WO2014111417A1 - Dispositif de commande d'installation de moulage par injection, commandé par microprocesseur, pourvu d'un ordinateur de simulation - Google Patents

Dispositif de commande d'installation de moulage par injection, commandé par microprocesseur, pourvu d'un ordinateur de simulation Download PDF

Info

Publication number
WO2014111417A1
WO2014111417A1 PCT/EP2014/050693 EP2014050693W WO2014111417A1 WO 2014111417 A1 WO2014111417 A1 WO 2014111417A1 EP 2014050693 W EP2014050693 W EP 2014050693W WO 2014111417 A1 WO2014111417 A1 WO 2014111417A1
Authority
WO
WIPO (PCT)
Prior art keywords
real
simulation
time
controller
machine
Prior art date
Application number
PCT/EP2014/050693
Other languages
German (de)
English (en)
Inventor
Friedrich Werfeli
Original Assignee
Netstal-Maschinen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Netstal-Maschinen Ag filed Critical Netstal-Maschinen Ag
Publication of WO2014111417A1 publication Critical patent/WO2014111417A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0426Programming the control sequence
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/23Pc programming
    • G05B2219/23445Real time simulation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/23Pc programming
    • G05B2219/23456Model machine for simulation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25342Real time controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2624Injection molding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a microprocessor-controlled control device for an injection molding system with the features of the preamble of claim 1.
  • the production process on the production cell is parameterized step by step, configured and validated.
  • Monitors are configured by the sensors and interlocks of the actuators and put into operation without tools to reduce the risk of damage.
  • Temporaries must be created to validate the core pull lock without tools, for example. This takes a lot of time.
  • a virtual model of an injection molding machine is provided as an aid for the selection of the components of such a production cell, for which a setter can select and virtually use various required components. A direct help with the real construction of a production cell with the selected parts is not given.
  • WO 2009/105797 discloses a method for the user-side creation, modification, monitoring and / or optimization of the overall machine sequence of a program-controlled machine or system supported by a graphics editor.
  • the machine processes are to be programmed synchronized on a graphic editor in order to pre-configure the program-controlled machine.
  • a microprocessor-controlled control device for an injection molding system uses at least one I / O controller for a sensor / actuator unit of an injection molding machine to produce plastic parts in a coordinated manner.
  • the at least one I / O controller is connected to at least one real-time processor of the control device via a real-time Ethernet connection.
  • a simulation computer which has at least one real-time Ethernet interface which can be connected to the real-time Ethernet connection of said at least one real-time processor instead of the associated I / O controller wherein the simulation computer is designed to simulate at least one machine function (eg, a machine function of the injection molding machine) by processing in real time the output signals of the control by the simulation computer and via simulation models the input signals for control in a manner which simulates the behavior of the machine function in real time.
  • the simulation computer is designed to simulate at least one machine function (eg, a machine function of the injection molding machine) by processing in real time the output signals of the control by the simulation computer and via simulation models the input signals for control in a manner which simulates the behavior of the machine function in real time.
  • the simulation computer or the simulation environment can deliver the input signals to the controller via the simulation models in a manner that simulates the behavior of the machine function in real time in such a way that the same behavior arises as in a physical execution.
  • the simulation computer or the simulation environment can therefore be designed in such a way as to simulate the physical behavior, for example of an actuator, of the mechanics moved by the actuator and / or of the sensors activated by the moving mechanics, by means of model calculations.
  • the controller can generate control signals to the actuator, and in real time, through the model calculation of the simulation, obtains the reaction of the virtual mechanics and sensors, just as if physical execution of that function were present instead of the model calculation.
  • a function machine function
  • an ability of the machine can be designated, e.g. the ability to move an axis.
  • the axis may be the degree of freedom of a mechanism in a linear or rotational axis or a process with a degree of freedom of parameter.
  • a self-contained function can always be treated.
  • communication channels can be provided for the individual functions.
  • the communication channels or functions may or may not be limited to individual real-time Ethernet connections.
  • the invention is based on the insight that an operating mode of the machine would be advantageous in that the machine and its components do not move, and so the programming and the parameterization of the control can be created and checked without the real components having to be available or, if available, do not need to be moved.
  • the aim is that the simulated function behaves the same as the real function.
  • the real machine and its environment can thus be replaced by a simulation of the machine physics and the machine control with the simulation can behave the same as the machine control with the real machine with its environment.
  • the simulation may reflect a function of the real machines.
  • control and the machine simulation in an office without a production cell run so that the configuration and the parameterization of the production process can be made detached from the machine in the work preparation.
  • the simulation environment can have all relevant functions of the machine (machine functions) or the production cell.
  • the simulation environment may be run on an extended controller (e.g., a simulation computer).
  • the controller can autonomously simulate a machine or an injection molding machine without any additional equipment.
  • the simulation environment processes the controller's output signals in real time and, via the simulation models, provides the input signals for control in a manner that simulates in real time the behavior of the physical execution (i.e., the machine function or the behavior of the real machine or machine component). Error situations and / or limit values can also be mapped in the models.
  • a selection structure can be realized, which allows functions to be selected, whether real, with preferably movements of the mechanism or can only run in the simulation without corresponding movements.
  • the simulation of all functions is activated, this allows a simulated production process to run, thus supporting the commissioning and allowing to check the configuration and parameterization of the injection molding system. If the physical system is put into operation in the next step, there is the certainty that the functions are set up correctly.
  • a logical switching device can be provided, with which in each case individual communication channels to functions (eg machine functions) via real-time Ethernet connections of real-time processors and I / O controllers either with the associated I / O controllers or with the associated real-time Ethernet interfaces (or communication partners or communication interfaces) of the simulation computer can be connected.
  • functions eg machine functions
  • I / O controllers either with the associated I / O controllers or with the associated real-time Ethernet interfaces (or communication partners or communication interfaces) of the simulation computer can be connected.
  • Fig. 1 is a schematic representation of an injection molding machine with the
  • Circuit diagram of the components of a known controller is a circuit diagram of the controller according to a first embodiment of the invention.
  • Fig. 3 is a circuit diagram of the controller according to a second extended embodiment according to the invention.
  • Fig. 1 shows a schematic representation of an injection molding machine with the circuit diagram of the components of a known controller.
  • Reference numeral 10 denotes an industrial PC which is connected to an operator console 20 via a computer-aided user interface 21 as a human-machine interface (HMI).
  • the injection molding machine can further be connected via connected components 30 for a production control system (MES) and the monitoring and control of the technical processes in a control level (SCADA).
  • MES production control system
  • SCADA control level
  • This connection of the industrial PC 10 to the control system component 30 can be realized by an Ethernet connection 31 based on TCP / IP.
  • the industrial PC 10 of the injection molding machine further communicates via a non-real-time Ethernet 31 with real-time computers 40, which in turn operate a plurality of I / O controllers 50 which are connected to sensors and actuators, which in the schematic representation of FIG. 1 are provided with the reference numeral 60.
  • the actuators / actuators form the actuators in the control loop of the units described below of the production cell 70 shown schematically.
  • different fieldbus systems with required bus cycles of less than 1 millisecond down to 100 microseconds, such as Ethernet / IP as an open industry standard, for which components are to be obtained, in particular, from members of the ODVA (Open DeviceNet Vendor Association).
  • connection lines 51 represent logical connections and not physical lines.
  • the connecting lines 51 may also be formed as connecting lines (ie, as physical lines). Both this number and the number and configuration of the I / O controller 50 is selected by way of example.
  • the technical implementation of the injection molding system is denoted by the reference numeral 70 connecting all assemblies for the machine as a whole, which comprises the sensor-actuator assemblies 60, the plastic injection molding machine 71, the tools 72, the handling units 73 and / or any peripheral devices 74 are assigned. It should be noted that usually just in addition to the machine 71 itself also an exchange of information with tool, handling and / or other peripherals 72, 73 and 74 takes place or that they are controlled directly. Peripherals can have their own operator consoles (not shown here).
  • FIG. 2 now shows a circuit diagram of the controller according to a first exemplary embodiment according to the invention, based on the controller according to FIG. 1.
  • the control elements explained below are also in other embodiments of a microprocessor-controlled control device for an injection molding system with at least one control interface 22 and at least one processor for at least one I / O controller 50 and a sensor / actuator unit 60 of a tool 72nd a production cell 70 of the injection molding machine 71 can be used.
  • the simulation environment 100 assumes a connection through the real-time Ethernet connections 41; Thus, it starts at the I / O controllers 50 of FIG.
  • the real-time computers 40 of the known controller according to FIG. 1 are connected via their individual dedicated real-time Ethernet connections 41 to corresponding real-time Ethernet interfaces 101, 102, 103 and 104 of the simulation environment 100.
  • Real-time Ethernet is also called shorter than RT-Ethernet.
  • the real-time Ethernet links 41 may also represent logical connection. Furthermore, it is not important how many connections exist or how they are arranged, rather it is important that the identical signals that would otherwise be exchanged with the I / O controllers are fed to the simulation environment 100.
  • the simulation environment 100 provides for each function of the controller (machine function) a simulated model of physical machine execution, which ideally behaves like the real physical machine function including the mechanics and / or error cases.
  • the controller therefore sees simulated I / O devices (eg, I / O controllers) and simulated sensors and actuators 160 with simulated functions of the machines 171, 172, 173, 174, and may be different from the physical designs (ie, of the real machine components).
  • the simulation environment 100 in FIG. 2 consists of one or more computers (simulation computer) with real-time operating systems 140 or computers with operating systems without real-time capability 110 that are connected via Ethernet 31 or real-time Ethernet connections 41.
  • the reference numerals 171, 172, 173, 174 designate a simulated plastic injection molding machine, a simulated tool, a simulated handling unit and a simulated peripheral device, which are to be understood as pure software which, depending on real-time requirements and computing power requirements, on the computers mentioned 1 10 and 140 is processed.
  • Parent is the simulation management 200, which preferably includes a remote control via an Ethernet line 31.
  • the simulation can also be configured and parameterized remotely from an office or by the application engineer at the machine manufacturer.
  • the simulations lationscopy 200 provides access to a model library, from which the models (eg simulation models of the individual machine components) can be obtained.
  • the elements of the simulation software per se are familiar to the person skilled in the art, for example from WO 2010/022495 and WO 2009/105797.
  • Essential in the context of the present invention is the connection of the simulation environment 100 to the real controller via the real-time Ethernet connections 41 present there to the real-time Ethernet interfaces 101, 102, 103, 104.
  • FIG. 3 shows a circuit diagram of the controller according to a second extended embodiment according to the invention.
  • the units 20 and 21 of FIG. 1 have been combined with the industrial PC 10 in an operating computer 22.
  • the exemplary embodiment of FIG. 3 comprises both the known actual machine 70 from FIG. 1 and the further elements simulation environment 100 from FIG. 2.
  • a logical switchover controller 300 is illustrated schematically, which is connected via one or more real-time Ethernet interfaces 301, 302, 303, 304.
  • An essential distinction to the embodiment of FIG. 2 is that the addressees and receivers of the messages or signals can be changed by the switching controller 300, so that the control either with the physical function (ie, with the real machine or plant) exchanges the information or signals with the simulated function.
  • the controller may be selectively connected to the injection molding equipment 70 (or to its individual components 71, 72, 73, 74) or to the simulation environment 100 by the switching controller 300.
  • the switching controller 300 is activated by a mode of operation of the controller and switched by appropriately selecting the functions. This switching is a function of the controller and is performed in the embedded CPU 40. The function of the non-selected characteristic or machine function is deactivated.
  • reference numerals 301, 302, 303, and 304 for the interfaces are chosen to that they correspond both to the connections of the real-time Ethernet connections 41 of the control device from the real-time processors 40 to either the I / O controllers 50 according to FIG. 1 or the interfaces 101 to 104 of the simulated sensor / actuator units 160 of the simulation environment 100.
  • the switching controller 300 allows and allows the user to switch between the two modes of operation on the switching controller 300 for each machine function actually controlled by the controller via a real-time computer 40 (eg, for each actuator / sensor element 60) either to simulate this function or this element of the machine with the simulation environment 100 or to work with this function or element via the associated I / O controller 50 on the real machine. Since the operating mode can be selected for each movement axis, mixed operation is also possible.
  • the monitoring and locking mechanisms of the core puller can be run using the tool simulation. It is then no longer necessary to provide provisional hydraulic cylinder with monitoring limit switch on the production plant.
  • the auxiliary controls can be checked by the fact that the closing unit only simulates moving, but the auxiliary controls actually move. This can reduce the risk of tool damage.
  • I / O controllers 50 There are more I / O controllers 50 shown in FIG. 3 than the four connections to the real-time processors 40. Basically, sensors / actuators 60 could be provided that are not simulated, although the possibility of full simulation is an advantageous embodiment.
  • the switching unit 300 according to FIG. 3 can alternatively be designed as a separate module. It can of course be connected via a simple Ethernet connection with their control devices such as the industrial PC 10 and its console 20, be connected to the simulation environment 100 or the simulation management 200, so that the switch is a downstream subordinate selection process.
  • a method for starting up an injection molding machine or injection molding plant has a step of simulating machine functions despite the lack of system components by simulation of the components. Alternatively or additionally, the method may include a step for simulating machine functions with increased risk of damage.
  • User interface 140 computer with real-time monitoring
  • Real-time computer 171 simulated plastic
  • Production cell 74 simulated peripheral device
  • Peripheral device 302 RT Ethernet interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

L'invention concerne un dispositif de commande d'une installation de moulage par injection (70), commandé par microprocesseur, ce dispositif utilisant au moins un contrôleur d'entrée-sortie (50) pour une unité de détection/actionnement (60) d'une machine de moulage par injection pour fabriquer de manière coordonnée des pièces en plastique. Le contrôleur d'entrée-sortie (50) est relié à un processeur en temps réel (40) de l'unité de commande par l'intermédiaire d'une liaison Ethernet en temps réel (41). Il est prévu un ordinateur de simulation (100) qui dispose d'au moins une interface Ethernet en temps réel (101) qui peut être reliée à la liaison Ethernet en temps réel (41) dudit ou desdits processeurs en temps réel (40) à la place du contrôleur d'entrée-sortie (50) associé, cet ordinateur de simulation (100) étant conçu pour simuler au moins une fonction de machine (70, 71, 72, 73, 74). À cet effet, les signaux de sortie de la commande sont traités en temps réel par l'ordinateur de simulation (100) et les signaux d'entrée pour la commande sont fournis par l'intermédiaire de modèles de simulation (160, 171, 172, 173, 174) de telle manière que le comportement de la fonction de machine est simulé en temps réel.
PCT/EP2014/050693 2013-01-17 2014-01-15 Dispositif de commande d'installation de moulage par injection, commandé par microprocesseur, pourvu d'un ordinateur de simulation WO2014111417A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013100465.2 2013-01-17
DE102013100465.2A DE102013100465A1 (de) 2013-01-17 2013-01-17 Mikroprozessor-gesteuerte Steuerungseinrichtung für eine Spritzgiessanlage

Publications (1)

Publication Number Publication Date
WO2014111417A1 true WO2014111417A1 (fr) 2014-07-24

Family

ID=49998254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/050693 WO2014111417A1 (fr) 2013-01-17 2014-01-15 Dispositif de commande d'installation de moulage par injection, commandé par microprocesseur, pourvu d'un ordinateur de simulation

Country Status (2)

Country Link
DE (1) DE102013100465A1 (fr)
WO (1) WO2014111417A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104391462A (zh) * 2014-10-30 2015-03-04 北京新能源汽车股份有限公司 一种纯电动汽车整车台架的联调控制系统及其方法
CN104570876A (zh) * 2015-01-15 2015-04-29 无锡北斗星通信息科技有限公司 一种纺织车间实时数据采集方法
CN105005208A (zh) * 2015-06-02 2015-10-28 中国南方航空工业(集团)有限公司 一种航空发动机扭矩传感器信号模拟方法
EP2985663A1 (fr) * 2014-08-14 2016-02-17 Siemens Aktiengesellschaft Procédé de simulation d'une installation industrielle automatisée
CN105911912A (zh) * 2016-05-28 2016-08-31 北京工业大学 一种数控机床多传感器数据同步锁存方法
EP3141970B1 (fr) 2015-09-09 2017-11-15 Siemens Aktiengesellschaft Peripherie decentralisee
CN107544283A (zh) * 2017-07-04 2018-01-05 华北电力大学(保定) 一种基于虚拟同步发电机控制策略的半实物仿真系统
CN108345236A (zh) * 2017-01-25 2018-07-31 上海电气集团股份有限公司 一种基于EtherCAT的控制系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980661A1 (fr) * 2014-07-30 2016-02-03 Siemens Aktiengesellschaft Appareil de commande électronique
EP3144756A1 (fr) * 2015-09-18 2017-03-22 Siemens Aktiengesellschaft Systeme de commande et procede de fonctionnement d'un systeme de commande dote d'une commande reelle et virtuelle destine a reduire les temps d'arret
EP3144751B1 (fr) * 2015-09-18 2021-10-27 Siemens Aktiengesellschaft Système de commande et procédé de fonctionnement d'un système de commande doté d'une commande réelle et virtuelle destinée à la surveillance de processus
EP3144758A1 (fr) 2015-09-18 2017-03-22 Siemens Aktiengesellschaft Systeme de commande et procede de fonctionnement d'un systeme de commande dote d'une commande reelle et virtuelle
CN111508329B (zh) * 2019-12-30 2022-04-05 揭阳市华誉电子科技有限公司 一种适用于塑胶制品生产的教育仿真系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19543826A1 (de) * 1995-11-23 1997-05-28 Siemens Ag Simulatoreinheit zum Simulieren einer Peripherieeinheit einer modular aufgebauten speicherprogrammierbaren Steuerung
DE10245176A1 (de) * 2002-09-26 2004-04-01 Endress + Hauser Process Solutions Ag Verfahren zur Simulation eines Feldgerätes in einem Netzwerk der Prozessautomatisierungstechnik
DE102010025954A1 (de) * 2010-07-02 2012-01-05 Abb Technology Ag Verfahren und Anordnung zur vollständigen oder teilweisen Nachbildung und/oder Simulation eines Automatisierungssystems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT10596U1 (de) 2008-02-26 2009-06-15 Keba Ag Konfigurierung von maschinenablaufen
WO2010022495A1 (fr) 2008-08-27 2010-03-04 Husky Injection Molding Systems Ltd. Procédé pour l’affichage d’un modèle virtuel de système de moulage et des informations relatives à une pièce correspondant au modèle d’entité sélectionnée, sur l’affichage de l’interface homme-machine de l’ordinateur d’un système de moulage
JP5237223B2 (ja) * 2009-08-20 2013-07-17 三菱電機株式会社 監視制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19543826A1 (de) * 1995-11-23 1997-05-28 Siemens Ag Simulatoreinheit zum Simulieren einer Peripherieeinheit einer modular aufgebauten speicherprogrammierbaren Steuerung
DE10245176A1 (de) * 2002-09-26 2004-04-01 Endress + Hauser Process Solutions Ag Verfahren zur Simulation eines Feldgerätes in einem Netzwerk der Prozessautomatisierungstechnik
DE102010025954A1 (de) * 2010-07-02 2012-01-05 Abb Technology Ag Verfahren und Anordnung zur vollständigen oder teilweisen Nachbildung und/oder Simulation eines Automatisierungssystems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOPING LIAO ET AL: "Modeling of real-time monitoring and simulation for plastic injection molding process", INTELLIGENT MECHATRONICS AND AUTOMATION, 2004. PROCEEDINGS. 2004 INTER NATIONAL CONFERENCE ON CHENGDU, CHINA AUG. 26-31, 2004, PISCATAWAY, NJ, USA,IEEE, 26 August 2004 (2004-08-26), pages 60 - 65, XP010764430, ISBN: 978-0-7803-8748-5, DOI: 10.1109/ICIMA.2004.1384163 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2985663A1 (fr) * 2014-08-14 2016-02-17 Siemens Aktiengesellschaft Procédé de simulation d'une installation industrielle automatisée
CN104391462A (zh) * 2014-10-30 2015-03-04 北京新能源汽车股份有限公司 一种纯电动汽车整车台架的联调控制系统及其方法
CN104570876A (zh) * 2015-01-15 2015-04-29 无锡北斗星通信息科技有限公司 一种纺织车间实时数据采集方法
CN105005208A (zh) * 2015-06-02 2015-10-28 中国南方航空工业(集团)有限公司 一种航空发动机扭矩传感器信号模拟方法
EP3141970B1 (fr) 2015-09-09 2017-11-15 Siemens Aktiengesellschaft Peripherie decentralisee
US10509382B2 (en) 2015-09-09 2019-12-17 Siemens Aktiengesellschaft Decentralized peripheral with which simulation functions are implemented in an existing component of an automation facility
CN105911912A (zh) * 2016-05-28 2016-08-31 北京工业大学 一种数控机床多传感器数据同步锁存方法
CN105911912B (zh) * 2016-05-28 2018-10-19 北京工业大学 一种数控机床多传感器数据同步锁存方法
CN108345236A (zh) * 2017-01-25 2018-07-31 上海电气集团股份有限公司 一种基于EtherCAT的控制系统
CN107544283A (zh) * 2017-07-04 2018-01-05 华北电力大学(保定) 一种基于虚拟同步发电机控制策略的半实物仿真系统
CN107544283B (zh) * 2017-07-04 2021-02-09 华北电力大学(保定) 一种基于虚拟同步发电机控制策略的半实物仿真系统

Also Published As

Publication number Publication date
DE102013100465A1 (de) 2014-07-17

Similar Documents

Publication Publication Date Title
WO2014111417A1 (fr) Dispositif de commande d'installation de moulage par injection, commandé par microprocesseur, pourvu d'un ordinateur de simulation
EP1279076B1 (fr) Procede de commande et installation de production industrielle equipee d'un systeme de commande par le web
EP2098926B1 (fr) Procédé et dispositif adaptés à la programmation et/ou la configuration d'un contrôleur de sécurité
DE10352815B4 (de) Simulationsverfahren für eine Bearbeitung eines Werkstücks durch eine Werkzeugmaschine und korrespondierender Rechner
EP2098925A1 (fr) Procédé et dispositif adaptés à la programmation et/ou la configuration d'un contrôleur de sécurité
EP2098924B1 (fr) Procédé et dispositif adaptés à la programmation et/ou la configuration d'un contrôleur de sécurité
EP2545417B1 (fr) Procédé de remplacement d'un équipement de conduction existant dans un système d'automatisation par un nouvel équipement de conduction et système d'automatisation ainsi construit
DE102007026678A1 (de) Verfahren zum Austausch eines defekten Feldgerätes gegen ein neues Feldgerät in einem über digitalen Feldbus kommunizierenden System, insbesondere Automatisierungssystem
EP2016470B1 (fr) Terminal de commande pour l'echange d'informations avec un appareil sur site dans un systeme d'automatisation
EP3629264A1 (fr) Module de production
WO2018036708A1 (fr) Passerelle et procédé de connexion d'un système de source de données à un système informatique
DE102017215508A1 (de) Automatisierungssystem mit mindestens einem Feldgerät und mindestens einer Steuereinheit
EP1947568A1 (fr) Procédé destiné à l'observation d'un appareil de commande
EP2098928A1 (fr) Procédé et dispositif adaptés à la programmation et/ou la configuration d'un contrôleur de sécurité
EP2732346A1 (fr) Procédé de création semi-automatique d'un modèle de simulation pour un système mécatronique
EP3082002A1 (fr) Commande de securite et procede de commande d'une installation automatisee
WO2006032632A1 (fr) Procede pour faire fonctionner un systeme d'automatisation et dispositif permettant de mettre en oeuvre ce procede
EP2455827A1 (fr) Appareil de terrain avec un mode de basse consommation qui peut être activé et désactivé au travers des deux interfaces de l' appareil de terrain
EP2341405B1 (fr) Procédé destiné au fonctionnement d'une machine
AT516652A1 (de) Formgebungsanlage
EP3969970B1 (fr) Procédé de représentation et de commande de moyens de production, en particulier pour l'industrie de transformation des plastiques
EP1513035B1 (fr) Méthode de commande en temps réel pour un dispositif de commande d'un processus industriel et méthode de commande en temps réel pour un ordinateur
EP3712724A1 (fr) Agencement d'automatisation, procédé de fonctionnement de l'agencement d'automatisation ainsi que programme informatique
EP2980661A1 (fr) Appareil de commande électronique
DE102019005787A1 (de) System und Verfahren zur Steuerung zumindest einer Maschine, insbesondere eines Kollektivs von Maschinen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14700857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14700857

Country of ref document: EP

Kind code of ref document: A1