WO2014110996A1 - 一种纯氧助燃的点火燃烧器 - Google Patents

一种纯氧助燃的点火燃烧器 Download PDF

Info

Publication number
WO2014110996A1
WO2014110996A1 PCT/CN2014/070426 CN2014070426W WO2014110996A1 WO 2014110996 A1 WO2014110996 A1 WO 2014110996A1 CN 2014070426 W CN2014070426 W CN 2014070426W WO 2014110996 A1 WO2014110996 A1 WO 2014110996A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
burner
ignition
cylinder
combustion
Prior art date
Application number
PCT/CN2014/070426
Other languages
English (en)
French (fr)
Inventor
唐宏
龚泽儒
刘鹏
吴海江
刘广义
杨金杰
雷刚
张世凯
Original Assignee
烟台龙源电力技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台龙源电力技术股份有限公司 filed Critical 烟台龙源电力技术股份有限公司
Publication of WO2014110996A1 publication Critical patent/WO2014110996A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2207/00Ignition devices associated with burner
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to an ignition burner apparatus, and more particularly to a pure oxygen combustion ignition burner. Background technique
  • Coal quality is highly dependent. At present, among the large number of successful applications, most of them are power station boilers that use bituminous coal and lignite as power.
  • the inferior coal has low volatile content, high ignition temperature, low flame propagation speed, and high ignition heat when ignited.
  • the existing plasma and micro-oil ignition technology has limited energy, and it is difficult to ignite inferior coal. Therefore, in the case of inferior coal ignition, a large amount of fuel is required to be ignited, and the fuel-saving effect is greatly limited.
  • Patent CN201110105569.0 as shown in Fig. 1, the oxygen nozzle 16 is disposed upstream of the plasma generator 2 in the direction of the primary air flow, so that oxygen is injected into the premixed combustion tube 12 and the primary coal powder is premixed, once The wind powder is in an oxygen-rich state, and the pulverized coal is ignited by the plasma.
  • this technology can play the role of oxygen-enriched combustion, compared with the amount of oxygen injected, the amount of primary pulverized coal is large. After the oxygen is injected, it is first mixed with the primary air before entering the pulverized coal combustion area, premixed. After the oxygen concentration is severely diluted, the combustion-supporting effect is reduced, and the effect of pure oxygen combustion is greatly reduced.
  • Patent CN201110442988.3 is shown in Fig. 2.
  • the inventor of the patent has an annular oxygen sleeve 13 outside the plasma generator 2, which injects oxygen into the plasma arc region, and forms a local oxygen-rich region in the burner during ignition. , the formation of oxyfuel combustion of pulverized coal.
  • the disclosed technology has the following problems:
  • the plasma region temperature is higher than 4000K, and the high activity characteristics of the plasma can easily ignite the coal powder entering the region.
  • oxygen is added thereto, the pulverized coal is burned too vigorously, which easily leads to the cylinder.
  • the wall is overheated and even the burner burns.
  • Inferior coal has low volatility and slow flame propagation.
  • the key to ignition of inferior coal is the subsequent combustion after ignition in the ignition zone.
  • the present invention adopts Immediately after the pulverized coal fires, oxygen is added, and the jet is sprayed with oxygen to solve the above problems. Summary of the invention
  • the object of the present invention is to provide a pure oxygen for the shortcomings of current ignition technology.
  • the combustion-supporting ignition burner can significantly enhance the ability of the plasma ignition technology to ignite low-quality coal, and has a reasonable structure and is less prone to slagging accidents.
  • the present invention provides a pure oxygen-assisted ignition burner comprising a burner and an ignition source, the rear end of the burner being connected to a fuel gas flow passage, and the ignition source has at least one stage outside the front end of the ignition source a cylindrical structure, the cylindrical structure being at least partially disposed inside the burner, and at least one of a spout of the tubular structure and a nozzle of the burner is provided to directly inject oxygen into the flame combustion region
  • An oxygen injection device having an annular body and having at least two oxygen nozzles disposed symmetrically disposed on the annular body.
  • the primary cylindrical structure of the front end of the plasma generator may be a pulverized coal concentrating device of Chinese Patent No. CN200910119640.3.
  • the cylindrical structure of the front end of the plasma generator may be a central cylindrical structure in the Chinese Patent No. 032684126 or CN2007201462446.
  • the ignition source is a plasma generator
  • the plasma generator is disposed coaxially with the burner
  • a first-stage cylinder is arranged outside the front end of the plasma generator, and the front end of the first-stage cylinder is outside
  • An oxygen injection device that directly injects into the combustion zone of the flame.
  • the ignition source in the ignition burner may be a plasma generator, a micro-oil gun or other ignition source.
  • the pulverized coal gas stream in the first-stage cylinder is ignited by the high-temperature plasma, and after the pulverized coal is ignited, it reaches the outlet of the first-stage cylinder, and pure oxygen is sprayed at this time.
  • the direction in which the oxygen injection device injects oxygen is 0 to 80° from the direction of the primary air in the burner.
  • the direction in which the oxygen injection device injects oxygen is 30° to the direction of the primary air in the burner.
  • the oxygen injected by the oxygen injection device is injected in a tangential direction to the direction of the airflow of the primary air in the burner.
  • the annular body of the oxygen injection device is mounted with three or four oxygen nozzles disposed centrally symmetrically with respect to the axis of the burner.
  • the primary barrel has a diameter and axial length that is less than the diameter and axial length of the secondary barrel.
  • the oxygen nozzle of the oxygen injection device is provided with an anti-wear assembly.
  • the oxygen lance is connected to an external oxygen supply system and is provided with a supply amount adjustment mechanism.
  • the invention injects pure oxygen after the pulverized coal is ignited, strengthens the combustion, solves the problem that the ignition energy is insufficient and the subsequent combustion is insufficient when the low-quality coal is ignited; the multi-point symmetrical and concentrated jet method adds oxygen to concentrate the oxygen to form pure oxygen.
  • the combustion environment maximizes the combustion-supporting properties of oxygen.
  • the burner of the present invention has a reasonable structure and can work stably for a long period of time without causing a slagging accident.
  • the invention is applicable to all internal combustion pulverized coal burners, including plasma ignition burners and small oil guns, micro-oil ignition and other ignition burners.
  • FIG. 1 is a schematic structural view of a prior art patent CN201110105569.0;
  • FIG. 2 is a schematic structural view of a prior art patent CN201110442988.3;
  • FIG. 3-1 is a schematic structural view of a first embodiment of the present invention.
  • Figure 3-2 is a cross-sectional view taken along the line A - A in Figure 3-1;
  • Figure 4-1 is a schematic structural view of the wear preventing assembly of the present invention
  • 4-2 is a schematic structural view of a nozzle of an oxygen injection device according to an embodiment of the present invention
  • Figure 5-1 is a schematic structural view of a second embodiment of the present invention.
  • Figure 5- 2 is a cross-sectional view taken along the B-B direction in Figure 5-1;
  • Figure 6 is a schematic structural view of a third embodiment of the present invention.
  • FIG. 7-1 is a schematic structural view of a fourth embodiment of the present invention.
  • Figure 7-2 is a cross-sectional view taken along line C-C of Figure 7-1;
  • Figure 8 is a schematic structural view of a fifth embodiment of the present invention.
  • Figure 9 is a schematic structural view of a sixth embodiment of the present invention.
  • Figure 10 is a schematic structural view of a seventh embodiment of the present invention.
  • Figure 11 is a schematic structural view of an eighth embodiment of the present invention.
  • FIG. 12-1 is a schematic structural view of a ninth embodiment of the present invention.
  • Figure 12-2 is a schematic structural view of the nozzle of the oxygen injection device of Figure 12-1;
  • Figure 13-1 is a schematic view of the structure of the tenth embodiment of the present invention;
  • Figure 13-2 is a cross-sectional view taken along line D-D of Figure 13-1;
  • Figure 14-1 is a schematic structural view of an eleventh embodiment of the present invention.
  • Figure 14-2 is a cross-sectional view taken along line E-E of Figure 14-1. detailed description
  • a pure oxygen-assisted ignition burner provided by the present invention includes a plasma generator 2 (the ignition source of the present invention may also be a micro-oil gun or other ignition source), a burner 1, and oxygen.
  • a delivery duct (not shown) and an oxygen injection device 4, the rear end of the burner 1 is connected to the fuel gas flow passage, in the present invention, the fuel gas flow passage is a pulverized coal gas flow passage, as shown in FIG. 1;
  • the first end of the front end of the plasma generator 2 is provided with a first-stage cylinder 3, and the front end of the first-stage cylinder 3 is provided with two stages.
  • a cylinder 5, the secondary cylinder 5 is at least partially disposed inside the burner 1, as shown in Fig.
  • the invention can be provided with more than two stages of sleeve structure, the number of sleeves, as needed It may be 1 ⁇ ⁇ ⁇ 6, preferably, each sleeve is coaxially disposed; in other words, the burner 1 of the present invention is provided with at least one inner sleeve, and in the embodiment shown in Fig. 1, there are two The inner sleeve structure, that is, the primary cylinder 3 and the secondary cylinder 5.
  • At least one of the nozzle of the primary cylinder 3, the nozzle of the secondary cylinder 5, and the nozzle of the burner 1 is provided with an oxygen injection device for directly injecting oxygen into the flame combustion region, the above structure of the present invention.
  • Pure oxygen can be sprayed directly into the flame, and each nozzle can be regarded as a new, intensely ignited ignition source, thereby fully utilizing the combustion-supporting ability of pure oxygen.
  • the oxygen ejector device of the present invention has an annular body, and at least two oscillating oxygen nozzles are mounted on the annular body.
  • the annular body of the oxygen ejector device of the present invention is embodied in the following embodiments. It is an oxygen primary header 7 or an oxygen secondary header 8 or the like.
  • the direction in which the oxygen injection device of the present invention injects oxygen is 0 to 80 degrees from the direction of the primary air in the burner, and in one embodiment of the present invention, the oxygen injection device (for example, FIG. 3 - 1 The primary oxygen injection device 4) injects oxygen in a direction 30° from the direction of the primary air in the burner.
  • the oxygen injected by the oxygen injection device is injected in a tangential direction to the direction of the primary air flow in the burner.
  • the direction of injection of the oxygen injection means of the same cross section preferably concentrates on the axis point, and can also be tangent to an imaginary circle concentric with the axis.
  • the outlet of the oxygen injection device of the present invention defines a length range in the axial direction at the joining position of the sleeve (for example, the primary cylinder 3, the secondary cylinder 5, etc.) or the burner "nozzle" in each stage. :
  • the outlet end face of the sleeve (or burner) in this stage is taken as the origin, and the direction of the pulverized coal gas flow is positive.
  • the exit position of the oxygen injection device of the present invention is preferably at the origin, or within ⁇ 150 mm from the origin.
  • each stage is in the flame area where the coal powder in the inner sleeve of the stage has been ignited; at this time, pure oxygen is directly sprayed into the flame, and each injection port can be regarded as a new one.
  • the combustion source is violently ignited, whereby the combustion-supporting ability of pure oxygen can be fully utilized.
  • the inner sleeve of the invention is arranged coaxially with the outer cylinder of the burner 1: after the primary air carries the pulverized coal into the burner 1, first passes through the first-stage combustion chamber (the primary cylinder 3), and is plasma in the first-stage combustion chamber.
  • the generator arc microwave-oil gun flame or other ignition source ignites and then enters the secondary cylinder 5.
  • the pulverized coal flame of the first inner inner sleeve (the primary cylinder 3) enters At the same time as the first inner sleeve (secondary cylinder 5), part of the pulverized coal outside the inner first sleeve (the primary cylinder 3) also enters the inner inner sleeve (secondary cylinder 5) and is pulverized coal.
  • the flame ignites. Thereby, a staged ignition, step-by-step amplification internal combustion type pulverized coal burner is formed.
  • each inner sleeve the flame spreads from the center to the periphery. Combined with the push of the primary wind, the flame can be imagined to propagate from the center outward toward the nozzle at the entrance of the sleeve at each stage;
  • the diameter and length of the inner sleeve of each stage are designed according to different coal types. The design is based on ensuring that the flame can spread to the wall surface of the inner sleeve of each stage, and the inner sleeve metal can withstand Within the temperature range (typically below 800), extend the length of the sleeve in each stage to ensure full combustion.
  • the above-mentioned oxygen injection device of the present invention is disposed on the inner sleeve or the nozzle of the burner is also based on the above burner design concept, thereby ensuring that oxygen flows directly into the pulverized coal flame after flowing out of the oxygen injection device, and the oxygen is prevented from being diluted by the primary air ( From pure oxygen to oxygen enrichment, it should be noted that the use of longer or shorter inner sleeves to circumvent this patent so that the position of the oxygen injection device deviates from the position of the nozzle defined in this patent should also be considered Infringes the claims of this patent.
  • Oxygen is arranged in the inner sleeve or the burner nozzle to avoid over-temperature and burning of the internal combustion cylinder.
  • the nozzle of the sleeve in each stage is not only the position of the pulverized coal flame of this grade, but also The position of the next-stage sleeve where the coal-fired powder starts to mix is the position where the combustion needs to be strengthened. If the oxygen is injected too early, the sleeve in this stage is very likely to be caused by excessive combustion in the downstream of the oxygen injection position. The wall of the tube is overheated and burnt.
  • the annular body of the oxygen injection device is symmetrically distributed around the inner sleeve and the burner, and is mounted with at least two symmetrically disposed oxygen nozzles that are coupled to an external oxygen supply system. Therefore, the oxygen injection method of the invention is a multi-point symmetrical, columnar concentrated jet, which makes oxygen easy to be concentrated and used to form a pure oxygen combustion environment, avoiding oxygen being diluted by primary air; and also making the oxygen gas flow have strong penetrating power. Increase the chance of contact between oxygen and pulverized coal.
  • the oxygen injection device directly sprays oxygen into the fire area, encounters the coal powder just caught, and promotes combustion. At the same time, it can enhance the disturbance in the burner to a certain extent, which is beneficial to the full contact of oxygen and coal powder. Strengthen combustion.
  • the anti-wear assembly 6 is disposed outside the oxygen nozzle, thereby reducing the wear of the oxygen tube; in addition, the oxygen nozzle is connected to the external oxygen supply system, and is provided with a supply amount adjustment mechanism, which can be fired according to the situation The need to flexibly adjust the amount of oxygen injected.
  • a pure oxygen-assisted ignition burner of the present embodiment includes a burner 1, a plasma generator 2, and a first stage.
  • the cylinder 3, the secondary cylinder 5, the first-stage oxygen injection device 4 are installed in the wear-resistant assembly 6 (as shown in Fig. 4-1), and 7 is an oxygen primary header.
  • the plasma generator 2 and the burner 1 are arranged in a coaxial direction, and the diameter and axial length of the primary cylinder 3 are smaller than the diameter and axial length of the secondary cylinder 5, and the length and diameter of the primary cylinder 3 and the secondary cylinder 5 Satisfy the formation of a stable flame at the spout, and the wall of the tube is not overheated.
  • a first-stage combustion chamber is formed in the first-stage cylinder 3. After the pulverized coal is ignited, oxygen is injected into the outlet of the first-stage cylinder 3, as shown in Fig. 4-2, the annular body of the primary oxygen injection device 4 is uniformly symmetrical around the primary cylinder 3. Distribution, as shown in Figure 3. As shown in FIG.
  • the specific working process of this embodiment is as follows: When igniting, the concentrated pulverized coal gas stream in the first-stage cylinder meets the high-temperature plasma, and is ignited instantaneously. After the pulverized coal is ignited, it reaches the outlet of the first-stage cylinder, and at this time, pure oxygen is sprayed. The concentrated injection of oxygen forms a pure oxygen flow with strong penetrating power. The coal powder is violently burned after encountering pure oxygen, forming a high-temperature fire core with a large heat capacity, further igniting the surrounding coal powder and expanding combustion.
  • the pulverized coal is first ignited by a high-energy plasma.
  • pure oxygen is encountered at the outlet of the primary cylinder, and the pulverized coal gas flow is greatly reduced, and the burning rate is greatly reduced.
  • the speed of flame propagation is accelerated, and the combustion of coke in pulverized coal is promoted, the combustion temperature is greatly improved, sufficient energy is generated to ignite the subsequent coal powder, and the problem of insufficient combustion after inferior coal ignition is solved, and the coal type of the burner is widened. Adaptation.
  • the present embodiment differs from the embodiment 1 in that the oxygen injection device is located at the outlet of the secondary cylinder 5, 8 is an oxygen secondary header, and 9 is a secondary oxygen injection device.
  • the purpose of this embodiment is to inject oxygen into the outlet of the secondary cylinder 5 to enhance combustion and continue to ignite under the condition that the coal powder in the primary cylinder and the secondary cylinder can be reliably ignited according to the coal quality. Subsequent pulverized coal in the burner.
  • the difference between this embodiment and the above embodiment is that the oxygen injection device is located at the outlet of the burner 1, and 10 is a three-stage oxygen injection device. After the pulverized coal is ignited, oxygen is injected at the burner outlet to enhance combustion and improve Pulverized coal burnout rate.
  • the oxygen injection device is located at the outlet of the burner 1, and 10 is a three-stage oxygen injection device. After the pulverized coal is ignited, oxygen is injected at the burner outlet to enhance combustion and improve Pulverized coal burnout rate.
  • the difference between the embodiment and the above embodiment is that the oxygen injection devices are respectively disposed at the outlets of the primary cylinder 3 and the secondary cylinder 5, and oxygen is injected in two stages.
  • the stage ejects oxygen from three nozzles through three oxygen nozzles 71, and concentrates the oxygen into the burner to enhance combustion.
  • the present embodiment differs from the above embodiment in that a three-stage cylinder 11 is provided, and an oxygen injection device is disposed at the outlets of the primary cylinder 3 and the tertiary cylinder 11, and oxygen is injected in two stages to enhance combustion.
  • Example 6
  • the embodiment differs from the above embodiment in that the oxygen injection devices are respectively disposed at the outlets of the primary cylinder 3 and the burner 1, and oxygen is injected in two stages, each stage consisting of three nozzles, and oxygen is used. Concentrated injection into the burner to enhance combustion.
  • Example 7
  • the difference between the embodiment and the above embodiment is that the oxygen injection devices are respectively arranged at the outlets of the secondary cylinder 5 and the burner 1, and oxygen is injected in two stages, each stage consisting of three nozzles, and oxygen is used. Concentrated injection into the burner to enhance combustion.
  • the difference between the embodiment and the above embodiment is that the oxygen injection devices are respectively arranged at the outlets of the primary cylinder 3, the secondary cylinder 5 and the burner 1, and oxygen is injected in three stages, each of which is composed of three.
  • the nozzle is composed of a concentrated injection of oxygen into the burner to enhance combustion.
  • FIG. 12-1 and FIG. 12-2. The difference between this embodiment and the above embodiment is shown in FIG. 12-1 and FIG. 12-2. It is at an angle of 0° between the oxygen vent and the primary air flow.
  • the direction of oxygen injection is the same as the direction F of the primary pulverized coal gas stream, and oxygen is injected at the outlet of the primary cylinder to enhance combustion.
  • Example 10
  • the difference between this embodiment and the above embodiment is that the oxygen injection device is composed of four oxygen nozzles 71, which are symmetrically distributed around the primary cylinder, and the oxygen injection is 4-point symmetric. Concentrated jets form a larger space of pure oxygen, which helps to ignite poor inferior coal and broaden the range of coal blending of the burner.
  • the present embodiment differs from the above embodiment in that the oxygen vent and the primary air flow are tangentially directed at the outlet of the primary cylinder 3 to be injected into the burner to enhance combustion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Supply (AREA)

Abstract

一种纯氧助燃的点火燃烧器,包括燃烧器(1)和点火源,燃烧器(1)的后端与燃料气流通道相连,点火源前端外侧设有一级筒(3),一级筒(3)的前端外侧设有二级筒(5),二级筒(5)至少部分设置在燃烧器(1)的内部,且在一级筒(3)的喷口、二级筒(5)的喷口、以及燃烧器(1)的喷口当中的至少一处设有将氧气直接喷射向火焰燃烧区域的氧气喷射装置(4)。该点火燃烧器在煤粉着火后喷入纯氧,强化燃烧,解决了劣质煤点火时点火能量足够而后续燃烧不足的问题;该点火燃烧器的结构合理,能够长时间稳定工作而不发生结渣烧损事故,适用于所有内燃的点火煤粉燃烧器,包括等离子体点火燃烧器及小油枪、微油点火等点火燃烧器。

Description

一种纯氧助燃的点火燃烧器 技术领域
本发明涉及一种点火燃烧器设备, 特别是涉及一种纯氧助燃 的点火燃烧器。 背景技术
传统的大型煤粉锅炉点火和稳燃均采用燃烧柴油或重油来 实现的, 电站锅炉的启动、 停止和低负荷稳燃需要消耗大量的燃 油。 近年来, 随着石油资源紧张的日益加剧, 燃油价格不断上涨, 给电厂带来沉重的经济负担。 为降低油耗节约成本, 部分现有技 术采用了等离子体无油点火技术和微油点火技术, 并在很多电站 锅炉上得到了广泛应用。
但是, 在实际的工程应用中, 等离子体和微油点火技术仍存 在一些不足:
第一, 对煤质的要求较高。 煤质依赖性较大, 目前在已成功 应用的大量实例中,多数为以烟煤与褐煤为动力用煤的电站锅炉。 而劣质煤挥发分含量低、 着火温度高、 火焰传播速度低, 点燃时 需要较高的着火热。 现有等离子体和微油点火技术能量有限, 很 难将劣质煤点燃, 所以, 在劣质煤点火时仍然需要投入大量燃油 助燃, 节油效果受到了很大的限制。
第二, 对工况要求较高。 锅炉点火时, 通常需要采用较高的 煤粉浓度、 较低的风速; 当工况发生变化时, 易出现燃烧不稳, 甚至发生灭火事故。
第三, 煤粉的燃烧效率较低。 实际运行的情况显示, 在锅炉 点火过程中, 飞灰的含碳量高, 大量的煤粉没有燃尽, 给尾部烟 道及设备带来安全隐患, 严重影响锅炉的安全性与经济性。 根据 研究, 氧气能够降低燃料着火温度、 提高燃烧区域火焰黑度、 提 高火焰传播速度。 因此, 很多研究者在等离子体点火技术中引入 氧气助燃。 如中国专利 "富氧等离子无油点火稳燃方法及装置"
( CN201110105569.0 ) 和 "一种等离子无油点火燃烧器"
( CN201110442988.3 ) ,
专利 CN201110105569.0如图 1所示,将氧气喷口 16沿一次 风气流方向设于等离子体发生器 2的上游, 使氧气喷入预混燃烧 管 12内和一次风煤粉预混后,使一次风粉呈富氧状态,再经过等 离子体点燃煤粉。 此技术虽然能起到富氧助燃的作用, 但与喷入 的氧量相比,一次风煤粉量较大,氧气喷入后首先与一次风混合, 然后才能进入煤粉燃烧区域, 预混后氧气浓度被严重稀释, 助燃 效果降低, 纯氧助燃的效果大打折扣。
专利 CN201110442988.3如图 2所示, 该专利的发明人在等 离子体发生器 2外设一个环形的氧气套筒 13,在等离子电弧区域 喷入氧气, 点火时在燃烧器内形成局部富氧区, 形成煤粉的富氧 燃烧。该公开技术存在以下问题: 等离子体区域温度高于 4000K, 加之等离子体的高活性特性, 能够轻易点燃进入此区域的煤粉, 在此处加入氧气, 会造成煤粉燃烧过于剧烈, 易导致筒壁超温, 甚至燃烧器烧损。
劣质煤挥发分低, 火焰传播速度较慢, 劣质煤点火的关键在 于点火区域着火后的后续燃烧, 针对常规等离子和微油点火技术 的不足和现有富氧助燃点火技术的缺陷, 本发明采用煤粉着火后 立即补氧, 集中射流喷氧的方式解决以上问题。 发明内容
本发明的目的是针对目前点火技术的不足而提出一种纯氧 助燃的点火燃烧器, 该燃烧器能够显著增强等离子体点火技术点 燃劣质煤的能力, 且结构合理, 不易出现结渣烧损事故。
为实现上述目的, 本发明提供了一种纯氧助燃的点火燃烧 器, 包括燃烧器和点火源, 所述燃烧器的后端与燃料气流通道相 连, 所述点火源前端外侧设有至少一级筒状结构, 所述筒状结构 至少部分设置在所述燃烧器的内部, 且在所述筒状结构的喷口以 及燃烧器的喷口当中的至少一处设有将氧气直接喷射向火焰燃烧 区域的氧气喷射装置, 所述氧气喷射装置具有环形本体, 并在所 述环形本体上安装有至少两个呈对称设置的氧气喷管。
优选地,所述等离子体发生器前端的一级筒状结构可以是中 国专利 CN200910119640.3中的煤粉浓缩装置。
优选地,所述等离子体发生器前端的筒状结构可以是中国专 利 CN 032684126或 CN2007201462446中的中心筒结构。
优选地, 所述点火源为等离子体发生器, 所述等离子体发生 器与所述燃烧器同轴布置, 且所述等离子体发生器前端外侧设有 一级筒, 所述一级筒的前端外侧设有二级筒, 所述二级筒至少部 分设置在所述燃烧器的内部,且在一级筒的喷口、二级筒的喷口、 以及燃烧器的喷口当中的至少一处设有将氧气直接喷射向火焰燃 烧区域的氧气喷射装置。
优选地, 所述点火燃烧器中的点火源可以为等离子体发生 器、 微油油枪或其他点火源。
优选地,所述一级筒内的煤粉气流与高温等离子体相遇被引 燃, 煤粉着火后到达一级筒出口, 此时喷入纯氧。
优选地,所述氧气喷射装置喷射氧气的方向与所述燃烧器中 一次风的气流方向呈 0 ~ 80° 。
优选地,所述氧气喷射装置喷射氧气的方向与所述燃烧器中 一次风的气流方向呈 30° 。 优选地,所述氧气喷射装置喷射的氧气与所述燃烧器中一次 风的气流方向呈切线方向喷入。
优选地,所述氧气喷射装置的环形本体上安装有三个或四个 相对于燃烧器的轴心呈中心对称设置的氧气喷管。
优选地,所述一级筒的直径和轴向长度小于所述二级筒的直 径和轴向长度。
优选地, 所述氧气喷射装置的氧气喷管外部设有防磨组件。 优选地, 所述氧气喷管与外部氧气供给系统连接, 并设有供 给量调节机构。
基于上述技术方案, 本发明的优点是:
本发明在煤粉着火后喷入纯氧, 强化燃烧, 解决了劣质煤点 火时点火能量足够而后续燃烧不足的问题; 多点对称、 集中射流 的方式加氧, 使氧气集中利用, 形成纯氧的燃烧环境, 最大限度 的发挥了氧气的助燃特性。 本发明的燃烧器结构合理, 能够长时 间稳定工作而不发生结渣烧损事故。 本发明适用于所有内燃的点 火煤粉燃烧器, 包括等离子体点火燃烧器及小油枪、 微油点火等 点火燃烧器。 附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本 申请的一部分,本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中:
图 1为现有技术中专利 CN201110105569.0的结构示意图; 图 2为现有技术中专利 CN201110442988.3的结构示意图; 图 3 - 1为本发明第一实施例的结构示意图;
图 3 - 2为图 3 - 1中 A - A向的剖视图;
图 4 - 1为本发明防磨组件的结构示意图; 图 4-2为本发明一种实施例中氧气喷射装置喷口处的结构 示意图;
图 5-1为本发明第二实施例的结构示意图;
图 5- 2为图 5-1中 B- B向的剖视图;
图 6为本发明第三实施例的结构示意图;
图 7-1为本发明第四实施例的结构示意图;
图 7- 2为图 7-1中 C- C向的剖视图;
图 8为本发明第五实施例的结构示意图;
图 9为本发明第六实施例的结构示意图;
图 10为本发明第七实施例的结构示意图;
图 11为本发明第八实施例的结构示意图;
图 12- 1为本发明第九实施例的结构示意图;
图 12- 2为图 12- 1中氧气喷射装置喷口处的结构示意图; 图 13- 1为本发明第十实施例的结构示意图;
图 13- 2为图 13-1中 D- D向的剖视图;
图 14- 1为本发明第十一实施例的结构示意图;
图 14- 2为图 14-1中 E- E向的剖视图。 具体实施方式
参见图 3- 1~图 14- 2, 下面通过附图和各个实施例, 对本 发明的技术方案做进一步的详细描述。
首先参见图 3-1,本发明提供的一种纯氧助燃的点火燃烧器 包括等离子体发生器 2 (本发明的点火源也可以为微油油枪或其 他点火源) 、 燃烧器 1、 氧气输送管道(图中未示出)及氧气喷 射装置 4, 燃烧器 1的后端与燃料气流通道相连, 在本发明中, 所述的燃料气流通道为煤粉气流通道, 如图 1所示; 等离子体发 生器 2的前端外侧设有一级筒 3, 一级筒 3的前端外侧设有二级 筒 5, 所述二级筒 5至少部分设置在所述燃烧器 1的内部,如图 1 所示, 当然, 根据需要, 本发明可以设置多于两级的套筒结构, 套筒的数量 n可以为 1 < η < 6, 优选地, 各个套筒之间同轴设置; 换言之, 本发明的燃烧器 1内设置有至少一级内套筒, 在图 1所 示的实施例中, 具有两级内套筒结构, 即一级筒 3和二级筒 5。
本发明中, 在一级筒 3的喷口、 二级筒 5的喷口、 以及燃烧 器 1的喷口当中的至少一处设有将氧气直接喷射向火焰燃烧区域 的氧气喷射装置, 本发明的上述结构可以将纯氧直接喷射于火焰 内, 每个喷口都可以视为一个新的、 燃烧剧烈的点火源, 由此充 分地利用了纯氧的助燃能力。
优选地, 本发明所述氧气喷射装置具有环形本体, 并在所述 环形本体上安装有至少两个呈对称设置的氧气喷管, 本发明氧气 喷射装置的环形本体在如下各个实施例中, 体现为氧气一级集箱 7或氧气二级集箱 8等。
进一步,本发明所述氧气喷射装置喷射氧气的方向与所述燃 烧器中一次风的气流方向呈 0 ~ 80° , 在本发明的一个实施例中, 所述氧气喷射装置(例如图 3 - 1中的一级氧气喷射装置 4 )喷射 氧气的方向与所述燃烧器中一次风的气流方向呈 30° 。 而在本发 明的另一个实施例中, 所述氧气喷射装置喷射的氧气与所述燃烧 器中一次风的气流方向呈切线方向喷入。 换言之, 同一截面的氧 气喷射装置喷射方向优选的集中于轴线一点, 也可相切于与轴线 同心的假想圆。
更优选地, 本发明的氧气喷射装置的出口在各级内套筒(例 如: 一级筒 3, 二级筒 5等)或燃烧器 "喷口" 的加入位置沿轴 线方向上定义了一个长度范围: 即以本级内套筒 (或燃烧器) 出 口端面为原点, 以煤粉气流方向为正方向, 本发明氧气喷射装置 的出口位置优选在原点, 或在距离原点 ± 150mm以内。 这种结构 保证了每级加氧的位置都处于本级内套筒中的煤粉已经着火形成 的火焰区域内; 此时, 将纯氧直接喷射于火焰内, 每个喷射口都 可以视为一个新的、 燃烧剧烈的点火源, 由此, 可以完全充分地 利用纯氧的助燃能力。
本发明所述内套筒与燃烧器 1的外筒同轴布置:一次风携带 煤粉进入燃烧器 1后, 首先经过一级燃烧室 (一级筒 3 ) , 在一 级燃烧室内被等离子体发生器电弧 (微油油枪火焰或其他点火源 ) 点燃, 之后进入二级筒 5。 由于后一级内套筒(二级筒 5 )的截面 积大于前一级内套筒 (一级筒 3 ) , 这样, 前一级内套筒 (一级 筒 3 )的煤粉火焰进入后一级内套筒(二级筒 5 )的同时, 前一级 内套筒(一级筒 3 )外的部分煤粉也进入后一级内套筒(二级筒 5 ), 并被煤粉火焰点燃。 从而形成分级点火、 逐级放大的内燃式煤粉 燃烧器。 在每级内套筒内, 火焰都是由中心部位向外围扩散, 结 合一次风的推动, 火焰可想象为在每级内套筒的入口处由中心向 外、 向喷口方向传播; 在这种燃烧器的设计中, 每级内套筒的直 径和长度根据不同煤种作出相应设计, 设计的依据是保证火焰能 够传播到每级内套筒的喷口壁面, 并在内套筒金属所能承受的温 度内 (一般为 800 以下)尽量延长每级内套筒的长度, 以保证 充分燃烧。
本发明上述提到的氧气喷射装置均布置于内套筒或燃烧器 的喷口也是基于上述的燃烧器设计理念, 从而保证氧气流出氧气 喷射装置后直接进入煤粉火焰, 避免氧气被一次风稀释(由纯氧 变为富氧) , 需要说明的是对于为了规避本专利而采用较长或较 短的内套筒从而使得氧气喷射装置所在位置偏离本专利定义的喷 口位置的应用, 也应视为侵犯了本专利的权利要求。
氧气布置于内套筒或燃烧器喷口, 可以避免内燃筒的超温、 烧损, 各级内套筒的喷口除了是本级煤粉火焰喷出的位置, 也是 下一级套筒未然烧煤粉开始混入的位置,是需要强化燃烧的位置, 如果过早的喷入氧气, 本级内套筒在氧气喷入位置的下游非常容 易出现因燃烧过于剧烈造成的筒壁超温、 烧损。
所述氧气喷射装置的环形本体绕内套筒及燃烧器均 对称 分布, 并安装有至少两个呈对称设置的氧气喷管, 这些氧气喷管 与外部氧气供给系统连接。 所以, 本发明氧气喷入的方式为多点 对称、 柱状集中射流, 使氧气易于被集中利用, 形成纯氧燃烧环 境, 避免氧气被一次风稀释; 同时也使得氧气气流具有较强的穿 透力, 增加氧气与煤粉的接触机会。
氧气喷射时, 氧气喷射装置将氧气直接喷到着火区域, 与刚 刚着火的煤粉相遇, 促进燃烧; 同时能在一定程度上加强燃烧器 内的扰动, 有利于氧气和煤粉的充分接触, 进一步强化燃烧。 优 选地, 所述氧气喷管外部设有防磨组件 6, 由此, 可以减轻氧气 管的磨损; 此外, 氧气喷管与外部氧气供给系统连接, 并设有供 给量调节机构, 可根据着火情况的需要灵活调节喷入的氧量。
下面结合各个具体的实施例进行分别描述。 实施例 1
如图 3 - 1和图 3— 2以及图 4 - 1和图 4— 2所示,本实施例 的一种纯氧助燃的点火燃烧器,包括燃烧器 1、等离子体发生器 2、 一级筒 3、二级筒 5,一级氧气喷射装置 4安装于防磨组件 6内(如 图 4 - 1所示), 7为氧气一级集箱。 等离子体发生器 2和燃烧器 1采用同轴方向布置, 一级筒 3的直径和轴向长度小于二级筒 5 的直径和轴向长度, 一级筒 3和二级筒 5的长度和直径满足在喷 口形成稳定的火焰, 并且筒壁不超温。 在一级筒 3内形成一级燃 烧室, 煤粉着火后, 在一级筒 3出口喷入氧气, 如图 4 - 2所示, 一级氧气喷射装置 4环形本体绕一级筒 3均匀对称分布, 如图 3 - 2所示, 由三个氧气喷管 71组成并与一级氧气集箱 7连接, 氧 气喷管 71的氧气喷口与一次风气流呈 30° 的夹角。 煤粉着火后 在二级筒 5内形成二级燃烧室, 进一步扩大燃烧。
此实施例的具体工作过程如下: 点火时, 一级筒内较浓的煤 粉气流与高温等离子体相遇, 被瞬间引燃, 煤粉着火后到达一级 筒出口, 此时喷入纯氧, 氧气集中喷射, 形成穿透力强的纯氧气 流, 煤粉遇到纯氧后猛烈燃烧, 形成热容量巨大的高温火核, 进 一步引燃周围的煤粉, 扩大燃烧。
在一级燃烧室内, 首先由高能量的等离子体将煤粉点燃, 在 煤粉初期着火后, 在一级筒出口遇到纯氧, 此时煤粉气流着火热 大大降低, 燃烧速率得到很大提高, 火焰传播速度加快, 同时促 进煤粉中焦炭的燃烧, 使燃烧温度大大提升, 产生足够的能量引 燃后续的煤粉, 解决劣质煤点火时后续燃烧不足的问题, 拓宽燃 烧器的煤种适应范围。 实施例 2
如图 5 - 1和图 5 - 2所示,本实施例与实施例 1的区别在于 氧气喷射装置位于二级筒 5的出口, 8为氧气二级集箱, 9为二级 氧气喷射装置。 该实施例设计的目的在于, 根据煤质情况, 在保 证一级筒与二级筒内的煤粉能可靠点燃的条件下, 在二级筒 5的 出口喷入氧气, 强化燃烧, 继续引燃燃烧器内的后续煤粉。 实施例 3
如图 6所示,本实施例与上述实施例的区别在于氧气喷射装 置位于燃烧器 1的出口, 10为三级氧气喷射装置, 煤粉着火后在 燃烧器出口喷入氧气, 强化燃烧, 提高煤粉燃尽率。 实施例 4
如图 7 - 1和图 7 - 2所示,本实施例与上述实施例的区别在 于氧气喷射装置分别布置在一级筒 3和二级筒 5的出口处, 分两 级喷入氧气,每级通过三个氧气喷管 71由三个喷口喷出氧气,将 氧气集中喷射到燃烧器内强化燃烧。
实施例 5
如图 8所示, 本实施例与上述实施例的区别在于, 设置三级 筒 11, 氧气喷射装置布置在一级筒 3和三级筒 11的出口, 分两 级喷入氧气, 强化燃烧。 实施例 6
如图 9所示,本实施例与上述实施例的区别在于氧气喷射装 置分别布置在一级筒 3和燃烧器 1的出口, 分两级喷入氧气, 每 级由三个喷口组成, 将氧气集中喷射到燃烧器内强化燃烧。 实施例 7
如图 10所示, 本实施例与上述实施例的区别在于氧气喷射 装置分别布置在二级筒 5和燃烧器 1的出口, 分两级喷入氧气, 每级由三个喷口组成, 将氧气集中喷射到燃烧器内强化燃烧。
实施例 8
如图 11所示, 本实施例与上述实施例的区别在于氧气喷射 装置分别布置在一级筒 3、 二级筒 5和燃烧器 1的出口, 分三级 喷入氧气, 每级由三个喷口组成, 将氧气集中喷射到燃烧器内强 化燃烧。 实施例 9
如图 12 - 1和图 12 - 2所示,本实施例与上述实施例的区别 在于氧气喷口与一次风气流呈 0° 的夹角。 氧气喷射方向与一次 风煤粉气流的方向 F相同, 在一级筒出口喷入氧气, 强化燃烧。 实施例 10
如图 13 - 1和图 13-2所示, 本实施例与上述实施例的区别 在于,氧气喷射装置由 4根氧气喷管 71组成, 绕一级筒均 对称 分布, 氧气喷射为 4点对称, 集中射流, 形成更大的纯氧空间, 有助于点燃较差的劣质煤, 拓宽燃烧器的煤种适应范围。
实施例 11
如图 14 - 1和图 14 - 2所示,本实施例与上述实施例的区别 在于,氧气喷口与一次风气流呈切线方向 G在一级筒 3的出口喷 入燃烧器, 强化燃烧。
最后应当说明的是:以上实施例仅用以说明本发明的技术方 案而非对其限制; 尽管参照较佳实施例对本发明进行了详细的说 明, 所属领域的普通技术人员应当理解: 依然可以对本发明的具 体实施方式进行修改或者对部分技术特征进行等同替换; 而不脱 离本发明技术方案的精神, 其均应涵盖在本发明请求保护的技术 方案范围当中。

Claims

权 利 要 求
1. 一种纯氧助燃的点火燃烧器, 包括燃烧器 (1 )和点火 源, 所述燃烧器(1 ) 的后端与燃料气流通道相连, 其特征在于: 所述点火源前端外侧设有至少一级筒状结构, 所述筒状结构至少 部分设置在所述燃烧器(1 )的内部, 且在所述筒状结构的喷口以 及燃烧器( 1 )的喷口当中的至少一处设有将氧气直接喷射向火焰 燃烧区域的氧气喷射装置, 所述氧气喷射装置具有环形本体, 并 在所述环形本体上安装有至少两个呈对称设置的氧气喷管。
2. 根据权利要求 1 所述的纯氧助燃的点火燃烧器, 其特征 在于: 所述点火源为等离子体发生器(2 ), 所述等离子体发生器
( 2 ) 与所述燃烧器同轴布置, 且所述等离子体发生器(2 )前端 外侧设有一级筒 (3 ) , 所述一级筒 (3 ) 的前端外侧设有二级筒
( 5 ) , 所述二级筒( 5 )至少部分设置在所述燃烧器( 1 )的内部, 且在一级筒 (3 ) 的喷口、 二级筒 (5 ) 的喷口、 以及燃烧器(1 ) 的喷口当中的至少一处设有将氧气直接喷射向火焰燃烧区域的氧 气喷射装置。
3. 根据权利要求 2 所述的纯氧助燃的点火燃烧器, 其特征 在于: 所述一级筒内的煤粉气流与高温等离子体相遇被引燃, 煤 粉着火后到达一级筒出口, 此时喷入纯氧。
4. 根据权利要求 3 所述的纯氧助燃的点火燃烧器, 其特征 在于: 所述氧气喷射装置喷射氧气的方向与所述燃烧器中一次风 的气流方向呈 0 ~ 80° 。
5. 根据权利要求 4 所述的纯氧助燃的点火燃烧器, 其特征 在于: 所述氧气喷射装置喷射氧气的方向与所述燃烧器中一次风 的气流方向呈 30° 。
6. 根据权利要求 3所述的纯氧助燃的点火燃烧器,其特征在 于: 所述氧气喷射装置喷射的氧气与所述燃烧器中一次风的气流 方向呈切线方向喷入。
7. 根据权利要求 3所述的纯氧助燃的点火燃烧器,其特征在 于: 所述氧气喷射装置的环形本体上安装有三个或四个相对于燃 烧器的轴心呈中心对称设置的氧气喷管。
8. 根据权利要求 2所述的纯氧助燃的点火燃烧器,其特征在 于: 所述一级筒 (3 ) 的直径和轴向长度小于所述二级筒 (5 ) 的 直径和轴向长度。
9. 根据权利要求 3所述的纯氧助燃的点火燃烧器,其特征在 于: 所述氧气喷射装置的氧气喷管外部设有防磨组件(6 ) 。
10. 根据权利要求 9所述的纯氧助燃的点火燃烧器, 其特征 在于: 所述氧气喷管与外部氧气供给系统连接, 并设有供给量调 节机构。
PCT/CN2014/070426 2013-01-15 2014-01-10 一种纯氧助燃的点火燃烧器 WO2014110996A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310014973.6A CN103017160B (zh) 2013-01-15 2013-01-15 一种纯氧助燃的点火燃烧器
CN201310014973.6 2013-01-15

Publications (1)

Publication Number Publication Date
WO2014110996A1 true WO2014110996A1 (zh) 2014-07-24

Family

ID=47966064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070426 WO2014110996A1 (zh) 2013-01-15 2014-01-10 一种纯氧助燃的点火燃烧器

Country Status (2)

Country Link
CN (1) CN103017160B (zh)
WO (1) WO2014110996A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103017160B (zh) * 2013-01-15 2016-05-04 烟台龙源电力技术股份有限公司 一种纯氧助燃的点火燃烧器
CN103267280B (zh) * 2013-05-30 2017-03-15 重庆富燃科技股份有限公司 采用富氧微油燃烧方式降低煤粉锅炉氮氧化物的方法
CN105202544A (zh) * 2015-10-20 2015-12-30 烟台龙源电力技术股份有限公司 微气燃烧枪体、点火燃烧器、煤粉燃烧系统和燃煤锅炉
CN110454809A (zh) * 2019-07-31 2019-11-15 刘秦勤 一种打火机的氧气安全助燃的方法
CN112902183A (zh) * 2021-02-07 2021-06-04 哈尔滨工业大学 一种采用高浓度氧气与煤粉混合燃尽固废的装置
CN113464932A (zh) * 2021-08-12 2021-10-01 西安热工研究院有限公司 一种配备氢气值班火焰稳燃的煤粉锅炉燃烧系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156100A (en) * 1989-01-16 1992-10-20 Imatran Voima Oy Method and apparatus for starting the boiler of a solid-fuel fired power plant and ensuring the burning process of the fuel
CN2881359Y (zh) * 2006-01-25 2007-03-21 杭州意能电力技术有限公司 富氧煤粉燃烧器
CN101012928A (zh) * 2007-02-07 2007-08-08 鞠胤红 无烟煤气化微油枪点火煤粉燃烧器
CN201582810U (zh) * 2009-12-15 2010-09-15 中国航天空气动力技术研究院 带氧气助燃的双强化微油点火与稳燃装置
CN102418922A (zh) * 2011-11-07 2012-04-18 华北电力大学 一种富氧点火及低负荷稳燃煤粉燃烧器
CN103017160A (zh) * 2013-01-15 2013-04-03 烟台龙源电力技术股份有限公司 一种纯氧助燃的点火燃烧器
CN203024148U (zh) * 2013-01-15 2013-06-26 烟台龙源电力技术股份有限公司 一种纯氧助燃的点火燃烧器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2493843Y (zh) * 2001-08-27 2002-05-29 王爱生 燃煤锅炉的点火燃烧器
CN201885214U (zh) * 2010-10-22 2011-06-29 魏伯卿 聚温式带富氧喷嘴的燃烧炉自预热富氧燃烧系统
CN102537969B (zh) * 2010-12-30 2014-12-10 烟台龙源电力技术股份有限公司 等离子体燃气复合点火的方法和煤粉燃烧器
CN102305415B (zh) * 2011-10-18 2013-10-09 上海锅炉厂有限公司 一种富氧环境下的等离子无油点火系统
CN202371750U (zh) * 2011-12-08 2012-08-08 艾佩克斯科技(北京)有限公司 电站锅炉纯氧点火装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156100A (en) * 1989-01-16 1992-10-20 Imatran Voima Oy Method and apparatus for starting the boiler of a solid-fuel fired power plant and ensuring the burning process of the fuel
CN2881359Y (zh) * 2006-01-25 2007-03-21 杭州意能电力技术有限公司 富氧煤粉燃烧器
CN101012928A (zh) * 2007-02-07 2007-08-08 鞠胤红 无烟煤气化微油枪点火煤粉燃烧器
CN201582810U (zh) * 2009-12-15 2010-09-15 中国航天空气动力技术研究院 带氧气助燃的双强化微油点火与稳燃装置
CN102418922A (zh) * 2011-11-07 2012-04-18 华北电力大学 一种富氧点火及低负荷稳燃煤粉燃烧器
CN103017160A (zh) * 2013-01-15 2013-04-03 烟台龙源电力技术股份有限公司 一种纯氧助燃的点火燃烧器
CN203024148U (zh) * 2013-01-15 2013-06-26 烟台龙源电力技术股份有限公司 一种纯氧助燃的点火燃烧器

Also Published As

Publication number Publication date
CN103017160B (zh) 2016-05-04
CN103017160A (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
WO2014110996A1 (zh) 一种纯氧助燃的点火燃烧器
CN103615717A (zh) 一种新型富氧微油点火和超低负荷稳燃燃烧器
CN105805746A (zh) 一种分级燃烧燃气低氮燃烧器
CN100470128C (zh) 一种微油点火旋流煤粉燃烧器
CN207019063U (zh) 一种低热值/低压力燃气燃烧器
CN107218602A (zh) 一种低热值/低压力燃气燃烧器
CN107606613A (zh) 燃气空气精确分级内置烟气再循环的低氮旋流燃气燃烧器
CN106705039A (zh) 一种低负荷稳燃旋流型燃烧器
CN207527582U (zh) 燃气空气精确分级内置烟气再循环的低氮旋流燃气燃烧器
CN110822423A (zh) 一种带有肋片异径燃气自旋预混多用途燃烧器
CN111780106B (zh) 轧钢加热炉无焰燃烧器及其应用
CN110594739B (zh) 一种无需预热切换的无焰燃烧器
CN109973994B (zh) 一种低氮燃烧器
CN209840082U (zh) 一种中心射流煤粉低氮燃烧器
CN204460213U (zh) 一种多孔燃气射流烧嘴
CN217329793U (zh) 燃烧器和燃烧系统
CN109899786A (zh) 无焰低氮燃烧器及无焰低氮燃烧方法
CN203024148U (zh) 一种纯氧助燃的点火燃烧器
CN201233008Y (zh) 煤粉燃烧器
CN114278940A (zh) 燃烧器和燃烧系统
CN210004388U (zh) 一种低氮燃烧器
CN101749700A (zh) 一种煤粉炉微油点火燃烧方法
CN201599792U (zh) W火焰微油点火燃烧器
CN105698167A (zh) 带外置式分离装置的旋流燃烧装置
CN205979801U (zh) 快速互换的多燃料燃烧器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14740362

Country of ref document: EP

Kind code of ref document: A1