계가 수행된다. 함몰홈(112)은 하나 또는 복수 개가 형성될 수 있으며, 각 함몰홈(112)은 다양한 형태로 형성될 수 있다. 즉 도 4에서는 함몰홈(112)의 단면의 형상이 'ㄷ'자인 경우가 도시되어 있으나 이에 국한되지 않으며 다양한 형태의 다각형 형상으로 형성될 수 있다. 함몰홈(112)의 단면 형상은 반원 또는 반타원과 같이 곡선을 포함할 수 있으며, 굴곡을 포함할 수도 있다.As shown in FIG. 4, in the manufacturing process of the heat dissipation sheet 100 according to the first embodiment of the present invention, a step of forming one or more recessed grooves 112 on one surface of the heat conductive part 110 is performed. One or more recessed grooves 112 may be formed, and each recessed groove 112 may be formed in various forms. That is, although the shape of the cross-section of the recessed groove 112 is 'c' is shown in Figure 4 is not limited to this may be formed in a polygonal shape of various forms. The cross-sectional shape of the recessed groove 112 may include a curve, such as a semi-circle or semi-ellipse, may include a bend.
본 실시예에서는 복수 개의 함몰홈(112)이 균일한 형태, 즉 동일한 크기 및 깊이를 가지는 경우를 예시하였으나, 각 함몰홈(112)의 크기 및 형상과 함몰홈(112)간의 간격은 방열 대상의 표면 형상, 요구되는 접착적 등을 고려하여 다양하게 조절될 수 있다.In the present embodiment, the case where the plurality of recessed grooves 112 have a uniform shape, that is, the same size and depth, but the size and shape of each recessed groove 112 and the interval between the recessed grooves 112 is It may be adjusted in various ways in consideration of the surface shape, the required adhesion and the like.
도 5는 본 발명의 제1실시예에 따른 방열시트(100)에 있어서, 열전도부(110)의 일면에 형성된 함몰홈(112)에 접착부(120)를 구비한 모습을 나타낸 단면도이다.5 is a cross-sectional view showing a state in which the adhesive portion 120 is provided in the recessed groove 112 formed on one surface of the heat conducting portion 110 in the heat radiation sheet 100 according to the first embodiment of the present invention.
접착부(120)는 접착성 재질을 포함하며, 이후 방열시트(100)를 방열 대상에 고정시키는 역할을 수행한다.The adhesive part 120 includes an adhesive material and then serves to fix the heat dissipation sheet 100 to the heat dissipation target.
본 실시예의 경우, 접착부(120)는 함몰홈(112)에 대응되는 형상으로 형성되는 것이 바람직하다. 특히 접착부(120)의 전후 길이를 함몰홈(112)의 깊이와 동일하게 형성할 경우 열전도부(110)의 후면은 굴곡 없이 평탄하게 형성되며, 열전도부(100)와 접착부(120)가 모두 외부에 노출된 형상을 가진다.In the present embodiment, the adhesive portion 120 is preferably formed in a shape corresponding to the recessed groove 112. In particular, when the front and rear lengths of the adhesive part 120 are formed to be equal to the depth of the recessed groove 112, the rear surface of the heat conductive part 110 is formed flat without bending, and both the heat conductive part 100 and the adhesive part 120 are externally formed. It has a shape exposed to.
이와 같이 열전도부(100) 일면의 일부 영역에만 접착부(120)가 형성되므로, 방열시트(100)는 접착부(120)에 의해 방열 대상에 안정적으로 고정된다. 동시에 열전도부(110)가 방열 대상에 직접 접촉되므로, 방열시트(100)의 수직 방향으로의 열전도도 성능을 하락시키지 않고 효과적으로 방열을 수행할 수 있다는 장점이 있다.As such, since the adhesive part 120 is formed only in a partial region of one surface of the heat conductive part 100, the heat dissipation sheet 100 is stably fixed to the heat dissipation target by the adhesive part 120. At the same time, since the heat conduction unit 110 is in direct contact with the heat dissipation object, there is an advantage that heat dissipation can be effectively performed without degrading the heat conductivity in the vertical direction of the heat dissipation sheet 100.
즉 도 1에 도시된 종래 방열시트(1)에서 접착층(20) 또는 고분자 필름(30)에 의해 그래파이트층이 방열 대상에 직접 접촉되지 않아 열전도도가 하락될 수밖에 없었던 문제를 해결할 수 있게 된다. 뿐만 아니라 방열시트(100) 자체의 구조가 종래에 비해 단순해져 경량화 및 슬림화를 꾀할 수 있다는 장점이 있다.That is, in the conventional heat dissipation sheet 1 illustrated in FIG. 1, the graphite layer may not be in direct contact with the heat dissipation target by the adhesive layer 20 or the polymer film 30, thereby solving the problem that thermal conductivity has to be reduced. In addition, there is an advantage that the structure of the heat dissipation sheet 100 itself can be simpler and lighter than the conventional structure.
한편 방열시트(100)는 열전도부(110)의 일면에 구비된 이형부(130)를 더 포함할 수 있다. 이형부(130)는 방열시트(100)를 방열 대상에 설치하기 전까지 접착부(120)가 외부에 노출됨으로 인해 발생될 수 있는 접착력이 저하되는 것을 방지할 수 있다.Meanwhile, the heat dissipation sheet 100 may further include a release part 130 provided on one surface of the heat conduction part 110. The release unit 130 may prevent the adhesive force that may be generated due to the adhesion of the adhesive 120 to the outside until the heat dissipation sheet 100 is installed on the heat dissipation target.
또한 도시되지는 않았으나, 열전도부(110)의 타면에 금속코팅층을 더 형성할 수도 있다. 열전도부(100)의 타면에 형성된 금속코팅층은 방열시트(100)의 열전도도를 향상시킬 수 있는 장점이 있다.In addition, although not shown, a metal coating layer may be further formed on the other surface of the heat conductive part 110. The metal coating layer formed on the other surface of the heat conductive part 100 has an advantage of improving the thermal conductivity of the heat dissipation sheet 100.
도 6은 본 발명의 제1실시예에 따른 방열시트(100)의 일면을 나타낸 배면도이다.6 is a rear view showing one surface of the heat radiation sheet 100 according to the first embodiment of the present invention.
도 6에 도시된 본 발명의 제1실시예와 같이 열전도부(110) 후방에는 함몰홈이 복수 개의 함몰홈(112)이 이격 배열되어, 접착부(120) 역시 복수 개가 이격 배열될 수 있다.As shown in FIG. 6, a plurality of recessed recesses 112 are spaced apart from the recessed recesses in the rear of the heat conducting unit 110, and a plurality of adhesive units 120 may be spaced apart from each other.
각 접착부(120)의 크기 및 형상과 접착부(120)간의 간격은 방열 대상의 표면 형상, 요구되는 접착적 등을 고려하여 다양하게 조절될 수 있다. 다만, 도 6에서와 같이 각 접착부(120)는 서로 동일한 간격을 갖도록 배열될 수도 있다.The size and shape of each adhesive portion 120 and the distance between the adhesive portion 120 may be variously adjusted in consideration of the surface shape of the heat dissipation target, the required adhesion, and the like. However, as shown in FIG. 6, the adhesive parts 120 may be arranged to have the same distance from each other.
도 7은 본 발명의 제2실시예에 따른 방열시트(200)의 일면을 나타낸 배면도이다.7 is a rear view showing one surface of the heat radiation sheet 200 according to the second embodiment of the present invention.
도 7에 도시된 본 발명의 제2실시예와 같이 접착부(220)는 열전도부(210)의 둘레를 따라 형성될 수 있다. 이에 따라 제2실시예의 방열시트(200)는 방열을 수행하는 열전도부(210)의 노출 면적을 분산시키지 않고 중앙부에 집중시킬 수 있어 방열 대상의 형상에 따라 보다 효과적인 방열을 수행할 수 있다.As shown in FIG. 7, the adhesive part 220 may be formed along the circumference of the heat conductive part 210. Accordingly, the heat dissipation sheet 200 of the second embodiment can be concentrated in the center portion without dispersing the exposed area of the heat conducting portion 210 that performs heat dissipation, thereby enabling more effective heat dissipation according to the shape of the heat dissipation target.
도 8은 본 발명의 제3실시예에 따른 방열시트(300)의 일면을 나타낸 배면도이다.8 is a rear view showing one surface of the heat radiation sheet 300 according to the third embodiment of the present invention.
도 8에 도시된 본 발명의 제3실시예와 같이, 접착부(320)는 라인 형태로 형성될 수도 있다. 접착부(320)의 개수, 길이, 폭 및 접착부(320) 간의 간격은 요구되는 접착력 또는 방열 대상의 형상에 따라 다양하게 조절될 수 있다. 도 8에서는 라인 형태를 갖는 접착부(320)의 연장 방향이 방열시트(300)의 상면과 평행한 경우가 도시되어 있으나, 접착부(320)의 연장 방향 또한 필요에 따라 적절히 선택될 수 있다.As in the third embodiment of the present invention illustrated in FIG. 8, the adhesive part 320 may be formed in a line shape. The number, length, width, and spacing between the adhesive parts 320 may be adjusted in various ways depending on the required adhesive force or the shape of the heat dissipation object. In FIG. 8, the extending direction of the adhesive part 320 having a line shape is parallel to the top surface of the heat dissipation sheet 300, but the extending direction of the adhesive part 320 may also be appropriately selected as necessary.
도 9는 본 발명의 제4실시예에 따른 방열시트(400)의 일면을 나타낸 배면도이다.9 is a rear view showing one surface of the heat radiation sheet 400 according to the fourth embodiment of the present invention.
도 9에 도시된 본 발명의 제4실시예와 같이, 접착부(420)는 교차된 라인 형상으로 형성될 수도 있다. 도 9에는 상하 및 좌우 방향으로 평행한 라인들이 서로 교차되는 형상이 도시되어 있으나, 각 라인의 연장 방향은 필요에 따라 적절히 조절될 수 있다. 접착부(420)는 서로 교차되는 곡선 형상으로 형성될 수도 있다.As in the fourth embodiment of the present invention illustrated in FIG. 9, the adhesive part 420 may be formed in an intersecting line shape. 9 illustrates a shape in which lines parallel to each other in the up, down, left, and right directions cross each other, but an extension direction of each line may be appropriately adjusted as necessary. The adhesive part 420 may be formed in a curved shape that crosses each other.
이 경우, 방열시트(400)의 접착력이 크게 증대되며, 이는 열전도부(410)의 전후 길이가 길게 형성되어 부피 및 중량이 증가할 경우 등에 효과적일 수 있다.In this case, the adhesive force of the heat dissipation sheet 400 is greatly increased, which may be effective when the front and rear lengths of the heat conductive part 410 are long to increase in volume and weight.
도 10은 본 발명의 제5실시예에 따른 방열시트(500)의 구조를 나타낸 단면도이다.10 is a cross-sectional view showing the structure of a heat radiation sheet 500 according to a fifth embodiment of the present invention.
도 10에 도시된 본 발명의 제5실시예와 같이, 접착부(520)의 상면과 하면의 면적은 서로 상이할 수 있다. 구체적으로 접착부(520)의 전면은 접착부(520)의 후면보다 넓은 면적을 가질 수 있다. 함몰홈(522)의 측면은 비탈지게 형성될 수 있으며, 이에 따라 접착부(520)가 열전도부(510)로부터 이탈되는 것을 방지할 수 있다.As in the fifth embodiment of the present invention illustrated in FIG. 10, the areas of the upper and lower surfaces of the adhesive part 520 may be different from each other. In detail, the front surface of the adhesive portion 520 may have a larger area than the rear surface of the adhesive portion 520. The side surface of the recessed groove 522 may be formed to be inclined, thereby preventing the adhesive part 520 from being separated from the heat conductive part 510.
한편, 도시되지는 않았으나 본 발명의 또 다른 실시예로서, 열전도부의 타면에 함몰홈이 더 형성될 수도 있다. 이와 같은 경우에는 함몰홈이 열전도부의 일면 및 타면에 모두 형성되므로, 열전도부의 양면 모두에 방열 대상이 배치될 수 있다.On the other hand, although not shown, as another embodiment of the present invention, a recessed groove may be further formed on the other surface of the heat conductive portion. In such a case, since the recessed groove is formed on both the one surface and the other surface of the heat conductive portion, the heat dissipation target may be disposed on both surfaces of the heat conductive portion.
이상과 같이 본 발명에 따른 바람직한 실시예를 살펴보았으며, 앞서 설명된 실시예 이외에도 본 발명이 그 취지나 범주에서 벗어남이 없이 다른 특정 형태로 구체화될 수 있다는 사실은 해당 기술에 통상의 지식을 가진 이들에게는 자명한 것이다. 그러므로, 상술된 실시예는 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고 첨부된 청구항의 범주 및 그 동등 범위 내에서 변경될 수도 있다.As described above, a preferred embodiment according to the present invention has been described, and the fact that the present invention can be embodied in other specific forms in addition to the above-described embodiments without departing from the spirit or scope thereof has ordinary skill in the art. It is obvious to them. Therefore, the above-described embodiments should be regarded as illustrative rather than restrictive, and thus, the present invention is not limited to the above description and may be modified within the scope of the appended claims and their equivalents.

Claims (12)

  1. 일면에 하나 이상의 함몰홈이 형성되며, 방열 대상에 접촉되어 방열을 수행하는 열전도부; 및One or more recessed grooves are formed on one surface, and the heat conduction unit is in contact with the heat radiation target to perform heat radiation; And
    상기 함몰홈에 구비되어, 방열 대상에 상기 열전도부를 고정시키는 접착부;An adhesive part provided in the recessed groove to fix the heat conductive part to a heat radiation target;
    를 포함하는 방열시트.Heat dissipation sheet comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 열전도부는,The heat conduction unit,
    고분자 수지 및 탄소 함유 분체를 포함하는 방열시트.Heat dissipation sheet containing polymer resin and carbon-containing powder.
  3. 제2항에 있어서,The method of claim 2,
    상기 탄소 함유 분체는 그래핀 플레이크, 탄소 나노 튜브 및 그래파이트 플레이크 중 적어도 어느 하나 이상을 포함하는 방열시트.The carbon-containing powder is a heat dissipation sheet comprising at least one of graphene flakes, carbon nanotubes and graphite flakes.
  4. 제2항에 있어서,The method of claim 2,
    상기 고분자 수지에는 금속 필러 및 산화물 필러 중 적어도 어느 하나 이상이 더 포함된 방열시트.The polymer resin further comprises at least any one or more of a metal filler and an oxide filler.
  5. 제1항에 있어서,The method of claim 1,
    상기 접착부의 전후 길이는 상기 함몰홈의 깊이와 동일하게 형성된 방열시트.The front and rear length of the adhesive portion is a heat radiation sheet formed to be equal to the depth of the recessed groove.
  6. 제1항에 있어서,The method of claim 1,
    상기 접착부의 전면은 상기 접착부의 후면보다 넓은 면적을 가지며, 상기 함몰홈은 상기 접착부의 형상에 대응되도록 형성된 방열시트.The front surface of the adhesive portion has a larger area than the rear surface of the adhesive portion, the recessed groove is formed to correspond to the shape of the adhesive portion.
  7. 제1항에 있어서,The method of claim 1,
    상기 함몰홈은 복수 개가 서로 이격되어 배열된 방열시트.The recessed groove is a plurality of heat dissipation sheet arranged spaced apart from each other.
  8. 제1항에 있어서,The method of claim 1,
    상기 함몰홈은 상기 열전도부의 둘레를 따라 형성된 방열시트.The recessed groove is a heat radiation sheet formed along the circumference of the heat conducting portion.
  9. 제1항에 있어서,The method of claim 1,
    상기 함몰홈은 라인 형상으로 형성된 방열시트.The recessed groove is a heat radiation sheet formed in a line shape.
  10. 제1항에 있어서,The method of claim 1,
    상기 열전도부의 일면에는 이형부가 더 구비된 방열시트.Heat dissipation sheet is provided on one side of the heat conducting portion further release.
  11. 제1항에 있어서,The method of claim 1,
    상기 열전도부의 타면에는 금속코팅층이 더 형성된 방열시트.Heat dissipation sheet formed with a metal coating layer on the other side of the heat conducting portion.
  12. 제1항에 있어서,The method of claim 1,
    상기 열전도부의 타면에 상기 함몰홈이 더 형성된 방열시트.The heat dissipation sheet further formed with the recessed groove on the other surface of the heat conductive portion.
PCT/KR2013/012433 2013-01-16 2013-12-31 Heat radiation sheet having attachment part formed in groove thereof WO2014112733A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130004794A KR101487480B1 (en) 2013-01-16 2013-01-16 Heat Sink Sheet Having Adhesion Part in Dent Groove
KR10-2013-0004794 2013-01-16

Publications (1)

Publication Number Publication Date
WO2014112733A1 true WO2014112733A1 (en) 2014-07-24

Family

ID=51209795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/012433 WO2014112733A1 (en) 2013-01-16 2013-12-31 Heat radiation sheet having attachment part formed in groove thereof

Country Status (2)

Country Link
KR (1) KR101487480B1 (en)
WO (1) WO2014112733A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101666154B1 (en) * 2015-01-07 2016-10-13 주식회사 엘엠에스 Barrier structure for gas and moisture and display device having the barrier structure
KR101808985B1 (en) * 2017-03-31 2017-12-13 성균관대학교산학협력단 Complex with polymer and nano inorganic particle layer and method for preparing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721487B1 (en) * 2004-09-22 2007-05-23 주식회사 엘지화학 Adhesive radiation sheet having high thermal conduction property
KR100767184B1 (en) * 2005-08-10 2007-10-15 재단법인서울대학교산학협력재단 Cooling device for electronic device and method of forming the same
KR20090043633A (en) * 2007-10-30 2009-05-07 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Thermally conductive adhesives and adhesive tape using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011000884A (en) 2009-06-17 2011-01-06 Laird Technologies Inc Suitable multilayer heat conductive intermediate structure, and memory module equipped with the same
KR101279679B1 (en) 2012-11-12 2013-06-27 주식회사 나노인터페이스 테크놀로지 Heat conduction sheet manufacturing method and heat conduction sheet manufactured by the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721487B1 (en) * 2004-09-22 2007-05-23 주식회사 엘지화학 Adhesive radiation sheet having high thermal conduction property
KR100767184B1 (en) * 2005-08-10 2007-10-15 재단법인서울대학교산학협력재단 Cooling device for electronic device and method of forming the same
KR20090043633A (en) * 2007-10-30 2009-05-07 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Thermally conductive adhesives and adhesive tape using the same

Also Published As

Publication number Publication date
KR20140092585A (en) 2014-07-24
KR101487480B1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
WO2011102572A1 (en) Heat sink sheet including an adhesive having good heat conductivity
WO2017095181A1 (en) Led lighting device
WO2014054877A1 (en) Thermally conductive composition and sheet
KR101956371B1 (en) A heat-radiation silicon sheet reinforced electrically insulative
WO2013032238A9 (en) Epoxy resin compound and radiant heat circuit board using the same
WO2012091320A2 (en) Epoxy resin compound and radiant heat circuit board using the same
WO2014112733A1 (en) Heat radiation sheet having attachment part formed in groove thereof
WO2015156565A1 (en) Heat dissipating sheet having anisotropic thermal conductive part
US20090168354A1 (en) Thermally and electrically conductive interconnect structures
WO2010074402A2 (en) Structure of heat dissipating sheet for plasma display panel
WO2013187675A1 (en) Carbon nanotube coating film and carbon nanotube solution composition for forming the carbon nanotube coating film
WO2012161490A9 (en) Epoxy resin compound and radiant heat circuit board using the same
JPWO2015111738A1 (en) Film adhesive containing conductive fiber coated particles
KR20150120765A (en) Thermal radiation sheet of thin layer type
KR102442728B1 (en) A heat conduction film
WO2017188752A1 (en) Coating composition having improved heat dissipation characteristics, and method for forming coating film by using same
JP7288101B2 (en) Heat-conducting structures and electronic devices
WO2014129776A1 (en) Composite film using copper thin film including insulation layer and conductive adhesive layer and method for fabricating same
WO2021141398A1 (en) Radiator coated with heat dissipation layer, and radiator coating method
KR20180032582A (en) Thermal diffusion structure and method for forming the same
WO2023153791A1 (en) Heat transfer sheet, and heat transfer assembly and electronic device comprising same
WO2017082712A1 (en) Heat-dissipation tape
CN216852520U (en) Anti-oxidation high-frequency double-sided circuit board
KR101856666B1 (en) Heatsink for LED and fabrication method thereof
WO2020130408A1 (en) Heat dissipating structure and induction heating device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871368

Country of ref document: EP

Kind code of ref document: A1