WO2014109149A1 - Resin-bond wire saw - Google Patents

Resin-bond wire saw Download PDF

Info

Publication number
WO2014109149A1
WO2014109149A1 PCT/JP2013/082639 JP2013082639W WO2014109149A1 WO 2014109149 A1 WO2014109149 A1 WO 2014109149A1 JP 2013082639 W JP2013082639 W JP 2013082639W WO 2014109149 A1 WO2014109149 A1 WO 2014109149A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin bond
wire
wire saw
weight
Prior art date
Application number
PCT/JP2013/082639
Other languages
French (fr)
Japanese (ja)
Inventor
正彦 池内
Tadashi Endo (遠藤 忠)
Original Assignee
株式会社Tkx
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Tkx filed Critical 株式会社Tkx
Priority to SG11201504210SA priority Critical patent/SG11201504210SA/en
Priority to CN201380070217.3A priority patent/CN104918752B/en
Priority to KR1020157011316A priority patent/KR101594747B1/en
Publication of WO2014109149A1 publication Critical patent/WO2014109149A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • B24B27/0633Grinders for cutting-off using a cutting wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/18Sawing tools of special type, e.g. wire saw strands, saw blades or saw wire equipped with diamonds or other abrasive particles in selected individual positions
    • B23D61/185Saw wires; Saw cables; Twisted saw strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds

Definitions

  • the present invention relates to a resin bond wire saw (resin bond wire saw) used for cutting silicon ingots and the like. saw).
  • a resin bond wire saw is obtained by fixing abrasive grains to a wire with a resin bond (resin adhesive).
  • the wire used for cutting is also referred to as “saw wire”, but in the present specification, it is referred to as “wire saw”.
  • an inner peripheral blade dicer has been used for cutting a silicon ingot.
  • the inner peripheral edge dicer causes problems such as a decrease in productivity, generation of a work-affected layer, a decrease in dimensional accuracy, and an increase in the size of the apparatus. Therefore, in recent years, cutting using a wire saw has been performed. Cutting using a wire saw is easy to cope with the increase in size of the ingot. A plurality of wafers can be obtained by one cutting.
  • the loose abrasive wire saw uses a wire such as a piano wire and an abrasive liquid in which abrasive grains are dispersed in a liquid.
  • the abrasive is diamond fine particles or silicon carbide fine particles.
  • the free abrasive wire saw cuts by moving the wire while dripping the abrasive liquid onto the cutting part (Patent Document 1: Japanese Patent Application Laid-Open No. 2008-103690).
  • the loose abrasive wire saw cuts the ingot with abrasive grains sandwiched between the wire and the ingot.
  • the viscosity of the abrasive liquid varies depending on the temperature, so that the wafer thickness varies or the flatness of the wafer deteriorates.
  • it is difficult to use a thin wire because the wire is also worn by the abrasive grains.
  • a loose abrasive wire saw there is a possibility that a thick work-affected layer is formed on the wafer surface.
  • fixed abrasive wire saws in which abrasive grains are fixed on the wire surface have been proposed.
  • means for fixing the abrasive grains to the wire surface there are an electrodeposition method, a brazing method, and a resin bond method.
  • the electrodeposition method is one in which abrasive grains are fixed to the wire surface by nickel plating or the like (Patent Document 2: Japanese Patent Publication No. 4-4105, Patent Document 3: Japanese Patent Application Laid-Open No. 2003-334863).
  • Patent Document 2 Japanese Patent Publication No. 4-4105
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2003-334863.
  • abrasive grains are embedded in a nickel film while nickel is deposited on the wire surface in a nickel plating solution.
  • the electrodeposition method has excellent ingot cutting performance because the abrasive grains are firmly fixed.
  • the electrodeposition method In the electrodeposition method, abrasive grains are buried deeply in the plating layer and fixed. Since the electrodeposition method requires a thick plating film, the productivity is poor and the cost is high. Furthermore, since the wire is thickened by the nickel plating layer, the wire is liable to cause fatigue fracture.
  • a brazing material layer is formed on the wire surface, abrasive grains are embedded in the melted brazing material layer, and the brazing material layer is solidified to fix the abrasive grains
  • Patent Document 4 Japanese Patent Laid-Open No. 2006-123024.
  • the melting point of the brazing material is high, the wire is overheated when the brazing material layer is melted, and the strength of the wire is lowered. For this reason, it is difficult to select a wire material by the brazing method. It is difficult to use a piano wire or a hard steel wire whose strength decreases at a low temperature, and a stainless steel wire or a tungsten wire is used.
  • the melting point of the brazing material is low, the brazing material is melted by frictional heat at the time of cutting the ingot, and the abrasive grains may fall off.
  • Patent Document 4 JP-A 2006-123024. Abrasive grains are fixed by a resin bond cured by heating (Patent Document 5: Japanese Patent Laid-Open No. 2000-26352, Patent Document 6: Japanese Patent Laid-Open No. 2000-271872, Patent Document 7: Republished Patent WO 98/35784).
  • a hot-air drying furnace is known as a baking furnace (Patent Document 8: Japanese Patent Laid-Open No. 09-35556, Patent Document 9: Japanese Patent Laid-Open No. 2010-267533).
  • the resin bond method is suitable for manufacturing long and inexpensive wire saws. Furthermore, since the vibration of the wire saw generated during the cutting of the ingot is absorbed by the flexible resin bond, the wire saw can be stably driven at a high speed. Moreover, a thin wafer can be obtained. On the other hand, since the resin bond wire saw has a low holding power of abrasive grains, the abrasive grains easily fall off during cutting. When a thermosetting resin bond is used, it takes a long time to cure the resin bond, so that it takes time to manufacture the wire saw. When the resin bond is cured at a high temperature, bubbles are generated by volatile components.
  • JP 2008-103690 A Japanese Examined Patent Publication No. 4-4105 JP 2003-334863 A JP 2006-123024 A Japanese Patent Application Laid-Open No. 2000-263452 Japanese Patent Laid-Open No. 2000-271872 Republished patent WO98 / 35784 JP 09-35556 A JP 2010-267533 A
  • An object of the present invention is to provide a resin bond wire saw with good cutting performance and long life.
  • the present inventors use (1) a resin containing a novolak type phenol resin, a resol type phenol resin and an amine silane coupling agent as a resin bond, and (2) by infrared irradiation. It has been found that the object of the present invention can be achieved by curing a resin bond. According to the present invention, it has become possible to efficiently produce a resin bond wire saw having a long life and excellent cutting performance with little abrasive grains falling off.
  • the abrasive grains are fixed to the surface of the wire by the resin bond mainly composed of phenol resin.
  • peaks indicating fragments of 208 (m / z) intervals in the cation are detected by mass spectrometry using the MALDI-TOF-MS method. Further, a peak corresponding to the softening point is detected at 175 ° C. to 182 ° C. by the thermogravimetric / differential thermal analysis (TG-DTA) method.
  • TG-DTA thermogravimetric / differential thermal analysis
  • the resin bond used in the present invention contains 100 parts by weight of a novolac type phenol resin, 10 parts by weight to 30 parts by weight of a resole type phenol resin, and 0.1 parts by weight to 5 parts by weight of an amine silane coupling agent.
  • the resin bond wire saw of the present invention fixes abrasive grains to the wire surface by a resin bond containing a novolak type phenol resin, a resole type phenol resin, and an amine silane coupling agent.
  • the novolac type phenol resin is obtained by condensation reaction of phenol compounds such as phenol, cresol and bisphenol A and aldehydes such as formaldehyde under an acidic catalyst.
  • the resol type phenol resin is obtained by condensation reaction of a phenol compound such as phenol, cresol, bisphenol A and an aldehyde such as formaldehyde under a basic catalyst.
  • the resin bond may further contain a curing agent.
  • the curing agent is preferably contained in an amount of 5 to 20 parts by weight with respect to 100 parts by weight of the novolac type phenol resin.
  • the gas generated by the decomposition of the curing agent may cause swelling and cracking.
  • the curing agent is less than 5 parts by weight with respect to 100 parts by weight of the novolak-type phenol resin and the amount of the resol-type phenol resin is small, the novolak resin may be insufficiently cured. In this case, the amount of the resol type phenol resin may be increased, but it is more preferable to increase the amount of the curing agent in the range of 5 to 20 parts by weight.
  • the curing agent is added in the above proportion, the curing time of the paste described later is shortened.
  • curing agent examples include hexamethylenetetramine, methylol melamine, and methylol urea. Of these, hexamethylenetetramine is preferred because of its short curing time.
  • the resin bond may further contain 5 to 15 parts by weight of a phenol compound such as phenol, cresol, or bisphenol A. Moreover, 1 weight part or less of aldehydes, such as formaldehyde, may be included. Furthermore, if it is a small amount, it may contain a basic catalyst or moisture.
  • the resin bond contains 10 to 30 parts by weight of the resole phenolic resin with respect to 100 parts by weight of the novolak type phenolic resin, a dense three-dimensional network structure is formed by crosslinking. As a result, the resin bond and the abrasive grains are firmly bonded.
  • the resol type phenol resin exceeds 30 parts by weight with respect to 100 parts by weight of the novolak type phenol resin, the viscosity of the paste becomes too low and it becomes difficult to coat the wire with the paste.
  • the resol type phenol resin is less than 10 parts by weight with respect to 100 parts by weight of the novolak type phenol resin, the curing rate of the resin bond becomes slow. For this reason, it becomes difficult to harden the paste in a short time, and the production speed of the resin bond wire saw becomes slow.
  • an amine-based silane coupling agent When 0.1 to 5 parts by weight of an amine-based silane coupling agent is added to 100 parts by weight of a novolak-type phenolic resin, the adhesive strength between the resin bond and the wire increases. If the amine-based silane coupling agent is less than 0.1 parts by weight based on 100 parts by weight of the novolak-type phenol resin, an increase in adhesive strength cannot be expected. If the amine-based silane coupling agent exceeds 5 parts by weight with respect to 100 parts by weight of the novolac type phenol resin, the curing of the novolac type phenol resin is adversely affected.
  • Examples of amine-based silane coupling agents include 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane. Examples include 3-aminopropyltriethoxysilane.
  • the resin bond contains 100 parts by weight of a novolak type phenol resin, 10 parts by weight to 30 parts by weight of a resole type phenol resin, and 0.1 part by weight to 5 parts by weight of an amine-based silane coupling agent.
  • the manufacturing method for manufacturing the resin bond wire saw of the present invention includes (a) a step of preparing a paste (including a resin bond, a solvent, abrasive grains, and a filler), (b) a step of preparing a wire, and (c) a paste. A step of coating the surface of the wire; and (d) a step of curing the coated paste by infrared heating.
  • the resin bond is quickly dehydrated and condensed by infrared heating, and a dense three-dimensional crosslinked structure is formed.
  • the coating amount of the paste is set so that the concentration of abrasive grains is 50 to 120.
  • the degree of concentration of abrasive grains is the ratio of the area of abrasive grains to the projected area of the wire surface. In the present specification, the degree of concentration is set to 100 when the projected area of the abrasive grains in the total projected area is 15%. For example, the concentration degree is 200 when the projected area of the abrasive grains in the total projected area is 30%, and the concentrated degree is 50 when the projected area of the abrasive grains in the total projected area is 7.5%.
  • the viscosity of the paste is 3 Pa ⁇ s to 6 Pa ⁇ s by adding a solvent to the resin bond.
  • the amount of the solvent is preferably in the range of 100 to 200 parts by weight with respect to 100 parts by weight of the resin bond.
  • the solvent is not particularly limited, but considering the reactivity, orthocresol having a low boiling point is preferable.
  • the abrasive grains are not particularly limited, but diamond abrasive grains, CBN abrasive grains, alumina abrasive grains, silicon carbide abrasive grains and the like are used.
  • diamond abrasive grains have high thermal conductivity, the temperature of the shaded area of the abrasive grains rises quickly during infrared heating. As a result, the resin bond is uniformly cured, and therefore diamond abrasive grains are preferably used.
  • the size of the abrasive grains is selected according to the purpose or according to the wire diameter, but is preferably several ⁇ m to 25 ⁇ m in order to reduce the kerf loss (cutting allowance).
  • diamond abrasive grains coated with a metal film such as nickel or titanium are also preferable.
  • diamond abrasive grains coated with a copper film are not preferred because the efficiency of the silicon solar cell is reduced by copper atoms. Resin bond wire saws using nickel film-coated diamond abrasive grains have less warpage or saw marks on a cut silicon wafer than electrodeposition wire saws.
  • the abrasive grains are appropriately dispersed on the wire surface in order to avoid clogging with silicon scraps.
  • the abrasive is preferably blended in an amount of 50 to 120 parts by weight per 100 parts by weight of the resin bond.
  • Steel wire is preferable as the wire.
  • the wire diameter is not particularly limited, but 0.05 mm ⁇ to 0.3 mm ⁇ is preferable.
  • Steel wires include heat-treated spring steel wires such as high-carbon steel and medium-carbon low alloy steel, hard steel wires, piano wires and stainless steel wires, cold-rolled steel wires and oil-tempered wires such as spring steel wires, low High toughness and high fatigue strength steel wires such as alloy steel, medium alloy steel, high alloy steel, and maraging steel are suitable.
  • thermosetting occurs from the surface of the paste, so water generated by the reaction may be trapped inside the paste and bubbles may be generated.
  • infrared rays near-infrared rays having a wavelength of about 1 ⁇ m are efficiently absorbed by water, so that crosslinking polymerization is completed in a short time.
  • water evaporates in a short time, so that bubbles are hardly generated in the paste.
  • Infrared rays preferably have a spectrum peak in the near-infrared band with a wavelength of 0.7 ⁇ m to 2.5 ⁇ m.
  • Near-infrared light having a wavelength of about 1 ⁇ m (0.9 ⁇ m to 1.3 ⁇ m) is particularly preferable because it can suppress bubbles accompanying vaporization of the generated water.
  • Infrared heating allows the curing reaction to proceed at a higher speed than hot air heating, and a uniform higher order structure is obtained.
  • a peak indicating 208 (m / z) -spaced fragments in the cation is detected in the cured resin bond by mass spectrometry using the MALDI-TOF-MS method.
  • a clear peak corresponding to the softening point is detected at 175 ° C. to 182 ° C. by the differential thermal analysis (DTA) method.
  • the peak temperature varies somewhat depending on the temperature rise rate during differential thermal analysis.
  • the peaks in the differential thermal analysis reflect a uniform higher order structure, with peaks showing fragments at 208 (m / z) intervals.
  • the uniform higher order structure increases the hardness of the resin bond and holds the abrasive grains firmly. Thereby, the resin bond wire saw excellent in cutting performance is obtained.
  • FIG. 1 is an explanatory diagram in which a wire coated with paste is heated by infrared rays.
  • a semi-cylindrical concave mirror 2 and a linear infrared heater 4 arranged in the longitudinal direction of the concave mirror 2 are used.
  • the wire 3 coated with the paste is caused to run in the longitudinal direction of the concave mirror 2 (perpendicular to the paper surface).
  • Infrared light from the infrared heater 4 is reflected by the reflecting surface 8 and condensed on a condensing part 6 (heating zone) of about 10 mm ⁇ .
  • a plurality of concave mirrors 2 and infrared heaters 4 may be arranged so as to surround the traveling path of the wire 3.
  • the length of the condenser 6 is determined by the size and number of the infrared heater 4 and the concave mirror 2.
  • the wire 3 coated with the paste is run and the paste is heated by infrared rays.
  • the length of the light collecting unit 6 is, for example, 400 mm to 1000 mm.
  • a plurality of infrared heaters 4 may be arranged in series in the traveling direction of the wire 3 (perpendicular to the paper surface).
  • an infrared lamp having a peak in the near infrared region is preferable.
  • an infrared lamp for example, a short arc xenon lamp (short-arc xenon lamp) or a lamp in which a tungsten filament is sealed in a quartz glass tube.
  • the heating temperature is set so that 95% of the breaking strength before heating can be secured.
  • the temperature of the condenser 6 was measured with a 1 mm diameter sheathed thermocouple and found to be 500 ° C. to 800 ° C.
  • the wire can be run at a speed of 1,000 mm / sec to 2,000 mm / sec and cured without foaming the resin bond.
  • an infrared heating method an infrared laser irradiation method may be used.
  • the paste is mixed with a filler made of inorganic particles.
  • the filler suppresses the thermal expansion / contraction of the resin bond and reduces the falling off of abrasive grains during cutting.
  • the filler is preferably blended in an amount of 20 to 100 parts by weight, more preferably 30 to 60 parts by weight based on 100 parts by weight of the resin bond.
  • diamond fine particles having a size of about 2 to 3 ⁇ m are suitable, but other inorganic materials (for example, silicon carbide fine particles) can also be used.
  • Reheating is preferably performed at a temperature of 100 ° C. to 200 ° C. for 1 hour to 5 hours.
  • the reheating time is long, a large number of bobbins wrapped with the resin bond wire saw can be reheated at a time, so that the productivity of the resin bond wire saw is not greatly reduced by reheating.
  • high productivity of the resin bond wire saw can be obtained.
  • the resin bond wire saw of the present invention has a greater cutting depth than conventional resin bond wire saws.
  • the “cut depth” refers to the cut depth when the test piece is cut and the wire saw is broken. Wire saw breakage is mainly caused by the falling off of abrasive grains.
  • the resin bond wire saw of the present invention has a larger cutting depth because the fixing strength of the abrasive grains is larger than that of a conventional resin bond wire saw.
  • the resin bond wire saw of the present invention is 25% or more superior to conventional resin bond wire saws in terms of wafer warpage, undulation, and thickness variation (TTV).
  • TTV thickness variation
  • a wafer having a surface roughness (Ra, Ry) of about 20% smaller than that of a conventional resin bond wire saw can be obtained.
  • Ra, Ry surface roughness
  • With the resin bond wire saw of the present invention it is possible to obtain a wafer having a small surface damaged layer.
  • a wafer with high bending strength can be obtained.
  • a paste having the following composition was prepared, and a resin bond wire saw was produced by the next production line.
  • Example 1 (1) Compounding resin bond (2) Paste formulation (3) Resin bond wire saw production line (a) Outline of wire Wire feeding machine ⁇ Coating device ⁇ Heating device ⁇ Winding machine ⁇ Reheating furnace (b) Wire feeding machine: A device for feeding out the wire wound around the bobbin. (C) Coating device: A device that coats the wire surface uniformly with a water jet-shaped die. (D) Heating device: a device for heating the wire coated with the paste. Infrared Gold Image Furnace manufactured by ULVAC-RIKO, Inc .: Model RHL-E410-N (heating length 265 mm, maximum output 4 kW) was used in series. FIG. 2 shows the energy spectral distribution of the lamp.
  • (E) Winder A device for winding a resin bond wire saw onto a bobbin.
  • Example 2 (1) Compounding resin bond (2) Paste formulation A resin bond wire saw was manufactured in the same manner as in Example 1 except for the above.
  • a commercially available novolac type phenolic resin (manufactured by Sumitomo Bakelite Co., Ltd.) was used as the resin bond, and a vertical enamel baking furnace was used as the heating device.
  • a vertical enamel baking furnace heats a wire with heated air circulating in the furnace core tube.
  • the heating element is a nichrome wire.
  • Heating was performed at a furnace temperature of 300 ° C. and a heating time of 20 minutes. Others were carried out similarly to Example 1, and obtained the resin bond wire saw.
  • the cutting depth of the resin bond wire saws of Examples 1 and 2 was compared with the cutting depth of the resin bond wire saws of the comparative examples.
  • (1) Cutting depth test method A polycrystalline silicon piece of 1 cm ⁇ 1 cm ⁇ 2 mm was set above a horizontally stretched resin bond wire saw, and the polycrystalline silicon piece was moved downward to measure the cutting depth. .
  • Piece descending speed 0.9 mm / min.
  • Resin bond wire motion reciprocating motion with an amplitude of 80 mm and a speed of 400 mm / min.
  • Cutting time Until disconnection.
  • Table 1 shows the results of the cutting depth test.
  • Table 2 shows the remaining rate of the abrasive grains of the wire after the test.
  • the cutting depth of the resin bond wire saws of Examples 1 and 2 is about 1.7 times the cutting depth of the resin bond wire saw of the comparative example.
  • the residual abrasive rate of the resin bond wire saw of Example 1 is about 1.8 times the residual abrasive rate of the resin bond wire saw of Comparative Example.
  • Case 1 The resin bond used in Example 1 was cured by heating. Heating conditions: The temperature was raised from room temperature to 180 ° C. at 15 ° C./hour and held at 180 ° C. for 2 hours.
  • Case 2 The novolac type phenol resin used in the comparative example was heat-cured under the same heating conditions as in Case 1.
  • the Rockwell hardness of the obtained cured product was measured using a hardness meter (ATK-F3000; 1/4 “steel ball used, load 100 kgf) manufactured by Akashi Seisakusho. The results are shown in Table 3.
  • Mass spectrometry was performed by the MALDI-TOF-MS method.
  • MALDI matrix-assisted laser desorption ionization method
  • TOF-MS time-of-flight mass spectrometry
  • -Equipment used AXIMA-CFR + (SHIMADZU) manufactured by Shimadzu Corporation.
  • -Analysis mode Linear mode (positive ion, anion detection). ⁇ Vacuum degree: 10 ⁇ 5 Pa or less.
  • Matrix 2,5-dihydroxybenzoic acid.
  • Laser wavelength 337 nm (nitrogen laser).
  • FIG. 3 is a cation detection chart of the resin bond of the comparative example.
  • 4 is a cation detection chart of the resin bond of Example 1.
  • FIG. 5 is an anion detection chart of the resin bond of the comparative example.
  • FIG. 6 is an anion detection chart of the resin bond of Example 1.
  • FIG. 4 Example 1
  • peaks (arrows) showing fragments at intervals of 208 (m / z) can be seen. It is presumed that the 208 (m / z) -spaced fragments were generated as a result of cleavage (fragment) of the bridge at four sites including the aromatic ring in the following structural formula (structural unit; C 14 H 12 O 2 : molecular weight 212). Is done.
  • FIG. 7 the differential thermal analysis chart of the resin bond of Example 1 and the resin bond of a comparative example is shown.
  • -Device used TG8120 (Rigaku). Temperature rising rate: 10 ° C./min (min) Atmosphere: N 2 gas flow.
  • Reference material Alumina (Al 2 O 3 ). Sample weight: about 10 mg.
  • Example 7 shows a clear softening point peak at 175 ° C. to 182 ° C. in the resin bond chart of Example 1 shown in FIG.
  • the resin bond of the comparative example only an unclear peak of the softening point is observed around 190 ° C. Since the resin bond of the comparative example has a non-uniform high-order structure, no transition accompanied by a structural change occurs and no clear softening point peak is observed.
  • the resin bond of Example 1 seems to have high hardness because it has a higher-order structure with fragments of 208 (m / z) intervals. The reason why the resin bond of the comparative example has a low hardness seems to be because the higher order structure is not uniform.

Abstract

[Problem] To provide a resin-bond wire saw having good cutting performance and a long lifespan. [Solution] A resin-bond wire saw in which abrasive grains are fixed to the surface of the wire by a resin bond containing a novolac-type phenol resin, a resol-type phenol resin, and an amine-based silane coupling agent. The resin bond shows a plurality of peaks at intervals of 208 (m/z) that represent fragments in positive ions in MALDI-TOF-MS (mass spectrometry), and a peak that corresponds to a softening point at 175°C to 182°C in TG-DTA (differential thermal analysis).

Description

レジンボンドワイヤーソーResin bond wire saw
 本発明は、シリコンインゴットなどの切断に用いるレジンボンドワイヤーソー(resin bond wire
saw)に関する。レジンボンドワイヤーソーは、砥粒をレジンボンド(樹脂接着剤)でワイヤーに固定したものである。切断に用いるワイヤーは「ソーワイヤー」とも呼ばれるが、本願明細書においては「ワイヤーソー」と呼ぶことにする。
The present invention relates to a resin bond wire saw (resin bond wire saw) used for cutting silicon ingots and the like.
saw). A resin bond wire saw is obtained by fixing abrasive grains to a wire with a resin bond (resin adhesive). The wire used for cutting is also referred to as “saw wire”, but in the present specification, it is referred to as “wire saw”.
 従来、シリコンインゴットの切断には、内周刃ダイサーが用いられてきた。しかし、シリコンインゴットが大型化するに従い、内周刃ダイサーでは、生産性の低下、加工変質層の発生、寸法精度の低下、装置の大型化などの問題が発生する。そのため、近年ワイヤーソーを用いた切断が行われるようになった。ワイヤーソーを用いる切断は、インゴットの大型化に対応しやすい。また1回の切断で複数のウエハを得ることできる。 Conventionally, an inner peripheral blade dicer has been used for cutting a silicon ingot. However, as the size of the silicon ingot increases, the inner peripheral edge dicer causes problems such as a decrease in productivity, generation of a work-affected layer, a decrease in dimensional accuracy, and an increase in the size of the apparatus. Therefore, in recent years, cutting using a wire saw has been performed. Cutting using a wire saw is easy to cope with the increase in size of the ingot. A plurality of wafers can be obtained by one cutting.
 ワイヤーソーには、遊離砥粒ワイヤーソーと固定砥粒ワイヤーソーがある。遊離砥粒ワイヤーソーは、ピアノ線などのワイヤーと、砥粒を液体に分散させた砥粒液を用いる。砥粒はダイヤモンド微粒子や炭化珪素微粒子などである。遊離砥粒ワイヤーソーは、切断部に砥粒液を滴下しながら、ワイヤーを走行させて切断を行う(特許文献1:特開2008-103690)。遊離砥粒ワイヤーソーは、ワイヤーとインゴットの間に挟まれた砥粒によってインゴットを切断する。 There are two types of wire saws: loose abrasive wire saws and fixed abrasive wire saws. The loose abrasive wire saw uses a wire such as a piano wire and an abrasive liquid in which abrasive grains are dispersed in a liquid. The abrasive is diamond fine particles or silicon carbide fine particles. The free abrasive wire saw cuts by moving the wire while dripping the abrasive liquid onto the cutting part (Patent Document 1: Japanese Patent Application Laid-Open No. 2008-103690). The loose abrasive wire saw cuts the ingot with abrasive grains sandwiched between the wire and the ingot.
 遊離砥粒ワイヤーソーでは、砥粒液の粘度が温度により変動するため、ウエハの厚みがばらつく、あるいは、ウエハの平面性が悪くなる。また遊離砥粒ワイヤーソーではワイヤーも砥粒により摩耗するため、細いワイヤーを使用することが難しい。さらに遊離砥粒ワイヤーソーでは、ウエハ表面に厚い加工変質層が形成されるおそれがある。 In the free abrasive wire saw, the viscosity of the abrasive liquid varies depending on the temperature, so that the wafer thickness varies or the flatness of the wafer deteriorates. Moreover, in the case of a loose abrasive wire saw, it is difficult to use a thin wire because the wire is also worn by the abrasive grains. Further, in the case of a loose abrasive wire saw, there is a possibility that a thick work-affected layer is formed on the wafer surface.
 遊離砥粒ワイヤーソーの問題を解決するため、ワイヤー表面に砥粒を固定した固定砥粒ワイヤーソーが提案されている。砥粒をワイヤー表面に固定する手段として、電着法、ロー付け法、レジンボンド法がある。 In order to solve the problem of loose abrasive wire saws, fixed abrasive wire saws in which abrasive grains are fixed on the wire surface have been proposed. As means for fixing the abrasive grains to the wire surface, there are an electrodeposition method, a brazing method, and a resin bond method.
 電着法は、ニッケルメッキなどにより砥粒をワイヤー表面へ固定したものである(特許文献2:特公平4-4105、特許文献3:特開2003-334763)。電着法では、ニッケルメッキ液中でワイヤー表面にニッケルを析出させながら、砥粒をニッケル膜中に埋設する。電着法は、砥粒の固定が強固であるため、インゴットの切断性能が優れている。 The electrodeposition method is one in which abrasive grains are fixed to the wire surface by nickel plating or the like (Patent Document 2: Japanese Patent Publication No. 4-4105, Patent Document 3: Japanese Patent Application Laid-Open No. 2003-334863). In the electrodeposition method, abrasive grains are embedded in a nickel film while nickel is deposited on the wire surface in a nickel plating solution. The electrodeposition method has excellent ingot cutting performance because the abrasive grains are firmly fixed.
 電着法では、メッキ層に砥粒を深く埋め込んで固定する。電着法は、厚いメッキ皮膜が必要なため、生産性が悪く、コスト高になる。さらにワイヤーがニッケルメッキ層によって太くなるため、ワイヤーが疲労破断を起こし易くなる。 In the electrodeposition method, abrasive grains are buried deeply in the plating layer and fixed. Since the electrodeposition method requires a thick plating film, the productivity is poor and the cost is high. Furthermore, since the wire is thickened by the nickel plating layer, the wire is liable to cause fatigue fracture.
 ロー付け法では、ワイヤー表面にロー材層を形成し、溶融したロー材層に砥粒を埋め込み、ロー材層を凝固させて砥粒を固定する(特許文献4:特開2006-123024)。ロー材の融点が高い場合、ロー材層の溶融時にワイヤーが過熱され、ワイヤーの強度が低下する。このため、ロー付け法ではワイヤー材料の選択が難しい。低い温度で強度が低下するピアノ線や硬鋼線を用いることは難しく、ステンレス鋼線やタングステン線が用いられる。逆にロー材の融点が低い場合、インゴットの切断時の摩擦熱でロー材が溶融し、砥粒が脱落するおそれがある。 In the brazing method, a brazing material layer is formed on the wire surface, abrasive grains are embedded in the melted brazing material layer, and the brazing material layer is solidified to fix the abrasive grains (Patent Document 4: Japanese Patent Laid-Open No. 2006-123024). When the melting point of the brazing material is high, the wire is overheated when the brazing material layer is melted, and the strength of the wire is lowered. For this reason, it is difficult to select a wire material by the brazing method. It is difficult to use a piano wire or a hard steel wire whose strength decreases at a low temperature, and a stainless steel wire or a tungsten wire is used. On the contrary, when the melting point of the brazing material is low, the brazing material is melted by frictional heat at the time of cutting the ingot, and the abrasive grains may fall off.
 レジンボンド法では、液状のレジンボンド(樹脂接着剤)と砥粒の混合物をワイヤー表面にコーティングし、焼付炉で加熱する(特許文献4:特開2006-123024)。加熱により硬化したレジンボンドによって砥粒を固定する(特許文献5:特開2000-263452、特許文献6:特開2000-271872、特許文献7:再公表特許WO98/35784)。焼付炉として熱風乾燥炉が知られている(特許文献8:特開平09-35556、特許文献9:特開2010-267533)。 In the resin bond method, a mixture of a liquid resin bond (resin adhesive) and abrasive grains is coated on the wire surface and heated in a baking furnace (Patent Document 4: JP-A 2006-123024). Abrasive grains are fixed by a resin bond cured by heating (Patent Document 5: Japanese Patent Laid-Open No. 2000-26352, Patent Document 6: Japanese Patent Laid-Open No. 2000-271872, Patent Document 7: Republished Patent WO 98/35784). A hot-air drying furnace is known as a baking furnace (Patent Document 8: Japanese Patent Laid-Open No. 09-35556, Patent Document 9: Japanese Patent Laid-Open No. 2010-267533).
 レジンボンド法は、安価で長尺のワイヤーソーを製作するのに適する。さらに、インゴットの切断中に生ずるワイヤーソーの振動が柔軟なレジンボンドで吸収されるので、ワイヤーソーを高速で安定走行させることができる。また薄いウエハを得ることができる。一方、レジンボンドワイヤーソーは砥粒の保持力が低いため、切断中に砥粒が脱落しやすい。熱硬化型のレジンボンドを用いる場合、レジンボンドの硬化に長時間必要なため、ワイヤーソーの製造に時間がかかる。またレジンボンドの硬化を高温で行うと、揮発成分により気泡が発生する。 レ The resin bond method is suitable for manufacturing long and inexpensive wire saws. Furthermore, since the vibration of the wire saw generated during the cutting of the ingot is absorbed by the flexible resin bond, the wire saw can be stably driven at a high speed. Moreover, a thin wafer can be obtained. On the other hand, since the resin bond wire saw has a low holding power of abrasive grains, the abrasive grains easily fall off during cutting. When a thermosetting resin bond is used, it takes a long time to cure the resin bond, so that it takes time to manufacture the wire saw. When the resin bond is cured at a high temperature, bubbles are generated by volatile components.
特開2008-103690号公報JP 2008-103690 A 特公平4-4105号公報Japanese Examined Patent Publication No. 4-4105 特開2003-334763号公報JP 2003-334863 A 特開2006-123024号公報JP 2006-123024 A 特開2000-263452号公報Japanese Patent Application Laid-Open No. 2000-263452 特開2000-271872号公報Japanese Patent Laid-Open No. 2000-271872 再公表特許WO98/35784号公報Republished patent WO98 / 35784 特開平09-35556号公報JP 09-35556 A 特開2010-267533号公報JP 2010-267533 A
 本発明の目的は、切断性能が良好で長寿命のレジンボンドワイヤーソーを提供することである。 An object of the present invention is to provide a resin bond wire saw with good cutting performance and long life.
 本発明者らは、(1)レジンボンドとして、ノボラック型(novolak type)フェノール樹脂とレゾール型(resol type)フェノール樹脂とアミン系シランカップリング剤を含む樹脂を用いること、(2)赤外線照射によりレジンボンドを硬化させることにより、本発明の目的が達せられることを見出した。本発明により、切断性能に優れ、砥粒の脱落の少ない長寿命のレジンボンドワイヤーソーを、効率よく製造することが可能となった。 The present inventors use (1) a resin containing a novolak type phenol resin, a resol type phenol resin and an amine silane coupling agent as a resin bond, and (2) by infrared irradiation. It has been found that the object of the present invention can be achieved by curing a resin bond. According to the present invention, it has become possible to efficiently produce a resin bond wire saw having a long life and excellent cutting performance with little abrasive grains falling off.
 本発明のレジンボンドワイヤーソーでは、フェノール樹脂を主成分とするレジンボンドにより、ワイヤーの表面に砥粒が固定される。本発明に用いられるレジンボンドは、MALDI-TOF-MS法による質量分析によって、陽イオンに208(m/z)間隔のフラグメントを示すピークが検出される。また、熱重量・示差熱分析(TG-DTA)法によって175℃~182℃に軟化点に相当するピークが検出される。(MALDI:マトリックス支援レーザー脱離イオン化法、TOF-MS:飛行時間型質量分析法)。 In the resin bond wire saw of the present invention, the abrasive grains are fixed to the surface of the wire by the resin bond mainly composed of phenol resin. In the resin bond used in the present invention, peaks indicating fragments of 208 (m / z) intervals in the cation are detected by mass spectrometry using the MALDI-TOF-MS method. Further, a peak corresponding to the softening point is detected at 175 ° C. to 182 ° C. by the thermogravimetric / differential thermal analysis (TG-DTA) method. (MALDI: matrix-assisted laser desorption ionization method, TOF-MS: time-of-flight mass spectrometry).
 本発明に用いられるレジンボンドは、ノボラック型フェノール樹脂:100重量部、レゾール型フェノール樹脂:10重量部~30重量部、アミン系シランカップリング剤:0.1重量部~5重量部を含む。 The resin bond used in the present invention contains 100 parts by weight of a novolac type phenol resin, 10 parts by weight to 30 parts by weight of a resole type phenol resin, and 0.1 parts by weight to 5 parts by weight of an amine silane coupling agent.
 本発明により、切断性能が良好で長寿命のレジンボンドワイヤーソーが実現される。 According to the present invention, a resin bond wire saw with good cutting performance and long life is realized.
ワイヤーにコーティングされたペーストを赤外線加熱する方法の説明図Explanatory drawing of the method of infrared heating the paste coated on the wire ランプのエネルギー分光分布Lamp energy spectral distribution MALDI-TOF-MS法による質量分析の陽イオン測定チャート(比較例)Cation measurement chart of mass spectrometry by MALDI-TOF-MS method (comparative example) MALDI-TOF-MS法による質量分析の陽イオン測定チャート(実施例1)Cation measurement chart for mass spectrometry by MALDI-TOF-MS method (Example 1) MALDI-TOF-MS法による質量分析の陰イオン測定チャート(比較例)Anion measurement chart of mass spectrometry by MALDI-TOF-MS method (comparative example) MALDI-TOF-MS法による質量分析の陰イオン測定チャート(実施例1)Example of anion measurement chart of mass spectrometry by MALDI-TOF-MS method (Example 1) 実施例1及び比較例の示差熱分析チャートDifferential thermal analysis chart of Example 1 and Comparative Example
 本発明のレジンボンドワイヤーソーは、ノボラック型フェノール樹脂とレゾール型フェノール樹脂とアミン系シランカップリング剤を含むレジンボンドにより、砥粒をワイヤー表面に固定する。 The resin bond wire saw of the present invention fixes abrasive grains to the wire surface by a resin bond containing a novolak type phenol resin, a resole type phenol resin, and an amine silane coupling agent.
 ノボラック型フェノール樹脂は、フェノール、クレゾール、ビスフェノールA等のフェノール化合物と、ホルムアルデヒド等のアルデヒドを、酸性触媒下で縮合反応させたものである。レゾール型フェノール樹脂は、フェノール、クレゾール、ビスフェノールA等のフェノール化合物と、ホルムアルデヒド等のアルデヒドを、塩基性触媒下で縮合反応させたものである。 The novolac type phenol resin is obtained by condensation reaction of phenol compounds such as phenol, cresol and bisphenol A and aldehydes such as formaldehyde under an acidic catalyst. The resol type phenol resin is obtained by condensation reaction of a phenol compound such as phenol, cresol, bisphenol A and an aldehyde such as formaldehyde under a basic catalyst.
 レジンボンドは、さらに、硬化剤を含んでいてもよい。硬化剤は、ノボラック型フェノール樹脂100重量部に対して、5重量部~20重量部含まれることが好ましい。 The resin bond may further contain a curing agent. The curing agent is preferably contained in an amount of 5 to 20 parts by weight with respect to 100 parts by weight of the novolac type phenol resin.
 硬化剤がノボラック型フェノール樹脂100重量部に対して20重量部を超えると、硬化剤の分解により発生するガスが、膨れ、亀裂などを発生させることがある。硬化剤がノボラック型フェノール樹脂100重量部に対して5重量部未満であり、レゾール型フェノール樹脂の配合が少ない場合、ノボラック樹脂の硬化が不充分になるおそれがある。この場合、レゾール型フェノール樹脂を増量してもよいが、それよりも硬化剤の配合量を5重量部~20重量部の範囲で増量する方が好ましい。硬化剤を上記の割合で添加すると、後述のペースト(paste)の硬化時間が短くなる。 When the curing agent exceeds 20 parts by weight with respect to 100 parts by weight of the novolak-type phenolic resin, the gas generated by the decomposition of the curing agent may cause swelling and cracking. When the curing agent is less than 5 parts by weight with respect to 100 parts by weight of the novolak-type phenol resin and the amount of the resol-type phenol resin is small, the novolak resin may be insufficiently cured. In this case, the amount of the resol type phenol resin may be increased, but it is more preferable to increase the amount of the curing agent in the range of 5 to 20 parts by weight. When the curing agent is added in the above proportion, the curing time of the paste described later is shortened.
 硬化剤としては、例えば、ヘキサメチレンテトラミンやメチロールメラミン、メチロール尿素などが挙げられる。なかでもヘキサメチレンテトラミンは硬化時間が短いため好ましい。 Examples of the curing agent include hexamethylenetetramine, methylol melamine, and methylol urea. Of these, hexamethylenetetramine is preferred because of its short curing time.
 レジンボンドは、さらに、フェノール、クレゾール、ビスフェノールA等のフェノール化合物を5重量部~15重量部含んでいてもよい。また、ホルムアルデヒド等のアルデヒドを1重量部以下含んでいてもよい。さらに、少量であれば、塩基性触媒や水分を含んでいてもよい。 The resin bond may further contain 5 to 15 parts by weight of a phenol compound such as phenol, cresol, or bisphenol A. Moreover, 1 weight part or less of aldehydes, such as formaldehyde, may be included. Furthermore, if it is a small amount, it may contain a basic catalyst or moisture.
 レジンボンドは、ノボラック型フェノール樹脂100重量部に対してレゾール型フェノール樹脂10重量部~30重量部を含むため、架橋により、緻密な三次元網目構造を形成する。これによりレジンボンドと砥粒が強固に結合する。レゾール型フェノール樹脂がノボラック型フェノール樹脂100重量部に対して30重量部を越えると、ペーストの粘度が低くなりすぎ、ワイヤーにペーストをコーティングするのが難しくなる。レゾール型フェノール樹脂がノボラック型フェノール樹脂100重量部に対して10重量部未満であると、レジンボンドの硬化速度が遅くなる。このため、ペーストを短時間で硬化させることが難しくなり、レジンボンドワイヤーソーの生産速度が遅くなる。 Since the resin bond contains 10 to 30 parts by weight of the resole phenolic resin with respect to 100 parts by weight of the novolak type phenolic resin, a dense three-dimensional network structure is formed by crosslinking. As a result, the resin bond and the abrasive grains are firmly bonded. When the resol type phenol resin exceeds 30 parts by weight with respect to 100 parts by weight of the novolak type phenol resin, the viscosity of the paste becomes too low and it becomes difficult to coat the wire with the paste. When the resol type phenol resin is less than 10 parts by weight with respect to 100 parts by weight of the novolak type phenol resin, the curing rate of the resin bond becomes slow. For this reason, it becomes difficult to harden the paste in a short time, and the production speed of the resin bond wire saw becomes slow.
 ノボラック型フェノール樹脂100重量部に対して0.1重量部~5重量部のアミン系シランカップリング剤を配合すると、レジンボンドとワイヤーの接着強度が増加する。アミン系シランカップリング剤がノボラック型フェノール樹脂100重量部に対して0.1重量部未満であると、接着強度の増加が期待できない。アミン系シランカップリング剤がノボラック型フェノール樹脂100重量部に対して5重量部を越えると、ノボラック型フェノール樹脂の硬化に悪影響を与える。 When 0.1 to 5 parts by weight of an amine-based silane coupling agent is added to 100 parts by weight of a novolak-type phenolic resin, the adhesive strength between the resin bond and the wire increases. If the amine-based silane coupling agent is less than 0.1 parts by weight based on 100 parts by weight of the novolak-type phenol resin, an increase in adhesive strength cannot be expected. If the amine-based silane coupling agent exceeds 5 parts by weight with respect to 100 parts by weight of the novolac type phenol resin, the curing of the novolac type phenol resin is adversely affected.
 アミン系シランカップリング剤としては、3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン3-アミノプロピルトリエトキシシランなどが挙げられる。 Examples of amine-based silane coupling agents include 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane. Examples include 3-aminopropyltriethoxysilane.
 レジンボンドは、ノボラック型フェノール樹脂:100重量部、レゾール型フェノール樹脂:10重量部~30重量部、アミン系シランカップリング剤:0.1重量部~5重量部を含む。このようなレジンボンドを用いることにより、切断性能が良好で長寿命のレジンボンドワイヤーソーを得ることができる。 The resin bond contains 100 parts by weight of a novolak type phenol resin, 10 parts by weight to 30 parts by weight of a resole type phenol resin, and 0.1 part by weight to 5 parts by weight of an amine-based silane coupling agent. By using such a resin bond, it is possible to obtain a resin bond wire saw having good cutting performance and a long life.
 本発明のレジンボンドワイヤーソーを製造する製造方法は、(a)ペースト(レジンボンド、溶剤、砥粒、フィラーを含む)を準備する工程、(b)ワイヤーを準備する工程、(c)ペーストをワイヤーの表面にコーティングする工程、(d)コーティングされたペーストを赤外線加熱して硬化させる工程を含む。 The manufacturing method for manufacturing the resin bond wire saw of the present invention includes (a) a step of preparing a paste (including a resin bond, a solvent, abrasive grains, and a filler), (b) a step of preparing a wire, and (c) a paste. A step of coating the surface of the wire; and (d) a step of curing the coated paste by infrared heating.
 赤外線加熱により、レジンボンドの脱水縮合が速やかに行なわれ、緻密な三次元架橋構造が形成される。 The resin bond is quickly dehydrated and condensed by infrared heating, and a dense three-dimensional crosslinked structure is formed.
 走行するワイヤーに、ディスペンサー法あるいは浮きダイス法などにより、ペーストをコーティングする。ペーストのコーティング量は砥粒の集中度が50~120となるようにする。砥粒の集中度とは、ワイヤー表面の投影面積に占める砥粒の面積の割合である。本明細書においては、全投影面積に占める砥粒の投影面積が15%であるときに集中度を100とする。例えば、全投影面積に占める砥粒の投影面積が30%であるときには集中度は200であり、全投影面積に占める砥粒の投影面積が7.5%であるときには集中度は50である。 ペ ー ス ト Paste the coated wire with the dispenser method or floating die method. The coating amount of the paste is set so that the concentration of abrasive grains is 50 to 120. The degree of concentration of abrasive grains is the ratio of the area of abrasive grains to the projected area of the wire surface. In the present specification, the degree of concentration is set to 100 when the projected area of the abrasive grains in the total projected area is 15%. For example, the concentration degree is 200 when the projected area of the abrasive grains in the total projected area is 30%, and the concentrated degree is 50 when the projected area of the abrasive grains in the total projected area is 7.5%.
 ペーストの粘度は、レジンボンドに溶剤を加えて3Pa・s~6Pa・sとする。溶剤の量は、レジンボンド100重量部に対して100重量部~200重量部の範囲が好ましい。溶剤は特に限定されないが、反応性を考慮すると、低沸点のオルトクレゾールが好ましい。 The viscosity of the paste is 3 Pa · s to 6 Pa · s by adding a solvent to the resin bond. The amount of the solvent is preferably in the range of 100 to 200 parts by weight with respect to 100 parts by weight of the resin bond. The solvent is not particularly limited, but considering the reactivity, orthocresol having a low boiling point is preferable.
 砥粒は特に限定されないが、ダイヤモンド砥粒、CBN砥粒、アルミナ砥粒、炭化珪素砥粒などが用いられる。 The abrasive grains are not particularly limited, but diamond abrasive grains, CBN abrasive grains, alumina abrasive grains, silicon carbide abrasive grains and the like are used.
 ダイヤモンド砥粒は熱伝導率が高いので、赤外線加熱の際、砥粒の影の部分も速やかに温度上昇する。これによりレジンボンドの硬化が均一に行われるため、ダイヤモンド砥粒の使用が好ましい。砥粒のサイズは目的に応じて、あるいはワイヤー径に応じて選択されるが、カーフロス(切断代)を小さくするため、数μm~25μmが好ましい。砥粒として、ニッケルやチタンなどの金属膜で被覆されたダイヤモンド砥粒も好ましい。但し、銅膜で被覆されたダイヤモンド砥粒は、銅原子によりシリコン太陽電池の効率が低下するため、好ましくない。ニッケル膜被覆ダイヤモンド砥粒を用いたレジンボンドワイヤーソーは、電着法ワイヤーソーと比較して、切断したシリコンウエハのそりやソーマーク(saw mark)が少ない。 Since diamond abrasive grains have high thermal conductivity, the temperature of the shaded area of the abrasive grains rises quickly during infrared heating. As a result, the resin bond is uniformly cured, and therefore diamond abrasive grains are preferably used. The size of the abrasive grains is selected according to the purpose or according to the wire diameter, but is preferably several μm to 25 μm in order to reduce the kerf loss (cutting allowance). As the abrasive grains, diamond abrasive grains coated with a metal film such as nickel or titanium are also preferable. However, diamond abrasive grains coated with a copper film are not preferred because the efficiency of the silicon solar cell is reduced by copper atoms. Resin bond wire saws using nickel film-coated diamond abrasive grains have less warpage or saw marks on a cut silicon wafer than electrodeposition wire saws.
 砥粒は、シリコン屑による目詰まりを避けるため、ワイヤー表面に適度に分散していることが望ましい。砥粒は、レジンボンド100重量部に対して、50重量部~120重量部配合されることが好ましい。 It is desirable that the abrasive grains are appropriately dispersed on the wire surface in order to avoid clogging with silicon scraps. The abrasive is preferably blended in an amount of 50 to 120 parts by weight per 100 parts by weight of the resin bond.
 ワイヤーとしては鋼線が好ましい。線径は特に限定されないが0.05mmφ~0.3mmφが好ましい。鋼線としては、高炭素鋼や中炭素低合金鋼などの熱処理バネ鋼による線材、硬鋼線、ピアノ線やステンレス線、冷間圧延鋼線やオイルテンパー線などの加工バネ鋼による線材、低合金鋼、中合金鋼、高合金鋼、マルエージング鋼などの高靭性・高疲労強度の鋼線材が適している。 Steel wire is preferable as the wire. The wire diameter is not particularly limited, but 0.05 mmφ to 0.3 mmφ is preferable. Steel wires include heat-treated spring steel wires such as high-carbon steel and medium-carbon low alloy steel, hard steel wires, piano wires and stainless steel wires, cold-rolled steel wires and oil-tempered wires such as spring steel wires, low High toughness and high fatigue strength steel wires such as alloy steel, medium alloy steel, high alloy steel, and maraging steel are suitable.
 ペーストがコーティングされたワイヤーを走行させながら赤外線加熱し、ペーストを硬化させる。従来のエナメル炉などにより熱風加熱する場合は、ペーストの表面から熱硬化が起こるため、反応により生成した水がペースト内部に閉じ込められ、気泡が生じることがある。これに対して、ペーストを赤外線加熱する場合は、波長1μm程度の近赤外線が水に効率よく吸収されるため、短時間で架橋重合が完成する。ペーストを赤外線加熱する場合は、水が短時間で蒸発するので、ペーストに気泡が発生しにくい。赤外線は波長0.7μm~2.5μmの近赤外線の帯域にスペクトルのピークを有するものが好ましい。波長約1μm(0.9μm~1.3μm)の近赤外線は、生成した水の気化にともなう気泡を抑制できるため特に好ましい。 ¡Infrared heating while running the wire coated with paste to cure the paste. When heating with hot air using a conventional enamel furnace or the like, thermosetting occurs from the surface of the paste, so water generated by the reaction may be trapped inside the paste and bubbles may be generated. On the other hand, when the paste is heated by infrared rays, near-infrared rays having a wavelength of about 1 μm are efficiently absorbed by water, so that crosslinking polymerization is completed in a short time. When the paste is heated by infrared rays, water evaporates in a short time, so that bubbles are hardly generated in the paste. Infrared rays preferably have a spectrum peak in the near-infrared band with a wavelength of 0.7 μm to 2.5 μm. Near-infrared light having a wavelength of about 1 μm (0.9 μm to 1.3 μm) is particularly preferable because it can suppress bubbles accompanying vaporization of the generated water.
 赤外線加熱によると、熱風加熱に比べ高速で硬化反応が進み、均一な高次構造が得られる。この結果、硬化後のレジンボンドに、MALDI-TOF-MS法による質量分析によって、陽イオンに208(m/z)間隔のフラグメントを示すピークが検出される。また、示差熱分析(DTA)法によって、175℃~182℃に、軟化点に相当する明確なピークが検出される。なお、ピークの温度は示差熱分析時の昇温速度等により多少異なる。示差熱分析におけるピークは、208(m/z)間隔のフラグメントを示すピークとともに、均一な高次構造を反映している。均一な高次構造により、レジンボンドの硬度が高くなり、砥粒が強固に保持される。これにより切断性能の優れたレジンボンドワイヤーソーが得られる。 Infrared heating allows the curing reaction to proceed at a higher speed than hot air heating, and a uniform higher order structure is obtained. As a result, a peak indicating 208 (m / z) -spaced fragments in the cation is detected in the cured resin bond by mass spectrometry using the MALDI-TOF-MS method. In addition, a clear peak corresponding to the softening point is detected at 175 ° C. to 182 ° C. by the differential thermal analysis (DTA) method. The peak temperature varies somewhat depending on the temperature rise rate during differential thermal analysis. The peaks in the differential thermal analysis reflect a uniform higher order structure, with peaks showing fragments at 208 (m / z) intervals. The uniform higher order structure increases the hardness of the resin bond and holds the abrasive grains firmly. Thereby, the resin bond wire saw excellent in cutting performance is obtained.
 図1は、ペーストをコーティングしたワイヤーを赤外線加熱する説明図である。図1の方法では、半筒型の凹面鏡2と、凹面鏡2の長手方向に配置された直線状の赤外線ヒーター4を用いる。ペーストがコーティングされたワイヤー3を、凹面鏡2の長手方向(紙面の垂直方向)に走行させる。赤外線ヒーター4からの赤外線を反射面8で反射させて、約10mmφの集光部6(加熱ゾーン)に集光する。ワイヤー3の走行路を取り囲むように、凹面鏡2と赤外線ヒーター4を複数個配置してもよい。 FIG. 1 is an explanatory diagram in which a wire coated with paste is heated by infrared rays. In the method of FIG. 1, a semi-cylindrical concave mirror 2 and a linear infrared heater 4 arranged in the longitudinal direction of the concave mirror 2 are used. The wire 3 coated with the paste is caused to run in the longitudinal direction of the concave mirror 2 (perpendicular to the paper surface). Infrared light from the infrared heater 4 is reflected by the reflecting surface 8 and condensed on a condensing part 6 (heating zone) of about 10 mmφ. A plurality of concave mirrors 2 and infrared heaters 4 may be arranged so as to surround the traveling path of the wire 3.
 集光部6の長さは、赤外線ヒーター4や凹面鏡2のサイズや個数によって決まる。ペーストがコーティングされたワイヤー3を走行させ、ペーストを赤外線加熱する。集光部6の長さは例えば400mm~1000mmとする。集光部6を長くするため、複数の赤外線ヒーター4をワイヤー3の走行方向(紙面の垂直方向)に直列に配置してもよい。 The length of the condenser 6 is determined by the size and number of the infrared heater 4 and the concave mirror 2. The wire 3 coated with the paste is run and the paste is heated by infrared rays. The length of the light collecting unit 6 is, for example, 400 mm to 1000 mm. In order to lengthen the condensing unit 6, a plurality of infrared heaters 4 may be arranged in series in the traveling direction of the wire 3 (perpendicular to the paper surface).
 赤外線ヒーター4として、近赤外線領域にピークを有する赤外線ランプが好ましい。赤外線ランプとして、例えば、ショートアークキセノンランプ(short-arc
xenon lamp)や、石英ガラス管にタングステンフィラメントを封じ込んだランプが用いられる。
As the infrared heater 4, an infrared lamp having a peak in the near infrared region is preferable. As an infrared lamp, for example, a short arc xenon lamp (short-arc
xenon lamp) or a lamp in which a tungsten filament is sealed in a quartz glass tube.
 集光部6を走行するワイヤー3の温度を測定することは難しい。そこで、加熱によりワイヤー3の破断強度が低下することに着目し、加熱前の破断強度の95%が確保できるような加熱温度とする。実験的に、集光部6の温度を1mm径のシース型熱電対で計測したところ、500℃~800℃であった。図1の赤外線加熱装置を用いて、ワイヤーを1,000mm/sec~2,000mm/secの速度で走行させ、レジンボンドを発泡させることなく硬化させることができる。 It is difficult to measure the temperature of the wire 3 that travels through the light collector 6. Therefore, focusing on the fact that the breaking strength of the wire 3 is reduced by heating, the heating temperature is set so that 95% of the breaking strength before heating can be secured. Experimentally, the temperature of the condenser 6 was measured with a 1 mm diameter sheathed thermocouple and found to be 500 ° C. to 800 ° C. By using the infrared heating apparatus of FIG. 1, the wire can be run at a speed of 1,000 mm / sec to 2,000 mm / sec and cured without foaming the resin bond.
 赤外線加熱方法として、赤外線レーザーを照射する方法でもよい。 As an infrared heating method, an infrared laser irradiation method may be used.
 ペーストには、無機粒子からなるフィラー(filler)が配合される。フィラーは、レジンボンドの熱膨張・熱収縮を抑制し、切断中の砥粒の脱落を減少させる。フィラーはレジンボンド100重量部に対し、20重量部~100重量部配合されることが好ましく、30重量部~60重量部配合されることがさらに好ましい。フィラーとして、大きさが2μm~3μm程度のダイヤモンド微粒子が適しているが、他の無機材料(例えば炭化珪素微粒子)を用いることもできる。 The paste is mixed with a filler made of inorganic particles. The filler suppresses the thermal expansion / contraction of the resin bond and reduces the falling off of abrasive grains during cutting. The filler is preferably blended in an amount of 20 to 100 parts by weight, more preferably 30 to 60 parts by weight based on 100 parts by weight of the resin bond. As the filler, diamond fine particles having a size of about 2 to 3 μm are suitable, but other inorganic materials (for example, silicon carbide fine particles) can also be used.
 赤外線加熱を実施したレジンボンドワイヤーソーを再加熱すると、性能が安定する。再加熱により、赤外線加熱時にワイヤーおよびペーストに生じた熱歪みを、除去することができる。再加熱によって、レジンボンドワイヤーソーの破断応力や、レジンボンドの分子構造が変化することはほとんどない。 ¡Reheating the resin bond wire saw that has been heated by infrared heat stabilizes the performance. By reheating, the thermal strain generated in the wire and paste during infrared heating can be removed. Reheating hardly changes the breaking stress of the resin bond wire saw or the molecular structure of the resin bond.
 再加熱は温度100℃~200℃で、1時間~5時間行われることが好ましい。再加熱の時間は長いが、レジンボンドワイヤーソーを巻いたボビンを一度に多数再加熱できるので、再加熱によりレジンボンドワイヤーソーの生産性が大きく低下することはない。赤外線加熱と再加熱を組み合わせることにより、レジンボンドワイヤーソーの高い生産性を得ることができる。 Reheating is preferably performed at a temperature of 100 ° C. to 200 ° C. for 1 hour to 5 hours. Although the reheating time is long, a large number of bobbins wrapped with the resin bond wire saw can be reheated at a time, so that the productivity of the resin bond wire saw is not greatly reduced by reheating. By combining infrared heating and reheating, high productivity of the resin bond wire saw can be obtained.
 本発明のレジンボンドワイヤーソーは従来のレジンボンドワイヤーソーに比べて切り込み深さが大きい。「切り込み深さ」とは、試験用ピースを切り込み、ワイヤーソーが断線したときの切り込み深さをいう。ワイヤーソーの断線は主に砥粒の脱落により発生する。本発明のレジンボンドワイヤーソーは、従来のレジンボンドワイヤーソーに比べて、砥粒の固定強度が大きいため、切り込み深さが大きい。 The resin bond wire saw of the present invention has a greater cutting depth than conventional resin bond wire saws. The “cut depth” refers to the cut depth when the test piece is cut and the wire saw is broken. Wire saw breakage is mainly caused by the falling off of abrasive grains. The resin bond wire saw of the present invention has a larger cutting depth because the fixing strength of the abrasive grains is larger than that of a conventional resin bond wire saw.
 本発明のレジンボンドワイヤーソーは、ウエハの反り、うねり、厚みばらつき(TTV)のいずれもが、従来のレジンボンドワイヤーソーに比べて25%以上優れている。本発明のレジンボンドワイヤーソーにより、従来のレジンボンドワイヤーソーに比べて、面粗度(Ra、Ry)の値が20%程度小さいウエハを得ることができる。本発明のレジンボンドワイヤーソーにより、表面の加工変質層の少ないウエハを得ることができる。本発明のレジンボンドワイヤーソーにより、曲げ強度の高いウエハを得ることができる。 The resin bond wire saw of the present invention is 25% or more superior to conventional resin bond wire saws in terms of wafer warpage, undulation, and thickness variation (TTV). With the resin bond wire saw of the present invention, a wafer having a surface roughness (Ra, Ry) of about 20% smaller than that of a conventional resin bond wire saw can be obtained. With the resin bond wire saw of the present invention, it is possible to obtain a wafer having a small surface damaged layer. With the resin bond wire saw of the present invention, a wafer with high bending strength can be obtained.
 本発明のレジンボンドワイヤーソーの切断性能は以下の実験により確認された。 The cutting performance of the resin bond wire saw of the present invention was confirmed by the following experiment.
 次の配合のレジンボンドを用い、次の配合のペーストを調整し、次の生産ラインによりレジンボンドワイヤーソーを製造した。

 
Using a resin bond having the following composition, a paste having the following composition was prepared, and a resin bond wire saw was produced by the next production line.

 [実施例1]
(1)レジンボンドの配合
Figure JPOXMLDOC01-appb-I000001
(2)ペーストの配合
Figure JPOXMLDOC01-appb-I000002
(3)レジンボンドワイヤーソーの生産ライン
(a)ラインの概要
 ワイヤー繰出し機→コーティング装置→加熱装置→巻取り機→再加熱炉
(b)ワイヤー繰出し機:ボビンに巻かれたワイヤーを繰り出す装置。
(c)コーティング装置:ウォータージェット形状のダイスによりワイヤー表面に均質にペーストをコーティングする装置。
(d)加熱装置:ペーストがコーティングされたワイヤーを加熱する装置。
 アルバック理工株式会社製赤外線ゴールドイメージ炉:型式RHL-E410-N(加熱長265mm、最大出力4kw)を3個直列で用いた。図2にランプのエネルギー分光分布を示す。
(e)巻取り機:レジンボンドワイヤーソーをボビンに巻取る装置。
(f)再加熱炉:巻取り機でボビンに巻取ったレジンボンドワイヤーソー加熱する対流式加熱炉。
(4)材料および製造条件
(a)ワイヤー:ピアノ線(線径:120μm、破断強度:約42N)。
(b)ワイヤーの走行速度:1200mm/sec。
(c)ペーストのコーティング量:0.01g/m。
(d)赤外線ゴールドイメージ炉の温度:720℃~750℃(熱電対計測)。
(レジンボンドワイヤーソーの破断強度が40N未満にならない温度。)
(e)再加熱炉における温度と時間:180℃、2時間。

 
[Example 1]
(1) Compounding resin bond
Figure JPOXMLDOC01-appb-I000001
(2) Paste formulation
Figure JPOXMLDOC01-appb-I000002
(3) Resin bond wire saw production line (a) Outline of wire Wire feeding machine → Coating device → Heating device → Winding machine → Reheating furnace (b) Wire feeding machine: A device for feeding out the wire wound around the bobbin.
(C) Coating device: A device that coats the wire surface uniformly with a water jet-shaped die.
(D) Heating device: a device for heating the wire coated with the paste.
Infrared Gold Image Furnace manufactured by ULVAC-RIKO, Inc .: Model RHL-E410-N (heating length 265 mm, maximum output 4 kW) was used in series. FIG. 2 shows the energy spectral distribution of the lamp.
(E) Winder: A device for winding a resin bond wire saw onto a bobbin.
(F) Reheating furnace: A convection heating furnace for heating a resin bond wire saw wound around a bobbin by a winder.
(4) Material and production conditions (a) Wire: Piano wire (wire diameter: 120 μm, breaking strength: about 42 N).
(B) Travel speed of the wire: 1200 mm / sec.
(C) Paste coating amount: 0.01 g / m.
(D) Temperature of infrared gold image furnace: 720 ° C. to 750 ° C. (thermocouple measurement).
(The temperature at which the breaking strength of the resin bond wire saw does not become less than 40N.)
(E) Temperature and time in the reheating furnace: 180 ° C., 2 hours.

 [実施例2]
(1)レジンボンドの配合
Figure JPOXMLDOC01-appb-I000003
(2)ペーストの配合
Figure JPOXMLDOC01-appb-I000004
以上の他は、実施例1と同様にしてレジンボンドワイヤーソーを製造した。
[Example 2]
(1) Compounding resin bond
Figure JPOXMLDOC01-appb-I000003
(2) Paste formulation
Figure JPOXMLDOC01-appb-I000004
A resin bond wire saw was manufactured in the same manner as in Example 1 except for the above.
 [比較例]
 レジンボンドとして市販のノボラック型フェノール樹脂(住友ベークライト社製)を用い、加熱装置として竪型エナメル焼き付け炉を用いた。竪型エナメル焼き付け炉は、炉芯管内を循環する加熱空気によりワイヤーを加熱する。発熱体はニクロム線である。竪型エナメル焼き付け炉で、炉温300℃、加熱時間20分の加熱を行なった。その他は実施例1と同様にしてレジンボンドワイヤーソーを得た。
[Comparative example]
A commercially available novolac type phenolic resin (manufactured by Sumitomo Bakelite Co., Ltd.) was used as the resin bond, and a vertical enamel baking furnace was used as the heating device. A vertical enamel baking furnace heats a wire with heated air circulating in the furnace core tube. The heating element is a nichrome wire. In a vertical enamel baking furnace, heating was performed at a furnace temperature of 300 ° C. and a heating time of 20 minutes. Others were carried out similarly to Example 1, and obtained the resin bond wire saw.
 実施例1、2のレジンボンドワイヤーソーの切り込み深さを、比較例のレジンボンドワイヤーソーの切り込み深さと比較した。
(1)切り込み深さ試験方法
 1cm×1cm×2mmの多結晶シリコンピースを、水平に張られたレジンボンドワイヤーソーの上方にセットし、多結晶シリコンピースを下降移動させて切り込み深さを測定した。ピースの下降速度:0.9mm/min。
(2)切り込み条件
 レジンボンドワイヤー運動:振幅80mm、速度400mm/minの往復運動。
(3)切り込み時間:断線するまで。
The cutting depth of the resin bond wire saws of Examples 1 and 2 was compared with the cutting depth of the resin bond wire saws of the comparative examples.
(1) Cutting depth test method A polycrystalline silicon piece of 1 cm × 1 cm × 2 mm was set above a horizontally stretched resin bond wire saw, and the polycrystalline silicon piece was moved downward to measure the cutting depth. . Piece descending speed: 0.9 mm / min.
(2) Cutting conditions Resin bond wire motion: reciprocating motion with an amplitude of 80 mm and a speed of 400 mm / min.
(3) Cutting time: Until disconnection.
 表1に切り込み深さ試験の結果を示す。表2に試験後のワイヤの砥粒残存率を示す。

 
Table 1 shows the results of the cutting depth test. Table 2 shows the remaining rate of the abrasive grains of the wire after the test.

Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1に示すように、実施例1、2のレジンボンドワイヤーソーの切り込み深さは、比較例のレジンボンドワイヤーソーの切り込み深さの約1.7倍である。表2に示すように、実施例1のレジンボンドワイヤーソーの砥粒残存率は、比較例のレジンボンドワイヤーソーの砥粒残存率の約1.8倍である。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
As shown in Table 1, the cutting depth of the resin bond wire saws of Examples 1 and 2 is about 1.7 times the cutting depth of the resin bond wire saw of the comparative example. As shown in Table 2, the residual abrasive rate of the resin bond wire saw of Example 1 is about 1.8 times the residual abrasive rate of the resin bond wire saw of Comparative Example.
 この差の理由を調べるため硬化したレジンボンドの硬度を調べた。
ケース1:実施例1で用いたレジンボンドを加熱硬化させた。加熱条件:室温から180℃まで15℃/時間で昇温し、180℃で2時間保持。
ケース2:比較例で用いたノボラック型フェノール樹脂をケース1と同じ加熱条件で加熱硬化させた。
In order to investigate the reason for this difference, the hardness of the cured resin bond was examined.
Case 1: The resin bond used in Example 1 was cured by heating. Heating conditions: The temperature was raised from room temperature to 180 ° C. at 15 ° C./hour and held at 180 ° C. for 2 hours.
Case 2: The novolac type phenol resin used in the comparative example was heat-cured under the same heating conditions as in Case 1.
 得られた硬化物の硬度のロックウエル硬さを、明石製作所製の硬度計(ATK-F3000;1/4“鋼球使用、荷重100kgf)を用いて計測した。結果を表3に示す。 The Rockwell hardness of the obtained cured product was measured using a hardness meter (ATK-F3000; 1/4 “steel ball used, load 100 kgf) manufactured by Akashi Seisakusho. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000007
 表3から、実施例1のレジンボンドは、比較例のレジンボンドに比べて硬度が高いことが分かる。これが本発明のレジンボンドワイヤーソーの切り込み深さが大きい理由のひとつである。
Figure JPOXMLDOC01-appb-T000007
From Table 3, it can be seen that the resin bond of Example 1 is higher in hardness than the resin bond of the comparative example. This is one of the reasons why the resin bond wire saw of the present invention has a large depth of cut.
 [分析]
 実施例1のレジンボンド及び比較例のレジンボンドの網状分子構造と物性を調べた。
[analysis]
The network molecular structure and physical properties of the resin bond of Example 1 and the resin bond of the comparative example were examined.
 MALDI-TOF-MS法により質量分析を行った。(MALDI:マトリックス支援レーザー脱離イオン化法、TOF-MS:飛行時間型質量分析法)。
・使用機器:島津製作所製AXIMA-CFR(SHIMADZU)。
・分析モード:リニアモード(陽イオン、陰イオン検出)。
・真空度:10-5Pa以下。
・マトリックス:2,5-ジヒドロキシ安息香酸。
・レーザー波長:337nm(窒素レーザー)。
Mass spectrometry was performed by the MALDI-TOF-MS method. (MALDI: matrix-assisted laser desorption ionization method, TOF-MS: time-of-flight mass spectrometry).
-Equipment used: AXIMA-CFR + (SHIMADZU) manufactured by Shimadzu Corporation.
-Analysis mode: Linear mode (positive ion, anion detection).
・ Vacuum degree: 10 −5 Pa or less.
Matrix: 2,5-dihydroxybenzoic acid.
Laser wavelength: 337 nm (nitrogen laser).
 図3~図6にMALDI-TOF-MS法による質量分析の測定チャートを示す。図3は比較例のレジンボンドの陽イオン検出チャートである。図4は実施例1のレジンボンドの陽イオン検出チャートである。図5は比較例のレジンボンドの陰イオン検出チャートである。図6は実施例1のレジンボンドの陰イオン検出チャートである。 Figures 3 to 6 show measurement charts for mass spectrometry using the MALDI-TOF-MS method. FIG. 3 is a cation detection chart of the resin bond of the comparative example. 4 is a cation detection chart of the resin bond of Example 1. FIG. FIG. 5 is an anion detection chart of the resin bond of the comparative example. FIG. 6 is an anion detection chart of the resin bond of Example 1.
 図4(実施例1)には208(m/z)間隔のフラグメントを示すピーク(矢印)が見られる。208(m/z)間隔のフラグメントは下記構造式(構造単位;C1412:分子量212)において、芳香環を含む4つの部位で架橋が開裂(フラグメント)した結果生じたものと推測される。 In FIG. 4 (Example 1), peaks (arrows) showing fragments at intervals of 208 (m / z) can be seen. It is presumed that the 208 (m / z) -spaced fragments were generated as a result of cleavage (fragment) of the bridge at four sites including the aromatic ring in the following structural formula (structural unit; C 14 H 12 O 2 : molecular weight 212). Is done.
Figure JPOXMLDOC01-appb-C000008
 これは実施例1のレジンボンド中で、下記構造が反復フラグメントとして、網状高分子構造に規則正しく配列することを示している。
Figure JPOXMLDOC01-appb-C000008
This indicates that in the resin bond of Example 1, the following structure is regularly arranged as a repetitive fragment in a network polymer structure.
Figure JPOXMLDOC01-appb-C000009
 図3、図5、図6には一定間隔のフラグメントを示すピーク(矢印)は検出されなかった。そのため比較例のレジンボンドには化学式1で示す構造が存在しないと思われる。
Figure JPOXMLDOC01-appb-C000009
In FIGS. 3, 5, and 6, peaks (arrows) indicating fragments at regular intervals were not detected. Therefore, it seems that the resin bond of the comparative example does not have the structure represented by Chemical Formula 1.
 図3~図6に関する上述の結果から、208(m/z)間隔のフラグメントを示す分子構造は、レジンボンドを赤外線加熱したことにより生じたものと思われる。 From the results described above with reference to FIGS. 3 to 6, it is considered that the molecular structure showing fragments of 208 (m / z) spacing was generated by heating the resin bond with infrared rays.
 図7に、実施例1のレジンボンド及び比較例のレジンボンドの示差熱分析チャートを示す。
・使用装置:TG8120(Rigaku)。
・昇温速度:10℃/min(分)。
・雰囲気:Nガスフロー。
・標準物質:アルミナ(Al)。
・試料重量:約10mg。
In FIG. 7, the differential thermal analysis chart of the resin bond of Example 1 and the resin bond of a comparative example is shown.
-Device used: TG8120 (Rigaku).
Temperature rising rate: 10 ° C./min (min)
Atmosphere: N 2 gas flow.
Reference material: Alumina (Al 2 O 3 ).
Sample weight: about 10 mg.
 図7に示す実施例1のレジンボンドのチャートでは、175℃~182℃に、明確な軟化点のピークが見られる。これに対して、比較例のレジンボンドには190℃付近に、不明確な軟化点のピークが見られるにすぎない。比較例のレジンボンドは、高次構造が不均一なため、構造変化をともなう転移が発生せず、明確な軟化点のピークが見られないと思われる。実施例1のレジンボンドは、208(m/z)間隔のフラグメントによる高次構造をもつため、硬度が高いと思われる。比較例のレジンボンドの硬度が低い理由は、高次構造が不均一であるためと思われる。 7 shows a clear softening point peak at 175 ° C. to 182 ° C. in the resin bond chart of Example 1 shown in FIG. On the other hand, in the resin bond of the comparative example, only an unclear peak of the softening point is observed around 190 ° C. Since the resin bond of the comparative example has a non-uniform high-order structure, no transition accompanied by a structural change occurs and no clear softening point peak is observed. The resin bond of Example 1 seems to have high hardness because it has a higher-order structure with fragments of 208 (m / z) intervals. The reason why the resin bond of the comparative example has a low hardness seems to be because the higher order structure is not uniform.
 本発明のレジンボンドワイヤーソーを用いると、シリコンインゴットから高品質のウエハを効率良く切り出すことができる。 When the resin bond wire saw of the present invention is used, a high-quality wafer can be efficiently cut out from a silicon ingot.

Claims (2)

  1.  フェノール樹脂を主成分とするレジンボンドにより、ワイヤーの表面に砥粒が固定されたレジンボンドワイヤーソーであって、
     前記レジンボンドは、MALDI-TOF-MS法による質量分析において、陽イオンに208(m/z)間隔のフラグメントを表わす複数のピークを示し、
     TG-DTA法による示差熱分析において、175℃~182℃に軟化点に相当するピークを示すレジンボンドワイヤーソー。
    A resin bond wire saw in which abrasive grains are fixed to the surface of the wire by a resin bond mainly composed of a phenol resin,
    The resin bond shows a plurality of peaks representing fragments of 208 (m / z) spacing in the cation in mass analysis by MALDI-TOF-MS method,
    A resin bond wire saw showing a peak corresponding to a softening point at 175 ° C. to 182 ° C. in a differential thermal analysis by the TG-DTA method.
  2.  前記レジンボンドが、ノボラック型フェノール樹脂100重量部、レゾール型フェノール樹脂10重量部~30重量部、アミン系シランカップリング剤0.1重量部~5重量部を含む請求項1に記載のレジンボンドワイヤーソー。 The resin bond according to claim 1, wherein the resin bond includes 100 parts by weight of a novolac type phenol resin, 10 parts by weight to 30 parts by weight of a resole type phenol resin, and 0.1 part by weight to 5 parts by weight of an amine silane coupling agent. Wire saw.
PCT/JP2013/082639 2013-01-10 2013-12-04 Resin-bond wire saw WO2014109149A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201504210SA SG11201504210SA (en) 2013-01-10 2013-12-04 Resin-bond wire saw
CN201380070217.3A CN104918752B (en) 2013-01-10 2013-12-04 Resin-bonded scroll saw
KR1020157011316A KR101594747B1 (en) 2013-01-10 2013-12-04 Resin-bond wire saw

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013002792A JP5792208B2 (en) 2013-01-10 2013-01-10 Resin bond wire saw
JP2013-002792 2013-01-10

Publications (1)

Publication Number Publication Date
WO2014109149A1 true WO2014109149A1 (en) 2014-07-17

Family

ID=51166811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082639 WO2014109149A1 (en) 2013-01-10 2013-12-04 Resin-bond wire saw

Country Status (7)

Country Link
JP (1) JP5792208B2 (en)
KR (1) KR101594747B1 (en)
CN (1) CN104918752B (en)
MY (1) MY168372A (en)
SG (1) SG11201504210SA (en)
TW (1) TWI519366B (en)
WO (1) WO2014109149A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016186075A1 (en) * 2015-05-21 2018-03-01 三井化学東セロ株式会社 Method for producing gas barrier laminate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171018A1 (en) * 2015-04-20 2016-10-27 株式会社Tkx Method for producing fine silicon powder, and method for producing fine silicon nitride powder
SG11201804316UA (en) * 2016-05-24 2018-06-28 Tkx Corp Device for manufacturing coated wire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998035784A1 (en) * 1997-02-14 1998-08-20 Sumitomo Electric Industries, Ltd. Wire-saw and its manufacturing method
JP2007253268A (en) * 2006-03-22 2007-10-04 Noritake Super Abrasive:Kk Resinoid bond wire saw
JP2008006584A (en) * 2000-05-15 2008-01-17 Allied Material Corp Cutting method using super-abrasive grain wire saw

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940001070B1 (en) * 1990-12-29 1994-02-12 고려화학 주식회사 Preparation of epoxy resin compositions for encapsulating semiconductor
JP3734854B2 (en) 1995-07-18 2006-01-11 古河電気工業株式会社 Hot air circulation type individual multiple enamel wire baking furnace and method for producing enamel wire using the same
JP2000263452A (en) 1999-03-12 2000-09-26 Osaka Diamond Ind Co Ltd Super-abrasive grain wire saw
JP2000271872A (en) 1999-03-23 2000-10-03 Osaka Diamond Ind Co Ltd Super abrasive grain resin bond wire saw
JP2001259993A (en) * 2000-03-10 2001-09-25 Noritake Diamond Ind Co Ltd Resin bond wire saw
JP2003334763A (en) 2002-05-16 2003-11-25 Read Co Ltd Fixed abrasive grain wire saw
CN1784292A (en) * 2003-05-09 2006-06-07 戴蒙得创新股份有限公司 Abrasive particles having coatings with tortuous surface topography
JP2006123024A (en) 2004-10-26 2006-05-18 Nakamura Choko:Kk Fixed abrasive grain type wire saw and its manufacturing method
JP2008103690A (en) 2007-08-24 2008-05-01 Mitsubishi Electric Corp Slurry used for cutting silicon ingot
CN101712135B (en) * 2008-09-30 2014-07-02 日本则武超精密磨料磨具有限公司 Resin bonder wire saw
CN101445587B (en) * 2008-12-26 2011-11-16 南京师范大学 Resin binding agent for a diamond wire saw and preparation method thereof
JP5443825B2 (en) 2009-05-15 2014-03-19 古河電気工業株式会社 Enamel wire printing equipment
CN102513609B (en) * 2011-12-28 2013-09-25 山东大学 Resin bond consolidation abrasive wire saw production system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998035784A1 (en) * 1997-02-14 1998-08-20 Sumitomo Electric Industries, Ltd. Wire-saw and its manufacturing method
JP2008006584A (en) * 2000-05-15 2008-01-17 Allied Material Corp Cutting method using super-abrasive grain wire saw
JP2007253268A (en) * 2006-03-22 2007-10-04 Noritake Super Abrasive:Kk Resinoid bond wire saw

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016186075A1 (en) * 2015-05-21 2018-03-01 三井化学東セロ株式会社 Method for producing gas barrier laminate
JP7002935B2 (en) 2015-05-21 2022-01-20 三井化学東セロ株式会社 Manufacturing method of gas barrier laminate

Also Published As

Publication number Publication date
KR101594747B1 (en) 2016-02-16
CN104918752B (en) 2016-04-20
SG11201504210SA (en) 2015-07-30
TW201433391A (en) 2014-09-01
KR20150102946A (en) 2015-09-09
JP5792208B2 (en) 2015-10-07
CN104918752A (en) 2015-09-16
JP2014133288A (en) 2014-07-24
TWI519366B (en) 2016-02-01
MY168372A (en) 2018-10-31

Similar Documents

Publication Publication Date Title
WO2014109149A1 (en) Resin-bond wire saw
US9597734B2 (en) Electrostatic chuck and showerhead with enhanced thermal properties and methods of making thereof
CN101704276B (en) Brazing diamond fret saw with grinding materials being arranged in order in spiral shape and manufacturing process thereof
JP5778864B2 (en) Adhesive composition for resin bond wire saw and method for producing resin bond wire saw
JP6493287B2 (en) Liquid resin composition
WO2018212233A1 (en) Curable composition for adhesive agent, adhesive sheet, cured article, laminate, and apparatus
JP2010131997A (en) Thermosetting material, and method and device for forming set or unset thermosetting material
JP6183685B2 (en) Thermally conductive heat-resistant insulating material-filled coil, manufacturing method thereof, motor, and transformer
CN109642001B (en) Halogen and polyhalide mediated polymerization of phenolic resins
JP3833940B2 (en) Phenol polymer, process for producing the same, and epoxy resin curing agent using the same
JP5542738B2 (en) Wire tool manufacturing method
JP2020015879A (en) Peelable scale attachment prevention material, inorganic member having peelable scale attachment prevention layer, and scale attachment prevention method
JPH06126638A (en) Bond for grinding wheel and grinding wheel
JP6373040B2 (en) Resin film forming method
JP5908146B2 (en) Cutting blade manufacturing method
JP2004156045A (en) Friction material
JP6768851B2 (en) Method for manufacturing resin composition and thermally conductive material
TW201819572A (en) Resin bond wire saw and method for producing the same
JP5944356B2 (en) Semiconductor sealing resin composition and semiconductor device provided with cured product thereof
JP5943486B2 (en) Semiconductor sealing resin composition and semiconductor device provided with cured product thereof
JP4561535B2 (en) Melamine resin composition for commutator and commutator
JP6915586B2 (en) Thermosetting resin composition
JP2005006423A (en) Vacuum motor and manufacturing method therefor
JPH1161075A (en) Resin paste for semiconductor
WO2018179842A1 (en) Silicone mold

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380070217.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870735

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201502064

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20157011316

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13870735

Country of ref document: EP

Kind code of ref document: A1