WO2014109462A1 - 감전방지 기능을 가진 전극 구조체 - Google Patents

감전방지 기능을 가진 전극 구조체 Download PDF

Info

Publication number
WO2014109462A1
WO2014109462A1 PCT/KR2013/009404 KR2013009404W WO2014109462A1 WO 2014109462 A1 WO2014109462 A1 WO 2014109462A1 KR 2013009404 W KR2013009404 W KR 2013009404W WO 2014109462 A1 WO2014109462 A1 WO 2014109462A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode structure
conductor
wire
electric shock
flat
Prior art date
Application number
PCT/KR2013/009404
Other languages
English (en)
French (fr)
Inventor
이호석
Original Assignee
(주)비젼테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130089708A external-priority patent/KR101404806B1/ko
Priority claimed from KR1020130102697A external-priority patent/KR20140110696A/ko
Priority claimed from KR1020130116731A external-priority patent/KR101513265B1/ko
Application filed by (주)비젼테크 filed Critical (주)비젼테크
Priority to JP2015552563A priority Critical patent/JP6101364B2/ja
Priority to US14/759,916 priority patent/US9960519B2/en
Priority to CN201380071082.2A priority patent/CN104969416B/zh
Publication of WO2014109462A1 publication Critical patent/WO2014109462A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/44Means for preventing access to live contacts

Definitions

  • the present invention relates to electrical installation technology, and in particular to electrode structures used in various devices of electrical installations.
  • Electrodes are used for electrical connection or electrical measurement in outlets, plugs or switchboards. If a short circuit occurs through the exposed electrode, the human body is exposed to the risk of electric shock.
  • Electric shock is a phenomenon in which the human body reacts when a current flowing from the power supply to the ground, which is the ground plane, exceeds a certain value. In general, currents above 15 mA will cause convulsions, and currents above 50 mA will lead to death. The main cause of death is a heart attack in which the heart stops working as current flowing through the heart damages nerves.
  • the risk of electric shock is related to the body's resistance at the time of electrification, which is strongly dependent on the condition of the skin.
  • Korean Patent Laid-Open Publication No. 10-2005-0037986 published on April 25, 2005, discloses that a current leaking from a bare charge part to a conductive metal plate or a metal net when flooded by attaching a metal plate or a metal mesh of a metallic material to the bare charge part.
  • an electric shock prevention device having a submerged electric shock prevention function that is energized to prevent an electric shock accident.
  • the metal plate or the metal net is connected by electric wires to the neutral wire and the earth terminal of the terminal blocks.
  • the metal plate is approximately 50 cm x 30 cm in size.
  • Korean Patent No. 10-1197414 published on November 05, 2012, discloses another leakage preventing device.
  • the device is arranged between the input terminal section and the output terminal section, and is connected to the terminal terminal with the first and second connection terminals connected to the phase voltage terminal and the neutral terminal terminal, and electrically connected to the second connection terminal block connected to the neutral terminal terminal. It includes a leakage preventing conductor of a shape surrounding the side and the top of the.
  • This technique is complicated because it uses electrodes shaped to be connected to the neutral terminal while surrounding the connecting terminal block. In addition, there is a disadvantage that is difficult to apply to a small outlet.
  • An object of the present invention is to provide an electrode structure having a simple structure, easy installation and an electric shock prevention function.
  • an object of the present invention is to provide an electrode structure having an electric shock prevention function that can be applied to various applications such as a small outlet, a power circuit breaker, an outdoor street lamp, and the like.
  • An electrode structure having an electric shock prevention function is connected to a transmission and distribution path to an electrical installation.
  • the electrode structure prevents an electric shock when the electrode structure is flooded with other electrical equipment located nearby by being electrically connected to the electrical equipment to which the electrode structure is connected.
  • an electrode structure having an electric shock prevention function includes a first input terminal to which an input first wire is connected, a second input terminal to which an input second wire is connected, and a first output terminal to which an output first wire is connected; And a second output terminal to which the output second wire is connected.
  • the electrode structure having the electric shock prevention function includes a first flat type conductor and a second flat type conductor. One end of the first flat type conductor is fixed to the first input terminal, and the other end is fixed to the first output terminal, the width of which is wider than the thickness of the first wire and the length of which is longer than the thickness of the first wire, and the width thereof.
  • the area which is the product of and lengths is not less than 4 and not more than 100,000 times the cross-sectional area of the first electric wire.
  • One end of the second flat conductor is fixed to the second input terminal, the other end is fixed to the second output terminal, and has the same specifications as the first flat conductor.
  • the electrode structure having an electric shock prevention function may include a housing that is an insulator for electrically separating the first flat type conductor and the second flat type conductor.
  • the first planar conductor and the second planar conductor may be made of copper (Cu).
  • the housing may fix the first planar conductor and the second planar conductor to face each other.
  • the electrode structure having an electric shock prevention function is installed with the first flat type conductor and the second flat type conductor facing each other, and may be installed at a lower position than the target electric equipment to be protected from flooding. have.
  • the electrode structure having the electric shock prevention function may be a power breaker.
  • the electrode structure having the electric shock prevention function may be an outlet.
  • FIG 1 illustrates an appearance of an electrode structure having an electric shock prevention function according to an embodiment.
  • FIG. 2 is a cross-sectional view taken along the center of four terminal screw in FIG. 1.
  • FIG. 5 illustrates an embodiment in which an electrode structure having an electric shock protection function is applied to a power breaker.
  • FIG. 6 is a rear view of the circuit breaker shown in FIG. 5.
  • FIG. 6 is a rear view of the circuit breaker shown in FIG. 5.
  • FIG. 7 shows one embodiment of input terminals and flat conductors in the breaker shown in FIG. 5.
  • FIG 8 illustrates an embodiment in which an electrode structure having an electric shock prevention function is applied to an outlet.
  • FIG. 1 illustrates an appearance of an electrode structure having an electric shock prevention function according to an embodiment.
  • FIG. 2 is a cross-sectional view taken along the center of four terminal screw in FIG. 1. An electrode structure having an electric shock prevention function according to an embodiment will be described with reference to FIGS. 1 and 2.
  • An electrode structure having an electric shock protection function is connected to a transmission / distribution path to a household or industrial electric facility such as a lamp, a street lamp, an outlet, a plug, a motor, and the like.
  • the electrode structure having an electric shock prevention function prevents an electric shock during the inundation of the electrical equipment to which the electrode structure having the electric shock prevention function is connected or other electrical equipment located nearby by being electrically connected to the electrical equipment.
  • an electrode structure having an electric shock prevention function includes a first input terminal 11 to which an input first wire is connected, a second input terminal 13 to which an input second wire is connected, A first output terminal 31 to which the output first wire is connected, and a second output terminal 33 to which the output second wire is connected.
  • the electrode structure having the electric shock prevention function according to an embodiment includes a first flat type conductor 110 and a second flat type conductor 130.
  • the electrode structure having an electric shock prevention function may include a housing 300 which is an insulator for electrically separating the first flat type conductor 110 and the second flat type conductor 130.
  • an input side first electric wire fastened to the first input terminal 11 with a screw and an input side second electric wire fastened with a screw to the second input terminal 13 are physically and electrically the same standard.
  • the present invention is not limited thereto.
  • the output-side first electric wire, which is usually screwed to the first output terminal 31 and the output-side second electric wire, which is screwed to the second output terminal 33 are physically and electrically the same standard.
  • the present invention is not limited thereto. Since the electrode structure having the electric shock prevention function is installed in the transmission / distribution path, the input first wire and the output first wire are physically and electrically the same wire, and the input second wire and the output second wire are physically and electrically the same wire. to be. However, the present invention is not limited thereto.
  • the first input terminal 11, the second input terminal 13, the first output terminal 31, and the second output terminal 33 are all configured in the same form. However, each or a pair may be configured in a different form. As shown, in one embodiment, these terminals are in close contact with the housing by a screw hole drilled directly at both ends of the second plate-shaped conductor and a screw inserted into and fastened to the screw hole, and the screw and the housing 300. It can be composed of an auxiliary plate to help fix the stripped conductors between the). In another example, the terminals may be configured as terminal blocks that are crimped and fixed to one end of the flat conductor. The terminals may be configured in various forms to connect electric wires to both ends of the flat conductor.
  • the housing 300 is a structure that physically fixes the terminal and the flat conductor.
  • the housing when the electrode structure is applied to an outlet, the housing may be an outlet housing.
  • the housing When the electrode structure is applied to the switchboard, the housing may be a bracket or a frame fixing the terminals of the switchboard. Since the illustrated embodiment is applied to the two-wire type, the housing may be modified to fix two flat-type conductors, but in the case of the three-wire type, three flat-type conductors.
  • the housing may be made of a plastic or ceramic material that is insulator.
  • the housing is fixed to both ends of the planar conductor and the structure of the housing is designed such that most of the planar conductors are exposed in the air.
  • the flat conductor is fixed at a height lower than the outer outline of the housing to reduce inadvertent electric shock by the operator inadvertently contacting the flat conductor exposed during or after installation.
  • four pillars protruding on top of the housing secure the flat conductors by terminals, which protrude slightly higher than the flat conductors fixed to the pillars.
  • the housing may further comprise an additional lid on the outside.
  • the cover may be shaped so that holes of sufficient number and size are perforated so that water can easily enter when submerged while blocking inadvertent contact of the human body.
  • the housing may fix the first planar conductor and the second planar conductor to face each other.
  • An electrode structure having an electric shock protection function is filled with water between two plate-like conductors when submerged in water, and eventually becomes an electrical resistor formed by water between the two plate-shaped electrodes. Since the electrical resistance is proportional to the length of the resistor and inversely proportional to the cross-sectional area, the cross-sectional area is maximized when the flat electrodes face each other and the length is minimized to minimize the electrical resistance. Accordingly, when connected in parallel to the human body and the ground plane, it is possible to minimize the current flowing to the human body with more resistance.
  • an electrode structure having an electric shock prevention function is installed in a state where the first plate-type conductor and the second plate-type conductor are opposed to each other, and are installed at a lower position than the target electric equipment to be protected from flooding.
  • the controller exposed in the lower part is installed in a waterproof space, but when rainwater is filled in the space, people around them are at risk of electric shock.
  • the electrode structure having the electric shock prevention function is installed in this waterproof space and is installed at a lower position than the controller so that the controller is submerged before the controller is submerged and can be operated first.
  • the first planar conductor and the second planar conductor may be made of copper (Cu). According to the experiment, when the material of the plate-shaped conductor is copper, the effect of the electrode structure having an electric shock prevention function was superior to that of iron.
  • the tank 502 is filled with water and the electrode structure 503 having an electric shock prevention function according to an embodiment, one end of which is connected to the plug, is immersed in the tank 502, and the lamp 505 at the other end is outside the tank.
  • the water in the bath is not grounded.
  • the plug 501 is connected to a power outlet to supply power.
  • the experimenter 509 grasps the exposed end of the wire and measures the current flowing through the wire with the ammeter 507 while the other end is exposed to the water bath.
  • Table 1 below is a result of repeating the experiment shown in Figure 3 for a flat conductor having a variety of horizontal and vertical lengths.
  • the power source was a commercial power source of 220V / 60Hz
  • the load was connected to a 120W incandescent lamp
  • the spacing between two opposing planar conductors was 10mm.
  • the wires used also contain cylindrical conductors with a diameter of 1.8 mm.
  • the width is the width of the flat conductor
  • the length is the length
  • the measurement is in mA.
  • the data below is the result of measuring the leakage current around the flat plate type conductor in the tank by distance. This experiment is to check the correlation between the leakage current on the conductive line and the leakage current around the flat conductor.
  • This experiment can be modeled as an electrical circuit with the middle part of the electrical resistor, called water, between the two planar conductors grounded.
  • the human body can be modeled as another resistor connected between this electrical resistor and the ground plane.
  • the resistance of the human body and the resistance of the water connected between the two plate conductors and the ground plane are connected in parallel in an electrical circuit to limit the current flowing to the human body.
  • the current flowing through the human body is related to the ratio of the area of the flat conductor and the cross-sectional area of the cylindrical wire.
  • the area of the flat conductor refers to a value obtained by multiplying the width and the length in the flat shape of the flat conductor. Analyzing the experimental results in Table 2, if the radius of the wire is r, the width of the wire is 2r and the cross-sectional area of the wire is ⁇ r 2 , for example, the area of the flat conductor in the first row of ⁇ Table 2>.
  • the electrode structure 503 having the electric shock prevention function according to an embodiment of filling the water tank 502 with one end connected to the plug is placed outside the water tank 502, and the electrode structure 503 having the electric shock prevention function Another electrical equipment, such as an outlet 513, is connected to the water tank 502, and another electrical equipment, such as a lamp 505, connected to the outlet is exposed outside the water tank.
  • the plug 501 is connected to a power outlet to supply power.
  • the electrode structure 503 having the electric shock prevention function may be confirmed that the lamp 505 is turned on even though the outlet 513, which is another electrical equipment, is not submerged in water and is submerged in water.
  • the experimenter 509 grasps the exposed end of the wire and measures the current flowing through the wire with the ammeter 507 while the other end is exposed to the water bath. Since the experimenter 509 may be dangerous when the experiment is performed directly, the experimenter 509 may be replaced with an animal having a conductive property similar to that of the human body.
  • 220V / 60Hz commercial power was used, load was connected to 120W incandescent lamp, and the gap between two opposing flat conductors was 10mm.
  • the wires used also contain cylindrical conductors with a diameter of 1.8 mm. In the table below, the width is the width of the flat conductor, the length is the length, and the measurement is in mA. Experimental results were obtained similar to Table 1. Applicant's results cannot be explained by the electrical modeling, but it is only speculated that the two-plate conductors may have altered the electrical flow with the human body when exposed to air.
  • FIG. 5 illustrates an embodiment in which an electrode structure having an electric shock prevention function is applied to a power breaker.
  • FIG. 6 is a rear view of the circuit breaker shown in FIG. 5.
  • FIG. 7 shows one embodiment of input terminals and flat conductors in the breaker shown in FIG. 5.
  • the breaker according to one embodiment is connected to a transmission and distribution path, for example to a household or industrial electrical installation. As will be described later, the breaker prevents an electric shock when flooding the electrical equipment installed in the rear end of the circuit breaker or other electrical equipment located nearby, even if the electrical breaker function is broken.
  • the circuit breaker is connected to the first input terminal 11 to which the input side first wire is connected, the second input terminal 13 to which the input side second wire is connected, and the output first wire are connected. And a second output terminal 33 to which the output second wire is connected.
  • the circuit breaker includes a circuit breaker 20 and an electric shock prevention unit 10 that connect input terminals to first and second input terminals and block a circuit connection when an overcurrent flows.
  • the breaker also includes a first planar conductor 110 and a second planar conductor 130.
  • the blocking unit 20 has an input terminal connected to the connection pieces 73 and 71 of the first and second input terminals, and the first and second flat plate types having the first and second output terminals 31 and 33 integrally formed at one end thereof.
  • An output terminal is connected to the connection pieces 51 and 53 formed at the other ends of the conductors 110 and 130 to control the electrical connection between the input terminal and the output terminal.
  • first flat type conductor 110 is connected to the first output terminal 31, and one end of the connection piece 51 is connected to one of the output terminals of the blocking unit, and the width thereof is greater than the thickness of the first wire. It is wide and the length is longer than the thickness of a 1st electric wire, and the area which is the product of the width and length is 4 to 100,000 times of the cross-sectional area of a 1st electric wire.
  • One end of the second flat type conductor is connected to the other of the output terminals of the blocking unit, and the other end thereof is connected to the second output terminal, and has the same specifications as the first flat type conductor.
  • the breaker may include a housing that is a non-conductor that electrically spaces between the first and second planar conductors.
  • the blocking unit 20 includes an overcurrent detector for detecting an overcurrent by monitoring a current supplied through an input terminal and an output terminal, an actuator operating when an overcurrent is detected by the overcurrent detection unit, and an input terminal by an actuator. And a switching unit to block the connection between the output terminal. Since the type of blocker and its configuration are generally known, detailed descriptions thereof will be omitted.
  • the electric shock prevention unit 10 includes a first flat type conductor 110 and a second flat type conductor 130.
  • One end of the first flat conductor 110 is connected to one of the output terminals of the breaker 20 through the first connecting portion 51, and the other end thereof is connected to the first output terminal 31. It is wider than the thickness of a 1st electric wire, and the length is longer than the thickness of a 1st electric wire, and the area which is the product of the width and length is 4 to 100,000 times of the cross-sectional area of a 1st electric wire.
  • One end of the second flat conductor 130 is connected to one of the output terminals of the breaker 20 through the second connecting portion 53, and the other end thereof is connected to the second output terminal 33. It has the same specification as the type conductor.
  • the breaker may include a housing 300 which is an insulator for electrically separating the first planar conductor 110 and the second planar conductor 130.
  • an input side first electric wire fastened to the first input terminal 11 with a screw and an input side second electric wire fastened with a screw to the second input terminal 13 are physically and electrically the same standard.
  • the present invention is not limited thereto.
  • the output-side first electric wire, which is usually screwed to the first output terminal 31 and the output-side second electric wire, which is screwed to the second output terminal 33 are physically and electrically the same standard.
  • the present invention is not limited thereto. Since the breaker is installed in the transmission / distribution path, the input first wire and the output first wire are usually the same wires physically and electrically, and the input second wire and the output second wire are physically and electrically the same wire. However, the present invention is not limited thereto.
  • the first input terminal 11 and the second input terminal 13 are connected to the housing by a screw hole drilled into the housing at one end, a screw (not shown) inserted into and fastened to the screw hole, and the screw. It may be configured to include an auxiliary plate that is in close contact and helps to fix the stripped conductor between the screw and the housing 300.
  • the terminals may be configured as terminal blocks that are crimped and fixed to one end of the flat conductor. The terminals may be configured in various forms to connect electric wires to both ends of the flat conductor.
  • the first input terminal 11 may include a first connecting piece 71 formed at the other end bent.
  • the first connecting piece 71 is connected to the corresponding female connecting piece of the blocking portion 20.
  • the second input terminal 13 may include a second connecting piece 73 formed at the other end bent. The second connecting piece 73 is connected to the corresponding female connecting piece of the blocking portion 20.
  • the housing 300 physically fixes the terminal and the flat conductors. Since the illustrated embodiment is applied to the two-wire type, the housing may be modified to fix two flat-type conductors, but in the case of the three-wire type, three flat-type conductors.
  • the housing may be made of a plastic or ceramic material that is insulator.
  • the flat type conductor is fixed to the inner side wall of the housing while one surface is exposed, and is fixed to a lower level than the outer outline of the housing so that the operator inadvertently applies to the flat type conductor exposed during or after installation. Reduce contact with electric shock.
  • the housing may fix the first flat conductor and the second flat conductor to face each other.
  • the breaker when viewed electrically, the breaker is filled with water between two planar conductors when submerged and eventually formed by water between the two planar electrodes and between them. It becomes an electrical resistor. Since the electrical resistance is proportional to the length of the resistor and inversely proportional to the cross-sectional area, the cross-sectional area is maximized when the flat electrodes face each other and the length is minimized to minimize the electrical resistance. Accordingly, when connected in parallel to the human body and the ground plane, it is possible to minimize the current flowing to the human body with more resistance.
  • the circuit breaker is installed in a state where the first flat type conductor and the second flat type conductor are opposed to each other, and are installed at a lower position than the target electric device to be protected from flooding.
  • the controller exposed at the bottom is installed in a waterproof space, but when a problem occurs and the rainwater fills the space, the people around it are at risk of electric shock.
  • the breaker is installed in this watertight space and is installed at a lower position than the controller so that it is submerged before the controller is submerged and can be operated first.
  • the first planar conductor and the second planar conductor may be made of copper (Cu). According to the experiment, when the material of the plate-shaped conductor is copper, the effect of the circuit breaker was superior to that of iron.
  • FIG. 8 illustrates an embodiment in which an electrode structure having an electric shock prevention function is applied to an outlet.
  • the outlet 1000 having the electric shock prevention function includes a body 1100, a cover 1200, a power supply terminal 1300, a plug insertion groove 1400, and an electrode structure 1500. It is done by
  • the body 1100 has a seating groove 1110 formed therein, and is not limited to a quadrangular shape as shown in the drawing, and may be implemented in various forms such as a circle shape.
  • the cover 1200 is coupled to an upper portion of the body 1100.
  • the structure of coupling the cover 1200 to the body 1100 may be implemented in various forms, and since it is a matter that is already widely known and implemented before this application, a detailed coupling structure thereof will be omitted.
  • the power supply terminal 1300 is installed in a part of the seating groove 1110 of the body 1100, the plug is coupled to supply electricity to the plug.
  • the power supply terminal 1300 serves as an electrode.
  • the plug insertion groove 1400 is formed in the cover 1200, and a plug is inserted.
  • the plug is inserted through the plug insertion groove 1400, and is connected to the power supply terminal 1300 serving as an electrode, so that commercial power is applied to an electronic device (not shown) connected to the plug through the plug.
  • the electrode structure 1500 is installed in a part of the mounting groove 1110 of the body 1100, and is connected between the power supply terminal 1300 and the power supply line 1600 to prevent leakage of current.
  • the electrode structure 1500 includes a first input terminal 11, a second input terminal 13, a first output terminal 31, and a second output terminal ( 33), the first planar conductor 110, the second planar conductor 130, and the non-conductive housing 300 may be included.
  • the first input terminal 11 is connected to the first lead wire 1310 of the power supply terminal 1300.
  • the second input terminal 13 is connected to the second lead wire 1320 of the power supply terminal 1300.
  • the first output terminal 31 is connected to the third lead line 1610 of the power supply line 1600.
  • the second output terminal 33 is connected to the fourth lead line 1620 of the power supply line 1600.
  • the first planar conductor 110 is connected between the first input terminal 11 and the first output terminal 31, the width of which is wider than the thickness of the first lead wire 1310 and the length of the first flat conductor 110. It is longer than the thickness of one lead wire 1310, and the area which is the product of the width and length is four times or more and 1000,000 times or less of the cross-sectional area of the first lead wire.
  • the second planar conductor 130 is connected between the second input terminal 13 and the second output terminal 33, and has the same specification as the first planar conductor 110.
  • the insulator housing 300 fixes the first flat conductor 110 and the second flat conductor 130 to be electrically spaced apart from each other.
  • first lead wire 1310 screwed to the first input terminal 11 and the second lead wire 1320 screwed to the second input terminal 13 are physically and electrically the same standard.
  • the present invention is not limited to this.
  • the third lead wire 1610 which is usually screwed to the first output terminal 31 and the fourth lead wire 1620 which is screwed to the second output terminal 33 are physically and electrically the same standard.
  • the present invention is not limited to this.
  • the outlet is typically a wire that is physically and electrically identical to the first lead wire 1310 and the third lead wire 1610, and the second lead wire 1320 and the fourth lead wire 1620 are physically and electrically identical wires.
  • the present invention is not limited to this.
  • the first input terminal 11, the second input terminal 13, the first output terminal 31, and the second output terminal 33 are all configured in the same form. However, they may be configured in different forms, either individually or in pairs. As shown, in one embodiment, these terminals are insulated from the insulator housing by screws that are inserted into and fastened to threaded holes directly drilled at both ends of the first flat conductor 110 and the second flat conductor 130. It may be composed of an auxiliary plate that is in close contact with the 300 and helps to fix the conductive wire peeled off between the screw and the non-conductive housing 300. In another example, the terminals may be implemented in the form of a crimp fixed to one end of the first planar conductor 110 and the second planar conductor 130. The terminals may be configured in various forms to connect electric wires to both ends of the flat conductor.
  • the non-conductive housing 300 is a structure for physically fixing the terminal and the flat conductor. Since the illustrated embodiment is applied to the two wire type, the insulator housing 300 may be modified to fix two flat type conductors, but in the case of the three wire type, three flat type conductors.
  • the insulator housing may be made of a plastic or ceramic material which is a nonconductor.
  • the insulator housing is fixed to both ends of the flat conductor, and the structure of the insulator housing is designed so that most of the flat conductors are exposed in the air. do.
  • the flat conductor is fixed at a height lower than the outer outline of the non-conductor housing to reduce the inadvertent electric shock of the operator in contact with the flat conductor exposed during or after installation.
  • pillars protruding on top of the insulator housing secure the flat conductors by terminals, which protrude slightly higher than the flat conductors fixed to the pillars.
  • the insulator housing 300 may be implemented to fix the first planar conductor 110 and the second planar conductor 130 to face each other.
  • the insulator housing 300 may be implemented to fix the first planar conductor 110 and the second planar conductor 130 to face each other.
  • the electrical resistance is proportional to the length of the resistor and inversely proportional to the cross-sectional area
  • the cross-sectional area is maximized when the flat conductors face each other and the length is minimized to minimize the electrical resistance. Accordingly, when connected in parallel to the human body and the ground plane, it is possible to minimize the current flowing to the human body with more resistance.
  • the first plate-shaped conductor 110 and the second plate-shaped conductor 130 are installed facing each other, the outlet is located in a lower position than the target electrical equipment to protect from flooding Can be installed.
  • the controller exposed in the lower part is installed in a waterproof space, but when rainwater is filled in the space, people around them are at risk of electric shock.
  • the outlet with the electric shock protection function is installed in this waterproof space and installed at a lower position than the controller so that the controller is submerged before the controller is submerged and can be operated first.
  • the first planar conductor 110 and the second planar conductor 130 may be made of copper (Cu). According to the experiment, when the material of the plate-shaped conductor is copper, the effect of the outlet having an electric shock prevention function was superior to that of iron.
  • the present invention has been described above with reference to the accompanying drawings, but is not limited thereto and encompasses obvious modifications that can be derived by those skilled in the art from the disclosed and implied aspects.
  • the present invention can be applied to three-phase power.
  • the claims are intended to cover such obvious modifications.
  • the embodiment takes an electric installation called an electrode structure having a separate electric shock protection function, but the electrode structure having an electric shock protection function is used for other electric devices, such as a circuit breaker, a terminal block, an outlet, a plug, a battery, and various electric appliances. It can be embedded in a device. This can be applied through a design change in which two flat conductors having substantially the same size are inserted on the transmission and distribution path inside such electric equipment. Therefore, the expression 'electrode structure having an electric shock prevention function' in the present specification should be interpreted to cover such various electrical installations.

Landscapes

  • Connector Housings Or Holding Contact Members (AREA)

Abstract

본 발명은 전기 설비 기술에 관련되며, 특히 전기 설비의 각종 장치에 사용되는 전극 구조체에 관련된다. 감전 방지 기능을 가진 전극 구조체는 전기 설비로의 송배전 경로에 연결된다. 감전 방지 기능을 가진 전극 구조체는 그 감전 방지 기능을 가진 전극 구조가 연결된 전기 설비 혹은 그 전기 설비에 전기적으로 연결되어 근처에 위치하는 타 전기 설비의 침수시 감전을 예방한다.

Description

감전방지 기능을 가진 전극 구조체
본 발명은 전기 설비 기술에 관련되며, 특히 전기 설비의 각종 장치에 사용되는 전극 구조체에 관련된다.
콘센트나 플러그 혹은 배전반 등에는 전기적인 접속 혹은 전기 측정을 위한 다양한 형태의 전극이 사용된다. 노출된 전극을 통해 누전이 발생할 경우 인체는 감전의 위험에 노출된다. 감전은 전원으로부터 인체를 통하여 접지면인 지면으로 흐르는 전류가 일정치 이상일 때 인체가 반응하는 현상이다. 일반적으로 흐르는 전류가 15mA 이상이면 경련을 일으키며 50mA 이상이 흐르면 사망에 이르게 된다. 주된 사망 원인은 심장을 통해 흐르는 전류가 신경을 손상시킴에 따라 심장이 작동을 멈추는 심장마비이다. 감전의 위험은 통전 당시 인체의 저항에 관련되는데 이는 피부의 상태에 크게 좌우된다.
전기 설비, 예를 들어 콘센트나 전열기 혹은 전등 등이 물에 잠기었을 때 그 물이나 물을 통해 통전된 금속 하우징 등에 인체가 접촉하면 전기설비의 노출된 도체로부터 물과 인체를 거쳐 접지면인 지면으로 전류가 흐른다. 이때 인체는 피부가 비에 젖어 있기 쉽고 그 경우 접촉 저항이 극히 낮으므로 매우 위험한 상태가 된다.
2005. 04. 25.자 공개된 대한민국 공개특허공보 제10-2005-0037986호는 나충전부에 금속 재질의 금속판 또는 금속망을 부착하여 침수될 경우 나충전부에서 누설되는 전류가 도전성 금속판 또는 금속망으로 통전되어 감전 사고를 방지하는 침수 감전 방지 기능을 가진 감전 방지 장치를 개시하고 있다. 금속판 또는 금속망은 단자대들 중 중성선 및 어스 단자에 전선에 의해 연결되어 있다. 금속판의 크기는 대략 50 cm x 30 cm 이다.
이 기술은 그 원리에 대해 자세히 설명하고 있지 않으나 아마도 침수시 침수된 도체 사이에 물과 인체를 통한 저항보다 훨씬 낮은 저항이 되는 상태로 금속판을 배치하여 전기적으로 인체와 병렬로 구성함으로써 인체로 흐르는 전류를 제한하는 것으로 보인다. 그러나 이러한 금속판 또는 금속망은 단자대에 별도의 전선으로 연결되고 부피가 크므로 설치에 공간적인 제약이 발생한다.
2012. 11. 05.자 공고된 대한민국 등록특허 제10-1197414호는 또다른 누전방지장치를 개시한다. 이 장치는 입력 단자부와 출력 단자부 사이에 배치되어 상전압단자 및 중성점 단자에 연결되는 제1,2 연결 단자가 설치되는 연결 단자대와, 중성점 단자에 연결된 제 2 연결 단자대에 전기적으로 연결되어, 연결단자대의 측방과 상방을 포위하는 형상의 누전방지 도전체를 포함한다.
이러한 기술은 연결단자대를 포위하면서 중성점 단자에 연결되는 형상의 전극을 사용하므로 구성이 복잡하다. 또한 소형 콘센트 등에는 적용하기 어려운 단점이 있다.
본 발명은 구조가 간단하며 설치가 간편하면서 감전 방지 기능을 가진 전극 구조체를 제공하는 것을 목적으로 한다.
나아가 본 발명은 소형의 콘센트나, 전력 차단기, 옥외의 가로등 등 다양한 응용 분야에 적용할 수 있는 감전 방지 기능을 가진 전극 구조체를 제공하는 것을 목적으로 한다.
이러한 목적을 달성하기 위한 일 양상에 따른 감전 방지 기능을 가진 전극 구조체는 전기 설비로의 송배전 경로에 연결된다. 전극 구조체는 그 전극 구조체가 연결된 전기 설비 혹은 그 전기 설비에 전기적으로 연결되어 근처에 위치하는 타 전기 설비의 침수시 감전을 예방한다.
일 양상에 따른 감전 방지 기능을 가진 전극 구조체는 입력측 제 1 전선이 연결되는 제 1 입력 단자와, 입력측 제 2 전선이 연결되는 제 2 입력 단자와, 출력측 제 1 전선이 연결되는 제 1 출력 단자와, 출력측 제 2 전선이 연결되는 제 2 출력 단자를 포함한다. 또 감전 방지 기능을 가진 전극 구조체는 제 1 평판형 도전체와 제 2 평판형 도전체를 포함한다. 제 1 평판형 도전체는 제 1 입력 단자에 일단이 고정되고, 타단은 제 1 출력 단자에 고정되며, 그 폭은 제 1 전선의 두께보다 넓고 그 길이는 제 1 전선의 두께보다 길며, 그 폭과 길이의 곱인 면적은 제 1 전선의 단면적의 4배 이상 100,000배 이하이다. 제 2 평판형 도전체는 제 2 입력 단자에 일단이 고정되고, 타단은 제 2 출력 단자에 고정되며, 제 1 평판형 도전체와 동일한 규격을 가진다. 추가로 감전 방지 기능을 가진 전극 구조체는 제 1 평판형 도전체와 제 2 평판형 도전체를 전기적으로 이격시켜 고정하는 부도체인 하우징을 포함할 수 있다.
또다른 양상에 따르면, 제 1 평판형 도전체와 제 2 평판형 도전체의 재질이 구리(Cu)일 수 있다.
추가적인 양상에 따르면, 하우징은 제 1 평판형 도전체와 제 2 평판형 도전체를 서로 대향하도록 고정할 수 있다.
추가적인 양상에 따르면, 감전 방지 기능을 가진 전극 구조체는 제 1 평판형 도전체와 제 2 평판형 도전체가 대향하는 채로 세워진 상태로 설치되며, 침수로부터 보호하고자하는 대상 전기기기보다 낮은 위치에 설치될 수 있다.
추가적인 양상에 따르면, 감전 방지 기능을 가진 전극 구조체가 전력 차단기일 수 있다.
추가적인 양상에 따르면, 감전 방지 기능을 가진 전극 구조체가 콘센트일 수 있다.
한 쌍의 평판형 도전체를 전류 배송 경로에 설치함으로써 간단한 구조에 의해 근처에 누전된 전기에 접촉한 인체를 흐르는 전류를 실질적으로 저감시킬 수 있음이 실험적으로 증명되었다.
도 1은 일 실시예에 따른 감전 방지 기능을 가진 전극 구조체의 외관을 도시한다.
도 2는 도 1에서 4개의 단자부 나사들의 중심을 따라 절단한 단면도이다.
도 3은 제 1 실험의 기기들의 배치를 도시한다.
도 4는 제 2 실험의 기기들의 배치를 도시한다.
도 5는 감전 방지 기능을 가진 전극 구조체를 전력 차단기에 적용한 실시예를 도시한다.
도 6은 도 5에 도시된 차단기의 배면도이다.
도 7은 도 5에 도시된 차단기에 있어서 입력 단자들과 평판형 도전체들의 일 실시예를 도시한다.
도 8은 감전 방지 기능을 가진 전극 구조체를 콘센트에 적용한 실시예를 도시한다.
전술한, 그리고 추가적인 양상들은 후술하는 실시예들을 통해 더욱 명백해질 것이다. 이하에서는 첨부된 도면을 참조하여 기술되는 실시예들을 통해 본 발명의 양상들을 당업자가 이해하고 재현할 수 있도록 자세히 설명한다.
도 1은 일 실시예에 따른 감전 방지 기능을 가진 전극 구조체의 외관을 도시한다. 도 2는 도 1에서 4개의 단자부 나사들의 중심을 따라 절단한 단면도이다. 도 1 및 도 2를 참조하여 일 실시예에 따른 감전 방지 기능을 가진 전극 구조체를 설명한다.
일 실시예에 따른 감전 방지 기능을 가진 전극 구조체는 예를 들면 램프, 가로등, 콘센트, 플러그, 모터 등 가정용 혹은 산업용 전기 설비로의 송배전 경로에 연결된다. 후술하는 바와 같이, 감전 방지 기능을 가진 전극 구조체는 그 감전 방지 기능을 가진 전극 구조체가 연결된 전기 설비 혹은 그 전기 설비에 전기적으로 연결되어 근처에 위치하는 타 전기 설비의 침수시 감전을 예방한다.
도시된 바와 같이, 일 실시예에 따른 감전 방지 기능을 가진 전극 구조체는 입력측 제 1 전선이 연결되는 제 1 입력 단자(11)와, 입력측 제 2 전선이 연결되는 제 2 입력 단자(13)와, 출력측 제 1 전선이 연결되는 제 1 출력 단자(31)와, 출력측 제 2 전선이 연결되는 제 2 출력 단자(33)를 포함한다. 추가로 일 실시예에 따른 감전 방지 기능을 가진 전극 구조체는 제 1 평판형 도전체(110)와, 제 2 평판형 도전체(130)를 포함한다. 제 1 평판형 도전체(110)는 제 1 입력 단자에 일단이 고정되고, 타단은 제 1 출력 단자에 고정되며, 그 폭은 제 1 전선의 두께보다 넓고 그 길이는 제 1 전선의 두께보다 길며, 그 폭과 길이의 곱인 면적은 제 1 전선의 단면적의 4배 이상 10,000배 이하이다. 제 2 평판형 도전체(130)는 제 2 입력 단자에 일단이 고정되고, 타단은 제 2 출력 단자에 고정되며, 제 1 평판형 도전체(110)와 동일한 규격을 가진다. 추가로 감전 방지 기능을 가진 전극 구조체는 제 1 평판형 도전체(110)와 제 2 평판형 도전체(130)를 전기적으로 이격시켜 고정하는 부도체인 하우징(300)을 포함할 수 있다.
통상 제 1 입력 단자(11)에 나사로 체결되는 입력측 제 1 전선과 제 2 입력 단자(13)에 나사로 체결되는 입력측 제 2 전선은 물리적으로, 또 전기적으로 동일한 규격이다. 그러나 본 발명은 이에 한정되는 것은 아니다. 유사하게 통상 제 1 출력 단자(31)에 나사로 체결되는 출력측 제 1 전선과 제 2 출력 단자(33)에 나사로 체결되는 출력측 제 2 전선은 물리적으로, 또 전기적으로 동일한 규격이다. 그러나 본 발명은 이에 한정되는 것은 아니다. 감전 방지 기능을 가진 전극 구조체는 송배전 경로에 설치되므로 통상 입력측 제 1 전선과 출력측 제 1 전선은 물리적으로 또한 전기적으로 동일한 전선이며, 입력측 제 2 전선과 출력측 제 2 전선은 물리적으로 또한 전기적으로 동일한 전선이다. 그러나 본 발명은 이에 한정되는 것은 아니다.
일 실시예에 있어서, 제 1 입력 단자(11), 제 2 입력 단자(13), 제 1 출력 단자(31), 제 2 출력 단자(33)는 모두 동일한 형태로 구성된다. 그러나 각각 혹은 한 쌍씩 상이한 형태로 구성될 수도 있다. 도시된 바와 같이, 일 실시예에 있어서 이들 단자들은 제 2 평판형 도전체의 양단에 직접 천공한 나사공과 그 나사공에 삽입되어 체결되는 나사 및 그 나사에 의해 하우징에 밀착되고 나사와 하우징(300) 사이에서 피복이 벗겨진 도선의 고정을 도와주는 보조판으로 구성될 수 있다. 또다른 예에 있어서, 단자들은 평판형 도전체의 일단에 압착 고정된 단자대로 구성될 수도 있다. 단자들은 전선을 평판형 도전체의 양단에 연결하는 다양한 형태로 구성될 수 있다.
하우징(300)은 단자와 평판형 도전체들을 물리적으로 고정하는 구조체이다. 예를 들어 전극 구조체가 콘센트에 적용된 경우 하우징은 콘센트 하우징이 될 수 있다. 전극 구조체가 배전반에 적용된 경우 하우징은 배전반의 단자를 고정하는 브라켓 혹은 프레임일 수 있다. 도시된 실시예는 2선식에 적용되므로 하우징은 두 개의 평판형 도전체들을 고정하지만 3선식의 경우 3 개의 평판형 도전체들을 고정하는 형태로 변형될 수 있다. 하우징은 부도체인 플라스틱 또는 세라믹 재질로 제조될 수 있다.
침수 상태에서 평판형 도전체가 최대한 서로 노출되는 것이 유리하므로 하우징은 평판형 도전체의 양단 일부분을 고정하며 평판형 도전체의 대부분은 공중에 매달린 상태로 노출되는 형상이 되도록 하우징의 구조가 설계된다. 도시된 실시예에 있어서 평판형 도전체는 하우징의 바깥 외곽선보다 낮은 높이로 고정되어 설치 시 혹은 설치 후 노출된 평판형 도전체에 조작자가 부주의에 의해 접촉하여 감전되는 것을 줄인다. 구체적으로, 하우징의 상부에 돌출된 4개의 기둥은 평판형 도전체를 단자에 의해 고정하는데, 이들 기둥은 그 기둥에 고정된 평판형 도전체보다 약간 더 높게 돌출된다. 부가적으로, 하우징은 외부에 추가적인 덮개를 더 포함할 수 있다. 덮개는 인체의 부주의에 의한 접촉을 차단하면서 물에 잠길 때 물이 쉽게 들어올 수 있도록 충분한 수와 크기의 구멍이 천공되어 있는 형태가 될 수 있다.
추가적인 양상에 따르면, 하우징은 제 1 평판형 도전체와 제 2 평판형 도전체를 서로 대향하도록 고정할 수 있다. 감전 방지 기능을 가진 전극 구조체는 물에 잠겼을 때 두 평판형 도전체 사이에 물이 가득 차고, 결국 두 평판형 전극과 그 사이에 물에 의해 형성되는 전기적 저항체가 된다. 전기 저항은 저항체의 길이에 비례하고 단면적에 반비례하므로 평판형 전극이 대향할 때 단면적이 최대가 되고 길이가 최소가 되어 전기 저항이 최소로 된다. 이에 따라 인체와 접지면에 대해 병렬로 연결될 때 더 저항이 큰 인체로 흐르는 전류를 최소화할 수 있다.
또다른 양상에 따르면, 감전 방지 기능을 가진 전극 구조체는 제 1 평판형 도전체와 제 2 평판형 도전체가 대향하는 채로 세워진 상태로 설치되며, 침수로부터 보호하고자하는 대상 전기기기보다 낮은 위치에 설치된다. 예를 들어 가로등의 경우 하부에 노출된 제어기는 방수된 공간에 설치되지만 이 공간에 빗물 등이 차게 되면 주변 사람들은 감전의 위험에 놓이게 된다. 감전 방지 기능을 가진 전극 구조체는 이 방수 공간에 설치되면서 제어기보다 낮은 위치로 설치되어 제어기가 침수되는 시점보다 먼저 침수되고 이로 인해 먼저 작동할 수 있게 된다.
또다른 양상에 따르면, 제 1 평판형 도전체와 제 2 평판형 도전체의 재질이 구리(Cu)일 수 있다. 실험에 따르면, 평판형 도전체의 재질이 철, 알루미늄일 때보다 구리인 경우가 감전 방지 기능을 가진 전극 구조체의 효과가 우수하였다.
도 3은 제 1 실험의 기기들의 배치를 도시한다. 제 1 실험은 수조(502)에 물을 채우고 일단이 플러그에 연결된 일 실시예에 따른 감전 방지 기능을 가진 전극 구조체(503)를 수조(502)에 담그고, 그 타단의 램프(505)를 수조 바깥에 노출시키고 수조의 물은 접지되지 않은 상태이다. 이때 플러그(501)를 전원 콘센트에 연결하여 전원을 공급한다. 이때 감전 방지 기능을 가진 전극 구조체(503)이 물에 잠겼음에도 불구하고 램프(505)에 불이 켜지는 것을 확인할 수 있다. 이어서 실험자(509)가 전선의 노출된 일단을 잡고 노출된 타단을 수조에 담근 상태에서 전선을 통해 흐르는 전류를 전류계(507)로 측정한다. 실험자(509)가 직접 실험할 경우 위험할 수 있으므로 인체 대신에 인체와 유사한 도전 성질을 가지는 동물로 대체할 수도 있다. 아래 <표 1>은 다양한 가로 및 세로의 길이를 가진 평판형 도전체에 대해 도 3에 도시된 실험을 반복한 결과이다. 전원은 220V/60Hz의 상용전원을 사용하였고, 부하는 120W 백열등을 연결하였으며, 대향하는 두 평판형 도전체 사이의 간격은 10mm 이다. 또한 사용한 전선은 지름 1.8mm 의 원통형 도체를 포함한다. 아래 표에서 가로는 평판형 도전체의 폭이며, 세로는 길이를 나타내고 측정치는 mA 단위이다.
표 1
길이\폭 0.9mm 1.8mm 3.6mm 7.2mm 14.4mm 28.8mm
0.9mm 13.12 12.51 12.07 11.42 11.03 10.02
1.8mm 12.52 2.52 1.10 0.90 0.75 0.67
3.6mm 12.05 1.10 0.95 0.75 0.67 0.37
7.2mm 11.41 0.90 0.75 0.67 0.37 0.21
14.4mm 11.02 0.75 0.67 0.37 0.21 0.11
28.8mm 10.03 0.67 0.37 0.21 0.11 0.05
57.6mm 9.81 0.37 0.21 0.11 0.05 0.01
실험 결과는 모든 평판형 도체의 싸이즈에 대해 인체를 통과하는 전류는 미약하여 문제가 없음을 보여 주고 있다. 이 실험은 단상 교류가 수조의 물을 통해 흐르면 입체 저항체인 물 안에서 전압 강하가 일어나고, 인체가 접촉시 물과 접지면 사이에 인체를 통해 흐르는 전류는 물에 담그는 위치에 따라 단상 교류의 중간값 전후로 결정되므로 일반적인 단상 교류에 직접 접촉한 경우보다 실제로는 훨씬 낮은 교류 전원에 노출되는 셈이 되어 초래되는 결과로 추정된다. 다만 두 평판형 도전체가 어떠한 역할을 하여 인체를 통과하는 전류를 추가로 제한하는지는 밝혀지지 않는다.
아래 데이터는 위 실험과 다른 조건은 동일하고 단지 수조속의 물에 접지선(511)을 담구어 물을 접지시킨 상태에서의 실험 결과이다. 가로등 등이 침수될 경우 물이 지면에 전기적으로 닿아 접지되기 때문이다. 현실적으로 전기 설비가 침수된 상태에 좀 더 가까운 상태이다. 이 상태에서도 누설전류의 량은 크게 변화가 없음을 확인하였다.
표 2
길이\폭 0.9mm 1.8mm 3.6mm 7.2mm 14.4mm 28.8mm
0.9mm 13.21 12.79 12.21 11.68 11.12 10.13
1.8mm 12.79 2.54 1.12 0.92 0.77 0.69
3.6mm 12.21 1.12 0.97 0.77 0.69 0.39
7.2mm 11.68 0.92 0.77 0.69 0.39 0.23
14.4mm 11.12 0.77 0.69 0.39 0.23 0.13
28.8mm 10.13 0.69 0.39 0.23 0.13 0.07
57.6mm 10.01 0.39 0.23 0.13 0.07 0.03
아래 데이터는 수조속 평판형 도전체 주변의 누설전류량을 거리별로 측정한 결과이다. 이 실험을 통해 도전선상의 누설전류와 평판형 도전체 주변의 누설전류의 상관관계를 확인하기 위함이다.
표 3
면적\거리 0cm 5cm 10cm 15cm
14.4mm x 28.8mm 0.304 0.230 0.170 0.120
28.8mm x 28.8mm 0.605 0.054 0.009 0.005
위 실험결과는 대향하는 평판형 도전체 사이의 공간 주위에 대부분의 전류가 흐른다는 사실을 추정케 한다. 평판형 도전체를 설치하기전 노출된 두 전선 간에는 943V/m의 전계가 형성되었으나, 평판형 도전체를 설치후 두 평판형 도전체 사이에는 측정한계치인 1,999V/m을 넘는 것을 확인하였다.
이 실험은 두 평판형 도전체 사이의 물이라는 전기적 저항체의 중간 부분이 접지된 상태로 전기회로적으로 모델링할 수 있다. 인체는 이 전기적 저항체와 접지면 사이에 연결되는 또다른 저항체로 모델링할 수 있다. 인체라는 저항체와, 두 평판형 도전체와 접지면 사이에 연결된 물이라는 저항체들이 전기회로적으로 병렬로 연결되어 인체로 흐르는 전류를 제한하는 것은 기존의 전기회로적인 해석으로 이해가 될 수 있다.
<표 1>과 <표 2>의 실험 결과를 참조하면, 수조의 물을 접지한 경우나 그렇지 않은 경우나 측정값은 큰 차이가 없어 감전의 위험이 큰 차이가 없음을 알 수 있다. 또 평판형 도체의 폭이나 길이 중 하나라도 도전체의 지름보다 더 좁거나 짧아지면 흐르는 전류량이 급격히 증가함을 알 수 있다. 이는 감전 위험의 증가를 의미한다.
또 <표 1>과 <표 2>의 실험 결과를 통해 인체를 통해 흐르는 전류는 평판형 도전체의 면적과 원통형 전선의 단면적의 비에도 관련됨을 알 수 있다. 여기서 평판형 도전체의 면적이란 평판형 도전체의 평판 모양에서 폭과 길이를 곱한 값을 말한다. <표 2>의 실험 결과를 분석하면 전선의 반경을 r이라 하면, 전선의 폭은 2r이고, 전선의 단면적은 πr2 이므로, 예를 들어 <표 2>의 첫 행에서 평판형 도전체의 면적은 (r)(r)=r2, (r)2r=2r2, (r)(4r)=4r2, (r)(8r)=8r2, (r)(16r)=16r2, (r)(32r)=32r2 등에 해당하고, 평판형 도전체의 면적과 전선 단면적과의 비는 1/π=0.32, 2/π=0.64, 4/π=1.27, 8/π=2.55, 16/π=5.09, 32/π=10.19 등이 된다.
현실적으로 전기 설비가 침수된 상태에 좀 더 가까운 상태인 물이 접지된 상태일 경우인 <표 2>에서 평판형 도전체의 면적과 원통형 전선의 단면적의 비가 대략 1.27 이하일 때 기준치인 2.54 mA 이상의 전류가 흘렀으며, 5.09배 일 경우 기준치 0.97 mA 의 전류가 흘렀다. 본 실험을 통해 평판형 도전체의 면적이 대략 원통형 전선의 단면적의 4배 이상일 경우 일반적인 상태에서 인체에 위험하지 않는 정도의 전류가 흐름을 알 수 있다.
평판형 도전체가 클수록 제조원가가 올라갈 뿐 아니라 공간을 많이 차지하므로 실용상 문제가 생긴다. 통상 도선 지름이 2mm 정도라면 단면적이 3.14 mm2 인데, 그 100,000배라면 3,140cm2 이고, 이는 평판형 도전체의 폭이 10cm 일때 길이가 314cm 인 것으로 도선의 크기에 비해 과도한 크기이므로 상업성이 없다고 볼 수 있다.
도 4는 제 2 실험의 기기들의 배치를 도시한다. 제 2 실험은 수조(502)에 물을 채우고 일단이 플러그에 연결된 일 실시예에 따른 감전 방지 기능을 가진 전극 구조(503)는 수조(502) 바깥에 두고, 감전 방지 기능을 가진 전극 구조(503)에 연결되는 또다른 전기 설비, 예를 들면 콘센트(513)를 수조(502)에 담그며, 그 콘센트에 연결된 또다른 전기 설비, 예를 들면 램프(505)는 수조 바깥에 노출시킨다. 플러그(501)를 전원 콘센트에 연결하여 전원을 공급한다. 이때 감전 방지 기능을 가진 전극 구조(503)는 물에 잠기지 않고 또다른 전기 설비인 콘센트(513)가 물에 잠겼음에도 불구하고 램프(505)에 불이 켜지는 것을 확인할 수 있다. 이어서 실험자(509)가 전선의 노출된 일단을 잡고 노출된 타단을 수조에 담근 상태에서 전선을 통해 흐르는 전류를 전류계(507)로 측정한다. 실험자(509)가 직접 실험할 경우 위험할 수 있으므로 인체 대신에 인체와 유사한 도전 성질을 가지는 동물로 대체할 수도 있다. 이때 전원은 220V/60Hz의 상용전원을 사용하였고, 부하는 120W 백열등을 연결하였으며, 대향하는 두 평판형 도전체 사이의 간격은 10mm 이다. 또한 사용한 전선은 지름 1.8mm 의 원통형 도체를 포함한다. 아래 표에서 가로는 평판형 도전체의 폭이며, 세로는 길이를 나타내고 측정치는 mA 단위이다. 실험 결과 <표 1>과 유사한 결과를 얻었다. 이러한 실험 결과를 본 출원인도 전기적인 모델링으로 설명할 수는 없지만 아마도 두 평판형 도전체가 공기중에 노출된 경우에 인체와의 전기적인 흐름을 변형시킨 것이 아닌가 추측할 뿐이다.
아래 데이터는 위 실험과 다른 조건은 동일하고 단지 수조속의 물에 접지선(511)을 담구어 물을 접지시킨 상태에서의 실험 결과이다. 가로등 등이 침수될 경우 물이 지면에 전기적으로 닿아 접지되기 때문이다. 현실적으로 전기 설비가 침수된 상태에 좀 더 가까운 상태이다. 이 상태에서는 위의 실험 때보다 좀 더 많은 전류가 흐른다.
표 4
길이\폭 0.9mm 1.8mm 3.6mm 7.2mm 14.4mm 28.8mm
0.9mm 13.71 13.21 12.71 12.18 11.62 10.63
1.8mm 13.21 3.02 2.63 1.67 1.82 1.74
3.6mm 12.71 2.63 1.85 1.46 1.30 1.22
7.2mm 11.18 1.67 1.46 1.30 1.21 0.80
14.4mm 11.62 1.82 1.30 1.21 0.77 0.62
28.8mm 10.63 1.74 1.19 1.80 0.62 0.65
57.6mm 10.51 1.21 0.80 0.69 0.65 0.62
도 5 내지 도 7을 참조하여, 감전 방지 기능을 가진 전극 구조체를 전력 차단기에 적용한 실시예를 알아본다. 도 5는 감전 방지 기능을 가진 전극 구조체를 전력 차단기에 적용한 실시예를 도시한다. 도 6은 도 5에 도시된 차단기의 배면도이다. 도 7은 도 5에 도시된 차단기에 있어서 입력 단자들과 평판형 도전체들의 일 실시예를 도시한다.
일 실시예에 따른 차단기는 예를 들면 가정용 혹은 산업용 전기 설비로의 송배전 경로에 연결된다. 후술하는 바와 같이, 차단기는 전기적인 차단 기능이 고장난 경우에도 그 차단기 후단에 설치된 전기 설비 혹은 그 전기 설비에 전기적으로 연결되어 근처에 위치하는 타 전기 설비의 침수시 감전을 예방한다.
도시된 바와 같이, 일 실시예에 따른 차단기는 입력측 제 1 전선이 연결되는 제 1 입력 단자(11)와, 입력측 제 2 전선이 연결되는 제 2 입력 단자(13)와, 출력측 제 1 전선이 연결되는 제 1 출력 단자(31)와, 출력측 제 2 전선이 연결되는 제 2 출력 단자(33)를 포함한다. 차단기는 제 1,2 입력단자에 입력 단자들이 연결되며 과전류가 흐를 때 회로 연결을 차단하는 차단부(20)와, 감전방지부(10)를 포함한다. 또 차단기는 제 1 평판형 도전체(110)와 제 2 평판형 도전체(130)를 포함한다. 차단부(20)는 제 1,2 입력단자의 접속편들(73,71)에 입력단이 접속되고, 일단에 제 1,2 출력단자(31,33)가 일체로 형성된 제 1,2 평판형 도전체(110,130)의 타단에 형성된 접속편들(51,53)에 출력단이 접속되어, 입력단과 출력단 사이의 전기적인 접속을 단속한다.
제 1 평판형 도전체(110)는 일단은 제 1 출력 단자(31)에 연결되며,차단부의 출력단자 중 하나에 일단인 접속편(51)이 연결되고, 그 폭은 제 1 전선의 두께보다 넓고 그 길이는 제 1 전선의 두께보다 길며, 그 폭과 길이의 곱인 면적은 제 1 전선의 단면적의 4배 이상 100,000배 이하이다. 제 2 평판형 도전체는 차단부의 출력단자 중 다른 하나에 일단이 연결되고, 타단은 제 2 출력 단자에 연결되며, 제 1 평판형 도전체와 동일한 규격을 가진다. 추가로 차단기는 제 1 평판형 도전체와 제 2 평판형 도전체를 전기적으로 이격시켜 고정하는 부도체인 하우징을 포함할 수 있다.
일 실시예에 있어서 차단부(20)는 입력 단자와 출력 단자를 통해 공급되는 전류를 감시하여 과전류를 검출하는 과전류 검출부와, 과전류 검출부에서 과전류가 검출될 경우 작동하는 액츄에이터와, 액츄에이터에 의해 입력 단자와 출력 단자 사이의 연결을 차단하는 스위칭부를 포함한다. 차단부의 종류과 그에 따른 구성은 일반적으로 알려져 있으므로 상세한 설명은 생략한다.
일 실시예에 따른 감전방지부(10)는 제 1 평판형 도전체(110)와, 제 2 평판형 도전체(130)를 포함한다. 제 1 평판형 도전체(110)의 일단은 제 1 접속부(51)를 통해 차단부(20)의 출력단자 중 하나에 연결되고, 타단은 제 1 출력 단자(31)에 연결되며, 그 폭은 제 1 전선의 두께보다 넓고 그 길이는 제 1 전선의 두께보다 길며, 그 폭과 길이의 곱인 면적은 제 1 전선의 단면적의 4배 이상 100,000배 이하이다. 제 2 평판형 도전체(130)의 일단은 제 2 접속부(53)를 통해 차단부(20)의 출력단자 중 하나에 연결되고, 타단은 제 2 출력 단자(33)에 연결되며, 제 1 평판형 도전체와 동일한 규격을 가진다. 추가로 차단기는 제 1 평판형 도전체(110)와 제 2 평판형 도전체(130)를 전기적으로 이격시켜 고정하는 부도체인 하우징(300)을 포함할 수 있다.
통상 제 1 입력 단자(11)에 나사로 체결되는 입력측 제 1 전선과 제 2 입력 단자(13)에 나사로 체결되는 입력측 제 2 전선은 물리적으로, 또 전기적으로 동일한 규격이다. 그러나 본 발명은 이에 한정되는 것은 아니다. 유사하게 통상 제 1 출력 단자(31)에 나사로 체결되는 출력측 제 1 전선과 제 2 출력 단자(33)에 나사로 체결되는 출력측 제 2 전선은 물리적으로, 또 전기적으로 동일한 규격이다. 그러나 본 발명은 이에 한정되는 것은 아니다. 차단기는 송배전 경로에 설치되므로 통상 입력측 제 1 전선과 출력측 제 1 전선은 물리적으로 또한 전기적으로 동일한 전선이며, 입력측 제 2 전선과 출력측 제 2 전선은 물리적으로 또한 전기적으로 동일한 전선이다. 그러나 본 발명은 이에 한정되는 것은 아니다.
일 실시예에 있어서, 제 1 입력 단자(11) 및 제 2 입력 단자(13)는 일단에 하우징에 천공된 나사공과 그 나사공에 삽입되어 체결되는 나사(미도시)및 그 나사에 의해 하우징에 밀착되고 나사와 하우징(300) 사이에서 피복이 벗겨진 도선의 고정을 도와주는 보조판을 포함하여 구성될 수 있다. 또다른 예에 있어서, 단자들은 평판형 도전체의 일단에 압착 고정된 단자대로 구성될 수도 있다. 단자들은 전선을 평판형 도전체의 양단에 연결하는 다양한 형태로 구성될 수 있다.
일 실시예에 있어서, 제 1 입력 단자(11)는 절곡된 타단에 형성된 제 1 접속편(71)을 포함할 수 있다. 제 1 접속편(71)은 차단부(20)의 대응하는 암 접속편에 접속된다. 유사하게, 일 실시예에 있어서 제 2 입력 단자(13)는 절곡된 타단에 형성된 제 2 접속편(73)을 포함할 수 있다. 제 2 접속편(73)은 차단부(20)의 대응하는 암 접속편에 접속된다.
하우징(300)은 단자와 평판형 도전체들을 물리적으로 고정한다. 도시된 실시예는 2선식에 적용되므로 하우징은 두 개의 평판형 도전체들을 고정하지만 3선식의 경우 3 개의 평판형 도전체들을 고정하는 형태로 변형될 수 있다. 하우징은 부도체인 플라스틱 또는 세라믹 재질로 제조될 수 있다.
도시된 실시예에 있어서 평판형 도전체는 일면이 노출되면서 하우징의 내측 측벽에 고정되되, 하우징의 바깥 외곽선보다 낮은 높이로 고정되어 설치 시 혹은 설치 후 노출된 평판형 도전체에 조작자가 부주의에 의해 접촉하여 감전되는 것을 줄인다. 하우징은 제 1 평판형 도전체와 제 2 평판형 도전체를 서로 대향하도록 고정할 수 있다.
본 발명을 전기회로 이론에 의해 완전히 설명할 수는 없지만 전기적으로 볼 때 차단기는 물에 잠겼을 때 두 평판형 도전체 사이에 물이 가득 차고, 결국 두 평판형 전극과 그 사이에 물에 의해 형성되는 전기적 저항체가 된다. 전기 저항은 저항체의 길이에 비례하고 단면적에 반비례하므로 평판형 전극이 대향할 때 단면적이 최대가 되고 길이가 최소가 되어 전기 저항이 최소로 된다. 이에 따라 인체와 접지면에 대해 병렬로 연결될 때 더 저항이 큰 인체로 흐르는 전류를 최소화할 수 있다.
또다른 양상에 따르면, 차단기는 제 1 평판형 도전체와 제 2 평판형 도전체가 대향하는 채로 세워진 상태로 설치되며, 침수로부터 보호하고자하는 대상 전기기기보다 낮은 위치에 설치된다. 예를 들어 가로등의 경우 하부에 노출된 제어기는 방수된 공간에 설치되지만 어떤 문제가 발생하여 이 공간에 빗물 등이 차게 되면 주변 사람들은 감전의 위험에 놓이게 된다. 차단기는 이 방수 공간에 설치되면서 제어기보다 낮은 위치로 설치되어 제어기가 침수되는 시점보다 먼저 침수되고 이로 인해 먼저 작동할 수 있게 된다.
또다른 양상에 따르면, 제 1 평판형 도전체와 제 2 평판형 도전체의 재질이 구리(Cu)일 수 있다. 실험에 따르면, 평판형 도전체의 재질이 철, 알루미늄일 때보다 구리인 경우가 차단기의 효과가 우수하였다.
도 8을 참조하여, 감전 방지 기능을 가진 전극 구조체를 콘센트에 적용한 실시예를 알아본다. 도 8은 감전 방지 기능을 가진 전극 구조체를 콘센트에 적용한 실시예를 도시한다.
이 실시예에 따른 감전 방지 기능을 가진 콘센트(1000)는 몸체(1100)와, 덮개(1200)와, 전원공급단자(1300)와, 플러그 삽입홈(1400)과, 전극 구조체(1500)를 포함하여 이루어진다.
상기 몸체(1100)는 내측에 안착홈(1110)이 형성되며, 도면에 도시된 바와 같이 사각형의 형상에만 국한되는 것은 아니며, 동그라미 형태 등과 같이 다양한 형태로 구현될 수 있다.
상기 덮개(1200)는 상기 몸체(1100)의 상부에 결합된다. 상기 몸체(1100)에 덮개(1200)를 결합하는 구조는 다양한 형태로 구현될 수 있으며, 이 출원 전에 이미 다양하게 공지되어 시행되는 사항이므로, 이에 대한 구체적인 결합 구조는 설명을 생략한다.
상기 전원공급단자(1300)는 상기 몸체(1100)의 안착홈(1110) 일부에 설치되며, 플러그가 결합되어 전기를 플러그로 공급한다. 즉, 이 전원공급단자(1300)가 전극 역할을 수행한다.
상기 플러그 삽입홈(1400)은 상기 덮개(1200)에 형성되며, 플러그가 삽입된다. 상기 플러그는 이 플러그 삽입홈(1400)을 통해 삽입되어, 전극 역할을 수행하는 상기 전원공급단자(1300)에 접속됨으로써 상용 전원이 플러그를 통해 플러그에 연결된 전자기기(도면 도시 생략)로 인가된다.
상기 전극 구조체(1500)는 상기 몸체(1100)의 안착홈(1110) 일부에 설치되며, 상기 전원공급단자(1300)와 전원 공급선(1600)간에 연결되어 전류의 누설을 방지한다.
상기 전극 구조체(1500)는 도 1 및 도 2 에 도시한 바와 같이, 제 1 입력 단자(11)와, 제 2 입력 단자(13)와, 제 1 출력 단자(31)와, 제 2 출력 단자(33)와, 제 1 평판형 도전체(110)와, 제 2 평판형 도전체(130)와, 부도체 하우징(300)을 포함할 수 있다.
상기 제 1 입력 단자(11)는 상기 전원공급단자(1300)의 제1리드선(1310)에 연결된다. 상기 제 2 입력 단자(13)는 상기 전원공급단자(1300)의 제2리드선(1320)에 연결된다. 상기 제 1 출력 단자(31)는 상기 전원 공급선(1600)의 제3리드선(1610)에 연결된다. 상기 제 2 출력 단자(33)는 상기 전원 공급선(1600)의 제4리드선(1620)에 연결된다.
상기 제 1 평판형 도전체(110)는 상기 제 1 입력 단자(11)와 상기 제 1 출력 단자(31) 사이에 연결되되, 그 폭은 제1리드선(1310)의 두께보다 넓고 그 길이는 제1리드선(1310)의 두께보다 길며, 그 폭과 길이의 곱인 면적은 제1리드선의 단면적의 4배 이상 1000,000배 이하이다. 상기 제 2 평판형 도전체(130)는 상기 제 2 입력 단자(13)와 상기 제 2 출력 단자(33) 사이에 연결되되, 상기 제 1 평판형 도전체(110)와 동일한 규격을 가진다. 상기 부도체 하우징(300)은 상기 제 1 평판형 도전체(110)와 제 2 평판형 도전체(130)를 전기적으로 이격시켜 고정한다.
통상 제 1 입력 단자(11)에 나사로 체결되는 제1리드선(1310)과 제 2 입력 단자(13)에 나사로 체결되는 제2리드선(1320)은 물리적으로 또한 전기적으로 동일한 규격이다. 그러나, 본 발명은 이에 한정되는 것은 아니다.
유사하게 통상 제 1 출력 단자(31)에 나사로 체결되는 제3리드선(1610)과 제 2 출력 단자(33)에 나사로 체결되는 제4리드선(1620)은 물리적으로 또한 전기적으로 동일한 규격이다. 그러나, 본 발명은 이에 한정되는 것은 아니다.
콘센트는 통상 제1리드선(1310)과 제3리드선(1610)은 물리적으로 또한 전기적으로 동일한 전선이며, 제2리드선(1320)과 제4리드선(1620)은 물리적으로 또한 전기적으로 동일한 전선이다. 그러나, 본 발명은 이에 한정되는 것은 아니다.
일 실시예에 있어서, 제 1 입력 단자(11), 제 2 입력 단자(13), 제 1 출력 단자(31), 제 2 출력 단자(33)는 모두 동일한 형태로 구성된다. 그러나, 각각 혹은 한 쌍씩 상이한 형태로 구성될 수도 있다. 도시된 바와 같이, 일 실시예에 있어서 이들 단자들은 제 1 평판형 도전체(110) 및 제 2 평판형 도전체(130)의 양단에 직접 천공한 나사공에 삽입되어 체결되는 나사에 의해 부도체 하우징(300)에 밀착되고 나사와 부도체 하우징(300) 사이에서 피복이 벗겨진 도선의 고정을 도와주는 보조판으로 구성될 수 있다. 또 다른 예에 있어서, 상기 단자들은 제 1 평판형 도전체(110) 및 제 2 평판형 도전체(130)의 일단에 압착 고정된 형태로 구현될 수도 있다. 상기 단자들은 전선을 상기 평판형 도전체의 양단에 연결하는 다양한 형태로 구성될 수 있다.
부도체 하우징(300)은 상기 단자와 상기 평판형 도전체들을 물리적으로 고정하는 구조체이다. 도시된 실시예는 2선식에 적용되므로 부도체 하우징(300)은 두 개의 평판형 도전체들을 고정하지만 3선식의 경우 3 개의 평판형 도전체들을 고정하는 형태로 변형될 수 있다. 부도체 하우징은 부도체인 플라스틱 또는 세라믹 재질로 제조될 수 있다.
침수 상태에서 평판형 도전체가 최대한 서로 노출되는 것이 유리하므로 부도체 하우징은 평판형 도전체의 양단 일부분을 고정하며 평판형 도전체의 대부분은 공중에 매달린 상태로 노출되는 형상이 되도록 부도체 하우징의 구조가 설계된다. 도시된 실시예에 있어서 평판형 도전체는 부도체 하우징의 바깥 외곽선보다 낮은 높이로 고정되어 설치 시 혹은 설치 후 노출된 평판형 도전체에 조작자가 부주의에 의해 접촉하여 감전되는 것을 줄인다.
구체적으로, 부도체 하우징의 상부에 돌출된 4개의 기둥은 평판형 도전체를 단자에 의해 고정하는데, 이들 기둥은 그 기둥에 고정된 평판형 도전체보다 약간 더 높게 돌출된다.
부가적인 양상에 따르면, 상기 부도체 하우징(300)이 제 1 평판형 도전체(110)와 제 2 평판형 도전체(130)를 서로 대향하도록 고정하도록 구현될 수 있다. 본 발명을 전기적으로 볼 때 콘센트가 물에 잠겼을 때 두 평판형 도전체 사이에 물이 가득 차고, 결국 두 평판형 도전체 사이에 물에 의해 형성되는 전기적 저항체가 된다.
전기 저항은 저항체의 길이에 비례하고 단면적에 반비례하므로 평판형 도전체가 서로 대향할 때 단면적이 최대가 되고 길이가 최소가 되어 전기 저항이 최소로 된다. 이에 따라 인체와 접지면에 대해 병렬로 연결될 때 더 저항이 큰 인체로 흐르는 전류를 최소화할 수 있다.
또 다른 양상에 따르면, 상기 제 1 평판형 도전체(110)와 제 2 평판형 도전체(130)가 대향하는 채로 세워진 상태로 설치되며, 콘센트는 침수로부터 보호하고자하는 대상 전기기기보다 낮은 위치에 설치될 수 있다. 예를 들어 가로등의 경우 하부에 노출된 제어기는 방수된 공간에 설치되지만 이 공간에 빗물 등이 차게 되면 주변 사람들은 감전의 위험에 놓이게 된다. 감전 방지 기능을 가진 콘센트는 이 방수 공간에 설치되면서 제어기보다 낮은 위치로 설치되어 제어기가 침수되는 시점보다 먼저 침수되고 이로 인해 먼저 작동할 수 있게 된다.
또 다른 양상에 따르면, 제 1 평판형 도전체(110)와 제 2 평판형 도전체(130)의 재질이 구리(Cu)일 수 있다. 실험에 따르면, 평판형 도전체의 재질이 철, 알루미늄일 때보다 구리인 경우가 감전 방지 기능을 가진 콘센트의 효과가 우수하였다.
이상에서 본 발명은 첨부된 도면을 참조하는 실시예를 통하여 설명되었으나, 이에 한정되지 않으며 개시된 또 암시된 양상으로부터 당업자가 도출할 수 있는 자명한 변형들을 포괄한다. 예를 들어 본 발명은 삼상 전력에도 적용될 수 있다. 특허청구범위는 이러한 자명한 변형을 포괄하도록 의도되었다. 예를 들어 실시예는 별도의 감전 방지 기능을 가진 전극 구조라는 전기 설비를 예로 들었으나, 감전 방지 기능을 가진 전극 구조체는 다른 전기 설비, 예를 들면 차단기, 단자대, 콘센트, 플러그, 밧데리, 각종 전기기기 등에 내장될 수 있다. 이는 이러한 전기기기 내부의 송배전 경로 상에 실질적으로 동일한 크기를 가진 두 개의 평판형 도체를 삽입하는 설계 변경을 통해 적용될 수 있다. 따라서 본 명세서에서 '감전 방지 기능을 가진 전극 구조체'라는 표현은 이러한 다양한 전기 설비들을 포괄하도록 해석되어야 한다.

Claims (6)

  1. 전기 설비로의 송배전 경로에 연결되고, 그 전기 설비 혹은 그 전기 설비에 전기적으로 연결되어 근처에 위치하는 타 전기 설비의 침수시 감전을 예방하는 감전방지 기능을 가진 전극 구조체에 있어서,
    입력측 제 1 전선이 연결되는 제 1 입력 단자와;
    입력측 제 2 전선이 연결되는 제 2 입력 단자와;
    출력측 제 1 전선이 연결되는 제 1 출력 단자와;
    출력측 제 2 전선이 연결되는 제 2 출력 단자와;
    제 1 입력 단자에 일단이 고정되고, 타단은 제 1 출력 단자에 고정되며, 그 폭은 제 1 전선의 두께보다 넓고 그 길이는 제 1 전선의 두께보다 길며, 그 폭과 길이의 곱인 면적은 제 1 전선의 단면적의 4배 이상 100,000배 이하인 제 1 평판형 도전체와;
    제 2 입력 단자에 일단이 고정되고, 타단은 제 2 출력 단자에 고정되며, 제 1 평판형 도전체와 동일한 규격을 가지는 제 2 평판형 도전체와;
    제 1 평판형 도전체와 제 2 평판형 도전체를 전기적으로 이격시켜 고정하는 부도체인 하우징;
    을 포함하는 감전 방지 기능을 가진 전극 구조체.
  2. 제 1 항에 있어서, 제 1 평판형 도전체와 제 2 평판형 도전체의 재질이 구리(Cu)인 감전 방지 기능을 가진 전극 구조체.
  3. 제 1 항에 있어서, 하우징은 제 1 평판형 도전체와 제 2 평판형 도전체를 서로 대향하도록 고정하는 감전 방지 기능을 가진 전극 구조체.
  4. 제 1 항에 있어서, 감전 방지 기능을 가진 전극 구조체는 제 1 평판형 도전체와 제 2 평판형 도전체가 대향하는 채로 세워진 상태로 설치되며, 침수로부터 보호하고자하는 대상 전기기기보다 낮은 위치에 설치되는 감전 방지 기능을 가진 전극 구조체.
  5. 제 1 항에 있어서, 감전 방지 기능을 가진 전극 구조체가 전력 차단기인 감전 방지 기능을 가진 전극 구조체.
  6. 제 1 항에 있어서, 감전 방지 기능을 가진 전극 구조체가 콘센트인 감전 방지 기능을 가진 전극 구조체.
PCT/KR2013/009404 2013-01-09 2013-10-22 감전방지 기능을 가진 전극 구조체 WO2014109462A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015552563A JP6101364B2 (ja) 2013-01-09 2013-10-22 感電防止機能を有した電極構造体
US14/759,916 US9960519B2 (en) 2013-01-09 2013-10-22 Electrode structure with electric-shock prevention function
CN201380071082.2A CN104969416B (zh) 2013-01-09 2013-10-22 具有防电击功能的电极结构

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
KR10-2013-0002669 2013-01-09
KR20130002669 2013-01-09
KR20130003155 2013-01-10
KR10-2013-0003155 2013-01-10
KR10-2013-0025037 2013-03-08
KR20130025037 2013-03-08
KR1020130089708A KR101404806B1 (ko) 2013-01-10 2013-07-29 감전 방지 기능을 가진 전력 차단기
KR10-2013-0089708 2013-07-29
KR10-2013-0102697 2013-08-28
KR1020130102697A KR20140110696A (ko) 2013-03-08 2013-08-28 감전 방지 기능을 가진 전극 구조체
KR10-2013-0116731 2013-09-30
KR1020130116731A KR101513265B1 (ko) 2013-01-09 2013-09-30 감전 방지 기능을 구비한 콘센트

Publications (1)

Publication Number Publication Date
WO2014109462A1 true WO2014109462A1 (ko) 2014-07-17

Family

ID=51167085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009404 WO2014109462A1 (ko) 2013-01-09 2013-10-22 감전방지 기능을 가진 전극 구조체

Country Status (1)

Country Link
WO (1) WO2014109462A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200339079Y1 (ko) * 2003-10-20 2004-01-16 현대방폭전기(주) 침수 감전 방지 장치
KR200413968Y1 (ko) * 2005-12-13 2006-04-14 송성태 누전 방지용 패킹 및 이를 포함하는 누전 방지용 전선 연결캡
KR100731051B1 (ko) * 2006-01-20 2007-06-22 현대방폭전기(주) 맨홀 침수 감전 방지 장치
KR20090003192U (ko) * 2007-10-01 2009-04-06 한국전기안전공사 수중 인체 전격 방지를 위한 안전 콘센트

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200339079Y1 (ko) * 2003-10-20 2004-01-16 현대방폭전기(주) 침수 감전 방지 장치
KR200413968Y1 (ko) * 2005-12-13 2006-04-14 송성태 누전 방지용 패킹 및 이를 포함하는 누전 방지용 전선 연결캡
KR100731051B1 (ko) * 2006-01-20 2007-06-22 현대방폭전기(주) 맨홀 침수 감전 방지 장치
KR20090003192U (ko) * 2007-10-01 2009-04-06 한국전기안전공사 수중 인체 전격 방지를 위한 안전 콘센트

Similar Documents

Publication Publication Date Title
WO2014014173A1 (ko) 침수 시 누전방지장치
CN102084550B (zh) 接线盒和接线盒块
WO2015108221A1 (ko) 침수된 전기설비의 상간전류 및 누설전류 제한장치
JP6101364B2 (ja) 感電防止機能を有した電極構造体
SE8402942L (sv) Forbindelseanordning for luft-underjord forbindelse av elektriska lagspenningskablar
KR101400711B1 (ko) 전기 설비용 감전 방지 장치
KR101513265B1 (ko) 감전 방지 기능을 구비한 콘센트
WO2014109462A1 (ko) 감전방지 기능을 가진 전극 구조체
KR20140110696A (ko) 감전 방지 기능을 가진 전극 구조체
WO2015111828A1 (ko) 중성점 접지 방식의 변압기 및 그 방법과 그를 이용한 침수 시 감전 방지 장치
KR101404806B1 (ko) 감전 방지 기능을 가진 전력 차단기
DK167593B1 (da) Telekommunikationsteknisk monteringskasse
EP4060842A1 (en) Sheath-bonding link box
CN205377097U (zh) 检修电源箱
KR101496836B1 (ko) 전기 설비용 통형 감전 방지 장치
CN208479156U (zh) 一种用于高压房中高压线路的欧式前接头
KR101408017B1 (ko) 입상주 감전방지장치
CN221126851U (zh) 一种母线槽插接箱
KR20200107643A (ko) 전압 검출 기능을 구비한 부스바 지지장치
WO2022019368A1 (ko) 단자대온도측정구 및 이를 포함하는 장치
CN211182809U (zh) 抽出式低压柜出线侧非垂直端子
FI115345B (fi) Kojerasia
FI93912C (fi) Sähköliitoslaitteen virran ilmaisulaite
DK1039606T3 (da) Indretning til at etablere en elektrisk ledende forbindelse mellem mindst to elektriske anordninger
KR20230061805A (ko) 침수된 전기설비의 3상 4선식 상간전류 및 누설전류 제한장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870829

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14759916

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015552563

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13870829

Country of ref document: EP

Kind code of ref document: A1