WO2014107981A1 - 反馈控制装置、反馈装置及多用户mimo反馈方法 - Google Patents

反馈控制装置、反馈装置及多用户mimo反馈方法 Download PDF

Info

Publication number
WO2014107981A1
WO2014107981A1 PCT/CN2013/085792 CN2013085792W WO2014107981A1 WO 2014107981 A1 WO2014107981 A1 WO 2014107981A1 CN 2013085792 W CN2013085792 W CN 2013085792W WO 2014107981 A1 WO2014107981 A1 WO 2014107981A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedback
user
terminal
channel state
state information
Prior art date
Application number
PCT/CN2013/085792
Other languages
English (en)
French (fr)
Inventor
郑萌
耿璐
水谷美加
孙娟娟
温志刚
Original Assignee
株式会社日立制作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立制作所 filed Critical 株式会社日立制作所
Publication of WO2014107981A1 publication Critical patent/WO2014107981A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0652Feedback error handling
    • H04B7/0656Feedback error handling at the transmitter, e.g. error detection at base station

Definitions

  • Feedback control device feedback device and multi-user MIMO feedback method
  • the present invention relates to a method, a base station apparatus and a terminal apparatus for transmitting data to a terminal by a base station as a wireless communication device.
  • it relates to a feedback control device, a feedback device, and a multi-user MIMO feedback method capable of performing downlink data transmission by efficient multi-user MIMO through flexible downlink reference signal and signaling configuration.
  • the transmission signal generated by the base station 1401 is two/ ⁇ / ⁇ , where x P x 2 is the base station 1401 to different terminals 1402 (for example, the terminal UE1 and the terminal).
  • the UE2) transmits the signal, and the sum 2 is a precoding matrix used by the base station 1401 for performing a precoding operation on the signal transmitted to the terminal UE1 and the signal transmitted to the terminal UE2.
  • the base station 1401 forms a channel 1403 (e.g., channels BS-UE1 and BS-UE2) with the terminal UE1 and the terminal UE2, respectively.
  • the data received by the terminal UE1 is a signal that is distorted after passing through the channel BS-UE1.
  • the terminal UE2 received signal will be mutual interference term H ⁇ X ⁇ impact, wherein H 2 is the channel state information of the channel BS-UE2.
  • H 2 is the channel state information of the channel BS-UE2.
  • This mutual interference will cause each of these base stations -
  • the channel capacity of the terminal channel 1403 is worse than that of the single-user MIMO.
  • the channel resource utilization after multiplexing may be lower than the channel resource utilization when single-user MIMO. Therefore, when the base station performs downlink multi-user MIMO scheduling, selecting a suitable matching terminal for the destination terminal is a necessary condition for the downlink multi-user MIMO technology to bring system performance gain.
  • matching terminal refers to a terminal that, in a multi-user MIMO technology, uses a plurality of antennas to match a certain terminal in the coverage of the base station and simultaneously receive the data signal on the same time-frequency resource.
  • the existing mobile network needs the terminal device to feed back the channel quality status of the base station-terminal channel to the base station to help the base station perform downlink resource scheduling.
  • the feedback includes: 1. Channel Rank Information (RI), which is used to indicate the maximum number of data streams that the channel can support; 2. Precoding Matrix Indicator (PMI) for the channel,
  • PMI Precoding Matrix Indicator
  • CQI channel quality indicator
  • the base station When performing scheduling, the base station first determines the number of data streams to be sent to the terminal according to the channel rank information, and then selects a suitable coded modulation scheme according to the CQI, performs physical layer coding and modulation processing on the data information, and finally reports the modulated signal to the terminal.
  • the precoding matrix is precoded, and the precoded signal is mapped onto each physical antenna.
  • Standard Specification 3GPP TS 36.211 and 36.213 define a channel state information (CSI) feedback object corresponding to a signal measurement reference signal and an Interference Measurement Reference (IMR).
  • the CSI feedback object is a set of standardized information, and the UE measures the channel state information corresponding to each of the configured CSI feedback objects based on the foregoing process.
  • the implementation method given in this specification is only for the case of single-user MIMO, that is, the terminal defaults to itself to be served in single-user MIMO mode when generating feedback information for each CSI feedback object.
  • the received feedback information needs to be modified. For example, a single-user CQI approximation is generated to generate multi-user CQI, and the scheduling is performed based on the approximate information.
  • the UE After searching for the optimal single-user PMI, the UE can find its corresponding optimal paired PMI set, and calculate the corresponding multi-user CQI of the UE when the PMI in the set is used to match the pre-coding of the partner UE.
  • the UE may report multiple CQIs including single-user CQI and multi-user CQI to the base station to assist the UE's UE matching and scheduling decision.
  • the method relies on the orthogonality of the precoding matrix defined in the empirical data or the codebook to derive the optimal paired PMI set. Therefore, in practical applications, the error occurs with a certain probability, that is, the optimal pairing PMI of the UE is not in the set. .
  • the UE has no a priori information for the matching tendency of the network side. In this case, the UE needs to report a large number of multi-user CQIs to the base station, which brings a large amount of uplink resource overhead.
  • the following feedback method is disclosed: It is specified that when the UE reports the feedback information, in addition to the reporting user PMI, CQI and RI, it may also be based on the self RI or the reference RI given by the network side. Select and report a second PMI or even multiple PMIs, and their corresponding CQIs.
  • the reported PMI can be selected based on the orthogonal criterion or the PMI that the UE searches for in real time with the least interference to itself.
  • the reported CQI should be based on the assumption that the base station precodes its own data using the reported single-user PMI and uses the reported other PMI (at least the second) to pre-code the data of the matching user. This method provides sufficient accurate information for the base station to implement multi-user MIMO, completely avoiding the error caused by the approximate operation of the BS.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a CSI feedback architecture capable of supporting configurability, and to provide a downlink multi-user MIMO by using a flexible configuration of high-layer signaling and reference signals by a base station side.
  • Feedback control apparatus and methods, feedback apparatus and methods, and multi-user MIMO feedback methods that gain and avoid as much overhead as possible.
  • One of the technical solutions of the present invention is a feedback control apparatus in a multi-antenna base station, configured to control information feedback of a terminal, including: a high-layer link establishing unit, transmitting a high-level link through a high-level link established with the terminal.
  • the high-level signaling generating unit generates a high-level signaling, where the high-layer signaling is used to specify a feedback mode of the channel state information to the terminal, and the receiving unit receives the channel corresponding to the feedback mode specified by the high-layer signaling from the terminal.
  • State information and a multi-user processing unit that performs multi-user multiple input multiple output according to the received channel state information
  • a feedback device in a terminal configured to perform information feedback on a base station in a multi-user MIMO environment, including: a high-layer link unit, through a high-layer link established with the base station, Receiving high-level signaling from the base station; the signaling configuration unit determines a feedback mode according to the high-layer signaling, and the channel state information generating unit generates channel state information corresponding to the feedback mode according to the determined feedback mode; and feedback And transmitting, by the unit, the generated information status information to the base station.
  • another technical solution of the present invention is a feedback control method in a multi-antenna base station, which is used to control information feedback of a terminal, including: a high-layer link establishing step, through a high-level link established between the terminal and the terminal, Sending high-level signaling; generating a high-level signaling, generating high-level signaling, the high-level signaling is used to specify a feedback mode of the channel state information to the terminal; and receiving, receiving, from the terminal, corresponding to the feedback mode specified by the high-layer signaling Channel state information; and a multi-user processing step of performing processing related to multi-user multiple input multiple output MIMO based on the received channel state information.
  • another technical solution of the present invention is a feedback method in a terminal, which is used for performing information feedback on a base station in a multi-user MIMO environment, including: a high-layer link step, through a high-layer link established with a base station, Receiving high-level signaling from the base station; signaling configuration step, determining a feedback mode according to the foregoing high-layer signaling; and a channel state information generating step, generating channel state information corresponding to the feedback mode according to the determined feedback mode; and feedback Steps: Send the generated information status information to the base station.
  • another technical solution of the present invention is a multi-user MIMO feedback method, including the following steps: a high-layer link established between a base station and a terminal; the base station generates high-layer signaling, and sends the generated high-layer signaling to the terminal.
  • the high-level signaling is used to specify a feedback mode of the channel state information to the terminal; the terminal that receives the high-layer signaling determines the feedback mode according to the high-layer signaling; and the terminal generates, according to the determined feedback mode, the corresponding mode corresponding to the feedback mode.
  • the method for downlink multi-user MIMO transmission in the present invention allows the UE to select different CSI measurement and reporting behaviors for a specific CSI reference object according to higher layer signaling.
  • the BS may select a manner in which the UE calculates and reports the multi-user CSI by using the configuration of the reference signal, or selects a manner in which the UE explicitly reports the multi-user CSI through the high-layer signaling.
  • the UE may use the traditional measurement and feedback mechanism for calculating and reporting the optimal single-user RI, PMI and CQI for the specific CSI feedback object, or by using a new measurement and feedback mechanism. Calculate and report RI, PMI and CQI specifically for multi-user scheduling.
  • the measurement and feedback behavior of the UE is indicated by the BS through higher layer signaling.
  • the base station can also perform the determination of the paired terminal in the multi-user MIMO, which reduces the workload of the terminal, so that the terminal is simply the same as the single-user MIMO. The action can complete the CSI report of multi-user MIMO.
  • the invention enhances the accuracy and flexibility of scheduling, the utilization efficiency of radio resources in the network can be maximized, and the feedback overhead in the uplink is reduced, so that the performance of the network can be effectively improved.
  • Figure 1 is a diagram showing the system architecture of a complete cell in the present invention.
  • FIG. 2 is an internal block diagram of a base station supporting downlink multi-user MIMO transmission in the present invention.
  • Fig. 3 is an internal block diagram of a feedback device of the terminal device in the present invention.
  • Fig. 4 is a view showing an example of a base station side load state information table in the present invention.
  • Fig. 5 is a view showing an example of a single-user CSI feedback information storage table in the present invention.
  • Fig. 6 is a view showing an example of a multi-user CSI feedback information storage table in the present invention.
  • Fig. 7 is a view showing an example of a high-level configuration information storage table in the present invention.
  • Figure 8 is a flow chart showing a feedback related configuration of high layer signaling link initialization in the present invention.
  • Fig. 9 is a flowchart showing a CSI measurement and feedback method on the UE side in the present invention.
  • FIG. 10 is a diagram showing a downlink multi-user MIMO physical layer implementation method of a base station device in the present invention. Flow chart of the law.
  • Figure 11 is a flow chart showing the feedback related configuration in the high-level signaling link reconfiguration or reconstruction in the present invention.
  • Figure 12 is a diagram showing an example of a flow of a complete base station-to-UE downlink data transmission in the present invention.
  • FIG. 13 is a diagram showing an example of the format of signaling information transmitted on a higher layer link in the present invention.
  • FIG. 14 is a diagram showing an example of application of a downlink multi-user MIMO technology in a typical scenario.
  • the existing cell concept may be a range of coverage of "one base station”, “one sector of a base station”, “one home base station”, or a “transfer point (TP)".
  • TP transfer point
  • the base station in order to perform downlink multi-user MIMO transmission, the base station has multiple antennas, and the different antennas communicate with different terminals at the same time, thereby transmitting and receiving data at a physical level with the mobile terminal entering the cell. .
  • terminals capable of receiving information from the same base station together with different antennas mutually match terminals.
  • the base station receives the channel state information feedback from the terminal, in addition to the data transmission on the physical layer, a higher layer link is additionally established between the base station and the terminal, and the upper link layer is utilized.
  • the exchange of information enables the so-called "multi-user CSI feedback to the terminal recessive".
  • FIG. 1 is a system architecture diagram showing a complete cell in the present invention.
  • Fig. 1 there are a total of N mobile terminals 102 (UE1 to N) in a cell formed by the base station 101.
  • the mobile terminal UE1, the UE3, and the UE ⁇ both establish a high-layer link 104 with the base station 101, and according to the indication of the high-layer signaling transmitted on the high-layer link 104, through the UE-base station uplink channel 105,
  • the base station transmits feedback information corresponding to each CSI feedback object.
  • the base station 101 After receiving the feedback information, the base station 101 allocates the channel resources at this time to UE1 and UE3 through multi-user MIMO, and transmits specific data information to the target UE through the downlink physical channel 103.
  • a base station supporting downlink multi-user MIMO transmission mainly includes: a high layer signaling configuration unit 714, a physical layer receiving unit 701, a physical layer sending unit 713, an information collecting unit 702, a storage unit 721, and a physical layer multi-user dynamic.
  • the high-level signaling configuration unit 714 is a module related to a high-level signaling configuration, configured to establish a high-level link between the base station and the specific UE, and acquire and when the high-layer link establishment or reconfiguration is triggered.
  • the existing information stored in the base station stored in the storage unit 721 is analyzed to generate high-level signaling information for the specific UE, and the process of the physical layer is semi-statically configured.
  • the higher layer signaling configuration unit 714 includes a CSI feedback object and a multi-user MIMO mode configuration unit 715.
  • the CSI feedback object and multi-user MIMO mode configuration unit 715 is configured to generate a feedback mode for specifying channel state information for the terminal by using existing information of the base station when the high-layer link establishment or reconfiguration between the base station and the specific UE is triggered.
  • High-level signaling information includes configuration information related to the feedback mode. When multiple CSI feedback objects are set, multiple sets of configuration information related to the feedback mode may be included for different CSI feedback objects.
  • the specific high layer signaling format will be described later.
  • the generated high layer signaling information 716 is sent to a specific UE through a higher layer signaling link.
  • the so-called “feedback mode” refers to a mode used by a base station to specify a terminal under its control to perform channel state information feedback to the base station.
  • the current 3GPP standard standard can be classified into a single-user MIMO mode and multiple users.
  • MIMO mode refers to a mode in which the terminal itself is fed back by the base station in a single-user MIMO manner.
  • gP In the single-user MIMO mode, the terminal side considers that the base station uses a single antenna at the same time and frequency. Single input and single output are performed without other terminals matching the terminal.
  • the multi-user MIMO mode refers to a mode in which the terminal is fed back by default when the base station provides services by means of multi-user MIMO.
  • gP In the multi-user MIMO mode, the terminal side considers that the base station uses multiple antenna pairs at the same time and frequency. The user and the other matching terminals simultaneously perform multiple input and multiple output, so that there are at least one other terminal that matches the terminal.
  • the base station can specify the mode in which the terminal feeds back by transmitting high-level signaling information including high-layer signaling.
  • the physical layer receiving unit 701 is configured to receive data and signaling sent by the terminal (UE) in the cell to the base station through the uplink channel, complete processing of a series of signals, such as radio frequency processing, baseband demodulation, and decoding, to obtain a specific Uplink data and signaling information.
  • the physical layer sending unit 713 is configured to map the generated data signal, the IMR, and the like to the time-frequency resource, and complete the baseband-to-radio conversion, and use the multiple antennas of the base station to send the downlink signal.
  • the physical layer receiving unit 701 and the physical layer transmitting unit 713 function as a module for transmitting and receiving data of a base station in a physical layer different from the high-layer link, and can be implemented by using the input and output hardware in the existing base station by referring to the relevant module in the conventional base station. Therefore, the detailed description is omitted again.
  • the information collecting unit 702 is configured to collect necessary information required by the base station for configuration or resource allocation of the downlink UE.
  • the information collecting unit 702 includes: a network load information collecting unit 703, which collects and records the number of active UEs in the network and load information.
  • the feedback processing unit 704 is based on the high-level configuration information storage table 719 stored in the storage unit 721 of the base station. The information is used to distinguish and process feedback information reported by different UEs in different cells based on different CSI feedback objects.
  • the storage unit 721 is configured to store information related to downlink multi-user MIMO transmission of the base station at the physical layer and the upper layer.
  • the storage unit 721 stores: a network load information storage table 717 for storing real-time load information of the network, and updating based on the output of the network load information collecting unit 703; a single-user CSI information storage table 718 for storing the network
  • the multi-user CSI information storage table 719 is configured to store multi-user CSI information reported by all active UEs in the network, and is based on the output of the single-user CSI module 705 and the multi-user CSI module 706, respectively.
  • a high-level configuration information storage table 720 configured to record high-level signaling information that the base station has transmitted to each UE through the high-layer link, and update based on the output of the high-level signaling configuration unit 714.
  • the contents of each information storage table in the storage unit will be described in detail later.
  • the physical layer multi-user dynamic configuration unit 707 and the physical layer resource allocation unit 710 are optional components and are units for performing various configurations on the end user by using information stored in the storage unit 721 in the base station.
  • the physical layer multi-user dynamic configuration unit 707 for configuring the precoding matrix in transmission and the physical layer resource allocation unit 710 for dynamically matching the terminal user are selected as an example in FIG.
  • the physical layer multi-user dynamic configuration unit 707 is used to analyze and design the IMR.
  • the method is to dynamically track the load in the network and correspondingly optimize the PMI change, and support efficient transmission of downlink multi-user MIMO.
  • the multi-user dynamic configuration unit 707 includes: a multi-user configuration analysis processing unit 708, which can read an existing single-user PMI in the cell from the single-user CSI information storage table 717 of the storage unit 721, based on the appearance frequency and orthogonality.
  • the interference measurement signal generating unit 709 performs a corresponding precoding operation on the certain isotropic signal according to the output result of the multi-user configuration analysis processing unit 708, and uses the generated data information as the IMR resource. Send a signal.
  • the data information is used to match multiple user terminals to configure multi-user MIMO.
  • the specific algorithm for generating data information such as the selection of the precoding PMI and the precoding operation, may refer to a specific algorithm of the existing precoding operation, and may also adopt other existing methods for generating data information, as long as a multi-user configuration can be generated. The information is sufficient, and thus detailed explanations and examples are omitted.
  • the physical layer resource allocation unit 710 is configured to allocate actual channel resources, select a modulation and coding scheme, and the like.
  • the physical layer resource allocation unit 710 includes: a user matching and resource scheduling unit 711, which acquires single-user or multi-user CSI information reported by the UE in the cell from the single-user CSI information storage table 718 and the multi-user CSI information storage table 719, And based on this, the user's matching is implemented, and the scheduled channel resources are allocated to the scheduled UE; and the data signal generating unit 712 performs the coded modulation operation of the downlink data based on the scheduling result.
  • the higher layer signaling configuration unit 714 corresponds to a "high layer link establishing unit” and a “high layer signaling generating unit”
  • the physical layer receiving unit 701 and the information collecting unit 702 correspond to a "receiving unit”.
  • the physical layer multi-user dynamic configuration unit 707 and the physical layer resource allocation unit 710 correspond to a "multi-user processing unit.”
  • the load status information table 721 is used to record load information in the current cell.
  • the data field includes: a UE ID 801 that records an ID of all UEs currently associated with the cell; and a UE state 802 that is associated with the UE ID 801 and is associated with each UE under the cell. Whether the state is an active UE or an inactive UE, that is, whether the UE performs a downlink data transmission process; and a high-layer link state 803, corresponding to the UE ID 801, a high-layer link state associated with each UE under the cell is recorded. .
  • the capacity can be "connected”, “idle” is not connected, “will be established” is in the connection establishment process, or “will be reconfigured” is connected but triggered to be reconfigured.
  • Fig. 5 is a diagram showing an example of a single-user CSI feedback information storage table 718 in the present invention.
  • the single-user CSI feedback information storage table 718 is used to record the CSI information fed back by the active UE in the current cell.
  • the data field includes: a UE ID 901, records an ID of all UEs that have reported single-user CSI feedback in the cell; and an IMR configuration 902, where the UE ID 901 records the possible reports reported by each UE.
  • Each of the multiple sets of CSIs corresponds to an IMR, where IMR0 is a unique IMR shared by all UEs in the cell, and is used to measure IMR of neighbor cell interference; and an RI value 903, a PMI value 904, and a CQI value 905, respectively, for use with the UE ID.
  • 901 correspondingly records a plurality of RI, PMI, and CQI values corresponding to each IMR configuration reported by each UE.
  • Fig. 6 is a diagram showing an example of a multi-user CSI feedback information storage table 719 in the present invention.
  • the multi-user CSI feedback information storage table 719 is used to record the CSI information fed back by the active UE in the current cell.
  • the data field includes: UE ID 1001, and records the IDs of all UEs that report multi-user CSI feedback in the cell; IMR configuration 1002, corresponding to the UE ID 1001, records the possibility of reporting each UE.
  • Each of the multiple sets of CSIs corresponds to an IMR, where IMR0 is unique to the IMR shared by all UEs in the cell, and is used to measure the IMR of the neighbor cell interference; and the RI value 1003.
  • the PMI value 1004 and the CQI value 1005 are respectively used for the UE.
  • the ID 1001 correspondingly records a plurality of RI, PMI, and CQI values corresponding to each IMR configuration reported by each UE.
  • the base station can also configure the IMR of a certain PMI that reflects the preference of the base station.
  • the CSI measured and reported by the UE will be the multi-user CSI calculated based on the multi-user interference of the configured IMR. That is, the calculated multi-user CSI will be the value that defaults to the interference portion of the configured IMR that has been included in the SINR calculation.
  • FIG. 7 is a view showing an example of the high-level configuration information storage table 720 in the present invention.
  • the high-level configuration information storage table 720 is configured to record configuration information transmitted on a high-layer link established between a base station in a current cell and each active UE included in the high-layer signaling information.
  • the data field includes: UE ID 1101, records the IDs of all UEs in the cell that have established a high-level link connection; CSI feedback object configuration 1102, and records the high-layer link corresponding to the UE ID 1101. ID of multiple CSI feedback objects configured for each UE; IMR configuration 1103.
  • an IMR corresponding to each CSI feedback object configured by each high-layer link for each UE is recorded; and a feedback mode 1104, where a high-layer link is recorded for each UE corresponding to the UE ID 1101.
  • the feedback mode corresponding to each configured CSI feedback object is set to "single-user MIMO mode" or "multi-user MIMO mode" in the present embodiment.
  • Fig. 3 is an internal block diagram of a feedback device of the terminal device in the present invention.
  • the terminal includes a high-level link information processing unit 610, a storage area 607, a feedback transmitting unit 608, one or more CSI calculating units 603 (1 to N), a channel estimating unit 601, and an interference estimating unit 602.
  • the upper layer configuration information storage table 611 is stored in the storage area 607.
  • the format of the high-level configuration information storage table 611 is the same as the high-level configuration information storage table 720 in the base station, but only the high-level configuration information related to the terminal is stored.
  • the high layer link information processing unit 610 of the UE After receiving the high layer signaling 609, the high layer link information processing unit 610 of the UE extracts the high layer configuration information from the high layer signaling 609, and stores the extracted information in the high layer configuration information storage table 611 in the storage area 607.
  • the number of one or more CSI calculation units 603 ( 1 to N) provided by the UE may correspond to the number of different CSI feedback objects configured, may be one, or may be multiple and calculated for multiple CSI feedback objects respectively.
  • Channel status information Taking the standard specifications 3GPP TS 36.211 and 36.213 as an example, the CSI calculation unit 603 (1 ⁇ N) calculates specific RI, PMI and CQI information as channel state information (CSI) for the configured different CSI feedback objects, where N The quantity can be arbitrary.
  • Each CSI calculation unit 603 includes: a signaling configuration processing unit 604, configured to read and analyze a feedback configuration of the high layer signaling from the storage area 607, and determine a calculation mode of single-user MIMO or multi-user MIMO; single-user CSI calculation The unit 605 calculates a traditional single-user RI, PMI, and CQI when the CSI feedback object is configured as a single-user feedback mode; and a multi-user CSI calculation unit 606, where the CSI feedback object is configured to be in a multi-user feedback mode
  • the multi-user RI, PMI and CQI of the invention are described.
  • the UE After calculating the CSI result of the multiple CSI feedback objects, the UE temporarily stores the information in the storage area 607, and passes the corresponding CSI information to the feedback sending unit according to the feedback period and the offset configured in the high layer signaling at an appropriate time. 608 is sent to the base station.
  • the channel estimation unit 601 is configured to estimate the channel state information reference signal to generate a channel state information matrix.
  • the interference estimation unit 602 is configured to estimate the interference strength for the calculation of the signal. Used when dry noise ratio. Both the channel estimation unit 601 and the interference estimation unit 602 can use components of the existing terminal to collect information, and can also be replaced with modules of other collected information.
  • the upper layer link information processing unit 610 corresponds to "high-level link unit” and “signaling configuration unit”
  • the CSI calculation unit 603 corresponds to "channel state information generating unit”
  • the feedback transmitting unit 608 The channel estimation unit 601 and the interference estimation unit 602 correspond to a "feedback unit”.
  • the base station and the terminal having the above configuration can form a system architecture of a cell as shown in Fig. 1 in the network.
  • the various functions and functions can be implemented between the base station and the terminal through the various modules and databases described above.
  • the operations of the base station and the terminal in the present invention are roughly classified into: 1) a high-layer link initialization operation performed by a base station, 2) a terminal-to-base station feedback operation, and 3) a base station-to-multi-user terminal The matching and scheduling actions, and 4) the high-layer link reconfiguration actions performed by the base station.
  • Fig. 8 is a flow chart showing the transmission of configuration information by the high-layer link initialization in the present invention. It is performed by the higher layer signaling configuration unit 714 in the base station.
  • the base station when the UE1 and the base station need to initially establish a high-level link (step 401), the base station first configures a CSI feedback object in the single-user MIMO mode for the UE1 based on the IMR0 (step 402). Based on this, the base station reads the current network load information from the network load information storage table 717 (step 403), and detects whether the current network load is below a certain threshold based on the read network load information (step 404).
  • the base station determines whether it is necessary to configure a plurality of feedback objects for the CSI (step 405) to obtain sufficient information to support multi-user matching on the base station side. If the result is No, the configuration is complete, and the single-user MIMO mode is reserved in the high-level configuration information, and the IMR index of the CSI feedback object, that is, the feedback mode configuration of the IMR0 and the SU, and the corresponding codebook configuration and the reference CSI feedback object are used. The configuration information is added to the high layer signaling, so that the base station directly sends the corresponding high layer configuration information to the UE1 as high layer signaling (step 406).
  • the base station configures a new IMR for the UE1, and configures a new CSI feedback object for the UE1 (step 407), and then sends the corresponding high layer configuration information to the UE1 as high layer signaling (step 406). If the network load is not lower than the threshold, the base station reads the IMR0-based SU-PMI information of all active UEs from the single-user CSI information storage table 718 (step 408), and determines whether the information of these SU-PMIs is averaged (step 409). ).
  • the base station configures a new CSI feedback object for the UE1, and configures the feedback mode corresponding to the feedback object to be a multi-user feedback mode (step 410). ;
  • the base station configures a new IMR for the UE, and configures a new CSI feedback object 407 for the UE1, but retains the existing one. Feedback mode.
  • the generated high layer configuration information is sent to UE1 as high layer signaling (step 406).
  • the base station By establishing a high-level link for configuring a feedback mode of channel state information on the physical layer, the base station configures a feedback mode for the terminal, and can flexibly perform scheduling according to resource conditions within the network. Moreover, the accuracy and flexibility of scheduling are enhanced.
  • a high-layer link is established between the base station and the terminal to transmit high-level signaling including high-level configuration information corresponding to a specific feedback mode, and "multi-user CSI feedback to the terminal implicit" can be realized.
  • Multi-user CSI feedback to the terminal implicitly means that the base station has a plurality of antennas to view the base station and performs multi-user MIMO transmission. However, on the terminal side, whether the base station is multi-user MIMO or not, the terminal Both can perform single-user CSI feedback and single-user MIMO configuration through the base station according to the single-user MIMO mode.
  • the higher layer link information processing unit 610 on the terminal side can update the high layer configuration information storage table 607 in the terminal according to the content of the higher layer signaling information. Therefore, on the terminal side, the UE can directly generate a single-user or multi-user CSI information based on the feedback system structure and feed back to the base station according to the high-level configuration information storage table 607.
  • 9 is a flow chart of a CSI measurement and feedback method on the UE side in the present invention.
  • UE1 first obtains signals in the time domain and the frequency domain by receiving antenna and radio frequency and baseband processing (step 201).
  • the channel estimation unit 601 of UE1 then performs channel state information estimation based on the channel measurement reference signals contained therein (step 202), generating an actual CSI matrix.
  • step 203 interference estimation is performed by the interference estimating unit 602 (step 203).
  • UE1 uses the time-frequency resource on the IMR configured by the BS through the high-layer signaling to perform interference estimation, and obtains this. The intensity of external disturbances at all times.
  • the higher layer link information processing unit 610 of UE1 determines, based on the higher layer signaling information, whether the specific CSI feedback object is configured as the single user MIMO mode (step 204).
  • the CSI calculation unit 603 of the UE1 selects the best-performing single-user RI and PMI from the codebook configured with the high-level signaling information by using the single-user CSI calculation unit 605 following the existing conventional procedure (steps) 205), calculating the signal to interference and noise ratio at this time and quantizing to a single user CQI (step 206).
  • steps the existing conventional procedure
  • step 206 the CSI calculation unit 603 of the UE1 selects the best-performing single-user RI and PMI from the codebook configured with the high-level signaling information by using the single-user CSI calculation unit 605 following the existing conventional procedure (steps) 205), calculating the signal to interference and noise ratio at this time and quantizing to a single user CQI (step 206).
  • the CSI calculation unit 603 of UE1 selects the multi-user RI and PMI with the multi-user MIMO criterion different from the single-user MIMO using the multi-user CSI calculation unit 606 (step 207), and utilizes the RI and The PMI information, a multi-user CQI is calculated (step 208).
  • the calculated CSI information is sent to the storage area, waiting for an appropriate timing to feed back to the base station (step 209).
  • the calculation criteria of the selectable multi-user RI, PMI, and CQI are also different according to the feedback mode. For example, there may be several calculation criteria, and the calculation criterion of the CSI calculation unit 603 of the terminal may be calculated.
  • the multi-user RI, PMI, and CQI calculation criteria A may be: UE1 reads the RI recommended by the base station from the codebook configuration of the higher layer signaling as the multi-user The user RI1 is reported (the subscript indicates the CSI feedback object for the information, the same below). UE1 reports the PMI with the worst precoding and combining effect as the multi-user PMI1 based on RI1. The UE assumes that the base station uses R1 and ⁇ 1 ⁇ to itself.
  • the calculation criterion B of the multi-user RI, PMI, and CQI may also be:
  • the RI used by the UE1 default base station to transmit data to the matching user is 1.
  • the UE selects the PMI with the worst precoding and combining effect as the multi-user PMI1 based on the RI value.
  • the UE assumes that the base station uses the PM to transmit data to itself, where is the index of the reference CSI feedback object of the CSI feedback object n configured by the high layer signaling. Based on this assumption, the best performing RI is selected as the multi-user RI1.
  • the calculation criterion C of the multi-user RI, the PMI, and the CQI may also be: the UE reads the RI suggested by the base station as a multi-user RI1 sufferingreporting by the codebook configuration of the high-layer signaling. The UE selects the pre-coding and combining effect based on the RI value. The worst PMI is reported as a multi-user PMI1. The UE assumes that the base station transmits data to itself using the RI and the PMI, and calculates the CQI at this time as a multi-user 011.
  • the multi-user RI, PMI, and CQI calculation criteria D may also be:
  • the UE assumes that the base station transmits data to itself using ⁇ 1 ⁇ , where is the index of the reference CSI feedback object of the CSI feedback object n configured by the high layer signaling, and Based on this assumption, the RI and PMI with the least interference to this transmission are selected as the multi-user Rll P multi-user PMI1 from the codebook configured by the high-level signaling.
  • the terminal can perform feedback for the multi-user MIMO mode as well as "multi-user CSI feedback for the terminal implicit", that is, only feedback for the single-user MIMO mode. Therefore, the feedback configuration can be flexibly performed according to the load conditions and the capabilities of the terminal, thereby improving the feedback efficiency of the entire system.
  • the base station After the base station configures the feedback mode of the terminal through the high-layer link, it receives the report of the channel state information from the terminal, so that the base station side performs processing related to multi-user MIMO based on the feedback information at the physical layer.
  • Figure 10 is a flow chart showing a method of implementing a downlink multi-user MIMO physical layer of a base station device in the present invention. The process can actually be divided into two main functional parts.
  • the first part is the CSI feedback information collection, which is executed by the information collecting unit 702.
  • the base station may receive CSI feedback information of multiple UEs in each subframe period, and each UE may be configured with multiple CSI feedback objects by higher layers.
  • the BS 101 first selects the UE1 as an object (step 301), and then selects a specific CSI feedback object of the UE1 (step 302), and determines the CSI feedback object of the UE1 according to the configuration of the high layer signaling. Whether it is configured as a multi-user MIMO mode (step 303). If the result of the determination is "No", the CSI information reported by the CSI feedback object is read and updated. The information storage table 718 of the CSI (SU-CSI) (step 304); if the result of the determination is "Yes", the CSI information reported by the CSI feedback object is read and the information storage of the multi-user CSI (MU-CSI) is updated. Table 719 (step 305).
  • the base station determines whether the CSI feedback object is the last CSI feedback object of UE1. If the result of the determination is "NO”, the process returns to step S302 to proceed to the receiving process of the next CSI feedback object, and the information collecting unit 702 repeatedly performs steps 303 to S30 for the next CSI feedback object. If the result of the determination is "Yes”, it is determined whether the UE is the last UE that reported the feedback information in the same subframe period. If the result of the determination is "NO”, then return to step 301 to proceed to the receiving process of the next UE, such as UE2. If the judgment result is "Yes”, the reception operation for the CSI is completed, and the execution of the second functional portion can be entered.
  • the second part is the scheduling and signal precoding configuration part, which is performed by the physical layer resource allocation unit 710.
  • the physical layer resource allocation unit 710 of the base station reads, from the single-user CSI information storage table 717, the single-user CSIs of all UE-corresponding IMR0 (step 308). After the reading is completed, the UE that will perform the IMR measurement in the next subframe is searched one by one by reading the higher layer configuration information storage table 720 (step 309).
  • the physical layer resource allocation unit 710 is based on the known single user PMI of all other active UEs, corresponding to possible user matching decisions, such as setting UE1 to match UE2, and is the same as that transmitted by UE1 to be measured on IMR.
  • the signal selects a suitable precoding matrix (step 312), such as the precoding matrix of UE2.
  • step 311 it is judged whether UE1 is the last UE that will perform IMR measurement in the next subframe (step 311), and if the judgment result is "NO", the next UE is selected (step 309), and if the judgment result is "YES”, then Multi-user matching and scheduling is performed using known single-user and multi-user CSI (step 312), and the pre-coded IMR and data signals are transmitted (step 313).
  • the IMR0 is a unique IMR shared by all UEs in the cell.
  • the base station remains silent on all time-frequency resources of IMR0, and all UEs in the cell measure the interference strength on IMR0. This interference strength can be thought of as the sum of all co-channel interference from neighboring cells.
  • the multi-user matching method of the base station may be: for a specific UE, such as UE1, if it reports multiple single-user CSI feedbacks, respectively for IMRO, IMR1 and IMR2 (the reported information is respectively recorded as RI1, PMI1 ; And CQI1 ; , where 1 indicates the ID of the UE, and the subscript i indicates the ID of the CSI feedback object, and the same), the base station selects the UE from the CSI information list, and the different CSI information reported for the multiple IMRs exists.
  • the specific RIm P PMI Get is the same as the data layer and precoding matrix used by IMR1 or IMR2, and the number of data layers and precoding matrix used on the corresponding IMR « is consistent with Rlli and PMIli, i is 1 or 2.
  • the matching method can correspond to the matching of two UEs using the implicit multi-user CSI feedback mode.
  • the multi-user matching method of the base station may be: if the UE1 reports multiple single-user CSI feedbacks, for the IMRO, the IMR1, and the IMR2, the base station selects the UE from the CSI information list, and the reported single-user CSI information is , there is a specific 1 ⁇ réelle and ⁇ ⁇ 1 ⁇ resort with 1 ⁇ [1 1 or IMR2 used in the same number of data layers and precoding matrix, "the CSI feedback object for its CSI feedback object configured as a multi-user CSI mode Index, and its reported multi-user RI and PMI are consistent with Rlli and PMIli, i is 1 or 2.
  • This matching method can correspond to a match between UEs that use implicit multi-user CSI and another that uses the aforementioned multi-user calculation criteria A or D to feed back multi-user CSI.
  • the multi-user matching method of the base station may also be: if the UE1 reports multiple single-user CSI feedbacks for IMRO, IMR1, and IMR2, and RI1 ⁇ 1 is 1 or 2, the base station selects from the CSI information list.
  • the multi-user RI and PMI in the CSI information reported by the UE are the same as the data layer and the precoding matrix used by IMR1 or IMR2, and n is the reference CSI feedback object of the CSI feedback object configured as the multi-user CSI mode. Index, and its reported multi-user PMI is consistent with PMIli, i is 1 or 2.
  • This matching method can correspond to one UE using implicit multi-user CSI and another using the aforementioned multi-user computing criterion B to feed back multi-user CSI The match between.
  • the multi-user matching method of the base station may be: if the UE1 reports multiple single-user CSI feedbacks, for the IMRO, the IMR1, and the IMR2, the base station selects the UE from the CSI information list, and the reported single-user CSI information is , there is a specific 1 ⁇ réelle and ⁇ ⁇ 1 ⁇ resort with 1 ⁇ [1 1 or IMR2 used in the same number of data layers and precoding matrix, n is the index of any CSI feedback object configured by the UE as a single-user CSI mode, and its The reported multi-user RI and PMI are RI1,. and PMIl ⁇ g, which is 1 or 2.
  • This matching method can correspond to a match between UEs using implicit multi-user CSI and another using the aforementioned multi-user calculation criteria A or D to feed back multi-user CSI.
  • the base station can use CQI1, .. reported by UE1 as 1 or 2. Also use the UE The reported 01ough and multi-user CQI is calculated as the CQI when the UE performs actual data transmission, and n is the index corresponding to the reference CSI feedback object of the CSI feedback object configured as the multi-user CSI mode.
  • n is the index of the reference CSI feedback object of the CSI feedback object configured by the UE as the multi-user CSI mode, and the multi-user CSI information reported in the multi-user CSI information, Ri and PMI.
  • the reported RI1 and ⁇ 1 ⁇ result that k is the index of the reference CSI feedback object of the CSI feedback object configured by the UE1 as the multi-user CSI mode.
  • This matching method can correspond to two feedbacks using the aforementioned multi-user calculation criteria A or D. Match between UEs of user CSI.
  • n is the index of the reference CSI feedback object of the CSI feedback object configured by the UE in the multi-user CSI mode, and the multi-user PMI reported by the UE.
  • k is the index of the reference CSI feedback object of the CSI feedback object configured by the UE1 as the multi-user CSI mode.
  • This matching method can correspond to two UEs that feed back multi-user CSI using the foregoing multi-user computing criterion B. The match between.
  • This matching method can correspond to two UE-to-multi-user CSI-based UEs using the aforementioned multi-user calculation criterion C to calculate the matching between UEs.
  • the above multi-user matching is performed by the base station, and the matching terminal can be determined on the base station side according to the configuration information of the high layer signaling and the channel state information reported by the terminal. Therefore, the burden on the terminal is reduced as compared with the technique in which the terminal suggests a matching terminal in multi-user MIMO transmission. Moreover, since the base station performs the determination of the matching terminal in the multi-user MIMO transmission, the slave terminal side In this case, a feedback mode of single-user MIMO can be adopted according to high-level signaling, thereby implementing "multi-user CSI feedback to the terminal implicit".
  • the high-layer signaling configuration unit 714 can also adjust the high-layer signaling, and the adjustment of the high-level signaling is referred to as "high-level link reconfiguration.”
  • Figure 11 is a flow chart showing the feedback related configuration of the high-level signaling link reconfiguration or re-establishment in the present invention.
  • the reconfiguration process of the high-level connection of the BS-UE1 link is triggered (step 501).
  • the triggering may be due to the joining of the new active UE, the disconnection of the UE that completes the service, the periodic triggering, or other triggering procedures that are not listed.
  • the higher layer signaling configuration unit 714 of the base station configures a CSI feedback object for UE1 based on IMR0 (step 502). Then, the historical CSI information of UE1 is read, and the optimized matching PMI for UE1 is determined as a candidate for the precoding matrix information of the matching terminal (step 503).
  • the base station reads the IMRO-based SU-PMI information of all active UEs from the single-user CSI information storage table 718 (step 408), and determines the frequency of occurrence of the optimized matching PMI of the UE1 in the IMRO-based SU-PMI of the active UE. Is it higher?
  • the threshold of the frequency may be set in advance for comparison, and when the frequency of occurrence of the optimized matching PMI exceeds the set threshold, the frequency of occurrence is considered to be high.
  • the base station configures a new CSI feedback object for the UE, and configures the feedback object as a multi-user feedback mode (step 410). If the result of the determination is "No”, the base station configures a new IMR for the UE, and configures a new CSI feedback object for UE1 (step 407). The corresponding high layer configuration information is then sent to UE1 as high layer signaling (step 406).
  • the so-called optimized matching PMI as a candidate for the precoding matrix information of the matching terminal can be set according to a predetermined rule. For example, it may be that the base station selects one or several PMIs of other precoding matrices orthogonal thereto according to the IMRO-based SU-PMI information of the read UE1.
  • the optimized matching PMI may also be: The base station selects, according to the read SU1 PMI information of the UE1 for multiple different IMRs, a PMI with the largest SINR value after matching other users or above a certain threshold. Several PMIs.
  • the optimized matching PMI may be: the base station according to the read multi-user CSI reported by the UE1, and the selected UE1 feeds back a multi-user that can minimize multi-user interference, and the base station selects the pre-matching terminal by A candidate for the coding matrix information is used to determine whether to reconfigure the high layer signaling, thereby continuously improving the configuration mechanism of the high layer signaling, and further optimizing the resource configuration of the multi-user MIMO.
  • Figure 12 is a diagram showing an example of the flow of a complete base station-UE downlink data transmission in the present invention.
  • the actions in the above respective embodiments are combined, thereby exemplifying the various information exchanges that may occur in the information feedback between the base station and the terminal as a whole.
  • the two parties first establish a connection of the upper layer link (step 1201).
  • the generated configuration information is sent to the UE 102 as a high layer signaling through the upper layer link (step 1203).
  • the UE 102 After receiving the corresponding configuration information through the high-layer link, the UE 102 performs configuration according to the high-level signaling of the base station 101 (step 1204), such as the configuration of the CSI feedback object, the configuration of the feedback mode of each CSI feedback object, and the like.
  • the UE 102 measures the channel based on the completed configuration (step 1205) and reports the physical layer measurement feedback information to the base station 101 (step 1206).
  • the base station 101 After receiving the feedback information of the terminal based on the high layer signaling, the base station 101 performs dynamic configuration and feedback based on the feedback information (step 1207).
  • the base station 101 transmits downlink data to the UE 102 using the allocated physical layer resources (step 1208).
  • the UE 102 receives the received data, simultaneously feeds back the HARQ information, and simultaneously performs a channel measurement and feedback generation function (step 1209), and feeds back the corresponding feedback information to the base station. This process loops until the end of the data transfer or the high link support reconfiguration is triggered (step 1210).
  • the base station 101 performs high-level reconfiguration and transmits the generated configuration information through the higher layer link (step 1203).
  • the UE 102 After receiving the corresponding reconfiguration information through the upper layer link, the UE 102 performs configuration according to the modified high layer signaling of the base station 101 (step 1204), and completes measurement channel and feedback based on the configuration (step 1205).
  • UE102 The previous physical layer process is then iteratively repeated until the downstream data transfer is complete (step 1211). If the downlink data transmission is completed, the base station 101 releases the high-layer link connection (step 1212), and the UE 102 state becomes the idle state.
  • the format of the high layer signaling is not particularly limited as long as the necessary feedback mode information and the configuration information in the feedback mode can be transmitted.
  • Figure 13 is a diagram showing an example of the format of signaling information transmitted on a high-layer link according to the present invention.
  • the signaling information for the feedback part on the high-layer link is a basic unit of the CSI feedback object, and a total of N sets of CSI feedback object configuration information 1301, where N is a CSI feedback object configured by the base station for the terminal. Number.
  • the CSI feedback object 1 configuration information is taken as an example, and the data fields included include: a signal measurement reference signal index 1302 and an IMR index 1303, respectively, for indicating a signal measurement reference signal and an interference measurement reference signal corresponding to the CSI feedback object.
  • the feedback mode configuration information 1304 is used to indicate the mode of the CSI feedback object configuration, that is, the calculation of the CSI may use a single user calculation criterion, or may use various possible calculation criteria of multiple users; the codebook configuration 1305 indicates that the base station allows a set of precoding matrices that the UE may use when calculating the CSI for the CSI feedback object; and a reference CSI feedback object index 1306, when the UE calculates the multi-user CSI, depending on the calculation criteria, it may be necessary to provide feedback from other reference CSIs. The necessary data is read at the object.
  • the configuration information of the terminal feedback mode is additionally set on the physical layer, the accuracy and flexibility of the scheduling are enhanced, and the utilization efficiency of the radio resources in the network can be maximized, and the uplink is reduced.
  • the feedback overhead in the road therefore, the performance of the network can be effectively improved.
  • the present invention has been described in a manner in which the feedback mode is a single-user MIMO mode and a multi-user MIMO mode.
  • the feedback mode is not limited to the existing single-user MIMO mode or Multi-user MIMO mode. For example, if a mode combining multiple input multiple output and single input input input is defined by a certain rule, or a mode such as multiple input single output is defined, it can be configured by the base station to the terminal through high layer signaling.
  • the base station stores information from the network load
  • the current network load information is read in the storage table 717, and the current network load is detected to be lower than a specific threshold based on the read network load information, and the feedback mode is set to the single-user MIMO mode when the threshold is lower than a predetermined threshold. , set the corresponding configuration information according to the feedback mode.
  • the network load can also be represented by the number of active UEs in the current network. It is also possible that the higher layer signaling configuration unit 714 determines whether the number of active UEs in the current network is lower than a predetermined threshold N, and the network load condition is considered to be detrimental to the feedback of the multi-user CSI when the threshold is lower than the threshold. Conversely, it is beneficial to the feedback of multi-user CSI.
  • the number N is used as a threshold for judging the status of the network load, which can be determined by the base station.
  • the determinations of steps 405 and 409 are also performed, but the judgment of this step is for Further optimizing the configuration result, even if steps 405 and 409 are omitted, the present invention can be implemented with a single judgment result as a standard.
  • the network load is lower than the specified threshold
  • the high-level configuration information is directly sent to the UE
  • the threshold is not lower than the predetermined threshold
  • the feedback mode of the terminal is set to the multi-user MIMO mode, and then the high-level signaling is sent. .
  • the physical layer multi-user dynamic configuration unit 707 in the base station may select an appropriate IMR for the IMR when the higher layer signaling generating unit configures an additional interference measurement reference signal IMR for the specific terminal according to the channel state information reported by the terminal. Precoding matrix, etc.
  • the signaling format in the case where there are a plurality of CSI feedback objects and the operation of the base station-terminal are explained.
  • the CSI feedback object can also be one, or a specific CSI feedback object specified in advance, without having to be specified in a subsequent process.
  • the signaling content and steps related to CSI feedback object selection and transmission may also be omitted.
  • the embodiments of the present invention have been described above, but the embodiments are presented as examples and are not intended to limit the scope of the invention.
  • the present invention can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the scope of the invention.
  • the invention and its modifications are intended to be included within the scope of the invention and the scope of the invention. According to the present invention, since the configuration information of the terminal feedback mode is additionally set on the physical layer, the accuracy and flexibility of the scheduling are enhanced, and the utilization efficiency of the radio resources in the network can be maximized, and the uplink is reduced. The feedback overhead in the road, therefore, the performance of the network can be effectively improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种通过基站侧对高层信令和参考信号的灵活配置而能够充分获取下行多用户MIMO的增益并尽可能避免额外开销的反馈控制装置、反馈装置以及多用户MIMO反馈方法。多天线基站中的反馈控制装置用于对终端的信息反馈进行控制,包括:高层链路建立单元,通过与终端之间建立的高层链路,发送高层信令;高层信令生成单元,生成高层信令,上述高层信令用于对终端指定信道状态信息的反馈模式;接收单元,接收来自终端的、与高层信令所指定的反馈模式对应的信道状态信息;以及多用户处理单元,根据所接收到的信道状态信息,进行与多用户多输入多输出MIMO有关的处理。

Description

反馈控制装置、 反馈装置及多用户 MIMO反馈方法 技术领域
本发明涉及作为无线通信设备的基站向终端传输数据的方法、 基站装 置和终端装置。 特别涉及能够通过灵活的下行参考信号与信令配置, 利用 高效的多用户 MIMO进行下行数据传输的反馈控制装置、 反馈装置及多用 户 MIMO反馈方法。 背景技术
下行多用户 MIMO (Multi-User Multi-Input Multi-Output, 多用户多输 入多输出, 简称 MU-MIMO) 是一种利用多天线技术, 由具有多个天线的 基站(Base Station, 简称 BS ) 的发射端在同一时频资源上向多于一个的终 端 (User Equipment, 简称 UE) 发送数据信号的技术。 通过多用户 MIMO 技术, 能够使更多的接收装置同时分享来自同一源头的资源, 能够有效地 提升系统的信道资源使用效率, 并对于网络的整体容量带来明显提升。
图 14为下行多用户 MIMO技术的实现示意图。 如图 14所示, 在下行 多用户 MIMO传输模式下, 基站 1401生成的发射信号为 二/^^ /^^, 其 中 x P x2分别为基站 1401向不同的终端 1402(例如终端 UE1和终端 UE2) 发送的信号,而 和 Ρ2分别为基站 1401针对向终端 UE1发送的信号和向终 端 UE2发送的信号进行预编码操作时使用的预编码矩阵。 从而基站 1401 与终端 UE1 和终端 UE2之间分别形成信道 1403 (例如信道 BS-UE1 和 BS-UE2)。
其中,终端 UE1接收到的数据为通过信道 BS-UE1后发生畸变的信号, 若将该信道的信道状态信息表示为 , 则接收信号可表示为 Y = H1R1X1 + H„2 + / + N, 其中 /和 N分别为来自不同基站的干扰和系统 白噪声。 由于 ^2并非终端 UE1 需要的信号, 因此 ^2^2会成为施加于有 用信号部分 H^X^ 干扰。
类似的, 终端 UE2接收到的信号也会受到互干扰项 H^X^ 影响, 其 中H2为信道 BS-UE2 的信道状态信息。 这种互干扰会使其中的每个基站- 终端信道 1403的信道容量相比于单用户 MIMO时恶化, 严重时可以导致 复用后的信道资源利用率低于单用户 MIMO时的信道资源利用率。 因此, 基站在进行下行多用户 MIMO调度时, 为目的终端选择合适的匹配终端是 下行多用户 MIMO技术能够带来系统性能增益的必要条件。
其中, 所谓 "匹配终端", 是指在多用户 MIMO技术中, 利用多个天 线而在基站的覆盖范围内与某个终端相匹配在同一时频资源上共同接收数 据信号的终端。
现有的移动网络为了提升调度的准确性, 需要终端设备向基站反馈基 站-终端信道的信道质量状况, 以帮助基站进行下行资源调度。 这种反馈包 括: 1. 信道秩信息 (Rank Indicator, 简称 RI), 用于指示该信道所能支持 的最大数据流数; 2. 信道的预编码矩阵信息 (Precoding Matrix Indicator, 简称 PMI ), 用于指示终端选择的最优的预编码矩阵; 3. 信道质量信息 (Channel Quality Indicator, 简称 CQI), 用于指示终端基于所选的预编码 矩阵计算出的信道质量。
在进行调度时, 基站首先根据信道秩信息决定向终端发送的数据流的 个数, 然后根据 CQI选择适合的编码调制方案, 对于数据信息进行物理层 的编码调制处理,最后将调制信号利用终端上报的预编码矩阵进行预编码, 并将预编码后产生的信号映射到各个物理天线上。
标准规范 3GPP TS 36.211和 36.213定义了信道状态信息(channel state information, CSI) 反馈对象对应一个信号测量参考信号和一个干扰测量参 考信号 (Interference Measurement Reference, 简称 IMR)。 其中, CSI反馈 对象是一组规范后的信息, UE对每一个配置了的 CSI反馈对象, 基于前述 过程测量和反馈对应的信道状态信息。 然而, 该规范中给出的实施方法仅 针对于单用户 MIMO的情况, 也就是说, 终端在针对每一个 CSI反馈对象 生成反馈信息时默认为自己将会被以单用户 MIMO方式提供服务。 而当网 络侧需要做多用户 MIMO时, 需要对收到的反馈信息进行修改, 例如, 给 予单用户 CQI近似生成多用户 CQI等, 并基于这些近似的信息进行调度。
这种近似操作会引入额外的误差, 例如, 当基站估计出的多用户 CQI 大于实际的复用信道质量, 基站可能会选择一个效率更高的编码调制方案 并因此导致终端侧的错误重传请求; 当基站估计出的多用户 CQI小于实际 的复用信道质量, 基站可能会选择一个效率更低的编码调制方案, 并因此 导致信道容量被浪费。 这两种误差都会导致网络吞吐率的降低。 此外, 在专利文献 1 (EP2346189A1 ) 中, 对于每一个 PMI, 公开了 一种依据统计规律或正交规则预先定义了一个最优配对 PMI集。 UE搜索 出最优的单用户 PMI后, 可以找到其对应的最优配对 PMI集, 并计算出当 此集合内的 PMI被用于匹配伙伴 UE的预编码时, UE的对应多用户 CQI。 UE可将包含单用户 CQI和多用户 CQI的多个 CQI上报至基站, 以辅助基 站的 UE匹配和调度决策。
该方法依赖经验数据或码本中定义的预编码矩阵的正交性来得出最优 配对 PMI集, 因此在实际应用中会以一定概率出现误差, 即 UE的最优配 对 PMI并不在该集合当中。 另一方面, UE对于网络侧的匹配倾向性没有 先验信息, 在这种情况下 UE需要上报大量的多用户 CQI至基站端, 因而 会带来大量的上行资源开销。
此外, 在专利文献 2 (US20120106470) 中, 公开了如下反馈方法: 规 定 UE在上报反馈信息时, 除了上报单用户 PMI、 CQI和 RI之外, 还可以 基于自身 RI或网络侧给出的参考 RI选择和上报第二个 PMI乃至多个 PMI, 以及其对应的 CQI。 上报的 PMI既可以是基于正交准则选择的, 也可以是 UE实时搜索出的对于自身干扰最小的 PMI。 上报的 CQI应该是假定基站 使用上报的单用户 PMI对自身的数据进行预编码, 并使用上报的其它 PMI (至少是第二个) 对匹配用户的数据进行预编码时的信道质量。 这种方法 对于基站实现多用户 MIMO提供了足够准确的信息, 完全避免了 BS的近 似操作带来的误差。
但是, 利用该方法, 在每次上报均需要至少上报一个额外的 PMI, 且 计算 CQI时始终考虑匹配用户干扰的存在。 在网络的负载状况不强, 同时 要求数据服务的 UE不多的情况下, 对于下行多用户 MIMO的需求并不强 烈, 因此这种反馈方式可能带来大量的开销, 却无法带来对应的性能增益。 发明内容
本发明就是鉴于上述问题而提出的, 其目的在于提供一种能够支持可 配置的 CSI反馈架构, 提供一种通过基站侧对高层信令和参考信号的灵活 配置而能够充分获取下行多用户 MIMO的增益并尽可能避免额外开销的反 馈控制装置及方法、 反馈装置及方法、 以及多用户 MIMO反馈方法。 本发明的技术方案之一是一种多天线基站中的反馈控制装置, 用于对 终端的信息反馈进行控制, 包括: 高层链路建立单元, 通过与终端之间建 立的高层链路, 发送高层信令; 高层信令生成单元, 生成高层信令, 上述 高层信令用于对终端指定信道状态信息的反馈模式; 接收单元, 接收来自 终端的、 与高层信令所指定的反馈模式对应的信道状态信息; 以及多用户 处理单元, 根据所接收到的信道状态信息, 进行与多用户多输入多输出
MIMO有关的处理。
此外, 本发明的另一技术方案是一种终端中的反馈装置, 用于在多用 户 MIMO环境下对基站进行信息反馈, 包括: 高层链路单元, 通过与基站 之间建立的高层链路, 接收来自基站的高层信令; 信令配置单元, 根据上 述高层信令, 确定反馈模式; 信道状态信息生成单元, 按照所确定的上述 反馈模式, 生成与该反馈模式对应的信道状态信息; 以及反馈单元, 将所 生成的信息状态信息发送给上述基站。
此外, 本发明的另一技术方案是一种多天线基站中的反馈控制方法, 用于对终端的信息反馈进行控制, 包括: 高层链路建立步骤, 通过与终端 之间建立的高层链路, 发送高层信令; 高层信令生成步骤, 生成高层信令, 上述高层信令用于对终端指定信道状态信息的反馈模式; 接收步骤, 接收 来自终端的、 与高层信令所指定的反馈模式对应的信道状态信息; 以及多 用户处理步骤, 根据所接收到的信道状态信息, 进行与多用户多输入多输 出 MIMO有关的处理。
此外, 本发明的另一技术方案是一种终端中的反馈方法, 用于在多用 户 MIMO环境下对基站进行信息反馈, 包括: 高层链路步骤, 通过与基站 之间建立的高层链路, 接收来自基站的高层信令; 信令配置步骤, 根据上 述高层信令, 确定反馈模式; 信道状态信息生成步骤, 按照所确定的上述 反馈模式, 生成与该反馈模式对应的信道状态信息; 以及反馈步骤, 将所 生成的信息状态信息发送给上述基站。
此外, 本发明的另一技术方案是一种多用户 MIMO反馈方法, 包括以 下步骤: 基站与终端之间建立的高层链路; 基站生成高层信令, 并将所生 成的高层信令发送给终端, 上述高层信令用于对终端指定信道状态信息的 反馈模式; 接收到上述高层信令的终端根据该高层信令确定反馈模式; 终 端按照所确定的上述反馈模式, 生成与该反馈模式对应的信道状态信息, 并将上述信道状态信息反馈给基站; 基站根据所接收到的上述信道状态信 息, 进行与多用户多输入多输出有关的处理。
在本发明中的下行多用户 MIMO传输的方法, 允许 UE根据高层信令 对于特定的 CSI参考对象选择不同的 CSI测量与上报行为。 BS可以根据网 络的负载状况, 选择通过参考信号的配置隐性的令 UE计算和上报多用户 CSI的方式, 或选择通过高层信令明确告知 UE上报多用户 CSI的方式。 UE在上报 CSI时,对于特定的 CSI反馈对象,可以是使用传统的测量及反 馈机制, 即计算和上报最优的单用户 RI, PMI及 CQI, 也可以是使用新的 测量及反馈机制, 即计算和上报专门用于多用户调度的 RI, PMI及 CQI。 UE的测量与反馈行为由 BS通过高层信令来指示。
因此, 根据本发明, 通过在物理层之上建立用于配置信道状态信息的 反馈模式的高层链路, 能够根据网络内的资源状况灵活进行调度。 并且, 本发明中在多用户 MIMO的情况下,还可以由基站进行多用户 MIMO中的 配对终端的确定, 减少了终端的工作量, 使得对于终端来说只要单纯进行 与单用户 MIMO时相同的动作既可以完成多用户 MIMO的 CSI报告。
此外, 由于此发明增强了调度的准确性与灵活性, 能够最大化网络内 无线资源的利用效率, 减少上行链路中的反馈开销, 因此, 网络的性能可 得到有效提升。 附图说明
图 1是表示本发明中的一个完整的小区的系统构架的示意图。
图 2是本发明中的支持下行多用户 MIMO传输的基站的内部框图。 图 3是本发明中的终端设备的反馈装置的内部框图。
图 4是表示本发明中的基站侧负载状态信息表的示例图。
图 5是表示本发明中的单用户 CSI反馈信息储存表的示例图。
图 6是表示本发明中的多用户 CSI反馈信息储存表的示例图。
图 7是表示本发明中的高层配置信息储存表的示例图。
图 8 是表示本发明中的高层信令链路初始化的反馈相关配置的流程 图。
图 9是表示本发明中的 UE侧的 CSI测量与反馈方法的流程图。
图 10是表示本发明中的基站设备的下行多用户 MIMO物理层实现方 法的流程图。
图 11 是表示本发明中的高层信令链路重配置或重建里的反馈相关配 置的流程图。
图 12 是表示本发明中的完整的基站 -UE 间下行数据传输的流程示例 图。
图 13是表示本发明中的高层链路上传输的信令信息的格式示例图。 图 14是表示下行多用户 MIMO技术在典型场景下的应用示例图。
具体实施方式
以下结合附图以一次完整的下行多用户 MIMO传输过程为例说明本发 明的优选实施方式。
此外,现有的小区概念可以是"一个基站", "基站的一个扇区", "一 个家庭基站", 或者一个 "传输点 (TP) "等覆盖的范围。 为了简化描述, 我们这里用一个基站覆盖的范围来表示一个小区。 在这种情况下, 为了进 行下行多用户 MIMO传输, 基站具有多个天线, 通过使不同的天线同时与 不同的终端进行通信, 从而与进入该小区内的移动终端之间在物理层面上 收发数据。 这里, 能够利用不同的天线一起接收来自同一基站的信息的终 端彼此互为匹配终端。 并且, 在本发明中, 在基站接受来自终端的信道状 态信息反馈的情况下, 除了物理层面上的数据传输之外, 还在基站与终端 之间另外建立高层链路,利用高层链路层面上的信息交换,实现所谓的"对 终端隐性的多用户 CSI反馈"。
图 1是表示本发明中的一个完整的小区的系统构架图。 如图 1所示, 基站 101形成的小区内共有 N个移动终端 102 (UE1〜N)。 其中, 与图 14 相比较, 移动终端 UE1、 UE3以及 UE ΝΛ均与基站 101建立了高层链路 104, 并按照高层链路 104上传输的高层信令的指示, 通过 UE-基站上行信 道 105向基站传输对应每个 CSI反馈对象的反馈信息。
基站 101收到反馈信息后, 经过用户匹配和资源调度, 将此时刻的信 道资源通过多用户 MIMO的方式分配给 UE1和 UE3,并通过下行物理信道 103向目标 UE发送具体的数据信息。
图 2是本发明中的支持下行多用户 MIMO传输的基站的内部框图。 如图 2所示, 支持下行多用户 MIMO传输的基站主要具有: 高层信令 配置单元 714、 物理层接收单元 701、 物理层发送单元 713、 信息收集单元 702、 存储单元 721、 物理层多用户动态配置单元 707以及物理层资源分配 单元 710。
具体来说, 高层信令配置单元 714是与高层信令配置有关的模块, 用 于在基站与特定 UE之间建立高层链路, 并且, 在高层链路建立或重配置 被触发时, 获取和分析存储单元 721 中所存储的、 基站内现有的信息, 以 此产生针对该特定 UE的高层信令信息, 对物理层的过程进行半静态配置。
为了生成高层信令, 高层信令配置单元 714包含 CSI反馈对象与多用 户 MIMO模式配置单元 715。上述 CSI反馈对象与多用户 MIMO模式配置 单元 715用于在基站与特定 UE间高层链接建立或重配置被触发时, 利用 基站现有的信息, 生成用于对终端指定信道状态信息的反馈模式的高层信 令信息。 高层信令中包括与反馈模式有关的配置信息, 在设置有多个 CSI 反馈对象时, 也可以针对不同的 CSI反馈对象而包含多组与反馈模式有关 的配置信息。 具体的高层信令格式在后面叙述。 产生的高层信令信息 716 通过高层信令链路发送至特定的 UE。
这里, 所谓"反馈模式", 是指基站指定其属下的终端在向本基站进行 信道状态信息反馈时使用的模式, 以当前 3GPP 的规范标准为例, 可以分 为单用户 MIMO模式和多用户 MIMO模式。 单用户 MIMO模式是指终端 默认自己会被基站以单用户 MIMO的方式提供服务的情况下进行反馈的模 式, gP, 在单用户 MIMO模式下, 终端侧认为基站在同一时频利用单一天 线对自己进行单输入单输出, 而不存在与本终端匹配的其他终端。 多用户 MIMO模式是指终端默认自己会被基站以多用户 MIMO的方式提供服务的 情况下进行反馈的模式, gP, 在多用户 MIMO模式下, 终端侧认为基站在 同一时频利用多个天线对自己和其他匹配终端同时进行多输入多输出, 从 而存在至少一个与本终端匹配的其他终端。
基站通过发送包含高层信令在内的高层信令信息, 能够指定终端以何 种模式进行反馈。
此外, 物理层接收单元 701用于接收小区内的终端(UE)通过上行信 道发送至基站的数据和信令, 完成射频处理、 基带解调与解码等一系列信 号接收方面的处理, 获得具体的上行数据和信令信息。 物理层发送单元 713用于将产生的数据信号、 IMR等参考信号映射到 时频资源上, 并完成基带 -射频转换, 利用基站所具有的多个天线, 将下行 信号发送出去。
物理层接收单元 701和物理层发送单元 713作为基站在与高层链路不 同的物理层收发数据的模块, 可以参照传统基站中的相关模块, 应用现有 基站中的输入输出硬件加以实现。 因此, 再次省略详细的说明。
信息收集单元 702用于收集基站对于下行 UE进行配置或资源分配所 需的必要信息。 所述信息收集单元 702包含: 网络负载信息收集单元 703, 收集和记录网络内活动 UE的数目和负载信息; 反馈处理单元 704, 基于本 基站的存储单元 721中存储的高层配置信息储存表 719中的信息, 区分和 处理小区内不同 UE基于不同 CSI反馈对象上报的反馈信息; 单用户 CSI 处理单元 705, 在信息为单用户 CSI时, 对反馈信息解复用后存储到存储 单元 721的单用户 CSI信息储存表 717中; 以及多用户 CSI处理单元 706, 若信息为多用户 CSI, 则对反馈信息解复用后存储到存储单元 721 的单用 户 CSI信息储存表 718中。
存储单元 721用于存储基站在物理层和高层的与下行多用户 MIMO传 输相关的信息。所述存储单元 721中存储有: 网络负载信息存储表 717, 用 于存储网络的实时负载信息, 并基于网络负载信息收集单元 703的输出进 行更新; 单用户 CSI信息存储表 718,用于存储网络中所有活动 UE上报的 单用户 CSI信息; 多用户 CSI信息存储表 719, 用于存储网络中所有活动 UE上报的多用户 CSI信息,并分别基于单用户 CSI模块 705和多用户 CSI 模块 706的输出进行更新; 以及高层配置信息储存表 720,用于记录基站对 每个 UE通过高层链路已传输的高层信令信息, 并基于高层信令配置单元 714的输出进行更新。关于存储单元中的各个信息存储表的内容在以后详细 说明。
物理层多用户动态配置单元 707以及物理层资源分配单元 710为可选 部件, 是基站中利用存储单元 721 中存储的信息对终端用户进行各种配置 的单元。 在图 2中举例选择说明了的对传输中的预编码矩阵进行配置的物 理层多用户动态配置单元 707 以及对终端用户进行动态匹配的物理层资源 分配单元 710。
具体来说,物理层多用户动态配置单元 707用于分析和设计 IMR的配 置方法, 以动态的追踪网络内负载及对应优化 PMI的变化, 支持下行多用 户 MIMO的高效传输。 所述多用户动态配置单元 707中包含: 多用户配置 分析处理单元 708, 可从存储单元 721的单用户 CSI信息存储表 717中读 取小区内现有的单用户 PMI,基于出现频率及正交性原则等方法为特定 UE 的 IMR选择合适的预编码 PMI,以获得当该 UE工作与多用户 MIMO模式 下且特定 PMI被匹配用户使用时的单用户 CQI信息, 以提升基站侧信道质 量信息的精确度; 以及干扰测量信号产生单元 709,按照所述多用户配置分 析处理单元 708的输出结果, 对某个等方性信号进行对应的预编码操作, 将所生成的数据信息作为 IMR资源上的发送信号。该数据信息用于将多个 用户终端进行匹配来配置多用户 MIMO。 此外, 对预编码 PMI的选择以及 预编码操作等生成数据信息的具体算法可以参照现有预编码操作的具体算 法, 并且也可以采用现有的其他数据信息的生成方法, 只要能够生成多用 户配置信息即可, 因此, 省略详细的说明和举例。
物理层资源分配单元 710用于对实际的信道资源进行分配及调制编码 方案的选择等。 所述物理层资源分配单元 710中包含: 用户匹配与资源调 度单元 711, 从单用户 CSI信息存储表 718和多用户 CSI信息存储表 719 中获取小区内 UE上报的单用户或多用户 CSI信息, 并基于此实现用户的 匹配, 并为被调度到的 UE分配合适的信道资源; 以及数据信号产生单元 712, 基于调度结果执行下行数据的编码调制操作。
在图 2中的基站构成中, 高层信令配置单元 714对应于 "高层链路建 立单元 "和"高层信令生成单元",物理层接收单元 701和信息收集单元 702 对应于"接收单元", 物理层多用户动态配置单元 707以及物理层资源分配 单元 710对应于 "多用户处理单元"。
下面对存储单元 721中存储的表格的格式进行说明。
图 4是本发明中的基站侧的负载状态信息表 721的示例图。 如图 4所 示, 负载状态信息表 721用于记录当前小区中的负载信息。 具体来说, 数 据域的项目包括: UE ID 801 , 记录有当前关联到该小区的所有 UE的 ID; UE状态 802, 与 UE ID 801相对应地记录有关联到该小区下的每个 UE的 状态为活动 UE还是非活动 UE, 即该 UE是否进行下行数据的传输过程; 以及高层链路状态 803,与 UE ID 801相对应地记录有关联到该小区下的每 个 UE的高层链路状态。 依据高层链路的状态, 高层链路状态 803中的内 容可以是 "已连接"、 "空闲"即未连接、 "即将建立"即处于连接建立过程、 或者 "即将重配置" 即处于已连接状态但被触发重新配置。
图 5是表示本发明中的单用户 CSI反馈信息储存表 718的示例图。 如 图 5所示, 单用户 CSI反馈信息储存表 718用于记录当前小区中活动 UE 反馈的 CSI信息。 具体来说, 数据域的项目包括: UE ID 901 , 记录该小区 内上报了单用户 CSI反馈的所有 UE的 ID; IMR配置 902, 与 UE ID 901 相对应地记录有每个 UE上报的可能的多组 CSI各自对应的 IMR, 其中 IMR0是特有的为小区内所有 UE共享的 IMR,用于测量邻小区干扰的 IMR; 以及 RI值 903、 PMI值 904和 CQI值 905, 分别用于与 UE ID 901相对应 地记录每个 UE上报的对应每个 IMR配置的多个 RI、 PMI和 CQI值。
图 6是表示本发明中的多用户 CSI反馈信息储存表 719的示例图。 如 图 6所示, 多用户 CSI反馈信息储存表 719用于记录当前小区中活动 UE 反馈的 CSI信息。 具体来说, 数据域的项目包括: UE ID 1001, 记录有该 小区内上报了多用户 CSI反馈的所有 UE的 ID; IMR配置 1002, 与 UE ID 1001相对应地记录有每个 UE上报的可能的多组 CSI各自对应的 IMR, 其 中 IMR0是特有的为小区内所有 UE共享的 IMR, 用于测量邻小区干扰的 IMR;以及 RI值 1003.PMI值 1004和 CQI值 1005,分别用于与 UE ID 1001 相对应地记录每个 UE上报的对应每个 IMR配置的多个 RI、 PMI和 CQI 值。
此外, 在多用户 CSI反馈信息储存表 719的 IMR配置 1002中, 并不 限于 IMR0。 基站可以在配置其 IMR对应的 CSI反馈对象为多用户 MIMO 模式时, 同时为其配置反映了基站选择倾向性的某个 PMI 的 IMR。 此时 UE所测量并上报的 CSI将是基于所配置 IMR的多用户干扰计算出的多用 户 CSI。 也就是说, 此计算出的多用户 CSI将是默认了所配置 IMR的多用 户干扰已被包含于 SINR计算时的干扰部分的值。
图 7是表示本发明中的高层配置信息储存表 720的示例图。 如图 7所 示, 高层配置信息储存表 720用于记录包含在高层信令信息中而在当前小 区中的基站与每个活动 UE之间建立的高层链路上传输的配置信息。 具体 来说, 数据域的项目包括: UE ID 1101, 记录有该小区内已经建立了高层 链路连接的所有 UE的 ID; CSI反馈对象配置 1102, 与 UE ID 1101相对应 地记录有高层链路为每个 UE配置的多个 CSI反馈对象的 ID; IMR配置 1103, 与 UE ID 1101相对应地记录有高层链路为每个 UE配置的每个 CSI 反馈对象对应的 IMR; 以及反馈模式 1104,与 UE ID 1101相对应地记录有 高层链路为每个 UE配置的每个 CSI反馈对象对应的反馈模式, 在本实施 方式中, 反馈模式设为 "单用户 MIMO模式"或 "多用户 MIMO模式"。
图 3是本发明中的终端设备的反馈装置的内部框图。
如图 3所示, 终端包括高层连路信息处理单元 610、存储区 607、 反馈 发送单元 608、 一个或多个 CSI计算单元 603 ( 1〜N)、 信道估计单元 601 以及干扰估计单元 602。
存储区 607中存储有高层配置信息储存表 611。 该高层配置信息储存 表 611的格式与基站中的高层配置信息储存表 720相同, 但是仅存储与本 终端有关的高层配置信息。
UE的高层链路信息处理单元 610在接收到高层信令 609之后,从高层 信令 609中提取高层配置信息, 将所提取的信息存储在存储区 607内的高 层配置信息储存表 611中。
UE所具备的一个或多个 CSI计算单元 603 ( 1〜N) 的数量对应于所 配置的不同的 CSI反馈对象的数量, 可以是一个, 也可以是多个而分别针 对多个 CSI反馈对象计算信道状态信息。 以标准规范 3GPP TS 36.211和 36.213为例, CSI计算单元 603 ( 1〜N) 对所配置的不同的 CSI反馈对象 计算具体的 RI、 PMI和 CQI信息作为信道状态信息 (CSI), 其中, N的数 量可以任意。
每个 CSI计算单元 603中包括: 信令配置处理单元 604, 用于从存储 区 607 中读取和分析高层信令的反馈配置, 确定单用户 MIMO或多用户 MIMO的计算模式; 单用户 CSI计算单元 605, 在该 CSI反馈对象被配置 为单用户反馈模式时计算传统的单用户 RI、 PMI和 CQI; 以及多用户 CSI 计算单元 606, 在该 CSI反馈对象被配置为多用户反馈模式时计算本发明 所述的多用户 RI、 PMI和 CQI。 UE在计算得到多个 CSI反馈对象的 CSI 结果后, 将信息暂时存储于存储区 607 内, 并依据高层信令中配置的反馈 周期与偏置在适当的时刻将对应的 CSI信息通过反馈发送单元 608向基站 发送。
信道估计单元 601用于对信道状态信息参考信号进行估计, 产生信道 状态信息矩阵。 干扰估计单元 602用于对干扰强度进行估计, 以备计算信 干噪比时使用。 信道估计单元 601和干扰估计单元 602都可以使用现有的 终端采集信息的部件, 此外也可以替换成其他采集的信息的模块。
在图 3中的终端构成中, 高层链路信息处理单元 610对应于 "高层链 路单元"和 "信令配置单元", CSI计算单元 603对应于 "信道状态信息生 成单元", 反馈发送单元 608、 信道估计单元 601以及干扰估计单元 602对 应于 "反馈单元"。
具有以上构成的基站与终端在网络中能够构成如图 1所示那样的小区 的系统构架。 在图 1 的系统构架上, 基站与终端之间通过以上说明的各个 模块和数据库, 能够实现多种功能。 特别是, 作为不同的实施方式, 关于 本发明中的基站与终端的动作大致分为: 1 )基站进行的高层链路初始化动 作、 2)终端对基站的反馈动作、 3 )基站对多用户终端的匹配和调度动作、 以及 4) 基站进行的高层链路重配置动作。
以下分别详细说明基站在进行各个动作时的流程。
<基站进行的高层链路初始化动作 >
图 8是表示本发明中的高层链路初始化来发送配置信息的流程图。 通 过基站中的高层信令配置单元 714执行。
以基站与终端 UE1之间为例, 当 UE1与基站之间需要初始建立高层 链路时 (步骤 401 ), 基站首先基于 IMR0为 UE1配置一个单用户 MIMO 模式下的 CSI反馈对象 (步骤 402)。 在此基础上, 基站从网络负载信息存 储表 717中读取当前的网络负载信息 (步骤 403 ), 基于所读取的网络负载 信息检测当前网络负载是否低于特定的阈值 (步骤 404)。
若网络负载低于阈值, 则基站判断是否需要为 CSI配置多个反馈对象 (步骤 405 ),以获得足够的信息支持基站侧的多用户匹配。若结果为"否", 则配置完成, 在高层配置信息中保留单用户 MIMO模式, 将针对该 CSI反 馈对象的 IMR index即 IMR0、 SU的反馈模式配置以及对应的码本配置和 参考 CSI反馈对象的配置信息加入高层信令中, 从而基站直接将对应的高 层配置信息作为高层信令发送给 UE1 (步骤 406)。
若结果为 "是 ", 则基站为 UE1配置新的 IMR, 并且为 UE1配置新的 CSI反馈对象 (步骤 407 ), 然后将对应的高层配置信息作为高层信令发送 给 UE1 (步骤 406)。 若网络负载不低于阈值, 则基站从单用户 CSI信息存储表 718中读取 所有活动 UE的基于 IMR0的 SU-PMI信息(步骤 408 ),并判断这些 SU-PMI 的信息是否平均 (步骤 409)。 若判断结果为 "是 ", 即每个 PMI被上报的 频次大致相等, 则基站为 UE1配置新的 CSI反馈对象, 并将该反馈对象对 应的反馈模式转换配置为多用户反馈模式 (步骤 410);
若判断结果为 "否 ", 即特定的一个或几个 PMI被上报的频次高于其 他 PMI, 则基站为 UE配置新的 IMR, 并且为 UE1配置新的 CSI反馈对象 407, 但保留现有的反馈模式。 并将所生成的高层配置信息作为高层信令发 送给 UE1 (步骤 406)。
通过在物理层之上建立用于配置信道状态信息的反馈模式的高层链 路, 由基站对终端配置反馈模式, 能够根据网络内的资源状况灵活进行调 度。 并且, 增强了调度的准确性与灵活性,
<终端对基站的反馈动作>
通过基站与终端之间建立高层链路来传输包括反应与特定反馈模式相 对应的高层配置信息在内的高层信令,能够实现"对终端隐性的多用户 CSI 反馈"。 "对终端隐性的多用户 CSI反馈"是指, 站在具有多个天线的基站 角度开看, 执行多用户 MIMO的传输, 但是, 在终端侧来看, 无论基站是 否为多用户 MIMO, 终端都能够按照单用户 MIMO模式, 仅反馈单用户 CSI, 而通过基站进行多用户 MIMO的配置。
如图 3所述, 终端侧的高层链路信息处理单元 610能够根据高层信令 信息的内容更新终端中的高层配置信息储存表 607。 因此, 在终端侧, UE 直接根据高层配置信息储存表 607就可以针对特定 CSI反馈对象, 基于所 述反馈系统结构产生单用户或多用户 CSI信息并反馈给基站。 图 9是本发 明中 UE侧的 CSI测量与反馈方法的流程图。
以图 1中的 UE1为例, 在图 9中, UE1首先通过接收天线和射频及基 带处理, 得到时域和频域上的信号(步骤 201 )。然后 UE1的信道估计单元 601根据其中包含的信道测量参考信号进行信道状态信息估计(步骤 202), 产生实际的 CSI矩阵 。
并且, 通过干扰估计单元 602进行干扰估计(步骤 203 )。在步骤 203, UE1利用 BS通过高层信令配置的 IMR上的时频资源作干扰估计, 得出此 时刻外界干扰的强度。
并且, UE1的高层链路信息处理单元 610根据高层信令信息判断特定 CSI反馈对象是否被配置为单用户 MIMO模式 (步骤 204)。
如果判断结果为 "是 ", 则 UE1的 CSI计算单元 603利用单用户 CSI 计算单元 605遵循现有传统流程, 从高层信令信息配置的码本中选择性能 最好的单用户 RI和 PMI (步骤 205 ), 计算此时的信干噪比并量化为单用 户 CQI (步骤 206)。 对于现有的现有传统流程省略具体的说明。
如果判断结果为 "否 ", 则 UE1的 CSI计算单元 603利用多用户 CSI 计算单元 606以不同于单用户 MIMO的多用户 MIMO准则选择多用户 RI 和 PMI (步骤 207), 并利用所述 RI和 PMI信息, 计算多用户 CQI (步骤 208)。 所计算出的 CSI信息被送入存储区, 等待合适的时机向基站进行反 馈 (步骤 209)。
根据反馈模式的不同,可选择的多用户 RI、 PMI和 CQI的计算准则也 有所不同, 例如可以有如下几种计算准则, 终端的 CSI计算单元 603以哪 种计算准则进行计算都可以,
若 UE1的 CSI反馈对象 n被配置为多用户 CSI反馈模式,所述多用户 RI、 PMI和 CQI的计算准则 A, 可以是: UE1由高层信令的码本配置读取 基站建议的 RI作为多用户 RI1„上报 (下标表示该信息针对的 CSI反馈对 象,下同)。 UE1基于 RI1„选择预编码合并效果最差的 PMI作为多用户 PMI1„ 上报。 UE假设基站使用 Rl 和 ΡΜΙ1λ对自身传输数据, 其中 k为由高层信 令配置的 CSI反馈对象 n的参考 CSI反馈对象的 index,并假设基站同时使 用所述的多用户 1 11„和?^111„向匹配用户传输数据, 计算出此时的 CQI并 作为多用户 CQI1„上报。
所述多用户 RI、 PMI和 CQI的计算准则 B , 也可以是: UE1默认基站 向匹配用户传输数据时使用的 RI为 1。 UE基于此 RI值选择预编码合并效 果最差的 PMI作为多用户 PMI1„上报。 UE假设基站使用 PM 对自身传输 数据, 其中 为由高层信令配置的 CSI反馈对象 n的参考 CSI反馈对象的 index, 并基于此假设选出性能最好的 RI作为多用户 RI1„上报。 UE假设基 站使用所述 ΡΜΙ1λ对自身传输数据,并假设基站同时使用 RI=1和所 述多用户?^111„向匹配用户传输数据,计算出此时的 CQI作为多用户 CQI1„ 上报。 所述多用户 RI、 PMI和 CQI的计算准则 C, 也可以是: UE由高层信 令的码本配置读取基站建议的 RI作为多用户 RI1„上报。 UE基于此 RI值选 择预编码合并效果最差的 PMI作为多用户 PMI1„上报。 UE假设基站使用 所述 RI和 PMI对自身传输数据, 计算出此时的 CQI作为多用户 011„上 报。
所述多用户 RI、 PMI和 CQI的计算准则 D, 也可以是: UE假设基站 使用 ΡΜΙ1λ对自身传输数据, 其中 为由高层信令配置的 CSI反馈对象 n 的参考 CSI反馈对象的 index, 并基于此假设, 从高层信令配置的码本中选 择对此次传输干扰最小的 RI和 PMI作为多用户 Rll P多用户 PMI1„上报。 UE假设基站使用 RIl^P ΡΜΙ1λ对自身传输数据, 其中 为由高层信令配置 的 CSI反馈对象 η的参考 CSI反馈对象的 index, 并假设基站同时使用所述 的多用户 RIUP ?^111„向匹配用户传输数据, 计算出此时的 CQI并作为多 用户 CQI1„上报。
通过图 9的流程, 终端既可以进行针对多用户 MIMO模式的反馈, 也 可以实现 "对终端隐性的多用户 CSI 反馈", 也就是只进行针对单用户 MIMO模式的反馈。 因此, 可以根据负载状况和终端的能力灵活地进行反 馈配置, 从而提高整个系统的反馈效率。
<基站对多用户终端的匹配和调度动作>
基站通过高层链路对终端的反馈模式进行配置之后, 接收来自终端的 信道状态信息的上报, 从而基站侧在物理层基于反馈的信息进行与多用户 MIMO有关的处理。
图 10是表示本发明中的基站设备的下行多用户 MIMO物理层实现方 法的流程图。 该流程实际可分为主要的两个功能部分。
第一部分为 CSI反馈信息收集, 由信息收集单元 702执行。 在实际系 统中, 每个子帧周期内基站可能接收到多个 UE的 CSI反馈信息, 每个 UE 可能被高层配置多个 CSI反馈对象。
在图 1所示的场景中, BS101首先选择 UE1作为对象(步骤 301 ), 然 后选择 UE1的某个特定的 CSI反馈对象(步骤 302),依据高层信令的配置, 判断 UE1的该 CSI反馈对象是否被配置为多用户 MIMO模式(步骤 303 )。 若判断的结果为 "否 ", 则读取此 CSI反馈对象上报的 CSI信息并更新单用 户 CSI (SU-CSI) 的信息存储表 718 (步骤 304); 若判断的结果为 "是 ", 则读取此 CSI反馈对象上报的 CSI信息并更新多用户 CSI (MU-CSI) 的信 息存储表 719 (步骤 305 )。
更新完成后, 基站判断此 CSI反馈对象是否为 UE1 的最后一个 CSI 反馈对象。 如果判断结果为 "否 ", 则返回步骤 S302, 进入下一个 CSI反 馈对象的接收流程, 信息收集单元 702针对下一个 CSI反馈对象重复执行 步骤 303〜步骤 S30。 如果判断结果为 "是 ", 则判断该 UE是否为同一子 帧周期内上报反馈信息的最后一个 UE。 如果判断结果为 "否 ", 则返回步 骤 301, 进入下一个 UE如 UE2的接收流程。 如果判断结果为 "是 ", 则对 CSI的接收动作完成, 能够进入第二个功能部分的执行。
第二部分为调度和信号预编码配置部分, 由物理层资源分配单元 710 执行。 基站的物理层资源分配单元 710从所述单用户 CSI信息存储表 717 中读取所有 UE对应 IMR0的单用户 CSI (步骤 308 )。 读取完成后, 通过 读取高层配置信息储存表 720逐个查找将在下一个子帧内执行 IMR测量的 UE (步骤 309)。
以 UE1为例, 物理层资源分配单元 710基于已知的所有其它活动 UE 的单用户 PMI, 对应可能的用户匹配决策, 如设 UE1与 UE2进行匹配, 为 UE1将要测量的 IMR上传输的等方信号选择合适的预编码矩阵 (步骤 312), 如 UE2的预编码矩阵。然后判断 UE1是否为最后一个将在下一个子帧内执 行 IMR测量的 UE (步骤 311 ),若判断结果为"否", 则选择下一个 UE (步 骤 309), 若判断结果为 "是", 则利用已知的单用户与多用户 CSI, 进行多 用户匹配与调度(步骤 312), 并将经过了预编码的 IMR和数据信号发送出 去 (步骤 313 )。
在所述基站侧的下行多用户 MIMO的实现方法中, 所述 IMR0为特有 的为小区内所有 UE共享的 IMR。 基站在 IMR0的所有时频资源上保持静 默状态,小区内的所有 UE在 IMR0上测量干扰强度。此干扰强度可被认为 是所有来自相邻小区的同频干扰之和。
在所述基站侧的多用户匹配过程中, 基站的行为依据 UE上报的单用 户或多用户 RI、 PMI和 CQI的计算准则的不同而不同。基站的多用户匹配 方法, 可以是: 针对某个特定 UE, 如 UE1 , 如果其上报了多个单用户 CSI 反馈,分别针对 IMRO, IMR1和 IMR2 (所上报的信息分别记为 RI1,, PMI1; 和 CQI1;,其中 1表示 UE的 ID ,而下标 i表示 CSI反馈对象的 ID ,后同), 则基站从 CSI信息列表中选择 UE , 其上报的针对多个 IMR的不同 CSI 信息中, 存在特定 RIm P PMI „与 IMR1或 IMR2使用的数据层数和预编 码矩阵相同, 而且其对应的 IMR«上使用的数据层数和预编码矩阵与 Rlli 和 PMIli相一致, i为 1或 2。 这种匹配方法能够对应于两个使用隐性多用 户 CSI反馈模式的 UE的匹配。
此外, 基站的多用户匹配方法, 也可以是: 如果 UE1上报了多个单用 户 CSI反馈, 分别针对 IMRO , IMR1和 IMR2 , 则基站从 CSI信息列表中 选择 UE , 其上报的单用户 CSI信息中, 存在特定 1 ^„和?^1^„与1^ [1 1 或 IMR2使用的数据层数和预编码矩阵相同,《为其配置为多用户 CSI模式 的 CSI反馈对象的参考 CSI反馈对象的 index, 而且其上报的多用户 RI和 PMI与 Rlli和 PMIli相一致, i为 1或 2。这种匹配方法能够对应于一个使 用隐性多用户 CSI而另一个使用前述多用户计算准则 A或 D反馈多用户 CSI的 UE之间的匹配。
此外, 基站的多用户匹配方法, 也可以是: 如果 UE1上报了多个单用 户 CSI反馈, 分别针对 IMRO , IMR1和 IMR2 , 且 RIl^l , 为 1或 2, 则 基站从 CSI信息列表中选择 UE , 其上报的 CSI信息中的多用户 RI和 PMI „与 IMR1或 IMR2使用的数据层数和预编码矩阵相同, n为其配置为 多用户 CSI模式的 CSI反馈对象的参考 CSI反馈对象对应的 index,而且其 上报的多用户 PMI与 PMIli相一致, i为 1或 2。这种匹配方法能够对应于 一个使用隐性多用户 CSI而另一个使用前述多用户计算准则 B反馈多用户 CSI的 UE之间的匹配。
此外, 基站的多用户匹配方法, 也可以是: 如果 UE1上报了多个单用 户 CSI反馈, 分别针对 IMRO , IMR1和 IMR2 , 则基站从 CSI信息列表中 选择 UE , 其上报的单用户 CSI信息中, 存在特定 1 ^„和?^1^„与1^ [1 1 或 IMR2使用的数据层数和预编码矩阵相同, n为 UE 配置为单用户 CSI 模式的任意 CSI反馈对象的 index, 而且其上报的多用户 RI和 PMI与 RI1,. 和 PMIl^g—致, 为 1或 2。 这种匹配方法能够对应于一个使用隐性多用 户 CSI而另一个使用前述多用户计算准则 A或 D反馈多用户 CSI的 UE之 间的匹配。
此时基站可沿用 UE1上报的 CQI1,., 为 1或 2。 同时要利用 UE 上 报的 01 „及多用户 CQI, 计算为 UE 进行实际数据发送时的 CQI, n为 其配置为多用户 CSI 模式的 CSI 反馈对象的参考 CSI 反馈对象对应的 index
此外, 基站的多用户匹配方法, 也可以是: 如果 UE1 上报了多用户 CSI反馈( =0), 则基站从 CSI信息列表中选择 UEm, 其上报的单用户 CSI 信息中,存在特定 Rl ^P ?^1^„与 RI1。和 PMI1。一致, n为 UE 配置为多 用户 CSI模式的 CSI反馈对象的参考 CSI反馈对象的 index,且其上报的多 用户 CSI信息中 Ri 。和 PMI 。与 UE1上报的 RI1和 ΡΜΙ1λ—致, k为 UE1 配置为多用户 CSI模式的 CSI反馈对象的参考 CSI反馈对象的 index。这种 匹配方法能够对应于两个使用前述多用户计算准则 A或 D反馈多用户 CSI 的 UE之间的匹配。
此外, 基站的多用户匹配方法, 也可以是: 如果 UE1 上报了多用户 CSI反馈( =0), 且同时上报了单用户 RI1 =1, 为 UE1配置为多用户 CSI 模式的 CSI反馈对象的参考 CSI反馈对象的 index,则基站从 CSI信息列表 中选择 UEm, 其上报的单用户 CSI信息中, 存在特定 RI „=l且?^11 „与 PMI1。一致, n为 UE 配置为多用户 CSI模式的 CSI反馈对象的参考 CSI 反馈对象的 index, 且其上报的多用户 PMI 。与 UE1上报的 PMI1—致, k 为 UE1 配置为多用户 CSI模式的 CSI反馈对象的参考 CSI反馈对象的 index 这种匹配方法能够对应于两个使用前述多用户计算准则 B反馈多用 户 CSI的 UE之间的匹配。
此外, 基站的多用户匹配方法, 也可以是: 如果 UE1 上报了多用户 CSI反馈(i=0), 则基站从 CSI信息列表中选择 UEm, 其上报的单用户 CSI 信息中,存在特定 Rl ^P ?^1^„与 RI1。和 PMI1。一致, n为 UE 配置为单 用户 CSI模式的任意 CSI反馈对象的 index,且其上报的多用户 CSI信息中 Ri 。和 PMI 。与 UE1上报的 RI1和 PMI1—致, k为 UE1配置为单用户 CSI模式的任意 CSI反馈对象的 index。 这种匹配方法能够对应于两个使用 前述多用户计算准则 C计算多用户 CSI的 UE间的匹配。
通过基站进行以上的多用户匹配, 能够依据高层信令的配置信息以及 终端上报的信道状态信息, 在基站侧决定匹配终端。 从而与以往由终端建 议多用户 MIMO传输中的匹配终端的技术相比,减轻了终端的负担。并且, 由于是由基站进行多用户 MIMO传输中的匹配终端的决定, 因此从终端侧 来说, 能够依据高层信令而采取单用户 MIMO的反馈模式, 从而实现 "对 终端隐性的多用户 CSI反馈"。
<基站进行的高层链路重配置动作 >
此外, 在本发明中, 初始建立高层链路之后, 还能通过高层信令配置 单元 714对高层信令进行调整, 将这种高层信令的调整称为 "高层链路重 配置"。
图 11 是表示本发明中的高层信令链路重配置或重建立的反馈相关配 置的流程示意图。
以基站与 UE1之间为例, 首先, BS-UE1链路的高层连接的重配置过 程被触发 (步骤 501 )。 这种触发可以是由于新的活动 UE的加入, 也可以 是完成服务的 UE断开连接, 也可以是周期性的触发, 也可以是其他未列 入的触发过程。
基站的高层信令配置单元 714基于 IMR0为 UE1配置一个 CSI反馈对 象 (步骤 502)。 然后读取 UE1的历史 CSI信息, 确定对于 UE1的优化后 的匹配 PMI, 作为匹配终端的预编码矩阵信息的候选 (步骤 503 )。 基站从 单用户 CSI信息存储表 718中读取所有活动 UE的基于 IMRO的 SU-PMI 信息 (步骤 408), 判断 UE1的优化后的匹配 PMI在活动 UE的基于 IMRO 的 SU-PMI 中的出现频次是否较高。 这里, 可以预先设定频次的阈值加以 比较, 在优化后的匹配 PMI出现的频次超过所设定的阈值的情况下, 认为 出现频次较高。
若判断的结果为 "是 ", 则基站为 UE配置新的 CSI反馈对象, 并将该 反馈对象配置为多用户反馈模式(步骤 410)。若判断的结果为 "否", 则基 站为 UE配置新的 IMR, 并且为 UE1配置新的 CSI反馈对象 (步骤 407)。 然后将对应的高层配置信息作为高层信令发送给 UE1 (步骤 406)。
此外, 所谓优化后的匹配 PMI作为匹配终端的预编码矩阵信息的候选 可以根据预定的规则设定。例如,可以是:基站根据读取的 UE1的基于 IMRO 的 SU-PMI信息, 选择的一个或几个与其正交的其它预编码矩阵的 PMI。
或者, 优化后的匹配 PMI也可以是: 基站根据读取的 UE1 的针对多 个不同 IMR的 SU-PMI信息, 选择的能使得匹配了其它用户后 SINR值最 大的一个 PMI或高于某个阈值的几个 PMI。 或者, 优化后的匹配 PMI也可以是: 基站根据读取的 UE1上报的多 用户 CSI, 选择的 UE1 反馈的能够使得多用户干扰最小化的一个多用户 通过上述流程, 基站通过选择匹配终端的预编码矩阵信息的候选, 以 此确定是否重新配置高层信令, 从而不断完善高层信令的配置机制, 进一 步优化多用户 MIMO的资源配置。 图 12是表示本发明中的完整的基站 -UE下行数据传输的流程示例图。 在图 12中, 组合了以上各个实施方式中的动作, 从而从整体上例举了在基 站与终端之间的信息反馈中可能出现的各种信息交换。
如图 12所示,当 UE 102申请进行下行数据传输或是基站 101对 UE 102 进行寻呼并将要进行下行数据传输时, 双方首先建立高层链路的连接 (步 骤 1201 )。
基站 101基于已有信息对高层配置进行决策 (步骤 1202) 后, 将生成 的配置信息作为高层信令通过高层链路发送给 UE102 (步骤 1203 )。 UE102 在通过高层链路接收到对应的配置信息后, 依据基站 101 的高层信令进行 配置 (步骤 1204), 如 CSI反馈对象的配置、 每个 CSI反馈对象的反馈模 式的配置等。 UE102基于完成的配置测量信道 (步骤 1205 ), 并上报物理 层测量反馈信息至基站 101 (步骤 1206)。
至此完成了初步的高层链路建立与高层信令传输配置过程。 基站 101 收到终端基于高层信令进行的反馈信息之后, 基于反馈信息进行动态配置 和反馈 (步骤 1207 )。
如果该 UE 102被调度,则基站 101利用分配的物理层资源向该 UE102 发送下行数据(步骤 1208)。 UE102对接收数据进行接收, 同时反馈 HARQ 信息, 并同时执行信道测量和反馈生成功能(步骤 1209), 并将对应的反馈 信息反馈至基站。 这个过程循环进行, 直到数据传输结束或高层链路连接 重配置被触发 (步骤 1210)。
如果高层链路连接重配置被触发, 则基站 101侧进行高层重配置并将 生成的配置信息通过高层链路进行发送 (步骤 1203 )。 UE102在通过高层 链路接收到对应的重配置信息后, 依据基站 101 的修正后的高层信令进行 配置 (步骤 1204), 基于此配置完成测量信道和反馈 (步骤 1205 )。 UE102 之后循环重复之前的物理层过程, 直到下行数据传输完成(步骤 1211 )。如 果下行数据传输完成, 则基站 101释放高层链路连接(步骤 1212), UE102 状态成为空闲状态。
此外, 高层信令的格式并不特别限定, 只要能够传输必要的反馈模式 信息以及该反馈模式下的配置信息即可。图 13是表示本发明中所涉及的高 层链路上传输的信令信息的格式示例。
如图 13所示, 高层链路上针对反馈部分进行配置的信令信息, 以 CSI 反馈对象为基本单位, 共 N组 CSI反馈对象配置信息 1301, 其中 N为基站 为终端配置的 CSI反馈对象的个数。 以 CSI反馈对象 1配置信息为例, 其 中包含的数据域具体来说有: 信号测量参考信号 index 1302和 IMR index 1303 , 分别用于指示此 CSI反馈对象对应的信号测量参考信号和干扰测量 参考信号;反馈模式配置信息 1304,用于指示该 CSI反馈对象配置的模式, 即 CSI的计算可以使用单用户的计算准则, 也可以使用多用户的各种可能 计算准则; 码本配置 1305, 指示基站允许 UE在计算针对该 CSI反馈对象 的 CSI 时可以使用的预编码矩阵的集合; 以及参考 CSI 反馈对象 index 1306, 当 UE计算多用户 CSI时, 依据计算准则的不同, 可能需要从其他 的参考 CSI反馈对象处读取必要的数据。
根据本发明, 由于在物理层只上另外设置高层链路进行终端反馈模式 的配置信息的传送, 从而增强了调度的准确性与灵活性, 能够最大化网络 内无线资源的利用效率, 减少上行链路中的反馈开销, 因此, 网络的性能 可得到有效提升。
(变形例)
1 ) 在以上实施方式中, 以反馈模式是单用户 MIMO 模式和多用户 MIMO模式的方式, 说明了本发明。 但是, 即使是存在其他反馈模式, 只 要终端侧能够执行该反馈模式, 就可以通过基站向终端发送的高层信令来 指定其他反馈模式, 因此, 反馈模式并不仅限于现有的单用户 MIMO模式 或多用户 MIMO模式。 例如, 如果以某种规律定义了组合多输入多输出与 单输入输单输入的模式, 或者定义了多输入单输出等模式, 都可以通过高 层信令而由基站配置给终端。
2 ) 在<基站进行的高层链路初始化动作 >中, 基站从网络负载信息存 储表 717中读取当前的网络负载信息, 基于所读取的网络负载信息检测当 前网络负载是否低于特定的阈值, 在低于规定的阈值的情况下, 将反馈模 式设为单用户 MIMO模式, 根据反馈模式设定相应的配置信息。
但是,所述网络负载也可以通过当前网络中的活动 UE的数目来表现。 也可以是, 高层信令配置单元 714判断当前网络中的活动 UE的数目是否 低于规定的阈值 N, 在低于阈值的情况下认为网络负载状况不利于多用户 CSI的反馈。 反之, 则有利于多用户 CSI的反馈。 数字 N作为判断网络负 载状况的阈值, 可由基站自行决定。
3 ) 此外, 在<基站进行的高层链路初始化动作 >中, 为了进一步确定 是否将反馈模式变更为多用户 MIMO反馈模式, 还进行了步骤 405和步骤 409的判断,但是这个步骤的判断是为了进一步优化配置结果, 即使省略步 骤 405和步骤 409, 以单一判断结果为标准, 也可以实施本发明。在这种情 况下, 在网络负载低于规定阈值时, 直接发送高层配置信息到 UE, 在不低 于规定阈值时, 将终端的反馈模式设定为多用户 MIMO模式再进行高层信 令的发送。
4) 在多用户 MIMO传输相关的处理中, 除了以上说明过的基站对多 用户终端的匹配和调度动作之外, 还可以进行其他处理。 只要是应用了本 发明中提出的高层链路对终端进行反馈配置的技术, 都属于本发明的构思 范围内。
例如, 也可以是基站中具有的物理层多用户动态配置单元 707根据终 端上报的信道状态信息, 在高层信令生成单元为特定终端配置了额外的干 扰测量参考信号 IMR时, 为 IMR选择适当的预编码矩阵等。
5 )在以上实施方式中,说明了存在多个 CSI反馈对象的情况下的信令 格式以及基站一终端的动作。 但是, CSI 反馈对象也可以是一个, 或者采 用预先规定的特定 CSI反馈对象而不必在后续过程中指定。在这种情况下, 也可以省略与 CSI反馈对象选择和传输有关的信令内容及步骤。
以上说明了本发明的若干个实施方式, 但这些实施方式是作为例子来 提出的, 并没有要限定发明的范围。 这些新的实施方式能够以其他的各种 形态实施, 在不脱离发明的主旨的范围内能够进行各种省略、 置换、 变更。 这些实施方式及其变形包含于发明的范围及主旨, 并且包含于权利要求书 所记载的发明及其等效的范围。 根据本发明, 由于在物理层只上另外设置高层链路进行终端反馈模式 的配置信息的传送, 从而增强了调度的准确性与灵活性, 能够最大化网络 内无线资源的利用效率, 减少上行链路中的反馈开销, 因此, 网络的性能 可得到有效提升。

Claims

权 利 要 求 书
1,一种多天线基站中的反馈控制装置,用于对终端的信息反馈进行控 制, 其特征在于, 包括:
高层链路建立单元,通过与终端之间建立的高层链路, 发送高层信令; 高层信令生成单元, 生成高层信令, 上述高层信令用于对终端指定信 道状态信息的反馈模式;
接收单元, 接收来自终端的、 与高层信令所指定的反馈模式对应的信 道状态信息; 以及
多用户处理单元, 根据所接收到的信道状态信息, 进行与多用户多输 入多输出 MIMO有关的处理。
2, 根据权利要求 1所述的反馈控制装置, 其特征在于,
上述多用户处理单元包括多用户资源分配单元, 该多用户资源分配单 元根据上述信道状态信息, 确定在多天线传输中与发送上述信道状态信息 的终端相匹配的匹配终端。
3, 根据权利要求 1所述的反馈控制装置, 其特征在于,
上述多用户处理单元包括多用户动态配置单元, 多用户动态配置单元 根据上述信道状态信息, 在高层信令生成单元为特定终端配置了额外的干 扰测量参考信号 IMR时, 为 IMR选择适当的预编码矩阵。
4, 根据权利要求 1所述的反馈控制装置, 其特征在于,
上述反馈模式包括单用户 MIMO模式和多用户 MIMO模式。
5, 根据权利要求 4所述的反馈控制装置, 其特征在于,
上述高层信令生成单元在网络负载低于规定阈值的情况下, 将终端的 反馈模式规定为单用户 MIMO模式,在网络负载不低于规定阈值的情况下, 将终端的反馈模式规定为多用户 MIMO模式。
6, 根据权利要求 4所述的反馈控制装置, 其特征在于, 上述高层信令生成单元在网络中活动的终端数量低于规定阈值的情况 下, 将终端的反馈模式规定为单用户 MIMO模式, 在网络中活动的终端数 量不低于规定阈值的情况下,将终端的反馈模式规定为多用户 MIMO模式。
7, 根据权利要求 1所述的反馈控制装置, 其特征在于,
上述高层信令生成单元根据信道状态信息的历史记录, 确定匹配终端 的预编码矩阵信息的候选, 当该匹配终端的预编码矩阵信息的候选在上述 历史记录中的出现频次超过规定阈值时, 将终端的反馈模式规定为多用户 MIMO模式。
8, 根据权利要求 1所述的反馈控制装置, 其特征在于,
上述接收单元在接收来自终端的、 与高层信令所指定的反馈模式对应 的信道状态信息时, 对信道状态信息的历史记录进行更新。
9, 一种终端中的反馈装置, 用于在多用户 MIMO环境下对基站进行 信息反馈, 其特征在于, 包括:
高层链路单元, 通过与基站之间建立的高层链路, 接收来自基站的高 层信令;
信令配置单元, 根据上述高层信令, 确定反馈模式;
信道状态信息生成单元, 按照所确定的上述反馈模式, 生成与该反馈 模式对应的信道状态信息; 以及
反馈单元, 将所生成的信息状态信息发送给上述基站。
10, 根据权利要求 9所述的反馈装置, 其特征在于,
上述信道状态信息生成单元包括:
单用户信道状态信息计算单元, 以单用户 MIMO模式计算信道状态信 息; 以及
多用户信道状态信息计算单元, 以多用户 MIMO模式计算信道状态信 息。
11, 根据权利要求 9所述的反馈装置, 其特征在于, 上述反馈装置具有多个信道状态信息生成单元, 按照不同的信道状态 信息反馈对象, 生成多个信道状态信息。
12, 一种多天线基站中的反馈控制方法, 用于对终端的信息反馈进行 控制, 其特征在于, 包括:
高层链路建立步骤,通过与终端之间建立的高层链路, 发送高层信令; 高层信令生成步骤, 生成高层信令, 上述高层信令用于对终端指定信 道状态信息的反馈模式;
接收步骤, 接收来自终端的、 与高层信令所指定的反馈模式对应的信 道状态信息; 以及
多用户处理步骤, 根据所接收到的信道状态信息, 进行与多用户多输 入多输出 MIMO有关的处理。
13, 根据权利要求 12所述的反馈控制方法, 其特征在于,
上述多用户处理步骤包括多用户资源分配步骤, 根据上述信道状态信 息, 确定在多天线传输中与发送上述信道状态信息的终端相匹配的匹配终
14, 根据权利要求 12所述的反馈控制方法, 其特征在于,
上述多用户处理步骤包括多用户动态配置步骤, 根据上述信道状态信 息,在高层链路为特定终端配置了额外的干扰测量参考信号 IMR时,为 IMR 选择适当的预编码矩阵。
15, 根据权利要求 12所述的反馈控制方法, 其特征在于,
上述反馈模式包括单用户 MIMO模式和多用户 MIMO模式。
16, 根据权利要求 15所述的反馈控制方法, 其特征在于,
在上述高层信令生成步骤中, 在网络负载低于规定阈值的情况下, 将 终端的反馈模式规定为单用户 MIMO模式, 在网络负载不低于规定阈值的 情况下, 将终端的反馈模式规定为多用户 MIMO模式。
17, 根据权利要求 15所述的反馈控制方法, 其特征在于, 在上述高层信令生成步骤中, 在网络中活动的终端数量低于规定阈值 的情况下, 将终端的反馈模式规定为单用户 MIMO模式, 在网络中活动的 终端数量不低于规定阈值的情况下, 将终端的反馈模式规定为多用户 MIMO模式。
18, 根据权利要求 12所述的反馈控制方法, 其特征在于,
在上述高层信令生成步骤中, 根据信道状态信息的历史记录, 确定匹 配终端的预编码矩阵信息的候选, 当该匹配终端的预编码矩阵信息的候选 在上述历史记录中的出现频次超过规定阈值时, 将终端的反馈模式规定为 多用户 MIMO模式。
19, 根据权利要求 12所述的反馈控制方法, 其特征在于,
在上述接收步骤中, 在接收来自终端的、 与高层信令所指定的反馈模 式对应的信道状态信息时, 对信道状态信息的历史记录进行更新。
20, 一种终端中的反馈方法, 用于在多用户 MIMO环境下对基站进行 信息反馈, 其特征在于, 包括:
高层链路步骤, 通过与基站之间建立的高层链路, 接收来自基站的高 层信令;
信令配置步骤, 根据上述高层信令, 确定反馈模式;
信道状态信息生成步骤, 按照所确定的上述反馈模式, 生成与该反馈 模式对应的信道状态信息; 以及
反馈步骤, 将所生成的信息状态信息发送给上述基站。
21, 根据权利要求 20所述的反馈方法, 其特征在于,
上述信道状态信息生成步骤包括:
单用户信道状态信息计算步骤, 以单用户 MIMO模式计算信道状态信 息; 或者
多用户信道状态信息计算步骤, 以多用户 MIMO模式计算信道状态信 息。
22, 根据权利要求 20所述的反馈方法, 其特征在于,
在上述信道状态信息生成步骤中,按照不同的信道状态信息反馈对象, 生成多个信道状态信息。
23, 一种多用户 MIMO反馈方法, 其特征在于, 包括以下步骤: 基站与终端之间建立的高层链路;
基站生成高层信令, 并将所生成的高层信令发送给终端, 上述高层信 令用于对终端指定信道状态信息的反馈模式;
接收到上述高层信令的终端根据该高层信令确定反馈模式;
终端按照所确定的上述反馈模式, 生成与该反馈模式对应的信道状态 信息, 并将上述信道状态信息反馈给基站;
基站根据所接收到的上述信道状态信息, 进行与多用户多输入多输出 有关的处理。
24、 根据权利要求 23所述的多用户 MIMO反馈方法, 其特征在于, 基站根据上述信道状态信息, 确定在多天线传输中与发送上述信道状 态信息的终端相匹配的匹配终端。
PCT/CN2013/085792 2013-01-11 2013-10-23 反馈控制装置、反馈装置及多用户mimo反馈方法 WO2014107981A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310011001.1 2013-01-11
CN201310011001.1A CN103929225B (zh) 2013-01-11 2013-01-11 反馈控制装置、反馈装置及多用户mimo反馈方法

Publications (1)

Publication Number Publication Date
WO2014107981A1 true WO2014107981A1 (zh) 2014-07-17

Family

ID=51147320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085792 WO2014107981A1 (zh) 2013-01-11 2013-10-23 反馈控制装置、反馈装置及多用户mimo反馈方法

Country Status (2)

Country Link
CN (1) CN103929225B (zh)
WO (1) WO2014107981A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106033991A (zh) * 2015-03-19 2016-10-19 北京信威通信技术股份有限公司 一种多用户多输入多输出系统的信息反馈方法
WO2018058600A1 (en) * 2016-09-30 2018-04-05 Qualcomm Incorporated Advanced channel state information feedback design
CN110099401B (zh) * 2018-01-31 2022-07-19 中国移动通信有限公司研究院 一种传输模式确定方法、基站及终端
CN110048818B (zh) * 2019-05-05 2020-06-23 华中科技大学 一种对于用户的tid的反馈信息确认及处理系统及处理方法
WO2022151047A1 (en) * 2021-01-13 2022-07-21 Zte Corporation Dynamic signaling of feedback modes
CN115988660A (zh) * 2021-10-12 2023-04-18 中兴通讯股份有限公司 多用户设备调度方法、装置、基站及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147287A1 (en) * 2009-06-16 2010-12-23 Lg Electronics Inc. Low overhead feedback scheme for codebook based closed-loop mimo
CN102082636A (zh) * 2010-08-16 2011-06-01 大唐移动通信设备有限公司 一种信道状态信息csi反馈指示方法和基站及系统
CN102111246A (zh) * 2011-01-12 2011-06-29 中兴通讯股份有限公司 反馈信道状态信息的方法和用户设备
CN102468929A (zh) * 2010-11-15 2012-05-23 中国移动通信集团公司 下行mimo宽带信道状态信息的反馈方法、装置及设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789849B (zh) * 2010-01-08 2015-06-03 中兴通讯股份有限公司 信道状态信息的反馈传输方法及用户终端
CN101931513B (zh) * 2010-05-18 2016-06-15 中兴通讯股份有限公司 信道状态信息的反馈方法及终端
KR101715866B1 (ko) * 2010-08-26 2017-03-13 삼성전자주식회사 멀티셀 통신 시스템에서 협력 랭크에 기초하여 적응적으로 스케줄링을 수행하는 방법 및 장치
CN102387006A (zh) * 2010-09-01 2012-03-21 夏普株式会社 信道状态信息反馈资源分配方法和信道状态信息反馈方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147287A1 (en) * 2009-06-16 2010-12-23 Lg Electronics Inc. Low overhead feedback scheme for codebook based closed-loop mimo
CN102082636A (zh) * 2010-08-16 2011-06-01 大唐移动通信设备有限公司 一种信道状态信息csi反馈指示方法和基站及系统
CN102468929A (zh) * 2010-11-15 2012-05-23 中国移动通信集团公司 下行mimo宽带信道状态信息的反馈方法、装置及设备
CN102111246A (zh) * 2011-01-12 2011-06-29 中兴通讯股份有限公司 反馈信道状态信息的方法和用户设备

Also Published As

Publication number Publication date
CN103929225B (zh) 2018-02-23
CN103929225A (zh) 2014-07-16

Similar Documents

Publication Publication Date Title
US11637642B2 (en) Method and apparatus for CSI reporting in wireless communication system
US20200154447A1 (en) Method and apparatus for transmitting and receiving feedback for cooperative communication system
US10454554B2 (en) Interference measurement method and apparatus for use in mobile communication system
US9320046B2 (en) Reference signal measurement method and apparatus for use in wireless communication system including plural base stations with distributed antennas
AU2013285681B2 (en) Method and apparatus for channel state information feedback reporting
US10263681B2 (en) Method and apparatus for reporting periodic channel state information in mobile communication system using massive array antennas
CN102149130B (zh) 一种信道质量指示的上报方法、装置及系统
WO2017167238A1 (zh) 一种信道状态测量方法及装置
CN113574815A (zh) 用于多传输点(trp)传输的低开销信道状态信息(csi)反馈
US9337906B2 (en) Feedback and scheduling for coordinated multi-point (CoMP) joint transmission (JT) in orthogonal frequency division multiple access (OFDMA)
TWI587658B (zh) 在無線通訊系統中用於發送通道回饋訊息的方法和裝置以及用於接收通道回饋訊息的方法和裝置
KR20210081425A (ko) 다수의 전송 포인트를 통한 데이터 전송에 대한 csi 피드백
US20120329502A1 (en) Feedback Signaling
WO2012155520A1 (zh) 一种干扰测量参考信息的通知方法、干扰测量方法及装置
EP3186898A1 (en) System and method for downlink open-loop multi-user coordinated multipoint transmission using sparse code multiple access
CN104115420A (zh) 多假言信道质量指示符反馈
WO2012095015A1 (zh) 一种确定信道质量指示信息的方法和装置
JP2015515761A (ja) チャネル状態情報フィードバック法およびユーザ機器
US9124398B2 (en) Method and apparatus for generating feedback in a communication system
RU2609593C2 (ru) Способ и устройство для передачи и приема сигнала обратной связи в системе мобильной связи
KR20130038044A (ko) 이동통신시스템에서 하향링크 채널의 채널상태정보를 송수신하는 방법 및 장치
KR102050745B1 (ko) 무선통신 시스템에서 기지국과 단말 사이의 정보 송수신 방법 및 장치
WO2014107981A1 (zh) 反馈控制装置、反馈装置及多用户mimo反馈方法
WO2020144188A1 (en) Technique for sidelink radio communication
US10511366B2 (en) Signaling transmission method and device for multiple-input multiple-output system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13870998

Country of ref document: EP

Kind code of ref document: A1