WO2014108955A1 - Steering control device and steering control method - Google Patents

Steering control device and steering control method Download PDF

Info

Publication number
WO2014108955A1
WO2014108955A1 PCT/JP2013/007116 JP2013007116W WO2014108955A1 WO 2014108955 A1 WO2014108955 A1 WO 2014108955A1 JP 2013007116 W JP2013007116 W JP 2013007116W WO 2014108955 A1 WO2014108955 A1 WO 2014108955A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
steering
correction
pinion
error
Prior art date
Application number
PCT/JP2013/007116
Other languages
French (fr)
Japanese (ja)
Inventor
拓 鈴木
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2014556214A priority Critical patent/JP5867627B2/en
Publication of WO2014108955A1 publication Critical patent/WO2014108955A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0245Means or methods for determination of the central position of the steering system, e.g. straight ahead position

Definitions

  • the present invention relates to a steering control device and a steering control method in which a steering wheel and a steered wheel are mechanically separated and the steered wheel is steered based on a steering state of the steering wheel.
  • Patent Document 1 steers a steered wheel based on a steered command angle calculated based on a steering angle of a steering wheel and an estimated steered angle of the steered wheel.
  • an object of the present invention is to provide a steering control device and a steering control method that can more appropriately reduce the deviation between the steering command angle and the actual steering angle.
  • an aspect of the present invention includes a resolver that outputs a signal that periodically changes according to a rotation angle of a steered motor that steers a steered wheel, and a signal output by the resolver.
  • a count value indicating which section of the mechanical angle corresponds to the angle indicated by is stored.
  • a pinion absolute angle that is an absolute angle of the rotation angle of the pinion that meshes with the rack gear of the steering rack is calculated.
  • the cause of the error is determined based on the pinion absolute angle calculated when it is determined that the host vehicle is traveling straight ahead. Then, according to the cause of the error, the calculated pinion absolute angle is corrected so that the error becomes smaller.
  • FIG. 1 is an overall configuration diagram of a vehicle 1 to which a vehicle steering device 2 is applied. It is a graph showing the relationship between the electrical angle and mechanical angle of a resolver with 3 pole pairs.
  • 3 is a control block diagram of the vehicle steering device 2.
  • FIG. It is a figure explaining the separation method of an angle shift factor.
  • 4 is a block diagram illustrating a configuration of a pinion absolute angle correction unit 43.
  • FIG. It is a flowchart which shows the correction process execution flag setting process procedure performed in the correction process execution flag setting part 43a. It is a flowchart which shows the correction process procedure performed in the correction process execution part 43b. It is a correction
  • FIG. 1 is an overall configuration diagram of a vehicle 1 to which a vehicle steering device 2 is applied.
  • the vehicle 1 uses the front wheels 3FL and 3FR among the front wheels 3FL and 3FR and the rear wheels 4RL and 4RR as steered wheels for turning.
  • the vehicle steering device 2 is a steer-by-wire system that performs steering control to steer the front wheels 3FL, 3FR based on the steering state of the steering wheel 5 in a state where the steering wheel 5 and the front wheels 3FL, 3FR are mechanically separated. It is.
  • the vehicle steering device 2 variably controls the steering angle ratio, which is the ratio of the steering angle to the steering angle.
  • the vehicle steering device 2 includes a steering side mechanism 2a, a steering mechanism 2b, a backup mechanism 2c, and a control mechanism 2d.
  • the steering side mechanism 2a includes a steering wheel 5 that is steered by a driver, a steering shaft 6 that is coupled to the steering wheel 5, and a steering absolute angle sensor 7 that detects a steering angle (absolute angle) of the steering wheel 5. .
  • the steering angle the direction in which the steering wheel 5 is rotated rightward is defined as a positive direction, and the direction in which the steering wheel 5 is rotated leftward is defined as a negative direction.
  • the steering side mechanism 2 a includes a steering torque sensor 8 that detects the steering torque of the steering wheel 5.
  • the steered mechanism 2b includes a steered motor 11 that steers the front wheels 3FL and 3FR, and a steered motor angle sensor 12 that detects a rotation angle of the steered motor 11.
  • a resolver that outputs an analog signal that periodically changes according to the rotational angle of the steered motor 11 is used.
  • the steering mechanism 2 b includes a pinion 14 connected to the end of the motor shaft 13 of the steering motor 11 and a steering rack 16 including a rack gear 15 that meshes with the pinion 14.
  • the steering mechanism 2b includes a tie rod 17 that transmits the axial force input to the steering rack 16 to the front wheels 3FL and 3FR as a steering force.
  • the steering mechanism 2b includes a steering reaction force sensor 18 that detects an axial force input to the steering rack 16 as a steering reaction force acting on the front wheels 3FL and 3FR from the road surface.
  • FIG. 2 is a graph showing the relationship between the electrical angle and mechanical angle of a resolver with 3 pole pairs.
  • the resolver with the number of pole pairs of 3 can detect the range of the mechanical angle of 120 deg within the range of the electrical angle of 360 deg.
  • the electrical angles 0 deg, 180 deg, 360 deg indicate 0 deg, 60 deg, 120 deg as the detected value (analog signal) of the resolver, respectively.
  • the resolver with the pole pair number of 3 can detect the range of the mechanical angle of 120 deg, for example, the range of the mechanical angle of ⁇ 720 deg to 720 deg corresponds to 12 cycles in the resolver with the pole pair number of 3. That is, a resolver with a pole pair number of 3 has a mechanical angle of -720 to -600 deg for one cycle, -600 to -480 deg for two cycles, -480 deg to -360 deg for three cycles, -360 deg to -240 deg for four cycles, -240 deg. From -120deg to 5 cycles, from -120deg to 0deg is 6 cycles.
  • the mechanical angle of 0 deg to 120 deg is 7 cycles, 120 deg to 240 deg is 8 cycles, 240 deg to 360 deg is 9 cycles, 360 deg to 480 deg is 10 cycles, 480 deg to 600 deg is 11 cycles, and 600 deg to 720 deg is 12 cycles.
  • the mechanical angles are -660 deg, -540 deg, -420 deg, -300 deg, -180 deg, -60 deg, 60 deg, 180 deg, 300 deg, 420 deg, 540 deg, It is only understood that it is either 660deg. That is, a resolver with a pole pair number of 3 can be detected within a mechanical angle range of 120 deg, but sensor values are -660 deg, -540 deg, -420 deg, -300 deg, -180 deg, -60 deg, 60 deg, 180 deg, 300 deg, 420 deg. It cannot be detected which angle is 540 deg or 660 deg.
  • the mechanical angle within the range of 0 deg to 120 deg represented by the resolver detection value (analog signal) is referred to as a relative angle.
  • the backup mechanism 2 c includes a clutch 19 that can mechanically fasten and separate the steering wheel 5 and the front wheels 3FL and 3FR, and a pinion shaft 20 that transmits the steering torque of the steering wheel 5 via the clutch 19. .
  • the backup mechanism 2 c includes a pinion 21 that is connected to the end of the pinion shaft 20 and meshes with the rack gear 15 of the steering rack 16.
  • the control mechanism 2d includes a vehicle speed sensor (vehicle speed detection unit) 22 that detects the vehicle speed, a yaw rate sensor 23 that detects the yaw rate, a reaction force controller 30 that controls the reaction force motor 9 and the clutch 19, a steering motor 11 and a clutch.
  • a steering controller 40 that controls the vehicle 19.
  • the reaction force controller 30 and the steering controller 40 are communicably connected to each other by the communication circuit 24 of the FlexRay system, and are configured to be able to share information input by each.
  • An example of a FlexRay system is an in-vehicle communication network system.
  • the reaction force controller 30 performs control of the reaction force motor 9, control of the clutch 19, calculation of a steering command angle, calculation of a steering angle (absolute angle) of the steering wheel 5, and the like.
  • the reaction force controller 30 includes the steering angle (absolute angle) detected by the steering absolute angle sensor 7, the rotation angle of the reaction force motor 9 detected by the reaction force motor rotation angle sensor 10, and the steering reaction force.
  • the steering reaction force detected by the sensor 18 is acquired.
  • the reaction force controller 30 acquires the vehicle speed detected by the vehicle speed sensor 22 and the reaction force motor monitor value detected by the reaction force motor 9. Examples of the reaction force motor monitor value include a drive current and a temperature of the reaction force motor 9.
  • the reaction force controller 30 calculates a steering reaction force (hereinafter also referred to as “steering reaction force command value”) to be applied to the steering wheel 5 based on the steering reaction force detected by the steering reaction force sensor 18. Subsequently, the reaction force controller 30 controls the reaction force motor 9 based on the calculated steering reaction force command value. Thereby, the reaction force controller 30 controls the steering reaction force of the steering wheel 5.
  • the reaction force controller 30 is configured to mechanically fasten the steering wheel 5 and the front wheels 3FL and 3FR when the steering control cannot be performed, for example, when the ignition switch is turned off (hereinafter, referred to as “the steering wheel 5”). (Also referred to as “engagement command”) is output to the clutch 19. Further, the reaction force controller 30 mechanically separates the steering wheel 5 and the front wheels 3FL, 3FR when the steering control is started, such as when the ignition switch is turned on (hereinafter, “ Is also output to the clutch 19.
  • the reaction force controller 30 provides a turning angle (steering command angle) to be given to the pinion 21 based on the steering angle (absolute angle) detected by the steering absolute angle sensor 7 and the vehicle speed detected by the vehicle speed sensor 22. calculate.
  • a method for calculating the steering command angle for example, referring to a variable steering angle ratio map, a steering angle ratio corresponding to the vehicle speed V is set, and a multiplication result of the set steering angle ratio and the steering angle (absolute angle) is set. There is a method of using the steering command angle.
  • the variable steering angle ratio map for example, there is a map in which the steering angle ratio is maximized when the vehicle speed V is 0, and the steering angle ratio is decreased as the vehicle speed V increases.
  • the reaction force controller 30 outputs the calculated turning command angle to the turning controller 40.
  • the steered controller 40 performs control of the steered motor 11, control of the clutch 19, calculation of an absolute angle of the rotation angle of the pinion 21 (hereinafter also referred to as “pinion absolute angle”), and the like. Specifically, the steered controller 40 detects the steering torque of the steering wheel 5 detected by the steering torque sensor 8, the steered motor monitor value detected by the steered motor 11, and the steered motor angle sensor 12. The rotation angle of the rudder motor 11 (hereinafter also referred to as “steering motor angle”) is acquired. Further, the turning controller 40 acquires the steering angle (absolute angle) and the turning command angle calculated by the reaction force controller 30. Examples of the steered motor monitor value include a drive current and temperature of the steered motor 11.
  • the turning controller 40 calculates the pinion absolute angle based on the turning motor angle (relative angle) detected by the turning motor angle sensor 12, and corrects it as necessary. Subsequently, the steered controller 40 outputs a steered motor drive current corresponding to the deviation between the corrected pinion absolute angle and the steered command angle calculated by the reaction force controller 30 to the steered motor 11. Thereby, the turning controller 40 controls the pinion absolute angle, that is, the turning angle of the front wheels 3FL and 3FR. Further, the steering controller 40 outputs an engagement command to the clutch 19 when the steering motor monitor value or the reaction force motor monitor value becomes a value representing an abnormality. At that time, the steering controller 40 drives and controls the steering motor 11 so as to assist the driver's steering torque based on the steering torque of the steering wheel 5 detected by the steering torque sensor 8.
  • FIG. 3 is a control block diagram of the vehicle steering device 2.
  • the reaction force controller 30 calculates the steering angle (absolute angle) and the steering command angle of the steering wheel 5, and the steering controller 40 describes the control of the steering motor 11 and the calculation and correction of the pinion absolute angle. is doing.
  • the reaction force controller 30 includes a steering absolute angle calculation unit 31 and a pinion angle command value calculation unit 32.
  • the steering absolute angle calculation unit 31 executes a steering angle accuracy improvement process.
  • the steering angle (absolute angle) ⁇ habs detected by the steering absolute angle sensor 7 and the rotation angle ⁇ hmot of the reaction force motor 9 detected by the reaction force motor rotation angle sensor 10 are acquired.
  • the steering absolute angle calculating unit 31 calculates the steering angle (absolute angle) ⁇ h based on the acquired steering angle (absolute angle) ⁇ habs and the rotation angle ⁇ hmot of the reaction force motor 9.
  • the steering angle (absolute angle) ⁇ habs detected by the steering absolute angle sensor 7 and the rotation angle ⁇ hmot of the reaction force motor 9 detected by the reaction force motor rotation angle sensor 10 are determined.
  • an example of calculating (angle) ⁇ h has been shown, other configurations may be employed.
  • the steering angle (absolute angle) ⁇ habs may be directly used as the steering angle (absolute angle) ⁇ h.
  • the pinion angle command value calculation unit 32 executes a steering command angle calculation process.
  • the turning controller 40 includes an N value storage unit 41, a pinion absolute angle calculation unit 42, a pinion absolute angle correction unit 43, a turning angle control unit 44, a current control driver 45, a backup mode switching unit 46, Is provided.
  • the N value storage unit 41 includes a nonvolatile memory, and stores “N value” in the nonvolatile memory.
  • the N value is counted up every time the electrical angle changes in the positive direction of 360 °, and conversely every time the electrical angle changes in the negative direction of 360 °.
  • the pinion absolute angle correction unit 43 when it is determined that the pinion absolute angle ⁇ p0 calculated by the pinion absolute angle calculation unit 42 has an error from the actual pinion absolute angle and correction is necessary, the error is Determine which of the above factors has caused the problem. Then, the pinion absolute angle ⁇ p0 is corrected according to the error factor, and the pinion absolute angle ⁇ p is output. Processing executed by the pinion absolute angle correction unit 43 will be described later.
  • the turning angle control unit 44 acquires the turning command angle ⁇ pcmdco calculated by the pinion angle command value calculation unit 32 and the pinion absolute angle ⁇ p calculated by the pinion absolute angle correction unit 43. Then, the turning angle control unit 44 calculates a current command value Ipcmd corresponding to the deviation between the obtained turning command angle ⁇ pcmdco and the pinion absolute angle ⁇ p.
  • the current control driver 45 acquires the current command value Ipcmd calculated by the turning angle control unit 44 and the actual driving current Ipreal that is the turning motor monitor value of the turning motor 11. Then, the current control driver 45 controls the drive current Ipdri supplied to the steered motor 11 so that the actual drive current Ipreal matches the acquired current command value Ipcmd.
  • the backup mode switching unit 46 acquires the pinion absolute angle ⁇ p calculated by the pinion absolute angle correction unit 43. When the pinion absolute angle ⁇ p cannot be obtained from the pinion absolute angle correction unit 43, the backup mode switching unit 46 outputs a calculation stop command for the current command value Ipcmd to the turning angle control unit 44, and the clutch A fastening command is output to 19.
  • FIG. 5 is a block diagram showing a specific configuration of the pinion absolute angle correction unit 43.
  • the pinion absolute angle correction unit 43 includes a correction processing execution flag setting unit 43a and a correction processing execution unit 43b.
  • the correction process execution unit 43b includes a correction angle calculation unit 43c and an addition unit 43d.
  • the correction process execution flag setting unit 43a determines whether or not the N deviation correction process and the neutral angle deviation correction process have been executed, that is, whether or not the N deviation correction process and the neutral angle deviation correction process are to be executed.
  • FIG. 6 is a flowchart showing a correction processing executed flag setting processing procedure executed by the correction processing executed flag setting unit 43a.
  • step S1 the correction process execution flag setting unit 43a determines whether or not the host vehicle is traveling straight ahead. Specifically, it is determined whether the vehicle is traveling straight ahead based on the vehicle speed V, the yaw rate ⁇ , and the steering angle (absolute angle) ⁇ h. For example, when the vehicle speed V is 40 km / h or more, the absolute value of the yaw rate ⁇ is 0.2 deg / s or less, and the absolute value of the steering angular velocity d ⁇ / dt is 20 deg / s or less, the vehicle is traveling straight ahead. judge. If it is determined that the vehicle is traveling straight, the process proceeds to step S2, and if it is determined that the vehicle is not traveling straight, the correction processing execution flag setting process is terminated.
  • step S2 the correction processing execution flag setting unit 43a acquires the pinion absolute angle ⁇ p0 calculated by the pinion absolute angle calculation unit 42. Then, it is determined whether or not the absolute value of the pinion absolute angle ⁇ p0 exceeds an allowable angle ⁇ pth (for example, 1 deg). At this time, if
  • ⁇ pth for example, 1 deg
  • step S4 the correction processing execution flag setting unit 43a determines whether or not the deviation of the pinion absolute angle ⁇ p0 is due to N deviation. Specifically, when the pinion absolute angle ⁇ p0 during straight running is outside the neutral angle deviation range, it is determined that the deviation of the pinion absolute angle ⁇ p is due to N deviation.
  • the neutral angle deviation range is a minute angle range over 0 deg, for example, a range of ⁇ 6 deg to 6 deg. This neutral angle deviation range is a range that the pinion absolute angle ⁇ p0 can take when traveling straight in a state where only the neutral angle deviation occurs.
  • step S2 If the pinion absolute angle ⁇ p0 acquired in step S2 is outside the range of ⁇ 6 deg, it is determined that N deviation has occurred, and the process proceeds to step S5. On the other hand, when the pinion absolute angle ⁇ p0 acquired in step S2 is within the range of ⁇ 6 deg, it is determined that no N deviation has occurred (only a neutral angle deviation has occurred), and will be described later in step S7. Migrate to
  • step S5 the correction process execution flag setting unit 43a sets the correction process execution flag Flg to “2” indicating that the N deviation correction process and the neutral angle deviation correction process have not been executed, and the process proceeds to step S6. Transition.
  • step S6 the correction process execution flag setting unit 43a stores the pinion absolute angle ⁇ p0 acquired in step S2 as the shift angle ⁇ p to be corrected, and ends the correction process execution flag setting process.
  • step S7 the correction processing execution flag setting unit 43a sets the correction processing execution flag Flg to “1” indicating that only the N deviation correction processing has been executed (only the neutral angle deviation correction processing has not been executed). Then, the process proceeds to step S6.
  • the correction processing execution unit 43b corrects the pinion absolute angle ⁇ p0 as necessary based on the correction processing execution flag Flg set by the correction processing execution flag setting unit 43a, and obtains the final pinion.
  • the absolute angle ⁇ p is output. That is, the correction processing execution unit 43b calculates the correction angle ⁇ cor for correcting the deviation of the pinion absolute angle ⁇ p0 by the correction angle calculation unit 43c, and adds this to the pinion absolute angle ⁇ p0 by the addition unit 43d. In this way, the corrected pinion absolute angle ⁇ p is output.
  • FIG. 7 is a flowchart showing a correction processing procedure executed by the correction processing execution unit 43b.
  • the correction processing execution unit 43b sets the amount of change in the N shift correction angle per unit time (N shift correction angular velocity) ⁇ corn.
  • the N deviation correction angular velocity ⁇ corn is a constant value set in advance when the vehicle is traveling straight ahead. When the vehicle is turning, the N deviation correction angular velocity ⁇ corn is calculated based on the correction angular velocity calculation map of FIG. 8 based on the vehicle speed V and the steering angular velocity d ⁇ h / dt.
  • the horizontal axis in FIG. 8 is the absolute value of the steering angular velocity d ⁇ / dt
  • the vertical axis is the absolute value of the N deviation correction angular velocity ⁇ corn.
  • the absolute value of the N deviation correction angular velocity ⁇ corn is increased as the absolute value of the steering angular velocity d ⁇ / dt is increased.
  • the absolute value of the N deviation correction angular velocity ⁇ corn is reduced as the vehicle speed V increases.
  • the N deviation correction angular velocity ⁇ corn is set to zero.
  • An upper limit value may be provided for the absolute value of the N deviation correction angular velocity ⁇ corn.
  • N deviation correction angular velocity ⁇ corn is calculated. Specifically, when the deviation angle ⁇ p of the pinion absolute angle ⁇ p0 stored in the correction processing execution flag setting unit 43a is a positive value, the absolute value of the N deviation correction angular velocity ⁇ corn is multiplied by ⁇ 1. A final N deviation correction angular velocity ⁇ corn is assumed.
  • step S13 the correction processing execution unit 43b corrects the pinion absolute angle ⁇ p0 with the N deviation correction angular velocity ⁇ corn set in step S12, and outputs the result as the pinion absolute angle ⁇ p.
  • the N deviation correction angular velocity ⁇ corn is added to the N deviation correction angle ⁇ corn (initial value is 0), and this is set as a new N deviation correction angle ⁇ corn. Then, the N deviation correction angle ⁇ corn is output as the correction angle ⁇ cor.
  • the N deviation correction angle ⁇ corn is converted into a pinion angle converted value for one period of the resolver electrical angle, that is, an upper limit value of the converted value obtained by converting the signal output from the resolver into the pinion rotation angle (360 / number of pole pairs / gear ratio).
  • step S14 the correction process execution unit 43b updates the N value stored in the N value storage unit 41, and proceeds to step S15.
  • step S14 when the deviation angle ⁇ p of the pinion absolute angle ⁇ p0 is a positive value, the N value is corrected by ⁇ 1, and when the deviation angle ⁇ p of the pinion absolute angle ⁇ p0 is a negative value, the N value is increased by +1. Only correct.
  • step S14 the correction processing execution unit 43b initializes the N deviation correction angle ⁇ corn and the correction angle ⁇ cor to zero.
  • step S15 the correction process execution unit 43b determines whether the N deviation correction process is completed.
  • the total angle (8.89 ⁇ (N-value update count)) corrected by the N deviation correction process is subtracted from the deviation angle ⁇ p of the pinion absolute angle ⁇ p0 stored in the correction processing execution flag setting unit 43a. It is determined whether the result (remaining deviation angle ⁇ p) is within the neutral angle deviation range ( ⁇ 6 deg). If it is outside ⁇ 6 deg, it is determined that the N deviation correction process has not been completed, and the process proceeds to step S12. If it is within ⁇ 6 deg, it is determined that the N deviation correction process has been completed, and the remainder of the deviation angle ⁇ p is stored as a new deviation angle ⁇ p to be subjected to the neutral angle deviation correction process, and will be described later. The process proceeds to S17.
  • the correction processing execution unit 43b is an integer of the upper limit (8.89deg) of the conversion value obtained by converting the signal output from the resolver into the rotation angle of the pinion as the correction angle for correcting the N deviation. Set to double.
  • the correction processing execution unit 43b sets the correction angle for correcting the neutral angle deviation to the pinion absolute angle ⁇ p0 when the vehicle travels straight in a state where no N deviation occurs.
  • step S17 the correction processing execution unit 43b initializes the neutral angle deviation correction angle ⁇ corc to 0.
  • step S17 the correction processing execution unit 43b sets a change amount (neutral angle deviation correction angular velocity) ⁇ corc of the neutral angle deviation correction angle per unit time.
  • the neutral angle deviation correction angular velocity ⁇ corc is set to a predetermined constant value when traveling straight ahead, and is calculated based on the correction angular velocity calculation map of FIG. 8 during cornering, similarly to the processing of step S12 described above. .
  • the stored deviation angle ⁇ p is a positive value
  • the absolute value of the neutral angle deviation correction angular velocity ⁇ corc calculated based on FIG. 8 is multiplied by ⁇ 1 to obtain the final neutral angle deviation correction.
  • the angular velocity is ⁇ corc.
  • the absolute value of the neutral angle deviation correction angular velocity ⁇ corc calculated based on FIG. 8 is multiplied by +1 to obtain the final neutral angle deviation correction angular velocity ⁇ corc.
  • step S18 the correction processing execution unit 43b corrects the pinion absolute angle ⁇ p0 with the neutral angle deviation correction angular velocity ⁇ corc set in step S17, and outputs the result as the pinion absolute angle ⁇ p.
  • the neutral angle deviation correction angular velocity ⁇ corc is added to the neutral angle deviation correction angle ⁇ corc (initial value is 0), and this is set as a new neutral angle deviation correction angle ⁇ corc.
  • the neutral angle deviation correction angle ⁇ corc is output as the correction angle ⁇ cor. This process is repeated until the neutral angle deviation correction angle ⁇ corc becomes the deviation angle ⁇ p of the pinion absolute angle ⁇ p.
  • step S19 the correction processing execution flag Flg is set to “0”, and the correction processing ends.
  • the vehicle rolls.
  • the rudder controller 40 determines whether or not there is a deviation in the pinion absolute angle ⁇ p0 calculated by the pinion absolute angle calculation unit 42.
  • the pinion absolute angle ⁇ p0 is ideally 1 deg or less. Therefore, when the absolute value of the pinion absolute angle ⁇ p0 exceeds the allowable angle ⁇ pth (1 deg), it is determined that a deviation occurs in the calculated pinion absolute angle ⁇ p0.
  • the steering controller 40 determines that N deviation has occurred (Yes in step S4). Then, the correction processing completion flag Flg is set to “2” indicating that both N deviation correction and neutral angle deviation correction have not been performed (step S5). Therefore, the turning controller 40 sets the pinion absolute angle ⁇ p0 calculated during the straight traveling as the deviation angle ⁇ p of the pinion absolute angle ⁇ p0 to be corrected (step S6), and corrects the pinion absolute angle ⁇ p0 by the deviation angle ⁇ p. Deviation correction processing is performed.
  • the pinion absolute angle ⁇ p0 is gradually corrected by the deviation angle ⁇ p with the N deviation correction angular velocity ⁇ corn corresponding to the steering angular velocity
  • the steering controller 40 sets the absolute value of the N deviation correction angular velocity ⁇ corn to a constant value.
  • the steering controller 40 The absolute value of the N deviation correction angular velocity ⁇ corn is calculated with reference to the correction angular velocity calculation map shown.
  • the pinion absolute angle ⁇ p is smaller by
  • the turning controller 40 gradually corrects the pinion absolute angle ⁇ p0 by N deviation correction angular velocities ⁇ corn.
  • the N deviation correction angle ⁇ corn and the correction angle ⁇ cor are initialized to zero.
  • the steering controller 40 determines whether or not the N deviation correction process is completed. At this time, the result of subtracting the total angle (8.89 deg) corrected by the N shift correction process from the shift angle ⁇ p of the pinion absolute angle ⁇ p0 (remaining shift angle ⁇ p) is 8.89 deg. Thus, since the remainder of the deviation angle ⁇ p is outside the neutral angle deviation range ( ⁇ 6 deg), the steered controller 40 performs the N deviation correction process again. That is, the turning controller 40 adds the N deviation correction angular velocity ⁇ corn ( ⁇ 0) to the N deviation correction angle ⁇ corn (initial value 0).
  • the steering wheel 5 gradually returns to the neutral position while the turning angles 3FL and 3FR are kept straight. Therefore, by appropriately setting the correction angular velocity, the pinion absolute angle ⁇ p0 can be corrected without causing the driver to feel uncomfortable.
  • the reaction force controller 30 calculates a steering command angle ⁇ pcmd corresponding to the steering angle ⁇ h.
  • the steering controller 40 calculates a current command value Ipcmd corresponding to the deviation between the pinion absolute angle ⁇ p and the steering command angle ⁇ pcmd, and turns the steering so that the actual driving current Ipreal matches the current command value Ipcmd.
  • the motor 11 is controlled. At this time, there is no difference between the steering command angle ⁇ pcmd and the actual steering angle, and the steering can be appropriately performed according to the steering operation of the driver.
  • the neutral angle deviation correction process is performed after the N deviation correction process.
  • a deviation angle ⁇ p of the pinion absolute angle ⁇ p0 to be subjected to neutral angle deviation correction is obtained.
  • the pinion absolute angle ⁇ p0 is gradually corrected by the deviation angle ⁇ p with the neutral angle deviation correction angular speed ⁇ corc corresponding to the steering angular velocity
  • the neutral angle shift correction process is completed.
  • the present embodiment it is determined whether or not there is an error between the pinion absolute angle ⁇ p0 and the actual pinion absolute angle based on the pinion absolute angle ⁇ p0 calculated during the straight traveling. Further, when an error has occurred, the cause of the error is determined based on the pinion absolute angle ⁇ p0 calculated during the straight traveling. More specifically, two factors, N deviation and neutral angle deviation, are discriminated as error factors. Therefore, an appropriate correction process according to the error factor can be performed, and the deviation between the turning command angle ⁇ pcmd and the actual turning angle during the SBW control can be surely reduced.
  • the neutral angle deviation range is set based on a pinion angle conversion value (8.89 deg) for one period of the resolver electrical angle determined from the number of pole pairs of the resolver. That is, considering that the deviation angle ⁇ p generated when the N value is shifted by 1 is 8.89 deg, the neutral angle deviation range is set so that the deviation below this is caused by the neutral angle deviation. To do. Thereby, it is possible to appropriately discriminate and discriminate between two error factors. Further, when both the N shift and the neutral angle shift occur, the N shift correction process is preferentially performed. Therefore, it is possible to deal with a large error that should be corrected quickly and to perform appropriate correction processing.
  • the correction method is changed depending on whether the vehicle is traveling straight or turning, an appropriate correction process according to the traveling state can be performed.
  • the correction angular velocity is calculated using the correction angular velocity calculation map of FIG. 8 even during straight traveling, the correction angular velocity remains 0 when traveling at high speed, and the pinion absolute angle ⁇ p0 Cannot be corrected.
  • the correction angular velocity is set to a value other than 0, assuming that stable traveling can be maintained even if correction of the pinion absolute angle ⁇ p0 is performed in the case of straight traveling even at high speed. In this way, the pinion absolute angle ⁇ p0 can be corrected while ensuring stable running.
  • the N value storage unit 41 corresponds to the storage unit
  • the pinion absolute angle calculation unit 42 corresponds to the rotation angle calculation unit
  • the pinion absolute angle correction unit 43 corresponds to the rotation angle correction unit.
  • step S1 in FIG. 6 corresponds to the running state determination unit
  • step S2 corresponds to the error occurrence determination unit
  • step S4 corresponds to the error factor determination unit.
  • steps S12 and S17 in FIG. 7 correspond to the correction angular velocity setting unit
  • step S14 corresponds to the count value correction unit
  • step S15 corresponds to the correction angle setting unit.
  • the steered controller 40 has an N value storage unit for indicating a count value (N value) indicating which section of the mechanical angle corresponds to the angle indicated by the signal output from the resolver used for the steered motor angle sensor 12. 41. Further, the turning controller 40 calculates the pinion absolute angle ⁇ p0 based on the signal output from the resolver used for the turning motor angle sensor 12 and the N value stored in the N value storage unit 41.
  • the deviation factor can be determined by monitoring the deviation angle of the calculated pinion absolute angle ⁇ p0.
  • the steering controller 40 sets a correction angle for correcting the pinion absolute angle ⁇ p0 according to the cause of the error. Further, the turning controller 40 sets a change amount of the correction angle per unit time. Then, the turning controller 40 corrects the pinion absolute angle ⁇ p0 by the set change amount by the set correction angle. Thereby, the deviation of the pinion absolute angle ⁇ p0 can be corrected gradually. Therefore, it is possible to make it difficult for the driver to notice the change in the turning angle caused by correcting the pinion absolute angle ⁇ p0.
  • the pinion absolute angle ⁇ p0 deviates from the actual pinion absolute angle by a converted pinion angle value (8.89 deg) for one period of the resolver electrical angle. Therefore, if an integer multiple of 8.89 deg is set as the correction angle of the pinion absolute angle ⁇ p0, the N deviation can be corrected reliably.
  • the N value stored in the N value storage unit 41 is corrected every time the pinion absolute angle ⁇ p0 is corrected by 8.89 deg. Therefore, after the N deviation correction is completed, the correct pinion absolute value is correct.
  • the angle ⁇ p0 can be calculated.
  • the steering controller 40 sets the pinion absolute angle ⁇ p0 when it is determined that the host vehicle is traveling straight when the error is caused by a component error as the correction angle of the pinion absolute angle ⁇ p0. . Thereby, when the correction of the pinion absolute angle ⁇ p0 is completed, the pinion absolute angle ⁇ p0 calculated during the straight traveling can be set to an ideal value (0). (6) When the turning controller 40 determines that the host vehicle is turning, the turning controller 40 sets a larger amount of change in the correction angle per unit time as the steering angular velocity is faster.
  • the turning controller 40 determines that the host vehicle is turning, the turning controller 40 sets a smaller change amount of the correction angle per unit time as the vehicle speed is higher. Thereby, when traveling at high speed, the correction angular velocity of the pinion absolute angle ⁇ p0 can be made smaller than when traveling at low speed. Therefore, the pinion absolute angle ⁇ p0 can be corrected while ensuring stable running.
  • the turning controller 40 determines that the host vehicle is traveling straight ahead, the turning controller 40 sets the amount of change in the correction angle per unit time to a predetermined constant value.
  • the minute angle range (neutral angle deviation range) is determined based on the number of pole pairs of the resolver used for the steered motor angle sensor 12, and is the upper limit of a conversion value obtained by converting the signal output by the resolver into the rotation angle of the pinion. Set based on the value. That is, when N deviation occurs, the pinion absolute angle ⁇ p0 is considered to be shifted by an upper limit value of the converted value obtained by converting the signal output from the resolver into the rotation angle of the pinion at least. Set. Accordingly, it is possible to appropriately determine the deviation factor of the pinion absolute angle ⁇ p0.
  • (10) Indicates which section of the mechanical angle corresponds to the angle indicated by the signal output by the resolver that outputs a signal that periodically changes according to the rotation angle of the steered motor that steers the steered wheels. Store the count value. Further, based on the signal output from the resolver and the stored count value, a pinion absolute angle that is an absolute angle of the rotation angle of the pinion that meshes with the rack gear of the steering rack is calculated. When the absolute value of the pinion absolute angle calculated when it is determined that the host vehicle is traveling straight ahead is greater than or equal to the preset allowable angle, the calculated pinion absolute angle is between the actual pinion absolute angle and Judge that an error has occurred. At this time, after determining the cause of the error based on the pinion absolute angle calculated when it is determined that the host vehicle is traveling straight ahead, the calculated pinion absolute angle is determined according to the error factor. Correction is performed in a direction that reduces the error.
  • the steering control device when there is a shift in the pinion absolute angle calculated based on the output signal of the resolver, correction according to the factor can be performed. Therefore, the deviation between the steering command angle and the actual steering angle can be more appropriately reduced, which is useful.
  • 3FL, 3FR Front wheels (steering wheels), 5 ... Steering wheel, 7 ... Steering absolute angle sensor, 9 ... Reaction force motor, 11 ... Steering motor, 12 ... Steering motor angle sensor, 15 ... Rack gear, 16 ... Steering rack , 19 ... Clutch, 21 ... Pinion, 30 ... Reaction force controller, 31 ... Steering absolute angle calculation unit, 32 ... Pinion angle command value calculation unit, 40 ... Steering controller, 41 ... N value storage unit, 42 ... Pinion absolute angle Calculation unit, 43 ... Pinion absolute angle correction unit, 44 ... Steering angle control unit, 45 ... Current control driver, 46 ... Backup mode switching unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Provided are a steering control device and steering control method which are capable of more appropriately reducing the deviation between a steering command angle and an actual steering angle. When determined that a vehicle is traveling straight, it is then determined that an error between a calculated pinion absolute angle (θp0) and an actual pinion absolute angle has occurred if the absolute value of the calculated pinion absolute angle (θp0) is equal to or greater than an allowable angle (θpth). In addition, the cause of this error is determined on the basis of the pinion absolute angle (θp0) calculated when determined that the vehicle is traveling straight. According to the cause of this error, the calculated pinion absolute angle (θp0) is corrected in the direction which causes the error to become smaller.

Description

転舵制御装置及び転舵制御方法Steering control device and steering control method
 本発明は、ステアリングホイールと転舵輪とが機械的に分離され、ステアリングホイールの操舵状態に基づいて転舵輪を転舵する転舵制御装置及び転舵制御方法に関する。 The present invention relates to a steering control device and a steering control method in which a steering wheel and a steered wheel are mechanically separated and the steered wheel is steered based on a steering state of the steering wheel.
 従来、ステアリングホイールと転舵輪とが機械的に分離され、ステアリングホイールの操舵状態に基づいて転舵制御を行うものとしては、例えば特許文献1に記載の技術がある。この技術は、ステアリングホイールの操舵角に基づいて算出した転舵指令角と、推定した操向輪の転舵角とに基づいて操向輪を転舵するものである。 Conventionally, as a technique in which the steering wheel and the steered wheel are mechanically separated and the steering control is performed based on the steering state of the steering wheel, for example, there is a technique described in Patent Document 1. This technique steers a steered wheel based on a steered command angle calculated based on a steering angle of a steering wheel and an estimated steered angle of the steered wheel.
特開2011-5933号公報JP 2011-5933 A
 しかしながら、上記特許文献1に記載の技術にあっては、算出した転舵指令角と推定した転舵角とに基づいて操向輪を転舵しているため、推定した転舵角の誤差が大きいと、操向輪を適切に転舵することができない。すなわち、この場合、転舵指令角から実際の転舵角が乖離してしまう。
 そこで、本発明は、転舵指令角と実際の転舵角との乖離をより適切に低減可能な転舵制御装置及び転舵制御方法を提供することを課題としている。
However, in the technique described in Patent Document 1, since the steered wheels are steered based on the calculated steered command angle and the estimated steered angle, there is an error in the estimated steered angle. If it is large, the steering wheel cannot be steered properly. That is, in this case, the actual turning angle deviates from the turning command angle.
Therefore, an object of the present invention is to provide a steering control device and a steering control method that can more appropriately reduce the deviation between the steering command angle and the actual steering angle.
 上記課題を解決するために、本発明の一態様は、転舵輪を転舵駆動する転舵モータの回転角に応じて周期的に変化する信号を出力するレゾルバを備え、当該レゾルバが出力した信号が示す角度が、機械角のいずれの区間に相当するかを示すカウント値を記憶する。また、レゾルバが出力した信号と記憶したカウント値とに基づいて、ステアリングラックのラックギヤと噛合するピニオンの回転角の絶対角度であるピニオン絶対角を算出する。自車両が直進走行中であると判定したときに算出したピニオン絶対角の絶対値が、予め設定した許容角度以上であるとき、算出したピニオン絶対角と実際のピニオン絶対角との間に誤差が生じていると判断し、その誤差の要因を、自車両が直進走行中であると判定したときに算出したピニオン絶対角に基づいて判定する。そして、当該誤差の要因に応じて、算出したピニオン絶対角を前記誤差が小さくなる方向に補正する。 In order to solve the above-described problem, an aspect of the present invention includes a resolver that outputs a signal that periodically changes according to a rotation angle of a steered motor that steers a steered wheel, and a signal output by the resolver. A count value indicating which section of the mechanical angle corresponds to the angle indicated by is stored. Further, based on the signal output from the resolver and the stored count value, a pinion absolute angle that is an absolute angle of the rotation angle of the pinion that meshes with the rack gear of the steering rack is calculated. When the absolute value of the pinion absolute angle calculated when it is determined that the host vehicle is traveling straight ahead is greater than or equal to the preset allowable angle, there is an error between the calculated pinion absolute angle and the actual pinion absolute angle. It is determined that the error has occurred, and the cause of the error is determined based on the pinion absolute angle calculated when it is determined that the host vehicle is traveling straight ahead. Then, according to the cause of the error, the calculated pinion absolute angle is corrected so that the error becomes smaller.
 本発明によれば、レゾルバの出力信号に基づいて算出したピニオン絶対角にずれが生じている場合には、その要因に応じた補正を行うことができる。したがって、転舵指令角と実際の転舵角との乖離をより適切に低減することができる。 According to the present invention, when there is a deviation in the pinion absolute angle calculated based on the output signal of the resolver, correction according to the factor can be performed. Therefore, the deviation between the steering command angle and the actual steering angle can be more appropriately reduced.
車両用操舵装置2を適用した車両1の全体構成図である。1 is an overall configuration diagram of a vehicle 1 to which a vehicle steering device 2 is applied. 極対数が3のレゾルバの電気角と機械角との関係を表すグラフである。It is a graph showing the relationship between the electrical angle and mechanical angle of a resolver with 3 pole pairs. 車両用操舵装置2の制御ブロック図である。3 is a control block diagram of the vehicle steering device 2. FIG. 角度ずれ要因の切り分け方法を説明する図である。It is a figure explaining the separation method of an angle shift factor. ピニオン絶対角補正部43の構成を示すブロック図である。4 is a block diagram illustrating a configuration of a pinion absolute angle correction unit 43. FIG. 補正処理実施済フラグ設定部43aで実行する補正処理実施済フラグ設定処理手順を示すフローチャートである。It is a flowchart which shows the correction process execution flag setting process procedure performed in the correction process execution flag setting part 43a. 補正処理実行部43bで実行する補正処理手順を示すフローチャートである。It is a flowchart which shows the correction process procedure performed in the correction process execution part 43b. 補正角速度算出マップである。It is a correction | amendment angular velocity calculation map.
 以下、本発明の実施の形態を図面に基づいて説明する。
 本実施形態は、本発明を、車両1の車両用操舵装置2に適用したものである。
(第1の実施の形態)
(構成)
 図1は、車両用操舵装置2を適用した車両1の全体構成図である。
 図1に示すように、車両1は、前輪3FL、3FRと後輪4RL、4RRのうち、前輪3FL、3FRを、転舵を行う転舵輪とする。車両用操舵装置2は、ステアリングホイール5と前輪3FL、3FRとを機械的に分離した状態で、ステアリングホイール5の操舵状態に基づいて前輪3FL、3FRを転舵する転舵制御を行うステアバイワイヤシステムである。また、車両用操舵装置2は、操舵角に対する転舵角の比である舵角比を可変に制御する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the present embodiment, the present invention is applied to a vehicle steering device 2 for a vehicle 1.
(First embodiment)
(Constitution)
FIG. 1 is an overall configuration diagram of a vehicle 1 to which a vehicle steering device 2 is applied.
As shown in FIG. 1, the vehicle 1 uses the front wheels 3FL and 3FR among the front wheels 3FL and 3FR and the rear wheels 4RL and 4RR as steered wheels for turning. The vehicle steering device 2 is a steer-by-wire system that performs steering control to steer the front wheels 3FL, 3FR based on the steering state of the steering wheel 5 in a state where the steering wheel 5 and the front wheels 3FL, 3FR are mechanically separated. It is. Further, the vehicle steering device 2 variably controls the steering angle ratio, which is the ratio of the steering angle to the steering angle.
 この車両用操舵装置2は、操舵側機構2aと、転舵機構2bと、バックアップ機構2cと、制御機構2dと、を備える。
(操舵側機構2a)
 操舵側機構2aは、運転者が操舵を行うステアリングホイール5と、ステアリングホイール5に連結したステアリングシャフト6と、ステアリングホイール5の操舵角(絶対角)を検出する操舵絶対角センサ7と、を備える。操舵角は、ステアリングホイール5を右方向に回転させる方向を正方向とし、左方向に回転させる方向を負方向とする。
 また、操舵側機構2aは、ステアリングホイール5の操舵トルクを検出する操舵トルクセンサ8を備える。操舵トルクは、ステアリングホイール5を右方向に回転させる方向を正方向とし、左方向に回転させる方向を負方向とする。
 さらに、操舵側機構2aは、ステアリングホイール5にステアリングシャフト6を介して接続し、ステアリングシャフト6を経由してステアリングホイール5に操舵反力を付与する反力モータ9を備える。また、操舵側機構2aは、反力モータ9の回転角を検出する反力モータ回転角センサ10を備える。反力モータ回転角センサ10としては、例えば、反力モータ9の回転角に応じて周期的に変化するアナログ信号を出力するレゾルバがある。
The vehicle steering device 2 includes a steering side mechanism 2a, a steering mechanism 2b, a backup mechanism 2c, and a control mechanism 2d.
(Steering side mechanism 2a)
The steering side mechanism 2a includes a steering wheel 5 that is steered by a driver, a steering shaft 6 that is coupled to the steering wheel 5, and a steering absolute angle sensor 7 that detects a steering angle (absolute angle) of the steering wheel 5. . Regarding the steering angle, the direction in which the steering wheel 5 is rotated rightward is defined as a positive direction, and the direction in which the steering wheel 5 is rotated leftward is defined as a negative direction.
Further, the steering side mechanism 2 a includes a steering torque sensor 8 that detects the steering torque of the steering wheel 5. In the steering torque, a direction in which the steering wheel 5 is rotated rightward is a positive direction, and a direction in which the steering wheel 5 is rotated leftward is a negative direction.
Further, the steering side mechanism 2 a includes a reaction force motor 9 that is connected to the steering wheel 5 via the steering shaft 6 and applies a steering reaction force to the steering wheel 5 via the steering shaft 6. Further, the steering side mechanism 2 a includes a reaction force motor rotation angle sensor 10 that detects a rotation angle of the reaction force motor 9. As the reaction force motor rotation angle sensor 10, for example, there is a resolver that outputs an analog signal that periodically changes according to the rotation angle of the reaction force motor 9.
(転舵機構2b)
 転舵機構2bは、前輪3FL、3FRを転舵駆動する転舵モータ11と、転舵モータ11の回転角を検出する転舵モータ角センサ12と、を備える。転舵モータ角センサ12としては、転舵モータ11の回転角に応じて周期的に変化するアナログ信号を出力するレゾルバを用いる。
 また、転舵機構2bは、転舵モータ11のモータシャフト13の端部に接続したピニオン14と、ピニオン14と噛合するラックギヤ15を備えるステアリングラック16と、を備える。さらに、転舵機構2bは、ステアリングラック16に入力された軸方向の力を前輪3FL、3FRに転舵力として伝達するタイロッド17を備える。また、転舵機構2bは、ステアリングラック16に入力された軸方向の力を路面から前輪3FL、3FRに作用する転舵反力として検出する転舵反力センサ18を備える。
(Steering mechanism 2b)
The steered mechanism 2b includes a steered motor 11 that steers the front wheels 3FL and 3FR, and a steered motor angle sensor 12 that detects a rotation angle of the steered motor 11. As the steered motor angle sensor 12, a resolver that outputs an analog signal that periodically changes according to the rotational angle of the steered motor 11 is used.
The steering mechanism 2 b includes a pinion 14 connected to the end of the motor shaft 13 of the steering motor 11 and a steering rack 16 including a rack gear 15 that meshes with the pinion 14. Furthermore, the steering mechanism 2b includes a tie rod 17 that transmits the axial force input to the steering rack 16 to the front wheels 3FL and 3FR as a steering force. The steering mechanism 2b includes a steering reaction force sensor 18 that detects an axial force input to the steering rack 16 as a steering reaction force acting on the front wheels 3FL and 3FR from the road surface.
 ここで、転舵モータ角センサ12に用いるレゾルバについて説明する。
 図2は、極対数が3のレゾルバの電気角と機械角との関係を表すグラフである。
 図2に示すように、極対数が3のレゾルバは、電気角360degの範囲で機械角120degの範囲を検出することが可能となっている。この図2では、機械角0degのときに電気角0degを対応させているため、電気角0deg、180deg、360degは、レゾルバの検出値(アナログ信号)としてはそれぞれ0deg、60deg、120degを示す。
 また、極対数が3のレゾルバは、機械角120degの範囲を検出可能であるため、例えば、機械角が-720deg~720degの範囲は、極対数が3のレゾルバでは12周期分となる。すなわち、極対数が3のレゾルバは、機械角-720degから-600degが1周期、-600degから-480degが2周期、-480degから-360degが3周期、-360degから-240degが4周期、-240degから-120degが5周期、-120degから0degが6周期となる。また、機械角0degから120degが7周期、120degから240degが8周期、240degから360degが9周期、360degから480degが10周期、480degから600degが11周期、600degから720degが12周期となる。
Here, the resolver used for the steered motor angle sensor 12 will be described.
FIG. 2 is a graph showing the relationship between the electrical angle and mechanical angle of a resolver with 3 pole pairs.
As shown in FIG. 2, the resolver with the number of pole pairs of 3 can detect the range of the mechanical angle of 120 deg within the range of the electrical angle of 360 deg. In FIG. 2, since the electrical angle 0 deg is associated with the mechanical angle 0 deg, the electrical angles 0 deg, 180 deg, 360 deg indicate 0 deg, 60 deg, 120 deg as the detected value (analog signal) of the resolver, respectively.
In addition, since the resolver with the pole pair number of 3 can detect the range of the mechanical angle of 120 deg, for example, the range of the mechanical angle of −720 deg to 720 deg corresponds to 12 cycles in the resolver with the pole pair number of 3. That is, a resolver with a pole pair number of 3 has a mechanical angle of -720 to -600 deg for one cycle, -600 to -480 deg for two cycles, -480 deg to -360 deg for three cycles, -360 deg to -240 deg for four cycles, -240 deg. From -120deg to 5 cycles, from -120deg to 0deg is 6 cycles. Further, the mechanical angle of 0 deg to 120 deg is 7 cycles, 120 deg to 240 deg is 8 cycles, 240 deg to 360 deg is 9 cycles, 360 deg to 480 deg is 10 cycles, 480 deg to 600 deg is 11 cycles, and 600 deg to 720 deg is 12 cycles.
 このため、例えば、レゾルバの検出値(アナログ信号)が60degのときは、機械角は-660deg、-540deg、-420deg、-300deg、-180deg、-60deg、60deg、180deg、300deg、420deg、540deg、660degのいずれかであることが分かるだけである。すなわち、極対数が3のレゾルバは、機械角120degの範囲で検出可能であるが、センサ値が-660deg、-540deg、-420deg、-300deg、-180deg、-60deg、60deg、180deg、300deg、420deg、540deg、660degのいずれの角度であるかは検出できない。以下では、レゾルバの検出値(アナログ信号)が表す0deg~120degの範囲内の機械角を相対角と呼ぶ。 Therefore, for example, when the detected value (analog signal) of the resolver is 60 deg, the mechanical angles are -660 deg, -540 deg, -420 deg, -300 deg, -180 deg, -60 deg, 60 deg, 180 deg, 300 deg, 420 deg, 540 deg, It is only understood that it is either 660deg. That is, a resolver with a pole pair number of 3 can be detected within a mechanical angle range of 120 deg, but sensor values are -660 deg, -540 deg, -420 deg, -300 deg, -180 deg, -60 deg, 60 deg, 180 deg, 300 deg, 420 deg. It cannot be detected which angle is 540 deg or 660 deg. Hereinafter, the mechanical angle within the range of 0 deg to 120 deg represented by the resolver detection value (analog signal) is referred to as a relative angle.
(バックアップ機構2c)
 図1に戻り、バックアップ機構2cは、ステアリングホイール5と前輪3FL、3FRとを機械的に締結・分離可能なクラッチ19と、クラッチ19を介してステアリングホイール5の操舵トルクを伝達するピニオンシャフト20と、を備える。また、バックアップ機構2cは、ピニオンシャフト20の端部に接続するとともに、ステアリングラック16のラックギヤ15と噛合されるピニオン21を備える。
(Backup mechanism 2c)
Returning to FIG. 1, the backup mechanism 2 c includes a clutch 19 that can mechanically fasten and separate the steering wheel 5 and the front wheels 3FL and 3FR, and a pinion shaft 20 that transmits the steering torque of the steering wheel 5 via the clutch 19. . The backup mechanism 2 c includes a pinion 21 that is connected to the end of the pinion shaft 20 and meshes with the rack gear 15 of the steering rack 16.
(制御機構2d)
 制御機構2dは、車速を検出する車速センサ(車速検出部)22と、ヨーレートを検出するヨーレートセンサ23と、反力モータ9とクラッチ19を制御する反力コントローラ30と、転舵モータ11とクラッチ19を制御する転舵コントローラ40と、を備える。なお、反力コントローラ30と転舵コントローラ40とは、FlexRayシステムの通信回路24によって互いに通信可能に接続され、それぞれが入力した情報を共有可能な構成となっている。FlexRayシステムとしては、例えば、車載通信ネットワークのシステムがある。
 反力コントローラ30は、反力モータ9の制御、クラッチ19の制御、転舵指令角の算出、ステアリングホイール5の操舵角(絶対角)の算出等を行っている。
 具体的には、反力コントローラ30は、操舵絶対角センサ7が検出した操舵角(絶対角)と、反力モータ回転角センサ10が検出した反力モータ9の回転角と、転舵反力センサ18が検出した転舵反力とを取得する。また、反力コントローラ30は、車速センサ22が検出した車速と、反力モータ9が検出した反力モータモニタ値とを取得する。反力モータモニタ値としては、例えば、反力モータ9の駆動電流や温度等がある。
(Control mechanism 2d)
The control mechanism 2d includes a vehicle speed sensor (vehicle speed detection unit) 22 that detects the vehicle speed, a yaw rate sensor 23 that detects the yaw rate, a reaction force controller 30 that controls the reaction force motor 9 and the clutch 19, a steering motor 11 and a clutch. A steering controller 40 that controls the vehicle 19. The reaction force controller 30 and the steering controller 40 are communicably connected to each other by the communication circuit 24 of the FlexRay system, and are configured to be able to share information input by each. An example of a FlexRay system is an in-vehicle communication network system.
The reaction force controller 30 performs control of the reaction force motor 9, control of the clutch 19, calculation of a steering command angle, calculation of a steering angle (absolute angle) of the steering wheel 5, and the like.
Specifically, the reaction force controller 30 includes the steering angle (absolute angle) detected by the steering absolute angle sensor 7, the rotation angle of the reaction force motor 9 detected by the reaction force motor rotation angle sensor 10, and the steering reaction force. The steering reaction force detected by the sensor 18 is acquired. Further, the reaction force controller 30 acquires the vehicle speed detected by the vehicle speed sensor 22 and the reaction force motor monitor value detected by the reaction force motor 9. Examples of the reaction force motor monitor value include a drive current and a temperature of the reaction force motor 9.
 そして、反力コントローラ30は、転舵反力センサ18が検出した転舵反力に基づいてステアリングホイール5へ付与する操舵反力(以下、「操舵反力指令値」とも呼ぶ)を算出する。続いて、反力コントローラ30は、算出した操舵反力指令値に基づいて反力モータ9を制御する。これにより、反力コントローラ30は、ステアリングホイール5の操舵反力を制御する。
 また、反力コントローラ30は、イグニッションスイッチがオフ状態となった場合等、転舵制御を実行できなくなった場合には、ステアリングホイール5と前輪3FL、3FRとを機械的に締結させる指令(以下、「締結指令」とも呼ぶ)をクラッチ19に出力する。また、反力コントローラ30は、イグニッションスイッチがオン状態となった場合等、転舵制御が開始された場合には、ステアリングホイール5と前輪3FL、3FRとを機械的に分離させる指令(以下、「開放指令」とも呼ぶ)をクラッチ19に出力する。
Then, the reaction force controller 30 calculates a steering reaction force (hereinafter also referred to as “steering reaction force command value”) to be applied to the steering wheel 5 based on the steering reaction force detected by the steering reaction force sensor 18. Subsequently, the reaction force controller 30 controls the reaction force motor 9 based on the calculated steering reaction force command value. Thereby, the reaction force controller 30 controls the steering reaction force of the steering wheel 5.
In addition, the reaction force controller 30 is configured to mechanically fasten the steering wheel 5 and the front wheels 3FL and 3FR when the steering control cannot be performed, for example, when the ignition switch is turned off (hereinafter, referred to as “the steering wheel 5”). (Also referred to as “engagement command”) is output to the clutch 19. Further, the reaction force controller 30 mechanically separates the steering wheel 5 and the front wheels 3FL, 3FR when the steering control is started, such as when the ignition switch is turned on (hereinafter, “ Is also output to the clutch 19.
 さらに、反力コントローラ30は、操舵絶対角センサ7が検出した操舵角(絶対角)と、車速センサ22が検出した車速とに基づいてピニオン21へ付与する転舵角(転舵指令角)を算出する。転舵指令角の算出方法としては、例えば、可変舵角比マップを参照して、車速Vに応じた舵角比を設定し、設定した舵角比と操舵角(絶対角)との乗算結果を転舵指令角とする方法がある。可変舵角比マップとしては、例えば、車速Vが0である場合に舵角比を最大値とし、車速Vが高くなるほど舵角比を低くするマップがある。反力コントローラ30は、算出した転舵指令角を転舵コントローラ40に出力する。 Further, the reaction force controller 30 provides a turning angle (steering command angle) to be given to the pinion 21 based on the steering angle (absolute angle) detected by the steering absolute angle sensor 7 and the vehicle speed detected by the vehicle speed sensor 22. calculate. As a method for calculating the steering command angle, for example, referring to a variable steering angle ratio map, a steering angle ratio corresponding to the vehicle speed V is set, and a multiplication result of the set steering angle ratio and the steering angle (absolute angle) is set. There is a method of using the steering command angle. As the variable steering angle ratio map, for example, there is a map in which the steering angle ratio is maximized when the vehicle speed V is 0, and the steering angle ratio is decreased as the vehicle speed V increases. The reaction force controller 30 outputs the calculated turning command angle to the turning controller 40.
 転舵コントローラ40は、転舵モータ11の制御、クラッチ19の制御、ピニオン21の回転角の絶対角(以下、「ピニオン絶対角」とも呼ぶ)の算出等を行っている。
 具体的には、転舵コントローラ40は、操舵トルクセンサ8が検出したステアリングホイール5の操舵トルクと、転舵モータ11が検出した転舵モータモニタ値と、転舵モータ角センサ12が検出した転舵モータ11の回転角(以下、「転舵モータ角」とも呼ぶ)とを取得する。また、転舵コントローラ40は、反力コントローラ30が算出した操舵角(絶対角)および転舵指令角を取得する。転舵モータモニタ値としては、例えば、転舵モータ11の駆動電流や温度等がある。
The steered controller 40 performs control of the steered motor 11, control of the clutch 19, calculation of an absolute angle of the rotation angle of the pinion 21 (hereinafter also referred to as “pinion absolute angle”), and the like.
Specifically, the steered controller 40 detects the steering torque of the steering wheel 5 detected by the steering torque sensor 8, the steered motor monitor value detected by the steered motor 11, and the steered motor angle sensor 12. The rotation angle of the rudder motor 11 (hereinafter also referred to as “steering motor angle”) is acquired. Further, the turning controller 40 acquires the steering angle (absolute angle) and the turning command angle calculated by the reaction force controller 30. Examples of the steered motor monitor value include a drive current and temperature of the steered motor 11.
 続いて、転舵コントローラ40は、転舵モータ角センサ12が検出した転舵モータ角(相対角)に基づいてピニオン絶対角を算出し、これを必要に応じて補正する。続いて、転舵コントローラ40は、補正したピニオン絶対角と反力コントローラ30が算出した転舵指令角との偏差に応じた転舵モータ駆動電流を転舵モータ11に出力する。これにより、転舵コントローラ40は、ピニオン絶対角、つまり、前輪3FL、3FRの転舵角を制御する。
 また、転舵コントローラ40は、転舵モータモニタ値や、反力モータモニタ値が異常を表す値になった場合には、クラッチ19に締結指令を出力する。その際、転舵コントローラ40は、操舵トルクセンサ8が検出したステアリングホイール5の操舵トルクに基づいて、運転者の操舵トルクを補助するように転舵モータ11を駆動制御する。
Subsequently, the turning controller 40 calculates the pinion absolute angle based on the turning motor angle (relative angle) detected by the turning motor angle sensor 12, and corrects it as necessary. Subsequently, the steered controller 40 outputs a steered motor drive current corresponding to the deviation between the corrected pinion absolute angle and the steered command angle calculated by the reaction force controller 30 to the steered motor 11. Thereby, the turning controller 40 controls the pinion absolute angle, that is, the turning angle of the front wheels 3FL and 3FR.
Further, the steering controller 40 outputs an engagement command to the clutch 19 when the steering motor monitor value or the reaction force motor monitor value becomes a value representing an abnormality. At that time, the steering controller 40 drives and controls the steering motor 11 so as to assist the driver's steering torque based on the steering torque of the steering wheel 5 detected by the steering torque sensor 8.
(制御ブロック)
 次に、車両用操舵装置2の制御ブロックを説明する。
 図3は、車両用操舵装置2の制御ブロック図である。図3では、反力コントローラ30についてはステアリングホイール5の操舵角(絶対角)及び転舵指令角の算出、転舵コントローラ40については転舵モータ11の制御、ピニオン絶対角の算出及び補正について記載している。
(反力コントローラ30)
 反力コントローラ30は、操舵絶対角算出部31と、ピニオン角指令値算出部32と、を備える。
 操舵絶対角算出部31は、操舵角精度向上処理を実行する。操舵角精度向上処理では、操舵絶対角センサ7が検出した操舵角(絶対角)θhabsと、反力モータ回転角センサ10が検出した反力モータ9の回転角θhmotとを取得する。そして、操舵角精度向上処理では、操舵絶対角算出部31は、取得した操舵角(絶対角)θhabsと反力モータ9の回転角θhmotとに基づいて操舵角(絶対角)θhを算出する。
(Control block)
Next, a control block of the vehicle steering device 2 will be described.
FIG. 3 is a control block diagram of the vehicle steering device 2. In FIG. 3, the reaction force controller 30 calculates the steering angle (absolute angle) and the steering command angle of the steering wheel 5, and the steering controller 40 describes the control of the steering motor 11 and the calculation and correction of the pinion absolute angle. is doing.
(Reaction force controller 30)
The reaction force controller 30 includes a steering absolute angle calculation unit 31 and a pinion angle command value calculation unit 32.
The steering absolute angle calculation unit 31 executes a steering angle accuracy improvement process. In the steering angle accuracy improving process, the steering angle (absolute angle) θhabs detected by the steering absolute angle sensor 7 and the rotation angle θhmot of the reaction force motor 9 detected by the reaction force motor rotation angle sensor 10 are acquired. In the steering angle accuracy improving process, the steering absolute angle calculating unit 31 calculates the steering angle (absolute angle) θh based on the acquired steering angle (absolute angle) θhabs and the rotation angle θhmot of the reaction force motor 9.
 なお、本実施形態では、操舵絶対角センサ7が検出した操舵角(絶対角)θhabsと、反力モータ回転角センサ10が検出した反力モータ9の回転角θhmotとに基づいて操舵角(絶対角)θhを算出する例を示したが、他の構成を採用することもできる。例えば、操舵絶対角センサ7が検出した操舵角(絶対角)θhabsの精度が十分に高い場合には、操舵角(絶対角)θhabsをそのまま操舵角(絶対角)θhとする構成としてもよい。
 ピニオン角指令値算出部32は、転舵指令角算出処理を実行する。転舵指令角算出処理では、ピニオン角指令値算出部32は、車速センサ22が検出した車速Vと、操舵絶対角算出部31が算出した操舵角(絶対角)θhとを取得する。そして、転舵指令角算出処理では、ピニオン角指令値算出部32は、取得した車速Vと操舵角(絶対角)θhとに基づいて転舵指令角θpcmdを算出する。ピニオン角指令値算出部32は、算出した転舵指令角θpcmdを転舵コントローラ40へ出力する。
In the present embodiment, the steering angle (absolute angle) θhabs detected by the steering absolute angle sensor 7 and the rotation angle θhmot of the reaction force motor 9 detected by the reaction force motor rotation angle sensor 10 are determined. Although an example of calculating (angle) θh has been shown, other configurations may be employed. For example, when the accuracy of the steering angle (absolute angle) θhabs detected by the steering absolute angle sensor 7 is sufficiently high, the steering angle (absolute angle) θhabs may be directly used as the steering angle (absolute angle) θh.
The pinion angle command value calculation unit 32 executes a steering command angle calculation process. In the turning command angle calculation process, the pinion angle command value calculation unit 32 acquires the vehicle speed V detected by the vehicle speed sensor 22 and the steering angle (absolute angle) θh calculated by the steering absolute angle calculation unit 31. In the turning command angle calculation process, the pinion angle command value calculation unit 32 calculates the turning command angle θpcmd based on the acquired vehicle speed V and the steering angle (absolute angle) θh. The pinion angle command value calculation unit 32 outputs the calculated steering command angle θpcmd to the steering controller 40.
(転舵コントローラ40)
 転舵コントローラ40は、N値記憶部41と、ピニオン絶対角算出部42と、ピニオン絶対角補正部43と、転舵角制御部44と、電流制御ドライバ45と、バックアップモード切替部46と、を備える。
 N値記憶部41は不揮発性メモリを含んで構成されており、この不揮発性メモリに「N値」を記憶する。ここで、N値とは、レゾルバの出力値(電気角)が機械角のどの区間に対応するかを示す、レゾルバセンサの回転カウント値であり、図4に示すように、電気角が機械角0°~120°(ピニオン角で0°~8.89°)に対応する範囲内でN=0とする。また、電気角が機械角120°~240°(ピニオン角で8.89°~17.78°)に対応する範囲内でN=1、電気角が機械角240°~360°(ピニオン角で17.78°~26.67°)に対応する範囲内でN=3となる。
(Steering controller 40)
The turning controller 40 includes an N value storage unit 41, a pinion absolute angle calculation unit 42, a pinion absolute angle correction unit 43, a turning angle control unit 44, a current control driver 45, a backup mode switching unit 46, Is provided.
The N value storage unit 41 includes a nonvolatile memory, and stores “N value” in the nonvolatile memory. Here, the N value is a rotation count value of the resolver sensor indicating which section of the mechanical angle the output value (electrical angle) of the resolver corresponds to. As shown in FIG. 4, the electrical angle is the mechanical angle. N = 0 within the range corresponding to 0 ° to 120 ° (0 ° to 8.89 ° in pinion angle). The electrical angle is within the range corresponding to the mechanical angle of 120 ° to 240 ° (the pinion angle is 8.89 ° to 17.78 °), N = 1, and the electrical angle is the mechanical angle of 240 ° to 360 ° (the pinion angle is N = 3 within a range corresponding to 17.78 ° to 26.67 °.
 負方向については、電気角が機械角-120°~0°(ピニオン角で-8.89°~0°)に対応する範囲内でN=-1、電気角が機械角-240°~-120°(ピニオン角で-17.78°~-8.89°)に対応する範囲内でN=-2、電気角が機械角-360°~-240°(ピニオン角で-26.67°~-17.78°)に対応する範囲内でN=-3となる。このN値は、電気角が360°正方向に変化する毎にカウントアップし、反対に電気角が360°負方向に変化する毎にカウントダウンするようになっている。
 ピニオン絶対角算出部42は、転舵モータ角センサ12が検出した0deg~120degの範囲内の転舵モータ角(相対角)θmと、N値記憶部42に記憶したN値とを取得する。そして、ピニオン絶対角算出部42は、これらに基づいて次式をもとにピニオン絶対角θp0を算出する。
 θp0={θm+(360/n×N)}/Gr ………(1)
 ここで、nは極対数であり、本実施形態ではn=3である。また、Grはピニオン14とピニオン21とのギヤ比であり、本実施形態ではGr=1.35である。
Regarding the negative direction, N = -1 within the range corresponding to the mechanical angle of −120 ° to 0 ° (the pinion angle is −8.89 ° to 0 °), and the electrical angle is the mechanical angle of −240 ° to − N = -2 within the range corresponding to 120 ° (pinion angle −1.78 ° to −8.89 °), electrical angle mechanical angle −360 ° to −240 ° (pinion angle −26.67 ° N = −3 within a range corresponding to ˜−17.78 °. The N value is counted up every time the electrical angle changes in the positive direction of 360 °, and conversely every time the electrical angle changes in the negative direction of 360 °.
The pinion absolute angle calculation unit 42 acquires the steered motor angle (relative angle) θm within the range of 0 deg to 120 deg detected by the steered motor angle sensor 12 and the N value stored in the N value storage unit 42. And the pinion absolute angle calculation part 42 calculates pinion absolute angle (theta) p0 based on following Formula based on these.
θp0 = {θm + (360 / n × N)} / Gr (1)
Here, n is the number of pole pairs, and in this embodiment, n = 3. Gr is a gear ratio between the pinion 14 and the pinion 21, and Gr = 1.35 in the present embodiment.
 ピニオン絶対角補正部43は、ピニオン絶対角算出部42で算出したピニオン絶対角θp0の補正の要否を判定し、補正が必要であると判定した場合にはこれを補正し、補正後のピニオン絶対角θpを出力する。ここで、補正が必要となる要因としては、N値記憶部41に記憶したN値が正確な値となっていない、所謂「Nずれ」と、実走値と検出値とが僅かにずれている、所謂「中立角ずれ」とがある。
 イグニッションオフ中、クラッチ19を締結した状態でステアリングホイール5を操作すると、それに伴って転舵輪3FL,3FRも動く。ところが、この場合、次のイグニッションオン時にN値が正確な値にならなくなってしまう場合がある。このようにして、Nずれが生じる。これに対して、中立角ずれは、部品誤差やアライメント調整誤差等によって生じる微小な角度ずれである。
The pinion absolute angle correction unit 43 determines whether or not the pinion absolute angle θp0 calculated by the pinion absolute angle calculation unit 42 needs to be corrected. If it is determined that correction is necessary, the pinion absolute angle correction unit 43 corrects the pinion absolute angle θp0. The absolute angle θp is output. Here, as factors that require correction, the N value stored in the N value storage unit 41 is not an accurate value, so-called “N deviation”, and the actual running value and the detected value are slightly shifted. There is a so-called “neutral angle shift”.
When the steering wheel 5 is operated with the clutch 19 engaged while the ignition is off, the steered wheels 3FL and 3FR also move accordingly. However, in this case, the N value may not be an accurate value when the next ignition is turned on. In this way, N shift occurs. On the other hand, the neutral angle deviation is a minute angle deviation caused by a component error, an alignment adjustment error, or the like.
 ピニオン絶対角補正部43では、ピニオン絶対角算出部42で算出したピニオン絶対角θp0に実際のピニオン絶対角との誤差が生じており、補正が必要であると判定した場合には、当該誤差が上記のどちらの要因で生じているかを判定する。そして、誤差要因に応じてピニオン絶対角θp0を補正し、ピニオン絶対角θpを出力する。このピニオン絶対角補正部43で実行する処理については後述する。
 転舵角制御部44は、ピニオン角指令値算出部32が算出した転舵指令角θpcmdcoと、ピニオン絶対角補正部43が算出したピニオン絶対角θpとを取得する。そして、転舵角制御部44は、取得した転舵指令角θpcmdcoとピニオン絶対角θpとの偏差に応じた電流指令値Ipcmdを算出する。
In the pinion absolute angle correction unit 43, when it is determined that the pinion absolute angle θp0 calculated by the pinion absolute angle calculation unit 42 has an error from the actual pinion absolute angle and correction is necessary, the error is Determine which of the above factors has caused the problem. Then, the pinion absolute angle θp0 is corrected according to the error factor, and the pinion absolute angle θp is output. Processing executed by the pinion absolute angle correction unit 43 will be described later.
The turning angle control unit 44 acquires the turning command angle θpcmdco calculated by the pinion angle command value calculation unit 32 and the pinion absolute angle θp calculated by the pinion absolute angle correction unit 43. Then, the turning angle control unit 44 calculates a current command value Ipcmd corresponding to the deviation between the obtained turning command angle θpcmdco and the pinion absolute angle θp.
 電流制御ドライバ45は、転舵角制御部44が算出した電流指令値Ipcmdと転舵モータ11の転舵モータモニタ値である駆動実電流Iprealとを取得する。そして、電流制御ドライバ45は、取得した電流指令値Ipcmdに駆動実電流Iprealが一致するように、転舵モータ11に供給する駆動電流Ipdriを制御する。
 バックアップモード切替部46は、ピニオン絶対角補正部43が算出したピニオン絶対角θpを取得する。そして、バックアップモード切替部46は、ピニオン絶対角補正部43からピニオン絶対角θpを取得不可であった場合には、電流指令値Ipcmdの算出停止指令を転舵角制御部44に出力し、クラッチ19に締結指令を出力する。
The current control driver 45 acquires the current command value Ipcmd calculated by the turning angle control unit 44 and the actual driving current Ipreal that is the turning motor monitor value of the turning motor 11. Then, the current control driver 45 controls the drive current Ipdri supplied to the steered motor 11 so that the actual drive current Ipreal matches the acquired current command value Ipcmd.
The backup mode switching unit 46 acquires the pinion absolute angle θp calculated by the pinion absolute angle correction unit 43. When the pinion absolute angle θp cannot be obtained from the pinion absolute angle correction unit 43, the backup mode switching unit 46 outputs a calculation stop command for the current command value Ipcmd to the turning angle control unit 44, and the clutch A fastening command is output to 19.
(ピニオン絶対角補正部43)
 図5は、ピニオン絶対角補正部43の具体的構成を示すブロック図である。
 この図5に示すように、ピニオン絶対角補正部43は、補正処理実施済フラグ設定部43aと、補正処理実行部43bと、を備える。補正処理実行部43bは、補正角算出部43cと、加算部43dと、を備える。
 補正処理実施済フラグ設定部43aは、Nずれ補正処理および中立角ずれ補正処理を実施済みとするか否か、即ちNずれ補正処理および中立角ずれ補正処理を実施するか否かを判定する。
 図6は、補正処理実施済フラグ設定部43aで実行する補正処理実施済フラグ設定処理手順を示すフローチャートである。
 先ず、ステップS1では、補正処理実施済フラグ設定部43aは、自車両が直進走行中であるか否かを判定する。具体的には、車速V、ヨーレートγ、操舵角(絶対角)θhに基づいて直進走行中であるか否かを判定する。例えば、車速Vが40km/h以上であり、ヨーレートγの絶対値が0.2deg/s以下であり、操舵角速度dθ/dtの絶対値が20deg/s以下であるとき、直進走行中であると判定する。そして、直進走行中であると判定した場合にはステップS2に移行し、直進走行中でないと判定した場合にはそのまま補正処理実施済フラグ設定処理を終了する。
(Pinion absolute angle correction unit 43)
FIG. 5 is a block diagram showing a specific configuration of the pinion absolute angle correction unit 43.
As shown in FIG. 5, the pinion absolute angle correction unit 43 includes a correction processing execution flag setting unit 43a and a correction processing execution unit 43b. The correction process execution unit 43b includes a correction angle calculation unit 43c and an addition unit 43d.
The correction process execution flag setting unit 43a determines whether or not the N deviation correction process and the neutral angle deviation correction process have been executed, that is, whether or not the N deviation correction process and the neutral angle deviation correction process are to be executed.
FIG. 6 is a flowchart showing a correction processing executed flag setting processing procedure executed by the correction processing executed flag setting unit 43a.
First, in step S1, the correction process execution flag setting unit 43a determines whether or not the host vehicle is traveling straight ahead. Specifically, it is determined whether the vehicle is traveling straight ahead based on the vehicle speed V, the yaw rate γ, and the steering angle (absolute angle) θh. For example, when the vehicle speed V is 40 km / h or more, the absolute value of the yaw rate γ is 0.2 deg / s or less, and the absolute value of the steering angular velocity dθ / dt is 20 deg / s or less, the vehicle is traveling straight ahead. judge. If it is determined that the vehicle is traveling straight, the process proceeds to step S2, and if it is determined that the vehicle is not traveling straight, the correction processing execution flag setting process is terminated.
 ステップS2では、補正処理実施済フラグ設定部43aは、ピニオン絶対角算出部42が算出したピニオン絶対角θp0を取得する。そして、そのピニオン絶対角θp0の絶対値が許容角度θpth(例えば1deg)を超えているか否かを判定する。このとき、|θp0|≦θpthである場合には、ピニオン絶対角θp0にずれが生じていないと判断してステップS3に移行し、|θp0|>θpthである場合には、ピニオン絶対角θp0にずれが生じていると判断して後述するステップS4に移行する。
 ステップS3では、補正処理実施済フラグ設定部43aは、補正処理実施済フラグFlgを、Nずれ補正処理および中立角ずれ補正処理が実施済であることを示す“0”にセットし、そのまま補正処理実施済フラグ設定処理を終了する。
In step S2, the correction processing execution flag setting unit 43a acquires the pinion absolute angle θp0 calculated by the pinion absolute angle calculation unit 42. Then, it is determined whether or not the absolute value of the pinion absolute angle θp0 exceeds an allowable angle θpth (for example, 1 deg). At this time, if | θp0 | ≦ θpth, it is determined that there is no deviation in the pinion absolute angle θp0, and the process proceeds to step S3. If | θp0 |> θpth, the pinion absolute angle θp0 is obtained. It is determined that a deviation has occurred, and the process proceeds to step S4 described later.
In step S3, the correction processing execution flag setting unit 43a sets the correction processing execution flag Flg to “0” indicating that the N deviation correction processing and the neutral angle deviation correction processing have been executed, and the correction processing is performed as it is. The executed flag setting process is terminated.
 ステップS4では、補正処理実施済フラグ設定部43aは、ピニオン絶対角θp0のずれが、Nずれによるものであるか否かを判定する。具体的には、直進走行時のピニオン絶対角θp0が中立角ずれ範囲外にあるとき、ピニオン絶対角θpのずれがNずれによるものであると判断する。ここで、中立角ずれ範囲は、0degを跨ぐ微小角度範囲であり、例えば-6deg以上6deg以下の範囲とする。この中立角ずれ範囲は、中立角ずれのみが生じている状態で直進走行したときにピニオン絶対角θp0が取り得る範囲である。
 そして、前記ステップS2で取得したピニオン絶対角θp0が±6degの範囲外にいる場合には、Nずれが発生していると判定してステップS5に移行する。一方、前記ステップS2で取得したピニオン絶対角θp0が±6degの範囲内にいる場合には、Nずれは発生していない(中立角ずれのみが発生している)と判定して後述するステップS7に移行する。
In step S4, the correction processing execution flag setting unit 43a determines whether or not the deviation of the pinion absolute angle θp0 is due to N deviation. Specifically, when the pinion absolute angle θp0 during straight running is outside the neutral angle deviation range, it is determined that the deviation of the pinion absolute angle θp is due to N deviation. Here, the neutral angle deviation range is a minute angle range over 0 deg, for example, a range of −6 deg to 6 deg. This neutral angle deviation range is a range that the pinion absolute angle θp0 can take when traveling straight in a state where only the neutral angle deviation occurs.
If the pinion absolute angle θp0 acquired in step S2 is outside the range of ± 6 deg, it is determined that N deviation has occurred, and the process proceeds to step S5. On the other hand, when the pinion absolute angle θp0 acquired in step S2 is within the range of ± 6 deg, it is determined that no N deviation has occurred (only a neutral angle deviation has occurred), and will be described later in step S7. Migrate to
 ステップS5では、補正処理実施済フラグ設定部43aは、補正処理実施済フラグFlgを、Nずれ補正処理および中立角ずれ補正処理が未実施であることを示す“2”にセットしてステップS6に移行する。
 ステップS6では、補正処理実施済フラグ設定部43aは、前記ステップS2で取得したピニオン絶対角θp0を、補正すべきずれ角Δθpとして記憶し、補正処理実施済フラグ設定処理を終了する。
 ステップS7では、補正処理実施済フラグ設定部43aは、補正処理実施済フラグFlgを、Nずれ補正処理のみが実施済(中立角ずれ補正処理のみが未実施)であることを示す“1”にセットして前記ステップS6に移行する。
In step S5, the correction process execution flag setting unit 43a sets the correction process execution flag Flg to “2” indicating that the N deviation correction process and the neutral angle deviation correction process have not been executed, and the process proceeds to step S6. Transition.
In step S6, the correction process execution flag setting unit 43a stores the pinion absolute angle θp0 acquired in step S2 as the shift angle Δθp to be corrected, and ends the correction process execution flag setting process.
In step S7, the correction processing execution flag setting unit 43a sets the correction processing execution flag Flg to “1” indicating that only the N deviation correction processing has been executed (only the neutral angle deviation correction processing has not been executed). Then, the process proceeds to step S6.
 図5に戻って、補正処理実行部43bは、補正処理実施済フラグ設定部43aで設定した補正処理実施済フラグFlgに基づいて、必要に応じてピニオン絶対角θp0を補正し、最終的なピニオン絶対角θpを出力する。
 すなわち、補正処理実行部43bは、補正角算出部43cで、ピニオン絶対角θp0のずれを補正するための補正角θcorを算出し、これを加算部43dでピニオン絶対角θp0に加算する。このようにして、補正後のピニオン絶対角θpを出力する。
Returning to FIG. 5, the correction processing execution unit 43b corrects the pinion absolute angle θp0 as necessary based on the correction processing execution flag Flg set by the correction processing execution flag setting unit 43a, and obtains the final pinion. The absolute angle θp is output.
That is, the correction processing execution unit 43b calculates the correction angle θcor for correcting the deviation of the pinion absolute angle θp0 by the correction angle calculation unit 43c, and adds this to the pinion absolute angle θp0 by the addition unit 43d. In this way, the corrected pinion absolute angle θp is output.
 図7は、補正処理実行部43bで実行する補正処理手順を示すフローチャートである。
 先ずステップS11で、補正処理実行部43bは、補正処理実施済フラグFlgが“2”であるか否かを判定する。そして、Flg=2である場合にはステップS12に移行し、Flg≠2である場合には後述するステップS16に移行する。
 ステップS12では、補正処理実行部43bは、単位時間当たりのNずれ補正角の変化量(Nずれ補正角速度)Δθcornを設定する。Nずれ補正角速度Δθcornは、直進走行中であるときには予め設定した一定値とする。そして、旋回走行中であるときには、車速V及び操舵角速度dθh/dtに基づいて、図8の補正角速度算出マップをもとにNずれ補正角速度Δθcornを算出する。
FIG. 7 is a flowchart showing a correction processing procedure executed by the correction processing execution unit 43b.
First, in step S11, the correction process execution unit 43b determines whether or not the correction process execution flag Flg is “2”. If Flg = 2, the process proceeds to step S12. If Flg ≠ 2, the process proceeds to step S16 described later.
In step S12, the correction processing execution unit 43b sets the amount of change in the N shift correction angle per unit time (N shift correction angular velocity) Δθcorn. The N deviation correction angular velocity Δθcorn is a constant value set in advance when the vehicle is traveling straight ahead. When the vehicle is turning, the N deviation correction angular velocity Δθcorn is calculated based on the correction angular velocity calculation map of FIG. 8 based on the vehicle speed V and the steering angular velocity dθh / dt.
 図8の横軸は操舵角速度dθ/dtの絶対値であり、縦軸はNずれ補正角速度Δθcornの絶対値である。このように、Nずれ補正角速度Δθcornの絶対値は、操舵角速度dθ/dtの絶対値が大きいほど大きくする。さらに、Nずれ補正角速度Δθcornの絶対値は、車速Vが速いほど小さくする。ここで、車速Vが高速領域(例えば120km/h)にある場合には、Nずれ補正角速度Δθcornを0とする。なお、Nずれ補正角速度Δθcornの絶対値には上限値を設けるようにしてもよい。
 そして、図8をもとにNずれ補正角速度Δθcornの絶対値を算出した後は、補正処理実施済フラグ設定部43aで記憶したピニオン絶対角θp0のずれ角Δθpの符号に基づいて、最終的なNずれ補正角速度Δθcornを算出する。具体的には、補正処理実施済フラグ設定部43aで記憶したピニオン絶対角θp0のずれ角Δθpが正値である場合には、Nずれ補正角速度Δθcornの絶対値に-1を乗算したものを、最終的なNずれ補正角速度Δθcornとする。また、補正処理実施済フラグ設定部43aで記憶したピニオン絶対角θp0のずれ角Δθpが負値である場合には、Nずれ補正角速度Δθcornの絶対値に+1を乗算したものを、最終的なNずれ補正角速度Δθcornとする。
The horizontal axis in FIG. 8 is the absolute value of the steering angular velocity dθ / dt, and the vertical axis is the absolute value of the N deviation correction angular velocity Δθcorn. Thus, the absolute value of the N deviation correction angular velocity Δθcorn is increased as the absolute value of the steering angular velocity dθ / dt is increased. Further, the absolute value of the N deviation correction angular velocity Δθcorn is reduced as the vehicle speed V increases. Here, when the vehicle speed V is in a high speed region (for example, 120 km / h), the N deviation correction angular velocity Δθcorn is set to zero. An upper limit value may be provided for the absolute value of the N deviation correction angular velocity Δθcorn.
After calculating the absolute value of the N deviation correction angular velocity Δθcorn based on FIG. 8, the final value is calculated based on the sign of the deviation angle Δθp of the pinion absolute angle θp0 stored in the correction processing execution flag setting unit 43a. N deviation correction angular velocity Δθcorn is calculated. Specifically, when the deviation angle Δθp of the pinion absolute angle θp0 stored in the correction processing execution flag setting unit 43a is a positive value, the absolute value of the N deviation correction angular velocity Δθcorn is multiplied by −1. A final N deviation correction angular velocity Δθcorn is assumed. When the deviation angle Δθp of the pinion absolute angle θp0 stored in the correction processing execution flag setting unit 43a is a negative value, a value obtained by multiplying the absolute value of the N deviation correction angular velocity Δθcorn by +1 is the final N The deviation correction angular velocity is Δθcorn.
 次にステップS13では、補正処理実行部43bは、前記ステップS12で設定したNずれ補正角速度Δθcornでピニオン絶対角θp0を補正し、その結果をピニオン絶対角θpとして出力する。具体的には、Nずれ補正角θcorn(初期値は0)にNずれ補正角速度Δθcornを加算し、これを新たなNずれ補正角θcornとする。そして、そのNずれ補正角θcornを補正角θcorとして出力する。この処理を、Nずれ補正角θcornがレゾルバ電気角1周期分のピニオン角換算値、即ちレゾルバが出力する信号をピニオンの回転角に換算した換算値の上限値(360/極対数/ギヤ比)となるまで繰り返す。本実施形態では、極対数=3、ギヤ比=13.5であるため、補正角θcorn=8.89degとなるまで繰り返すことになる。 Next, in step S13, the correction processing execution unit 43b corrects the pinion absolute angle θp0 with the N deviation correction angular velocity Δθcorn set in step S12, and outputs the result as the pinion absolute angle θp. Specifically, the N deviation correction angular velocity Δθcorn is added to the N deviation correction angle θcorn (initial value is 0), and this is set as a new N deviation correction angle θcorn. Then, the N deviation correction angle θcorn is output as the correction angle θcor. In this process, the N deviation correction angle θcorn is converted into a pinion angle converted value for one period of the resolver electrical angle, that is, an upper limit value of the converted value obtained by converting the signal output from the resolver into the pinion rotation angle (360 / number of pole pairs / gear ratio). Repeat until In this embodiment, since the number of pole pairs = 3 and the gear ratio = 13.5, the process is repeated until the correction angle θcorn = 8.89 deg.
 次にステップS14では、補正処理実行部43bは、N値記憶部41に記憶したN値を更新し、ステップS15に移行する。このステップS14では、ピニオン絶対角θp0のずれ角Δθpが正値である場合にはN値を-1だけ補正し、ピニオン絶対角θp0のずれ角Δθpが負値である場合にはN値を+1だけ補正する。また、このステップS14では、補正処理実行部43bは、Nずれ補正角θcorn及び補正角θcorを0に初期化する。
 ステップS15では、補正処理実行部43bは、Nずれ補正処理が完了したか否かを判定する。具体的には、補正処理実施済フラグ設定部43aで記憶したピニオン絶対角θp0のずれ角Δθpから、Nずれ補正処理で補正したトータルの角度(8.89×(N値更新回数))を減算した結果(ずれ角Δθpの残り)が、中立角ずれ範囲(±6deg)内にあるか否かを判定する。そして、±6deg外にある場合にはNずれ補正処理が完了していないと判断して前記ステップS12に移行する。また、±6deg内にある場合にはNずれ補正処理が完了したと判断し、上記ずれ角Δθpの残りを、中立角ずれ補正処理を行うべき新たなずれ角Δθpとして記憶してから後述するステップS17に移行する。
Next, in step S14, the correction process execution unit 43b updates the N value stored in the N value storage unit 41, and proceeds to step S15. In this step S14, when the deviation angle Δθp of the pinion absolute angle θp0 is a positive value, the N value is corrected by −1, and when the deviation angle Δθp of the pinion absolute angle θp0 is a negative value, the N value is increased by +1. Only correct. In step S14, the correction processing execution unit 43b initializes the N deviation correction angle θcorn and the correction angle θcor to zero.
In step S15, the correction process execution unit 43b determines whether the N deviation correction process is completed. Specifically, the total angle (8.89 × (N-value update count)) corrected by the N deviation correction process is subtracted from the deviation angle Δθp of the pinion absolute angle θp0 stored in the correction processing execution flag setting unit 43a. It is determined whether the result (remaining deviation angle Δθp) is within the neutral angle deviation range (± 6 deg). If it is outside ± 6 deg, it is determined that the N deviation correction process has not been completed, and the process proceeds to step S12. If it is within ± 6 deg, it is determined that the N deviation correction process has been completed, and the remainder of the deviation angle Δθp is stored as a new deviation angle Δθp to be subjected to the neutral angle deviation correction process, and will be described later. The process proceeds to S17.
 すなわち、このステップS15では、補正処理実行部43bは、Nずれを補正するための補正角を、レゾルバが出力する信号をピニオンの回転角に換算した換算値の上限値(8.89deg)の整数倍に設定する。また、補正処理実行部43bは、中立角ずれを補正するための補正角を、Nずれが生じていない状態で直進走行しているときのピニオン絶対角θp0に設定する。
 ステップS16では、補正処理実行部43bは、補正処理実施済フラグFlgが“1”であるか否かを判定する。そして、Flg=1である場合にはステップS17に移行し、Flg≠1である場合にはそのまま補正処理を終了する。
That is, in this step S15, the correction processing execution unit 43b is an integer of the upper limit (8.89deg) of the conversion value obtained by converting the signal output from the resolver into the rotation angle of the pinion as the correction angle for correcting the N deviation. Set to double. In addition, the correction processing execution unit 43b sets the correction angle for correcting the neutral angle deviation to the pinion absolute angle θp0 when the vehicle travels straight in a state where no N deviation occurs.
In step S16, the correction processing execution unit 43b determines whether or not the correction processing execution flag Flg is “1”. If Flg = 1, the process proceeds to step S17, and if Flg ≠ 1, the correction process is terminated as it is.
 ステップS17では、補正処理実行部43bは、中立角ずれ補正角θcorcを0に初期化する。また、このステップS17では、補正処理実行部43bは、単位時間当たりの中立角ずれ補正角の変化量(中立角ずれ補正角速度)Δθcorcを設定する。中立角ずれ補正角速度Δθcorcは、上述したステップS12の処理と同様に、直進走行中であるときには予め設定した一定値とし、旋回走行中であるときには図8の補正角速度算出マップをもとに算出する。
 このとき、記憶したずれ角Δθpが正値である場合には、図8をもとに算出した中立角ずれ補正角速度Δθcorcの絶対値に-1を乗算したものを、最終的な中立角ずれ補正角速度Δθcorcとする。また、記憶したずれ角Δθpが負値である場合には、図8をもとに算出した中立角ずれ補正角速度Δθcorcの絶対値に+1を乗算したものを、最終的な中立角ずれ補正角速度Δθcorcとする。
In step S17, the correction processing execution unit 43b initializes the neutral angle deviation correction angle θcorc to 0. In step S17, the correction processing execution unit 43b sets a change amount (neutral angle deviation correction angular velocity) Δθcorc of the neutral angle deviation correction angle per unit time. The neutral angle deviation correction angular velocity Δθcorc is set to a predetermined constant value when traveling straight ahead, and is calculated based on the correction angular velocity calculation map of FIG. 8 during cornering, similarly to the processing of step S12 described above. .
At this time, if the stored deviation angle Δθp is a positive value, the absolute value of the neutral angle deviation correction angular velocity Δθcorc calculated based on FIG. 8 is multiplied by −1 to obtain the final neutral angle deviation correction. The angular velocity is Δθcorc. When the stored deviation angle Δθp is a negative value, the absolute value of the neutral angle deviation correction angular velocity Δθcorc calculated based on FIG. 8 is multiplied by +1 to obtain the final neutral angle deviation correction angular velocity Δθcorc. And
 次にステップS18では、補正処理実行部43bは、補正処理実行部43bは、前記ステップS17で設定した中立角ずれ補正角速度Δθcorcでピニオン絶対角θp0を補正し、その結果をピニオン絶対角θpとして出力する。具体的には、中立角ずれ補正角θcorc(初期値は0)に中立角ずれ補正角速度Δθcorcを加算し、これを新たな中立角ずれ補正角θcorcとする。そして、その中立角ずれ補正角θcorcを補正角θcorとして出力する。この処理を、中立角ずれ補正角θcorcがピニオン絶対角θpのずれ角Δθpとなるまで繰り返す。
 次にステップS19では、補正処理実施済フラグFlgを“0”にセットし、補正処理を終了する。
In step S18, the correction processing execution unit 43b corrects the pinion absolute angle θp0 with the neutral angle deviation correction angular velocity Δθcorc set in step S17, and outputs the result as the pinion absolute angle θp. To do. Specifically, the neutral angle deviation correction angular velocity Δθcorc is added to the neutral angle deviation correction angle θcorc (initial value is 0), and this is set as a new neutral angle deviation correction angle θcorc. Then, the neutral angle deviation correction angle θcorc is output as the correction angle θcor. This process is repeated until the neutral angle deviation correction angle θcorc becomes the deviation angle Δθp of the pinion absolute angle θp.
Next, in step S19, the correction processing execution flag Flg is set to “0”, and the correction processing ends.
(動作)
 次に、第1の実施形態の動作について説明する。
 イグニッションスイッチがオフ状態、つまり、クラッチ19が締結状態であるときに、運転者がイグニッションスイッチをオン状態にしたとする。すると、反力コントローラ30はクラッチ19に開放指令を出力し、クラッチ19を開放状態とする。これにより、SBW制御が実行可能な状態となる。
 SBW制御中に運転者がステアリング操作を行うと、反力コントローラ30は、運転者が入力した操舵角θhを算出し、車速Vと操舵角θhとに応じた転舵指令角θpcmdを算出する。そして、転舵コントローラ40は、実転舵角が転舵指令角θpcmdとなるように転舵モータ11を駆動制御する。これにより、転舵輪3FL,3FRが転舵する。
 また、転舵輪3FL,3FRの転舵によって、路面から転舵輪3FL,3FRへ路面反力が入力する。そのため、反力コントローラ30は、反力モータ9を駆動制御して、実路面反力に相当する操舵反力をステアリングホイール5に付与する。このようにしてSBW制御を行う。
(Operation)
Next, the operation of the first embodiment will be described.
Assume that the driver turns the ignition switch on when the ignition switch is off, that is, when the clutch 19 is engaged. Then, the reaction force controller 30 outputs a release command to the clutch 19 to place the clutch 19 in a released state. As a result, the SBW control can be executed.
When the driver performs a steering operation during the SBW control, the reaction force controller 30 calculates the steering angle θh input by the driver, and calculates the steering command angle θpcmd corresponding to the vehicle speed V and the steering angle θh. Then, the turning controller 40 drives and controls the turning motor 11 so that the actual turning angle becomes the turning command angle θpcmd. Thereby, the steered wheels 3FL and 3FR are steered.
Further, road surface reaction force is input from the road surface to the steered wheels 3FL and 3FR by turning the steered wheels 3FL and 3FR. Therefore, the reaction force controller 30 drives and controls the reaction force motor 9 and applies a steering reaction force corresponding to the actual road surface reaction force to the steering wheel 5. In this way, SBW control is performed.
 このとき、車両が40km/h以上で直進走行を行い、ヨーレート|γ|≦0.2deg/s、操舵角速度|dθ/dt|≦20deg/sとなると(図6のステップS1でYes)、転舵コントローラ40は、ピニオン絶対角算出部42で算出したピニオン絶対角θp0にずれが生じているかを判定する。γ≦0.2deg/sとなる直進走行中では、理想的にはピニオン絶対角θp0は1deg以下となる。そのため、ピニオン絶対角θp0の絶対値が許容角度θpth(1deg)を超えている場合には、算出したピニオン絶対角θp0にずれが生じていると判断する。 At this time, if the vehicle travels straight at 40 km / h or more and the yaw rate | γ | ≦ 0.2 deg / s and the steering angular velocity | dθ / dt | ≦ 20 deg / s (Yes in step S1 in FIG. 6), the vehicle rolls. The rudder controller 40 determines whether or not there is a deviation in the pinion absolute angle θp0 calculated by the pinion absolute angle calculation unit 42. During straight traveling where γ ≦ 0.2 deg / s, the pinion absolute angle θp0 is ideally 1 deg or less. Therefore, when the absolute value of the pinion absolute angle θp0 exceeds the allowable angle θpth (1 deg), it is determined that a deviation occurs in the calculated pinion absolute angle θp0.
 ここで、イグニッションスイッチがオフ状態であったときに、運転者がステアリングホイール5を操舵して、前輪3FL、3FRを転舵していたとする。このとき、Nずれが生じたものとすると、中立角ずれが生じていない場合には、ピニオン絶対角θp0のずれ角Δθpは、レゾルバ電気角1周期分のピニオン角換算値である8.89degの整数倍となる。
 すなわち、直進走行中はN=0でピニオン絶対角θp0が1deg以下となるはずである
が、Nずれが生じており、誤ってN=2となっていると、算出したピニオン絶対角θp0は8.89×2=17.78degとなってしまう。
Here, it is assumed that when the ignition switch is in the OFF state, the driver steers the steering wheel 5 and steers the front wheels 3FL and 3FR. Assuming that N deviation occurs at this time, if there is no neutral angle deviation, the deviation angle Δθp of the pinion absolute angle θp0 is 8.89 deg which is a pinion angle conversion value for one period of the resolver electrical angle. It is an integer multiple.
That is, during straight traveling, N = 0 and the pinion absolute angle θp0 should be 1 deg or less, but N deviation occurs, and if N = 2 by mistake, the calculated pinion absolute angle θp0 is 8 .89 × 2 = 17.78 deg.
 この場合、直進走行中のピニオン絶対角θp0が中立角ずれ範囲(±6deg)外となるため、転舵コントローラ40はNずれが発生していると判断する(ステップS4でYes)。そして、補正処理実施済フラグFlgを、Nずれ補正及び中立角ずれ補正が共に未実施であることを示す“2”にセットする(ステップS5)。したがって、転舵コントローラ40は、この直進走行中に算出したピニオン絶対角θp0を、補正すべきピニオン絶対角θp0のずれ角Δθpとし(ステップS6)、ピニオン絶対角θp0をずれ角Δθp分補正するNずれ補正処理を行う。 In this case, since the pinion absolute angle θp0 during straight traveling is outside the neutral angle deviation range (± 6 deg), the steering controller 40 determines that N deviation has occurred (Yes in step S4). Then, the correction processing completion flag Flg is set to “2” indicating that both N deviation correction and neutral angle deviation correction have not been performed (step S5). Therefore, the turning controller 40 sets the pinion absolute angle θp0 calculated during the straight traveling as the deviation angle Δθp of the pinion absolute angle θp0 to be corrected (step S6), and corrects the pinion absolute angle θp0 by the deviation angle Δθp. Deviation correction processing is performed.
 具体的には、Nずれ補正処理では、操舵角速度|dθh/dt|及び車速Vに応じたNずれ補正角速度Δθcornで、ピニオン絶対角θp0を徐々にずれ角Δθp分補正する処理を行う。車両が直進走行している場合には、転舵コントローラ40は、Nずれ補正角速度Δθcornの絶対値を一定値とし、車両が旋回走行している場合には、転舵コントローラ40は、図8に示す補正角速度算出マップを参照してNずれ補正角速度Δθcornの絶対値を算出する。このとき、ずれ角Δθp=17.78deg(正値)であるため、算出したNずれ補正角速度Δθcornの絶対値に-1を乗算したものを、最終的なNずれ補正角速度Δθcornとする(図7のステップS12)。 Specifically, in the N deviation correction processing, the pinion absolute angle θp0 is gradually corrected by the deviation angle Δθp with the N deviation correction angular velocity Δθcorn corresponding to the steering angular velocity | dθh / dt | and the vehicle speed V. When the vehicle is traveling straight ahead, the steering controller 40 sets the absolute value of the N deviation correction angular velocity Δθcorn to a constant value. When the vehicle is traveling around, the steering controller 40 The absolute value of the N deviation correction angular velocity Δθcorn is calculated with reference to the correction angular velocity calculation map shown. At this time, since the deviation angle Δθp = 17.78 deg (positive value), the absolute value of the calculated N deviation correction angular velocity Δθcorn multiplied by −1 is used as the final N deviation correction angular velocity Δθcorn (FIG. 7). Step S12).
 ここでは、車両が直進走行を継続している場合のNずれ補正処理について説明する。転舵コントローラ40は、先ず、Nずれ補正角速度Δθcorn(<0)をNずれ補正角θcorn(初期値0)に加算する。続いて、転舵コントローラ40は、算出したNずれ補正角θcorn(=Δθcorn)を補正角θcorとして設定してピニオン絶対角θp0に加算し、補正後のピニオン絶対角θpを出力する(ステップS13)。すなわち、ピニオン絶対角θpは、ピニオン絶対角θp0よりも|Δθcorn|だけ小さい角度となり、ピニオン絶対角θpと実際のピニオン絶対角との乖離が低減する。この処理は、ピニオン絶対角θp0を8.89deg分補正するまで繰り返し実行する。 Here, the N deviation correction process when the vehicle continues running straight will be described. The steered controller 40 first adds the N deviation correction angular velocity Δθcorn (<0) to the N deviation correction angle θcorn (initial value 0). Subsequently, the steered controller 40 sets the calculated N deviation correction angle θcorn (= Δθcorn) as the correction angle θcor, adds it to the pinion absolute angle θp0, and outputs the corrected pinion absolute angle θp (step S13). . That is, the pinion absolute angle θp is smaller by | Δθcorn | than the pinion absolute angle θp0, and the difference between the pinion absolute angle θp and the actual pinion absolute angle is reduced. This process is repeated until the pinion absolute angle θp0 is corrected by 8.89 deg.
 すなわち、転舵コントローラ40は、Nずれ補正角速度Δθcorn(<0)をNずれ補正角θcorn(=Δθcorn)に加算する。続いて、転舵コントローラ40は、算出したNずれ補正角θcorn(=Δθcorn+Δθcorn)を補正角θcorとして設定してピニオン絶対角θp0に加算し、補正後のピニオン絶対角θpを出力する。これにより、ピニオン絶対角θpは、ピニオン絶対角θp0よりも|Δθcorn+Δθcorn|だけ小さい角度となり、ピニオン絶対角θpと実際のピニオン絶対角との乖離がより低減する。
 このように、転舵コントローラ40は、ピニオン絶対角θp0をNずれ補正角速度Δθcornずつ徐々に補正する。そして、ピニオン絶対角θp0を8.89deg分補正すると、転舵コントローラ40は、N値記憶部41に記憶したN値を1減らし、N=1に更新する(ステップS14)。また、このとき、Nずれ補正角θcorn及び補正角θcorを0に初期化する。
That is, the turning controller 40 adds the N deviation correction angular velocity Δθcorn (<0) to the N deviation correction angle θcorn (= Δθcorn). Subsequently, the turning controller 40 sets the calculated N deviation correction angle θcorn (= Δθcorn + Δθcorn) as the correction angle θcor, adds it to the pinion absolute angle θp0, and outputs the corrected pinion absolute angle θp. As a result, the pinion absolute angle θp is smaller by | Δθcorn + Δθcorn | than the pinion absolute angle θp0, and the difference between the pinion absolute angle θp and the actual pinion absolute angle is further reduced.
Thus, the turning controller 40 gradually corrects the pinion absolute angle θp0 by N deviation correction angular velocities Δθcorn. When the pinion absolute angle θp0 is corrected by 8.89 deg, the steering controller 40 decreases the N value stored in the N value storage unit 41 by 1 and updates it to N = 1 (step S14). At this time, the N deviation correction angle θcorn and the correction angle θcor are initialized to zero.
 続いて、転舵コントローラ40は、Nずれ補正処理が完了したか否かを判定する。この時点では、ピニオン絶対角θp0のずれ角ΔθpからNずれ補正処理で補正したトータルの角度(8.89deg)を減算した結果(ずれ角Δθpの残り)は8.89degである。このように、ずれ角Δθpの残りが中立角ずれ範囲(±6deg)外であるため、転舵コントローラ40は、再びNずれ補正処理を行う。
 すなわち、転舵コントローラ40は、Nずれ補正角速度Δθcorn(<0)をNずれ補正角θcorn(初期値0)に加算する。続いて、転舵コントローラ40は、算出したNずれ補正角θcorn(=Δθcorn)をピニオン絶対角θp0に加算し、補正後のピニオン絶対角θpを出力する(ステップS13)。そして、この処理を、ピニオン絶対角θp0を8.89deg分補正するまで繰り返した後、転舵コントローラ40は、N値記憶部41に記憶したN値を1減らし、N=0に更新する(ステップS14)。このようにして、ずれ角Δθp=17.78deg分を補正し、Nずれ補正処理を完了する(ステップS15でYes)。
Subsequently, the steering controller 40 determines whether or not the N deviation correction process is completed. At this time, the result of subtracting the total angle (8.89 deg) corrected by the N shift correction process from the shift angle Δθp of the pinion absolute angle θp0 (remaining shift angle Δθp) is 8.89 deg. Thus, since the remainder of the deviation angle Δθp is outside the neutral angle deviation range (± 6 deg), the steered controller 40 performs the N deviation correction process again.
That is, the turning controller 40 adds the N deviation correction angular velocity Δθcorn (<0) to the N deviation correction angle θcorn (initial value 0). Subsequently, the steering controller 40 adds the calculated N deviation correction angle θcorn (= Δθcorn) to the pinion absolute angle θp0, and outputs the corrected pinion absolute angle θp (step S13). And after repeating this process until pinion absolute angle (theta) p0 is correct | amended by 8.89 deg, the steering controller 40 reduces N value memorize | stored in N value memory | storage part 41, and updates it to N = 0 (step). S14). In this way, the deviation angle Δθp = 17.78 deg is corrected, and the N deviation correction process is completed (Yes in step S15).
 Nずれ補正処理を行った結果、N値記憶部41に記憶したN値はN=0となり、直進走行中のピニオン絶対角θp0の絶対値は許容角度(1deg)以下となる。このように、ピニオン絶対角θp0にずれが生じていない状態とすることができる。
 本実施形態では、ピニオン絶対角θp0のずれを補正する際、単位時間当たりの補正角の変化量を設定し、設定した補正角速度に基づいてピニオン絶対角θp0をずれのない角度まで徐々に変化する。上記のように直進走行している場合、ピニオン絶対角θp0の補正前は、転舵角3FL,3FRがまっすぐでステアリングホイール5が中立位置からずれている状態となっている。この状態からピニオン絶対角θp0を徐々に変化し、ずれを補正する処理を行うと、転舵角3FL,3FRはまっすぐなままステアリングホイール5が徐々に中立位置に戻ることになる。したがって、上記補正角速度を適切に設定することで、運転者に違和感なくピニオン絶対角θp0を補正することができる。
As a result of performing the N deviation correction process, the N value stored in the N value storage unit 41 is N = 0, and the absolute value of the pinion absolute angle θp0 during straight traveling is equal to or less than the allowable angle (1 deg). In this way, the pinion absolute angle θp0 can be in a state where there is no deviation.
In this embodiment, when correcting the deviation of the pinion absolute angle θp0, the amount of change of the correction angle per unit time is set, and the pinion absolute angle θp0 is gradually changed to an angle without deviation based on the set correction angular velocity. . When traveling straight as described above, the steering angles 3FL and 3FR are straight and the steering wheel 5 is deviated from the neutral position before the correction of the pinion absolute angle θp0. If the pinion absolute angle θp0 is gradually changed from this state and the process of correcting the deviation is performed, the steering wheel 5 gradually returns to the neutral position while the turning angles 3FL and 3FR are kept straight. Therefore, by appropriately setting the correction angular velocity, the pinion absolute angle θp0 can be corrected without causing the driver to feel uncomfortable.
 そして、ピニオン絶対角θp0の補正が完了した後は、Nずれ補正処理及び中立角ずれ補正処理を行うことなく、算出したピニオン絶対角θp0をそのままピニオン絶対角θpとして出力する。
 したがって、運転者がステアリングホイール5を操作すると、反力コントローラ30は操舵角θhに応じた転舵指令角θpcmdを算出する。そして、転舵コントローラ40は、ピニオン絶対角θpと転舵指令角θpcmdとの偏差に応じた電流指令値Ipcmdを算出し、その電流指令値Ipcmdに駆動実電流Iprealが一致するように、転舵モータ11を制御する。このとき、転舵指令角θpcmdと実際の転舵角との乖離が無くなり、運転者のステアリング操作に応じて適切に転舵することができる。
After the correction of the pinion absolute angle θp0 is completed, the calculated pinion absolute angle θp0 is output as it is as the pinion absolute angle θp without performing the N deviation correction process and the neutral angle deviation correction process.
Therefore, when the driver operates the steering wheel 5, the reaction force controller 30 calculates a steering command angle θpcmd corresponding to the steering angle θh. Then, the steering controller 40 calculates a current command value Ipcmd corresponding to the deviation between the pinion absolute angle θp and the steering command angle θpcmd, and turns the steering so that the actual driving current Ipreal matches the current command value Ipcmd. The motor 11 is controlled. At this time, there is no difference between the steering command angle θpcmd and the actual steering angle, and the steering can be appropriately performed according to the steering operation of the driver.
 また、上記Nずれに加えて中立角ずれが発生している場合には、Nずれ補正処理を行った後、中立角ずれ補正処理を行う。この場合、Nずれ補正処理完了時に、中立角ずれ補正を行うべきピニオン絶対角θp0のずれ角Δθpを求める。そして、Nずれ補正処理と同様に、操舵角速度|dθh/dt|及び車速Vに応じた中立角ずれ補正角速度Δθcorcで、ピニオン絶対角θp0を徐々にずれ角Δθp分補正する処理を行う(ステップS17、S18)。
 そして、ピニオン絶対角θp0をずれ角Δθp分補正すると、中立角ずれ補正処理が完了する。中立角ずれ補正処理完了時には、補正角θcorは、中立角ずれ補正を行うべきずれ角Δθpと等しくなる。したがって、その後は、その補正角θcorでピニオン絶対角θp0を補正し、正確なピニオン絶対角θpを出力することができる。
When a neutral angle deviation occurs in addition to the N deviation, the neutral angle deviation correction process is performed after the N deviation correction process. In this case, when the N deviation correction process is completed, a deviation angle Δθp of the pinion absolute angle θp0 to be subjected to neutral angle deviation correction is obtained. Similar to the N deviation correction process, the pinion absolute angle θp0 is gradually corrected by the deviation angle Δθp with the neutral angle deviation correction angular speed Δθcorc corresponding to the steering angular velocity | dθh / dt | and the vehicle speed V (step S17). , S18).
When the pinion absolute angle θp0 is corrected by the shift angle Δθp, the neutral angle shift correction process is completed. When the neutral angle deviation correction processing is completed, the correction angle θcor is equal to the deviation angle Δθp that should be subjected to neutral angle deviation correction. Therefore, thereafter, the pinion absolute angle θp0 can be corrected with the correction angle θcor, and the accurate pinion absolute angle θp can be output.
 このように、本実施形態では、直進走行中に算出したピニオン絶対角θp0に基づいて、ピニオン絶対角θp0と実際のピニオン絶対角とに誤差が生じているか否かを判定する。さらに、誤差が生じている場合には、直進走行中に算出したピニオン絶対角θp0に基づいて、誤差の要因を判定する。具体的には、誤差の要因として、Nずれと中立角ずれの2つの要因を切り分けて判別する。したがって、誤差要因に応じた適切な補正処理を行うことができ、SBW制御時における転舵指令角θpcmdと実際の転舵角との乖離を確実に低減することができる。 Thus, in the present embodiment, it is determined whether or not there is an error between the pinion absolute angle θp0 and the actual pinion absolute angle based on the pinion absolute angle θp0 calculated during the straight traveling. Further, when an error has occurred, the cause of the error is determined based on the pinion absolute angle θp0 calculated during the straight traveling. More specifically, two factors, N deviation and neutral angle deviation, are discriminated as error factors. Therefore, an appropriate correction process according to the error factor can be performed, and the deviation between the turning command angle θpcmd and the actual turning angle during the SBW control can be surely reduced.
 このとき、直進走行中に算出したピニオン絶対角θp0が中立角ずれ範囲(±6deg)内にあるか否かによって、Nずれが発生しているか否かを判断する。ここで、中立角ずれ範囲は、レゾルバの極対数から定まるレゾルバ電気角1周期分のピニオン角換算値(8.89deg)に基づいて設定する。すなわち、N値が1ずれたときに生じるずれ角Δθpが8.89degであることを考慮し、これを下回るずれは中立角ずれに起因するものであると判断するように中立角ずれ範囲を設定する。これにより、適切に2つの誤差要因を切り分けて判別することができる。
 また、Nずれと中立角ずれの両方が生じている場合には、Nずれ補正処理を優先して行う。そのため、迅速に補正すべき大きな誤差から対処することができ、適切な補正処理を行うことができる。
At this time, it is determined whether or not N deviation has occurred depending on whether or not the pinion absolute angle θp0 calculated during straight traveling is within the neutral angle deviation range (± 6 deg). Here, the neutral angle deviation range is set based on a pinion angle conversion value (8.89 deg) for one period of the resolver electrical angle determined from the number of pole pairs of the resolver. That is, considering that the deviation angle Δθp generated when the N value is shifted by 1 is 8.89 deg, the neutral angle deviation range is set so that the deviation below this is caused by the neutral angle deviation. To do. Thereby, it is possible to appropriately discriminate and discriminate between two error factors.
Further, when both the N shift and the neutral angle shift occur, the N shift correction process is preferentially performed. Therefore, it is possible to deal with a large error that should be corrected quickly and to perform appropriate correction processing.
 さらに、直進走行中である場合と旋回走行中である場合とで補正の仕方を変えるので、走行状態に応じた適切な補正処理を行うことができる。例えば、直進走行中であっても図8の補正角速度算出マップを用いて補正角速度を算出するようにした場合、高速走行していると補正角速度が0のままとなってしまい、ピニオン絶対角θp0の補正を行うことができない。本実施形態では、高速走行であっても直進走行である場合にはピニオン絶対角θp0の補正を行ったとしても安定した走行を維持できるとして、補正角速度を0以外に設定する。このように、安定走行を確保しながらピニオン絶対角θp0を補正することができる。 Furthermore, since the correction method is changed depending on whether the vehicle is traveling straight or turning, an appropriate correction process according to the traveling state can be performed. For example, when the correction angular velocity is calculated using the correction angular velocity calculation map of FIG. 8 even during straight traveling, the correction angular velocity remains 0 when traveling at high speed, and the pinion absolute angle θp0 Cannot be corrected. In the present embodiment, the correction angular velocity is set to a value other than 0, assuming that stable traveling can be maintained even if correction of the pinion absolute angle θp0 is performed in the case of straight traveling even at high speed. In this way, the pinion absolute angle θp0 can be corrected while ensuring stable running.
 なお、図3において、N値記憶部41が記憶部に対応し、ピニオン絶対角算出部42が回転角算出部に対応し、ピニオン絶対角補正部43が回転角補正部に対応している。また、図6のステップS1が走行状態判定部に対応し、ステップS2が誤差発生判断部に対応し、ステップS4が誤差要因判定部に対応している。さらに、図7のステップS12及びS17が補正角速度設定部に対応し、ステップS14がカウント値補正部に対応し、ステップS15が補正角設定部に対応している。 In FIG. 3, the N value storage unit 41 corresponds to the storage unit, the pinion absolute angle calculation unit 42 corresponds to the rotation angle calculation unit, and the pinion absolute angle correction unit 43 corresponds to the rotation angle correction unit. Further, step S1 in FIG. 6 corresponds to the running state determination unit, step S2 corresponds to the error occurrence determination unit, and step S4 corresponds to the error factor determination unit. Further, steps S12 and S17 in FIG. 7 correspond to the correction angular velocity setting unit, step S14 corresponds to the count value correction unit, and step S15 corresponds to the correction angle setting unit.
(効果)
 第1の実施形態では、以下の効果が得られる。
 (1)転舵コントローラ40は、転舵モータ角センサ12に用いるレゾルバが出力した信号が示す角度が、機械角のいずれの区間に相当するかを示すカウント値(N値)をN値記憶部41に記憶する。また、転舵コントローラ40は、転舵モータ角センサ12に用いるレゾルバが出力した信号と、N値記憶部41に記憶したN値とに基づいて、ピニオン絶対角θp0を算出する。そして、転舵コントローラ40は、自車両が直進走行中であると判定したときのピニオン絶対角θp0の絶対値が許容角度θpth以上であるとき、ピニオン絶対角θp0と実際のピニオン絶対角との間に誤差が生じていると判断する。このとき、転舵コントローラ40は、自車両が直進走行中であると判定したときのピニオン絶対角θp0に基づいて誤差の要因を判定し、その要因に応じてピニオン絶対角θp0を誤差が小さくなる方向に補正する。
(effect)
In the first embodiment, the following effects can be obtained.
(1) The steered controller 40 has an N value storage unit for indicating a count value (N value) indicating which section of the mechanical angle corresponds to the angle indicated by the signal output from the resolver used for the steered motor angle sensor 12. 41. Further, the turning controller 40 calculates the pinion absolute angle θp0 based on the signal output from the resolver used for the turning motor angle sensor 12 and the N value stored in the N value storage unit 41. When the absolute value of the pinion absolute angle θp0 when the steering controller 40 determines that the host vehicle is traveling straight ahead is equal to or greater than the allowable angle θpth, the steering controller 40 determines that the pinion absolute angle θp0 is between the actual pinion absolute angle and the actual pinion absolute angle. It is determined that there is an error in At this time, the steering controller 40 determines a factor of error based on the pinion absolute angle θp0 when it is determined that the host vehicle is traveling straight ahead, and the error of the pinion absolute angle θp0 is reduced according to the factor. Correct in the direction.
 このように、直進走行時のピニオン絶対角は略0であることを利用し、直進走行時に算出したピニオン絶対角θp0の絶対値が許容角度θpth以上のとき、ピニオン絶対角θp0にずれが生じていると判断する。したがって、ピニオン絶対角θp0にずれが発生しており、転舵指令角から実際の転舵角が乖離している状態であることを適切に認識することができる。また、ピニオン絶対角θp0のずれの要因に応じて補正方法を変えることができるので、より適切な補正が可能となる。その結果、転舵指令角と実際の転舵角との乖離をより適切に低減することができる。 In this way, utilizing the fact that the pinion absolute angle during straight traveling is substantially 0, when the absolute value of the pinion absolute angle θp0 calculated during straight traveling is greater than or equal to the allowable angle θpth, a deviation occurs in the pinion absolute angle θp0. Judge that Therefore, a deviation occurs in the pinion absolute angle θp0, and it can be appropriately recognized that the actual turning angle is deviated from the turning command angle. In addition, since the correction method can be changed according to the cause of the deviation of the pinion absolute angle θp0, more appropriate correction can be performed. As a result, the deviation between the steering command angle and the actual steering angle can be reduced more appropriately.
 (2)転舵コントローラ40は、自車両が直進走行中であると判定したときのピニオン絶対角θp0が、0度を跨ぐ微小角度範囲(中立角ずれ範囲)内にあるとき、誤差の要因が部品誤差によるものであると判定し、微小角度範囲(中立角ずれ範囲)外にあるとき、誤差の要因がN値の誤差によるものであると判定する。
 イグニッションスイッチをオフ状態としてクラッチを締結(ステアリングホイールと転舵輪とを機械的に連結)しているときに、運転者がステアリングホイールを操作して転舵輪を転舵すると、イグニッションスイッチをオン状態としたときにN値がずれる場合がある。すなわち、前回のイグニッションスイッチのオン中に最後にN値記憶部41に記憶したN値と、今回のイグニッションスイッチのオン時における実際のN値とが一致しなくなる場合がある。部品誤差やアライメント調整誤差等によってピニオン絶対角がずれる中立角ずれの場合、そのずれ角は微小な角度となるが、上記のようなN値がずれることによってピニオン絶対角がずれるNずれの場合、そのずれ角は比較的大きい。したがって、算出したピニオン絶対角θp0のずれ角を監視することで、ずれ要因を判定することができる。
(2) When the turning controller 40 determines that the pinion absolute angle θp0 when it is determined that the host vehicle is traveling straight ahead is within a minute angle range (neutral angle deviation range) crossing 0 degrees, an error factor is generated. It is determined that the error is due to a component error, and when it is outside the minute angle range (neutral angle deviation range), it is determined that the cause of the error is an N value error.
When the ignition switch is turned off and the clutch is engaged (steering wheel and steered wheel are mechanically connected), if the driver steers the steered wheel by operating the steering wheel, the ignition switch is turned on. The N value may be shifted. That is, there is a case where the N value last stored in the N value storage unit 41 while the previous ignition switch is turned on does not match the actual N value when the current ignition switch is turned on. In the case of a neutral angle deviation in which the pinion absolute angle deviates due to component error, alignment adjustment error, etc., the deviation angle becomes a minute angle, but in the case of N deviation in which the pinion absolute angle deviates due to the deviation of the N value as described above, The deviation angle is relatively large. Therefore, the deviation factor can be determined by monitoring the deviation angle of the calculated pinion absolute angle θp0.
 (3)転舵コントローラ40は、誤差の要因に応じて、ピニオン絶対角θp0を補正するための補正角を設定する。また、転舵コントローラ40は、単位時間当たりの補正角の変化量を設定する。そして、転舵コントローラ40は、ピニオン絶対角θp0を、設定した変化量で、設定した補正角だけ補正する。
 これにより、徐々にピニオン絶対角θp0のずれを補正することができる。したがって、ピニオン絶対角θp0を補正したことによる転舵角の変化を、運転者に気づかせにくくすることができる。
(3) The steering controller 40 sets a correction angle for correcting the pinion absolute angle θp0 according to the cause of the error. Further, the turning controller 40 sets a change amount of the correction angle per unit time. Then, the turning controller 40 corrects the pinion absolute angle θp0 by the set change amount by the set correction angle.
Thereby, the deviation of the pinion absolute angle θp0 can be corrected gradually. Therefore, it is possible to make it difficult for the driver to notice the change in the turning angle caused by correcting the pinion absolute angle θp0.
 (4)転舵コントローラ20は、誤差の要因がN値の誤差によるものであるとき、レゾルバが出力する信号をピニオンの回転角に換算した換算値の上限値(360/極対数/ギヤ比=8.89deg)の整数倍を、ピニオン絶対角θp0の補正角として設定する。また、転舵コントローラ20は、ピニオン絶対角θp0を設定した補正角だけ補正する間に、ピニオン絶対角θp0を上記上限値だけ補正する毎にN値記憶部41に記憶したN値を誤差が小さくなる方向に補正する。
 N値が“1”ずれた場合、ピニオン絶対角θp0は、レゾルバ電気角1周期分のピニオン角換算値(8.89deg)だけ実際のピニオン絶対角からずれる。したがって、8.89degの整数倍をピニオン絶対角θp0の補正角として設定すれば、Nずれを確実に補正することができる。また、Nずれ補正に際し、ピニオン絶対角θp0を8.89deg補正する毎にN値記憶部41に記憶したN値を補正するので、Nずれ補正が完了した後は、正しいN値で正しいピニオン絶対角θp0の算出が可能となる。
(4) When the cause of the error is due to the error of the N value, the steered controller 20 converts the signal output from the resolver into the rotation angle of the pinion (360 / number of pole pairs / gear ratio = An integer multiple of 8.89 deg) is set as the correction angle of the pinion absolute angle θp0. Further, the steering controller 20 corrects the N value stored in the N value storage unit 41 each time the pinion absolute angle θp0 is corrected by the above upper limit while correcting the pinion absolute angle θp0 by the set correction angle with a small error. Correct in the direction.
When the N value is shifted by “1”, the pinion absolute angle θp0 deviates from the actual pinion absolute angle by a converted pinion angle value (8.89 deg) for one period of the resolver electrical angle. Therefore, if an integer multiple of 8.89 deg is set as the correction angle of the pinion absolute angle θp0, the N deviation can be corrected reliably. In addition, when correcting the N deviation, the N value stored in the N value storage unit 41 is corrected every time the pinion absolute angle θp0 is corrected by 8.89 deg. Therefore, after the N deviation correction is completed, the correct pinion absolute value is correct. The angle θp0 can be calculated.
 (5)転舵コントローラ40は、誤差の要因が部品誤差によるものであるとき、自車両が直進走行中であると判定したときのピニオン絶対角θp0を、ピニオン絶対角θp0の補正角として設定する。これにより、ピニオン絶対角θp0の補正が完了したとき、直進走行中に算出したピニオン絶対角θp0を理想的な値(0)にすることができる。
 (6)転舵コントローラ40は、自車両が旋回走行中であると判定したとき、操舵角速度が速いほど単位時間当たりの補正角の変化量を大きく設定する。これにより、速い操舵を行っている場合には、ピニオン絶対角θp0を補正したことによる転舵角の変化に運転者が気づきにくいとして、ピニオン絶対角θp0の補正角速度を大きくすることができる。したがって、ピニオン絶対角θp0を素早く補正することができる。
(5) The steering controller 40 sets the pinion absolute angle θp0 when it is determined that the host vehicle is traveling straight when the error is caused by a component error as the correction angle of the pinion absolute angle θp0. . Thereby, when the correction of the pinion absolute angle θp0 is completed, the pinion absolute angle θp0 calculated during the straight traveling can be set to an ideal value (0).
(6) When the turning controller 40 determines that the host vehicle is turning, the turning controller 40 sets a larger amount of change in the correction angle per unit time as the steering angular velocity is faster. As a result, when fast steering is being performed, the correction angular velocity of the pinion absolute angle θp0 can be increased because the driver is less likely to notice a change in the turning angle due to the correction of the pinion absolute angle θp0. Therefore, the pinion absolute angle θp0 can be corrected quickly.
 (7)転舵コントローラ40は、自車両が旋回走行中であると判定したとき、車速が速いほど単位時間当たりの補正角の変化量を小さく設定する。これにより、高速走行している場合には、低速走行している場合と比較して、ピニオン絶対角θp0の補正角速度を小さくすることができる。したがって、安定走行を確保しつつピニオン絶対角θp0を補正することができる。
 (8)転舵コントローラ40は、自車両が直進走行中であると判定したとき、単位時間当たりの補正角の変化量を予め設定した一定値に設定する。これにより、直進走行しているときは、ピニオン絶対角θp0を補正したことによる転舵角の変化に運転者が気づきにくいとして、ピニオン絶対角θp0の補正角速度を比較的大きくすることもできる。したがって、より適切にピニオン絶対角θp0を補正することができる。
(7) When the turning controller 40 determines that the host vehicle is turning, the turning controller 40 sets a smaller change amount of the correction angle per unit time as the vehicle speed is higher. Thereby, when traveling at high speed, the correction angular velocity of the pinion absolute angle θp0 can be made smaller than when traveling at low speed. Therefore, the pinion absolute angle θp0 can be corrected while ensuring stable running.
(8) When the turning controller 40 determines that the host vehicle is traveling straight ahead, the turning controller 40 sets the amount of change in the correction angle per unit time to a predetermined constant value. As a result, when the vehicle is traveling straight ahead, the corrected angular velocity of the pinion absolute angle θp0 can be made relatively large so that the driver is less likely to notice the change in the turning angle due to the correction of the pinion absolute angle θp0. Therefore, the pinion absolute angle θp0 can be corrected more appropriately.
 (9)微小角度範囲(中立角ずれ範囲)は、転舵モータ角センサ12に用いるレゾルバの極対数に基づいて定められる、当該レゾルバが出力する信号をピニオンの回転角に換算した換算値の上限値に基づいて設定する。
 すなわち、Nずれが発生している場合、ピニオン絶対角θp0は、最低でもレゾルバが出力する信号をピニオンの回転角に換算した換算値の上限値の分だけずれることを考慮し、中立角ずれ範囲を設定する。したがって、適切にピニオン絶対角θp0のずれ要因を判定することができる。
(9) The minute angle range (neutral angle deviation range) is determined based on the number of pole pairs of the resolver used for the steered motor angle sensor 12, and is the upper limit of a conversion value obtained by converting the signal output by the resolver into the rotation angle of the pinion. Set based on the value.
That is, when N deviation occurs, the pinion absolute angle θp0 is considered to be shifted by an upper limit value of the converted value obtained by converting the signal output from the resolver into the rotation angle of the pinion at least. Set. Accordingly, it is possible to appropriately determine the deviation factor of the pinion absolute angle θp0.
 (10)転舵輪を転舵駆動する転舵モータの回転角に応じて周期的に変化する信号を出力するレゾルバが出力した信号が示す角度が、機械角のいずれの区間に相当するかを示すカウント値を記憶しておく。また、レゾルバが出力した信号と記憶したカウント値とに基づいて、ステアリングラックのラックギヤと噛合するピニオンの回転角の絶対角度であるピニオン絶対角を算出する。そして、自車両が直進走行中であると判定したときに算出したピニオン絶対角の絶対値が、予め設定した許容角度以上であるとき、算出したピニオン絶対角と実際のピニオン絶対角との間に誤差が生じていると判断する。このとき、その誤差の要因を、自車両が直進走行中であると判定したときに算出したピニオン絶対角に基づいて判定したうえで、当該誤差の要因に応じて、算出したピニオン絶対角を前記誤差が小さくなる方向に補正する。 (10) Indicates which section of the mechanical angle corresponds to the angle indicated by the signal output by the resolver that outputs a signal that periodically changes according to the rotation angle of the steered motor that steers the steered wheels. Store the count value. Further, based on the signal output from the resolver and the stored count value, a pinion absolute angle that is an absolute angle of the rotation angle of the pinion that meshes with the rack gear of the steering rack is calculated. When the absolute value of the pinion absolute angle calculated when it is determined that the host vehicle is traveling straight ahead is greater than or equal to the preset allowable angle, the calculated pinion absolute angle is between the actual pinion absolute angle and Judge that an error has occurred. At this time, after determining the cause of the error based on the pinion absolute angle calculated when it is determined that the host vehicle is traveling straight ahead, the calculated pinion absolute angle is determined according to the error factor. Correction is performed in a direction that reduces the error.
 このように、直進走行時のピニオン絶対角は略0であることを利用し、直進走行時に算出したピニオン絶対角θp0の絶対値が許容角度θpth以上のとき、ピニオン絶対角θp0にずれが生じていると判断する。したがって、ピニオン絶対角θp0にずれが発生しており、転舵指令角から実際の転舵角が乖離している状態であることを適切に認識することができる。また、ピニオン絶対角θp0のずれの要因に応じて補正方法を変えることができるので、より適切な補正が可能となる。その結果、転舵指令角と実際の転舵角との乖離をより適切に低減することができる。 In this way, utilizing the fact that the pinion absolute angle during straight traveling is substantially 0, when the absolute value of the pinion absolute angle θp0 calculated during straight traveling is equal to or larger than the allowable angle θpth, the pinion absolute angle θp0 is shifted. Judge that Therefore, a deviation occurs in the pinion absolute angle θp0, and it can be appropriately recognized that the actual turning angle is deviated from the turning command angle. In addition, since the correction method can be changed according to the cause of the deviation of the pinion absolute angle θp0, more appropriate correction can be performed. As a result, the deviation between the steering command angle and the actual steering angle can be reduced more appropriately.
(変形例)
 (1)上記実施形態においては、極対数を3とする場合について説明したが、3以外の値とすることもできる。但し、極対数が大きすぎると、Nずれが発生しているときの最小のピニオン絶対角θp0のずれ角が、中立角ずれが発生しているときの最大のピニオン絶対角θp0のずれ角よりも小さくなり、ピニオン絶対角θp0のずれ要因を判定することができなくなる。したがって、ずれ要因を切り分け可能な極対数を採用するようにする。
 (2)上記実施形態においては、ピニオン絶対角θp0を補正することで中立角ずれ補正を実現する場合について説明したが、転舵指令角θpcmdを補正して中立角ずれ補正を行うこともできる。この場合にも、適切に転舵指令角と実際の転舵角との乖離を低減することができる。
(Modification)
(1) In the above embodiment, the case where the number of pole pairs is 3 has been described, but a value other than 3 may be used. However, if the number of pole pairs is too large, the deviation angle of the minimum pinion absolute angle θp0 when the N deviation occurs is larger than the deviation angle of the maximum pinion absolute angle θp0 when the neutral angle deviation occurs. As a result, the deviation factor of the pinion absolute angle θp0 cannot be determined. Therefore, the number of pole pairs capable of separating the deviation factors is adopted.
(2) In the above embodiment, the neutral angle deviation correction is realized by correcting the pinion absolute angle θp0. However, the neutral angle deviation correction can also be performed by correcting the steering command angle θpcmd. Also in this case, the deviation between the steering command angle and the actual steering angle can be reduced appropriately.
産業上の利用の可能性Industrial applicability
 本発明に係る転舵制御装置によれば、レゾルバの出力信号に基づいて算出したピニオン絶対角にずれが生じている場合には、その要因に応じた補正を行うことができる。したがって、転舵指令角と実際の転舵角との乖離をより適切に低減することができ、有用である。 According to the steering control device according to the present invention, when there is a shift in the pinion absolute angle calculated based on the output signal of the resolver, correction according to the factor can be performed. Therefore, the deviation between the steering command angle and the actual steering angle can be more appropriately reduced, which is useful.
 3FL、3FR…前輪(転舵輪)、5…ステアリングホイール、7…操舵絶対角センサ、9…反力モータ、11…転舵モータ、12…転舵モータ角センサ、15…ラックギヤ、16…ステアリングラック、19…クラッチ、21…ピニオン、30…反力コントローラ、31…操舵絶対角算出部、32…ピニオン角指令値算出部、40…転舵コントローラ、41…N値記憶部、42…ピニオン絶対角算出部、43…ピニオン絶対角補正部、44…転舵角制御部、45…電流制御ドライバ、46…バックアップモード切替部 3FL, 3FR: Front wheels (steering wheels), 5 ... Steering wheel, 7 ... Steering absolute angle sensor, 9 ... Reaction force motor, 11 ... Steering motor, 12 ... Steering motor angle sensor, 15 ... Rack gear, 16 ... Steering rack , 19 ... Clutch, 21 ... Pinion, 30 ... Reaction force controller, 31 ... Steering absolute angle calculation unit, 32 ... Pinion angle command value calculation unit, 40 ... Steering controller, 41 ... N value storage unit, 42 ... Pinion absolute angle Calculation unit, 43 ... Pinion absolute angle correction unit, 44 ... Steering angle control unit, 45 ... Current control driver, 46 ... Backup mode switching unit

Claims (10)

  1.  ステアリングホイールと転舵輪とが機械的に分離され、前記ステアリングホイールの操舵状態に基づいて前記転舵輪を転舵する転舵制御装置であって、
     前記転舵輪を転舵駆動する転舵モータと、
     前記転舵モータの回転角に応じて周期的に変化する信号を出力するレゾルバと、
     前記レゾルバが出力した信号が示す角度が、機械角のいずれの区間に相当するかを示すカウント値を記憶する不揮発性の記憶部と、
     前記レゾルバが出力した信号と、前記記憶部に記憶したカウント値とに基づいて、ステアリングラックのラックギヤと噛合するピニオンの回転角の絶対角度であるピニオン絶対角を算出する回転角算出部と、
     自車両が直進走行中であるか旋回走行中であるかを判定する走行状態判定部と、
     前記走行状態判定部で自車両が直進走行中であると判定したときに前記回転角算出部で算出したピニオン絶対角の絶対値が、予め設定した許容角度以上であるとき、前記回転角算出部で算出したピニオン絶対角と実際のピニオン絶対角との間に誤差が生じていると判断する誤差発生判断部と、
     前記誤差発生判断部で前記誤差が生じていると判断したとき、前記走行状態判定部で自車両が直進走行中であると判定したときに前記回転角算出部で算出したピニオン絶対角に基づいて、前記誤差の要因を判定する誤差要因判定部と、
     前記誤差要因判定部で判定した前記誤差の要因に応じて、前記回転角算出部で算出したピニオン絶対角を前記誤差が小さくなる方向に補正する回転角補正部と、を備えることを特徴とする転舵制御装置。
    A steering control device that mechanically separates a steering wheel and a steered wheel and steers the steered wheel based on a steering state of the steering wheel,
    A steered motor that steers the steered wheels;
    A resolver that outputs a signal that periodically changes according to a rotation angle of the steering motor;
    A non-volatile storage unit that stores a count value indicating which section of the mechanical angle the angle indicated by the signal output from the resolver corresponds to;
    A rotation angle calculation unit that calculates a pinion absolute angle that is an absolute angle of the rotation angle of the pinion that meshes with the rack gear of the steering rack, based on the signal output from the resolver and the count value stored in the storage unit;
    A traveling state determination unit that determines whether the host vehicle is traveling straight or turning.
    When the absolute value of the pinion absolute angle calculated by the rotation angle calculation unit when the traveling state determination unit determines that the host vehicle is traveling straight ahead is greater than or equal to a preset allowable angle, the rotation angle calculation unit An error occurrence determination unit that determines that an error has occurred between the pinion absolute angle calculated in step 1 and the actual pinion absolute angle;
    Based on the pinion absolute angle calculated by the rotation angle calculation unit when the driving state determination unit determines that the vehicle is traveling straight when the error generation determination unit determines that the error has occurred. , An error factor determination unit for determining the error factor;
    A rotation angle correction unit that corrects the pinion absolute angle calculated by the rotation angle calculation unit in a direction in which the error decreases according to the error factor determined by the error factor determination unit. Steering control device.
  2.  前記誤差要因判定部は、前記走行状態判定部で自車両が直進走行中であると判定したときに前記回転角算出部で算出したピニオン絶対角が、0度を跨ぐ微小角度範囲内にあるとき、前記誤差の要因が部品誤差によるものであると判定し、前記微小角度範囲外にあるとき、前記誤差の要因が前記カウント値の誤差によるものであると判定することを特徴とする請求項1に記載の転舵制御装置。 When the error factor determining unit determines that the traveling state determining unit determines that the host vehicle is traveling straight ahead, the pinion absolute angle calculated by the rotation angle calculating unit is within a minute angle range over 0 degrees. The error factor is determined to be due to a component error, and when the error factor is outside the minute angle range, the error factor is determined to be due to the error of the count value. The steering control device described in 1.
  3.  前記回転角補正部は、
     前記誤差要因判定部で判定した前記誤差の要因に応じて、前記回転角算出部で算出したピニオン絶対角を補正するための補正角を設定する補正角設定部と、
     単位時間当たりの前記補正角の変化量を設定する補正角速度設定部と、を備え、
     前記回転角算出部で算出したピニオン絶対角を、前記補正角速度設定部で設定した変化量で、前記補正角設定部で設定した補正角だけ補正することを特徴とする請求項1又は2に記載の転舵制御装置。
    The rotation angle correction unit
    A correction angle setting unit for setting a correction angle for correcting the pinion absolute angle calculated by the rotation angle calculation unit according to the error factor determined by the error factor determination unit;
    A correction angular velocity setting unit for setting a change amount of the correction angle per unit time,
    3. The pinion absolute angle calculated by the rotation angle calculation unit is corrected by a correction angle set by the correction angle setting unit with a change amount set by the correction angular velocity setting unit. Steering control device.
  4.  前記補正角設定部は、前記誤差要因判定部で前記誤差の要因が前記カウント値の誤差によるものであると判定したとき、前記レゾルバが出力する信号を前記ピニオンの回転角に換算した換算値の上限値の整数倍を、前記補正角として設定し、
     前記回転角補正部は、前記回転角算出部で算出したピニオン絶対角を前記補正角設定部で設定した補正角だけ補正する間に、当該ピニオン絶対角を前記上限値だけ補正する毎に前記記憶部に記憶したカウント値を前記誤差が小さくなる方向に補正するカウント値補正部を備えることを特徴とする請求項3に記載の転舵制御装置。
    When the error factor determination unit determines that the error factor is due to the error of the count value, the correction angle setting unit converts the signal output from the resolver into a rotation angle of the pinion. Set an integer multiple of the upper limit as the correction angle,
    The rotation angle correction unit corrects the pinion absolute angle calculated by the rotation angle calculation unit by the correction angle set by the correction angle setting unit, and stores the memory every time the pinion absolute angle is corrected by the upper limit value. The steering control device according to claim 3, further comprising a count value correction unit that corrects the count value stored in the unit in a direction in which the error decreases.
  5.  前記補正角設定部は、前記誤差要因判定部で前記誤差の要因が部品誤差によるものであると判定したとき、前記走行状態判定部で自車両が直進走行中であると判定したときに前記回転角算出部で算出したピニオン絶対角を前記補正角として設定することを特徴とする請求項3又は4に記載の転舵制御装置。 The correction angle setting unit performs the rotation when the error factor determination unit determines that the error factor is due to a component error, and when the traveling state determination unit determines that the host vehicle is traveling straight ahead. The turning control device according to claim 3 or 4, wherein the pinion absolute angle calculated by the angle calculation unit is set as the correction angle.
  6.  前記補正角速度設定部は、前記走行状態判定部で自車両が旋回走行中であると判定したとき、操舵角速度が速いほど単位時間当たりの前記補正角の変化量を大きく設定することを特徴とする請求項3~5の何れか1項に記載の転舵制御装置。 The correction angular velocity setting unit sets a larger change amount of the correction angle per unit time as the steering angular velocity is faster when the traveling state determination unit determines that the host vehicle is turning. The turning control device according to any one of claims 3 to 5.
  7.  車速を検出する車速検出部を備え、
     前記補正角速度設定部は、前記走行状態判定部で自車両が旋回走行中であると判定したとき、前記車速検出部で検出した車速が速いほど単位時間当たりの前記補正角の変化量を小さく設定することを特徴とする請求項3~6の何れか1項に記載の転舵制御装置。
    It has a vehicle speed detector that detects the vehicle speed,
    The correction angular velocity setting unit sets a smaller change amount of the correction angle per unit time as the vehicle speed detected by the vehicle speed detection unit is faster when the traveling state determination unit determines that the host vehicle is turning. The turning control device according to any one of claims 3 to 6, characterized in that:
  8.  前記補正角速度設定部は、前記走行状態判定部で自車両が直進走行中であると判定したとき、単位時間当たりの前記補正角の変化量を予め設定した一定値に設定することを特徴とする請求項3~7の何れか1項に記載の転舵制御装置。 The correction angular velocity setting unit sets a change amount of the correction angle per unit time to a predetermined constant value when the traveling state determination unit determines that the host vehicle is traveling straight ahead. The turning control device according to any one of claims 3 to 7.
  9.  前記微小角度範囲は、前記レゾルバが有する極対数に基づいて定められる、当該レゾルバが出力する信号を前記ピニオンの回転角に換算した換算値の上限値に基づいて設定することを特徴とする請求項2~8の何れか1項に記載の転舵制御装置。 The minute angle range is set based on an upper limit value of a conversion value determined based on the number of pole pairs of the resolver, and a signal output from the resolver converted into a rotation angle of the pinion. 9. The steering control device according to any one of 2 to 8.
  10.  ステアリングホイールと転舵輪とが機械的に分離され、前記ステアリングホイールの操舵状態に基づいて前記転舵輪を転舵する転舵制御方法であって、
     前記転舵輪を転舵駆動する転舵モータの回転角に応じて周期的に変化する信号を出力するレゾルバが出力した信号が示す角度が、機械角のいずれの区間に相当するかを示すカウント値を記憶しておき、
     前記レゾルバが出力した信号と記憶したカウント値とに基づいて、ステアリングラックのラックギヤと噛合するピニオンの回転角の絶対角度であるピニオン絶対角を算出し、自車両が直進走行中であると判定したときに算出したピニオン絶対角の絶対値が、予め設定した許容角度以上であるとき、算出したピニオン絶対角と実際のピニオン絶対角との間に誤差が生じていると判断し、その誤差の要因を、自車両が直進走行中であると判定したときに算出したピニオン絶対角に基づいて判定したうえで、当該誤差の要因に応じて、算出したピニオン絶対角を前記誤差が小さくなる方向に補正することを特徴とする転舵制御方法。
    A steering control method in which a steering wheel and a steered wheel are mechanically separated, and the steered wheel is steered based on a steering state of the steering wheel,
    A count value indicating which section of the mechanical angle corresponds to the angle indicated by the signal output by the resolver that outputs a signal that periodically changes in accordance with the rotation angle of the steering motor that steers the steered wheel. Remember
    Based on the signal output from the resolver and the stored count value, the pinion absolute angle, which is the absolute rotation angle of the pinion meshing with the rack gear of the steering rack, is calculated, and it is determined that the host vehicle is traveling straight ahead. When the absolute value of the calculated pinion absolute angle is greater than or equal to the preset allowable angle, it is determined that there is an error between the calculated pinion absolute angle and the actual pinion absolute angle, and the cause of the error Is determined based on the pinion absolute angle calculated when it is determined that the host vehicle is traveling straight ahead, and the calculated pinion absolute angle is corrected in a direction that reduces the error according to the cause of the error. A steering control method characterized by:
PCT/JP2013/007116 2013-01-11 2013-12-04 Steering control device and steering control method WO2014108955A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014556214A JP5867627B2 (en) 2013-01-11 2013-12-04 Steering control device and steering control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-003884 2013-01-11
JP2013003884 2013-01-11

Publications (1)

Publication Number Publication Date
WO2014108955A1 true WO2014108955A1 (en) 2014-07-17

Family

ID=51166635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007116 WO2014108955A1 (en) 2013-01-11 2013-12-04 Steering control device and steering control method

Country Status (2)

Country Link
JP (1) JP5867627B2 (en)
WO (1) WO2014108955A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109649490A (en) * 2019-01-22 2019-04-19 广州小鹏汽车科技有限公司 Automatic calibration method, system and the vehicle of vehicle steering wheel zero bias
CN114044052A (en) * 2021-11-25 2022-02-15 东风悦享科技有限公司 Virtual steering wheel corner sensor system and method based on vehicle straight-ahead judgment
US11661101B2 (en) 2020-08-17 2023-05-30 Honda Motor Co., Ltd. Setting vehicle center in electronic power steering system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10329728A (en) * 1997-05-28 1998-12-15 Toyota Motor Corp Steering device for vehicle
JP2004205332A (en) * 2002-12-25 2004-07-22 Koyo Seiko Co Ltd Mobile unit stroke detecting apparatus
JP2009204317A (en) * 2008-02-26 2009-09-10 Nsk Ltd Resolver control device, rotational angle position detector and actuator control system
JP2009262643A (en) * 2008-04-22 2009-11-12 Toyota Motor Corp Vehicle control device
JP2011005933A (en) * 2009-06-25 2011-01-13 Nissan Motor Co Ltd Steering control device, angle detecting device, and vehicle with steering control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10329728A (en) * 1997-05-28 1998-12-15 Toyota Motor Corp Steering device for vehicle
JP2004205332A (en) * 2002-12-25 2004-07-22 Koyo Seiko Co Ltd Mobile unit stroke detecting apparatus
JP2009204317A (en) * 2008-02-26 2009-09-10 Nsk Ltd Resolver control device, rotational angle position detector and actuator control system
JP2009262643A (en) * 2008-04-22 2009-11-12 Toyota Motor Corp Vehicle control device
JP2011005933A (en) * 2009-06-25 2011-01-13 Nissan Motor Co Ltd Steering control device, angle detecting device, and vehicle with steering control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109649490A (en) * 2019-01-22 2019-04-19 广州小鹏汽车科技有限公司 Automatic calibration method, system and the vehicle of vehicle steering wheel zero bias
US11661101B2 (en) 2020-08-17 2023-05-30 Honda Motor Co., Ltd. Setting vehicle center in electronic power steering system
CN114044052A (en) * 2021-11-25 2022-02-15 东风悦享科技有限公司 Virtual steering wheel corner sensor system and method based on vehicle straight-ahead judgment
CN114044052B (en) * 2021-11-25 2022-08-12 东风悦享科技有限公司 Virtual steering wheel corner sensor system and method based on vehicle straight-ahead judgment

Also Published As

Publication number Publication date
JPWO2014108955A1 (en) 2017-01-19
JP5867627B2 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
CN107521556B (en) Steering control device
JP5971433B2 (en) Electric power steering device
EP2674348B1 (en) Electric power steering device and sensor abnormality detection device
WO2017068895A1 (en) Electric power steering device
JP6303793B2 (en) Electric power steering device
JP6379907B2 (en) Electric power steering device
WO2011048702A1 (en) Electric power steering device for vehicle
WO2014136516A1 (en) Electric power steering device
JP6318720B2 (en) Vehicle steering control device and vehicle steering control method
JP4289465B2 (en) Vehicle steering system
JP2014004920A (en) Electric power steering apparatus for vehicle
WO2020115973A1 (en) Vehicle steering device
US8838340B2 (en) Electric power steering system
JP5867627B2 (en) Steering control device and steering control method
JP2018127146A (en) Steering assist device for vehicle
US10106191B2 (en) Electric power steering device
JP5967208B2 (en) Steering control device
JP2009029285A (en) Vehicular steering device
JP7119311B2 (en) steering controller
JP5018166B2 (en) Steering device
CN111422244B (en) Steering controller and steering control method
JP4873159B2 (en) Vehicle steering device
JP2007308098A (en) Steering device for vehicle
KR102452643B1 (en) Method for compensating offset of current sensor
JP2013018381A (en) Electric power steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014556214

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871020

Country of ref document: EP

Kind code of ref document: A1