WO2014109029A1 - Centrifugal pump - Google Patents

Centrifugal pump Download PDF

Info

Publication number
WO2014109029A1
WO2014109029A1 PCT/JP2013/050293 JP2013050293W WO2014109029A1 WO 2014109029 A1 WO2014109029 A1 WO 2014109029A1 JP 2013050293 W JP2013050293 W JP 2013050293W WO 2014109029 A1 WO2014109029 A1 WO 2014109029A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
rotating body
centrifugal pump
elastic member
housing
Prior art date
Application number
PCT/JP2013/050293
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 板持
翔太郎 田中
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to PCT/JP2013/050293 priority Critical patent/WO2014109029A1/en
Priority to JP2014556264A priority patent/JP6276708B2/en
Publication of WO2014109029A1 publication Critical patent/WO2014109029A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/408Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable
    • A61M60/411Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable generated by an electromotor
    • A61M60/416Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable generated by an electromotor transmitted directly by the motor rotor drive shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2238Special flow patterns
    • F04D29/2255Special flow patterns flow-channels with a special cross-section contour, e.g. ejecting, throttling or diffusing effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/825Contact bearings, e.g. ball-and-cup or pivot bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0413Axial thrust balancing hydrostatic; hydrodynamic thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/042Axially shiftable rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/0467Spherical bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2238Special flow patterns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/419Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being permanent magnetic, e.g. from a rotating magnetic coupling between driving and driven magnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/422Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/501Elasticity

Definitions

  • the present invention relates to a centrifugal pump used for extracorporeal circulation such as auxiliary circulation and cardiac surgery, and more particularly to a centrifugal pump that is excellent in operational stability and capable of stable liquid feeding over a long period of time.
  • blood pumps are used for blood circulation for extracorporeal circulation and extracorporeal circulation used in cardiac surgery.
  • a blood pump for example, physical communication between the outside and a blood chamber in the pump is completely eliminated, and invasion of bacteria and the like can be prevented, so that driving torque from an external motor is transmitted using magnetic coupling.
  • a centrifugal blood pump of the type is used.
  • Various centrifugal blood pumps have been proposed (see, for example, Patent Document 1).
  • Patent Document 1 describes a turbo blood pump that is a type of centrifugal blood pump.
  • an impeller is rotatably disposed inside a housing having a blood inlet and a blood outlet.
  • the impeller includes a rotating shaft, a plurality of vanes, an annular connecting portion to which an outlet portion side of each vane is connected, and support means for connecting one or more vanes to the rotating shaft.
  • the rotating shaft is supported by an upper bearing and a lower bearing provided at both ends in the axial direction, and the upper bearing and the lower bearing are pivot bearings.
  • a plurality of driven magnets are embedded and fixed at regular intervals in the annular coupling portion.
  • a drive magnet that is magnetically coupled to the driven magnet is embedded in the rotor disposed in the lower portion of the housing.
  • the rotor is coupled to a motor, and when the motor is rotated, an impeller magnetically coupled to the rotor rotates and blood is fed.
  • An object of the present invention is to provide a centrifugal pump that solves the problems based on the above-described conventional technology, has excellent operation stability, and can stably supply liquid over a long period of time.
  • a housing having a liquid inlet and a liquid outlet is provided, and a rotation shaft is provided in the housing, and the rotation shaft rotates to allow the liquid to flow.
  • a centrifugal pump that has a rotating body that moves from the inlet to the outlet and sends out the liquid from the outlet, and a bearing that is provided in the housing and supports the rotating shaft, and is used for auxiliary circulation or extracorporeal circulation
  • the centrifugal pump is characterized in that an elastic member is provided between each of the bearings and the housing.
  • the bearing is preferably provided in the housing so as to be movable in the axial direction of the rotating shaft.
  • the elastic member expands when the bearing moves to the rotating body side and contracts when the bearing moves to the opposite side. Further, the bearing and the elastic member may be integrated or separated.
  • the bearing is preferably a pivot bearing.
  • the elastic member is, for example, a spring, a rubber material, or an elastic resin material.
  • the rotating shaft can be stably held for a long time with a constant force even when the rotational speed of the rotating body is high or low. be able to.
  • movement, and liquids, such as blood can be sent out stably irrespective of the buoyancy and suction force which depend on the rotation speed of a rotary body.
  • the load applied to the rotating shaft can be suppressed by the elastic member. Thereby, generation
  • FIG. 1 is typical sectional drawing which shows the centrifugal pump of embodiment of this invention
  • FIG.1 is a typical perspective view which shows an example of the rotary body of the centrifugal pump of embodiment of this invention
  • FIG.2 is typical sectional drawing of the rotary body shown to Fig.2 (a).
  • Fig.1 (a) is typical sectional drawing which shows the centrifugal pump of embodiment of this invention
  • (b) is a principal part enlarged view of Fig.1 (a).
  • centrifugal pump 10 In the centrifugal pump 10, a rotating body 14 described later and a drive motor (not shown) connected to the back surface 11 of the centrifugal pump 10 are magnetically coupled, and the rotating body 14 is rotated in a non-contact manner by the drive motor. . In the centrifugal pump 10, a liquid such as blood is sent out by the centrifugal force generated by the rotation of the internal rotating body 14.
  • the housing 12 has a pump chamber 20, a cylindrical introduction port 22, and a cylindrical discharge port 24, and is made of, for example, polycarbonate.
  • the pump chamber 20 houses the rotating body 14 and is filled with a liquid.
  • the introduction port 22 is for introducing a liquid into the pump chamber 20, and is provided, for example, in the upper portion of the pump chamber 20.
  • the introduction port 22 is connected to, for example, a blood reservoir (not shown), and blood in the blood reservoir is introduced into the pump chamber 20 through the introduction port 22.
  • the introduction port 22 is provided with a generally circular opening 22a, and having a central axis C 1, and is connected at a predetermined angle ⁇ with respect to the center axis C of the rotation shaft 32 of the rotating body 14 to be described later.
  • the angle ⁇ is not particularly limited, and is appropriately set depending on the design requirements of the centrifugal pump 10 and the like.
  • the mounting form of the introduction port 22 is not particularly limited, and is appropriately set according to design requirements and the like.
  • the discharge port 24 is for sending a liquid to the outside, has a substantially circular opening 24 a, and is provided on the peripheral surface of the pump chamber 20.
  • the discharge port 24 is connected to, for example, an oxygenator (not shown), and blood is sent to the oxygenator via the discharge port 24.
  • the position where the discharge port 24 is provided can be the same as that of a general centrifugal pump used for extracorporeal circulation.
  • the pump chamber 20 is provided with an upper storage portion 26 in which an upper bearing 16 a that supports the rotating shaft 32 of the rotating body 14 and the elastic member 18 are stored. In the upper storage portion 26, the upper bearing 16a and the elastic member 18 are stored. Further, the pump chamber 20 is provided with a lower housing portion 28 in which the lower bearing 16b that supports the rotary shaft 32 together with the upper bearing 16a and the elastic member 18 are housed in the lower portion. The lower bearing 16 b and the elastic member 18 are stored in the lower storage portion 28.
  • the rotating body 14 draws liquid from the introduction port 22 into the pump chamber 20 and sends out the liquid from the discharge port 24 by centrifugal force.
  • the rotating body 14 rotates about the central axis C of the rotating shaft 32 as the center of rotation. The rotating body 14 will be described in detail later.
  • both ends of the rotating shaft 32 of the rotating body 14 are pivotally supported by an upper bearing 16a and a lower bearing 16b.
  • the upper bearing 16a and the lower bearing 16b have the same configuration.
  • the upper bearing 16a and the lower bearing 16b both support the rotary shaft 32 while receiving a load in the axial direction D of the rotary shaft 32, that is, a vertical load, over a long period of time.
  • the rotating body 14 is held at a predetermined position in the pump chamber 20 by the upper bearing 16a and the lower bearing 16b.
  • a thrust bearing can be used for the upper bearing 16a and the lower bearing 16b, for example, a pivot bearing is used.
  • a pivot bearing As shown in FIG. 1B, for example, in the upper bearing 16a, the surface portion 17 in contact with the tip 32a of the rotating shaft 32 is recessed according to the shape of the tip 32a.
  • the lower bearing 16b is not shown, but the surface portion with which the tip 32a of the rotating shaft 32 contacts is recessed according to the shape of the tip, as with the upper bearing 16a.
  • the upper bearing 16a and the lower bearing 16b are not limited to pivot bearings as long as they can rotate the rotating shaft 32 by receiving a load in the axial direction D of the rotating shaft 32.
  • a bearing having another configuration can be used as appropriate.
  • the rotating shaft 32 makes the surface roughness of the front-end
  • the upper bearing 16a shown in FIG. 1B is press-fitted into the upper housing portion 26, but can move in the axial direction D while maintaining airtightness.
  • the elastic member 18 can expand and contract in the axial direction D, and expands and contracts in accordance with the movement of the upper bearing 16a.
  • the lower bearing 16b is also press-fitted into the lower housing portion 28, but can be moved in the axial direction D while maintaining airtightness. Further, the elastic member 18 can be expanded and contracted in the axial direction D, and expands and contracts in accordance with the movement of the lower bearing 16b.
  • the elastic member 18 is for making the force applied in the axial direction D of the rotating shaft 32 constant, and for stably supporting the rotating shaft 32 of the rotating body 14 for a long period of time by the upper bearing 16a and the lower bearing 16b. is there.
  • the elastic member 18 on the upper bearing 16 a side extends when the upper bearing 16 a moves to the rotating body 14 side, and contracts when the upper bearing 16 a moves to the side opposite to the rotating body 14.
  • the elastic member 18 on the lower bearing 16b side extends when the lower bearing 16b moves to the rotating body 14 side, and contracts when the lower bearing 16b moves to the side opposite to the rotating body 14.
  • the elastic member 18 also has an impact absorbing function with respect to a load, an impact, and the like acting from the outside of the centrifugal pump 10 in the axial direction D of the rotating shaft 32. That is, the elastic member 18 also functions as an impact absorbing material for the rotating shaft 32.
  • the elastic member 18 for example, a spring, a rubber material, or an elastic resin material can be used. Since the elastic member 18 is provided in the pump chamber 20 filled with a liquid, it is preferable to use a rubber material or an elastic resin material capable of increasing the filling rate of the space in which the elastic member 18 is provided. As the spring, a coil spring is preferable. As the rubber material or the elastic resin material, natural rubber, synthetic rubber, commercially available shock absorbing gel, or the like can be used. In this embodiment, the upper bearing 16a and the elastic member 18 are separated from each other, and the lower bearing 16b and the elastic member 18 are separated from each other. However, the present invention is not limited to this, and the upper bearing 16a, the elastic member 18, and the lower bearing 16b are separated.
  • the elastic member 18 may have a single structure.
  • the load on the upper bearing 16a side is pressed by the rotating shaft 32 and becomes larger than the initial state, and the upper bearing 16a moves upward. Then, the elastic member 18 contracts. At this time, since the rotating shaft 32 moves upward relative to the initial position, the load on the lower bearing 16b becomes smaller than in the initial state, the elastic member 18 extends, and the lower bearing 16b moves upward.
  • the rotating body 14 moves downward with respect to the initial position, the load on the lower bearing 16b side is pressed by the rotating shaft 32, and the lower bearing 16b moves downward, and the elastic member 18 is moved downward. Shrinks.
  • the elastic member 18 of the upper bearing 16a and the elastic member 18 of the lower bearing 16b are oppositely expanded and contracted with respect to the movement of the rotating body 14 in the axial direction D, and are generated by the movement of the rotating body 14 in the axial direction D.
  • the force is absorbed by the elastic member 18.
  • the position of the upper bearing 16a and the position of the lower bearing 16b change following the position of the rotating body 14, and the force acting in the axial direction D of the rotating shaft 32 becomes substantially constant.
  • the well-known material used for the pivot bearing of the centrifugal pump used for extracorporeal circulation can be used for the upper bearing 16a and the lower bearing 16b.
  • synthetic resins such as ultra high molecular weight polyethylene, high density polyethylene, polycarbonate, and polytetrafluoroethylene can be used.
  • the rotary shaft 32 can be made of a known material used for a pivot shaft of a centrifugal pump used for extracorporeal circulation.
  • ceramics and biocompatible metal materials can be used. Examples of ceramics that can be used include alumina, silicon carbide, silicon nitride, and tetragonal stabilized zirconia.
  • the biocompatible metal material for example, a titanium alloy, a CoCrMo alloy, stainless steel, a material obtained by subjecting these to surface hardening treatment, or the like can be used.
  • a combination of the rotating shaft 32 and the upper bearing 16a and the lower bearing 16b ceramics and synthetic resin are preferable.
  • Fig.2 (a) is a typical perspective view which shows an example of the rotary body of the centrifugal pump of embodiment of this invention
  • (b) is typical sectional drawing of the rotary body shown to Fig.2 (a).
  • the configuration of the rotating body main body 30 of the rotating body 14 is not limited to that of the present embodiment specifically shown in FIGS. 2A and 2B, and is a known centrifuge used for extracorporeal circulation. The configuration of the pump can be used as appropriate.
  • the rotating body 14 shown in FIGS. 2A and 2B is configured to move the liquid in the pump chamber 20 to the outside through the discharge port 24 by rotating the rotating body main body 30 together with the rotating shaft 32.
  • the rotator main body 30 includes linear flow paths 39 that are arranged radially and at substantially equal angles with respect to the rotation center of the rotator main body 30, that is, the central axis C of the rotation shaft 32. Due to the centrifugal force generated by the rotation of the rotating body 14, the liquid passes through the linear flow path 39 of the rotating body 30 and is sent to the outside from the discharge port 24.
  • the rotating body 30 includes, for example, a lower member 34 and an upper member 36 attached on the lower member 34.
  • the lower member 34 is provided with a magnet 46 therein.
  • the magnet 46 is for magnetically coupling the above-described drive motor for rotating the rotating body 14 and the rotating body 14.
  • the upper member 36 is constituted by an umbrella-shaped member having, for example, a truncated cone-shaped upper surface portion 50 inclined slightly upward toward the center portion, and a side surface portion 52 provided around the upper surface portion 50.
  • An opening 54 is formed at the center of the upper surface portion 50.
  • the lower member 34 is provided with a conical portion 40 on the upper surface 34 a so as to face the opening 54 of the upper member 36.
  • the conical portion 40 is provided with the tip substantially coincided with the rotation center of the rotating body 30.
  • the rotation shaft 32 passes through the opening 54 and penetrates the conical portion 40 and the lower surface 34b of the lower member 34, and is provided with the rotation center of the rotating body 30 and the center axis C aligned.
  • the structure of the rotating shaft 32 is not limited to what penetrates,
  • the rotating shaft 32 was provided with the axis line separately matched with the upper part of the cone part 40, and the bottom face 34c of the lower member 34, respectively. It may be.
  • the lower member 34 is provided with a plurality of, for example, six linear recesses 42 extending radially about the conical portion 40 on the upper surface 34a.
  • Each concave portion 42 is formed by forming a fan-shaped convex portion 44.
  • Each recess 42 constitutes a liquid straight flow path 39.
  • a pair of linearly extending ribs 56 are formed with respect to the respective concave portions 42.
  • An opening 58 is formed in the side surface portion 52 at a position that aligns with each recess 42 defined by a pair of ribs 56.
  • a plurality of, for example, six linear flow paths 39 extending radially about the central axis C of the rotating shaft 32 of the rotating body 14 are configured.
  • Each straight channel 39 communicates with the opening 54 and a space 38 formed by the lower member 34 and the upper member 36. For this reason, the liquid flowing into the pump chamber 20 through the introduction port 22 flows into the linear flow path 39 through the opening 54 and the space 38 and is discharged from the opening 58.
  • a plurality of magnets 46 are arranged at an equal angle with respect to the rotation center of the rotating body 14.
  • the number of magnets 46 is not particularly limited, but is preferably 3 to 10, particularly preferably 4 to 8.
  • the magnet 46 may be provided with a recess for storing a magnetic material on the lower surface 34b and stored therein.
  • rare earth magnets such as a neodymium magnet, a permanent magnet, etc. can be used, for example.
  • the lower member 34 and the upper member 36 constituting the rotating body 30 can be made of, for example, polyethylene, polypropylene, polymethyl methacrylate, polycarbonate, or the like.
  • the rotating body 14 that rotates the rotating body 14 using the drive motor as described above, rotates the liquid that has flowed into the pump chamber 20 via the introduction port 22.
  • the centrifugal force generated in the rotating body 30 is sent to the artificial lung in the subsequent stage via the straight flow path 39 and the discharge port 24.
  • the flow rate of the liquid can be changed by changing the rotation speed of the rotating body 14, and the flow rate is high when the rotation speed is high.
  • the rotating body 14 In the centrifugal pump 10, when the rotational speed of the rotating body 14 is high, the rotating body 14 moves upward due to buoyancy, and as described above, a load is applied to the upper bearing 16a from the initial state. On the contrary, when the rotational speed of the rotating body 14 is low, as described above, the magnetic force generated by the magnetic coupling becomes relatively large, and the rotating body 14 moves downward by this magnetic force, and the lower bearing 16b is moved from the initial state. A load is applied. Thus, in the centrifugal pump 10, the rotating body 14 may move upward or downward in the axial direction D depending on the operation state such as the rotational speed of the rotating body 14.
  • the upper bearing 16a and the elastic member 18 and the lower bearing 16b and the elastic member 18 at each end of the rotary shaft 32 of the rotating body 14, respectively, the upper axis can be moved in the axial direction D of the rotary shaft 32 as described above.
  • the bearing 16a and the lower bearing 16b follow and the force acting in the axial direction D of the rotating shaft 32 can be made substantially constant. Therefore, the rotating body 14 can be stably held for a long period of time, and the operation stability is excellent, and it is stable for a long period of time regardless of the operating condition such as the rotational speed of the rotating body 14.
  • a liquid such as blood can be sent out from the discharge port 24.
  • the force acting in the axial direction D of the rotating shaft 32 can be made substantially constant, and the pressing force of the rotating shaft 32 is suppressed from becoming higher than the initial state, so the rotating shaft 32, the upper bearing 16a, and the lower bearing 16b.
  • the amount of heat generated between the two can be reduced, and thrombus formation can be suppressed.
  • the uneven load of the rotating shaft 32 is suppressed, the swing of the rotating body main body 30 of the rotating body 14 is suppressed, and the rotation of the rotating body 14 is stabilized. Thereby, generation
  • the present invention is basically configured as described above. Although the centrifugal pump of the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and various improvements or modifications may be made without departing from the spirit of the present invention. .

Abstract

A centrifugal pump used for assisted circulation or extracorporeal circulation which comprises: a housing having an inlet for a liquid and an outlet for a liquid; a rotating body which is disposed inside the housing, comprises a rotating shaft and transfers the liquid from the inlet to the outlet and sends out the liquid from the outlet by the rotation of the rotating shaft; and a bearing which is disposed on the housing and journals the rotating shaft. In this centrifugal pump, an elastic member is disposed between each bearing and the housing. The elastic member stretches when the bearing moves to the rotating body side and shrinks when the bearing moves to the opposite side from the rotating body.

Description

遠心ポンプCentrifugal pump
 本発明は、補助循環や心臓手術時等の体外循環に用いられる遠心ポンプに関し、特に、動作の安定性に優れ、長期に亘り、安定した送液が可能な遠心ポンプに関する。 The present invention relates to a centrifugal pump used for extracorporeal circulation such as auxiliary circulation and cardiac surgery, and more particularly to a centrifugal pump that is excellent in operational stability and capable of stable liquid feeding over a long period of time.
 現在、補助循環や心臓手術で利用される体外循環には、血液の循環に血液ポンプが使用されている。血液ポンプとしては、例えば、外部とポンプ内の血液室との物理的な連通を完全に排除し、細菌等の侵入を防止できることにより、外部モータからの駆動トルクを、磁気結合を用いて伝達する方式の遠心式血液ポンプが用いられている。遠心式血液ポンプとしては、種々のものが提案されている(例えば、特許文献1参照)。 Currently, blood pumps are used for blood circulation for extracorporeal circulation and extracorporeal circulation used in cardiac surgery. As a blood pump, for example, physical communication between the outside and a blood chamber in the pump is completely eliminated, and invasion of bacteria and the like can be prevented, so that driving torque from an external motor is transmitted using magnetic coupling. A centrifugal blood pump of the type is used. Various centrifugal blood pumps have been proposed (see, for example, Patent Document 1).
 特許文献1には、遠心式血液ポンプの一種であるターボ式血液ポンプが記載されている。特許文献1のターボ式血液ポンプでは、血液導入口および血液出口を備えたハウジングの内部に、回転自在にインペラが配置されている。インペラは、回転軸と、複数のベーンと、各ベーンの出口部側が連結される環状連結部と、1つ以上のベーンを回転軸に連結する支持手段とを有する。回転軸は、その軸方向の両端に設けられた上部軸受と下部軸受で支持されており、上部軸受および下部軸受はピボット軸受である。
 また、特許文献1では、環状連結部に複数個の従動磁石が一定間隔で埋設、固定されている。ハウジングの下部に配置されたローターには、従動磁石と磁気結合する駆動磁石が埋設されている。ローターはモータに結合されており、モータを回転させると、ローターと磁気結合されたインペラが回転し、血液が送液される。
Patent Document 1 describes a turbo blood pump that is a type of centrifugal blood pump. In the turbo blood pump of Patent Document 1, an impeller is rotatably disposed inside a housing having a blood inlet and a blood outlet. The impeller includes a rotating shaft, a plurality of vanes, an annular connecting portion to which an outlet portion side of each vane is connected, and support means for connecting one or more vanes to the rotating shaft. The rotating shaft is supported by an upper bearing and a lower bearing provided at both ends in the axial direction, and the upper bearing and the lower bearing are pivot bearings.
In Patent Document 1, a plurality of driven magnets are embedded and fixed at regular intervals in the annular coupling portion. A drive magnet that is magnetically coupled to the driven magnet is embedded in the rotor disposed in the lower portion of the housing. The rotor is coupled to a motor, and when the motor is rotated, an impeller magnetically coupled to the rotor rotates and blood is fed.
特開2002-85554号公報JP 2002-85554 A
 特許文献1のように、回転軸の支持にピボット軸受を用いる場合、ピボット軸受によって回転軸を強く押さえると、回転軸とピボット軸受と摩擦が大きくなり、発熱や溶血、血栓等の問題を引き起こす可能性がある。逆に、ピボット軸受による回転軸の押さえが弱いと、回転軸ががたつき、結果、インペラの回転が不安定になる。
 また、インペラの回転数が高いと、浮力により上部軸受に荷重がかかり、逆に、インペラの回転数が低いと、磁気結合で生じる磁力が相対的に大きくなり、インペラが下方に引き寄せられて下部軸受に荷重がかかる。インペラの回転数に応じて回転軸に偏荷重が作用し、送液等が不安定になる虞がある。このように、ピボット軸受を用いた場合、上述のような問題が生じる。
When a pivot bearing is used to support the rotating shaft as in Patent Document 1, if the rotating shaft is strongly pressed by the pivot bearing, friction between the rotating shaft and the pivot bearing increases, which may cause problems such as heat generation, hemolysis, and blood clots. There is sex. On the other hand, if the rotary shaft is weakly pressed by the pivot bearing, the rotary shaft rattles, resulting in unstable rotation of the impeller.
In addition, if the impeller has a high rotational speed, a load is applied to the upper bearing due to buoyancy. Conversely, if the impeller has a low rotational speed, the magnetic force generated by the magnetic coupling becomes relatively large, and the impeller is attracted downward to lower the impeller. A load is applied to the bearing. Depending on the rotational speed of the impeller, an eccentric load acts on the rotating shaft, and there is a possibility that liquid feeding or the like becomes unstable. As described above, when the pivot bearing is used, the above-described problem occurs.
 本発明の目的は、前記従来技術に基づく問題点を解消し、動作の安定性に優れ、長期に亘り、安定した送液が可能な遠心ポンプを提供することにある。 An object of the present invention is to provide a centrifugal pump that solves the problems based on the above-described conventional technology, has excellent operation stability, and can stably supply liquid over a long period of time.
 上記目的を達成するために、液体の流入口と前記液体の流出口とを有するハウジングと、前記ハウジング内に設けられ、回転軸を備え、前記回転軸が回転することにより、前記液体を前記流入口から前記流出口に移動させ、前記流出口から前記液体を送り出す回転体と、前記ハウジングに設けられ、前記回転軸を軸支する軸受とを有し、補助循環または体外循環に用いられる遠心ポンプであって、前記各軸受と前記ハウジングとの間に弾性部材が設けられていることを特徴とする遠心ポンプを提供するものである。
 前記軸受は、前記ハウジングに前記回転軸の軸方向に移動可能に設けられていることが好ましい。この場合、前記弾性部材は、前記軸受が前記回転体側に移動した場合に伸び、前記軸受が前記反対側に移動した場合に縮むものであることが好ましい。
 また、前記軸受と前記弾性部材は、一体または別体とすることができる。
 前記軸受は、ピボット軸受であることが好ましい。また、前記弾性部材は、例えば、バネ、ゴム材または弾性樹脂材である。
In order to achieve the above object, a housing having a liquid inlet and a liquid outlet is provided, and a rotation shaft is provided in the housing, and the rotation shaft rotates to allow the liquid to flow. A centrifugal pump that has a rotating body that moves from the inlet to the outlet and sends out the liquid from the outlet, and a bearing that is provided in the housing and supports the rotating shaft, and is used for auxiliary circulation or extracorporeal circulation The centrifugal pump is characterized in that an elastic member is provided between each of the bearings and the housing.
The bearing is preferably provided in the housing so as to be movable in the axial direction of the rotating shaft. In this case, it is preferable that the elastic member expands when the bearing moves to the rotating body side and contracts when the bearing moves to the opposite side.
Further, the bearing and the elastic member may be integrated or separated.
The bearing is preferably a pivot bearing. The elastic member is, for example, a spring, a rubber material, or an elastic resin material.
 本発明によれば、各軸受とハウジングとの間に弾性部材を設けることにより、回転体の回転数が高くても低くても、回転軸を一定の力で長期に亘り、安定して保持することができる。これにより、動作の安定性に優れ、回転体の回転数に依存する浮力や吸引力によらず、安定して血液等の液体を送り出すことができる。
 また、本発明によれば、輸送時に回転軸に対して、その軸方向に荷重および衝撃等の負荷がかかっても、弾性部材により、回転軸にかかる負荷を抑えることができる。これにより、輸送による故障の発生を抑制することができる。
According to the present invention, by providing an elastic member between each bearing and the housing, the rotating shaft can be stably held for a long time with a constant force even when the rotational speed of the rotating body is high or low. be able to. Thereby, it is excellent in the stability of operation | movement, and liquids, such as blood, can be sent out stably irrespective of the buoyancy and suction force which depend on the rotation speed of a rotary body.
Further, according to the present invention, even when a load such as a load or an impact is applied to the rotating shaft in the axial direction during transportation, the load applied to the rotating shaft can be suppressed by the elastic member. Thereby, generation | occurrence | production of the failure by transport can be suppressed.
(a)は、本発明の実施形態の遠心ポンプを示す模式的断面図であり、(b)は、図1(a)の要部拡大図である。(A) is typical sectional drawing which shows the centrifugal pump of embodiment of this invention, (b) is a principal part enlarged view of Fig.1 (a). (a)は、本発明の実施形態の遠心ポンプの回転体の一例を示す模式的斜視図であり、(b)は、図2(a)に示す回転体の模式的断面図である。(A) is a typical perspective view which shows an example of the rotary body of the centrifugal pump of embodiment of this invention, (b) is typical sectional drawing of the rotary body shown to Fig.2 (a).
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の遠心ポンプを詳細に説明する。
 図1(a)は、本発明の実施形態の遠心ポンプを示す模式的断面図であり、(b)は、図1(a)の要部拡大図である。
Hereinafter, a centrifugal pump of the present invention will be described in detail based on a preferred embodiment shown in the accompanying drawings.
Fig.1 (a) is typical sectional drawing which shows the centrifugal pump of embodiment of this invention, (b) is a principal part enlarged view of Fig.1 (a).
 図1(a)に示す遠心ポンプ10は、補助循環や心臓手術等の際に、体外循環の血液ポンプとして用いられるものである。なお、図1(a)中、導入ポート22側を上側とする。
 遠心ポンプ10は、ハウジング12と、回転体14と、上部軸受16aと、下部軸受16bと、弾性部材18とを有する。遠心ポンプ10においては、ハウジング12の内部に、回転体本体30と回転軸32を備える回転体14が、上部軸受16aと下部軸受16bに軸支されて配置されている。上部軸受16aとハウジング12との間に弾性部材18が設けられ、下部軸受16bとハウジング12との間に弾性部材18が設けられている。
 遠心ポンプ10は、後述する回転体14と、遠心ポンプ10の裏面11に接続されるドライブモータ(図示せず)とが磁気結合されて、このドライブモータにより非接触で回転体14が回転される。遠心ポンプ10において、内部の回転体14が回転して発生する遠心力により、血液等の液体が外部に送り出される。
A centrifugal pump 10 shown in FIG. 1A is used as a blood pump for extracorporeal circulation during auxiliary circulation, cardiac surgery, or the like. In FIG. 1A, the introduction port 22 side is the upper side.
The centrifugal pump 10 includes a housing 12, a rotating body 14, an upper bearing 16a, a lower bearing 16b, and an elastic member 18. In the centrifugal pump 10, the rotating body 14 including the rotating body main body 30 and the rotating shaft 32 is disposed inside the housing 12 so as to be supported by the upper bearing 16 a and the lower bearing 16 b. An elastic member 18 is provided between the upper bearing 16 a and the housing 12, and an elastic member 18 is provided between the lower bearing 16 b and the housing 12.
In the centrifugal pump 10, a rotating body 14 described later and a drive motor (not shown) connected to the back surface 11 of the centrifugal pump 10 are magnetically coupled, and the rotating body 14 is rotated in a non-contact manner by the drive motor. . In the centrifugal pump 10, a liquid such as blood is sent out by the centrifugal force generated by the rotation of the internal rotating body 14.
 ハウジング12は、ポンプ室20と、円筒状の導入ポート22と、円筒状の吐出ポート24とを有し、例えば、ポリカーボネートで構成される。
 ポンプ室20は、回転体14を収納するものであり、液体で満たされる。
 導入ポート22は、液体をポンプ室20内に導入するものであり、例えば、ポンプ室20の上部に設けられている。この導入ポート22は、例えば、貯血槽(図示せず)に接続されており、導入ポート22を介して貯血槽の血液がポンプ室20内に導入される。
The housing 12 has a pump chamber 20, a cylindrical introduction port 22, and a cylindrical discharge port 24, and is made of, for example, polycarbonate.
The pump chamber 20 houses the rotating body 14 and is filled with a liquid.
The introduction port 22 is for introducing a liquid into the pump chamber 20, and is provided, for example, in the upper portion of the pump chamber 20. The introduction port 22 is connected to, for example, a blood reservoir (not shown), and blood in the blood reservoir is introduced into the pump chamber 20 through the introduction port 22.
 導入ポート22は、略円形の開口22aを備え、かつその中心軸Cが、後述する回転体14の回転軸32の中心軸Cに対して所定の角度θで接続されている。なお、角度θは、特に限定されるものではなく遠心ポンプ10の設計要件等により適宜設定されるものである。また、導入ポート22の取付け形態も、特に限定されるものではなく設計要件等により適宜設定されるものである。 The introduction port 22 is provided with a generally circular opening 22a, and having a central axis C 1, and is connected at a predetermined angle θ with respect to the center axis C of the rotation shaft 32 of the rotating body 14 to be described later. The angle θ is not particularly limited, and is appropriately set depending on the design requirements of the centrifugal pump 10 and the like. Further, the mounting form of the introduction port 22 is not particularly limited, and is appropriately set according to design requirements and the like.
 吐出ポート24は、液体を外部に送るためのものであり、略円形の開口24aを備え、かつポンプ室20の周面に設けられている。この吐出ポート24は、例えば、人工肺(図示せず)に接続されており、吐出ポート24を介して人工肺に血液が送られる。
 なお、吐出ポート24を設ける位置は、体外循環に用いられる一般的な遠心ポンプと同様とすることができる。
The discharge port 24 is for sending a liquid to the outside, has a substantially circular opening 24 a, and is provided on the peripheral surface of the pump chamber 20. The discharge port 24 is connected to, for example, an oxygenator (not shown), and blood is sent to the oxygenator via the discharge port 24.
The position where the discharge port 24 is provided can be the same as that of a general centrifugal pump used for extracorporeal circulation.
 ポンプ室20には、上部に、回転体14の回転軸32を軸支する上部軸受16aと弾性部材18とが収納される上部収納部26が設けられている。上部収納部26に、上部軸受16aと弾性部材18が収納される。
 さらに、ポンプ室20には、下部に、上部軸受16aとともに回転軸32を軸支する下部軸受16bと弾性部材18とが収納される下部収納部28が設けられている。下部収納部28に、下部軸受16bと弾性部材18が収納される。
The pump chamber 20 is provided with an upper storage portion 26 in which an upper bearing 16 a that supports the rotating shaft 32 of the rotating body 14 and the elastic member 18 are stored. In the upper storage portion 26, the upper bearing 16a and the elastic member 18 are stored.
Further, the pump chamber 20 is provided with a lower housing portion 28 in which the lower bearing 16b that supports the rotary shaft 32 together with the upper bearing 16a and the elastic member 18 are housed in the lower portion. The lower bearing 16 b and the elastic member 18 are stored in the lower storage portion 28.
 回転体14は、ポンプ室20内に導入ポート22から液体を引き込み、遠心力で吐出ポート24から液体を送り出すものである。回転体14は、回転軸32の中心軸Cを回転中心として回転する。なお、回転体14については、後に詳細に説明する。 The rotating body 14 draws liquid from the introduction port 22 into the pump chamber 20 and sends out the liquid from the discharge port 24 by centrifugal force. The rotating body 14 rotates about the central axis C of the rotating shaft 32 as the center of rotation. The rotating body 14 will be described in detail later.
 図1(a)に示すように、回転体14の回転軸32は、上部軸受16aと下部軸受16bとで両端が軸支されている。
 上部軸受16aおよび下部軸受16bは、同じ構成である。上部軸受16aおよび下部軸受16bは、共に回転軸32を長期間にわたって、回転軸32の軸方向Dの荷重、すなわち、垂直荷重を受けつつ、軸支するものである。上部軸受16aおよび下部軸受16bにより、回転体14がポンプ室20内の所定の位置に保持される。
As shown in FIG. 1A, both ends of the rotating shaft 32 of the rotating body 14 are pivotally supported by an upper bearing 16a and a lower bearing 16b.
The upper bearing 16a and the lower bearing 16b have the same configuration. The upper bearing 16a and the lower bearing 16b both support the rotary shaft 32 while receiving a load in the axial direction D of the rotary shaft 32, that is, a vertical load, over a long period of time. The rotating body 14 is held at a predetermined position in the pump chamber 20 by the upper bearing 16a and the lower bearing 16b.
 上部軸受16aおよび下部軸受16bには、スラスト軸受を用いることができ、例えば、ピボット軸受が用いられる。図1(b)に示すように、例えば、上部軸受16aは、回転軸32の先端32aが接触する表面部分17が、先端32aの形状に合わせて凹んでいる。なお、下部軸受16bについても、図示はしないが、上部軸受16aと同じく、回転軸32の先端32aが接触する表面部分は、先端の形状に合わせて凹んでいる。
 なお、上部軸受16aおよび下部軸受16bは、回転軸32の軸方向Dの荷重を受けて、回転軸32を回転させることができれば、ピボット軸受に限定されるものではなく、ピボットベアリング、ピボット玉軸受等、他の構成の軸受を適宜用いることができる。また、回転軸32は、摩擦軽減のために先端32aの表面粗さを小さくすることが好ましい。
A thrust bearing can be used for the upper bearing 16a and the lower bearing 16b, for example, a pivot bearing is used. As shown in FIG. 1B, for example, in the upper bearing 16a, the surface portion 17 in contact with the tip 32a of the rotating shaft 32 is recessed according to the shape of the tip 32a. The lower bearing 16b is not shown, but the surface portion with which the tip 32a of the rotating shaft 32 contacts is recessed according to the shape of the tip, as with the upper bearing 16a.
The upper bearing 16a and the lower bearing 16b are not limited to pivot bearings as long as they can rotate the rotating shaft 32 by receiving a load in the axial direction D of the rotating shaft 32. For example, a bearing having another configuration can be used as appropriate. Moreover, it is preferable that the rotating shaft 32 makes the surface roughness of the front-end | tip 32a small for friction reduction.
 図1(b)に示す上部軸受16aは、上部収納部26に圧入されているが、気密性を維持しつつ軸方向Dに移動することができる。また、弾性部材18は軸方向Dに伸縮可能であり、上部軸受16aの移動に合わせて伸縮する。
 なお、下部軸受16bについても下部収納部28に圧入されているが、気密性を維持しつつ軸方向Dに移動することができる。また、弾性部材18は軸方向Dに伸縮可能であり、下部軸受16bの移動に合わせて伸縮する。
The upper bearing 16a shown in FIG. 1B is press-fitted into the upper housing portion 26, but can move in the axial direction D while maintaining airtightness. The elastic member 18 can expand and contract in the axial direction D, and expands and contracts in accordance with the movement of the upper bearing 16a.
The lower bearing 16b is also press-fitted into the lower housing portion 28, but can be moved in the axial direction D while maintaining airtightness. Further, the elastic member 18 can be expanded and contracted in the axial direction D, and expands and contracts in accordance with the movement of the lower bearing 16b.
 弾性部材18は、回転軸32の軸方向Dにかかる力を一定にし、長期間にわたって、回転体14の回転軸32を安定して、上部軸受16aおよび下部軸受16bで軸支するためのものである。
 上部軸受16a側の弾性部材18は、上部軸受16aが回転体14側に移動した場合に伸び、上部軸受16aが回転体14とは反対側に移動した場合に縮む。一方、下部軸受16b側の弾性部材18は、下部軸受16bが回転体14側に移動した場合に伸び、下部軸受16bが回転体14とは反対側に移動した場合に縮む。
 また、弾性部材18は、回転軸32の軸方向Dに、遠心ポンプ10の外部から作用する荷重および衝撃等に対して衝撃吸収機能も有する。すなわち、弾性部材18は、回転軸32の衝撃吸収材としても働く。
The elastic member 18 is for making the force applied in the axial direction D of the rotating shaft 32 constant, and for stably supporting the rotating shaft 32 of the rotating body 14 for a long period of time by the upper bearing 16a and the lower bearing 16b. is there.
The elastic member 18 on the upper bearing 16 a side extends when the upper bearing 16 a moves to the rotating body 14 side, and contracts when the upper bearing 16 a moves to the side opposite to the rotating body 14. On the other hand, the elastic member 18 on the lower bearing 16b side extends when the lower bearing 16b moves to the rotating body 14 side, and contracts when the lower bearing 16b moves to the side opposite to the rotating body 14.
Further, the elastic member 18 also has an impact absorbing function with respect to a load, an impact, and the like acting from the outside of the centrifugal pump 10 in the axial direction D of the rotating shaft 32. That is, the elastic member 18 also functions as an impact absorbing material for the rotating shaft 32.
 弾性部材18としては、例えば、バネ、ゴム材または弾性樹脂材を用いることができる。弾性部材18は、液体で満たされるポンプ室20に設けられることから、弾性部材18を設ける空間の充填率を高くすることができるゴム材または弾性樹脂材を用いることが好ましい。バネとしては、コイルスプリングが好ましい。ゴム材または弾性樹脂材としては、天然ゴム、合成ゴムおよび市販の衝撃吸収ゲル等を用いることができる。
 本実施形態では、上部軸受16aと弾性部材18を、下部軸受16bと弾性部材18を、それぞれ別体としたが、これに限定されるものではなく、上部軸受16aと弾性部材18、下部軸受16bと弾性部材18は一体構造であってもよい。
As the elastic member 18, for example, a spring, a rubber material, or an elastic resin material can be used. Since the elastic member 18 is provided in the pump chamber 20 filled with a liquid, it is preferable to use a rubber material or an elastic resin material capable of increasing the filling rate of the space in which the elastic member 18 is provided. As the spring, a coil spring is preferable. As the rubber material or the elastic resin material, natural rubber, synthetic rubber, commercially available shock absorbing gel, or the like can be used.
In this embodiment, the upper bearing 16a and the elastic member 18 are separated from each other, and the lower bearing 16b and the elastic member 18 are separated from each other. However, the present invention is not limited to this, and the upper bearing 16a, the elastic member 18, and the lower bearing 16b are separated. The elastic member 18 may have a single structure.
 本実施形態では、例えば、回転体14が初期の位置に対して上方に移動した場合、回転軸32で押圧され上部軸受16a側の荷重が初期状態よりも大きくなり、上部軸受16aは上方に移動し、弾性部材18は縮む。このとき、回転軸32は初期の位置に対して上方に移動するため、下部軸受16bに対する荷重が初期状態よりも小さくなり、弾性部材18が伸びて下部軸受16bは上方に移動する。
 一方、回転体14が初期の位置に対して下方に移動した場合、回転軸32で押圧され下部軸受16b側の荷重が初期状態よりも大きくなり、下部軸受16bは下方に移動し、弾性部材18は縮む。このとき、回転軸32は初期の位置に対して下方に移動するため、上部軸受16aに対する荷重が初期状態よりも小さくなり、弾性部材18が伸びて上部軸受16aは下方に移動する。このとき、回転体14の軸方向Dの移動に対して、上部軸受16aの弾性部材18と下部軸受16bの弾性部材18とでは伸縮が逆になり、回転体14の軸方向Dの移動によって生じる力を弾性部材18で吸収する。
In the present embodiment, for example, when the rotating body 14 moves upward with respect to the initial position, the load on the upper bearing 16a side is pressed by the rotating shaft 32 and becomes larger than the initial state, and the upper bearing 16a moves upward. Then, the elastic member 18 contracts. At this time, since the rotating shaft 32 moves upward relative to the initial position, the load on the lower bearing 16b becomes smaller than in the initial state, the elastic member 18 extends, and the lower bearing 16b moves upward.
On the other hand, when the rotating body 14 moves downward with respect to the initial position, the load on the lower bearing 16b side is pressed by the rotating shaft 32, and the lower bearing 16b moves downward, and the elastic member 18 is moved downward. Shrinks. At this time, since the rotary shaft 32 moves downward relative to the initial position, the load on the upper bearing 16a becomes smaller than in the initial state, the elastic member 18 extends, and the upper bearing 16a moves downward. At this time, the elastic member 18 of the upper bearing 16a and the elastic member 18 of the lower bearing 16b are oppositely expanded and contracted with respect to the movement of the rotating body 14 in the axial direction D, and are generated by the movement of the rotating body 14 in the axial direction D. The force is absorbed by the elastic member 18.
 このように、回転体14の位置に追従して上部軸受16aの位置および下部軸受16bの位置が変わり、回転軸32の軸方向Dに作用する力が略一定になる。これにより、回転軸32に偏荷重がかかることを抑制することができ、長期に亘り、安定して回転体14を保持することができる。
 なお、上部軸受16aおよび下部軸受16bには、体外循環に用いられる遠心ポンプのピボット軸受に用いられる公知の材料を用いることができる。例えば、超高分子量ポリエチレン、高密度ポリエチレン、ポリカーボネートおよびポリテトラフロロエチレン等の合成樹脂を用いることができる。
Thus, the position of the upper bearing 16a and the position of the lower bearing 16b change following the position of the rotating body 14, and the force acting in the axial direction D of the rotating shaft 32 becomes substantially constant. Thereby, it is possible to suppress the eccentric load from being applied to the rotating shaft 32, and it is possible to stably hold the rotating body 14 over a long period of time.
In addition, the well-known material used for the pivot bearing of the centrifugal pump used for extracorporeal circulation can be used for the upper bearing 16a and the lower bearing 16b. For example, synthetic resins such as ultra high molecular weight polyethylene, high density polyethylene, polycarbonate, and polytetrafluoroethylene can be used.
 また、回転軸32には、体外循環に用いられる遠心ポンプのピボット軸に用いられる公知の材料を用いることができる。具体的には、セラミックスおよび生体適合性金属材料等を用いることができる。
 セラミックスとしては、例えば、アルミナ、炭化ケイ素、窒化ケイ素および正方晶安定化ジルコニア等を用いることができる。また、生体適合性金属材料には、例えば、チタン合金、CoCrMo合金、ステンレス鋼、およびこれらを表面硬化処理したもの等を用いることができる。
 回転軸32と、上部軸受16aおよび下部軸受16bとの組み合わせとしては、セラミックスと合成樹脂が好ましい。
The rotary shaft 32 can be made of a known material used for a pivot shaft of a centrifugal pump used for extracorporeal circulation. Specifically, ceramics and biocompatible metal materials can be used.
Examples of ceramics that can be used include alumina, silicon carbide, silicon nitride, and tetragonal stabilized zirconia. In addition, as the biocompatible metal material, for example, a titanium alloy, a CoCrMo alloy, stainless steel, a material obtained by subjecting these to surface hardening treatment, or the like can be used.
As a combination of the rotating shaft 32 and the upper bearing 16a and the lower bearing 16b, ceramics and synthetic resin are preferable.
 以下、回転体14について具体的に説明する。
 図2(a)は、本発明の実施形態の遠心ポンプの回転体の一例を示す模式的斜視図であり、(b)は、図2(a)に示す回転体の模式的断面図である。なお、回転体14の回転体本体30の構成については、図2(a)および(b)に具体的に示す本実施形態のものに限定されるものではなく、体外循環に用いられる公知の遠心ポンプの構成を適宜用いることができる。
Hereinafter, the rotating body 14 will be specifically described.
Fig.2 (a) is a typical perspective view which shows an example of the rotary body of the centrifugal pump of embodiment of this invention, (b) is typical sectional drawing of the rotary body shown to Fig.2 (a). . The configuration of the rotating body main body 30 of the rotating body 14 is not limited to that of the present embodiment specifically shown in FIGS. 2A and 2B, and is a known centrifuge used for extracorporeal circulation. The configuration of the pump can be used as appropriate.
 図2(a)および(b)に示す回転体14は、回転軸32とともに回転体本体30が回転することで、ポンプ室20内の液体を吐出ポート24を介して外部に移動させるものである。回転体本体30は、この回転体本体30の回転中心、すなわち、回転軸32の中心軸Cに対して、放射状に、かつ略等角度に配置された直線流路39を有する。回転体14の回転により発生する遠心力により、液体が回転体本体30の直線流路39を通り、吐出ポート24から外部に送液される。 The rotating body 14 shown in FIGS. 2A and 2B is configured to move the liquid in the pump chamber 20 to the outside through the discharge port 24 by rotating the rotating body main body 30 together with the rotating shaft 32. . The rotator main body 30 includes linear flow paths 39 that are arranged radially and at substantially equal angles with respect to the rotation center of the rotator main body 30, that is, the central axis C of the rotation shaft 32. Due to the centrifugal force generated by the rotation of the rotating body 14, the liquid passes through the linear flow path 39 of the rotating body 30 and is sent to the outside from the discharge port 24.
 回転体本体30は、例えば、下部部材34と、この下部部材34上に取り付けられた上部部材36とで構成される。
 下部部材34は、内部に磁石46が設けられている。この磁石46は、回転体14を回転させるための上述のドライブモータと回転体14とを磁気的に結合するためのものである。
The rotating body 30 includes, for example, a lower member 34 and an upper member 36 attached on the lower member 34.
The lower member 34 is provided with a magnet 46 therein. The magnet 46 is for magnetically coupling the above-described drive motor for rotating the rotating body 14 and the rotating body 14.
 上部部材36は、例えば、中央部に向かって若干上方に傾斜する円錐台状の上面部50と、この上面部50の周囲に設けられた側面部52とを有する傘状部材で構成される。上面部50の中心部には開口部54が形成されている。
 下部部材34には、上面34aに、上部部材36の開口部54を臨むようにして、円錐部40が設けられている。この円錐部40は、回転体本体30の回転中心に先端を略一致させて設けられている。
The upper member 36 is constituted by an umbrella-shaped member having, for example, a truncated cone-shaped upper surface portion 50 inclined slightly upward toward the center portion, and a side surface portion 52 provided around the upper surface portion 50. An opening 54 is formed at the center of the upper surface portion 50.
The lower member 34 is provided with a conical portion 40 on the upper surface 34 a so as to face the opening 54 of the upper member 36. The conical portion 40 is provided with the tip substantially coincided with the rotation center of the rotating body 30.
 回転軸32は、開口部54を通過し、かつ下部部材34の円錐部40および下面34bを貫通するとともに、回転体本体30の回転中心と中心軸Cとを一致させて設けられている。なお、回転軸32の構成は、貫通するものに限定されるものではなく、円錐部40の上部と下部部材34の底面34cとに、それぞれ別々に軸線を一致させて、回転軸を設けたものであってもよい。 The rotation shaft 32 passes through the opening 54 and penetrates the conical portion 40 and the lower surface 34b of the lower member 34, and is provided with the rotation center of the rotating body 30 and the center axis C aligned. In addition, the structure of the rotating shaft 32 is not limited to what penetrates, The rotating shaft 32 was provided with the axis line separately matched with the upper part of the cone part 40, and the bottom face 34c of the lower member 34, respectively. It may be.
 下部部材34には、上面34aに、円錐部40を中心として、放射状に延びる複数の、例えば、6個の直線状の凹部42が設けられている。各凹部42は、扇状の凸部44を形成することにより形成される。各凹部42は液体の直線流路39を構成するものである。 The lower member 34 is provided with a plurality of, for example, six linear recesses 42 extending radially about the conical portion 40 on the upper surface 34a. Each concave portion 42 is formed by forming a fan-shaped convex portion 44. Each recess 42 constitutes a liquid straight flow path 39.
 上部部材36の上面部50の裏面50bには、各凹部42に対して、凹部42の各側壁の内側に配置される1対の直線状に伸びるリブ56が形成されている。
 側面部52には、1対のリブ56で区画された各凹部42に整合する位置に開口58が形成されている。下部部材34上に上部部材36が設けられると、1対のリブ56が凹部42の内側に嵌り、裏面50bで凹部42の上方の開口が閉塞され、側面部52の開口58により凹部42の端面が解放された直線流路39が構成される。このようして、回転体14の回転軸32の中心軸Cを中心として、放射状に延びる複数、例えば、6個の直線流路39が構成される。
 各直線流路39は、開口部54と、下部部材34と上部部材36とで生じるスペース38と連通している。このため、導入ポート22を経てポンプ室20に流入した液体は、開口部54およびスペース38を経て直線流路39に流れ込み開口58から排出される。
On the back surface 50 b of the upper surface portion 50 of the upper member 36, a pair of linearly extending ribs 56 are formed with respect to the respective concave portions 42.
An opening 58 is formed in the side surface portion 52 at a position that aligns with each recess 42 defined by a pair of ribs 56. When the upper member 36 is provided on the lower member 34, the pair of ribs 56 fit inside the recess 42, the opening above the recess 42 is blocked by the back surface 50 b, and the end surface of the recess 42 is opened by the opening 58 of the side surface portion 52. A straight channel 39 is formed in which is released. In this manner, a plurality of, for example, six linear flow paths 39 extending radially about the central axis C of the rotating shaft 32 of the rotating body 14 are configured.
Each straight channel 39 communicates with the opening 54 and a space 38 formed by the lower member 34 and the upper member 36. For this reason, the liquid flowing into the pump chamber 20 through the introduction port 22 flows into the linear flow path 39 through the opening 54 and the space 38 and is discharged from the opening 58.
 下部部材34において、磁石46は、例えば、回転体14の回転中心に対して等角度に複数配置されている。磁石46の数は、特に限定されるものではないが、好ましくは3~10であり、特に好ましくは4~8である。磁石46は、下面34bに磁性体収納用凹部を設け、これに収納するようにしてもよい。なお、磁石46としては、例えば、ネオジム磁石等の希土類磁石、および永久磁石等を用いることができる。
 回転体本体30を構成する下部部材34および上部部材36は、例えば、ポリエチレン、ポリプロピレン、ポリメチルメタアクリレートおよびポリカーボネート等で構成することができる。
In the lower member 34, for example, a plurality of magnets 46 are arranged at an equal angle with respect to the rotation center of the rotating body 14. The number of magnets 46 is not particularly limited, but is preferably 3 to 10, particularly preferably 4 to 8. The magnet 46 may be provided with a recess for storing a magnetic material on the lower surface 34b and stored therein. In addition, as the magnet 46, rare earth magnets, such as a neodymium magnet, a permanent magnet, etc. can be used, for example.
The lower member 34 and the upper member 36 constituting the rotating body 30 can be made of, for example, polyethylene, polypropylene, polymethyl methacrylate, polycarbonate, or the like.
 本実施形態の遠心ポンプ10では、例えば、上述のようにドライブモータを用いて回転体14を回転させることにより、導入ポート22を介してポンプ室20に流入された液体を、回転する回転体14の回転体本体30に生じる遠心力により直線流路39を経て吐出ポート24を介して、例えば、後段の人工肺に送る。遠心ポンプ10では、回転体14の回転速度を変えることにより、液体の流量を変えることができ、回転数が高いと流量が多い。 In the centrifugal pump 10 of the present embodiment, for example, the rotating body 14 that rotates the rotating body 14 using the drive motor as described above, rotates the liquid that has flowed into the pump chamber 20 via the introduction port 22. For example, the centrifugal force generated in the rotating body 30 is sent to the artificial lung in the subsequent stage via the straight flow path 39 and the discharge port 24. In the centrifugal pump 10, the flow rate of the liquid can be changed by changing the rotation speed of the rotating body 14, and the flow rate is high when the rotation speed is high.
 遠心ポンプ10においては、回転体14の回転数が高いと、浮力により回転体14が上方に移動し、上述のように、上部軸受16aに初期状態よりも荷重がかかる。逆に、回転体14の回転数が低いと、上述のように、磁気結合で生じる磁力が相対的に大きくなり、この磁力により回転体14が下方に移動し、下部軸受16bに初期状態よりも荷重がかかる。このように、遠心ポンプ10においては、回転体14の回転数等の動作状況により、回転体14が軸方向Dにおいて上方または下方に移動することがある。 In the centrifugal pump 10, when the rotational speed of the rotating body 14 is high, the rotating body 14 moves upward due to buoyancy, and as described above, a load is applied to the upper bearing 16a from the initial state. On the contrary, when the rotational speed of the rotating body 14 is low, as described above, the magnetic force generated by the magnetic coupling becomes relatively large, and the rotating body 14 moves downward by this magnetic force, and the lower bearing 16b is moved from the initial state. A load is applied. Thus, in the centrifugal pump 10, the rotating body 14 may move upward or downward in the axial direction D depending on the operation state such as the rotational speed of the rotating body 14.
 しかし、回転体14の回転軸32の各端に、それぞれ上部軸受16aと弾性部材18および下部軸受16bと弾性部材18を設けることにより、上述のように回転軸32の軸方向Dの移動に上部軸受16aおよび下部軸受16bが追従し、回転軸32の軸方向Dに作用する力を略一定にすることができる。このことから、長期間に亘り、安定して回転体14を保持することができ、動作の安定性に優れ、回転体14の回転数等の動作状況によらず、長期間に亘り、安定して血液等の液体を吐出ポート24から送り出すことができる。 However, by providing the upper bearing 16a and the elastic member 18 and the lower bearing 16b and the elastic member 18 at each end of the rotary shaft 32 of the rotating body 14, respectively, the upper axis can be moved in the axial direction D of the rotary shaft 32 as described above. The bearing 16a and the lower bearing 16b follow and the force acting in the axial direction D of the rotating shaft 32 can be made substantially constant. Therefore, the rotating body 14 can be stably held for a long period of time, and the operation stability is excellent, and it is stable for a long period of time regardless of the operating condition such as the rotational speed of the rotating body 14. Thus, a liquid such as blood can be sent out from the discharge port 24.
 また、回転軸32の軸方向Dに作用する力が略一定にでき、回転軸32の押圧力が初期状態よりも高くなることが抑制されるため、回転軸32と上部軸受16aおよび下部軸受16bとの間の発熱量を小さくでき、血栓の発生を抑制することができる。
 さらには、回転軸32の偏荷重が抑制されるため、回転体14の回転体本体30の振れが抑制されて、回転体14の回転が安定する。これにより、溶血の発生を抑制でき、さらには上部軸受16aおよび下部軸受16bの偏摩耗等を抑制することができ、長期信頼性を高めることができる。
 なお、輸送時に回転軸32に対して、その軸方向Dに荷重または衝撃等の負荷がかかっても弾性部材18により、回転軸32の軸方向Dにかかる上記負荷を最小限に抑えることができる。このため、輸送による遠心ポンプ10の故障の発生を抑制することができる。
Further, the force acting in the axial direction D of the rotating shaft 32 can be made substantially constant, and the pressing force of the rotating shaft 32 is suppressed from becoming higher than the initial state, so the rotating shaft 32, the upper bearing 16a, and the lower bearing 16b. The amount of heat generated between the two can be reduced, and thrombus formation can be suppressed.
Furthermore, since the uneven load of the rotating shaft 32 is suppressed, the swing of the rotating body main body 30 of the rotating body 14 is suppressed, and the rotation of the rotating body 14 is stabilized. Thereby, generation | occurrence | production of hemolysis can be suppressed, Furthermore, the uneven wear etc. of the upper bearing 16a and the lower bearing 16b can be suppressed, and long-term reliability can be improved.
Even when a load such as a load or an impact is applied to the rotation shaft 32 during transportation, the elastic member 18 can minimize the load applied to the rotation shaft 32 in the axial direction D. . For this reason, generation | occurrence | production of the failure of the centrifugal pump 10 by transport can be suppressed.
 本発明は、基本的に以上のように構成されるものである。以上、本発明の遠心ポンプについて詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良または変更をしてもよいのはもちろんである。 The present invention is basically configured as described above. Although the centrifugal pump of the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and various improvements or modifications may be made without departing from the spirit of the present invention. .
 10 遠心ポンプ
 12 ハウジング
 14 回転体
 16a 上部軸受
 16b 下部軸受
 18 弾性部材
 20 ポンプ室
 30 回転体本体
 32 回転軸
 34 下部部材
 36 上部部材
 39 流路
 46 磁石
DESCRIPTION OF SYMBOLS 10 Centrifugal pump 12 Housing 14 Rotating body 16a Upper bearing 16b Lower bearing 18 Elastic member 20 Pump chamber 30 Rotating body main body 32 Rotating shaft 34 Lower member 36 Upper member 39 Flow path 46 Magnet

Claims (6)

  1.  液体の流入口と前記液体の流出口とを有するハウジングと、前記ハウジング内に設けられ、回転軸を備え、前記回転軸が回転することにより、前記液体を前記流入口から前記流出口に移動させ、前記流出口から前記液体を送り出す回転体と、前記ハウジングに設けられ、前記回転軸を軸支する軸受とを有し、補助循環または体外循環に用いられる遠心ポンプであって、
     前記各軸受と前記ハウジングとの間に弾性部材が設けられていることを特徴とする遠心ポンプ。
    A housing having a liquid inflow port and a liquid outflow port; and a rotation shaft provided in the housing, the rotation shaft rotating to move the liquid from the inflow port to the outflow port. A centrifugal pump used for auxiliary circulation or extracorporeal circulation, having a rotating body that sends out the liquid from the outlet, and a bearing that is provided in the housing and supports the rotating shaft,
    A centrifugal pump, wherein an elastic member is provided between each of the bearings and the housing.
  2.  前記軸受は、前記ハウジングに前記回転軸の軸方向に移動可能に設けられている請求項1に記載の遠心ポンプ。 The centrifugal pump according to claim 1, wherein the bearing is provided in the housing so as to be movable in an axial direction of the rotary shaft.
  3.  前記弾性部材は、前記軸受が前記回転体側に移動した場合に伸び、前記軸受が前記回転体とは反対側に移動した場合に縮むものである請求項1または2に記載の遠心ポンプ。 The centrifugal pump according to claim 1 or 2, wherein the elastic member extends when the bearing moves to the rotating body side and contracts when the bearing moves to the opposite side of the rotating body.
  4.  前記軸受と前記弾性部材は、一体または別体である請求項1~3のいずれか1項に記載の遠心ポンプ。 The centrifugal pump according to any one of claims 1 to 3, wherein the bearing and the elastic member are integrated or separated.
  5.  前記軸受は、ピボット軸受である請求項1~4のいずれか1項に記載の遠心ポンプ。 The centrifugal pump according to any one of claims 1 to 4, wherein the bearing is a pivot bearing.
  6.  前記弾性部材は、バネ、ゴム材または弾性樹脂材である請求項1~5のいずれか1項に記載の遠心ポンプ。 The centrifugal pump according to any one of claims 1 to 5, wherein the elastic member is a spring, a rubber material, or an elastic resin material.
PCT/JP2013/050293 2013-01-10 2013-01-10 Centrifugal pump WO2014109029A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/050293 WO2014109029A1 (en) 2013-01-10 2013-01-10 Centrifugal pump
JP2014556264A JP6276708B2 (en) 2013-01-10 2013-01-10 Centrifugal pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/050293 WO2014109029A1 (en) 2013-01-10 2013-01-10 Centrifugal pump

Publications (1)

Publication Number Publication Date
WO2014109029A1 true WO2014109029A1 (en) 2014-07-17

Family

ID=51166699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050293 WO2014109029A1 (en) 2013-01-10 2013-01-10 Centrifugal pump

Country Status (2)

Country Link
JP (1) JP6276708B2 (en)
WO (1) WO2014109029A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098711A1 (en) * 2013-12-27 2015-07-02 テルモ株式会社 Centrifugal pump
WO2016047331A1 (en) * 2014-09-24 2016-03-31 テルモ株式会社 Method for manufacturing centrifugal pump
JP2017158899A (en) * 2016-03-10 2017-09-14 国立大学法人神戸大学 Centrifugal blood pump
KR20170129792A (en) * 2015-03-18 2017-11-27 아비오메드 유럽 게엠베하 Blood pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297787A (en) * 1999-04-13 2000-10-24 Matsushita Electric Ind Co Ltd Pump
JP2002085554A (en) * 2000-09-14 2002-03-26 Jms Co Ltd Turbo type blood pump

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218043A (en) * 1993-01-27 1994-08-09 Nikkiso Co Ltd Blood pump
JP5743567B2 (en) * 2011-01-25 2015-07-01 京セラメディカル株式会社 Centrifugal blood pump
JP2012161526A (en) * 2011-02-08 2012-08-30 Terumo Corp Centrifugal blood pump and centrifugal blood pump device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297787A (en) * 1999-04-13 2000-10-24 Matsushita Electric Ind Co Ltd Pump
JP2002085554A (en) * 2000-09-14 2002-03-26 Jms Co Ltd Turbo type blood pump

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10260528B2 (en) 2013-12-27 2019-04-16 Terumo Kabushiki Kaisha Centrifugal pump
JPWO2015098711A1 (en) * 2013-12-27 2017-03-23 テルモ株式会社 Centrifugal pump
WO2015098711A1 (en) * 2013-12-27 2015-07-02 テルモ株式会社 Centrifugal pump
WO2016047331A1 (en) * 2014-09-24 2016-03-31 テルモ株式会社 Method for manufacturing centrifugal pump
JPWO2016047331A1 (en) * 2014-09-24 2017-04-27 テルモ株式会社 Manufacturing method of centrifugal pump
US10851802B2 (en) 2014-09-24 2020-12-01 Terumo Kabushiki Kaisha Method of manufacturing centrifugal pump
JP2018028322A (en) * 2014-09-24 2018-02-22 テルモ株式会社 Manufacturing method of centrifugal pump
JP7087154B2 (en) 2015-03-18 2022-06-20 アビオメド オイローパ ゲーエムベーハー Blood pump
JP2018509224A (en) * 2015-03-18 2018-04-05 アビオメド オイローパ ゲーエムベーハー Blood pump
KR20170129792A (en) * 2015-03-18 2017-11-27 아비오메드 유럽 게엠베하 Blood pump
CN112933398A (en) * 2015-03-18 2021-06-11 阿比奥梅德欧洲股份有限公司 Blood pump
JP2021102128A (en) * 2015-03-18 2021-07-15 アビオメド オイローパ ゲーエムベーハー Blood pump
JP2022111270A (en) * 2015-03-18 2022-07-29 アビオメド オイローパ ゲーエムベーハー blood pump
US11690996B2 (en) 2015-03-18 2023-07-04 Abiomed Europe Gmbh Blood pump
KR102614674B1 (en) * 2015-03-18 2023-12-18 아비오메드 유럽 게엠베하 blood pump
JP2017158899A (en) * 2016-03-10 2017-09-14 国立大学法人神戸大学 Centrifugal blood pump

Also Published As

Publication number Publication date
JP6276708B2 (en) 2018-02-07
JPWO2014109029A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
US11344716B2 (en) Impeller for axial flow pump
KR102614674B1 (en) blood pump
US5399074A (en) Motor driven sealless blood pump
JP6067606B2 (en) Rotary blood pump
JP5038316B2 (en) Axial pump with multi-groove rotor
US20180064861A1 (en) Axial Flow Blood Pump
EP3624868B1 (en) Center rod magnet
JP6276708B2 (en) Centrifugal pump
US20090317271A1 (en) Centrifugal Pump
JPH0775667A (en) Blood pump
JP6466609B2 (en) Centrifugal pump
US20230414924A1 (en) Rotary blood pump
JP2002315824A (en) Rotary pump for artificial heart
JP2012161526A (en) Centrifugal blood pump and centrifugal blood pump device
JP2012152315A (en) Centrifugal blood pump
JP5623203B2 (en) Centrifugal blood pump and centrifugal blood pump device
JP2002349482A (en) Centrifugal pump for artificial heart
WO2006096049A1 (en) Pump for a delicate fluid, use of such a pump for pumping blood
JP2017158899A (en) Centrifugal blood pump
JPH04231065A (en) Blood pump
JP2012161525A (en) Centrifugal blood pump and centrifugal blood pump device
JP2009007959A (en) Centrifugal pump
JP2003062064A (en) Blood pump
JPH0373163A (en) Blood pump
JP2003079720A (en) Blood pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014556264

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871127

Country of ref document: EP

Kind code of ref document: A1