WO2014109512A1 - 음식물쓰레기 처리장치 - Google Patents
음식물쓰레기 처리장치 Download PDFInfo
- Publication number
- WO2014109512A1 WO2014109512A1 PCT/KR2014/000082 KR2014000082W WO2014109512A1 WO 2014109512 A1 WO2014109512 A1 WO 2014109512A1 KR 2014000082 W KR2014000082 W KR 2014000082W WO 2014109512 A1 WO2014109512 A1 WO 2014109512A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat medium
- drying
- unit
- food waste
- casing
- Prior art date
Links
- 239000010794 food waste Substances 0.000 title claims abstract description 88
- 238000012545 processing Methods 0.000 title claims abstract description 12
- 238000001035 drying Methods 0.000 claims abstract description 182
- 238000010438 heat treatment Methods 0.000 claims abstract description 49
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 21
- 239000002699 waste material Substances 0.000 claims abstract description 20
- 238000007599 discharging Methods 0.000 claims abstract description 10
- 230000001678 irradiating effect Effects 0.000 claims abstract description 4
- 238000009833 condensation Methods 0.000 claims description 57
- 230000005494 condensation Effects 0.000 claims description 57
- 239000003507 refrigerant Substances 0.000 claims description 45
- 238000003756 stirring Methods 0.000 claims description 30
- 238000011282 treatment Methods 0.000 claims description 26
- 238000011084 recovery Methods 0.000 claims description 5
- 239000010865 sewage Substances 0.000 claims description 3
- 230000000903 blocking effect Effects 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 claims 1
- 238000010298 pulverizing process Methods 0.000 abstract description 5
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 238000009422 external insulation Methods 0.000 abstract 3
- 239000007789 gas Substances 0.000 description 17
- 230000008901 benefit Effects 0.000 description 9
- 235000019645 odor Nutrition 0.000 description 9
- 238000001816 cooling Methods 0.000 description 7
- 238000001704 evaporation Methods 0.000 description 7
- 230000008020 evaporation Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000002912 waste gas Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 238000003912 environmental pollution Methods 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 230000008676 import Effects 0.000 description 3
- 230000004308 accommodation Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000013072 incoming material Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 230000035764 nutrition Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010169 landfilling Methods 0.000 description 1
- 238000011866 long-term treatment Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000010813 municipal solid waste Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000021395 porridge Nutrition 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 235000013324 preserved food Nutrition 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B3/00—Drying solid materials or objects by processes involving the application of heat
- F26B3/32—Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action
- F26B3/34—Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action by using electrical effects
- F26B3/347—Electromagnetic heating, e.g. induction heating or heating using microwave energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
- B09B3/40—Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B5/00—Operations not covered by a single other subclass or by a single other group in this subclass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B2200/00—Drying processes and machines for solid materials characterised by the specific requirements of the drying good
- F26B2200/04—Garbage
Definitions
- the present invention relates to a food waste treatment apparatus, and more specifically, by applying a low temperature drying method for drying food waste at low temperature conditions, foodstuff for improving overall drying efficiency, reducing operating costs, and effectively implementing eco-friendliness and the like. It relates to a garbage disposal apparatus.
- the biggest problem with food waste is that it contains a large amount of water mixed in food, which causes corruption and odors and sewage.
- Food wastes are classified into food wastes, which are produced at the pre-processing stage of food processing and left to be eaten after processing. These food wastes contain a large amount of water with a water content of 50 to 95%. Or if you want to recycle, the loss of moisture is very important.
- drying treatment method for reducing the moisture of food waste is mainly used as a treatment method of food waste, where drying refers to gasifying liquid moisture to separate it from a material.
- the important thing is about the input of dry energy.
- the heat source for drying has various methods such as hot air, warm air, conductive heating pulverization, microwave heating and the like.
- the conventional magnetron 31 cooling of the microwave 30 is directly attached to the heat sink to radiate heat at room temperature or radiate by water or air cooling, the heat generated is not dissipated, the performance is poor There was a disadvantage that also affects lifespan.
- the present invention has been made in view of the above problems, by applying a low temperature drying method for drying food waste at low temperature conditions, by improving the overall drying efficiency to save energy by reducing operating costs, and by processing quickly and in a short time
- a low temperature drying method for drying food waste at low temperature conditions by improving the overall drying efficiency to save energy by reducing operating costs, and by processing quickly and in a short time
- the purpose is.
- Its purpose is to prevent electromagnetic accidents, such as human body and facilities, by blocking electromagnetic waves generated from microwaves.
- the shredding unit for shredding the food waste
- the drying furnace for drying the food waste shredded by the shredding unit
- the micro-irradiated electromagnetic waves inside the drying furnace In the food waste treatment apparatus including a wave unit, a case for mounting a device for crushing and drying the waste, and a steam condensation unit 60 for condensing and discharging the high temperature steam generated in the drying furnace,
- the drying furnace includes a drying casing and a stirring unit for stirring the food waste introduced into the drying casing, and a heating medium circulation unit for circulating the heating medium through the heating medium heating unit and the heating medium heating unit is installed in the drying furnace.
- One side of the upper surface of the drying casing is irradiated with the electromagnetic waves generated from the microwave and heated, at the same time the heating medium is installed inside the lower portion of the drying casing to heat food waste,
- the heat medium heating part has an outer heat insulating layer provided in a "U" shape at the bottom of the dry casing, an inner wall spaced apart from the inside of the outer heat insulating layer, and a heat medium receiving space formed between the outer heat insulating layer and the inner wall to receive the heat medium. It features.
- a heating medium circulation unit is connected to the heating medium receiving space of the heating medium heating unit,
- the heat medium circulation unit is installed adjacent to the heat medium tank, the heat medium supply line for supplying the heat medium to the heat medium receiving space of the heat medium heating unit, the heat medium recovery line for recovering the heat medium from the heat medium receiving space of the heat medium heating unit, the heat medium tank for storing the heat medium, and the heat medium tank. And a heater for heating the heat medium in the heat medium tank, and a heat medium circulation pump provided adjacent to the heat medium tank.
- the shredding unit rotates a housing, a plurality of fixed shredding blades installed inside the housing, a rotating shaft rotatably installed through the housing and the plurality of fixed shredding blades, a plurality of rotary shredding blades provided on the outer circumferential surface of the rotary shaft, and a rotating shaft. It characterized in that it comprises a drive motor to.
- the plurality of rotary shredding blades and the plurality of fixed shredding blades are arranged to cross each other on a plane, and keep the portions of the rotary shredding blades and the fixed shredding blades overlap each other to block the electromagnetic waves, and one side wall of the drying furnace
- the discharge valve installed in the double is also characterized in that it is configured to block the electromagnetic waves to prevent accidents in advance.
- the stirring unit is characterized in that it comprises a stirring shaft rotatably installed in the drying casing, a plurality of stirring wings provided on the outer circumferential surface of the stirring shaft, a drive motor connected to one end of the stirring shaft to rotate the stirring shaft.
- the microwave unit is characterized in that it comprises a magnetron for generating electromagnetic waves, a waveguide for transmitting the electromagnetic waves generated in the magnetron into the dry casing, and a power supply for supplying power to the magnetron.
- the first temperature sensor for measuring the surface temperature is installed on the surface of the drying furnace
- the second temperature sensor for measuring the internal temperature of the drying furnace is installed inside the drying furnace
- the interior of the steam condensation unit inside the steam condensation unit is installed
- the first temperature sensor, the second temperature sensor, and the third temperature sensor are electrically connected to the control unit to control the operation state of the drying furnace by detecting the difference between the surface temperature of the drying furnace, the internal temperature, and the internal temperature of the steam condensation unit. Characterized in that.
- the steam condensation unit is a condensation casing for sucking and condensing high temperature steam generated in a drying casing of a drying furnace, and one side of the condensation casing is provided with a steam suction pipe, and a lower end thereof is connected to an upper surface of the dry casing.
- the upper end of the condensation casing is installed, the other side of the condensation casing expansion gas discharge pipe is installed, the first refrigerant coil for condensing the water vapor by heat exchange with the high temperature water vapor is installed inside the condensation casing, the first refrigerant The coil is connected to the refrigerant cooler through a first refrigerant circulation line.
- a condensate discharge pipe for discharging condensate is connected to a lower end of the condensation casing, and a U trap is installed at a lower end of the condensate discharge pipe and connected to a sewer pipe, and an overhaul gas exhaust pipe is connected between the U trap and the condensate discharge pipe. It is done.
- a second refrigerant circulation line for circulation in the refrigerant cooler is added to heat the second refrigerant coil by enclosing the entire outer portion of the magnetron.
- the valve is installed in the second refrigerant circulation line for circulation in the refrigerant cooler.
- the microwave unit installed in the case equipped with the waste crushing drying device, the steam condensation unit for condensing and discharging the water vapor, and the refrigerant cooler can be separately installed outside the case according to the processing capacity.
- the present invention it is possible to dry at a low temperature to protect the machine and the electric equipment, and because it is dried at a low temperature in the drying furnace, when recycled to feed, the temperature deviation of the product is not severe, the product does not burn, the state change is not severe Animals and plants do not interfere with intake, and nutrition is evenly retained.
- the present invention has the advantage of reducing the operating cost by saving 30-40% energy due to low temperature drying, reducing odor gas and reducing CO 2 to create an environment-friendly natural environment.
- the magnetron 31 of the microwave 30 is cooled by attaching a heat sink inside the magnetron to radiate air by air cooling at room temperature or by radiating water in the present invention.
- Low temperature refrigerant the cooling performance is significantly improved than before, and has the advantage of extending the life of two to three times compared to the conventional heat sink.
- the carbonized waste (product) is improved in the unit calorific value of the discharge, which is converted into alternative energy to replace fossil energy and is dependent on imports. It is possible to reduce the import of fossil energy and generate high cost profits.
- the present invention has a small amount of odor gas generated during drying, less impact on the surrounding environment, less risk of health and hygiene environment for the handling personnel due to the reduction of odor gas, and to the prior art to treat food waste by high temperature Compared to the durability of the equipment can be improved.
- the present invention can be directly added to the waste disposal apparatus without adjusting the weight, moisture content of the incoming materials, it is possible to reduce the operating cost by processing the discharge of food waste quickly, thereby increasing the durability of the equipment, and used conventionally
- By using low temperature water vapor without using high temperature and high pressure water vapor it is possible to prevent food waste from being carbonized in advance, and there is an advantage of not having to observe the intermediate treatment process in the food processing process. have.
- the present invention can uniformly maintain the uniformity of the physical properties of the final discharge (including volume, particles, imported products, quality, dryness and moisture content, oil content, etc.) during the waste disposal process and at the same time ( Waste) can be produced.
- FIG. 1 is a front view showing a food waste treatment apparatus according to an embodiment of the present invention.
- FIG. 2 is a plan view viewed from the arrow A direction of FIG. 1.
- FIG. 3 is a block diagram conceptually showing a configuration of a food waste treatment apparatus according to an embodiment of the present invention.
- Figure 4 is a front view showing a drying furnace of the food waste treatment apparatus according to the present invention.
- FIG. 5 is a cross-sectional view taken along line B-B of FIG. 4.
- FIG. 6 is a view showing a microwave unit of the food waste treatment apparatus according to the present invention.
- FIG. 7 is a plan view showing a shredding unit of the food waste treating apparatus according to the present invention.
- FIG. 8 is a cross-sectional view taken along line C-C of FIG. 7.
- FIG. 9 is a view showing a heat medium circulation unit of the food waste treatment apparatus according to the present invention.
- FIG. 10 is a front view showing a condenser of the food waste treating apparatus according to the present invention.
- FIG. 11 is a partial cross-sectional view taken along the line D-D of FIG. 10.
- FIG. 13 is an exemplary diagram showing a stop condition according to a temperature difference between a surface temperature of a drying furnace and an internal temperature of a steam condensation unit.
- FIG 14 is an exemplary view showing a graph showing operating conditions according to the temperature difference between the internal temperature of the drying furnace and the internal temperature of the steam condensation unit.
- 15 is a block diagram conceptually showing the configuration of a food waste treatment apparatus according to another embodiment of the present invention.
- 1 to 14 is a view showing a food waste treatment apparatus according to an embodiment of the present invention.
- the food waste treatment apparatus is a shredding unit 10 for shredding the food waste, the drying furnace 20 for drying the food waste shredded by the shredding unit 10 At least one microwave unit (30) for irradiating electromagnetic waves into the drying furnace (20), the heating medium to circulate the heating medium to the heating medium heating unit 40, the heating medium heating unit 40 installed inside the drying furnace 20
- the circulation unit 50 the steam condensation unit 60 for condensing and discharging the high-temperature steam generated in the drying furnace 20, a refrigerant cooler 70, and a case for mounting the device for crushing and drying the waste.
- the shape of the case to which the waste crushing and drying device is mounted is made of steel plate / plastic in a lattice shape, and is manufactured by installing equipment such as a crushing unit, a drying furnace, and a condensation unit in a layered manner inside the case.
- a hopper 18 into which food waste is put is disposed at an upper portion of the crushing unit 10.
- the crushing unit 10 is configured to crush the food waste introduced through the hopper 18 to a predetermined size.
- the shredding unit 10 is rotatable through the housing 11, the plurality of fixed shredding blades 12 and the housing 11 installed inside the housing 11.
- the rotary shaft 15 is provided, a plurality of rotary shredding blades 13 provided on the outer circumferential surface of the rotary shaft 15, and a drive motor 16 for rotating the rotary shaft 15.
- the housing 11 is arranged at the bottom of the hopper 18, and the top and bottom thereof are open.
- the plurality of fixed shredding blades 12 are installed at regular intervals inside the housing 11, and both ends of each of the fixed shredding blades 12 are fixed to the inner wall 11a of the housing 11, respectively.
- the rotating shaft 15 is rotatably installed through the front and rear of the housing 11, and one end of the rotating shaft 15 is connected to the driving motor 16 so that the rotating shaft 15 is rotated by the driving motor 16. do.
- the plurality of rotary shredding blades 13 are provided on the outer circumferential surface of the rotary shaft 15 at regular intervals, and the plurality of rotary shredding blades 13 are disposed in the gaps of the plurality of fixed shredding blades 12. That is, the plurality of rotary shredding blades 13 and the plurality of fixed shredding blades 12 may be alternately arranged on a plane as shown in the plan view of FIG.
- the food waste introduced from the hopper 18 is introduced into the housing 11, the food waste is crushed by the plurality of fixed crushing blades 12 and the plurality of rotary crushing blades 13 and discharged downward.
- the rotary crushing blades 13 and the fixed crushing blades 12 are rotated relative to the fixed crushing blade 12, even if the rotary crushing blades 13 and the fixed crushing blades 12 As shown in the conceptual diagram of FIG. 3, at least a portion of the front surface overlaps with each other (black color of 12 and 13), thereby preventing electromagnetic waves emitted from the microwave unit 30 to be described later leaking to the outside.
- a detection sensor (not shown) that detects overlap due to rotation of the crushing blade detects that the rotary crushing blade 13 and the fixed crushing blades 12 maintain at least some portion of the overlapping portion, and accordingly It is also configured to operate by transmitting signals to the device.
- the drying furnace 20 includes a drying casing 21 and a stirring unit 22 for stirring the food waste introduced into the drying casing 21.
- the food waste crushed by the crushing unit 10 is accommodated in the dry casing 21.
- Microwave 30 is installed on one side of the upper surface of the dry casing 21, the electromagnetic wave is incident and heated, and the heat medium heating portion 40 for heating the food waste by the heat medium is installed inside the lower casing 21
- the catalysis is achieved by heating.
- one side wall of the drying casing 21 is provided with a discharge valve 28 for discharging the dried food waste to the outside, the discharge valve 28 is connected to the drive motor 28a, to the drive motor 28a By the opening and closing operation of the discharge valve 28 is made of waste (product) is filled in the transport box is transported.
- microwaves of microwaves installed in a drying furnace are to cut off the power from the controller to stop the generation of electromagnetic waves temporarily to ensure safety.
- the present invention is to provide a dual discharge valve 28 installed on one side of the drying furnace in order to improve this, if any one of the discharge valve is opened by the failure during operation of the drying furnace, to prepare for this It is intended to be used as a safety measure.
- the stirring unit 22 is configured to uniformly stir the food waste contained in the dry casing 21.
- the stirring unit 22 is provided at one end of the stirring shaft 23 rotatably installed in the drying casing 21, the plurality of stirring wings 24 provided on the outer circumferential surface of the stirring shaft 23, and the stirring shaft 23. It is connected to include a drive motor 25 for rotating the stirring shaft (23).
- One or more microwave units 30 are installed on one side of the drying casing 21 of the drying furnace 20, as shown in FIGS. 1 and 2.
- the microwave may be arranged to be in series / parallel.
- microwave heating refers to a phenomenon in which microwaves are absorbed by a microwave from a material having a high dielectric constant and a dielectric loss meter, thereby self-heating.
- the microwave unit 30 supplies power to the magnetron 31 that generates microwaves, that is, electromagnetic waves, and the waveguides 32 and the magnetron 31 that transmit electromagnetic waves generated from the magnetron 31 into the dry casing 21. It includes a power supply 33.
- the microwave unit 30 is configured to adjust or subtract electromagnetic wave incident generated from the magnetron 31. Drying in a general drying furnace is classified into diffusion and evaporation, and the drying is performed. However, when a bulky solid material is heated and dried, drying is mainly performed by diffusion, and in some cases, diffusion and evaporation may be performed at the same time.
- the heating structure in which electromagnetic waves generated in the microwave of the present invention are incident is mainly dried by evaporation.
- the vaporized water vapor rises to 100 ° C, and the electromagnetic energy of the microwaves injected thereafter is gasified by increasing latent heat. At this time, the vapor pressure is increased so that the moisture in the incoming material escapes and evaporates.
- the microwave energy of the microwave is changed to latent heat, so the drying rate increases in proportion to the energy, and the moisture maintains the same amount of water as 100 ° C. water vapor under atmospheric pressure.
- the decrement drying section after the limit function yields that the energy not involved in water evaporation leads to an increase in the temperature of the dried material.
- the heat medium heating part 40 has an outer heat insulating layer 41 installed in a “U” shape under the dry casing 21, and an inner wall 42 spaced apart from the inner side of the outer heat insulating layer 41. ), And a heat medium receiving space 43 formed between the outer heat insulating layer 41 and the inner wall 42.
- a heat medium inlet 43a Through which the heat medium flows, and on the other side of the heat medium accommodating space 43 is formed a heat medium outlet 43b through which the heat medium flows out.
- the heat medium circulation unit 50 is connected to the heat medium receiving space 43, and the heat medium circulation unit 50 is configured to circulate the heat medium into the heat medium receiving space 43 of the heat medium heating part 40.
- the heat medium circulation unit 50 recovers the heat medium from the heat medium supply line 51 for supplying the heat medium to the heat medium receiving space 43 of the heat medium heating part 40, and the heat medium receiving space 43 of the heat medium heating part 40.
- Heat medium recovery line 52 heat medium tank 53 for storing the heat medium, adjacent to the heat medium tank 53, heater 54 for heating the heat medium in the heat medium tank 53, adjacent to the heat medium tank 53 It comprises a heat medium circulation pump 55 installed.
- the heat medium supply line 51 is connected to the heat medium inlet 43a of the heat medium accommodation space 43, and the heat medium recovery line 52 is connected to the heat medium outlet 43b of the heat medium accommodation space 43.
- the heat medium circulation unit 50 By the heat medium circulation unit 50, the heat medium stored in the heat medium tank 53 is supplied to the heat medium receiving space 43 through the heat medium supply line 51 after being heated by the heater 54, and thus the heat medium receiving space.
- the heat medium accommodated in 43 is dried by heating food waste in the dry casing 21.
- the cooled heat medium is recovered into the heat medium tank 53 through the heat medium recovery line 52, and then the heater 54 heats the heat medium in the heat medium receiving space 43 again.
- Electromagnetic waves generated by the magnetron 31 of the microwave 30 are transmitted through the waveguide 32 into the dry casing 21 and are incident, so that the electromagnetic waves transmitted from the upper portion of the dry casing 32 directly heat food waste.
- the heat medium in the heat medium receiving space 43 heats the food waste at the bottom, drying of the food waste under low temperature conditions, that is, low temperature drying can proceed very quickly and smoothly, compared to the prior art. Efficiency and drying time can be significantly shortened.
- the generated low temperature steam is collected by being sucked to the water vapor condensation unit 60.
- the steam condensation unit 60 is configured to inhale and condense the low temperature steam generated in the drying process of the food waste in the drying casing 21 of the drying furnace 20.
- the steam condensation unit 60 includes a condensation casing 61 for sucking and condensing the low temperature steam generated in the drying casing 21 of the drying furnace 20.
- a water vapor suction pipe 62 is installed at one side of the condensation casing 61, and a lower end of the water vapor suction pipe 62 is vertically connected to one side of the upper surface of the dry casing 21.
- the circulation fan 63 is installed at the end of the steam suction pipe 62.
- T-shaped 3-way valve is installed at the rear end of the circulation fan 63 installed at the end of the steam suction pipe 62, and one side is used as the steam inlet pipe and the other side is connected to the condensation pipe. It is used as a waste gas inlet pipe and is connected to the drying furnace, and a high temperature water vapor is installed by installing a sensor (not shown) that detects water vapor and odor gas inside the connection pipe connected to the 3-way valve.
- the suction of the drying furnace detects a state in which the supply to the condenser is completed, the three-way valve in the direction is shut off, and the waste gas and odor gas filled in the drying furnace are supplied to the combustor 80 to be combusted, thereby being introduced into the combustor 80. It purifies odors and waste gases and releases them into the atmosphere to prevent environmental pollution caused by waste gases and odors.
- An expansion gas discharge pipe 64 is installed at the other side of the condensation casing 61. Accordingly, the high temperature water vapor generated in the drying casing 21 of the drying furnace 20 passes through the water vapor suction pipe 62 by the circulation fan 63 and is sucked into the condensation casing 61.
- a first refrigerant coil 71 is installed inside the condensation casing 61 to condense water vapor by exchanging heat with inhaled high temperature steam, and discharges condensed water at the lower end of the condensation casing 61.
- the condensate discharge pipe 73 is connected to the lower end of the condensate discharge pipe 73, U trap 74 is installed, the U trap 74 is connected to the sewer pipe (not shown), the U trap 74 and condensation
- An overhaul gas discharge pipe 75 is connected between the discharge pipes 73.
- the refrigerant cooler 70 is connected to the first refrigerant coil 71 through the first refrigerant circulation lines 71a and 71b, and a compressor and a condenser are installed inside the refrigerant cooler 70. It is.
- the refrigerant cooled by the refrigerant cooler 70 circulates into the first refrigerant coil 71, and the hot water vapor sucked into the condensation casing 61 is condensed by heat exchange with the first refrigerant coil 71. Thus condensate and expansion gas are produced.
- the condensate generated in this way is discharged to the sewage pipe (not shown) through the condensate discharge pipe 73 and the U trap 74.
- the expansion gas generated by the condensation of water vapor is supplied to the dry casing 21 of the drying furnace 20 through the expansion gas discharge pipe 64 to recycle waste heat.
- the refrigerant cooler 70 is connected to the second refrigerant coil 72 formed through the second refrigerant circulation line (72a, 72b), the second refrigerant coil 72 is a microwave
- the magnetron 31 is wound around 30, and the refrigerant circulating in the second refrigerant coil 72 (the low temperature refrigerant at 0 to -30 ° C) directly cools the high heat generated by the magnetron 31, thereby cooling performance.
- the present invention has the advantage that the conventional service life can be used more than 2,000 hours to 10,000 hours or more, without installing an additional configuration, significantly extending the service life.
- a valve 81 is installed in the second refrigerant circulation lines 72a and 72b for circulation to control the flow of the refrigerant.
- the valve 81 is opened or closed manually or automatically.
- a first temperature sensor (not shown) for measuring the surface temperature of the drying furnace 20 is installed on the surface of the drying furnace 20 (that is, the surface of the drying casing 21).
- the inside of the drying 20 (that is, the inside of the drying casing 21) is provided with a second temperature sensor (not shown) for measuring the internal temperature of the drying furnace 20, the interior of the steam condensation unit 60
- a third temperature sensor (not shown) for measuring the internal temperature of the steam condensation unit 60 is installed in the condensation casing 61.
- the first temperature sensor, the second temperature sensor, and the third temperature sensor are electrically connected to a controller (not shown).
- the present invention is a control unit (not shown) by the temperature difference between the surface temperature of the drying furnace 20, the internal temperature of the drying furnace 20 and the internal temperature of the steam condensation unit 60, Comparative analysis is configured to control the operation of the drying furnace (20).
- the surface temperature of the drying furnace 20 when the incoming goods such as food waste is filled in the drying furnace 20, the surface temperature of the drying furnace 20 If the variable gradually rises and food waste is not filled in the drying furnace 20, the surface temperature of the drying furnace 20 rises rapidly.
- the internal temperature of the drying furnace 20 is not related to the filling of food waste.
- the internal temperature of the steam condensation unit 60 is a temperature variable according to the suction of the steam generated in the drying furnace 20, when the steam is sucked, the internal temperature of the steam condensation unit 60 rises, If it is not sucked, the internal temperature of the steam condensation unit 60 will drop rapidly.
- the control unit (not shown) includes a shredding unit 10, a drying furnace 20 for drying the food waste shredded by the shredding unit 10, and a microwave unit for irradiating electromagnetic waves into the drying furnace 20.
- the steam condensing unit 60 for condensing and discharging the high temperature steam generated in the drying furnace 20
- the stirring unit 22 for stirring the food waste introduced into the drying casing 21
- the heat medium heating unit 40 and the heat medium circulation unit 50 for circulating the heat medium to the heat medium heating unit 40, and the refrigerant cooler 70 are electrically connected to transfer information
- the drying Regarding furnace control temperature sensors installed on the surface of the drying furnace, inside the drying furnace, and inside the condenser are interconnected, and the information that detects the deviation of the temperature of each part is synthesized and transmitted to the PLC (Programmable Logical Controller). To control.
- each operating device may be started or stopped accordingly.
- the controller is a temperature difference between the internal temperature of the steam condensation unit 60 and the surface temperature of the drying furnace 20 is about 30 °C (for example, the internal temperature of the steam condensing unit 60 is 15 °C, the drying furnace 20 When the surface temperature is 45 °C), it can be controlled to stop the drying furnace (20).
- the temperature difference of the stop condition can be adjusted by the driver in various ways according to the facility standard, the state of the load, the amount of loading, the moisture content.
- the operation of the crushing unit 10, the stirring unit 22, the drying furnace 20 is stopped when the stop switch is turned on, and the microwave unit 30 and After the heater 54 of the heat medium circulation unit 50 is operated for about 3 minutes, the refrigerant cooler 70 is turned off, and the discharge valve 28 of the drying furnace 20 is closed.
- the control unit is a temperature difference between the internal temperature of the steam condensation unit 60 and the internal temperature of the drying furnace 20 is 20 °C (for example, the internal temperature of the steam condensing unit 60 is 87 °C and the drying furnace 20
- the operation of the drying furnace 20 can be controlled and adjusted.
- the temperature difference between these operating conditions can be adjusted by the operator in various ways according to the facility standard, the state of the load, the amount of loading, the moisture content.
- the stirring unit 22, and the drying furnace 20 are operated.
- the microwave unit 30, the heater 54 of the heat medium circulation unit 50, the steam condensation unit 60, the refrigerant cooler 70 is operated to dry, and discharged after the drying is completed.
- the valve 28 is opened to convey the discharge (waste) filled in the discharge box.
- the emergency button can be used to stop the operation of the food waste introduced into the hopper 18 and the operation of the shredding unit 10 and to close the discharge valve 28 of the drying furnace 20. have.
- wastes of different states can be obtained.
- the waste drying method it is possible to increase the degree of freedom of operation by dividing into the first waste drying method and the second waste drying method.
- the temperature difference between the internal temperature of the steam condensation unit 60 and the internal temperature of the drying furnace 20 is set to about 20 ° C., and the evaporation point of water and oil is different.
- the temperature difference By evaporating and removing only water (moisture) by the temperature difference, it is possible to obtain the discharge containing oil, the discharge by the primary drying can be recycled as fertilizer or feed.
- the control unit (not shown) is the surface temperature of the drying furnace 20, drying As it is configured to control the drying furnace 20 by the temperature difference between the internal temperature of the furnace 20 and the internal temperature of the steam condensation unit 60, it is possible to quickly enter the drying furnace 20 without adjusting the weight and moisture content of the loaded material. As it can be put in, it can be processed in a short time, which reduces the energy cost. Therefore, it is possible to effectively implement the increase of durability, energy saving, prevention of fire risk, etc. There is an advantage that the entire drying process is very simple.
- the present invention as described above, it is possible to protect the equipment by drying at a low temperature, because it is dried at a low temperature in a drying furnace, when used as feed, the temperature deviation of the product is not so severe that the change in the state of the product is not so severe There is no problem, and there is an advantage that can keep the nutrition state constantly.
- the present invention has the advantage of creating an environmentally friendly natural environment by reducing the operating cost and CO 2 by 30 to 40% energy saving by low temperature drying.
- the present invention has the advantage that the unit calorific value of the discharge is increased by carbonizing and drying the oil and non-condensable gas impregnated in the food waste during drying, thereby converting it into alternative energy to replace the fossil energy, the import of imported goods is less.
- the present invention has a small amount of gas generated during drying, less impact on the surrounding environment, less risk to the health environment for the handling personnel due to gas reduction, and can reduce the operating cost by reducing the amount of food waste discharged Compared with the prior art of treating food waste by high temperature, durability of the installation can be improved.
- the present invention has the advantage of maintaining a constant physical properties (including quality maintenance, dryness and moisture content maintenance, oil amount) of the final discharge.
Landscapes
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Electromagnetism (AREA)
- Molecular Biology (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Processing Of Solid Wastes (AREA)
- Drying Of Solid Materials (AREA)
Abstract
본 발명은 저온 조건에서 음식물쓰레기를 건조시키는 저온건조 방식을 적용함으로써 전체적인 건조효율의 향상, 운영비의 절감, 친환경성 등을 효과적으로 구현할 수 있는 음식물쓰레기 처리장치에 관한 것이다. 본 발명에 의한 음식물쓰레기 처리장치는, 음식물쓰레기를 파쇄하는 파쇄유닛과, 파쇄유닛에 의해 파쇄된 음식물쓰레기를 건조하는 건조로와, 상기 건조로의 내부에 전자파를 조사하는 마이크로웨이브유닛과, 쓰레기 파쇄 건조장치를 장착하는 케이스와, 건조로에서 생성된 고온의 수증기를 응축시켜 배출하는 수증기 응축유닛을 포함하는 음식물 쓰레기 처리장치에 있어서, 상기 건조로는 건조케이싱과, 이 건조케이싱 내로 유입된 음식물쓰레기를 교반하는 교반유닛을 구비하고, 상기 건조로 내부에는 열매체 가열부와 열매체 가열부로 열매체를 순환시키는 열매체 순환유닛이 설치되고, 상기 건조케이싱의 상면 일측에는 마이크로웨이브에서 생성된 전자파가 조사되어 가열시킴과 동시에, 상기 건조케이싱의 하부 내측에서 열매체 가열부가 설치되어 음식물쓰레기를 가열하는 것이며, 상기 열매체 가열부는 건조케이싱의 하부에 "U"자형으로 설치된 외부 단열층과, 외부 단열층의 내측에 이격된 내측벽과, 외부 단열층과 내측벽 사이에 형성되어 열매체를 수용하는 열매체 수용공간을 구비하는 것을 특징으로 한다.
Description
본 발명은 음식물쓰레기 처리장치에 관한 것으로, 보다 상세하게는 저온조건에서 음식물쓰레기를 건조시키는 저온건조 방식을 적용함으로써 전체적인 건조효율을 향상하고, 운영비를 절감하고, 친환경성 등을 효과적으로 구현하기 위한 음식물쓰레기 처리장치에 관한 것이다.
음식물쓰레기는 해마다 증가하는 것이며, 매립이나 소각에 따른 환경문제와 냄비현상 등의 어려움으로 인하여 점차 음식물쓰레기 배출기준이 강화되고 있으며, 기준미달의 경우 수거하지 않도록 하는 추세의 정책방향으로 진행되고 있는 실정이다.
음식물쓰레기의 가장 큰 문제점은 음식물속에 혼재된 다량의 수분을 함유하고 있다는 것이며, 이로 인해 쉽게 부패하고 악취 및 오수를 발생시킨다.
음식물쓰레기를 단순히 지하에 매몰하는 것은 침출수를 비롯한 환경오염을 유발하며, 제한된 국토면적으로 인해 장기적인 처리방법으로는 부적절한 방법이라 할 수 있다.
음식물을 먹기 위한 가공의 전 단계에서 발생되는 부수물과 가공 후 먹고 남아 버려지게 되는 것을 음식물 쓰레기로 분류하는 데 이러한 음식물 쓰레기는 함수율이 50~95% 정도로 다량의 수분이 함유된 것으로, 이것을 폐기하거나 혹은 재활용하고자 하는 경우에는 수분의 감량이 매우 중요하다.
최근에는 음식물쓰레기의 처리방식으로 음식물 쓰레기의 수분을 감량 처리하는 건조처리 방식이 주로 이용되고 있고 있으며, 여기서 건조라 함은 액체의 수분을 기체화하여 물질로부터 분리시키는 것을 의미하며, 이러한 건조과정에서 중요한 것은 건조에너지의 투입에 관한 것이다.
음식물 쓰레기의 건조 처리방식에 있어서 건조를 위한 열원은 열풍, 온풍, 전도가열 분쇄, 마이크로웨이브 가열 등과 같은 다양한 방식이 있었다.
하지만, 종래의 음식물쓰레기의 건조처리방식은 고온에서 음식물쓰레기의 건조가 진행됨에 따라 건조에너지가 과다하게 투입되므로 인하여 전체적인 건조효율이 저조할 뿐만 아니라, 에너지 다량 소비로 운영비가 높으며, 배기가스와 악취 등이 심하게 배출되어 대기와 수질 등의 환경오염을 유발하는 단점이 있었다.
종래의 마이크로웨이브(30)의 마그네트론(31) 냉각은 방열판을 직접부착하여 상온에서 방열하거나 수냉 또는 공냉식으로 방열하는 방식을 사용하게 되면, 생성된 열을 소산하지 못함으로 인하여, 그 성능이 저조하고 수명에도 영향을 미치는 단점이 있었다.
본 발명은 상기와 같은 문제점을 감안하여 안출한 것으로, 저온 조건에서 음식물쓰레기를 건조시키는 저온건조 방식을 적용함으로써, 전체적인 건조효율을 향상시켜 에너지를 절감하여 운영비를 절감하고, 신속하고 단시간에 처리함으로서 일정한 성상의 폐기물을 생산처리하고, 그에 따른 품질 균일화를 유지하도록 하고, 악취가스저감으로 인체에 미치는 영향을 제거하고, 대기중에 방출하여 친환경성 등을 효과적으로 구현할 수 있는 음식물쓰레기 처리장치를 제공하는 데 그 목적이 있다.
마이크로웨이브(30)의 마그네트론(31)의 냉각방식을 개선하여 추가적인 부가장치를 설치하지 않고, 기존에 활용하던 장치에 연결관을 연결하여 활용함으로서 그에 따른 방열성능을 향상함과 동시에 장치의 수명을 연장하는데 그 목적이 있다.
마이크로웨이브에서 발생하는 전자파를 차단하여 인체 및 설비 등의 안전사고를 미연에 방지하는데 그 목적이 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 음식물쓰레기 처리장치는, 음식물쓰레기를 파쇄하는 파쇄유닛과, 파쇄유닛에 의해 파쇄된 음식물쓰레기를 건조하는 건조로와, 상기 건조로의 내부에 전자파를 조사하는 마이크로웨이브유닛과, 쓰레기를 파쇄하고 건조하는 장치를 장착하는 케이스와, 건조로에서 생성된 고온의 수증기를 응축시켜 배출하는 수증기 응축유닛(60)을 포함하는 음식물 쓰레기 처리장치에 있어서,
상기 건조로는 건조케이싱과, 이 건조케이싱 내로 유입된 음식물쓰레기를 교반하는 교반유닛을 구비하고, 상기 건조로 내부에는 열매체 가열부와 열매체 가열부로 열매체를 순환시키는 열매체 순환유닛이 설치되고,
상기 건조케이싱의 상면 일측에는 마이크로웨이브에서 생성된 전자파가 조사되어 가열시킴과 동시에, 상기 건조케이싱의 하부 내측에서 열매체 가열부가 설치되어 음식물쓰레기를 가열하는 것이며,
상기 열매체 가열부는 건조케이싱의 하부에 "U"자형으로 설치된 외부 단열층과, 외부 단열층의 내측에 이격된 내측벽과, 외부 단열층과 내측벽 사이에 형성되어 열매체를 수용하는 열매체 수용공간을 구비하는 것을 특징으로 한다.
상기 열매체 가열부의 열매체 수용공간에는 열매체 순환유닛이 연결되고,
상기 열매체 순환유닛은 열매체 가열부의 열매체 수용공간으로 열매체를 공급하는 열매체 공급라인, 열매체 가열부의 열매체 수용공간으로부터 열매체를 회수하는 열매체 회수라인, 열매체를 저장하는 열매체 탱크, 이 열매체 탱크에 인접하여 설치되어 열매체 탱크 내의 열매체를 가열하는 히터, 상기 열매체 탱크에 인접하여 설치된 열매체 순환펌프를 포함하는 것을 특징으로 한다.
상기 파쇄유닛은 하우징, 이 하우징의 내부에 설치된 복수의 고정파쇄날, 상기 하우징 및 복수의 고정파쇄날을 관통하여 회전가능하게 설치된 회전축, 이 회전축의 외주면에 설치된 복수의 회전파쇄날, 회전축을 회전시키는 구동모터를 포함하는 것을 특징으로 한다.
상기 복수의 회전파쇄날과 복수의 고정파쇄날들은 평면상에서 서로 교차하도록 배치되고, 상기 회전파쇄날과 고정파쇄날의 일부가 서로 중첩되는 부분을 일정하게 유지하여 전자파를 차단하고, 건조로의 일측벽에 설치된 배출밸브도 이중으로 설치하여 전자파를 차단하여 안전사고를 미연에 방지하도록 구성되는 것을 특징으로 한다.
상기 교반유닛은 건조케이싱 내에 회전가능하게 설치된 교반축, 이 교반축의 외주면에 설치된 복수의 교반날개, 교반축의 일단부에 연결되어 교반축을 회전시키는 구동모터를 포함하는 것을 특징으로 한다.
마이크로웨이브유닛은 전자파를 생성하는 마그네트론, 마그네트론에서 발생된 전자파를 건조케이싱 내로 전송하는 도파관, 마그네트론에 전원을 공급하는 전원공급부를 포함하는 것을 특징으로 한다.
상기 건조로의 표면에 표면온도를 측정하는 제1온도센서가 설치되고, 상기 건조로의 내부에는 건조로의 내부온도를 측정하는 제2온도센서가 설치되며, 상기 수증기 응축유닛의 내부에는 수증기 응축유닛의 내부온도를 측정하는 제3온도센서가 설치되며,
상기 제1온도센서, 제2온도센서, 제3온도센서는 제어부에 전기적으로 접속되어 건조로의 표면온도와, 그 내부온도, 수증기 응축유닛의 내부온도의 차이를 상호 감지하여 건조로의 작동 상태를 제어하는 것을 특징으로 한다.
상기 수증기 응축유닛은 건조로의 건조케이싱에서 생성된 고온의 수증기를 흡입하여 응축하는 응축케이싱과, 상기 응축케이싱의 일측은 수증기 흡입관이 설치하고, 그 하단은 건조케이싱의 상면에 접속되며, 상기 수증기 흡입관의 상단부는 순환팬을 설치한 것이고, 응축케이싱의 타측은 팽창가스 배출관이 설치되며, 상기 응축케이싱의 내부에는 고온의 수증기와 열교환하여 수증기를 응축시키는 제1냉매코일이 설치되고, 상기 제1냉매코일은 제1냉매순환라인을 통해 냉매 냉각기에 연결되는 것을 특징으로 한다.
상기 응축케이싱의 하단에는 응축수를 배출하는 응축수배출관이 연결되며, 이 응축수배출관의 하단에는 U트랩이 설치되어 하수관에 접속되며, U트랩과 응축배출관 사이에는 오버홀(OVERHAUL) 가스배출관이 연결되는 것을 특징으로 한다.
상기 냉매 냉각기에서 순환용 제2냉매순환라인을 추가하여 제2냉매코일을 마그네트론 외주부 전체를 휘감아 방열시키는 것을 특징으로 한다.
상기 냉매 냉각기에서 순환용 제2냉매순환라인에 밸브를 설치하는 것을 특징으로 한다.
쓰레기 파쇄 건조장치를 장착하는 케이스에 설치된 마이크로웨이브유닛과, 수증기를 응축시켜 배출하는 수증기 응축유닛과, 냉매 냉각기는 처리용량에 따라 케이스의 외부에 별도로 설치할 수 있는 것을 특징으로 한다.
본 발명에 의하면, 저온에서 건조가 가능하여 기계 및 전장장치를 보호할 수 있으며, 건조로에서 저온으로 건조하기 때문에 사료로 재활용할 경우, 생성물의 온도편차가 심하지 않아 생성물이 타지 않고, 상태변화가 심하지 않아 동식물이 섭취하는데 지장이 없으며, 영양상태도 고르게 간직할 수 있는 장점이 있다.
본 발명은 저온건조로 인하여 30~40% 에너지 절약에 의해 운영비를 절감하고, 악취가스 저감 과 CO2를 감축하여 친환경적인 자연환경을 조성하는 장점이 있다.
*종래의 마이크로웨이브(30)의 마그네트론(31) 냉각은 마그네트론 내부에 방열판을 부착하여 상온에서 공냉식으로 방열하거나 수냉으로 방열하던 것을 본 발명에서는 추가적인 부대설비 없이, 냉매 냉각기(70)의 냉매를 직접 활용하여 제2냉매순환라인(72a, 72b)을 통해 형성된 제2냉매코일(72)을 마이크로웨이브(30)의 마그네트론(31)을 휘감아 고열원을 생성한 열원을 직접 냉각(0 ~ -30℃의 저온 냉매)시킴으로써, 냉각성능을 기존보다 대폭 향상하고, 종래의 방열판에 비해 2~3배의 수명을 연장하는 장점이 있다.
본 발명은 건조시 폐기물에 함축된 유분과 비응축가스를 포함하여 건조함 으로서 탄화된 폐기물(제품)은 그 배출물의 단위발열량이 향상되고, 이에 화석에너지를 대체하는 대체에너지로 변환되어 수입에 의존하던 화석에너지의 반입을 줄일 수 있으며, 고비용의 이익창출을 기할 수 있다.
본 발명은 건조 시에 발생하는 악취가스의 발생량이 적어 주변환경에 미치는 영향이 적고, 악취가스저감으로 취급인원에 대한 보건위생환경에 대한 위험도가 적고, 고온에 의하여 음식물쓰레기를 처리하는 종래기술에 비해 설비의 내구성을 향상시킬 수 있다.
본 발명은 반입물의 중량, 함수율을 조정하지 않고 쓰레기처리 장치에 직접 투입이 가능하여, 음식물쓰레기의 배출량을 신속하게 처리함으로서 운영비를 감축할 수 있으며, 이에 따른 설비의 내구성을 증가시키고, 종래에 사용한 고온고압의 수증기를 사용하지 않고 저온의 수증기를 활용함으로서 음식물쓰레기가 탄화되어 화재위험성이 발생하는 것을 사전에 방지할 수 있는 것이며, 음식물 처리과정에서 중간처리과정을 추가로 관찰할 필요가 없는 장점이 있다.
본 발명은 쓰레기 처리 과정에서 최종 배출물의 물리적 성상(부피, 입자, 반입제품, 품질, 건조도 및 함수율유지, 기름량 등 포함)이 균일하지 못한 것을 균일하게 유지할 수 있음과 동시에 균일한 품질의 제품(폐기물)을 생산할 수 있는 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 음식물쓰레기 처리장치를 도시한 정면도이다.
도 2는 도 1의 화살표 A방향에서 바라본 평면도이다.
도 3은 본 발명의 일 실시예에 따른 음식물쓰레기 처리장치의 구성을 개념적으로 도시한 구성도이다.
도 4는 본 발명에 의한 음식물쓰레기 처리장치의 건조로를 도시한 정면도이다.
도 5는 도 4의 B-B선을 따라 도시한 단면도이다.
도 6은 본 발명에 의한 음식물쓰레기 처리장치의 마이크로웨이브유닛을 도시한 도면이다.
도 7은 본 발명에 의한 음식물쓰레기 처리장치의 파쇄유닛을 도시한 평면도이다.
도 8은 도 7의 C-C선을 따라 도시한 단면도이다.
도 9는 본 발명에 의한 음식물쓰레기 처리장치의 열매체순환유닛을 도시한 도면이다.
도 10은 본 발명에 의한 음식물쓰레기 처리장치의 응축기를 도시한 정면도이다.
도 11은 도 10의 D-D선을 따라 도시한 부분 단면도이다.
도 12는 도 11의 E-E선을 따라 도시한 부분 단면도이다.
도 13은 건조로의 표면온도 및 수증기 응축유닛의 내부온도의 온도차이에 따른 정지조건을 그래프로 나타낸 예시도면이다.
도 14는 건조로의 내부온도 및 수증기 응축유닛의 내부온도의 온도차이에 따른 동작조건을 그래프로 나타낸 예시도면이다.
도 15는 본 발명의 다른 실시예에 따른 음식물쓰레기 처리장치의 구성을 개념적으로 도시한 구성도이다.
이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다. 참고로, 본 발명을 설명하는 데 참조하는 도면에 도시된 구성요소의 크기, 선의 두께 등은 이해의 편의상 다소 과장되게 표현되어 있을 수 있다. 또, 본 발명의 설명에 사용되는 용어들은 본 발명에서의 기능을 고려하여 정의한 것이므로 사용자, 운용자 의도, 관례 등에 따라 달라질 수 있다. 따라서, 이 용어에 대한 정의는 본 명세서의 전반에 걸친 내용을 토대로 내리는 것이 마땅하겠다.
도 1 내지 도 14는 본 발명의 일 실시예에 따른 음식물쓰레기 처리장치를 도시한 도면이다.
도 1 내지 도 3에 도시된 바와 같이, 본 발명에 의한 음식물쓰레기 처리장치는 음식물쓰레기를 파쇄하는 파쇄유닛(10), 파쇄유닛(10)에 의해 파쇄된 음식물쓰레기를 건조하는 건조로(20), 건조로(20)의 내부에 전자파를 조사하는 하나 이상의 마이크로웨이브유닛(30), 건조로(20)의 내부에 설치된 열매체 가열부(40), 열매체 가열부(40)로 열매체를 순환시키는 열매체 순환유닛(50), 건조로(20)에서 생성된 고온의 수증기를 응축시켜 배출하는 수증기 응축유닛(60), 냉매 냉각기(70), 쓰레기를 파쇄하고 건조하는 장치를 장착하는 케이스를 포함한다. 쓰레기를 파쇄하고 건조하는 장치를 장착하는 케이스의 형상은 격자형으로 철판/ 프라스틱으로 제작하고, 그 케이스 내부에 파쇄유닛, 건조로, 응축유닛 등의 설비를 층상으로 설치하여 제작하는 것이다.
파쇄유닛(10)의 상부에는 음식물쓰레기가 투입되는 호퍼(18)가 배치되며, 이 호퍼(18)를 통해 투입된 음식물쓰레를 파쇄유닛(10)이 일정크기로 파쇄하도록 구성된다.
파쇄유닛(10)은 도 7 및 도 8에 도시된 바와 같이, 하우징(11), 이 하우징(11)의 내부에 설치된 복수의 고정파쇄날(12), 하우징(11)을 관통하여 회전가능하게 설치된 회전축(15),이 회전축(15)의 외주면에 설치된 복수의 회전파쇄날(13), 회전축(15)을 회전시키는 구동모터(16)를 포함한다.
하우징(11)은 호퍼(18)의 하부에 배치되고, 그 상부 및 하부가 개방되어 있다.
복수의 고정파쇄날(12)은 하우징(11)의 내부에 일정간격으로 이격되게 설치되고, 각 고정파쇄날(12)의 양단부는 하우징(11)의 내측벽(11a)에 각각 고정되어 있다.
회전축(15)은 하우징(11)의 전방 및 후방을 관통하여 회전가능하게 설치되고, 회전축(15)의 일단에는 구동모터(16)가 연결되어 구동모터(16)에 의해 회전축(15)이 회전한다.
*복수의 회전파쇄날(13)은 회전축(15)의 외주면에 일정간격으로 이격되어 설치되고, 복수의 회전파쇄날(13)은 복수의 고정파쇄날(12)의 이격틈새에 배치된다. 즉, 복수의 회전파쇄날(13)과 복수의 고정파쇄날(12)들은 도 7의 평면도에 나타난 바와 같이 평면 상에서 서로 교대로 배치될 수 있다.
이에, 호퍼(18)로부터 투입된 음식물 쓰레기가 하우징(11) 내로 유입된 후에 복수의 고정파쇄날(12) 및 복수의 회전파쇄날(13)에 의해 파쇄되어 하부로 배출된다.
한편, 회전파쇄날(13)과 고정파쇄날(12)들은 회전파쇄날(13)이 고정파쇄날(12)에 대해 상대적으로 회전하더라도 회전파쇄날(13)과 고정파쇄날(12)들은 도 3의 개념도에 나타난 바와 같이 정면상에서 적어도 일부가 중첩(12,13의 검은색상)됨에 따라 후술하는 마이크로웨이브유닛(30)에서 조사되는 전자파가 외부로 누출됨을 차단할 수 있다.
특히, 파쇄날의 회전에 따른 중첩을 감지하는 감지센서(미도시)는 회전파쇄날(13)과 고정파쇄날(12)들이 적어도 어느 일부가 항상 중첩되는 부분을 유지하도록 감지하고, 그에 따른 관련장치에도 신호를 전달하여 작동할 수 있도록 구성된다.
건조로(20)는 도 4 및 도 5에 도시된 바와 같이, 건조케이싱(21), 이 건조케이싱(21) 내로 유입된 음식물쓰레기를 교반하는 교반유닛(22)을 포함한다.
건조케이싱(21) 내에는 파쇄유닛(10)에 의해 파쇄된 음식물쓰레기가 수용된다. 건조케이싱(21)의 상면 일측에는 마이크로웨이브(30)가 설치되어 전자파를 입사시켜 가열시키고, 건조케이싱(21)의 하부 내측에는 열매체에 의해 음식물쓰레기를 가열하는 열매체 가열부(40)가 설치되어 가열에 따른 촉매작용을 이루도록 한다.
그리고, 건조케이싱(21)의 일측벽에는 건조된 음식물쓰레기를 외부로 배출하는 배출밸브(28)가 설치되고, 배출밸브(28)는 구동모터(28a)가 연결되며, 구동모터(28a)에 의해 배출밸브(28)의 개폐작동이 이루어져 폐기물(제품)이 운반박스에 충진되어 운반처리되는 것이다. 일반적으로 건조로에 설치된 마이크로웨이브의 전자파는 제어기에서 전원을 차단함으로서 전자파 생성이 일시에 중단되어 안전성을 확보하는 것이다.
그러나 전자파는 고압의 전류가 발생하는 것으로서 안전을 최우선으로 생각한다면, 그에 대한 대응수단이 강구되어 있어야 하나, 종래의 선행기술은 위험성을 인식하고 있으나, 그에 대한 개선수단이 전무한 상태로 현재 운영되고 있다.
따라서, 본 발명은 이를 개선하기 위하여 건조로의 일측에 설치된 배출밸브(28)를 이중(dual)으로 설치하여, 건조로 가동 중에 어느 하나의 배출밸브가 고장에 의하여 틈새가 벌어질 경우, 이를 대비하는 안전수단으로 활용하게 위한 것이다.
교반유닛(22)은 건조케이싱(21) 내에 수용된 음식물쓰레기를 균일하게 교반하도록 구성된다. 이 교반유닛(22)은 건조케이싱(21) 내에 회전가능하게 설치된 교반축(23), 이 교반축(23)의 외주면에 설치된 복수의 교반날개(24), 교반축(23)의 일단부에 연결되어 교반축(23)을 회전시키는 구동모터(25)를 포함한다.
하나 이상의 마이크로웨이브유닛(30)은 도 1 및 도 2에 도시된 바와 같이, 건조로(20)의 건조케이싱(21) 일측에 설치된다. 상기 마이크로웨이브는 직렬/병렬이 가능하도록 배치할 수 있다.
도 6에 도시된 바와 같이, 통상적으로 마이크로웨이브 가열이란 유전율, 유전손실계가 높은 물질에 마이크로웨이브가 입사되면, 그 물질에서 마이크로웨이브를 흡수하여 자체 발열되는 현상을 말하는 것이다.
마이크로웨이브유닛(30)은 마이크로파 즉, 전자파를 생성하는 마그네트론(31), 마그네트론(31)에서 발생된 전자파를 건조케이싱(21) 내로 전송하는 도파관(32), 마그네트론(31)에 전원을 공급하는 전원공급부(33)를 포함한다.
그리고, 마이크로웨이브유닛(30)은 마그네트론(31)에서 발생된 전자파 입사를 가감하여 조정하도록 구성된다. 일반적인 건조로의 건조는 확산과 증발현상으로 구별되어 건조되나, 부피가 있는 고체물질을 가열하여 건조하면, 주로 확산에 의해 건조가 이루어지고, 일부는 확산과 증발이 동시에 이루어지는 경우도 있다.
본 발명의 마이크로웨이브에서 발생한 전자파를 입사시킨 가열구조는 주로 증발현상에 의하여 건조가 이루어진다. 상기 증발된 수증기는 100℃까지 상승하고, 그 이후 투입되는 마이크로웨이브의 전자파에너지는 잠열 증가로 기체화되는 것이며, 이때 발생한 증기압은 상승하여 반입재료 속의 수분은 외부로 이탈되어 증발하는 것이다.
따라서 마이크로웨이브의 전자파에너지는 잠열로 바뀌는 것이므로 건조속도는 에너지에 비례하여 증가하고, 수분은 대기압하의 100℃ 수증기와 동일한 상태량을 유지한다. 이에 따른 한계함수율 이후 감률건조구간은 수분증발에 관여하지 못한 에너지는 피 건조물의 온도 상승을 유도하며 이를 관리하지 못하면 현열 증가로 재료는 탄화현상이 발생한다.
열매체 가열부(40)는 도 5에 도시된 바와 같이, 건조케이싱(21)의 하부에 "U"자형으로 설치된 외부 단열층(41), 외부 단열층(41)의 내측에 이격되게 설치된 내측벽(42), 외부 단열층(41)과 내측벽(42) 사이에 형성된 열매체 수용공간(43)을 포함한다.
열매체 수용공간(43)의 일측에는 열매체가 유입되는 열매체 유입구(43a)가 형성되고, 열매체 수용공간(43)의 타측에는 열매체가 유출되는 열매체 유출구(43b)가 형성된다.
열매체 수용공간(43)에는 열매체 순환유닛(50)이 연결되고, 이 열매체 순환유닛(50)은 열매체 가열부(40)의 열매체 수용공간(43)으로 열매체를 순환시키도록 구성된다.
열매체 순환유닛(50)은 열매체 가열부(40)의 열매체 수용공간(43)으로 열매체를 공급하는 열매체 공급라인(51), 열매체 가열부(40)의 열매체 수용공간(43)으로부터 열매체를 회수하는 열매체 회수라인(52), 열매체를 저장하는 열매체 탱크(53), 이 열매체 탱크(53)에 인접하여 설치되어 열매체 탱크(53) 내의 열매체를 가열하는 히터(54), 열매체 탱크(53)에 인접하여 설치된 열매체 순환펌프(55)를 포함한다.
열매체 공급라인(51)은 열매체 수용공간(43)의 열매체 유입구(43a)에 접속되고, 열매체 회수라인(52)은 열매체 수용공간(43)의 열매체 유출구(43b)에 접속된다.
이러한 열매체 순환유닛(50)에 의해, 열매체 탱크(53) 내에 저장된 열매체는 히터(54)에 의해 가열된 후에 열매체 공급라인(51)을 통해 열매체 수용공간(43)으로 공급되고, 이에 열매체 수용공간(43) 내에 수용되는 열매체는 건조케이싱(21) 내의 음식물쓰레기를 가열하여 건조한다.
이렇게 음식물쓰레기를 가열하여 건조함에 따라 냉각된 열매체는 열매체 회수라인(52)을 통해 열매체 탱크(53) 내로 회수된 후에 히터(54)가 열매체 수용공간(43)의 열매체를 재차 가열한다.
마이크로웨이브(30)의 마그네트론(31)에서 생성된 전자파는 도파관(32)을 통해 건조케이싱(21) 내로 전송되어 입사됨에 따라 건조케이싱(32)의 상부에서 전달되는 전자파가 음식물쓰레기를 직접 가열함과 더불어, 열매체 수용공간(43) 내의 열매체가 음식물쓰레기를 하부에서 가열함에 따라 종래의 선행기술에 비해 저온조건에서의 음식물쓰레기의 건조 즉, 저온 건조가 매우 신속하고 단시간에 원활하게 진행될 수 있어 건조효율과 건조시간을 대폭 단축할 수 있다.
이러한 마이크로웨이브유닛(30)의 전자파 및 열매체 가열부(40)의 열매체에 의해 음식물쓰레기가 가열 건조됨에 따라, 발생된 저온의 수증기는 수증기 응축유닛(60) 측으로 흡입하여 포집된다.
수증기 응축유닛(60)은 음식물쓰레기의 건조 과정에서 생성된 저온의 수증기를 건조로(20)의 건조케이싱(21)에서 흡입하여 응축시키도록 구성된다.
수증기 응축유닛(60)은 도 10 내지 도 12에 도시된 바와 같이, 건조로(20)의 건조케이싱(21)에서 생성된 저온의 수증기를 흡입하여 응축시키는 응축케이싱(61)을 포함한다.
응축케이싱(61)의 일측에 수증기 흡입관(62)이 설치되고, 이 수증기 흡입관(62)의 하단은 건조케이싱(21)의 상면 일측에 수직하게 접속된다. 수증기 흡입관(62)의 단부에 순환팬(63)이 설치된다.
상기 수증기 흡입관(62)의 단부에 설치된 순환팬(63)의 후단에 T자형의 3방밸브(3 WAY VALVE)를 설치하여 일측은 수증기 인입관으로 사용하여 응축관에 연결되고, 타측은 악취 및 폐가스 인입관으로 사용하여 건조로에 연결되는 것이며, 상기의 3방밸브(3 WAY VALVE)와 연접된 연결관의 내부에는 수증기와 악취가스를 감지하는 감지센서(미도시)를 설치하여 고온의 수증기가 건조로에서 흡입하여 응축기에 공급이 완료되는 상태를 감지하면, 그 방향의 삼방밸브는 차단하고, 건조로에 충진된 폐가스와 악취가스를 연소기(80)로 공급하여 연소시킴으로서, 연소기(80)로 인입된 악취와 폐가스를 정화시켜 대기 중으로 방출하여 폐가스와 악취로 인한 환경오염을 사전방지하여 인체와 대기의 자연환경을 정화시키기 위한 것이다.
응축케이싱(61)의 타측에 팽창가스 배출관(64)이 설치된다. 이에 건조로(20)의 건조케이싱(21) 내에서 생성된 고온의 수증기는 순환팬(63)에 의해 수증기 흡입관(62)을 통과하여 응축케이싱(61) 내로 흡입된다.
도 12에 도시된 바와 같이, 응축케이싱(61)의 내부에는 흡입된 고온의 수증기와 열교환하여 수증기를 응축시키는 제1냉매코일(71)이 설치되고, 응축케이싱(61)의 하단에는 응축수를 배출하는 응축수배출관(73)이 연결되며, 이 응축수배출관(73)의 하단에는 U트랩(74)이 설치되고, U트랩(74)은 하수관(미도시)에 접속되며, U트랩(74)과 응축배출관(73) 사이에는 오버홀 가스배출관(75)이 연결된다.
도 3에 도시된 바와 같이, 제1냉매코일(71)에는 제1냉매순환라인(71a, 71b)을 통해 냉매 냉각기(70)가 연결되고, 냉매 냉각기(70)의 내부에는 압축기 및 응축기가 설치되어 있다. 이러한 냉매 냉각기(70)에 의해 냉각된 냉매는 제1냉매코일(71)로 순환하고, 이에 응축케이싱(61) 내로 흡입된 고온의 수증기는 제1냉매코일(71)과의 열교환에 의해 응축됨에 따라 응축수 및 팽창가스가 생성된다.
이렇게 생성된 응축수는 응축수배출관(73) 및 U트랩(74)을 통과하여 하수관(미도시)으로 배출된다. 또한, 수증기의 응축에 따라 생성된 팽창 가스는 팽창가스 배출관(64)를 통과하여 건조로(20)의 건조케이싱(21)로 공급됨으로써 폐열을 재활용할 수 있다.
한편, 도 3에 도시된 바와 같이, 냉매 냉각기(70)에는 제2냉매순환라인(72a, 72b)을 통해 형성된 제2냉매코일(72)을 연결하고, 제2냉매코일(72)은 마이크로웨이브(30)의 마그네트론(31)를 휘감아 설치되며, 이에 제2냉매코일(72)을 순환하는 냉매(0 ~ -30℃의 저온 냉매)는 마그네트론(31)에서 생성되는 고열을 직접 냉각함으로써 냉각성능을 대폭 향상하고, 종래의 방열판에 비해 수명을 2~3배 상승시킬 수 있다.
또한, 본 발명은 부가적인 구성을 설치하지 않고, 종래의 사용시간이 2,000 시간에서 10,000 시간 이상 사용할 수 있어 사용수명을 대폭 연장할 수 있는 장점이 있다.
상기 냉매 냉각기(70)에서 순환용 제2냉매순환라인(72a, 72b)에 밸브(81)를 설치하여 냉매의 흐름을 제어하도록 한다. 상기 밸브(81)는 수동 또는 자동으로 개폐된다.
한편, 상기 건조로의 제어에 관련하여 건조로(20)의 표면(즉, 건조케이싱(21)의 표면)에는 건조로(20)의 표면온도를 측정하는 제1온도센서(미도시)가 설치되고, 건조(20)의 내부(즉, 건조케이싱(21)의 내부)에는 건조로(20)의 내부온도를 측정하는 제2온도센서(미도시)가 설치되며, 수증기 응축유닛(60)의 내부(즉, 응축케이싱(61)의 내부)에는 수증기 응축유닛(60)의 내부온도를 측정하는 제3온도센서(미도시)가 설치된다.
이러한 제1온도센서, 제2온도센서, 제3온도센서는 제어부(미도시)에 전기적으로 접속된다. 이러한 온도측정 구성에 의해, 본 발명은 제어부(미도시)가 건조로(20)의 표면온도와, 건조로(20)의 내부온도와 수증기 응축유닛(60)의 내부온도의 온도차이를 종합적으로 비교분석하여 건조로(20)의 작동을 제어하도록 구성한다.
상기 건조로 제어시 건조로(20) 및 수증기 응축유닛(60)의 온도 변화를 구체적으로 살펴보면, 음식물쓰레기 등과 같은 반입물이 건조로(20) 내에 충진되면, 건조로(20)의 표면온도가 가변하여 점진적으로 상승하고, 음식물쓰레기가 건조로(20)의 내부에 충진되지 않을 경우에는, 건조로(20)의 표면온도는 급격하게 상승한다.
그리고, 건조로(20)의 내부온도는 음식물쓰레기의 충진여부와 관계가 없는 것이다. 또한, 수증기 응축유닛(60)의 내부온도는 건조로(20)에서 생성된 수증기의 흡입에 따라 온도가 가변하는 것으로, 수증기가 흡입되면 수증기 응축유닛(60)의 내부온도가 상승하고, 수증기가 흡입되지 않으면 수증기 응축유닛(60)의 내부온도는 급격히 하강하는 것이다.
제어부(미도시)는 파쇄유닛(10)와, 파쇄유닛(10)에 의해 파쇄된 음식물쓰레기를 건조하는 건조로(20)와, 상기 건조로(20)의 내부에 전자파를 조사하는 마이크로웨이브유닛(30)와, 건조로(20)에서 생성된 고온의 수증기를 응축시켜 배출하는 수증기 응축유닛(60)와, 건조케이싱(21) 내로 유입된 음식물쓰레기를 교반하는 교반유닛(22)와, 상기 건조로(20) 내부에는 열매체 가열부(40)와 열매체 가열부(40)로 열매체를 순환시키는 열매체 순환유닛(50)와, 냉매 냉각기(70)가 전기적으로 연계되어 정보를 전달하고, 상기 건조로 제어에 관련하여 건조로의 표면과 건조로 내부, 응축기 내부에 설치된 온도 센서가 상호 연결되어 각 부위의 온도의 편차를 감지한 정보를 종합하여 PLC (Programmable Logical Controller)에 그 정보를 전달하면 이를 세부적으로 제어하는 것이다.
이에 따라 운전시 정지조건과 가동조건을 제어부에 정보를 입력하면 그에 따른 각 작동장치가 가동 또는 정지할 수 있다.
도 13을 참조하여 [건조로의 정지조건]을 살펴보면,
제어부는 수증기 응축유닛(60)의 내부온도와 건조로(20)의 표면온도 사이의 온도차이가 30℃ 정도(예컨대, 수증기 응축유닛(60)의 내부온도가 15℃이고, 건조로(20)의 표면온도가 45℃일 경우)일 때, 건조로(20)를 정지하도록 제어할 수 있다. 이러한 정지조건의 온도차이는 설비 기준, 반입물의 상태, 반입량, 함수율 등에 따라 운전자가 다양하게 가변하여 조정할 수 있다.
이러한 정지조건에 따른 건조로(20)의 정지동작은, 정지스위치를 온하면 파쇄유닛(10), 교반유닛(22), 건조로(20)의 가동이 정지되고, 마이크로웨이브유닛(30) 및 열매체 순환유닛(50)의 히터(54)가 3분 정도 가동한 후에 냉매 냉각기(70)가 오프되며, 건조로(20)의 배출밸브(28)가 폐쇄되도록 한다.
도 14를 참조하여 [건조로의 가동조건]을 살펴보면,
상기 제어부는 수증기 응축유닛(60)의 내부온도와 건조로(20)의 내부온도 사이의 온도차이가 20℃와(예컨대, 수증기 응축유닛(60)의 내부온도가 87℃이고 건조로(20)의 내부온도가 107℃인 상태에서), 수증기 응축유닛(60)의 내부온도가 최저 70℃이상을 유지하는 경우일 때, 건조로(20)의 가동을 제어조정할 수 있다. 이러한 가동조건의 온도차이는 설비 기준, 반입물의 상태, 반입량, 함수율 등에 따라 운전자가 다양하게 가변하여 조정할 수 있다.
이러한 가동조건에 따른 건조로(20)의 가동동작은, 가동스위치를 온(on)하면 호퍼(18)에 음식물쓰레기가 투입되고, 파쇄유닛(10), 교반유닛(22), 건조로(20)이 가동하고, 마이크로웨이브유닛(30), 열매체 순환유닛(50)의 히터(54), 수증기 응축유닛(60), 냉매 냉각기(70)가 작동하여 건조가 진행되고, 건조가 완료된 후에는 배출밸브(28)가 개방되어 배출물(폐기물)을 배출박스에 충진된 것을 운반처리한다. 또한, 비상시에는 비상버튼을 사용하여 호퍼(18)로 투입되는 음식물쓰레기의 투입작동 및 파쇄유닛(10)의 작동을 정지하고, 건조로(20)의 배출밸브(28)를 폐쇄하도록 제어할 수 있다.
한편, 본 발명은 필요에 따라 수증기 응축유닛(60)의 내부온도와 건조로(20)의 내부온도 사이의 온도차이에 대한 조건을 단계적으로 조정함으로써 서로 다른 상태의 폐기물을 얻을 수 있다. 상기의 폐기물 건조방식을 살펴보면, 1차적인 폐기물 건조방식과 제2차 폐기물 건조방식으로 구분하여 운영의 자유도를 높일 수 있다.
<1차적인 폐기물 건조방식을 살펴보면>
음식물쓰레기가 죽과 같은 반고형의 액상물일 경우에는 수증기 응축유닛(60)의 내부온도와 건조로(20)의 내부온도 사이의 온도차이를 20℃ 정도로 설정하고, 물과 기름의 증발점이 상이한 점을 이용하여 그 온도차이에 의해 물(수분)만을 증발 제거하고, 기름이 포함된 배출물을 얻을 수 있으며, 이러한 1차 건조에 의한 배출물은 비료나 사료 등으로 재활용될 수 있다.
<2차적인 폐기물 건조방식을 살펴보면>
수증기 응축유닛(60)의 내부온도와 건조로(20)의 내부온도 사이의 온도차이를 1차적으로 건조한 온도차이인 20℃에서 25℃ 정도로 상승한 온도를 설정한 상태에서, 상술한 1차 건조조건(온도차이 20℃)에서 처리된 배출물을 탄화시킴으로써 유증기를 증발시킴과 동시에 이에 유분도 제거하여 탄화(炭火)상태의 배출물을 얻을 수 있다. 이러한 2차 건조에 의한 배출물은 발열량이 증가된 고체연료로 재활용될 수도 있다.
한편, 종래의 건조로는 음식물쓰레기의 반입 중량과 수분측정(함수율변화) 등을 통해 건조로를 제어하는 수단이 일반적인 반면에, 본 발명은 제어부(미도시)는 건조로(20)의 표면온도, 건조로(20)의 내부온도, 수증기 응축유닛(60)의 내부온도의 온도차이에 의해 건조로(20)를 제어하도록 구성됨에 따라 반입물의 중량, 함수율을 조정하지 않고 바로 건조로(20) 내로 신속한 투입이 가능하여 단시간에 처리가 가능하여 그에 따른 에너지 비용이 절감되고, 이에 따라 내구성의 증가, 에너지의 절감, 화재위험의 사전방지 등을 효과적으로 구현할 수 있고, 또한 중간처리 단계의 과정의 관찰이 불필요하여 전체 건조공정이 매우 간편해지는 장점이 있다.
이상과 같은 본 발명에 의하면, 저온에서 건조가 가능하여 설비를 보호할 수 있으며, 건조로에서 저온으로 건조하기 때문에 사료로 활용할 경우 생성물의 온도편차가 심하지 않아 생성물의 상태변화가 심하지 않아 동식물이 섭취하는데 지장이 없으며 영양상태를 일정하게 간직할 수 있는 장점이 있다.
본 발명은 저온건조에 의하여 30~40% 에너지 절약으로 운영비를 절감하고 CO2를 감축하여 친환경적인 자연환경을 조성하는 장점이 있다.
본 발명은 건조시 음식폐기물에 함축된 유분과 비응축가스를 탄화시켜 건조함으로써 그 배출물의 단위발열량이 증가하고, 이에 화석에너지를 대체하는 대체에너지로 변환되어 수입품의 반입이 적은 장점이 있다.
본 발명은 건조 시에 발생하는 가스의 발생량이 적어 주변환경에 미치는 영향이 적고, 가스저감으로 취급인원에 대한 보건환경에 대한 위험도가 적고, 음식물쓰레기의 배출양을 저감시켜 운영처리비를 감축할 수 있으며, 고온에 의하여 음식물쓰레기를 처리하는 종래기술에 비해 설비의 내구성을 향상시킬 수 있다.
본 발명은 최종 배출물의 물리적 성상(품질유지, 건조도 및 함수율유지, 기름량 포함)을 일정하게 유지할 수 있는 장점이 있다.
이상, 본 발명의 구체적인 실시예를 설명하였으나, 본 발명은 이 명세서에 개시된 실시예 및 첨부된 도면에 의하여 한정되지 않으며 본 발명의 기술적 사상을 벗어나지 않는 범위 이내에서 당업자에 의하여 다양하게 변형될 수 있다.
Claims (12)
- 음식물쓰레기를 파쇄하는 파쇄유닛(10)와, 파쇄유닛(10)에 의해 파쇄된 음식물쓰레기를 건조하는 건조로(20)와, 상기 건조로(20)의 내부에 전자파를 조사하는 마이크로웨이브유닛(30)과, 쓰레기를 파쇄하고 건조하는 장치를 장착하는 케이스와, 건조로(20)에서 생성된 고온의 수증기를 응축시켜 배출하는 수증기 응축유닛(60)을 포함하는 음식물 쓰레기 처리장치에 있어서,상기 건조로(20)는 건조케이싱(21)과, 이 건조케이싱(21) 내로 유입된 음식물쓰레기를 교반하는 교반유닛(22)을 구비하고, 상기 건조로(20) 내부에는 열매체 가열부(40)와 열매체 가열부(40)로 열매체를 순환시키는 열매체 순환유닛(50)이 설치되고,상기 건조케이싱(21)의 상면 일측에는 마이크로웨이브(30)에서 생성된 전자파가 조사되어 가열시킴과 동시에, 상기 건조케이싱(21)의 하부 내측에서 열매체 가열부(40)가 설치되어 음식물쓰레기를 가열하는 것이며,상기 열매체 가열부(40)는 건조케이싱(21)의 하부에 "U"자형으로 설치된 외부 단열층(41)과, 외부 단열층(41)의 내측에 이격된 내측벽(42)과, 외부 단열층(41)과 내측벽(42) 사이에 형성되어 열매체를 수용하는 열매체 수용공간(43)을 구비하는 것을 특징으로 하는 음식물쓰레기 처리장치.
- 청구항 1에 있어서,상기 열매체 가열부(40)의 열매체 수용공간(43)에는 열매체 순환유닛(50)이 연결되고,상기 열매체 순환유닛(50)은 열매체 가열부(40)의 열매체 수용공간(43)으로 열매체를 공급하는 열매체 공급라인(51), 열매체 가열부(40)의 열매체 수용공간(43)으로부터 열매체를 회수하는 열매체 회수라인(52), 열매체를 저장하는 열매체 탱크(53), 이 열매체 탱크(53)에 인접하여 설치되어 열매체 탱크(53) 내의 열매체를 가열하는 히터(54), 상기 열매체 탱크(53)에 인접하여 설치된 열매체 순환펌프(55)를 포함하는 것을 특징으로 하는 음식물쓰레기 처리장치.
- 청구항 1에 있어서,상기 파쇄유닛(10)은 하우징(11), 이 하우징(11)의 내부에 설치된 복수의 고정파쇄날(12), 상기 하우징(11) 및 복수의 고정파쇄날(12)을 관통하여 회전가능하게 설치된 회전축(15), 이 회전축(15)의 외주면에 설치된 복수의 회전파쇄날(13), 회전축(15)을 회전시키는 구동모터(16)를 포함하는 것을 특징으로 하는 음식물쓰레기 처리장치.
- 청구항 3에 있어서,상기 복수의 회전파쇄날(13)과 복수의 고정파쇄날(12)들은 평면상에서 서로 교차하도록 배치되고, 상기 회전파쇄날(13)과 고정파쇄날(12)의 일부가 서로 중첩되는 부분을 일정하게 유지하여 전자파를 차단하고, 건조로의 일측벽에 설치된 배출밸브도 이중으로 설치하여 전자파를 차단하여 안전사고를 미연에 방지하도록 구성되는 것을 특징으로 하는 음식물쓰레기 처리장치.
- 청구항 1에 있어서,상기 교반유닛(22)은 건조케이싱(21) 내에 회전가능하게 설치된 교반축(23), 이 교반축(23)의 외주면에 설치된 복수의 교반날개(24), 교반축(23)의 일단부에 연결되어 교반축(23)을 회전시키는 구동모터(25)를 포함하는 것을 특징으로 하는 음식물쓰레기 처리장치.
- 청구항 1에 있어서,마이크로웨이브유닛(30)은 전자파를 생성하는 마그네트론(31), 마그네트론(31)에서 발생된 전자파를 건조케이싱(21) 내로 전송하는 도파관(32), 마그네트론(31)에 전원을 공급하는 전원공급부(33)를 포함하는 것을 특징으로 하는 음식물쓰레기 처리장치.
- 청구항 1에 있어서,상기 건조로(20)의 표면에 표면온도를 측정하는 제1온도센서가 설치되고, 상기 건조로(20)의 내부에는 건조로(20)의 내부온도를 측정하는 제2온도센서가 설치되며, 상기 수증기 응축유닛(60)의 내부에는 수증기 응축유닛(60)의 내부온도를 측정하는 제3온도센서가 설치되고,상기 제1온도센서, 제2온도센서, 제3온도센서는 제어부에 전기적으로 접속되어 건조로(20)의 표면온도와 그 내부온도, 수증기 응축유닛(60)의 내부온도의 차이를 상호 감지하여 건조로(20)의 작동 상태를 제어하는 것을 특징으로 하는 음식물쓰레기 처리장치.
- 청구항 1에 있어서,상기 수증기 응축유닛(60)은 건조로(20)의 건조케이싱(21)에서 생성된 고온의 수증기를 흡입하여 응축하는 응축케이싱(61)과, 상기 응축케이싱(61)의 일측은 수증기 흡입관(62)이 설치하고, 그 하단은 건조케이싱(21)의 상면에 접속되며, 상기 수증기 흡입관(62)의 상단부는 순환팬(63)을 설치한 것이고, 응축케이싱(61)의 타측은 팽창가스 배출관(64)이 설치되며, 상기 응축케이싱(61)의 내부에는 고온의 수증기와 열교환하여 수증기를 응축시키는 제1냉매코일(71)이 설치되고, 상기 제1냉매코일(71)은 제1냉매순환라인(71a, 71b)을 통해 냉매 냉각기(70)에 연결되는 것을 특징으로 하는 음식물쓰레기 처리장치.
- 청구항 8에 있어서,상기 응축케이싱(61)의 하단에는 응축수를 배출하는 응축수배출관(73)이 연결되며, 이 응축수배출관(73)의 하단에는 U트랩(74)이 설치되어 하수관에 접속되며, U트랩(74)과 응축배출관(73) 사이에는 오버홀(OVERHAUL) 가스배출관(75)이 연결되는 것을 특징으로 하는 음식물쓰레기 처리장치.
- 청구항 8에 있어서,상기 냉매 냉각기(70)에서 순환용 제2냉매순환라인(72a, 72b)을 추가하여 제2냉매코일(72)을 마그네트론(31) 외주부 전체를 휘감아 방열시키는 것을 특징으로 하는 음식물쓰레기 처리장치.
- 청구항 8에 있어서,상기 냉매 냉각기(70)에서 순환용 제2냉매순환라인(72a, 72b)에 밸브를 설치하는 것을 특징으로 하는 음식물쓰레기 처리장치.
- 청구항 1에 있어서,쓰레기 파쇄 건조장치를 장착하는 케이스에 설치된 마이크로웨이브유닛(30), 수증기를 응축시켜 배출하는 수증기 응축유닛(60)과, 냉매 냉각기(70)는 처리용량에 따라 케이스의 외부에 별도로 설치할 수 있는 것을 특징으로 하는 음식물쓰레기 처리장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2013-0003189 | 2013-01-11 | ||
KR1020130003189A KR101425352B1 (ko) | 2013-01-11 | 2013-01-11 | 음식물쓰레기 처리장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014109512A1 true WO2014109512A1 (ko) | 2014-07-17 |
Family
ID=51167112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/000082 WO2014109512A1 (ko) | 2013-01-11 | 2014-01-06 | 음식물쓰레기 처리장치 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101425352B1 (ko) |
WO (1) | WO2014109512A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107377580A (zh) * | 2017-07-12 | 2017-11-24 | 浙江传超环保科技有限公司 | 生活垃圾减量资源化方法及地埋式一体化装置 |
ES2939014A1 (es) * | 2021-10-15 | 2023-04-18 | Recy Home S L | Centro gestor de residuos y metodo de funcionamiento asociado |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101661494B1 (ko) * | 2015-01-29 | 2016-09-30 | (주)케이에프 | 유기성 폐기물의 바이오촤 생산 시스템 |
CN104384175B (zh) * | 2014-11-17 | 2016-09-07 | 成都卓楷三钱科技发明孵化园有限公司 | 环保节粮型回收系统 |
KR101565903B1 (ko) * | 2015-08-21 | 2015-11-13 | 주식회사 티이애플리케이션 | 복합 건조 시스템 |
KR101812104B1 (ko) * | 2016-03-31 | 2017-12-27 | 주식회사 가이아 | 가스를 열원으로 하는 열매체유 보일러를 이용한 악취방지용 폐쇄회로형 음식물 쓰레기 건조장치 |
KR101957859B1 (ko) * | 2017-06-27 | 2019-03-15 | 한국가스공사 | 가스를 열원으로 하는 열매체유 보일러를 이용한 악취 방지용 폐쇄회로형 음식물 쓰레기 건조 장치 |
KR102180786B1 (ko) * | 2018-12-24 | 2020-11-19 | 아인텍(주) | 음식물 쓰레기 처리 장치 |
KR102213852B1 (ko) * | 2019-01-30 | 2021-02-08 | (주)이데아이엔에스 | 마이크로웨이브를 이용한 열탈착 처리 장치 |
KR102461907B1 (ko) * | 2022-05-17 | 2022-10-31 | 나민수 | 음폐기물 이송용 스크류 컨베이어의 히팅장치 |
KR102496054B1 (ko) * | 2022-07-14 | 2023-02-06 | 박상철 | 폐기물 건조 처리 장치 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200381203Y1 (ko) * | 2005-01-21 | 2005-04-08 | 이순자 | 음식물 쓰레기 건조 장치 |
KR20100029961A (ko) * | 2008-09-09 | 2010-03-18 | 이군식 | 건조장치 및 이를 이용한 유기성 폐기물 처리장치 |
KR20110003663U (ko) * | 2010-10-13 | 2011-04-13 | 고진호 | 음식물쓰레기 처리장치 |
KR101180080B1 (ko) * | 2012-07-20 | 2012-09-05 | 주식회사 오성히바텍 | 유기성폐기물 고온열분해 감량화 장치 및 방법 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090121553A (ko) * | 2008-05-22 | 2009-11-26 | 이명재 | 음식물 쓰레기 처리장치 |
KR20100091513A (ko) * | 2009-02-10 | 2010-08-19 | 이진희 | 마이크로웨이브 가열을 이용한 음식물 쓰레기 처리장치 |
-
2013
- 2013-01-11 KR KR1020130003189A patent/KR101425352B1/ko not_active IP Right Cessation
-
2014
- 2014-01-06 WO PCT/KR2014/000082 patent/WO2014109512A1/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200381203Y1 (ko) * | 2005-01-21 | 2005-04-08 | 이순자 | 음식물 쓰레기 건조 장치 |
KR20100029961A (ko) * | 2008-09-09 | 2010-03-18 | 이군식 | 건조장치 및 이를 이용한 유기성 폐기물 처리장치 |
KR20110003663U (ko) * | 2010-10-13 | 2011-04-13 | 고진호 | 음식물쓰레기 처리장치 |
KR101180080B1 (ko) * | 2012-07-20 | 2012-09-05 | 주식회사 오성히바텍 | 유기성폐기물 고온열분해 감량화 장치 및 방법 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107377580A (zh) * | 2017-07-12 | 2017-11-24 | 浙江传超环保科技有限公司 | 生活垃圾减量资源化方法及地埋式一体化装置 |
CN107377580B (zh) * | 2017-07-12 | 2023-07-18 | 浙江传超环保科技有限公司 | 生活垃圾减量资源化方法及地埋式一体化装置 |
ES2939014A1 (es) * | 2021-10-15 | 2023-04-18 | Recy Home S L | Centro gestor de residuos y metodo de funcionamiento asociado |
Also Published As
Publication number | Publication date |
---|---|
KR101425352B1 (ko) | 2014-08-05 |
KR20140091218A (ko) | 2014-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014109512A1 (ko) | 음식물쓰레기 처리장치 | |
WO2011145767A1 (ko) | 폐기물의 간접가열방식 탄화처리시스템 및 이를 이용한 탄화처리차량 | |
WO2009136737A9 (ko) | 가연성 폐기물의 열분해시스템 및 열분해방법 | |
WO2017116025A1 (ko) | 혼합 바이오매스를 이용한 반탄화물 제조장치 | |
US20150083573A1 (en) | Sleeving cylinder-type coal matter pyrolysis device | |
KR101333499B1 (ko) | 방사성 폐기물 탄화장치 | |
KR20080003598A (ko) | 냉온풍기를 이용한 음식물 처리기 | |
CN117162242B (zh) | 水泥基材料的微波预处理-碳化养护一体机及养护方法 | |
JPH11116966A (ja) | 高い水分量を含む廃棄物の熱処理設備 | |
KR0141359B1 (ko) | 유기성 폐기물 처리장치 | |
CN207147218U (zh) | 一种微波链式回转设备 | |
WO2010002119A2 (ko) | 음식물 쓰레기 응축 건조 장치 | |
KR20120027623A (ko) | 하수슬러지의 탄화연료 제조장치 | |
KR101416679B1 (ko) | 음식물 쓰레기 및 폐기물 고주파 탄화처리장치 | |
CN205042870U (zh) | 一种全智能型生活垃圾碳化处理系统 | |
CN211141947U (zh) | 连续式固体废料微波碳化装置 | |
CN112393247A (zh) | 一种低温薄层速热梯级绝氧热解系统及基于该系统的固废热解系统 | |
WO2013125928A1 (ko) | 폐기물의 탄화 및 열분해 가스화 연소장치 | |
CN218999479U (zh) | 一种农产品脱水加工装置 | |
KR200421392Y1 (ko) | 음식물 쓰레기 소각장치 | |
KR102178017B1 (ko) | 음식물 쓰레기 처리장치 | |
CZ304986B6 (cs) | Zařízení pro termický rozklad organického materiálu a výrobu plynu pro použití k výrobě tepla a elektrické energie | |
CN106328237B (zh) | 一种放射性废离子交换树脂微波碳化、灰化工艺及专用装置 | |
KR102599503B1 (ko) | 슬러지 간접건조 시스템 | |
KR20130008133A (ko) | 고온성 미생물을 이용한 전기적 음식물 쓰레기 퇴비화 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14738170 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.11.2015) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14738170 Country of ref document: EP Kind code of ref document: A1 |