WO2014112295A1 - Photocurable composition for nanoimprint and method for producing finely patterned substrate using same - Google Patents

Photocurable composition for nanoimprint and method for producing finely patterned substrate using same Download PDF

Info

Publication number
WO2014112295A1
WO2014112295A1 PCT/JP2013/084325 JP2013084325W WO2014112295A1 WO 2014112295 A1 WO2014112295 A1 WO 2014112295A1 JP 2013084325 W JP2013084325 W JP 2013084325W WO 2014112295 A1 WO2014112295 A1 WO 2014112295A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
photocurable composition
fine pattern
skeleton
Prior art date
Application number
PCT/JP2013/084325
Other languages
French (fr)
Japanese (ja)
Inventor
藤川武
久保隆司
山本拓也
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to JP2014557372A priority Critical patent/JP6279489B2/en
Priority to CN201380069813.XA priority patent/CN104937006B/en
Publication of WO2014112295A1 publication Critical patent/WO2014112295A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus

Definitions

  • the present invention relates to a photocurable composition for nanoimprint and a method for producing a fine pattern substrate using the same.
  • a light emitting diode is excellent in energy conversion efficiency and has a long life, so that it is often used in electronic devices and the like.
  • the LED has a structure in which a light emitting layer made of a GaN-based semiconductor is laminated on an inorganic material substrate.
  • a light emitting layer made of a GaN-based semiconductor is laminated on an inorganic material substrate.
  • the inorganic material substrate since there is a large refractive index difference between the inorganic material substrate, the GaN-based semiconductor, and the atmosphere, most of the total amount of light generated in the light emitting layer disappears due to repeated internal reflection, resulting in poor light extraction efficiency. That was the problem.
  • a method for solving the above problem a method is known in which a fine pattern of about several ⁇ m is formed on the surface of an inorganic material substrate, and a light emitting layer made of a GaN-based semiconductor is laminated thereon.
  • a mask is formed on an inorganic material substrate by photolithography, and the pattern is formed by etching using the obtained mask.
  • the increase in size and nanopatterning of inorganic material substrates has been a problem, and the associated increase in cost and processing time has become a problem. Therefore, a method of forming a mask by nanoimprinting instead of the photolithography has attracted attention.
  • a photocurable composition used for nanoimprint it is known to use, for example, a radical polymerizable compound such as vinyl ether having an alicyclic structure or vinyl ether having an alicyclic structure and an aromatic ring structure ( Patent Documents 1 and 2).
  • the radical polymerizable compound has a large shrinkage due to curing, and it has been difficult to accurately produce a fine pattern.
  • the photocurable composition is required to quickly cure and form a thin film after coating on the substrate, but the radically polymerizable compound is subjected to polymerization inhibition by oxygen, and the curing rate decreases.
  • a method of curing in an atmosphere of inert gas such as nitrogen is also conceivable for inhibiting polymerization by oxygen, but the cost is increased due to the large equipment, and work efficiency is required because it takes time to replace air. There was a problem that decreased.
  • an object of the present invention is to form a thin film by quickly applying a light to a substrate and irradiating with light, thereby forming a thin film, curing shrinkage is small, and a fine pattern of a mold can be accurately transferred.
  • the object is to provide a photocurable composition for nanoimprinting.
  • Another object of the present invention is to provide a method for producing a fine pattern substrate using the photocurable composition for nanoimprint.
  • Still another object of the present invention is to provide a fine pattern substrate obtained by the method for producing a fine pattern substrate, and a semiconductor device including the same.
  • a curable composition containing a specific cationic polymerizable compound having an alicyclic epoxy group and a photo cationic polymerization initiator having a fluorinated alkylfluorophosphate anion Since the composition is not hindered by oxygen, the composition can be applied to a substrate thinly even in an oxygen atmosphere and lightly irradiated to cure quickly to form a thin film (that is, excellent thin film curability), curing It was found that the shrinkage is small and a fine pattern of the mold can be transferred with high accuracy.
  • the “alicyclic epoxy group” means a group in which two adjacent carbon atoms constituting an alicyclic ring form a ring together with one oxygen atom (particularly, adjacent cyclohexane ring constituting a cyclohexane ring). An epoxy group composed of two carbon atoms and an oxygen atom). The present invention has been completed based on these findings.
  • this invention provides the photocurable composition for nanoimprint containing the following component (A) and component (B).
  • Component (A) Compound represented by the following formula (a-1) [Wherein, R 1 to R 18 are the same or different and each represents a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group that may contain a halogen atom, or an alkoxy group that may have a substituent. . X represents a single bond or a linking group]
  • the present invention further provides the above-mentioned photocurable composition for nanoimprint, which comprises the following component (C).
  • component (C) Cationic polymerizable compound having a number average molecular weight of 500 or more (excluding compounds contained in component (A))
  • the present invention also provides the photocurable composition for nanoimprint, wherein the component (C) is a cationically polymerizable compound having a polycarbonate skeleton, a polyester skeleton, a polydiene skeleton, a novolac skeleton, or an alicyclic skeleton.
  • component (C) is a cationically polymerizable compound having a polycarbonate skeleton, a polyester skeleton, a polydiene skeleton, a novolac skeleton, or an alicyclic skeleton.
  • the present invention also provides a method for producing a fine pattern substrate in which an inorganic material substrate is etched using a mask obtained by imprinting the photocurable composition for nanoimprint described above.
  • the present invention also provides a fine pattern substrate obtained by the method for producing a fine pattern substrate described above.
  • the present invention also provides a semiconductor device including the fine pattern substrate described above.
  • a photocurable composition for nanoimprints comprising the following component (A) and component (B).
  • X represents a single bond or a linking group]
  • Component (C) Cationic polymerizable compound having a number average molecular weight of 500 or more (excluding compounds contained in component (A)) (3) The photocurable composition for nanoimprints according to (2), wherein the component (C) is a cationically polymerizable compound having a polycarbonate skeleton, a polyester skeleton, a polydiene skeleton, a novolac skeleton, or an alicyclic skeleton.
  • the content of component (A) in the total amount (100% by weight) of the cationically polymerizable compound contained in the photocurable composition for nanoimprinting is 10 to 70% by weight, and any one of (1) to (3)
  • Component (D) The photocurable composition for nanoimprints according to any one of compounds (9) (1) to (8) having at least one oxetanyl group in the molecule and having a number average molecular weight of less than 500 A method for manufacturing a fine pattern substrate, in which an inorganic material substrate is etched using a mask obtained by imprinting. (10) A fine pattern substrate obtained by the method for producing a fine pattern substrate according to (9). (11) A semiconductor device comprising the fine pattern substrate according to (10).
  • the photocurable composition for nanoimprints of the present invention Since the photocurable composition for nanoimprints of the present invention has the above-described structure, it is a thin film excellent in curability that is cured rapidly and while suppressing curing shrinkage when applied thinly to a substrate and irradiated with light even in an oxygen atmosphere. Can be formed. Therefore, a fine pattern can be transferred quickly and accurately.
  • nanoimprinting is performed using the photocurable composition for nanoimprinting of the present invention, it is possible to form a mask on which a fine pattern of the mold is accurately transferred, and etching the inorganic material substrate using the mask. By doing so, a fine pattern having excellent dimensional reproducibility according to the design drawing can be formed on the surface of the inorganic material substrate.
  • the photocurable composition for nanoimprinting of the present invention comprises the following component (A) and component (B).
  • Component (A) Compound represented by formula (a-1)
  • Component (B) Photocationic polymerization initiator having a fluoroalkylfluorophosphate anion
  • Component (A) of the present invention is a compound represented by the following formula (a-1).
  • the compound represented by the following formula (a-1) has cationic polymerizability (that is, the compound represented by the following formula (a-1) is a cationic polymerizable compound) and is excellent in thin film curability.
  • R 1 to R 18 in the above formula (a-1) are the same or different and may have a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group which may contain a halogen atom, or a substituent.
  • An alkoxy group is shown.
  • X represents a single bond or a linking group.
  • Examples of the halogen atom in R 1 to R 18 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the hydrocarbon group in R 1 to R 18 include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which two or more of these are bonded.
  • Examples of the aliphatic hydrocarbon group include a C 1-20 alkyl group (preferably a C 1-10 alkyl group, particularly a methyl, ethyl, propyl, isopropyl, butyl, hexyl, octyl, isooctyl, decyl, dodecyl group).
  • a C 1-4 alkyl group vinyl, allyl, methallyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl C 2-20 alkenyl group such as 5-hexenyl group (preferably C 2-10 alkenyl group, particularly preferably C 2-4 alkenyl group); C 2-20 alkynyl group such as ethynyl, propynyl group (preferably C 2-10 alkynyl group, particularly preferably C 2-4 alkynyl group).
  • Examples of the alicyclic hydrocarbon group include C 3-12 cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cyclododecyl groups; C 3-12 cycloalkenyl groups such as cyclohexenyl groups; and bicycloheptanyl. And a C 4-15 bridged cyclic hydrocarbon group such as a bicycloheptenyl group.
  • aromatic hydrocarbon group examples include C 6-14 aryl groups (preferably C 6-10 aryl groups) such as phenyl and naphthyl groups.
  • the aliphatic hydrocarbon group and the alicyclic hydrocarbon group in a group in which two or more groups selected from the above-described aliphatic hydrocarbon group, alicyclic hydrocarbon group, and aromatic hydrocarbon group are bonded to each other.
  • the bonded group include a C 3-12 cycloalkyl-C 1-20 alkyl group such as a cyclohexylmethyl group; a C 1-20 alkyl-C 3-12 cycloalkyl group such as a methylcyclohexyl group. Can do.
  • Examples of the group in which an aliphatic hydrocarbon group and an aromatic hydrocarbon group are bonded include, for example, a C 7-18 aralkyl group such as a benzyl group or a phenethyl group (particularly a C 7-10 aralkyl group); 6-14 aryl-C 2-20 alkenyl group; C 1-20 alkyl substituted C 6-14 aryl group such as tolyl group; C 2-20 alkenyl substituted C 6-14 aryl group such as styryl group, etc. it can.
  • a C 7-18 aralkyl group such as a benzyl group or a phenethyl group (particularly a C 7-10 aralkyl group)
  • 6-14 aryl-C 2-20 alkenyl group C 1-20 alkyl substituted C 6-14 aryl group such as tolyl group
  • C 2-20 alkenyl substituted C 6-14 aryl group such as styryl group, etc. it can.
  • hydrocarbon group optionally containing an oxygen atom or a halogen atom in R 1 to R 18 at least one hydrogen atom in the above hydrocarbon group is substituted with a group having an oxygen atom or a group having a halogen atom.
  • the group etc. can be mentioned.
  • the group having an oxygen atom include hydroxyl group; hydroperoxy group; C 1-10 alkoxy group such as methoxy, ethoxy, propoxy, isopropyloxy, butoxy, isobutyloxy group; C 2-10 such as allyloxy group.
  • alkoxy group in R 1 to R 18 examples include C 1-10 alkoxy groups such as methoxy, ethoxy, propoxy, isopropyloxy, butoxy, isobutyloxy groups and the like.
  • alkoxy group may have include, for example, a halogen atom, a hydroxyl group, a C 1-10 alkoxy group, a C 2-10 alkenyloxy group, a C 6-14 aryloxy group, a C 1-10 Acyloxy group, mercapto group, C 1-10 alkylthio group, C 2-10 alkenylthio group, C 6-14 arylthio group, C 7-18 aralkylthio group, carboxyl group, C 1-10 alkoxycarbonyl group, C 6- 14 aryloxycarbonyl group, C 7-18 aralkyloxycarbonyl group, amino group, mono or di C 1-10 alkylamino group, C 1-10 acylamino group, epoxy group-containing group, oxetanyl group-containing group, C 1-10 Examples include an acyl group, an oxo group, and a group in which two or more of these are bonded through or without a C 1-10 alkylene
  • R 1 to R 18 are preferably hydrogen atoms.
  • X in the formula (a-1) represents a single bond or a linking group (a divalent group having one or more atoms).
  • the linking group include a divalent hydrocarbon group, a carbonyl group, an ether bond, an ester bond, an amide group, and a group in which a plurality of these are linked.
  • the divalent hydrocarbon group include linear or branched C 1-18 alkylene groups such as methylene, methylmethylene, dimethylmethylene, ethylene, propylene, and trimethylene groups (preferably linear or branched chain).
  • C 1-3 alkylene group 1,2-cyclopentylene, 1,3-cyclopentylene, cyclopentylidene, 1,2-cyclohexylene, 1,3-cyclohexylene, 1,4-cyclohexylene, A divalent C 3-12 cycloalkylene group such as a cyclohexylidene group, and a divalent C 3-12 cycloalkylidene group (preferably a divalent C 3-6 cycloalkylene group and a divalent C 3-6 Cycloalkylidene group) and the like.
  • a divalent C 3-12 cycloalkylene group such as a cyclohexylidene group, and a divalent C 3-12 cycloalkylidene group (preferably a divalent C 3-6 cycloalkylene group and a divalent C 3-6 Cycloalkylidene group) and the like.
  • the volume expansion coefficient when the compound represented by the above formula (a-1) is cured is preferably about 0 to 30%, particularly preferably 0 to 10 based on the volume of the uncured product. %, Most preferably 0.5 to 5.0%. If the volume expansion rate is below the above range (a negative value), it tends to be difficult to accurately transfer a fine pattern of the mold due to curing shrinkage.
  • the compounds represented by the formula (a-1) can be used singly or in combination of two or more.
  • (3,4,3 ′, 4′-diepoxy) bicyclo is particularly advantageous in that it has a small steric hindrance, can rapidly proceed with a curing reaction upon irradiation with light, and has a curing expansion property. It is preferable to use xylil [volume expansion coefficient: 2.4%].
  • the amount of the compound in which X is a group containing an ester bond is 40% of the total amount (100% by weight) of the compound represented by the formula (a-1). It is preferred that it is not more than wt% (preferably not more than 30 wt%, particularly preferably less than 10 wt%, most preferably less than 5 wt%).
  • the compounds represented by the formula (a-1) when the content of the compound in which X is a group containing an ester bond exceeds the above range, the thin film curability tends to decrease.
  • the compound represented by the above formula (a-1) can be produced, for example, by epoxidizing an olefin represented by the formula (a-1 ′).
  • the epoxidation reaction can be carried out by a known or conventional method.
  • X is the same as R 1 ⁇ R 18, X in formula (a-1).
  • a known or conventional oxidizing agent for example, organic percarboxylic acids, hydroperoxides, etc.
  • organic percarboxylic acids include performic acid, peracetic acid, perpropionic acid, perbenzoic acid, trifluoroperacetic acid, and perphthalic acid.
  • hydroperoxides include hydrogen peroxide, tertiary butyl hydroperoxide, cumene hydroperoxide, and the like.
  • the content of the component (A) in the total amount (100% by weight) of the cationically polymerizable compound contained in the photocurable composition for nanoimprinting is, for example, about 10 to 70% by weight. It is preferably 20 to 60% by weight.
  • content of a component (A) is less than the said range, there exists a tendency for thin film sclerosis
  • the content of the component (A) exceeds the above range, the etching resistance tends to decrease.
  • a compound having a fluoroalkylfluorophosphate anion is used as a cationic photopolymerization initiator.
  • the compound is excellent in safety, can accelerate curing of the cationic polymerizable compound containing the component (A) only by light irradiation, and imparts excellent thin film curability to the photocurable composition for nanoimprinting. be able to.
  • the photocationic polymerization initiator of the present invention can be used alone or in combination of two or more.
  • the fluorinated alkyl fluorophosphate anion is represented, for example, by the following formula (b). [(Rf) n PF 6-n ] - (b) (In the formula (b), Rf represents an alkyl group in which 80% or more of hydrogen atoms are substituted with fluorine atoms, and n represents an integer of 1 to 5)
  • Rf is an alkyl group (preferably a C 1-4 alkyl group) in which 80% or more of hydrogen atoms are substituted with fluorine atoms, and among them, CF 3 , C 2 F 5 , (CF 3) 2 CF, C 3 F 7, C 4 F 9, (CF 3) 2 CFCF 2, CF 3 CF 2 (CF 3) CF, (CF 3) the 3 C, etc., 100% fluorine atom hydrogen atom A linear or branched C 1-4 alkyl group substituted with is preferred.
  • the anionic part of the photocationic polymerization initiator is particularly [(C 2 F 5 ) 3 PF 3 ] ⁇ , [(C 3 F 7 ) 3 PF 3 ] ⁇ , [((CF 3 ) 2 CF). 3 PF 3 ] ⁇ , [((CF 3 ) 2 CF) 2 PF 4 ] ⁇ , [((CF 3 ) 2 CFCF 2 ) 3 PF 3 ] ⁇ , and [((CF 3 ) 2 CFCF 2 ) 2 PF 4] -, and the like are preferable.
  • examples of the cation part of the photocationic polymerization initiator include iodonium ions, sulfonium ions, and selenium ions. In the present invention, among them, donium ions and sulfonium ions are preferable.
  • iodonium ion examples include diphenyliodonium, di-p-tolyliodonium, bis (4-dodecylphenyl) iodonium, bis (4-methoxyphenyl) iodonium, (4-octyloxyphenyl) phenyliodonium, bis (4- Aryl iodonium ions such as decyloxy) phenyliodonium, 4- (2-hydroxytetradecyloxyphenyl) phenyliodonium, 4-isopropylphenyl (p-tolyl) iodonium and 4-isobutylphenyl (p-tolyl) iodonium (especially bisaryl) Iodonium ion).
  • sulfonium ions examples include arylsulfonium ions (particularly, triarylsulfonium ions) such as triphenylsulfonium, diphenyl [4- (phenylthio) phenyl] sulfonium, and tri-p-tolylsulfonium.
  • Examples of the photocationic polymerization initiator of the present invention include 4-isopropylphenyl (p-tolyl) iodonium tris (pentafluoroethyl) trifluorophosphate, [1,1′-biphenyl] -4-yl [4- (1 , 1′-biphenyl) -4-ylthiophenyl] phenyl tris (pentafluoroethyl) trifluorophosphate, diphenyl [4- (phenylsulfonyl) phenyl] tris (pentafluoroethyl) trifluorophosphate, triphenylsulfonium tris (penta Fluoroethyl) trifluorophosphate, [4- (4-biphenylylthio) phenyl] -4-biphenylylphenylsulfonium, tris (pentafluoroethyl) trifluoro
  • the content of the component (B) is, for example, 0.1 to 20 parts by weight with respect to 100 parts by weight of the cationic polymerizable compound (the total amount when containing two or more kinds) contained in the photocurable composition for nanoimprints. Degree, preferably 0.5 to 10 parts by weight, particularly preferably 0.5 to 5 parts by weight.
  • content of a component (B) is less than the said range, there exists a tendency for thin film sclerosis
  • content of a component (B) exceeds the said range there exists a tendency for the storage stability of the photocurable composition for nanoimprints to fall.
  • the photocurable composition for nanoimprinting of the present invention may contain a compound other than the compound (component (A)) represented by the above formula (a-1) as a cationic polymerizable compound.
  • the photocurable composition for nanoimprinting of the present invention preferably contains a cationic polymerizable compound having a number average molecular weight of 500 or more (hereinafter sometimes referred to as “high molecular weight cationic polymerizable compound”).
  • high molecular weight cationic polymerizable compound By using a high molecular weight cationic polymerizable compound in combination, the thin film curability can be further improved.
  • the high molecular weight cationically polymerizable compound is excellent in shape stability, when used in combination, curing shrinkage can be suppressed and transferability can be further improved.
  • the number average molecular weight of the high molecular weight cationic polymerizable compound is 500 or more, preferably 500 to 100,000, particularly preferably 500 to 80,000, and most preferably 500 to 50,000.
  • the number average molecular weight of the high molecular weight cationic polymerizable compound is below the above range, the effect of imparting shape stability tends to be difficult to obtain.
  • the number average molecular weight of the high molecular weight cationic polymerizable compound exceeds the above range, the viscosity of the curable composition tends to increase and the workability tends to decrease.
  • the high molecular weight cationic polymerizable compound contains a cationic curable functional group.
  • the number of cationic curable functional groups contained in one molecule of the high molecular weight cationic polymerizable compound is preferably 2 or more.
  • Examples of the cationically curable functional group include electron donating groups such as a hydroxyl group, an epoxy group, and an oxetanyl group.
  • the high molecular weight cationically polymerizable compound of the present invention may contain one kind of the electron donating group alone or in combination of two or more kinds.
  • the high molecular weight cationic polymerizable compound examples include a compound having a skeleton selected from a polycarbonate skeleton, a polyester skeleton, a polydiene skeleton, a novolak skeleton, an alicyclic skeleton, and the like, and the above cation-curable functional group. These can be used alone or in combination of two or more. In the present invention, it is particularly preferable to use a high molecular weight cationic polymerizable compound containing an epoxy group as a cationically curable functional group.
  • the high molecular weight cationically polymerizable compound having a polycarbonate skeleton is a phosgene method or a dialkyl carbonate (for example, dimethyl carbonate, diethyl carbonate, etc.) or a transesterification reaction between diphenyl carbonate and a polyol (Japanese Patent Laid-Open Nos. 62-187725 and 62 No. 2-175721, JP-A-2-49025, JP-A-3-220233, JP-A-3-252420).
  • polyol used in the transesterification reaction examples include 1,6-hexanediol, ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 2,3- Butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,4-cyclohexanedimethanol, 1,12-dodecanediol, polybutadienediol, neopentyl glycol, tetramethylene glycol, propylene glycol, Dipropylene glycol, glycerin, trimethylolpropane, 1,3-dihydroxyacetone, hexylene glycol, 1,2,6-hexanetriol, ditrimethylolpropane, trimethylolethane, trimethyloloctane Mention may be made of pentaerythritol.
  • Examples of the high molecular weight cationically polymerizable compound having a polycarbonate skeleton include trade names “Placcel CD205”, “Plaxel CD205PL”, “Plaxel CD205HL”, “Plaxel D210”, “Plaxel CD210PL”, “Plaxel CD210HL”, “Plaxel” CD220 “,” Placcel CD220PL “,” Placcel CD220HL “,” Placcel CD220EC “,” Placcel CD221T “(manufactured by Daicel Corporation), trade names” UM-CARB90 (1/3) ",” UM-CARB90 ( 1/1) ”,“ UC-CARB100 ”(manufactured by Ube Industries, Ltd.) and the like are commercially available.
  • the high molecular weight cationic polymerizable compound having a polyester skeleton can be synthesized through a reaction between a polyol and a carboxylic acid. In addition, it can be synthesized through ring-opening polymerization of lactones.
  • Examples of the polyol used as a raw material for the high molecular weight cationically polymerizable compound having the polyester skeleton include the same examples as the polyol used in the transesterification reaction.
  • Examples of the carboxylic acid used as a raw material for the high molecular weight cationic polymerizable compound having a polyester skeleton include oxalic acid, adipic acid, sebacic acid, fumaric acid, malonic acid, succinic acid, glutaric acid, azelaic acid, citric acid, and 2 , 6-Naphthalenedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, citraconic acid, 1,10-decanedicarboxylic acid, methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, tetrahydrophthalic anhydride Products, pyromellitic anhydride, trimellitic anhydride, lactic acid, malic acid, glycolic acid, dimethylolpropionic acid, dimethylolbutanoic acid and the like.
  • lactones used as a raw material for the high molecular weight cationic polymerizable compound having a polyester skeleton include ⁇ -caprolactone, ⁇ -valerolactone, and ⁇ -butyrolactone.
  • Examples of the high molecular weight cationic polymerizable compound having a polyester skeleton include “Placcel 205U”, “Placcel L205AL”, “Placcel L208AL”, “Placcel L212AL”, “Placcel L220AL”, “Placcel L230AL”, “Placcel 220ED”.
  • Examples of the high molecular weight cationic polymerizable compound having a polydiene skeleton include a compound having a cationic curable functional group at both ends of a molecular chain having a polybutadiene skeleton or a polyisoprene skeleton, and a molecule having the polybutadiene skeleton or a polyisoprene skeleton.
  • Examples include compounds in which a part of the double bond of the chain is epoxidized. For example, trade names “Epolide PB3600” (manufactured by Daicel Corporation), “Poly ip” (manufactured by Idemitsu Kosan Co., Ltd.), and the like are commercially available.
  • Examples of the high molecular weight cationic polymerizable compound having a novolak skeleton include trade names “EPICLON N-740”, “EPICLON N-770”, “EPICLON N-775”, “EPICLON N-865”, “EPICLON N-”.
  • Examples of the high molecular weight cationic polymerizable compound having an alicyclic skeleton include a trade name “EHPE3150” (manufactured by Daicel Corporation), trade names “EPICLON HP-7200L”, “EPICLON HP-7200”, “EPICLON HP-”. 7200H ”,“ EPICLON HP-7200HH ”,“ EPICLON HP-7200HHH ”(hereinafter, manufactured by DIC Corporation), and the like.
  • the compounding amount of component (C) in the total amount (100% by weight) of the cationically polymerizable compound contained in the photocurable composition for nanoimprinting of the present invention is, for example, 10 to 50% by weight. Degree, preferably 20 to 40% by weight, particularly preferably 25 to 40% by weight.
  • the photocurable composition for nanoimprinting of the present invention is a cation having a number average molecular weight of less than 500 (for example, about 100 to 450, preferably 300 to 450) in addition to the components (A) and (C) as the cationic polymerizable compound.
  • a polymerizable compound (excluding the compound represented by the above formula (a-1) (component (A)), hereinafter may be referred to as “low molecular weight cationic polymerizable compound”) may be contained.
  • the low molecular weight cationic polymerizable compound contains one or more cationically curable functional groups in one molecule.
  • Examples of the cationically curable functional group include electron donating groups such as an epoxy group, an oxetanyl group, and a vinyl ether group. These can be used alone or in combination of two or more.
  • examples of the low molecular weight cationic polymerizable compound include epoxy compounds other than the compound represented by the formula (a-1), compounds having one or more oxetanyl groups in the molecule, and one or more compounds in the molecule. Examples thereof include compounds having a vinyl ether group. These can be used alone or in combination of two or more.
  • Examples of the epoxy compound other than the compound represented by the formula (a-1) include aromatic glycidyl ether type epoxy compounds such as bisphenol A type epoxy compounds and bisphenol F type epoxy compounds; and the above aromatic glycidyl ether type epoxy compounds.
  • Alicyclic glycidyl ether epoxy compounds obtained by hydrogenating glycidyl ether epoxy compounds such as aliphatic polyhydric alcohol mono- or polyglycidyl ethers; glycidyl ester epoxy compounds; glycidyl amine epoxy compounds be able to.
  • Examples of the compound having one or more oxetanyl groups in the molecule include 3,3-bis (vinyloxymethyl) oxetane, 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3- (2-ethylhexyl).
  • Examples of the compound having one or more vinyl ether groups in the molecule include 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 2-hydroxyisopropyl vinyl ether, 4-hydroxybutyl vinyl ether, 3- Hydroxybutyl vinyl ether, 2-hydroxybutyl vinyl ether, 3-hydroxyisobutyl vinyl ether, 2-hydroxyisobutyl vinyl ether, 1-methyl-3-hydroxypropyl vinyl ether, 1-methyl-2-hydroxypropyl vinyl ether, 1-hydroxymethylpropyl vinyl ether, 4 -Hydroxycyclohexyl vinyl ether, 1,6-hexanediol monovinyl ether, 1,4-cyclohexa Dimethanol monovinyl ether, 1,3-cyclohexanedimethanol monovinyl ether, 1,2-cyclohexanedimethanol monovinyl ether, p-xylene glycol monovinyl ether, m-xylene glycol mono
  • the photocurable composition for nanoimprinting of the present invention includes a component (D) (particularly one in the molecule) as the cationic polymerizable compound, together with the component (A) (preferably components (A) and (C)).
  • component (D) particularly one in the molecule
  • component (A) preferably components (A) and (C)
  • the compound having the above oxetanyl group and having a number average molecular weight of less than 500 is preferable from the viewpoint that the initial curing rate can be improved and the thin film curability can be further improved.
  • the content of component (D) in the total amount (100% by weight) of the photocurable composition for nanoimprinting of the present invention is, for example, about 5 to 40% by weight, preferably 10 to 30% by weight.
  • the photocurable composition for nanoimprinting of the present invention may contain other components in addition to the cationic polymerizable compound and the cationic photopolymerization initiator as long as the effects of the present invention are not impaired.
  • other components include a hydroxyl group-containing compound (eg, diethylene glycol), a photosensitizer (eg, a thioxanthone compound), an antifoaming agent, a leveling agent, a coupling agent (eg, a silane coupling agent), Conventional additives such as a surfactant, an inorganic filler, a flame retardant, an ultraviolet absorber, an ion adsorbent, a phosphor, a release agent, a pigment dispersant, and a dispersion aid can be exemplified.
  • the content of other components is about 10% by weight or less of the total amount (100% by weight) of the photocurable composition for nanoimprint.
  • a leveling agent is contained because the surface smoothness of the resulting cured product can be improved.
  • leveling agent examples include an acrylic leveling agent and a silicon leveling agent.
  • commercially available products such as trade names “BYK-350” and “BYK-UV3510” (manufactured by Big Chemie Japan Co., Ltd.) can be preferably used.
  • the amount of the leveling agent used is about 0.1 to 5% by weight of the total amount (100% by weight) of the photocurable composition for nanoimprint.
  • the photocurable composition for nanoimprinting of the present invention can be prepared, for example, by stirring and mixing the above components at a predetermined ratio and defoaming under vacuum as necessary.
  • the viscosity of the photocurable composition for nanoimprinting of the present invention is, for example, about 20 Pa ⁇ s or less, preferably 10 Pa ⁇ s or less. When the viscosity exceeds the above range, workability tends to be lowered. Moreover, there exists a tendency for the surface smoothness of the hardened
  • the viscosity of the present invention is a value obtained by measuring at a temperature of 25 ° C. and a rotation speed of 20 / sec using a rheometer (trade name “PHYSICA MCR301”, manufactured by Anton Paar).
  • substrate of this invention etches an inorganic material board
  • the fine pattern substrate of the present invention can be manufactured through the following steps, for example.
  • Step 1 A photocurable composition for nanoimprint is thinly applied to the surface of an inorganic material substrate to form a coating film.
  • Step 2 A mold on which a pattern is formed is brought into contact with the obtained coating film to transfer the pattern (imprint process).
  • Step 3 The photocurable composition for nanoimprint is cured by light irradiation, and then released to obtain a thin film to which the pattern shape of the mold is transferred.
  • Process 4 A fine pattern is obtained by etching an inorganic material board
  • a silicon substrate, a sapphire substrate, a ceramic substrate, an alumina substrate, a gallium phosphide substrate, a gallium arsenide substrate, an indium phosphide substrate, a gallium nitride substrate, or the like may be used. it can.
  • Examples of the method for applying the photocurable composition for nanoimprinting to the surface of the inorganic material substrate include a screen printing method, a curtain coating method, and a spray method.
  • a diluent solvent eg, glycol derivatives such as ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate; acetone, methyl ethyl ketone
  • the concentration can be adjusted by diluting with ketones such as methyl butyl ketone and cyclohexanone; esters such as methyl lactate, ethyl lactate, ethyl acetate and butyl acetate).
  • the thickness of the coating film is, for example, about 0.1 to 10 ⁇ m, preferably 0.3 to 3 ⁇ m.
  • the mold used in step 2 examples include a silicone mold, a thermoplastic resin mold, a curable resin mold, and a metal mold.
  • the pressing force for bringing the mold into contact with the coating film is, for example, about 100 to 1000 Pa.
  • the time for contacting the mold with the coating film is, for example, about 1 to 100 seconds.
  • the pattern shape of the mold is not particularly limited as long as it is a shape that can improve the extraction efficiency of light generated in the light emitting layer, and examples thereof include a trapezoidal shape, a conical shape, and a round shape. Can do.
  • the light (active energy ray) used for light irradiation in the step 3 may be light that causes the polymerization reaction of the photocurable composition for nanoimprinting to proceed, and may be infrared rays, visible rays, ultraviolet rays, X-rays, electron beams, ⁇ Any of a line, a beta ray, a gamma ray, etc. can be used. Of these, ultraviolet rays are preferable in terms of excellent handleability.
  • a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a carbon arc, a metal halide lamp, sunlight, an LED lamp, a laser, or the like can be used.
  • the photocurable composition for nanoimprinting of the present invention has the above-described configuration, the curing rate is very high and the thin film curability is excellent.
  • the light irradiation condition when a 1 ⁇ m-thick film is formed by irradiating with ultraviolet rays, it is preferable to adjust the ultraviolet ray integrated light amount to, for example, about 100 to 3000 mJ / cm 2 .
  • a post cure step may be provided between step 3 and step 4.
  • Post-cure can be performed by heating and / or light irradiation. When post-cure is performed by heating, it is preferable to heat at 50 to 180 ° C. for about 0.5 to 3 hours, for example. When post-cure is performed by light irradiation, it is preferable to irradiate for about 10 to 100 seconds with an irradiation intensity of about 10 to 100 mW / cm 2 , for example.
  • Examples of the etching method in step 4 include a dry etching method and a wet etching method.
  • a dry etching method it is particularly preferable to employ a dry etching method, and in particular, it is preferable to employ reactive ion etching (RIE) in terms of enabling highly accurate fine processing.
  • RIE reactive ion etching
  • a thin film having a very low curing shrinkage can be rapidly formed on the surface of an inorganic material substrate by irradiation with light because the above-described photocurable composition for nanoimprinting is used.
  • the thin film onto which the shape of the mold thus obtained is accurately transferred is used as a mask, a fine pattern substrate on which a fine pattern of the mold is accurately transferred can be obtained.
  • the semiconductor device for example, LED
  • the semiconductor device is equipped with the said fine pattern board
  • the LED is composed of a light emitter obtained by growing a light emitting layer (GaN layer) on the surface of the fine pattern substrate by metal organic vapor phase epitaxy (MOVPE), a lens, a wiring, and the like.
  • a light emitter obtained by growing a light emitting layer (GaN layer) on the surface of the fine pattern substrate by metal organic vapor phase epitaxy (MOVPE), a lens, a wiring, and the like.
  • MOVPE metal organic vapor phase epitaxy
  • the semiconductor device (especially LED) of the present invention has a fine pattern substrate formed using the photocurable composition for nanoimprinting of the present invention, and thus has excellent light extraction efficiency, high luminance, long life, and low power consumption. And low heat-generating properties.
  • Preparation Example 1 (Preparation of compound represented by formula (a-1)) A dehydration catalyst was prepared by stirring and mixing 70 g (0.68 mol) of 95 wt% sulfuric acid and 55 g (0.36 mol) of 1,8-diazabicyclo [5.4.0] undecene-7 (DBU).
  • DBU 1,8-diazabicyclo [5.4.0] undecene-7
  • the obtained bicyclohexyl-3,3′-diene (243 g) and ethyl acetate (730 g) were charged into a reactor, and nitrogen was blown into the gas phase portion, and the temperature in the reaction system was controlled to 37.5 ° C. Then, 274 g of a 30 wt% peracetic acid ethyl acetate solution (water content 0.41 wt%) was added dropwise over about 3 hours. After the peracetic acid solution was dropped, the reaction was terminated by aging at 40 ° C. for 1 hour.
  • Examples 1-9, Comparative Examples 1-6 Each component was blended according to the blending composition (unit: parts by weight) shown in the table, and stirred and mixed in a flask at room temperature to obtain a uniform photocurable composition for nanoimprinting. About the obtained photocurable composition for nanoimprint and the cured product obtained by curing the photocurable composition for nanoimprint, the following methods were used: (1) Viscosity, (2) Curability, (3) Shape Transferability and (4) surface uniformity were evaluated. The evaluation results are summarized in Table 1 below.
  • the thickness of the obtained thin film was measured using a step gauge (trade name “T-4000”, manufactured by Kosaka Laboratory Ltd.), and the thickness of the thinnest part (T 1 ) and the thinnest part of the thin film were measured.
  • the difference in thickness (T 2 ) (T 1 -T 2 ) was taken as a step, and the surface uniformity was evaluated according to the following criteria.
  • the component used by the Example and the comparative example is as follows. ⁇ Cationically polymerizable compound> Bicyclodiepoxy compound (a-1): 3,4,3 ′, 4′-diepoxybicyclohexyl (the compound obtained in Preparation Example 1 was used), number average molecular weight: 194 OXT-221: 3-ethyl-3 ([(3-ethyloxetane-3-yl) methoxy] methyl) oxetane, trade name “OXT-221”, manufactured by Toagosei Co., Ltd., number average molecular weight: 214 OXBP: Oxetane compound having a biphenyl skeleton, trade name “OXBP”, manufactured by Ube Industries, Ltd., number average molecular weight: 383 N-890: Modified novolak type epoxy resin, trade name “EPICLON N-890”, manufactured by DIC Corporation, number average molecular weight: 500 or more HP-7200: dicyclopentad
  • b-1 initiator containing fluorinated alkylfluorophosphate anion, [4- (4-biphenylylthio) phenyl] -4-biphenylylphenylsulfonium tris (pentafluoroethyl) trifluorophosphate with propylene carbonate in 50%
  • B-2 initiator containing a fluoroalkylfluorophosphate anion, diphenyl [4- (phenylsulfonyl) phenyl] tris (pentafluoroethyl) trifluorophosphate 654027: allylsulfonium hexafluoroantimonate and diallylsulfonium A compound obtained by diluting a 50% mixture of hexafluoroantimonate with propylene carbonate to 50%, Sigma Aldrich Japan 407216: Allylsulfonium hexafluorophosphate and di Com
  • BYK-350 Leveling agent, acrylic copolymer, trade name “BYK-350”, manufactured by BYK Japan Japan Co., Ltd.
  • BYK-UV3510 Leveling agent, a mixture of polyether-modified polydimethylylsiloxane and polyether, trade name “ BYK-UV3510 ", manufactured by Big Chemie Japan
  • the photocurable composition for nanoimprint of the present invention When the photocurable composition for nanoimprint of the present invention is thinly applied to a substrate even in an oxygen atmosphere and irradiated with light, it can be cured quickly and while suppressing curing shrinkage to form a thin film having excellent curability. it can. Therefore, a fine pattern can be transferred quickly and accurately.
  • nanoimprinting is performed using the photocurable composition for nanoimprinting of the present invention, it is possible to form a mask on which a fine pattern of the mold is accurately transferred, and etching the inorganic material substrate using the mask. By doing so, a fine pattern having excellent dimensional reproducibility according to the design drawing can be formed on the surface of the inorganic material substrate.

Abstract

Provided is a photocurable composition for nanoimprint, which is able to be quickly cured and form a thin film by being thinly applied over a substrate and irradiated with light, and which is small in curing shrinkage, thereby capable of transferring a fine pattern of a mold with high accuracy. A photocurable composition for nanoimprint according to the present invention contains the following component (A) and component (B). Component (A): a compound represented by formula (a-1) (wherein each of R1-R18 represents a hydrogen atom, a halogen atom, a hydrocarbon group which may contain an oxygen atom or a halogen atom, or an optionally substituted alkoxy group; and X represents a single bond or a linking group) Component (B): a cationic photopolymerization initiator having a fluorinated alkylfluorophosphate anion

Description

ナノインプリント用光硬化性組成物、及びそれを使用した微細パターン基板の製造方法Photocurable composition for nanoimprint, and method for producing fine pattern substrate using the same
 本発明は、ナノインプリント用光硬化性組成物、及びそれを使用した微細パターン基板の製造方法に関する。本願は、2013年1月15日に日本に出願した、特願2013-004758号の優先権を主張し、その内容をここに援用する。 The present invention relates to a photocurable composition for nanoimprint and a method for producing a fine pattern substrate using the same. This application claims the priority of Japanese Patent Application No. 2013-004758 filed in Japan on January 15, 2013, the contents of which are incorporated herein by reference.
 発光ダイオード(LED)は、エネルギー変換効率に優れており、長寿命であることから電子機器等に多く使用されている。LEDは、無機材料基板の上にGaN系半導体から成る発光層が積層された構造を有する。しかし、無機材料基板とGaN系半導体及び大気との間には大きな屈折率差が存在するため、発光層で生じた全光量のうち多くが内部で反射を繰り返して消滅し、光取り出し効率が悪いことが問題であった。 A light emitting diode (LED) is excellent in energy conversion efficiency and has a long life, so that it is often used in electronic devices and the like. The LED has a structure in which a light emitting layer made of a GaN-based semiconductor is laminated on an inorganic material substrate. However, since there is a large refractive index difference between the inorganic material substrate, the GaN-based semiconductor, and the atmosphere, most of the total amount of light generated in the light emitting layer disappears due to repeated internal reflection, resulting in poor light extraction efficiency. That was the problem.
 上記問題を解決する方法としては、無機材料基板の表面に数μm程度の微細なパターンを形成し、その上にGaN系半導体から成る発光層を積層する方法が知られている。 As a method for solving the above problem, a method is known in which a fine pattern of about several μm is formed on the surface of an inorganic material substrate, and a light emitting layer made of a GaN-based semiconductor is laminated thereon.
 微細なパターンを形成する方法としては、従来はフォトリソグラフィーにより無機材料基板上にマスクを作成し、得られたマスクを使用してエッチングすることによりパターンを形成していた。しかし、無機材料基板の大型化やナノパターン化が進み、それに伴うコストと加工時間の増加が問題となった。そこで、前記フォトリソグラフィーに代えて、ナノインプリントによりマスクを形成する方法が注目されている。 As a method for forming a fine pattern, conventionally, a mask is formed on an inorganic material substrate by photolithography, and the pattern is formed by etching using the obtained mask. However, the increase in size and nanopatterning of inorganic material substrates has been a problem, and the associated increase in cost and processing time has become a problem. Therefore, a method of forming a mask by nanoimprinting instead of the photolithography has attracted attention.
 ナノインプリントに使用される光硬化性組成物としては、例えば、脂環構造を有するビニルエーテルや、脂環構造と芳香環構造とを有するビニルエーテル等のラジカル重合性化合物を使用することが知られている(特許文献1、2)。しかし、前記ラジカル重合性化合物は硬化収縮が大きく、微細なパターンを精度良く作成することは困難であった。また、光硬化性組成物には、基板上に塗布後、速やかに硬化して薄膜を形成することが求められるが、ラジカル重合性化合物は酸素による重合阻害を受けて硬化速度が低下すること、特に薄膜において硬化性が低下することが問題であった。酸素による重合阻害に対しては、窒素などの不活性ガスの雰囲気下で硬化させる方法も考えられるが、設備が大掛かりであるため費用が増大し、空気を置換するのに時間を要するため作業効率が低下するという問題があった。 As a photocurable composition used for nanoimprint, it is known to use, for example, a radical polymerizable compound such as vinyl ether having an alicyclic structure or vinyl ether having an alicyclic structure and an aromatic ring structure ( Patent Documents 1 and 2). However, the radical polymerizable compound has a large shrinkage due to curing, and it has been difficult to accurately produce a fine pattern. In addition, the photocurable composition is required to quickly cure and form a thin film after coating on the substrate, but the radically polymerizable compound is subjected to polymerization inhibition by oxygen, and the curing rate decreases. In particular, it has been a problem that curability is lowered in a thin film. A method of curing in an atmosphere of inert gas such as nitrogen is also conceivable for inhibiting polymerization by oxygen, but the cost is increased due to the large equipment, and work efficiency is required because it takes time to replace air. There was a problem that decreased.
特開2003-327628号公報JP 2003-327628 A 特開2011-84527号公報JP 2011-84527 A 特開2011-157482号公報JP 2011-157482 A
 従って、本発明の目的は、基板に薄く塗布して光照射することにより速やかに硬化して薄膜を形成することができ、硬化収縮が小さく、モールドの微細なパターンを精度良く転写することができるナノインプリント用光硬化性組成物を提供することにある。
 本発明の他の目的は、前記ナノインプリント用光硬化性組成物を使用する微細パターン基板の製造方法を提供することにある。
 本発明の更に他の目的は、前記微細パターン基板の製造方法により得られる微細パターン基板、及びそれを備える半導体装置を提供することにある。
Accordingly, an object of the present invention is to form a thin film by quickly applying a light to a substrate and irradiating with light, thereby forming a thin film, curing shrinkage is small, and a fine pattern of a mold can be accurately transferred. The object is to provide a photocurable composition for nanoimprinting.
Another object of the present invention is to provide a method for producing a fine pattern substrate using the photocurable composition for nanoimprint.
Still another object of the present invention is to provide a fine pattern substrate obtained by the method for producing a fine pattern substrate, and a semiconductor device including the same.
 本発明者等は上記課題を解決するため鋭意検討した結果、脂環式エポキシ基を有する特定のカチオン重合性化合物と、フッ化アルキルフルオロリン酸アニオンを有する光カチオン重合開始剤を含有する硬化性組成物は、酸素により重合が阻害されないため酸素雰囲気下でも基板に薄く塗布して光照射することにより速やかに硬化して薄膜を形成することができること(すなわち、薄膜硬化性に優れること)、硬化収縮が小さく、モールドの微細なパターンを精度良く転写することができることを見いだした。そして、前記硬化性組成物を使用してナノインプリントを行うと、モールドの微細なパターンが精度良く転写されたマスクを形成することができることを見いだした。尚、本明細書において「脂環式エポキシ基」とは、脂環を構成する隣り合う2つの炭素原子が1つの酸素原子と共に環を形成してなる基(特に、シクロヘキサン環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基)である。本発明はこれらの知見に基づいて完成させたものである。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a curable composition containing a specific cationic polymerizable compound having an alicyclic epoxy group and a photo cationic polymerization initiator having a fluorinated alkylfluorophosphate anion. Since the composition is not hindered by oxygen, the composition can be applied to a substrate thinly even in an oxygen atmosphere and lightly irradiated to cure quickly to form a thin film (that is, excellent thin film curability), curing It was found that the shrinkage is small and a fine pattern of the mold can be transferred with high accuracy. And when nanoimprinting was performed using the said curable composition, it discovered that the mask by which the fine pattern of the mold was transcribe | transferred accurately can be formed. In the present specification, the “alicyclic epoxy group” means a group in which two adjacent carbon atoms constituting an alicyclic ring form a ring together with one oxygen atom (particularly, adjacent cyclohexane ring constituting a cyclohexane ring). An epoxy group composed of two carbon atoms and an oxygen atom). The present invention has been completed based on these findings.
 すなわち、本発明は、下記成分(A)及び成分(B)を含むナノインプリント用光硬化性組成物を提供する。
 成分(A):下記式(a-1)で表される化合物
Figure JPOXMLDOC01-appb-C000002
[式中、R1~R18は同一又は異なって、水素原子、ハロゲン原子、酸素原子若しくはハロゲン原子を含んでいてもよい炭化水素基、又は置換基を有していてもよいアルコキシ基を示す。Xは、単結合又は連結基を示す]
 成分(B):フッ化アルキルフルオロリン酸アニオンを有する光カチオン重合開始剤
That is, this invention provides the photocurable composition for nanoimprint containing the following component (A) and component (B).
Component (A): Compound represented by the following formula (a-1)
Figure JPOXMLDOC01-appb-C000002
[Wherein, R 1 to R 18 are the same or different and each represents a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group that may contain a halogen atom, or an alkoxy group that may have a substituent. . X represents a single bond or a linking group]
Component (B): Photocationic polymerization initiator having a fluorinated alkylfluorophosphate anion
 本発明は、更に、下記成分(C)を含む前記のナノインプリント用光硬化性組成物を提供する。
 成分(C):数平均分子量が500以上のカチオン重合性化合物(成分(A)に含まれる化合物を除く)
The present invention further provides the above-mentioned photocurable composition for nanoimprint, which comprises the following component (C).
Component (C): Cationic polymerizable compound having a number average molecular weight of 500 or more (excluding compounds contained in component (A))
 本発明は、また、成分(C)が、ポリカーボネート骨格、ポリエステル骨格、ポリジエン骨格、ノボラック骨格、又は脂環骨格を有するカチオン重合性化合物である前記のナノインプリント用光硬化性組成物を提供する。 The present invention also provides the photocurable composition for nanoimprint, wherein the component (C) is a cationically polymerizable compound having a polycarbonate skeleton, a polyester skeleton, a polydiene skeleton, a novolac skeleton, or an alicyclic skeleton.
 本発明は、また、前記に記載のナノインプリント用光硬化性組成物にインプリント加工を施して得られたマスクを使用して無機材料基板をエッチングする微細パターン基板の製造方法を提供する。 The present invention also provides a method for producing a fine pattern substrate in which an inorganic material substrate is etched using a mask obtained by imprinting the photocurable composition for nanoimprint described above.
 本発明は、また、前記に記載の微細パターン基板の製造方法により得られる微細パターン基板を提供する。 The present invention also provides a fine pattern substrate obtained by the method for producing a fine pattern substrate described above.
 本発明は、また、前記に記載の微細パターン基板を備える半導体装置を提供する。 The present invention also provides a semiconductor device including the fine pattern substrate described above.
 すなわち、本発明は以下に関する。
(1)下記成分(A)及び成分(B)を含むナノインプリント用光硬化性組成物。
 成分(A):式(a-1)[式中、R1~R18は同一又は異なって、水素原子、ハロゲン原子、酸素原子若しくはハロゲン原子を含んでいてもよい炭化水素基、又は置換基を有していてもよいアルコキシ基を示す。Xは、単結合又は連結基を示す]で表される化合物
 成分(B):フッ化アルキルフルオロリン酸アニオンを有する光カチオン重合開始剤
(2)更に、下記成分(C)を含む(1)に記載のナノインプリント用光硬化性組成物。
 成分(C):数平均分子量が500以上のカチオン重合性化合物(成分(A)に含まれる化合物を除く)
(3)成分(C)が、ポリカーボネート骨格、ポリエステル骨格、ポリジエン骨格、ノボラック骨格、又は脂環骨格を有するカチオン重合性化合物である(2)に記載のナノインプリント用光硬化性組成物。
(4)ナノインプリント用光硬化性組成物に含まれるカチオン重合性化合物全量(100重量%)における成分(A)の含有量が10~70重量%である(1)~(3)の何れか1つに記載のナノインプリント用光硬化性組成物。
(5)式(a-1)で表される化合物を硬化させた際の体積膨張率が0~30%である(1)~(4)の何れか1つに記載のナノインプリント用光硬化性組成物。
(6)式(a-1)で表される化合物のうち、Xがエステル結合を含む基である化合物の含有量が、ナノインプリント用光硬化性組成物に含まれる式(a-1)で表される化合物全量(100重量%)の40重量%以下である(1)~(5)の何れか1つに記載のナノインプリント用光硬化性組成物。
(7)成分(B)におけるフッ化アルキルフルオロリン酸アニオンを有する光カチオン重合開始剤のカチオン部がトリアリールスルホニウムイオンである(1)~(6)の何れか1つに記載のナノインプリント用光硬化性組成物。
(8)更に、下記成分成分(D)を含む(1)~(7)の何れか1つに記載のナノインプリント用光硬化性組成物。
 成分(D):分子内に1個以上のオキセタニル基を有する、数平均分子量500未満の化合物
(9)(1)~(8)の何れか1つに記載のナノインプリント用光硬化性組成物にインプリント加工を施して得られたマスクを使用して無機材料基板をエッチングする微細パターン基板の製造方法。
(10)(9)に記載の微細パターン基板の製造方法により得られる微細パターン基板。
(11)(10)に記載の微細パターン基板を備える半導体装置。
That is, the present invention relates to the following.
(1) A photocurable composition for nanoimprints comprising the following component (A) and component (B).
Component (A): Formula (a-1) [wherein R 1 to R 18 are the same or different and each represents a hydrogen atom, a halogen atom, an oxygen atom, or a hydrocarbon group that may contain a halogen atom, or a substituent The alkoxy group which may have is shown. X represents a single bond or a linking group] Component (B): Photocationic polymerization initiator having a fluorinated alkylfluorophosphate anion (2) and further comprising the following component (C) (1) The photocurable composition for nanoimprints described in 1.
Component (C): Cationic polymerizable compound having a number average molecular weight of 500 or more (excluding compounds contained in component (A))
(3) The photocurable composition for nanoimprints according to (2), wherein the component (C) is a cationically polymerizable compound having a polycarbonate skeleton, a polyester skeleton, a polydiene skeleton, a novolac skeleton, or an alicyclic skeleton.
(4) The content of component (A) in the total amount (100% by weight) of the cationically polymerizable compound contained in the photocurable composition for nanoimprinting is 10 to 70% by weight, and any one of (1) to (3) The photocurable composition for nanoimprints described in 1.
(5) The photocurable property for nanoimprints according to any one of (1) to (4), wherein the volume expansion coefficient when the compound represented by the formula (a-1) is cured is 0 to 30%. Composition.
(6) Among the compounds represented by the formula (a-1), the content of the compound in which X is a group containing an ester bond is represented by the formula (a-1) contained in the photocurable composition for nanoimprints. The photocurable composition for nanoimprints according to any one of (1) to (5), which is 40% by weight or less of the total amount of the compound to be formed (100% by weight).
(7) The nanoimprinting light according to any one of (1) to (6), wherein the cation part of the photocationic polymerization initiator having a fluorinated alkylfluorophosphate anion in component (B) is a triarylsulfonium ion Curable composition.
(8) The photocurable composition for nanoimprints according to any one of (1) to (7), further comprising the following component (D).
Component (D): The photocurable composition for nanoimprints according to any one of compounds (9) (1) to (8) having at least one oxetanyl group in the molecule and having a number average molecular weight of less than 500 A method for manufacturing a fine pattern substrate, in which an inorganic material substrate is etched using a mask obtained by imprinting.
(10) A fine pattern substrate obtained by the method for producing a fine pattern substrate according to (9).
(11) A semiconductor device comprising the fine pattern substrate according to (10).
 本発明のナノインプリント用光硬化性組成物は上記構成を有するため、酸素雰囲気下でも基板に薄く塗布して光照射すると、速やかに且つ硬化収縮を抑制しつつ硬化して、硬化性に優れた薄膜を形成することができる。そのため、微細なパターンを速やかに、且つ精度良く転写することができる。そして、本発明のナノインプリント用光硬化性組成物を使用してナノインプリントを行うと、モールドの微細なパターンが精度良く転写されたマスクを形成することができ、それを使用して無機材料基板をエッチングすることにより、設計図面通りの優れた寸法再現性を有する微細なパターンを無機材料基板表面に形成することができる。 Since the photocurable composition for nanoimprints of the present invention has the above-described structure, it is a thin film excellent in curability that is cured rapidly and while suppressing curing shrinkage when applied thinly to a substrate and irradiated with light even in an oxygen atmosphere. Can be formed. Therefore, a fine pattern can be transferred quickly and accurately. When nanoimprinting is performed using the photocurable composition for nanoimprinting of the present invention, it is possible to form a mask on which a fine pattern of the mold is accurately transferred, and etching the inorganic material substrate using the mask. By doing so, a fine pattern having excellent dimensional reproducibility according to the design drawing can be formed on the surface of the inorganic material substrate.
 [ナノインプリント用光硬化性組成物]
 本発明のナノインプリント用光硬化性組成物は、下記成分(A)及び成分(B)を含む。
 成分(A):式(a-1)で表される化合物
 成分(B):フッ化アルキルフルオロリン酸アニオンを有する光カチオン重合開始剤
[Photocurable composition for nanoimprint]
The photocurable composition for nanoimprinting of the present invention comprises the following component (A) and component (B).
Component (A): Compound represented by formula (a-1) Component (B): Photocationic polymerization initiator having a fluoroalkylfluorophosphate anion
 (成分(A))
 本発明の成分(A)は下記式(a-1)で表される化合物である。下記式(a-1)で表される化合物はカチオン重合性を有し(すなわち、下記式(a-1)で表される化合物はカチオン重合性化合物である)、薄膜硬化性に優れる。
(Ingredient (A))
Component (A) of the present invention is a compound represented by the following formula (a-1). The compound represented by the following formula (a-1) has cationic polymerizability (that is, the compound represented by the following formula (a-1) is a cationic polymerizable compound) and is excellent in thin film curability.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(a-1)におけるR1~R18は同一又は異なって、水素原子、ハロゲン原子、酸素原子若しくはハロゲン原子を含んでいてもよい炭化水素基、又は置換基を有していてもよいアルコキシ基を示す。Xは単結合又は連結基を示す。 R 1 to R 18 in the above formula (a-1) are the same or different and may have a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group which may contain a halogen atom, or a substituent. An alkoxy group is shown. X represents a single bond or a linking group.
 R1~R18におけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等を挙げることができる。 Examples of the halogen atom in R 1 to R 18 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 R1~R18における炭化水素基としては、例えば、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、及びこれらが2以上結合した基を挙げることができる。 Examples of the hydrocarbon group in R 1 to R 18 include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which two or more of these are bonded.
 上記脂肪族炭化水素基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、ヘキシル、オクチル、イソオクチル、デシル、ドデシル基等のC1-20アルキル基(好ましくはC1-10アルキル基、特に好ましくはC1-4アルキル基);ビニル、アリル、メタリル、1-プロペニル、イソプロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、5-ヘキセニル基等のC2-20アルケニル基(好ましくはC2-10アルケニル基、特に好ましくはC2-4アルケニル基);エチニル、プロピニル基等のC2-20アルキニル基(好ましくはC2-10アルキニル基、特に好ましくはC2-4アルキニル基)等を挙げることができる。 Examples of the aliphatic hydrocarbon group include a C 1-20 alkyl group (preferably a C 1-10 alkyl group, particularly a methyl, ethyl, propyl, isopropyl, butyl, hexyl, octyl, isooctyl, decyl, dodecyl group). Preferably a C 1-4 alkyl group); vinyl, allyl, methallyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl C 2-20 alkenyl group such as 5-hexenyl group (preferably C 2-10 alkenyl group, particularly preferably C 2-4 alkenyl group); C 2-20 alkynyl group such as ethynyl, propynyl group (preferably C 2-10 alkynyl group, particularly preferably C 2-4 alkynyl group).
 上記脂環式炭化水素基としては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロドデシル基等のC3-12シクロアルキル基;シクロヘキセニル基等のC3-12シクロアルケニル基;ビシクロヘプタニル、ビシクロヘプテニル基等のC4-15架橋環式炭化水素基等を挙げることができる。 Examples of the alicyclic hydrocarbon group include C 3-12 cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cyclododecyl groups; C 3-12 cycloalkenyl groups such as cyclohexenyl groups; and bicycloheptanyl. And a C 4-15 bridged cyclic hydrocarbon group such as a bicycloheptenyl group.
 上記芳香族炭化水素基としては、例えば、フェニル、ナフチル基等のC6-14アリール基(好ましくはC6-10アリール基)等を挙げることができる。 Examples of the aromatic hydrocarbon group include C 6-14 aryl groups (preferably C 6-10 aryl groups) such as phenyl and naphthyl groups.
 また、上述の脂肪族炭化水素基、脂環式炭化水素基、及び芳香族炭化水素基から選択される基が2以上結合した基における、脂肪族炭化水素基と脂環式炭化水素基とが結合した基としては、例えば、シクロへキシルメチル基等のC3-12シクロアルキル-C1-20アルキル基;メチルシクロヘキシル基等のC1-20アルキル-C3-12シクロアルキル基等を挙げることができる。脂肪族炭化水素基と芳香族炭化水素基とが結合した基としては、例えば、ベンジル基、フェネチル基等のC7-18アラルキル基(特に、C7-10アラルキル基);シンナミル基等のC6-14アリール-C2-20アルケニル基;トリル基等のC1-20アルキル置換C6-14アリール基;スチリル基等のC2-20アルケニル置換C6-14アリール基等を挙げることができる。 In addition, the aliphatic hydrocarbon group and the alicyclic hydrocarbon group in a group in which two or more groups selected from the above-described aliphatic hydrocarbon group, alicyclic hydrocarbon group, and aromatic hydrocarbon group are bonded to each other. Examples of the bonded group include a C 3-12 cycloalkyl-C 1-20 alkyl group such as a cyclohexylmethyl group; a C 1-20 alkyl-C 3-12 cycloalkyl group such as a methylcyclohexyl group. Can do. Examples of the group in which an aliphatic hydrocarbon group and an aromatic hydrocarbon group are bonded include, for example, a C 7-18 aralkyl group such as a benzyl group or a phenethyl group (particularly a C 7-10 aralkyl group); 6-14 aryl-C 2-20 alkenyl group; C 1-20 alkyl substituted C 6-14 aryl group such as tolyl group; C 2-20 alkenyl substituted C 6-14 aryl group such as styryl group, etc. it can.
 R1~R18における酸素原子若しくはハロゲン原子を含んでいてもよい炭化水素基としては、上述の炭化水素基における少なくとも1つの水素原子が、酸素原子を有する基又はハロゲン原子を有する基で置換された基等を挙げることができる。上記酸素原子を有する基としては、例えば、ヒドロキシル基;ヒドロパーオキシ基;メトキシ、エトキシ、プロポキシ、イソプロピルオキシ、ブトキシ、イソブチルオキシ基等のC1-10アルコキシ基;アリルオキシ基等のC2-10アルケニルオキシ基;C1-10アルキル基、C2-10アルケニル基、ハロゲン原子、及びC1-10アルコキシ基から選択される置換基を有していてもよいC6-14アリールオキシ基(例えば、トリルオキシ、ナフチルオキシ基等);ベンジルオキシ、フェネチルオキシ基等のC7-18アラルキルオキシ基;アセチルオキシ、プロピオニルオキシ、(メタ)アクリロイルオキシ、ベンゾイルオキシ基等のC1-10アシルオキシ基;メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、ブトキシカルボニル基等のC1-10アルコキシカルボニル基;C1-10アルキル基、C2-10アルケニル基、ハロゲン原子、及びC1-10アルコキシ基から選択される置換基を有していてもよいC6-14アリールオキシカルボニル基(例えば、フェノキシカルボニル、トリルオキシカルボニル、ナフチルオキシカルボニル基等);ベンジルオキシカルボニル基等のC7-18アラルキルオキシカルボニル基;グリシジルオキシ基等のエポキシ基含有基;エチルオキセタニルオキシ基等のオキセタニル基含有基;アセチル、プロピオニル、ベンゾイル基等のC1-10アシル基;イソシアナート基;スルホ基;カルバモイル基;オキソ基;及びこれらの2以上がC1-10アルキレン基等を介して、又は介することなく結合した基等を挙げることができる。上記ハロゲン原子を有する基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等を挙げることができる。 As the hydrocarbon group optionally containing an oxygen atom or a halogen atom in R 1 to R 18, at least one hydrogen atom in the above hydrocarbon group is substituted with a group having an oxygen atom or a group having a halogen atom. The group etc. can be mentioned. Examples of the group having an oxygen atom include hydroxyl group; hydroperoxy group; C 1-10 alkoxy group such as methoxy, ethoxy, propoxy, isopropyloxy, butoxy, isobutyloxy group; C 2-10 such as allyloxy group. An alkenyloxy group; a C 6-14 aryloxy group optionally having a substituent selected from a C 1-10 alkyl group, a C 2-10 alkenyl group, a halogen atom, and a C 1-10 alkoxy group (for example, C 7-18 aralkyloxy groups such as benzyloxy and phenethyloxy groups; C 1-10 acyloxy groups such as acetyloxy, propionyloxy, (meth) acryloyloxy and benzoyloxy groups; methoxy carbonyl, ethoxycarbonyl, propoxycarbonyl, C 1-10 aralkyl such as a butoxycarbonyl group Alkoxycarbonyl group; C 1-10 alkyl group, C 2-10 alkenyl group, a halogen atom, and C 1-10 may have a substituent group selected from an alkoxy group C 6-14 aryloxycarbonyl group ( For example, phenoxycarbonyl, tolyloxycarbonyl, naphthyloxycarbonyl group, etc.); C 7-18 aralkyloxycarbonyl group such as benzyloxycarbonyl group; epoxy group-containing group such as glycidyloxy group; oxetanyl group such as ethyloxetanyloxy group A C 1-10 acyl group such as an acetyl, propionyl, or benzoyl group; an isocyanate group; a sulfo group; a carbamoyl group; an oxo group; and two or more of these via a C 1-10 alkylene group or the like The group etc. which were couple | bonded without mentioning can be mentioned. Examples of the group having a halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 R1~R18におけるアルコキシ基としては、例えば、メトキシ、エトキシ、プロポキシ、イソプロピルオキシ、ブトキシ、イソブチルオキシ基等のC1-10アルコキシ基を挙げることができる。 Examples of the alkoxy group in R 1 to R 18 include C 1-10 alkoxy groups such as methoxy, ethoxy, propoxy, isopropyloxy, butoxy, isobutyloxy groups and the like.
 前記アルコキシ基が有していてもよい置換基としては、例えば、ハロゲン原子、ヒドロキシル基、C1-10アルコキシ基、C2-10アルケニルオキシ基、C6-14アリールオキシ基、C1-10アシルオキシ基、メルカプト基、C1-10アルキルチオ基、C2-10アルケニルチオ基、C6-14アリールチオ基、C7-18アラルキルチオ基、カルボキシル基、C1-10アルコキシカルボニル基、C6-14アリールオキシカルボニル基、C7-18アラルキルオキシカルボニル基、アミノ基、モノ又はジC1-10アルキルアミノ基、C1-10アシルアミノ基、エポキシ基含有基、オキセタニル基含有基、C1-10アシル基、オキソ基、及びこれらの2以上がC1-10アルキレン基等を介して、又は介することなく結合した基等を挙げることができる。 Examples of the substituent that the alkoxy group may have include, for example, a halogen atom, a hydroxyl group, a C 1-10 alkoxy group, a C 2-10 alkenyloxy group, a C 6-14 aryloxy group, a C 1-10 Acyloxy group, mercapto group, C 1-10 alkylthio group, C 2-10 alkenylthio group, C 6-14 arylthio group, C 7-18 aralkylthio group, carboxyl group, C 1-10 alkoxycarbonyl group, C 6- 14 aryloxycarbonyl group, C 7-18 aralkyloxycarbonyl group, amino group, mono or di C 1-10 alkylamino group, C 1-10 acylamino group, epoxy group-containing group, oxetanyl group-containing group, C 1-10 Examples include an acyl group, an oxo group, and a group in which two or more of these are bonded through or without a C 1-10 alkylene group.
 R1~R18としては、なかでも水素原子が好ましい。 R 1 to R 18 are preferably hydrogen atoms.
 上記式(a-1)におけるXは、単結合又は連結基(1以上の原子を有する2価の基)を示す。上記連結基としては、例えば、2価の炭化水素基、カルボニル基、エーテル結合、エステル結合、アミド基、及びこれらが複数個連結した基等を挙げることができる。上記2価の炭化水素基としては、例えば、メチレン、メチルメチレン、ジメチルメチレン、エチレン、プロピレン、トリメチレン基等の直鎖又は分岐鎖状のC1-18アルキレン基(好ましくは直鎖又は分岐鎖状のC1-3アルキレン基);1,2-シクロペンチレン、1,3-シクロペンチレン、シクロペンチリデン、1,2-シクロヘキシレン、1,3-シクロヘキシレン、1,4-シクロヘキシレン、シクロヘキシリデン基等の2価のC3-12シクロアルキレン基、及び2価のC3-12シクロアルキリデン基(好ましくは2価のC3-6シクロアルキレン基、及び2価のC3-6シクロアルキリデン基)等を挙げることができる。 X in the formula (a-1) represents a single bond or a linking group (a divalent group having one or more atoms). Examples of the linking group include a divalent hydrocarbon group, a carbonyl group, an ether bond, an ester bond, an amide group, and a group in which a plurality of these are linked. Examples of the divalent hydrocarbon group include linear or branched C 1-18 alkylene groups such as methylene, methylmethylene, dimethylmethylene, ethylene, propylene, and trimethylene groups (preferably linear or branched chain). C 1-3 alkylene group); 1,2-cyclopentylene, 1,3-cyclopentylene, cyclopentylidene, 1,2-cyclohexylene, 1,3-cyclohexylene, 1,4-cyclohexylene, A divalent C 3-12 cycloalkylene group such as a cyclohexylidene group, and a divalent C 3-12 cycloalkylidene group (preferably a divalent C 3-6 cycloalkylene group and a divalent C 3-6 Cycloalkylidene group) and the like.
 上記式(a-1)で表される化合物を硬化させた際の体積膨張率は、未硬化物の体積を基準として、例えば0~30%程度であることが好ましく、特に好ましくは0~10%、最も好ましくは0.5~5.0%である。体積膨張率が上記範囲を下回ると(マイナスの値であると)、硬化収縮によりモールドの微細なパターンを精度良く転写することが困難となる傾向がある。 The volume expansion coefficient when the compound represented by the above formula (a-1) is cured is preferably about 0 to 30%, particularly preferably 0 to 10 based on the volume of the uncured product. %, Most preferably 0.5 to 5.0%. If the volume expansion rate is below the above range (a negative value), it tends to be difficult to accurately transfer a fine pattern of the mold due to curing shrinkage.
 尚、式(a-1)で表される化合物を硬化させた際の体積膨張率は、以下の方法で算出できる。
 すなわち、式(a-1)で表される化合物とカチオン重合開始剤を含む組成物にUV照射することにより硬化させて硬化物を形成し、硬化前の組成物の比重xと硬化物の比重yを得、下記式により算出することができる。
    体積膨張率=[(y-x)/x]×100
The volume expansion coefficient when the compound represented by the formula (a-1) is cured can be calculated by the following method.
That is, a composition containing the compound represented by formula (a-1) and a cationic polymerization initiator is cured by UV irradiation to form a cured product, and the specific gravity x of the composition before curing and the specific gravity of the cured product y can be obtained and calculated by the following formula.
Volume expansion coefficient = [(y−x) / x] × 100
 式(a-1)で表される化合物は1種を単独で、又は2種以上を組み合わせて使用することができる。本発明においては、なかでも、立体障害が小さく、光照射により速やかに硬化反応を進行することができ、硬化膨張性を有する点で、(3,4,3’,4’-ジエポキシ)ビシクロへキシル[体積膨張率:2.4%]を使用することが好ましい。 The compounds represented by the formula (a-1) can be used singly or in combination of two or more. In the present invention, (3,4,3 ′, 4′-diepoxy) bicyclo is particularly advantageous in that it has a small steric hindrance, can rapidly proceed with a curing reaction upon irradiation with light, and has a curing expansion property. It is preferable to use xylil [volume expansion coefficient: 2.4%].
 また、式(a-1)で表される化合物のうち、Xがエステル結合を含む基である化合物の使用量は、式(a-1)で表される化合物全量(100重量%)の40重量%以下(好ましくは30重量%以下、特に好ましくは10重量%未満、最も好ましくは5重量%未満)であることが好ましい。式(a-1)で表される化合物のうち、Xがエステル結合を含む基である化合物の含有量が上記範囲を上回ると、薄膜硬化性が低下する傾向がある。 In addition, among the compounds represented by the formula (a-1), the amount of the compound in which X is a group containing an ester bond is 40% of the total amount (100% by weight) of the compound represented by the formula (a-1). It is preferred that it is not more than wt% (preferably not more than 30 wt%, particularly preferably less than 10 wt%, most preferably less than 5 wt%). Among the compounds represented by the formula (a-1), when the content of the compound in which X is a group containing an ester bond exceeds the above range, the thin film curability tends to decrease.
 上記式(a-1)で表される化合物は、例えば、式(a-1')で表されるオレフィンをエポキシ化することによって製造することができる。エポキシ化反応は、公知乃至慣用の方法により実施することができる。尚、式(a-1')におけるR1~R18、Xは、式(a-1)におけるR1~R18、Xと同じである。 The compound represented by the above formula (a-1) can be produced, for example, by epoxidizing an olefin represented by the formula (a-1 ′). The epoxidation reaction can be carried out by a known or conventional method. Incidentally, R 1 ~ R 18 in the formula (a-1 '), X is the same as R 1 ~ R 18, X in formula (a-1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 エポキシ化反応に使用されるエポキシ化剤としては、公知乃至慣用の酸化剤(例えば、有機過カルボン酸類、ハイドロパーオキサイド類等)を使用することができる。前記有機過カルボン酸類としては、例えば、過ギ酸、過酢酸、過プロピオン酸、過安息香酸、トリフルオロ過酢酸、過フタル酸等を挙げることができる。前記ハイドロパーオキサイド類としては、例えば、過酸化水素、ターシャリーブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等を挙げることができる。 As the epoxidizing agent used in the epoxidation reaction, a known or conventional oxidizing agent (for example, organic percarboxylic acids, hydroperoxides, etc.) can be used. Examples of the organic percarboxylic acids include performic acid, peracetic acid, perpropionic acid, perbenzoic acid, trifluoroperacetic acid, and perphthalic acid. Examples of the hydroperoxides include hydrogen peroxide, tertiary butyl hydroperoxide, cumene hydroperoxide, and the like.
 また、ナノインプリント用光硬化性組成物に含まれるカチオン重合性化合物全量(100重量%)における成分(A)の含有量(2種以上含有する場合はその総量)は、例えば10~70重量%程度、好ましくは20~60重量%である。成分(A)の含有量が上記範囲を下回ると、薄膜硬化性及び転写性が低下する傾向がある。一方、成分(A)の含有量が上記範囲を上回るとエッチング耐性が低下する傾向がある。 In addition, the content of the component (A) in the total amount (100% by weight) of the cationically polymerizable compound contained in the photocurable composition for nanoimprinting (the total amount when containing two or more types) is, for example, about 10 to 70% by weight. It is preferably 20 to 60% by weight. When content of a component (A) is less than the said range, there exists a tendency for thin film sclerosis | hardenability and transferability to fall. On the other hand, when the content of the component (A) exceeds the above range, the etching resistance tends to decrease.
 (成分(B))
 本発明の成分(B)における光カチオン重合開始剤は、光の照射によって酸を発生して、ナノインプリント用光硬化性組成物に含まれるカチオン重合性化合物の硬化反応を開始させる化合物(=光酸発生剤)であり、光を吸収するカチオン部と酸の発生源となるアニオン部からなる。
(Ingredient (B))
The photocationic polymerization initiator in the component (B) of the present invention is a compound (= photoacid) that generates an acid upon irradiation with light and initiates a curing reaction of the cationically polymerizable compound contained in the photocurable composition for nanoimprinting. A cation moiety that absorbs light and an anion moiety that is a source of acid generation.
 本発明においては光カチオン重合開始剤としてフッ化アルキルフルオロリン酸アニオンを有する化合物を使用することを特徴とする。前記化合物は安全性に優れ、且つ、光の照射のみによって成分(A)を含むカチオン重合性化合物の硬化を促進することができ、ナノインプリント用光硬化性組成物に優れた薄膜硬化性を付与することができる。本発明の光カチオン重合開始剤は1種を単独で、又は2種以上を組み合わせて使用することができる。 In the present invention, a compound having a fluoroalkylfluorophosphate anion is used as a cationic photopolymerization initiator. The compound is excellent in safety, can accelerate curing of the cationic polymerizable compound containing the component (A) only by light irradiation, and imparts excellent thin film curability to the photocurable composition for nanoimprinting. be able to. The photocationic polymerization initiator of the present invention can be used alone or in combination of two or more.
 フッ化アルキルフルオロリン酸アニオンは、例えば、下記式(b)で表される。
   [(Rf)nPF6-n-    (b)
(式(b)中、Rfは水素原子の80%以上がフッ素原子で置換されたアルキル基を示し、nは1~5の整数を示す)
The fluorinated alkyl fluorophosphate anion is represented, for example, by the following formula (b).
[(Rf) n PF 6-n ] - (b)
(In the formula (b), Rf represents an alkyl group in which 80% or more of hydrogen atoms are substituted with fluorine atoms, and n represents an integer of 1 to 5)
 前記式(b)中、Rfは水素原子の80%以上がフッ素原子で置換されたアルキル基(好ましくはC1-4アルキル基)であり、なかでも、CF3、C25、(CF32CF、C37、C49、(CF32CFCF2、CF3CF2(CF3)CF、(CF33C等の、水素原子の100%がフッ素原子で置換された直鎖状又は分岐鎖状のC1-4アルキル基が好ましい。 In the formula (b), Rf is an alkyl group (preferably a C 1-4 alkyl group) in which 80% or more of hydrogen atoms are substituted with fluorine atoms, and among them, CF 3 , C 2 F 5 , (CF 3) 2 CF, C 3 F 7, C 4 F 9, (CF 3) 2 CFCF 2, CF 3 CF 2 (CF 3) CF, (CF 3) the 3 C, etc., 100% fluorine atom hydrogen atom A linear or branched C 1-4 alkyl group substituted with is preferred.
 従って、光カチオン重合開始剤のアニオン部としては、特に、[(C253PF3-、[(C373PF3-、[((CF32CF)3PF3-、[((CF32CF)2PF4-、[((CF32CFCF23PF3-、及び[((CF32CFCF22PF4-等が好ましい。 Therefore, the anionic part of the photocationic polymerization initiator is particularly [(C 2 F 5 ) 3 PF 3 ] , [(C 3 F 7 ) 3 PF 3 ] , [((CF 3 ) 2 CF). 3 PF 3 ] , [((CF 3 ) 2 CF) 2 PF 4 ] , [((CF 3 ) 2 CFCF 2 ) 3 PF 3 ] , and [((CF 3 ) 2 CFCF 2 ) 2 PF 4] -, and the like are preferable.
 また、光カチオン重合開始剤のカチオン部としては、ヨードニウムイオン、スルホニウムイオン、及びセレニウムイオン等を挙げることができる。本発明においては、なかでもードニウムイオン、及びスルホニウムイオンが好ましい。 Further, examples of the cation part of the photocationic polymerization initiator include iodonium ions, sulfonium ions, and selenium ions. In the present invention, among them, donium ions and sulfonium ions are preferable.
 前記ヨードニウムイオンとしては、例えば、ジフェニルヨードニウム、ジ-p-トリルヨードニウム、ビス(4-ドデシルフェニル)ヨードニウム、ビス(4-メトキシフェニル)ヨードニウム、(4-オクチルオキシフェニル)フェニルヨードニウム、ビス(4-デシルオキシ)フェニルヨードニウム、4-(2-ヒドロキシテトラデシルオキシフェニル)フェニルヨードニウム、4-イソプロピルフェニル(p-トリル)ヨードニウムおよび4-イソブチルフェニル(p-トリル)ヨードニウム等のアリールヨードニウムイオン(特に、ビスアリールヨードニウムイオン)を挙げることができる。 Examples of the iodonium ion include diphenyliodonium, di-p-tolyliodonium, bis (4-dodecylphenyl) iodonium, bis (4-methoxyphenyl) iodonium, (4-octyloxyphenyl) phenyliodonium, bis (4- Aryl iodonium ions such as decyloxy) phenyliodonium, 4- (2-hydroxytetradecyloxyphenyl) phenyliodonium, 4-isopropylphenyl (p-tolyl) iodonium and 4-isobutylphenyl (p-tolyl) iodonium (especially bisaryl) Iodonium ion).
 前記スルホニウムイオンとしては、例えば、トリフェニルスルホニウム、ジフェニル[4-(フェニルチオ)フェニル]スルホニウム、トリ-p-トリルスルホニウム等のアリールスルホニウムイオン(特に、トリアリールスルホニウムイオン)を挙げることができる。 Examples of the sulfonium ions include arylsulfonium ions (particularly, triarylsulfonium ions) such as triphenylsulfonium, diphenyl [4- (phenylthio) phenyl] sulfonium, and tri-p-tolylsulfonium.
 本発明の光カチオン重合開始剤としては、例えば、4-イソプロピルフェニル(p-トリル)ヨードニウムトリス(ペンタフルオロエチル)トリフルオロホスフェート、[1,1’-ビフェニル]-4-イル[4-(1,1’-ビフェニル)-4-イルチオフェニル]フェニル トリス(ペンタフルオロエチル)トリフルオロホスフェート、ジフェニル[4-(フェニルスルホニル)フェニル]トリス(ペンタフルオロエチル)トリフルオロホスフェート、トリフェニルスルホニウムトリス(ペンタフルオロエチル)トリフルオロホスフェート、[4-(4-ビフェニリルチオ)フェニル]-4-ビフェニリルフェニルスルホニウム トリス(ペンタフルオロエチル)トリフルオロホスフェート等を好適に使用することができる。 Examples of the photocationic polymerization initiator of the present invention include 4-isopropylphenyl (p-tolyl) iodonium tris (pentafluoroethyl) trifluorophosphate, [1,1′-biphenyl] -4-yl [4- (1 , 1′-biphenyl) -4-ylthiophenyl] phenyl tris (pentafluoroethyl) trifluorophosphate, diphenyl [4- (phenylsulfonyl) phenyl] tris (pentafluoroethyl) trifluorophosphate, triphenylsulfonium tris (penta Fluoroethyl) trifluorophosphate, [4- (4-biphenylylthio) phenyl] -4-biphenylylphenylsulfonium, tris (pentafluoroethyl) trifluorophosphate, and the like can be preferably used.
 成分(B)の含有量としては、ナノインプリント用光硬化性組成物に含まれるカチオン重合性化合物(2種以上含有する場合はその総量)100重量部に対して、例えば0.1~20重量部程度、好ましくは0.5~10重量部、特に好ましくは0.5~5重量部である。成分(B)の含有量が上記範囲を下回ると、薄膜硬化性が低下する傾向がある。一方、成分(B)の含有量が上記範囲を上回ると、ナノインプリント用光硬化性組成物の保存安定性が低下する傾向がある。 The content of the component (B) is, for example, 0.1 to 20 parts by weight with respect to 100 parts by weight of the cationic polymerizable compound (the total amount when containing two or more kinds) contained in the photocurable composition for nanoimprints. Degree, preferably 0.5 to 10 parts by weight, particularly preferably 0.5 to 5 parts by weight. When content of a component (B) is less than the said range, there exists a tendency for thin film sclerosis | hardenability to fall. On the other hand, when content of a component (B) exceeds the said range, there exists a tendency for the storage stability of the photocurable composition for nanoimprints to fall.
 (成分(C))
 本発明のナノインプリント用光硬化性組成物は、カチオン重合性化合物として上記式(a-1)で表される化合物(成分(A))以外の化合物を含有していてもよい。本発明のナノインプリント用光硬化性組成物としては、なかでも、数平均分子量が500以上のカチオン重合性化合物(以後「高分子量カチオン重合性化合物」と称する場合がある)を含有することが好ましい。高分子量カチオン重合性化合物を併用することにより、薄膜硬化性をより一層向上することができる。また、高分子量カチオン重合性化合物は形状安定性に優れるため、併用することにより硬化収縮を抑制することができ転写性をより一層向上することができる。
(Ingredient (C))
The photocurable composition for nanoimprinting of the present invention may contain a compound other than the compound (component (A)) represented by the above formula (a-1) as a cationic polymerizable compound. In particular, the photocurable composition for nanoimprinting of the present invention preferably contains a cationic polymerizable compound having a number average molecular weight of 500 or more (hereinafter sometimes referred to as “high molecular weight cationic polymerizable compound”). By using a high molecular weight cationic polymerizable compound in combination, the thin film curability can be further improved. Moreover, since the high molecular weight cationically polymerizable compound is excellent in shape stability, when used in combination, curing shrinkage can be suppressed and transferability can be further improved.
 高分子量カチオン重合性化合物の数平均分子量は500以上であり、好ましくは500~100000、特に好ましくは500~80000、最も好ましくは500~50000である。高分子量カチオン重合性化合物の数平均分子量が上記範囲を下回ると、形状安定性を付与する効果が得られにくくなる傾向がある。一方、高分子量カチオン重合性化合物の数平均分子量が上記範囲を上回ると、硬化性組成物の粘度が上昇し、作業性が低下する傾向がある。また、ナノインプリント用光硬化性組成物を硬化して得られる硬化物の表面平滑性が低下する傾向もある。 The number average molecular weight of the high molecular weight cationic polymerizable compound is 500 or more, preferably 500 to 100,000, particularly preferably 500 to 80,000, and most preferably 500 to 50,000. When the number average molecular weight of the high molecular weight cationic polymerizable compound is below the above range, the effect of imparting shape stability tends to be difficult to obtain. On the other hand, when the number average molecular weight of the high molecular weight cationic polymerizable compound exceeds the above range, the viscosity of the curable composition tends to increase and the workability tends to decrease. Moreover, there exists a tendency for the surface smoothness of the hardened | cured material obtained by hardening | curing the photocurable composition for nanoimprints to fall.
 高分子量カチオン重合性化合物はカチオン硬化性官能基を含有する。高分子量カチオン重合性化合物1分子内に含有するカチオン硬化性官能基の数は2個以上が好ましい。 The high molecular weight cationic polymerizable compound contains a cationic curable functional group. The number of cationic curable functional groups contained in one molecule of the high molecular weight cationic polymerizable compound is preferably 2 or more.
 前記カチオン硬化性官能基としては、例えば、水酸基、エポキシ基、オキセタニル基等の電子供与性基を挙げることができる。本発明の高分子量カチオン重合性化合物は前記電子供与性基の1種を単独で、又は2種以上を組み合わせて含有することができる。 Examples of the cationically curable functional group include electron donating groups such as a hydroxyl group, an epoxy group, and an oxetanyl group. The high molecular weight cationically polymerizable compound of the present invention may contain one kind of the electron donating group alone or in combination of two or more kinds.
 高分子量カチオン重合性化合物としては、例えば、ポリカーボネート骨格、ポリエステル骨格、ポリジエン骨格、ノボラック骨格、及び脂環骨格等から選択される骨格と上記カチオン硬化性官能基を有する化合物等を挙げることができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。本発明においては、なかでも、カチオン硬化性官能基としてエポキシ基を含有する高分子量カチオン重合性化合物を使用することが好ましい。 Examples of the high molecular weight cationic polymerizable compound include a compound having a skeleton selected from a polycarbonate skeleton, a polyester skeleton, a polydiene skeleton, a novolak skeleton, an alicyclic skeleton, and the like, and the above cation-curable functional group. These can be used alone or in combination of two or more. In the present invention, it is particularly preferable to use a high molecular weight cationic polymerizable compound containing an epoxy group as a cationically curable functional group.
 前記ポリカーボネート骨格を有する高分子量カチオン重合性化合物は、ホスゲン法、又はジアルキルカーボネート(例えば、ジメチルカーボネート、ジエチルカーボネート等)若しくはジフェニルカーボネートとポリオールとのエステル交換反応(特開昭62-187725号、特開平2-175721号、特開平2-49025号、特開平3-220233号、特開平3-252420号公報参照)を経て合成される。 The high molecular weight cationically polymerizable compound having a polycarbonate skeleton is a phosgene method or a dialkyl carbonate (for example, dimethyl carbonate, diethyl carbonate, etc.) or a transesterification reaction between diphenyl carbonate and a polyol (Japanese Patent Laid-Open Nos. 62-187725 and 62 No. 2-175721, JP-A-2-49025, JP-A-3-220233, JP-A-3-252420).
 前記エステル交換反応で用いられるポリオールとしては、例えば、1,6-ヘキサンジオール、エチレングリコール、ジエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,4-シクロヘキサンジメタノール、1,12-ドデカンジオール、ポリブタジエンジオール、ネオペンチルグリコール、テトラメチレングリコール、プロピレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパン、1,3-ジヒドロキシアセトン、ヘキシレングリコール、1,2,6-ヘキサントリオール、ジトリメチロールプロパン、トリメチロールエタン、トリメチロールオクタン、ペンタエリスリトール等を挙げることができる。また、エステルグリコール(三菱瓦斯化学(株)製)やポリエステルポリオール、ポリエーテルポリオールを用いることも可能である。 Examples of the polyol used in the transesterification reaction include 1,6-hexanediol, ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 2,3- Butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,4-cyclohexanedimethanol, 1,12-dodecanediol, polybutadienediol, neopentyl glycol, tetramethylene glycol, propylene glycol, Dipropylene glycol, glycerin, trimethylolpropane, 1,3-dihydroxyacetone, hexylene glycol, 1,2,6-hexanetriol, ditrimethylolpropane, trimethylolethane, trimethyloloctane Mention may be made of pentaerythritol. Also, ester glycol (manufactured by Mitsubishi Gas Chemical Co., Inc.), polyester polyol, and polyether polyol can be used.
 前記ポリカーボネート骨格を有する高分子量カチオン重合性化合物としては、例えば、商品名「プラクセルCD205」、「プラクセルCD205PL」、「プラクセルCD205HL」、「プラクセルD210」、「プラクセルCD210PL」、「プラクセルCD210HL」、「プラクセルCD220」、「プラクセルCD220PL」、「プラクセルCD220HL」、「プラクセルCD220EC」、「プラクセルCD221T」(以上、(株)ダイセル製)や商品名「UM-CARB90(1/3)」、「UM-CARB90(1/1)」、「UC-CARB100」(以上、宇部興産(株)製)等が市販品として入手可能である。 Examples of the high molecular weight cationically polymerizable compound having a polycarbonate skeleton include trade names “Placcel CD205”, “Plaxel CD205PL”, “Plaxel CD205HL”, “Plaxel D210”, “Plaxel CD210PL”, “Plaxel CD210HL”, “Plaxel” CD220 "," Placcel CD220PL "," Placcel CD220HL "," Placcel CD220EC "," Placcel CD221T "(manufactured by Daicel Corporation), trade names" UM-CARB90 (1/3) "," UM-CARB90 ( 1/1) ”,“ UC-CARB100 ”(manufactured by Ube Industries, Ltd.) and the like are commercially available.
 ポリエステル骨格を有する高分子量カチオン重合性化合物は、ポリオールとカルボン酸の反応を経て合成することができる。その他、ラクトン類の開環重合を経て合成することができる。 The high molecular weight cationic polymerizable compound having a polyester skeleton can be synthesized through a reaction between a polyol and a carboxylic acid. In addition, it can be synthesized through ring-opening polymerization of lactones.
 前記ポリエステル骨格を有する高分子量カチオン重合性化合物の原料となるポリオールとしては、上記エステル交換反応で用いられるポリオールと同様の例を挙げることができる。 Examples of the polyol used as a raw material for the high molecular weight cationically polymerizable compound having the polyester skeleton include the same examples as the polyol used in the transesterification reaction.
 前記ポリエステル骨格を有する高分子量カチオン重合性化合物の原料となるカルボン酸としては、例えば、シュウ酸、アジピン酸、セバシン酸、フマル酸、マロン酸、コハク酸、グルタル酸、アゼライン酸、クエン酸、2,6-ナフタレンジカルボン酸、フタル酸、イソフタル酸、テレフタル酸、シトラコン酸、1,10-デカンジカルボン酸、メチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロフタル酸無水物、テトラヒドロフタル酸無水物、無水ピロメリット酸、無水トリメリット酸、乳酸、リンゴ酸、グリコール酸、ジメチロールプロピオン酸、ジメチロールブタン酸等を挙げることができる。 Examples of the carboxylic acid used as a raw material for the high molecular weight cationic polymerizable compound having a polyester skeleton include oxalic acid, adipic acid, sebacic acid, fumaric acid, malonic acid, succinic acid, glutaric acid, azelaic acid, citric acid, and 2 , 6-Naphthalenedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, citraconic acid, 1,10-decanedicarboxylic acid, methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, tetrahydrophthalic anhydride Products, pyromellitic anhydride, trimellitic anhydride, lactic acid, malic acid, glycolic acid, dimethylolpropionic acid, dimethylolbutanoic acid and the like.
 前記ポリエステル骨格を有する高分子量カチオン重合性化合物の原料となるラクトン類としては、例えば、ε-カプロラクトン、δ-バレロラクトン、γ-ブチロラクトン等を挙げることができる。 Examples of lactones used as a raw material for the high molecular weight cationic polymerizable compound having a polyester skeleton include ε-caprolactone, δ-valerolactone, and γ-butyrolactone.
 前記ポリエステル骨格を有する高分子量カチオン重合性化合物としては、例えば、「プラクセル205U」、「プラクセルL205AL」、「プラクセルL208AL」、「プラクセルL212AL」、「プラクセルL220AL」、「プラクセルL230AL」、「プラクセル220ED」、「プラクセル220EC」、「プラクセル220EB」、「プラクセル303」、「プラクセル305」、「プラクセル308」、「プラクセル312」、「プラクセルL312AL」、「プラクセル320」、「プラクセルL320AL」、「プラクセル320ML」、「プラクセル410」、「プラクセル410D」、「プラクセルP3403」、「プラクセルE227」、「プラクセルDC2009」、「プラクセルDC2016」、「プラクセルDC2209」(以上、(株)ダイセル製)や、「クラレ ポリオールP-510」(クラレ(株)製)等が市販品として入手可能である。 Examples of the high molecular weight cationic polymerizable compound having a polyester skeleton include “Placcel 205U”, “Placcel L205AL”, “Placcel L208AL”, “Placcel L212AL”, “Placcel L220AL”, “Placcel L230AL”, “Placcel 220ED”. , “Plaxel 220EC”, “Plaxel 220EB”, “Plaxel 303”, “Plaxel 305”, “Plaxel 308”, “Plaxel 312”, “Plaxel L312AL”, “Plaxel 320”, “Plaxel L320AL”, “Plaxel 320ML” , “Placcel 410”, “Placcel 410D”, “Placcel P3403”, “Placcel E227”, “Placcel DC2009”, “Placcel DC2016”, “Placcel” Kuseru DC2209 "(or, Ltd. Daicel) or," Kuraray Polyol P-510 "(manufactured by Kuraray Co., Ltd.) and the like are available as commercial products.
 前記ポリジエン骨格を有する高分子量カチオン重合性化合物としては、例えば、ポリブタジエン骨格やポリイソプレン骨格を有する分子鎖の両末端にカチオン硬化性官能基を有する化合物や、前記ポリブタジエン骨格やポリイソプレン骨格を有する分子鎖の二重結合の一部がエポキシ化された化合物等を挙げることができる。例えば、商品名「エポリードPB3600」((株)ダイセル製)、「Poly ip」(出光興産(株)製)等が市販品として入手可能である。 Examples of the high molecular weight cationic polymerizable compound having a polydiene skeleton include a compound having a cationic curable functional group at both ends of a molecular chain having a polybutadiene skeleton or a polyisoprene skeleton, and a molecule having the polybutadiene skeleton or a polyisoprene skeleton. Examples include compounds in which a part of the double bond of the chain is epoxidized. For example, trade names “Epolide PB3600” (manufactured by Daicel Corporation), “Poly ip” (manufactured by Idemitsu Kosan Co., Ltd.), and the like are commercially available.
 前記ノボラック骨格を有する高分子量カチオン重合性化合物としては、例えば、商品名「EPICLON N-740」、「EPICLON N-770」、「EPICLON N-775」、「EPICLON N-865」、「EPICLON N-890」、「EPICLON N-660」、「EPICLON N-670」、「EPICLON N-673」、「EPICLON N-680」、「EPICLON N-690」、「EPICLON N-695」、「EPICLON N-665-EXP」、「EPICLON N-672-EXP」、「EPICLON N-655-EXP-S」、「EPICLON N-662-EXP-S」、「EPICLON N-665-EXP-S」、「EPICLON N-670-EXP-S」、「EPICLON N-685-EXP-S」(以上、DIC(株)製)、「YDPN-638」、「YDCN-700-2」、「YDCN-700-3」「YDCN-700-5」、「YDCN-700-7」、「YDCN-700-10」、「YDCN-704」、「YDCN-704A」(以上、新日鉄住金化学(株)製)等が市販品として入手可能である。 Examples of the high molecular weight cationic polymerizable compound having a novolak skeleton include trade names “EPICLON N-740”, “EPICLON N-770”, “EPICLON N-775”, “EPICLON N-865”, “EPICLON N-”. 890 ”,“ EPICLON N-660 ”,“ EPICLON N-670 ”,“ EPICLON N-673 ”,“ EPICLON N-680 ”,“ EPICLON N-690 ”,“ EPICLON N-695 ”,“ EPICLON N-665 ” -EXP, EPICLON N-672-EXP, EPICLON N-655-EXP-S, EPICLON N-662-EXP-S, EPICLON N-665-EXP-S, EPICLON N- 70-EXP-S "," EPICLON N-685-EXP-S "(manufactured by DIC Corporation)," YDPN-638 "," YDCN-700-2 "," YDCN-700-3 "," YDCN " -700-5 "," YDCN-700-7 "," YDCN-700-10 "," YDCN-704 "," YDCN-704A "(the above, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) are available as commercial products. Is possible.
 脂環骨格を有する高分子量カチオン重合性化合物としては、例えば、商品名「EHPE3150」((株)ダイセル製)や、商品名「EPICLON HP-7200L」、「EPICLON HP-7200」、「EPICLON HP-7200H」、「EPICLON HP-7200HH」、「EPICLON HP-7200HHH」(以上、DIC(株)製)等のジシクロペンタジエン型エポキシ樹脂等を挙げることができる。 Examples of the high molecular weight cationic polymerizable compound having an alicyclic skeleton include a trade name “EHPE3150” (manufactured by Daicel Corporation), trade names “EPICLON HP-7200L”, “EPICLON HP-7200”, “EPICLON HP-”. 7200H ”,“ EPICLON HP-7200HH ”,“ EPICLON HP-7200HHH ”(hereinafter, manufactured by DIC Corporation), and the like.
 本発明のナノインプリント用光硬化性組成物に含まれるカチオン重合性化合物全量(100重量%)における成分(C)の配合量(2種以上使用する場合はその総量)は、例えば10~50重量%程度、好ましくは20~40重量%、特に好ましくは25~40重量%である。 The compounding amount of component (C) in the total amount (100% by weight) of the cationically polymerizable compound contained in the photocurable composition for nanoimprinting of the present invention (the total amount when two or more are used) is, for example, 10 to 50% by weight. Degree, preferably 20 to 40% by weight, particularly preferably 25 to 40% by weight.
 (成分(D))
 本発明のナノインプリント用光硬化性組成物は、カチオン重合性化合物として上記成分(A)、(C)以外に、数平均分子量が500未満(例えば100~450程度、好ましくは300~450)のカチオン重合性化合物(上記式(a-1)で表される化合物(成分(A))を除く、以後「低分子量カチオン重合性化合物」と称する場合がある)を含有することができる。
(Component (D))
The photocurable composition for nanoimprinting of the present invention is a cation having a number average molecular weight of less than 500 (for example, about 100 to 450, preferably 300 to 450) in addition to the components (A) and (C) as the cationic polymerizable compound. A polymerizable compound (excluding the compound represented by the above formula (a-1) (component (A)), hereinafter may be referred to as “low molecular weight cationic polymerizable compound”) may be contained.
 前記低分子量カチオン重合性化合物は1分子内にカチオン硬化性官能基を1個以上含有する。 The low molecular weight cationic polymerizable compound contains one or more cationically curable functional groups in one molecule.
 前記カチオン硬化性官能基としては、例えば、エポキシ基、オキセタニル基、ビニルエーテル基等の電子供与性基を挙げることができる。これらは1種を単独で、又は2種以上を組み合わせて含有することができる。 Examples of the cationically curable functional group include electron donating groups such as an epoxy group, an oxetanyl group, and a vinyl ether group. These can be used alone or in combination of two or more.
 従って、低分子量カチオン重合性化合物としては、例えば、上記式(a-1)で表される化合物以外のエポキシ化合物、分子内に1個以上のオキセタニル基を有する化合物、分子内に1個以上のビニルエーテル基を有する化合物等を挙げることができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 Accordingly, examples of the low molecular weight cationic polymerizable compound include epoxy compounds other than the compound represented by the formula (a-1), compounds having one or more oxetanyl groups in the molecule, and one or more compounds in the molecule. Examples thereof include compounds having a vinyl ether group. These can be used alone or in combination of two or more.
 前記式(a-1)で表される化合物以外のエポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物等の芳香族グリシジルエーテル系エポキシ化合物;前記芳香族グリシジルエーテル系エポキシ化合物を水素化して得られる脂環式グリシジルエーテル系エポキシ化合物;脂肪族多価アルコールのモノ又はポリグリシジルエーテル等の脂肪族グリシジルエーテル系エポキシ化合物;グリシジルエステル系エポキシ化合物;グリシジルアミン系エポキシ化合物等を挙げることができる。 Examples of the epoxy compound other than the compound represented by the formula (a-1) include aromatic glycidyl ether type epoxy compounds such as bisphenol A type epoxy compounds and bisphenol F type epoxy compounds; and the above aromatic glycidyl ether type epoxy compounds. Alicyclic glycidyl ether epoxy compounds obtained by hydrogenating glycidyl ether epoxy compounds such as aliphatic polyhydric alcohol mono- or polyglycidyl ethers; glycidyl ester epoxy compounds; glycidyl amine epoxy compounds be able to.
 上記分子内に1個以上のオキセタニル基を有する化合物としては、例えば、3,3-ビス(ビニルオキシメチル)オキセタン、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-(ヒドロキシメチル)オキセタン、3-エチル-3-[(フェノキシ)メチル]オキセタン、3-エチル-3-(ヘキシロキシメチル)オキセタン、3-エチル-3-(クロロメチル)オキセタン、3,3-ビス(クロロメチル)オキセタン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、ビス([1-エチル(3-オキセタニル)]メチル)エーテル、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビシクロヘキシル、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]シクロヘキサン、1,4-ビス([(3-エチル-3-オキセタニル)メトキシ]メチル)ベンゼン、3-エチル-3([(3-エチルオキセタン-3-イル)メトキシ]メチル)オキセタン、キシリレンビスオキセタン等を挙げることができる。本発明においては、例えば、商品名「OXT221」、「OXT121」(以上、東亞合成(株)製)、商品名「OXBP」(宇部興産(株)製)等の市販品を使用することもできる。 Examples of the compound having one or more oxetanyl groups in the molecule include 3,3-bis (vinyloxymethyl) oxetane, 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3- (2-ethylhexyl). Oxymethyl) oxetane, 3-ethyl-3- (hydroxymethyl) oxetane, 3-ethyl-3-[(phenoxy) methyl] oxetane, 3-ethyl-3- (hexyloxymethyl) oxetane, 3-ethyl-3- (Chloromethyl) oxetane, 3,3-bis (chloromethyl) oxetane, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, bis ([1-ethyl (3-oxetanyl)] methyl ) Ether, 4,4'-bis [(3-ethyl-3-oxetanyl) methoxymethyl] bicyclohexyl 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] cyclohexane, 1,4-bis ([(3-ethyl-3-oxetanyl) methoxy] methyl) benzene, 3-ethyl-3 ([( And 3-ethyloxetane-3-yl) methoxy] methyl) oxetane, xylylenebisoxetane, and the like. In the present invention, for example, commercial products such as trade names “OXT221”, “OXT121” (manufactured by Toagosei Co., Ltd.), and trade names “OXBP” (manufactured by Ube Industries) can be used. .
 上記分子内に1個以上のビニルエーテル基を有する化合物としては、例えば、2-ヒドロキシエチルビニルエーテル、3-ヒドロキシプロピルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、2-ヒドロキシイソプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、3-ヒドロキシブチルビニルエーテル、2-ヒドロキシブチルビニルエーテル、3-ヒドロキシイソブチルビニルエーテル、2-ヒドロキシイソブチルビニルエーテル、1-メチル-3-ヒドロキシプロピルビニルエーテル、1-メチル-2-ヒドロキシプロピルビニルエーテル、1-ヒドロキシメチルプロピルビニルエーテル、4-ヒドロキシシクロヘキシルビニルエーテル、1,6-ヘキサンジオールモノビニルエーテル、1,4-シクロヘキサンジメタノールモノビニルエーテル、1,3-シクロヘキサンジメタノールモノビニルエーテル、1,2-シクロヘキサンジメタノールモノビニルエーテル、p-キシレングリコールモノビニルエーテル、m-キシレングリコールモノビニルエーテル、o-キシレングリコールモノビニルエーテル、ジエチレングリコールモノビニルエーテル、トリエチレングリコールモノビニルエーテル、テトラエチレングリコールモノビニルエーテル、ペンタエチレングリコールモノビニルエーテル、オリゴエチレングリコールモノビニルエーテル、ポリエチレングリコールモノビニルエーテル、ジプロピレングリコールモノビニルエーテル、トリプロピレングリコールモノビニルエーテル、テトラプロピレングリコールモノビニルエーテル、ペンタプロピレングリコールモノビニルエーテル、オリゴプロピレングリコールモノビニルエーテル、ポリプロピレングリコールモノビニルエーテル、及びこれらの誘導体等を挙げることができる。 Examples of the compound having one or more vinyl ether groups in the molecule include 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 2-hydroxyisopropyl vinyl ether, 4-hydroxybutyl vinyl ether, 3- Hydroxybutyl vinyl ether, 2-hydroxybutyl vinyl ether, 3-hydroxyisobutyl vinyl ether, 2-hydroxyisobutyl vinyl ether, 1-methyl-3-hydroxypropyl vinyl ether, 1-methyl-2-hydroxypropyl vinyl ether, 1-hydroxymethylpropyl vinyl ether, 4 -Hydroxycyclohexyl vinyl ether, 1,6-hexanediol monovinyl ether, 1,4-cyclohexa Dimethanol monovinyl ether, 1,3-cyclohexanedimethanol monovinyl ether, 1,2-cyclohexanedimethanol monovinyl ether, p-xylene glycol monovinyl ether, m-xylene glycol monovinyl ether, o-xylene glycol monovinyl ether, diethylene glycol monovinyl ether, Triethylene glycol monovinyl ether, tetraethylene glycol monovinyl ether, pentaethylene glycol monovinyl ether, oligoethylene glycol monovinyl ether, polyethylene glycol monovinyl ether, dipropylene glycol monovinyl ether, tripropylene glycol monovinyl ether, tetrapropylene glycol monovinyl ether, pentapro Glycol monovinyl ether, oligo propylene glycol monomethyl ether, polypropylene glycol monovinyl ether, and may be derivatives thereof.
 本発明のナノインプリント用光硬化性組成物は、カチオン重合性化合物として、上記成分(A)、(好ましくは成分(A)、(C))と共に、成分(D)(特に、分子内に1個以上のオキセタニル基を有する、数平均分子量500未満の化合物)を含有することが、初期硬化速度を向上することができ、薄膜硬化性をより一層向上することができる点で好ましい。 The photocurable composition for nanoimprinting of the present invention includes a component (D) (particularly one in the molecule) as the cationic polymerizable compound, together with the component (A) (preferably components (A) and (C)). The compound having the above oxetanyl group and having a number average molecular weight of less than 500 is preferable from the viewpoint that the initial curing rate can be improved and the thin film curability can be further improved.
 本発明のナノインプリント用光硬化性組成物全量(100重量%)における成分(D)の含有量は、例えば5~40重量%程度、好ましくは10~30重量%である。成分(D)を上記範囲で含有することにより、初期硬化速度を向上することができ、薄膜硬化性をより一層向上することができる。 The content of component (D) in the total amount (100% by weight) of the photocurable composition for nanoimprinting of the present invention is, for example, about 5 to 40% by weight, preferably 10 to 30% by weight. By containing the component (D) in the above range, the initial curing rate can be improved, and the thin film curability can be further improved.
 本発明のナノインプリント用光硬化性組成物には、上記カチオン重合性化合物、光カチオン重合開始剤以外にも、本発明の効果を損なわない範囲で他の成分を含有していてもよい。他の成分としては、例えば、水酸基含有化合物(例えば、ジエチレングリコール等)、光増感剤(例えば、チオキサントン化合物等)、消泡剤、レベリング剤、カップリング剤(例えば、シランカップリング剤等)、界面活性剤、無機充填剤、難燃剤、紫外線吸収剤、イオン吸着体、蛍光体、離型剤、顔料分散剤、分散助剤等の慣用の添加剤を挙げることができる。 The photocurable composition for nanoimprinting of the present invention may contain other components in addition to the cationic polymerizable compound and the cationic photopolymerization initiator as long as the effects of the present invention are not impaired. Examples of other components include a hydroxyl group-containing compound (eg, diethylene glycol), a photosensitizer (eg, a thioxanthone compound), an antifoaming agent, a leveling agent, a coupling agent (eg, a silane coupling agent), Conventional additives such as a surfactant, an inorganic filler, a flame retardant, an ultraviolet absorber, an ion adsorbent, a phosphor, a release agent, a pigment dispersant, and a dispersion aid can be exemplified.
 他の成分の含有量(2種以上を含有する場合はその総量)は、ナノインプリント用光硬化性組成物全量(100重量%)の10重量%以下程度である。 The content of other components (the total amount when two or more types are contained) is about 10% by weight or less of the total amount (100% by weight) of the photocurable composition for nanoimprint.
 本発明のナノインプリント用光硬化性組成物としては、なかでもレベリング剤を含有することが、得られる硬化物の表面平滑性を向上することができる点で好ましい。 As the photocurable composition for nanoimprinting of the present invention, it is particularly preferable that a leveling agent is contained because the surface smoothness of the resulting cured product can be improved.
 前記レベリング剤としては、例えば、アクリル系レベリング剤、シリコン系レベリング剤等を挙げることができる。本発明においては、例えば、商品名「BYK-350」、「BYK-UV3510」(ビックケミー・ジャパン(株)製)等の市販品を好適に使用することができる。 Examples of the leveling agent include an acrylic leveling agent and a silicon leveling agent. In the present invention, for example, commercially available products such as trade names “BYK-350” and “BYK-UV3510” (manufactured by Big Chemie Japan Co., Ltd.) can be preferably used.
 レベリング剤の使用量としては、ナノインプリント用光硬化性組成物全量(100重量%)の0.1~5重量%程度である。 The amount of the leveling agent used is about 0.1 to 5% by weight of the total amount (100% by weight) of the photocurable composition for nanoimprint.
 本発明のナノインプリント用光硬化性組成物は、例えば、上記成分を所定の割合で撹拌・混合して、必要に応じて真空下で脱泡することにより調製することができる。 The photocurable composition for nanoimprinting of the present invention can be prepared, for example, by stirring and mixing the above components at a predetermined ratio and defoaming under vacuum as necessary.
 本発明のナノインプリント用光硬化性組成物の粘度は、例えば20Pa・s以下程度、好ましくは10Pa・s以下である。粘度が上記範囲を上回ると、作業性が低下する傾向がある。また、得られる硬化物の表面平滑性が低下する傾向がある。尚、本発明の粘度はレオメーター(商品名「PHYSICA MCR301」、Anton Paar社製)を用いて温度25℃、回転速度20/秒で測定して得られる値である。 The viscosity of the photocurable composition for nanoimprinting of the present invention is, for example, about 20 Pa · s or less, preferably 10 Pa · s or less. When the viscosity exceeds the above range, workability tends to be lowered. Moreover, there exists a tendency for the surface smoothness of the hardened | cured material obtained to fall. The viscosity of the present invention is a value obtained by measuring at a temperature of 25 ° C. and a rotation speed of 20 / sec using a rheometer (trade name “PHYSICA MCR301”, manufactured by Anton Paar).
 [微細パターン基板の製造方法]
 本発明の微細パターン基板の製造方法は、上記ナノインプリント用光硬化性組成物にインプリント加工を施して得られたマスクを使用して無機材料基板をエッチングすることを特徴とする。
[Production method of fine pattern substrate]
The manufacturing method of the fine pattern board | substrate of this invention etches an inorganic material board | substrate using the mask obtained by imprinting to the said photocurable composition for nanoimprints, It is characterized by the above-mentioned.
 本発明の微細パターン基板は、例えば、下記工程を経て製造することができる。
 工程1:無機材料基板表面にナノインプリント用光硬化性組成物を薄く塗布し塗膜を形成する。
 工程2:得られた塗膜にパターンが形成されたモールドを接触させ該パターンを転写する(インプリント加工)。
 工程3:光照射によりナノインプリント用光硬化性組成物を硬化させ、その後、離型して、モールドのパターン形状が転写された薄膜を得る。
 工程4:モールドのパターン形状が転写された薄膜をマスクとして、無機材料基板をエッチングすることにより微細パターンを得る。
The fine pattern substrate of the present invention can be manufactured through the following steps, for example.
Step 1: A photocurable composition for nanoimprint is thinly applied to the surface of an inorganic material substrate to form a coating film.
Step 2: A mold on which a pattern is formed is brought into contact with the obtained coating film to transfer the pattern (imprint process).
Step 3: The photocurable composition for nanoimprint is cured by light irradiation, and then released to obtain a thin film to which the pattern shape of the mold is transferred.
Process 4: A fine pattern is obtained by etching an inorganic material board | substrate using the thin film to which the pattern shape of the mold was transferred as a mask.
 工程1において使用する無機材料基板としては、例えば、シリコン基板、サファイア基板、セラミックス基板、アルミナ基板、リン化ガリウム基板、ヒ化ガリウム基板、リン化インジウム基板、チッ化ガリウム基板等を使用することができる。 As the inorganic material substrate used in Step 1, for example, a silicon substrate, a sapphire substrate, a ceramic substrate, an alumina substrate, a gallium phosphide substrate, a gallium arsenide substrate, an indium phosphide substrate, a gallium nitride substrate, or the like may be used. it can.
 ナノインプリント用光硬化性組成物を前記無機材料基板表面に塗布する方法としては、例えば、スクリーン印刷法、カーテンコート法、スプレー法等を挙げることができる。その際、必要に応じて、希釈溶剤(例えば、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコール誘導体;アセトン、メチルエチルケトン、メチルブチルケトン、シクロヘキサノン等のケトン類;乳酸メチル、乳酸エチル、酢酸エチル、酢酸ブチル等のエステル類等)で希釈して濃度を調整することができる。塗膜の厚みとしては、例えば0.1~10μm程度、好ましくは0.3~3μmである。本発明においては上記ナノインプリント用光硬化性組成物を使用するため、薄膜硬化性に優れる。 Examples of the method for applying the photocurable composition for nanoimprinting to the surface of the inorganic material substrate include a screen printing method, a curtain coating method, and a spray method. At that time, if necessary, a diluent solvent (eg, glycol derivatives such as ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate; acetone, methyl ethyl ketone) The concentration can be adjusted by diluting with ketones such as methyl butyl ketone and cyclohexanone; esters such as methyl lactate, ethyl lactate, ethyl acetate and butyl acetate). The thickness of the coating film is, for example, about 0.1 to 10 μm, preferably 0.3 to 3 μm. In this invention, since the said photocurable composition for nanoimprints is used, it is excellent in thin film sclerosis | hardenability.
 工程2において使用するモールドとしては、例えば、シリコーンモールド、熱可塑性樹脂モールド、硬化性樹脂モールド、金属モールド等を挙げることができる。モールドを塗膜に接触させる際の押圧力としては、例えば100~1000Pa程度である。モールドを塗膜に接触させる時間は、例えば1~100秒程度である。また、モールドが有するパターン形状としては、発光層で生じた光の取り出し効率を向上することができる形状であれば特に制限されることがなく、例えば、台形、円錐形、ラウンド型等を挙げることができる。 Examples of the mold used in step 2 include a silicone mold, a thermoplastic resin mold, a curable resin mold, and a metal mold. The pressing force for bringing the mold into contact with the coating film is, for example, about 100 to 1000 Pa. The time for contacting the mold with the coating film is, for example, about 1 to 100 seconds. Further, the pattern shape of the mold is not particularly limited as long as it is a shape that can improve the extraction efficiency of light generated in the light emitting layer, and examples thereof include a trapezoidal shape, a conical shape, and a round shape. Can do.
 工程3において光照射に使用する光(活性エネルギー線)としては、ナノインプリント用光硬化性組成物の重合反応を進行させる光であればよく、赤外線、可視光線、紫外線、X線、電子線、α線、β線、γ線等の何れを使用することもできる。なかでも、取り扱い性に優れる点で、紫外線が好ましい。紫外線の照射には、例えば、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、カーボンアーク、メタルハライドランプ、太陽光、LEDランプ、レーザー等を使用することができる。 The light (active energy ray) used for light irradiation in the step 3 may be light that causes the polymerization reaction of the photocurable composition for nanoimprinting to proceed, and may be infrared rays, visible rays, ultraviolet rays, X-rays, electron beams, α Any of a line, a beta ray, a gamma ray, etc. can be used. Of these, ultraviolet rays are preferable in terms of excellent handleability. For irradiation with ultraviolet rays, for example, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a carbon arc, a metal halide lamp, sunlight, an LED lamp, a laser, or the like can be used.
 本発明のナノインプリント用光硬化性組成物は上記構成を有するため硬化速度が非常に速く、薄膜硬化性に優れる。光の照射条件は、紫外線を照射して膜厚1μmの薄膜を形成する場合には、紫外線積算光量を例えば100~3000mJ/cm2程度に調整することが好ましい。 Since the photocurable composition for nanoimprinting of the present invention has the above-described configuration, the curing rate is very high and the thin film curability is excellent. As for the light irradiation condition, when a 1 μm-thick film is formed by irradiating with ultraviolet rays, it is preferable to adjust the ultraviolet ray integrated light amount to, for example, about 100 to 3000 mJ / cm 2 .
 工程3と工程4の間にはポストキュア工程を設けてもよい。ポストキュア工程を設けることにより形状の安定性やエッチングの再現性を向上することができる。ポストキュアは加熱及び/又は光照射によって行うことができる。加熱によりポストキュアを行う場合は例えば50~180℃で0.5~3時間程度加熱することが好ましい。また、光照射によりポストキュアを行う場合は、例えば10~100mW/cm2程度の照射強度で、10~100秒程度照射することが好ましい。 A post cure step may be provided between step 3 and step 4. By providing the post-cure process, the stability of the shape and the reproducibility of etching can be improved. Post-cure can be performed by heating and / or light irradiation. When post-cure is performed by heating, it is preferable to heat at 50 to 180 ° C. for about 0.5 to 3 hours, for example. When post-cure is performed by light irradiation, it is preferable to irradiate for about 10 to 100 seconds with an irradiation intensity of about 10 to 100 mW / cm 2 , for example.
 工程4におけるエッチング方法としては、ドライエッチング法、ウェットエッチング法等を挙げることができる。本発明においては、なかでもドライエッチング法を採用することが好ましく、特に、反応性イオンエッチング(RIE:Reactive Ion Etching)を採用することが、高精度の微細加工を可能とする点で好ましい。 Examples of the etching method in step 4 include a dry etching method and a wet etching method. In the present invention, it is particularly preferable to employ a dry etching method, and in particular, it is preferable to employ reactive ion etching (RIE) in terms of enabling highly accurate fine processing.
 本発明の微細パターン基板の製造方法では、上記ナノインプリント用光硬化性組成物を使用するため光の照射によって、硬化収縮率の極めて低い薄膜を無機材料基板表面に速やかに形成することができる。また、そうして得られたモールドの形状が精度よく転写された薄膜をマスクとして使用するため、モールドの微細なパターンが精度良く転写された微細パターン基板が得られる。 In the method for producing a fine pattern substrate of the present invention, a thin film having a very low curing shrinkage can be rapidly formed on the surface of an inorganic material substrate by irradiation with light because the above-described photocurable composition for nanoimprinting is used. In addition, since the thin film onto which the shape of the mold thus obtained is accurately transferred is used as a mask, a fine pattern substrate on which a fine pattern of the mold is accurately transferred can be obtained.
 [半導体装置]
 本発明の半導体装置(例えば、LED)は、上記微細パターン基板を備えることを特徴とする。
[Semiconductor device]
The semiconductor device (for example, LED) of this invention is equipped with the said fine pattern board | substrate, It is characterized by the above-mentioned.
 例えば、LEDは上記微細パターン基板表面に有機金属気相成長法(MOPVE)等により発光層(GaN層)を成長させて得られた発光体とレンズ及び配線等で構成される。 For example, the LED is composed of a light emitter obtained by growing a light emitting layer (GaN layer) on the surface of the fine pattern substrate by metal organic vapor phase epitaxy (MOVPE), a lens, a wiring, and the like.
 本発明の半導体装置(特に、LED)は、本発明のナノインプリント用光硬化性組成物を使用して形成された微細パターン基板を備えるため光取り出し効率に優れ、高輝度、長寿命、低消費電力、低発熱性等の特性を有する。 The semiconductor device (especially LED) of the present invention has a fine pattern substrate formed using the photocurable composition for nanoimprinting of the present invention, and thus has excellent light extraction efficiency, high luminance, long life, and low power consumption. And low heat-generating properties.
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
 調製例1(式(a-1)で表される化合物の調製)
 95重量%硫酸70g(0.68モル)と1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)55g(0.36モル)を撹拌混合して脱水触媒を調製した。
 撹拌機、温度計、および脱水管を備え且つ保温された留出配管を具備した3リットルのフラスコに、水添ビフェノール(=4,4’-ジヒドロキシビシクロヘキシル)1000g(5.05モル)、上記で調製した脱水触媒125g(硫酸として0.68モル)、プソイドクメン1500gを入れ、フラスコを加熱した。内温が115℃を超えたあたりから水の生成が確認された。さらに昇温を続けてプソイドクメンの沸点まで温度を上げ(内温162~170℃)、常圧で脱水反応を行った。副生した水は留出させ、脱水管により系外に排出した。なお、脱水触媒は反応条件下において液体であり反応液中に微分散していた。3時間経過後、ほぼ理論量の水(180g)が留出したため反応終了とした。
 反応終了後、反応器内の液について、10段のオールダーショウ型の蒸留塔を用い、プソイドクメンを留去した後、内部圧力10Torr(1.33kPa)、内温137~140℃にて蒸留し、731gのビシクロヘキシル-3,3’-ジエンを得た。
Preparation Example 1 (Preparation of compound represented by formula (a-1))
A dehydration catalyst was prepared by stirring and mixing 70 g (0.68 mol) of 95 wt% sulfuric acid and 55 g (0.36 mol) of 1,8-diazabicyclo [5.4.0] undecene-7 (DBU).
Into a 3 liter flask equipped with a stirrer, a thermometer, and a dehydration pipe and equipped with a heated distillation pipe, 1000 g (5.05 mol) of hydrogenated biphenol (= 4,4′-dihydroxybicyclohexyl), the above 125 g of dehydration catalyst (0.68 mol as sulfuric acid) and pseudocumene 1500 g prepared in (1) were added, and the flask was heated. The generation of water was confirmed when the internal temperature exceeded 115 ° C. The temperature was further raised to raise the temperature to the boiling point of pseudocumene (internal temperature 162 to 170 ° C.), and dehydration reaction was carried out at normal pressure. By-product water was distilled off and discharged out of the system through a dehydration tube. The dehydration catalyst was liquid under the reaction conditions and was finely dispersed in the reaction solution. After about 3 hours, almost theoretical amount of water (180 g) was distilled, and the reaction was terminated.
After completion of the reaction, the pseudocumene was distilled off from the liquid in the reactor using a 10-stage Oldershaw type distillation column, and then distilled at an internal pressure of 10 Torr (1.33 kPa) and an internal temperature of 137 to 140 ° C. , 731 g of bicyclohexyl-3,3′-diene was obtained.
 得られたビシクロヘキシル-3,3’-ジエン243g、酢酸エチル730gを反応器に仕込み、窒素を気相部に吹き込みながら、かつ、反応系内の温度を37.5℃になるようにコントロールしながら約3時間かけて30重量%過酢酸の酢酸エチル溶液(水分率0.41重量%)274gを滴下した。過酢酸溶液滴下終了後、40℃で1時間熟成し反応を終了した。さらに30℃で反応終了時の粗液を水洗し、70℃/20mmHgで低沸点化合物の除去を行い、脂環式エポキシ化合物270gを得た。得られた脂環式エポキシ化合物のオキシラン酸素濃度は15.0重量%であった。また1H-NMRの測定では、δ4.5~5ppm付近の内部二重結合に由来するピークが消失し、δ3.1ppm付近にエポキシ基に由来するプロトンのピークの生成が確認され、3,4,3’,4’-ジエポキシビシクロヘキシルであることが確認された。 The obtained bicyclohexyl-3,3′-diene (243 g) and ethyl acetate (730 g) were charged into a reactor, and nitrogen was blown into the gas phase portion, and the temperature in the reaction system was controlled to 37.5 ° C. Then, 274 g of a 30 wt% peracetic acid ethyl acetate solution (water content 0.41 wt%) was added dropwise over about 3 hours. After the peracetic acid solution was dropped, the reaction was terminated by aging at 40 ° C. for 1 hour. Further, the crude liquid at the end of the reaction was washed with water at 30 ° C., and the low boiling point compound was removed at 70 ° C./20 mmHg to obtain 270 g of an alicyclic epoxy compound. The oxirane oxygen concentration of the obtained alicyclic epoxy compound was 15.0% by weight. In 1 H-NMR measurement, a peak derived from an internal double bond in the vicinity of δ4.5 to 5 ppm disappeared, and a proton peak derived from an epoxy group was confirmed in the vicinity of δ3.1 ppm. , 3 ′, 4′-diepoxybicyclohexyl was confirmed.
 実施例1~9、比較例1~6
 表に示す配合組成(単位:重量部)に従って各成分を配合し、室温にてフラスコ内で撹拌・混合することにより均一なナノインプリント用光硬化性組成物を得た。
 得られたナノインプリント用光硬化性組成物、及び該ナノインプリント用光硬化性組成物を硬化して得られた硬化物について、以下の方法で(1)粘度、(2)硬化性、(3)形状転写性、及び(4)表面均一性を評価した。評価結果は下記表1にまとめて示す。
Examples 1-9, Comparative Examples 1-6
Each component was blended according to the blending composition (unit: parts by weight) shown in the table, and stirred and mixed in a flask at room temperature to obtain a uniform photocurable composition for nanoimprinting.
About the obtained photocurable composition for nanoimprint and the cured product obtained by curing the photocurable composition for nanoimprint, the following methods were used: (1) Viscosity, (2) Curability, (3) Shape Transferability and (4) surface uniformity were evaluated. The evaluation results are summarized in Table 1 below.
 (1)粘度の測定
 実施例及び比較例で得られたナノインプリント用光硬化性組成物の粘度(Pa・s)は、レオメーター(商品名「PHYSICA MCR301」、Anton Paar社製)を用いて温度25℃、回転速度20回転/秒で測定した。
(1) Measurement of viscosity The viscosity (Pa · s) of the photocurable compositions for nanoimprints obtained in Examples and Comparative Examples is measured using a rheometer (trade name “PHYSICA MCR301”, manufactured by Anton Paar). It was measured at 25 ° C. and a rotation speed of 20 rotations / second.
 (2)硬化性の評価
 実施例及び比較例で得られたナノインプリント用光硬化性組成物103重量部に、プロピレングリコールモノメチルエーテルアセテート(商品名「MMPGAC」、(株)ダイセル製、以後「MMPGAC」と称する場合がある)60重量部を添加して得られた希釈液をスピンコーターを用い、表に記載のスピンコート回転数でシリコンウェハ上に塗布して塗膜(膜厚:1μm)を形成した。
 得られた塗膜にポリジメチルシロキサンモールド(パターンの高さ対横幅比(=アスペクト比)2:1)を200Paで押圧して60秒間接触させた状態で、紫外線照射装置(UVもしくはUV-LED照射装置)を用いて表に記載の光量の紫外線を照射し、その後離型することにより、表面にポリジメチルシロキサンモールドのパターンがインプリントされた薄膜を得た。
 得られた薄膜を25℃条件下でアセトンに5秒間浸漬し、その後の薄膜について目視で観察し、下記の基準により硬化性を評価した。
 評価基準
 ○(良好):パターン形状が乱れることなく、保持された
 △(やや良好):パターンの一部がアセトンに溶解し、残存した樹脂が白く基板に残っており、パターンに欠損がみられた
 ×(不良):パターンが完全に失われた
(2) Evaluation of Curability Propylene glycol monomethyl ether acetate (trade name “MMPGAC”, manufactured by Daicel Corporation, hereinafter referred to as “MMPGAC”) was added to 103 parts by weight of the photocurable composition for nanoimprint obtained in Examples and Comparative Examples. The diluted solution obtained by adding 60 parts by weight is applied onto a silicon wafer at a spin coat rotational speed described in the table using a spin coater to form a coating film (film thickness: 1 μm). did.
In a state where a polydimethylsiloxane mold (pattern height to width ratio (= aspect ratio) of 2: 1) is pressed at 200 Pa and brought into contact with the obtained coating film for 60 seconds, an ultraviolet irradiation device (UV or UV-LED A thin film having a polydimethylsiloxane mold pattern imprinted on the surface was obtained by irradiating with ultraviolet rays having the light amount shown in the table using an irradiation apparatus and then releasing the mold.
The obtained thin film was immersed in acetone for 5 seconds at 25 ° C., and the subsequent thin film was visually observed, and the curability was evaluated according to the following criteria.
Evaluation criteria ○ (good): retained without disturbing the pattern shape Δ (somewhat good): part of the pattern was dissolved in acetone, the remaining resin remained white on the substrate, and the pattern was defective × (defect): The pattern is completely lost
 (3)形状転写性の評価
 上記(2)硬化性の評価において得られた表面にシリコーンモールドのパターンがインプリントされた薄膜について、パターンの高さ対横幅比(=アスペクト比)を測定し、下記基準により形状転写性を評価した。
 評価基準
 ○(良好):アスペクト比が2:1~1.9:1の場合
 △(やや良好):アスペクト比が1.5:1以上、1.9:1未満の場合
 ×(不良):アスペクト比が1.5:1未満の場合、もしくはパターンが崩れている箇所が存在する場合
(3) Evaluation of shape transferability About the thin film by which the pattern of the silicone mold was imprinted on the surface obtained in said (2) sclerosis | hardenability evaluation, the height-width ratio (= aspect ratio) of a pattern was measured, The shape transferability was evaluated according to the following criteria.
Evaluation criteria ○ (Good): When the aspect ratio is 2: 1 to 1.9: 1 Δ (Slightly good): When the aspect ratio is 1.5: 1 or more and less than 1.9: 1 × (Bad): When the aspect ratio is less than 1.5: 1 or there is a part where the pattern is broken
 (4)表面均一性の評価
 実施例及び比較例で得られたナノインプリント用光硬化性組成物103重量部に、MMPGACを60重量部添加して得られた希釈液を、スピンコーターを用いて表に記載のスピンコート回転数でシリコンウェハ上に塗布して塗膜(膜厚:1μm)を形成した。得られた塗膜に紫外線照射装置(UVもしくはUV-LED照射装置)を用いて表に記載の光量の紫外線を照射して薄膜を得た。
 得られた薄膜の厚みを段差計(商品名「T-4000」、(株)小坂研究所社製)を使用して測定し、薄膜における最も厚い箇所の厚み(T1)と最も薄い箇所の厚み(T2)の差(T1-T2)を段差とし、下記基準により表面均一性を評価した。
 評価基準
 ○(良好):段差(T1-T2)が0.02μm以下の場合
 △(やや良好):段差(T1-T2)が0.02μmを超え、0.050μm以下場合
 ×(不良):段差(T1-T2)が0.050μmを超える場合
(4) Evaluation of surface uniformity The dilution obtained by adding 60 parts by weight of MMPMAC to 103 parts by weight of the photocurable composition for nanoimprints obtained in Examples and Comparative Examples was expressed using a spin coater. A coating film (film thickness: 1 μm) was formed by coating on a silicon wafer at the spin coat rotational speed described in 1). A thin film was obtained by irradiating the obtained coating film with ultraviolet rays having a light amount shown in the table using an ultraviolet irradiation device (UV or UV-LED irradiation device).
The thickness of the obtained thin film was measured using a step gauge (trade name “T-4000”, manufactured by Kosaka Laboratory Ltd.), and the thickness of the thinnest part (T 1 ) and the thinnest part of the thin film were measured. The difference in thickness (T 2 ) (T 1 -T 2 ) was taken as a step, and the surface uniformity was evaluated according to the following criteria.
Evaluation criteria ○ (Good): When the step (T 1 -T 2 ) is 0.02 μm or less Δ (Slightly good): When the step (T 1 -T 2 ) exceeds 0.02 μm and 0.050 μm or less × ( Defect): When the step (T 1 -T 2 ) exceeds 0.050 μm
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 尚、実施例及び比較例で使用した成分は、以下の通りである。
 <カチオン重合性化合物>
 ビシクロジエポキシ化合物(a-1):3,4,3’,4’-ジエポキシビシクロヘキシル(上記調製例1で得られた化合物を使用した)、数平均分子量:194
 OXT-221:3-エチル-3([(3-エチルオキセタン-3-イル)メトキシ]メチル)オキセタン、商品名「OXT-221」、東亞合成(株)製、数平均分子量:214
 OXBP:ビフェニル骨格を有するオキセタン化合物、商品名「OXBP」、宇部興産(株)製、数平均分子量:383
 N-890:変性ノボラック型エポキシ樹脂、商品名「EPICLON N-890」、DIC(株)製、数平均分子量:500以上
 HP-7200:ジシクロペンタジエン型エポキシ樹脂、商品名「EPICLON HP-7200」、DIC(株)製、数平均分子量:550
 PB3600:液状エポキシ化ポリブタジエン、商品名「エポリード PB3600」、(株)ダイセル製、数平均分子量:5900
 EHPE3150:透明固形エポキシ化合物、商品名「EHPE3150」、(株)ダイセル製、数平均分子量:500以上
In addition, the component used by the Example and the comparative example is as follows.
<Cationically polymerizable compound>
Bicyclodiepoxy compound (a-1): 3,4,3 ′, 4′-diepoxybicyclohexyl (the compound obtained in Preparation Example 1 was used), number average molecular weight: 194
OXT-221: 3-ethyl-3 ([(3-ethyloxetane-3-yl) methoxy] methyl) oxetane, trade name “OXT-221”, manufactured by Toagosei Co., Ltd., number average molecular weight: 214
OXBP: Oxetane compound having a biphenyl skeleton, trade name “OXBP”, manufactured by Ube Industries, Ltd., number average molecular weight: 383
N-890: Modified novolak type epoxy resin, trade name “EPICLON N-890”, manufactured by DIC Corporation, number average molecular weight: 500 or more HP-7200: dicyclopentadiene type epoxy resin, trade name “EPICLON HP-7200” DIC Corporation, number average molecular weight: 550
PB3600: Liquid epoxidized polybutadiene, trade name “Epolide PB3600”, manufactured by Daicel Corporation, number average molecular weight: 5900
EHPE3150: Transparent solid epoxy compound, trade name “EHPE3150”, manufactured by Daicel Corporation, number average molecular weight: 500 or more
 <光カチオン重合開始剤>
 b-1:フッ化アルキルフルオロリン酸アニオンを含む開始剤、[4-(4-ビフェニリルチオ)フェニル]-4-ビフェニリルフェニルスルホニウムトリス(ペンタフルオロエチル)トリフルオロホスフェートをプロピレンカーボネートで50%に希釈した化合物
 b-2:フッ化アルキルフルオロリン酸アニオンを含む開始剤、ジフェニル[4-(フェニルスルホニル)フェニル]トリス(ペンタフルオロエチル)トリフルオロホスフェート
 654027:アリルスルホニウムヘキサフルオロアンチモネートとジアリルスルホニウムヘキサフルオロアンチモネートの50%混合物をプロピレンカーボネートで50%に希釈した化合物、シグマ アルドリッチ ジャパン製
 407216:アリルスルホニウムヘキサフルオロホスフェートとジアリルスルホニウムヘキサフルオロホスフェートの50%混合物をプロピレンカーボネートで50%に希釈した化合物、シグマ アルドリッチ ジャパン製
 IRGACURE250:ヨードニウム塩系光カチオン開始剤、商品名「IRGACURE250」、BASF社製
<Photocationic polymerization initiator>
b-1: initiator containing fluorinated alkylfluorophosphate anion, [4- (4-biphenylylthio) phenyl] -4-biphenylylphenylsulfonium tris (pentafluoroethyl) trifluorophosphate with propylene carbonate in 50% B-2: initiator containing a fluoroalkylfluorophosphate anion, diphenyl [4- (phenylsulfonyl) phenyl] tris (pentafluoroethyl) trifluorophosphate 654027: allylsulfonium hexafluoroantimonate and diallylsulfonium A compound obtained by diluting a 50% mixture of hexafluoroantimonate with propylene carbonate to 50%, Sigma Aldrich Japan 407216: Allylsulfonium hexafluorophosphate and di Compound diluted to 50% 50% mixture of Lil hexafluorophosphate in propylene carbonate, manufactured by Sigma-Aldrich Japan Irgacure 250: iodonium salt photo cationic initiator, trade name "Irgacure 250", produced by BASF
 <添加剤>
 BYK-350:レベリング剤、アクリル系共重合物、商品名「BYK-350」、ビックケミー・ジャパン(株)製
 BYK-UV3510:レベリング剤、ポリエーテル変性ポリジメリルシロキサンとポリエーテルの混合物、商品名「BYK-UV3510」、ビックケミー・ジャパン(株)製
<Additives>
BYK-350: Leveling agent, acrylic copolymer, trade name “BYK-350”, manufactured by BYK Japan Japan Co., Ltd. BYK-UV3510: Leveling agent, a mixture of polyether-modified polydimethylylsiloxane and polyether, trade name “ BYK-UV3510 ", manufactured by Big Chemie Japan
 本発明のナノインプリント用光硬化性組成物は、酸素雰囲気下でも基板に薄く塗布して光照射すると、速やかに且つ硬化収縮を抑制しつつ硬化して、硬化性に優れた薄膜を形成することができる。そのため、微細なパターンを速やかに、且つ精度良く転写することができる。そして、本発明のナノインプリント用光硬化性組成物を使用してナノインプリントを行うと、モールドの微細なパターンが精度良く転写されたマスクを形成することができ、それを使用して無機材料基板をエッチングすることにより、設計図面通りの優れた寸法再現性を有する微細なパターンを無機材料基板表面に形成することができる。 When the photocurable composition for nanoimprint of the present invention is thinly applied to a substrate even in an oxygen atmosphere and irradiated with light, it can be cured quickly and while suppressing curing shrinkage to form a thin film having excellent curability. it can. Therefore, a fine pattern can be transferred quickly and accurately. When nanoimprinting is performed using the photocurable composition for nanoimprinting of the present invention, it is possible to form a mask on which a fine pattern of the mold is accurately transferred, and etching the inorganic material substrate using the mask. By doing so, a fine pattern having excellent dimensional reproducibility according to the design drawing can be formed on the surface of the inorganic material substrate.

Claims (6)

  1.  下記成分(A)及び成分(B)を含むナノインプリント用光硬化性組成物。
     成分(A):下記式(a-1)で表される化合物
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1~R18は同一又は異なって、水素原子、ハロゲン原子、酸素原子若しくはハロゲン原子を含んでいてもよい炭化水素基、又は置換基を有していてもよいアルコキシ基を示す。Xは、単結合又は連結基を示す]
     成分(B):フッ化アルキルフルオロリン酸アニオンを有する光カチオン重合開始剤
    The photocurable composition for nanoimprint containing the following component (A) and a component (B).
    Component (A): Compound represented by the following formula (a-1)
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, R 1 to R 18 are the same or different and each represents a hydrogen atom, a halogen atom, an oxygen atom, a hydrocarbon group that may contain a halogen atom, or an alkoxy group that may have a substituent. . X represents a single bond or a linking group]
    Component (B): Photocationic polymerization initiator having a fluorinated alkylfluorophosphate anion
  2.  更に、下記成分(C)を含む請求項1に記載のナノインプリント用光硬化性組成物。
     成分(C):数平均分子量が500以上のカチオン重合性化合物(成分(A)に含まれる化合物を除く)
    Furthermore, the photocurable composition for nanoimprints of Claim 1 containing the following component (C).
    Component (C): Cationic polymerizable compound having a number average molecular weight of 500 or more (excluding compounds contained in component (A))
  3.  成分(C)が、ポリカーボネート骨格、ポリエステル骨格、ポリジエン骨格、ノボラック骨格、又は脂環骨格を有するカチオン重合性化合物である請求項2に記載のナノインプリント用光硬化性組成物。 The photocurable composition for nanoimprints according to claim 2, wherein the component (C) is a cationically polymerizable compound having a polycarbonate skeleton, a polyester skeleton, a polydiene skeleton, a novolac skeleton, or an alicyclic skeleton.
  4.  請求項1~3の何れか1項に記載のナノインプリント用光硬化性組成物にインプリント加工を施して得られたマスクを使用して無機材料基板をエッチングする微細パターン基板の製造方法。 A method for producing a fine pattern substrate, wherein an inorganic material substrate is etched using a mask obtained by imprinting the photocurable composition for nanoimprints according to any one of claims 1 to 3.
  5.  請求項4に記載の微細パターン基板の製造方法により得られる微細パターン基板。 A fine pattern substrate obtained by the method for producing a fine pattern substrate according to claim 4.
  6.  請求項5に記載の微細パターン基板を備える半導体装置。 A semiconductor device comprising the fine pattern substrate according to claim 5.
PCT/JP2013/084325 2013-01-15 2013-12-20 Photocurable composition for nanoimprint and method for producing finely patterned substrate using same WO2014112295A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014557372A JP6279489B2 (en) 2013-01-15 2013-12-20 Photocurable composition for nanoimprint, and method for producing fine pattern substrate using the same
CN201380069813.XA CN104937006B (en) 2013-01-15 2013-12-20 Nano impression Photocurable composition and the manufacture method using its fine pattern substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-004758 2013-01-15
JP2013004758 2013-01-15

Publications (1)

Publication Number Publication Date
WO2014112295A1 true WO2014112295A1 (en) 2014-07-24

Family

ID=51209397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084325 WO2014112295A1 (en) 2013-01-15 2013-12-20 Photocurable composition for nanoimprint and method for producing finely patterned substrate using same

Country Status (4)

Country Link
JP (1) JP6279489B2 (en)
CN (1) CN104937006B (en)
TW (1) TWI593679B (en)
WO (1) WO2014112295A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052212A1 (en) * 2014-10-02 2016-04-07 株式会社ダイセル Curable composition for nanoimprinting
JP2016115779A (en) * 2014-12-13 2016-06-23 株式会社ダイセル Photo-curable composition for nanoimprinting
WO2016190300A1 (en) * 2015-05-27 2016-12-01 株式会社ダイセル Photocurable composition, cured product and optical component using same
WO2016194644A1 (en) * 2015-05-29 2016-12-08 株式会社ダイセル Photocurable composition for nano-implants
WO2017006664A1 (en) * 2015-07-07 2017-01-12 株式会社ダイセル Photocurable composition, and cured material and optical component using same
WO2017026352A1 (en) * 2015-08-13 2017-02-16 株式会社ダイセル Curable composition and cured product from same
WO2017026351A1 (en) * 2015-08-13 2017-02-16 株式会社ダイセル Curable composition and cured product from same
JP2017179202A (en) * 2016-03-31 2017-10-05 株式会社Adeka Curable composition, manufacturing method of cured article and the cured article
WO2017195548A1 (en) * 2016-05-12 2017-11-16 株式会社ダイセル Photocurable composition for nanoimprint and method for producing optical component
JP2019183168A (en) * 2019-07-05 2019-10-24 株式会社ダイセル Curable composition and cured product of the same
US11549020B2 (en) 2019-09-23 2023-01-10 Canon Kabushiki Kaisha Curable composition for nano-fabrication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005116038A1 (en) * 2004-05-28 2005-12-08 San-Apro Limited Novel fluorinated alkylfluorophosphoric acid salt of onium and transition metal complex
JP2009263543A (en) * 2008-04-25 2009-11-12 Nippon Kayaku Co Ltd Epoxy resin, epoxy resin composition, and cured product thereof
JP2012049301A (en) * 2010-08-26 2012-03-08 Daicel Corp Radiation curable resin composition for forming fine pattern, and method of manufacturing fine structure using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5208573B2 (en) * 2008-05-06 2013-06-12 サンアプロ株式会社 Sulfonium salt, photoacid generator, photocurable composition and cured product thereof
KR101778720B1 (en) * 2010-09-01 2017-09-14 덴카 주식회사 Method for disassembling bonded body, and adhesive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005116038A1 (en) * 2004-05-28 2005-12-08 San-Apro Limited Novel fluorinated alkylfluorophosphoric acid salt of onium and transition metal complex
JP2009263543A (en) * 2008-04-25 2009-11-12 Nippon Kayaku Co Ltd Epoxy resin, epoxy resin composition, and cured product thereof
JP2012049301A (en) * 2010-08-26 2012-03-08 Daicel Corp Radiation curable resin composition for forming fine pattern, and method of manufacturing fine structure using the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052212A1 (en) * 2014-10-02 2016-04-07 株式会社ダイセル Curable composition for nanoimprinting
JP2016115779A (en) * 2014-12-13 2016-06-23 株式会社ダイセル Photo-curable composition for nanoimprinting
WO2016190300A1 (en) * 2015-05-27 2016-12-01 株式会社ダイセル Photocurable composition, cured product and optical component using same
JPWO2016190300A1 (en) * 2015-05-27 2018-05-10 株式会社ダイセル Photocurable composition, cured product and optical component using the same
WO2016194644A1 (en) * 2015-05-29 2016-12-08 株式会社ダイセル Photocurable composition for nano-implants
JPWO2016194644A1 (en) * 2015-05-29 2018-03-15 株式会社ダイセル Photo-curable composition for nanoimprint
WO2017006664A1 (en) * 2015-07-07 2017-01-12 株式会社ダイセル Photocurable composition, and cured material and optical component using same
JP2017036422A (en) * 2015-08-13 2017-02-16 株式会社ダイセル Curable composition and cured product of the same
CN107922586B (en) * 2015-08-13 2021-07-23 株式会社大赛璐 Curable composition and cured product thereof
JP2017036421A (en) * 2015-08-13 2017-02-16 株式会社ダイセル Curable composition and cured product of the same
WO2017026351A1 (en) * 2015-08-13 2017-02-16 株式会社ダイセル Curable composition and cured product from same
CN107849222A (en) * 2015-08-13 2018-03-27 株式会社大赛璐 Solidification compound and its solidfied material
CN107922586A (en) * 2015-08-13 2018-04-17 株式会社大赛璐 Solidification compound and its solidfied material
WO2017026352A1 (en) * 2015-08-13 2017-02-16 株式会社ダイセル Curable composition and cured product from same
US10988568B2 (en) 2015-08-13 2021-04-27 Daicel Corporation Curable composition and cured product from same
US10988569B2 (en) 2015-08-13 2021-04-27 Daicel Corporation Curable composition and cured product from same
CN107849222B (en) * 2015-08-13 2021-06-11 株式会社大赛璐 Curable composition and cured product thereof
JP2017179202A (en) * 2016-03-31 2017-10-05 株式会社Adeka Curable composition, manufacturing method of cured article and the cured article
JP7008398B2 (en) 2016-03-31 2022-01-25 株式会社Adeka Curable composition, method for producing cured product, and cured product thereof
WO2017195548A1 (en) * 2016-05-12 2017-11-16 株式会社ダイセル Photocurable composition for nanoimprint and method for producing optical component
JP2019183168A (en) * 2019-07-05 2019-10-24 株式会社ダイセル Curable composition and cured product of the same
US11549020B2 (en) 2019-09-23 2023-01-10 Canon Kabushiki Kaisha Curable composition for nano-fabrication

Also Published As

Publication number Publication date
CN104937006A (en) 2015-09-23
TWI593679B (en) 2017-08-01
TW201431843A (en) 2014-08-16
CN104937006B (en) 2018-04-10
JP6279489B2 (en) 2018-02-14
JPWO2014112295A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
JP6279489B2 (en) Photocurable composition for nanoimprint, and method for producing fine pattern substrate using the same
JP6111239B2 (en) Photosensitive resin composition and cured product thereof, and optical component
JP6231408B2 (en) Photosensitive resin composition and cured product thereof, and optical component
TW201809054A (en) Epoxy resin composition, cured product thereof, and curable resin composition
JP6285449B2 (en) Photosensitive resin composition and cured product thereof, and optical component
TWI643898B (en) Photocurable composition for nanoimprinting, and method for forming fine pattern using the same
JP2016115779A (en) Photo-curable composition for nanoimprinting
WO2016194644A1 (en) Photocurable composition for nano-implants
TW201609999A (en) Monomer composition and curable composition containing same
TW201029984A (en) Diolefin compound, epoxy resin, curable resin composition and cured product
CN110402275A (en) Ultraviolet solidifiable printing ink composition manufactures in display base plate the method for frame pattern and the thus frame pattern that manufactures using it
TWI797344B (en) Sealant for display element and hardened product thereof
WO2017006664A1 (en) Photocurable composition, and cured material and optical component using same
JP2011084558A (en) Process for producing epoxy compound
TW201702316A (en) Photocurable resin composition and optical material obtained therefrom
TW201036986A (en) Olefin compound, epoxy resin, curable resin composition and cured product thereof, and led device
JPWO2017195548A1 (en) Photo-curable composition for nanoimprint, and method for producing optical component
WO2016052212A1 (en) Curable composition for nanoimprinting
JP2018141028A (en) Photocurable composition, and cured product and optical component using same
JP2013184999A (en) Curable resin composition for screen printing, and printed wiring board with electrically insulated film formed from the curable resin composition for screen printing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014557372

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871881

Country of ref document: EP

Kind code of ref document: A1