WO2014107875A1 - 一种快门眼镜及3d显示系统 - Google Patents

一种快门眼镜及3d显示系统 Download PDF

Info

Publication number
WO2014107875A1
WO2014107875A1 PCT/CN2013/070344 CN2013070344W WO2014107875A1 WO 2014107875 A1 WO2014107875 A1 WO 2014107875A1 CN 2013070344 W CN2013070344 W CN 2013070344W WO 2014107875 A1 WO2014107875 A1 WO 2014107875A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal panel
polarizer
substrate
normally black
Prior art date
Application number
PCT/CN2013/070344
Other languages
English (en)
French (fr)
Inventor
何振伟
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/812,147 priority Critical patent/US8976306B2/en
Publication of WO2014107875A1 publication Critical patent/WO2014107875A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/24Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a shutter glasses and a 3D display system.
  • 3D TVs In the era when HDTV has become a mainstream product in the market, loading 3D mode is a must-have feature for large-size TVs. 3D TVs usually use glasses to watch 3D effects. Existing 3D TVs are usually two types of shutter-type 3D TVs and polarized 3D TVs.
  • the shutter type 3D TV needs to use the shutter glasses of the liquid crystal panel set with a refresh rate of 120 Hz or more to view the 3D effect.
  • the principle of the shutter glasses is: when the left eye picture is displayed, the right eye of the shutter glasses is closed; similarly, when the right eye picture is displayed, the left eye of the shutter glasses is closed, thereby separating the left and right eye images, thereby making the viewer Feel the 3D effect.
  • FIG. 1 is a schematic diagram of waveforms of a prior art shutter glasses reaction.
  • the brightness of the shutter glasses changes as the input voltage of the liquid crystal panel changes, wherein the voltage rise time (Rise Time, Tr) and voltage fall time (Fall Time, Tf) is asymmetry. It can be obtained from Fig. 1.
  • Tr is faster than Tf, and Tr and Tf have a difference of 1 ⁇ 2 times. Therefore, it usually causes defects in 3D afterimage and insufficient brightness of the 3D picture.
  • the backlight time-sharing switch avoids the time when the liquid crystal does not react completely; 2. Improve the brightness of the liquid crystal panel to improve the insufficient brightness of the 3D picture.
  • the technical problem to be solved by the present invention is to provide a shutter glasses and a 3D display system.
  • the reaction time of the shutter glasses can be shortened, thereby reducing the power consumption cost, and on the other hand, the 3D crosstalk can be reduced.
  • one technical solution adopted by the present invention is to provide a shutter glasses including a lens frame, a liquid crystal panel disposed in the frame, and a first polarizer and a second polarizer, the liquid crystal panel including the cascading a normally white liquid crystal panel and a normally black liquid crystal panel, wherein the thickness of the normally black liquid crystal panel is not equal to the thickness of the normally white liquid crystal panel, and the first polarizer is disposed on the normally white liquid crystal panel and the normally black liquid crystal panel
  • the first black substrate includes a first substrate and a second substrate. The first substrate and the second substrate sandwich the liquid crystal layer of the normally black liquid crystal panel, and the first substrate is adjacent to the first polarizer, and the second substrate is adjacent to the first substrate.
  • an optical compensation film is disposed between the first polarizer and the first substrate and/or between the second polarizer and the second substrate to compensate for a dark state of the liquid crystal layer of the normally black liquid crystal panel
  • the dispersion of the optical compensation film is set according to the change tendency of the dispersion of the liquid crystal layer of the normally black liquid crystal panel, and the tendency of the dispersion of the liquid crystal layer of the normally black liquid crystal panel is changed. Larger, the thicker the thickness of the optical compensation film.
  • the material of the optical compensation film includes one or more of cellulose triacetate, a cyclic olefin copolymer, a cycloolefin polymer or a thermoplastic polyester.
  • a shutter glasses including a frame, a liquid crystal panel disposed in the frame, and a first polarizer and a second polarizer, the liquid crystal panel including a normally white liquid crystal panel and a normally black liquid crystal panel stacked in a stack, wherein the thickness of the normally black liquid crystal panel is not equal to the thickness of the normally white liquid crystal panel, and the first polarizer is disposed on the normally white liquid crystal panel and the normally black liquid crystal panel Between the panels, the liquid crystal layer of the normally black liquid crystal panel is disposed between the first polarizer and the second polarizer, and between the first polarizer and the liquid crystal layer of the normally black liquid crystal panel and/or the second polarizer An optical compensation film is disposed between the liquid crystal layer of the normally black liquid crystal panel to compensate for the dispersion of the liquid crystal layer of the normally black liquid crystal panel in a dark state.
  • the thickness of the optical compensation film is set according to the change tendency of the dispersion of the liquid crystal layer of the normally black liquid crystal panel, and the tendency of the dispersion of the liquid crystal layer of the normally black liquid crystal panel is larger, and the thickness of the optical compensation film is thicker.
  • the normally black liquid crystal panel includes a first substrate and a second substrate, the first substrate and the second substrate sandwich the liquid crystal layer, and the first substrate is adjacent to the first polarizer, and the second substrate is adjacent to the second polarizer, wherein the optical The compensation film is disposed between the first polarizer and the first substrate and/or between the second polarizer and the second substrate.
  • the normally black liquid crystal panel includes a first substrate and a second substrate, the first substrate and the second substrate sandwich the liquid crystal layer, and the first substrate is adjacent to the first polarizer, and the second substrate is adjacent to the second polarizer, wherein the optical The compensation film is disposed between the first substrate and the liquid crystal layer and/or between the second substrate and the liquid crystal layer.
  • the shutter glasses include a third polarizer, wherein the third polarizer and the first polarizer sandwich the normally white liquid crystal panel, wherein the optical axis of the second polarizer is parallel to the optical axis of the first polarizer, and the third The optical axis of the polarizer is perpendicular to the optical axis of the first polarizer.
  • the material of the optical compensation film includes one or more of cellulose triacetate, a cyclic olefin copolymer, a cycloolefin polymer or a thermoplastic polyester.
  • the shutter glasses include a light entrance side and a light exit side, a normally black liquid crystal panel is disposed on the light incident side, and a normally white liquid crystal panel is disposed on the light exit side.
  • the shutter glasses include a light entrance side and a light exit side, a normally white liquid crystal panel is disposed on the light incident side, and a normally black liquid crystal panel is disposed on the light exit side.
  • the shutter glasses further include a driving circuit for generating a signal for driving the liquid crystal panel.
  • a 3D display system including shutter glasses, the shutter glasses including a frame, a liquid crystal panel disposed in the frame, and a first polarizer and a second polarizer, wherein the liquid crystal panel comprises a normally white liquid crystal panel and a normally black liquid crystal panel stacked in a stack, wherein the thickness of the normally black liquid crystal panel is not equal to the thickness of the normally white liquid crystal panel, and the first polarizer is disposed at Between the normally white type liquid crystal panel and the normally black type liquid crystal panel, the liquid crystal layer of the normally black type liquid crystal panel is disposed between the first polarizer and the second polarizer, and the liquid crystal of the first polarizer and the normally black liquid crystal panel An optical compensation film is disposed between the layers and/or between the second polarizer and the liquid crystal layer of the normally black liquid crystal panel to compensate for dispersion of the liquid crystal layer of the normally black liquid crystal panel in a dark state.
  • the thickness of the optical compensation film is set according to the change tendency of the dispersion of the liquid crystal layer of the normally black liquid crystal panel, and the tendency of the dispersion of the liquid crystal layer of the normally black liquid crystal panel is larger, and the thickness of the optical compensation film is thicker.
  • the normally black liquid crystal panel includes a first substrate and a second substrate, the first substrate and the second substrate sandwich the liquid crystal layer, and the first substrate is adjacent to the first polarizer, and the second substrate is adjacent to the second polarizer, wherein the optical The compensation film is disposed between the first polarizer and the first substrate and/or between the second polarizer and the second substrate.
  • the normally black liquid crystal panel includes a first substrate and a second substrate, the first substrate and the second substrate sandwich the liquid crystal layer, and the first substrate is adjacent to the first polarizer, and the second substrate is adjacent to the second polarizer, wherein the optical The compensation film is disposed between the first substrate and the liquid crystal layer and/or between the second substrate and the liquid crystal layer.
  • the shutter glasses include a third polarizer, wherein the third polarizer and the first polarizer sandwich the normally white liquid crystal panel, wherein the optical axis of the second polarizer is parallel to the optical axis of the first polarizer, and the third The optical axis of the polarizer is perpendicular to the optical axis of the first polarizer.
  • the material of the optical compensation film includes one or more of cellulose triacetate, a cyclic olefin copolymer, a cycloolefin polymer or a thermoplastic polyester.
  • the shutter glasses include a light entrance side and a light exit side, a normally black liquid crystal panel is disposed on the light incident side, and a normally white liquid crystal panel is disposed on the light exit side.
  • the shutter glasses include a light entrance side and a light exit side, a normally white liquid crystal panel is disposed on the light incident side, and a normally black liquid crystal panel is disposed on the light exit side.
  • the shutter glasses further include a driving circuit for generating a signal for driving the liquid crystal panel.
  • the invention has the beneficial effects that the present invention separates and sets the normally white liquid crystal panel and the normally black liquid crystal panel with different thicknesses in the shutter glasses, and the first polarizer and the normally black liquid crystal panel are different from the prior art.
  • An optical compensation film is disposed between the liquid crystal layers and/or between the second polarizer and the liquid crystal layer of the normally black liquid crystal panel to compensate for the dispersion of the liquid crystal layer of the normally black liquid crystal panel in a dark state, thereby reducing 3D crosstalk.
  • the present invention provides a normally white liquid crystal panel and a normally black liquid crystal panel having different thicknesses, so that the reaction time of the shutter glasses of the present invention is the voltage rise time of the normally white liquid crystal panel and the normally black liquid crystal panel, respectively. Therefore, the reaction time of the shutter glasses is shortened, thereby achieving the purpose of reducing the power consumption cost.
  • FIG. 1 is a schematic waveform diagram of a prior art shutter glasses reaction
  • FIG. 2 is a schematic structural view of shutter glasses according to a first embodiment of the present invention.
  • FIG. 3 is a partial structural schematic view of the shutter glasses shown in FIG. 2;
  • Figure 4 is a graph showing the relationship between the wavelength of light and the dispersion tendency
  • Figure 5 is a partial structural schematic view of a shutter glass according to a second embodiment of the present invention.
  • FIG. 6 is a partial structural schematic view of a shutter glasses according to a third embodiment of the present invention.
  • FIG. 7 is a partial structural schematic view of a shutter glasses according to a fourth embodiment of the present invention.
  • FIG. 8 is a partial structural schematic view of a shutter glasses according to a fifth embodiment of the present invention.
  • Figure 9 is a schematic view showing the waveform of the reaction of the shutter glasses of the present invention.
  • Figure 10 is a block diagram showing the structure of a 3D display system of the present invention.
  • FIG. 2 is a schematic structural view of the shutter glasses according to the first embodiment of the present invention.
  • the shutter glasses 20 of the present invention includes a frame 21, a leg 22, a liquid crystal panel 23, and a drive circuit 27.
  • the leg 22 is used to support the frame 21.
  • the frame 21 is for supporting and fixing the liquid crystal panel 23 as a lens.
  • the drive circuit 27 is disposed on the leg 22 for generating a signal for driving the liquid crystal panel 23, and the signal is preferably a rectangular square wave signal.
  • FIG. 3 is a partial structural schematic view of the shutter glasses shown in FIG. 2.
  • the liquid crystal panel 23 of the present embodiment includes a normally white liquid crystal panel 231 and a normally black liquid crystal panel 232 which are stacked.
  • the thickness of the normally black liquid crystal panel 232 is not equal to the thickness of the normally white liquid crystal panel 231.
  • the shutter glasses 20 further include a first polarizer 24, a second polarizer 25, and a third polarizer 26.
  • the normally white liquid crystal panel 231 includes a liquid crystal layer 235
  • the normally black liquid crystal panel 232 includes a liquid crystal layer 234.
  • the first polarizer 24 is disposed between the normally white liquid crystal panel 231 and the normally black liquid crystal panel 232
  • the liquid crystal layer 234 of the normally black liquid crystal panel 232 is disposed between the second polarizer 25 and the first polarizer 24 .
  • the third polarizer 26 and the first polarizer 24 sandwich the normally white liquid crystal panel 231.
  • the optical compensation film 233 is disposed between the second polarizer 25 and the liquid crystal layer 234 of the normally black liquid crystal panel 232 to compensate for the dispersion of the liquid crystal layer 234 of the normally black liquid crystal panel 232 in a dark state.
  • the normally black liquid crystal panel 232 further includes a first substrate 236 adjacent to the first polarizer 24, a second substrate 237 adjacent to the second polarizer 25, and a first substrate
  • the liquid crystal layer 234 is sandwiched by 236 and the second substrate 237.
  • the optical compensation film 233 is disposed between the second polarizer 25 and the second substrate 237.
  • the thickness of the optical compensation film 233 is set according to the change tendency of the dispersion of the liquid crystal layer 234 of the normally black liquid crystal panel 232. Specifically, the variation of the dispersion of the liquid crystal layer 234 of the normally black liquid crystal panel 232 is greater. The tendency of the dispersion of the optical compensation film 233 is also larger, and therefore, the thickness thereof is thicker. However, as long as the material of the liquid crystal layer 234 is determined, the tendency of dispersion is determined.
  • the dispersion tendency of the liquid crystal layer 234 of the normally black liquid crystal panel 232 is calculated from the material of the liquid crystal of the normally black liquid crystal panel 232, and then according to the tendency of the dispersion of the liquid crystal layer 234.
  • the thickness of the optical compensation film 233 is set such that the optical compensation film 233 can compensate for the dispersion.
  • the optical compensation film 233 is a multi-optical-axis structure compensation film having different refractive indices in the direction of a plurality of optical axes, and the main materials thereof include cellulose triacetate (TAC) and cyclic olefin copolymer (COC).
  • TAC cellulose triacetate
  • COC cyclic olefin copolymer
  • COP cyclic olefin polymer
  • PET thermoplastic polyester
  • the thickness of the normally black liquid crystal panel 232 is further adjusted.
  • the specific adjustment process is: directly providing a composite light source to the normally black liquid crystal panel 232, and then adjusting the thickness of the normally black liquid crystal panel 232.
  • the phase difference ⁇ nd can maintain a constant value at different wavelengths.
  • FIG. 4 is a relationship diagram between the wavelength of light and the dispersion tendency. As shown in FIG.
  • the optical compensation film 233 compensates the dispersion of the liquid crystal layer 234 at different wavelengths ⁇ , so that the phase difference ⁇ nd of the light is always kept constant, so that the light of different wavelengths ⁇ passes through the normally black liquid crystal.
  • the normally black liquid crystal panel 232 After the panel 232, its polarization state is rotated by 90 degrees. At this time, the normally black liquid crystal panel 232 has the lowest light transmittance. It should be understood that the normally black liquid crystal panel 232 is in a dark state when it is in a normal state, and the normally white liquid crystal panel 231 is in a bright state when it is in a normal state. Therefore, the lowest light transmittance of the normally black liquid crystal panel 232 can reduce the 3D of the shutter glasses 20 . Crosstalk.
  • the thickness of the normally black liquid crystal panel 232 after the thickness adjustment is normal and white.
  • the thickness of the liquid crystal panel 231 is different.
  • the specific thickness of the normally black liquid crystal panel 232 is adjusted to the thickness at which it is the lowest light transmittance, which is not limited in the present invention.
  • the shutter glasses 20 further includes a light incident side S1 and a light exiting side S2, wherein the normally white liquid crystal panel 231 is disposed on the light incident side S1, and the normally black liquid crystal panel 232 is disposed on the light exiting side S2.
  • the normally black liquid crystal panel 232 may be disposed on the light incident side S1, and the normally white liquid crystal panel 231 may be disposed on the light exiting side S2.
  • FIG. 5 is a partial structural diagram of the shutter glasses according to the second embodiment of the present invention.
  • the shutter glasses 50 of the present embodiment are different from the shutter glasses 20 of the first embodiment in that the optical compensation film 533 of the shutter glasses 50 of the present embodiment is disposed on the first polarizer 54 and the first Between the substrates 536.
  • the light compensation film 533 illustrated in FIG. 5 can also compensate for the dispersion of the liquid crystal layer 534 of the normally black liquid crystal panel 532 in a dark state.
  • FIG. 6 is a partial structural diagram of the shutter glasses according to the third embodiment of the present invention.
  • the shutter glasses 60 of the present embodiment are different from the shutter glasses 20 of the first embodiment in that the shutter glasses 60 of the present embodiment include a first optical compensation film 633a and a second optical compensation film 633b.
  • the first optical compensation film 633a is disposed between the first polarized light 64 and the first substrate 636
  • the second optical compensation film 633b is disposed between the second polarized light 65 and the second substrate 637.
  • the first optical film 633a and the second optical film 633b of the present embodiment are the same.
  • the thickness is smaller than the thickness of the optical compensation film 233 of the first embodiment, respectively.
  • first optical compensation film 633a and the second optical compensation film 633b of the present embodiment can also compensate the dispersion of the liquid crystal layer 634 of the normally black liquid crystal panel 632 in the dark state.
  • FIG. 7 is a partial structural diagram of the shutter glasses according to the fourth embodiment of the present invention.
  • the shutter glasses 70 of the present embodiment are different from the shutter glasses 20 of the first embodiment in that the optical compensation film 733 of the shutter glasses 70 of the present embodiment is disposed on the second substrate 737 and the normally black type.
  • the normally black liquid crystal panel 732 of the present embodiment further includes a first transparent electrode 738 and a second transparent electrode 739.
  • the first transparent electrode 738 is disposed between the first substrate 736 and the liquid crystal layer 734
  • the second transparent electrode 739 is disposed between the second substrate 737 and the liquid crystal layer 734.
  • the optical compensation film 733 is disposed between the second substrate 737 and the second transparent electrode 739.
  • the optical compensation film 733 may also be disposed between the first substrate 736 and the first transparent electrode 738.
  • the optical compensation film 733 is two layers disposed between the first substrate 736 and the first transparent electrode 738 and between the second substrate 737 and the second transparent electrode 739, respectively.
  • FIG. 8 is a partial structural diagram of the shutter glasses according to the fifth embodiment of the present invention.
  • the shutter glasses 80 of the present embodiment are different from the shutter glasses 70 of the fourth embodiment in that an optical compensation film 833 and a second polarizer 85 are disposed on the second substrate 837 and the second transparent electrode. Between 839, and the optical compensation film 833 is disposed adjacent to the second transparent electrode 839, and the second polarizer 85 is disposed adjacent to the second substrate 837.
  • the optical compensation film 833 and the first polarizer 84 may be disposed between the first substrate 836 and the first transparent electrode 838, and the optical compensation film 833 is disposed adjacent to the first transparent electrode 838, and the first polarized light is disposed.
  • the sheet 84 is disposed adjacent to the first substrate 836.
  • the optical compensation film 833 is two layers, one of which is disposed between the first substrate 836 and the first transparent electrode 838, and the other layer and the second polarizer 85 are disposed on the second substrate 837 and Between the two transparent electrodes 839.
  • FIG. 9 is a schematic diagram of the waveform of the reaction of the shutter glasses of the present invention.
  • the voltage signals V0, V1, and V2 that drive the normally white liquid crystal panel 231 and the voltage signals V3, V4, and V5 that drive the normally black liquid crystal panel 232 are provided to the drive circuit 27 shown in FIG. 2.
  • the optical axis of the second polarizer 25 is parallel to the optical axis of the first polarizer 24, the optical axis of the third polarizer 26 is perpendicular to the optical axis of the first polarizer 24, and the liquid crystal panel 23 is of the TN type. LCD panel. Therefore, when the normal white liquid crystal panel 231 is not applied with voltage, that is, the voltage value is the reference voltage V0 in FIG. 6, the second liquid crystal layer 235 deflects the light passing through the third polarizer 26 by 90 degrees, so that the direction of the light is first. Since the optical axis direction of the polarizer 24 is parallel, the light can smoothly pass through the normally white liquid crystal panel 231, and the normally white liquid crystal panel 231 is in a bright state.
  • the liquid crystal of the normally white liquid crystal panel 231 When the voltage changes from V0 to V1 or V2, the liquid crystal of the normally white liquid crystal panel 231 is vertically aligned. At this time, the second liquid crystal layer 235 does not deflect the light, and thus the normally white liquid crystal panel 231 at this time is in a dark state.
  • the first liquid crystal layer 234 deflects the light passing through the first polarizer 24 by 90 degrees, so that the direction of the light is Since the optical axis direction of the second polarizer 25 is perpendicular, the light cannot pass through the normally black liquid crystal panel 232, and the normally black liquid crystal panel 232 is in a dark state.
  • the liquid crystals of the normally black liquid crystal panel 232 are vertically aligned. At this time, the first liquid crystal layer 234 does not deflect the light, and thus the normally black liquid crystal panel 232 is in a bright state.
  • the optical compensation film 233 compensates for the dispersion of the light of the normally black liquid crystal panel 232, so that it penetrates in the normally black liquid crystal panel 232.
  • the rate is lowest, which in turn reduces 3D crosstalk.
  • the light and dark state of the shutter glasses 20 is determined by the voltage of the normally white liquid crystal panel 231 and the voltage of the normally black liquid crystal panel 232.
  • the following is an example of the principle of analyzing the light and dark state of the shutter glasses 20 for one cycle:
  • the voltage of the normally white liquid crystal panel 231 is the reference voltage V0 in FIG. 6, and the voltage of the normally black liquid crystal panel 232 is the reference voltage V3 in FIG. 6, at which time the light passes through the normally white liquid crystal panel 231, but However, the normal black type liquid crystal panel 232 cannot be passed, and therefore, the shutter glasses 20 at this time are in a dark state.
  • the dark state changes to the bright state: the voltage of the normally white liquid crystal panel 231 is still the reference voltage V0, and the normally white liquid crystal panel 231 is in a bright state.
  • the normally black liquid crystal panel 232 is applied with a voltage, and its voltage is raised from V3 to V4, so that the light can pass through the normally black liquid crystal panel 232, and the black liquid crystal panel 232 is in a bright state. Therefore, the shutter glasses 20 are in a bright state, and at this time, the reaction time Tr of the shutter glasses 20 is the voltage rise time of the normally black liquid crystal panel 232.
  • the bright state changes to the dark state: the normally white liquid crystal panel 231 is applied with a voltage, and its voltage is raised from V0 to V1. At the same time, the normally black liquid crystal panel 232 is lowered in voltage, and its voltage is lowered from V4 to V3. Therefore, light cannot pass through the normally white type liquid crystal panel 231 and the normally black type liquid crystal panel 232. Therefore, the shutter glasses 20 become a dark state, and at this time, the reaction time Tf of the shutter glasses 20 is the voltage rise time of the normally white liquid crystal panel 231.
  • the voltage drop time of the normally black liquid crystal panel 232 at this time is slower than the voltage rise time of the normally white liquid crystal panel 231, but since the normally white liquid crystal panel 231 blocks the passage of light, when the normally white liquid crystal panel 231 is After the voltage rise time is over, the light can no longer pass, although the voltage drop time of the black liquid crystal panel 232 is not completely reflected at this time, but since the normally white liquid crystal panel 231 has blocked the light from passing through, there is no longer any light passing through. Black type liquid crystal panel 232.
  • the reaction time of one cycle is the sum of the voltage rise times of the normally black liquid crystal panel 232 and the normally white liquid crystal panel 231. Therefore, the response time of one cycle with respect to the shutter glasses of the related art is the sum of the voltage rise time and the voltage fall time of the liquid crystal panel, and the shutter glasses 20 of the present invention require less time, so that the present invention can realize power saving. , thereby reducing costs.
  • FIG. 10 is a schematic structural diagram of a 3D display system of the present invention.
  • the 3D display system 100 of the present invention includes a 3D display 101 and shutter glasses 102.
  • the 3D display 101 provides a display screen to the shutter glasses 102.
  • the shutter glasses 102 convert the display screen into a 3D effect.
  • the shutter glasses 102 in this embodiment are the shutter glasses described in the first to fifth embodiments, and are not described herein again.
  • the present invention laminates a normally white liquid crystal panel and a normally black liquid crystal panel having different thicknesses in the shutter glasses, and between the first polarizer and the liquid crystal layer of the normally black liquid crystal panel and/or the second
  • An optical compensation film is disposed between the polarizer and the liquid crystal layer of the normally black liquid crystal panel to compensate for dispersion of the liquid crystal layer of the normally black liquid crystal panel in a dark state. After the optical compensation film is added, the thickness of the normally black liquid crystal panel is adjusted so that the transmittance of the normally black liquid crystal panel in the dark state is the lowest, so that the 3D crosstalk of the shutter glasses can be reduced.
  • the present invention provides a normally white liquid crystal panel and a normally black liquid crystal panel having different thicknesses, so that the reaction time of the shutter glasses of the present invention is the voltage rise time of the normally white liquid crystal panel and the normally black liquid crystal panel, respectively.
  • the reaction time of the shutter glasses is shortened, thereby achieving the purpose of reducing the power consumption cost.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种快门眼镜(20),包括第一偏光片(24),第二偏光片(25),常白型液晶面板(231)和常黑型液晶面板(232)。常黑型液晶面板(232)的厚度不等于常白型液晶面板(231)的厚度。在第一偏光片(24)与常黑型液晶面板(232)的液晶层之间和/或第二偏光片(25)与常黑型液晶面板(232)的液晶层之间设置有光学补偿膜(233),以补偿常黑型液晶面板(232)的液晶层在暗态时的色散。从而一方面能够缩短快门眼镜(20)的反应时间,降低耗电成本,另一方面可以降低3D串扰。还公开了一种3D显示系统。

Description

一种快门眼镜及3D显示系统
【技术领域】
本发明涉及显示技术领域,特别是涉及一种快门眼镜及3D显示系统。
【背景技术】
在高清电视已成为市场主流产品的时代,加载3D模式已是大尺寸电视必须有的功能。3D电视通常是使用眼镜观赏3D效果,现有的3D电视通常为快门式3D电视和偏光式3D电视两大类。
快门式3D电视需要使用设置了120Hz或以上的刷新频率的液晶面板的快门眼镜来观赏3D效果。快门眼镜的原理为:当显示左眼画面时,则关闭快门眼镜的右眼;同理,当显示右眼画面时,则关闭快门眼镜的左眼,由此分开左右眼画面,从而使观赏者感受到3D效果。
目前,快门眼镜通常使用扭曲向列型 (Twisted Nematic type,TN type)液晶面板。请参阅图1,图1是现有技术的快门眼镜反应的波形示意图。如图1所示,该快门眼镜的亮度随着液晶面板输入电压的改变而改变,其中,电压上升时间(Rise time,Tr)与电压下降时间(Fall time,Tf)并不对称,由图1可得,Tr快于Tf,且Tr和Tf存在1~2倍的差异。因此,通常会导致产生3D残影和3D画面亮度不足的缺陷。为避免上述两种缺陷,现有技术通常采用以下方案:1. 背光分时开关以避开液晶未反应完全的时间;2. 提高液晶面板亮度,以提高3D画面下亮度不足的部份。
但是,现有技术的方案会导致用电成本和液晶面板生产成本的增加。
【发明内容】
本发明主要解决的技术问题是提供一种快门眼镜及3D显示系统,一方面能够缩短快门眼镜的反应时间,从而达到降低耗电成本的目的,另一方面能够降低3D串扰。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种快门眼镜,该快门眼镜包括镜框、设置在镜框内的液晶面板以及第一偏光片和第二偏光片,该液晶面板包括层叠设置的常白型液晶面板和常黑型液晶面板,其中,常黑型液晶面板的厚度不等于常白型液晶面板的厚度,第一偏光片设置在常白型液晶面板和常黑型液晶面板之间,常黑型液晶面板包括第一基板和第二基板,第一基板和第二基板夹持常黑型液晶面板的液晶层,并且第一基板靠近第一偏光片,第二基板靠近第二偏光片,其中,在第一偏光片与第一基板之间和/或第二偏光片与第二基板之间设置有光学补偿膜,以补偿常黑型液晶面板的液晶层在暗态时的色散;其中,根据常黑型液晶面板的液晶层的色散的变化趋势设置光学补偿膜的厚度,常黑型液晶面板的液晶层的色散的变化趋势越大,其光学补偿膜的厚度越厚。
其中,光学补偿膜的材质包括三醋酸纤维素、环烯烃共聚物、环烯烃聚合物或热可塑性聚酯的一种或多种。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种快门眼镜,该快门眼镜包括镜框、设置在镜框内的液晶面板以及第一偏光片和第二偏光片,该液晶面板包括层叠设置的常白型液晶面板和常黑型液晶面板,其中,常黑型液晶面板的厚度不等于常白型液晶面板的厚度,第一偏光片设置在常白型液晶面板和常黑型液晶面板之间,常黑型液晶面板的液晶层设置在第一偏光片和第二偏光片之间,并且在第一偏光片与常黑型液晶面板的液晶层之间和/或第二偏光片与常黑型液晶面板的液晶层之间设置有光学补偿膜,以补偿常黑型液晶面板的液晶层在暗态时的色散。
其中,根据常黑型液晶面板的液晶层的色散的变化趋势设置光学补偿膜的厚度,常黑型液晶面板的液晶层的色散的变化趋势越大,其光学补偿膜的厚度越厚。
其中,常黑型液晶面板包括第一基板和第二基板,第一基板和第二基板夹持液晶层,并且第一基板靠近第一偏光片,第二基板靠近第二偏光片,其中,光学补偿膜设置在第一偏光片与第一基板之间和/或第二偏光片与第二基板之间。
其中,常黑型液晶面板包括第一基板和第二基板,第一基板和第二基板夹持液晶层,并且第一基板靠近第一偏光片,第二基板靠近第二偏光片,其中,光学补偿膜设置在第一基板与液晶层之间和/或第二基板与液晶层之间。
其中,快门眼镜包括第三偏光片,其中,第三偏光片和第一偏光片夹持常白型液晶面板,其中,第二偏光片的光轴与第一偏光片的光轴平行,第三偏光片的光轴与第一偏光片的光轴垂直。
其中,光学补偿膜的材质包括三醋酸纤维素、环烯烃共聚物、环烯烃聚合物或热可塑性聚酯的一种或多种。
其中,快门眼镜包括入光侧和出光侧,常黑型液晶面板设置在入光侧,常白型液晶面板设置在出光侧。
其中,快门眼镜包括入光侧和出光侧,常白型液晶面板设置在入光侧,常黑型液晶面板设置在出光侧。
其中,快门眼镜还包括驱动电路,驱动电路用于产生驱动液晶面板的信号。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种3D显示系统,该3D显示系统包括快门眼镜,该快门眼镜包括镜框、设置在镜框内的液晶面板以及第一偏光片和第二偏光片,其中,液晶面板包括层叠设置的常白型液晶面板和常黑型液晶面板,其中,常黑型液晶面板的厚度不等于常白型液晶面板的厚度,第一偏光片设置在常白型液晶面板和常黑型液晶面板之间,常黑型液晶面板的液晶层设置在第一偏光片和第二偏光片之间,并且在第一偏光片与常黑型液晶面板的液晶层之间和/或第二偏光片与常黑型液晶面板的液晶层之间设置有光学补偿膜,以补偿常黑型液晶面板的液晶层在暗态时的色散。
其中,根据常黑型液晶面板的液晶层的色散的变化趋势设置光学补偿膜的厚度,常黑型液晶面板的液晶层的色散的变化趋势越大,其光学补偿膜的厚度越厚。
其中,常黑型液晶面板包括第一基板和第二基板,第一基板和第二基板夹持液晶层,并且第一基板靠近第一偏光片,第二基板靠近第二偏光片,其中,光学补偿膜设置在第一偏光片与第一基板之间和/或第二偏光片与第二基板之间。
其中,常黑型液晶面板包括第一基板和第二基板,第一基板和第二基板夹持液晶层,并且第一基板靠近第一偏光片,第二基板靠近第二偏光片,其中,光学补偿膜设置在第一基板与液晶层之间和/或第二基板与液晶层之间。
其中,快门眼镜包括第三偏光片,其中,第三偏光片和第一偏光片夹持常白型液晶面板,其中,第二偏光片的光轴与第一偏光片的光轴平行,第三偏光片的光轴与第一偏光片的光轴垂直。
其中,光学补偿膜的材质包括三醋酸纤维素、环烯烃共聚物、环烯烃聚合物或热可塑性聚酯的一种或多种。
其中,快门眼镜包括入光侧和出光侧,常黑型液晶面板设置在入光侧,常白型液晶面板设置在出光侧。
其中,快门眼镜包括入光侧和出光侧,常白型液晶面板设置在入光侧,常黑型液晶面板设置在出光侧。
其中,快门眼镜还包括驱动电路,驱动电路用于产生驱动液晶面板的信号。
本发明的有益效果是:区别于现有技术的情况,本发明在快门眼镜中层叠设置厚度不同的常白型液晶面板和常黑型液晶面板,并且在第一偏光片与常黑型液晶面板的液晶层之间和/或第二偏光片与常黑型液晶面板的液晶层之间设置有光学补偿膜,以补偿常黑型液晶面板的液晶层在暗态时的色散,进而减低3D串扰。另一方面,本发明设置了厚度不同的常白型液晶面板和常黑型液晶面板,使得本发明的快门眼镜的反应时间分别是常白型液晶面板和常黑型液晶面板的电压上升时间,因此,缩短了快门眼镜的反应时间,从而达到降低耗电成本的目的。
【附图说明】
图1是现有技术的快门眼镜反应的波形示意图;
图2是本发明第一实施例的快门眼镜的结构示意图;
图3是图2所示的快门眼镜的局部结构示意图;
图4是光的波长与色散趋势的关系图;
图5是本发明第二实施例的快门眼镜的局部结构示意图;
图6是本发明第三实施例的快门眼镜的局部结构示意图;
图7是本发明第四实施例的快门眼镜的局部结构示意图;
图8是本发明第五实施例的快门眼镜的局部结构示意图;
图9是本发明的快门眼镜反应的波形示意图;
图10是本发明的3D显示系统的结构示意图。
【具体实施方式】
请参阅图2,图2是本发明第一实施例的快门眼镜的结构示意图。如图2所示,本发明的快门眼镜20包括镜框21、架脚22、液晶面板23和驱动电路27。其中,架脚22用于支撑镜框21。镜框21用于支撑并固定作为镜片的液晶面板23。驱动电路27设置在架脚22上,用于产生驱动液晶面板23的信号,并且该信号优选为矩形方波信号。
请参阅图3,图3是图2所示的快门眼镜的局部结构示意图。如图3所示,本实施例的液晶面板23包括层叠设置的常白型液晶面板231和常黑型液晶面板232。其中,常黑型液晶面板232的厚度不等于常白型液晶面板231的厚度。
本实施例中,快门眼镜20还包括第一偏光片24、第二偏光片25和第三偏光片26,常白型液晶面板231包括液晶层235,常黑型液晶面板232包括液晶层234。其中,第一偏光片24设置在常白型液晶面板231和常黑型液晶面板232之间,常黑型液晶面板232的液晶层234设在第二偏光片25与第一偏光片24之间,第三偏光片26和第一偏光片24夹持常白型液晶面板231。其中,在第二偏光片25与常黑型液晶面板232的液晶层234之间设置有光学补偿膜233,以补偿常黑型液晶面板232的液晶层234在暗态时的色散。
具体而言,常黑型液晶面板232还包括第一基板236和第二基板237,其中,第一基板236靠近第一偏光片24,第二基板237靠近第二偏光片25,并且第一基板236和第二基板237夹持液晶层234。本实施例中,光学补偿膜233设置在第二偏光片25与第二基板237之间。
本实施例中,根据常黑型液晶面板232的液晶层234的色散的变化趋势设置光学补偿膜233的厚度,具体而言,常黑型液晶面板232的液晶层234的色散的变化趋势越大,光学补偿膜233的色散的变化趋势也越大,因此,其厚度越厚。但只要液晶层234的材料确定后,其色散的趋势即确定。因此,在设计常黑型液晶面板232时,根据常黑型液晶面板232的液晶的材料计算出常黑型液晶面板232的液晶层234的色散趋势情况,然后根据液晶层234的色散的趋势对应设置光学补偿膜233的厚度,使得光学补偿膜233能够补偿色散。
本实施例中,光学补偿膜233为多光轴结构补偿膜,在多个光轴的方向上具有不同的折射率,其主要材料包括三醋酸纤维素(TAC)、环烯烃共聚物(COC)、环烯烃聚合物(COP)或热可塑性聚酯(PET)的一种或多种。
设置了光学补偿膜233后进一步对常黑型液晶面板232的厚度进行调整,具体调整过程为:直接向处于常态的常黑型液晶面板232提供复合光源,然后调整常黑型液晶面板232的厚度,直至光线通过常黑型液晶面板232和补偿膜233后,其相位差Δnd在不同的波长下能够保持定值,具体请参阅图4,图4是光的波长与色散趋势的关系图。如图4所示,因为光学补偿膜233对液晶层234在不同波长λ下的色散进行补偿,因此,使得光线的相位差Δnd始终保持定值,从而使不同波长λ的光经过常黑型液晶面板232后其偏振态均旋转90度。此时,常黑型液晶面板232的透光率为最低。应理解,常黑型液晶面板232处于常态时为暗态,而常白型液晶面板231处于常态时为亮态,因此,常黑型液晶面板232最低的透光率能够降低快门眼镜20的3D串扰。
可以理解的是,快门眼镜20设置了光学补偿膜233后,因为要保证常黑型液晶面板232的最低透光率,因此经过厚度调整之后的常黑型的液晶面板232的厚度与常白型液晶面板231的厚度不同。并且常黑型液晶面板232的具体厚度以调整到其为最低透光率时的厚度为准,本发明对此不作限制。
本实施例中,快门眼镜20还包括入光侧S1和出光侧S2,其中,常白型液晶面板231设置在入光侧S1,常黑型液晶面板232设置在出光侧S2。
在其他实施例中,常黑型液晶面板232也可设置在入光侧S1,常白型液晶面板231则对应设置在出光侧S2。
请参阅图5,图5是本发明第二实施例的快门眼镜的局部结构示意图。如图5所述,本实施例的快门眼镜50与第一实施例的快门眼镜20的不同之处在于:本实施例的快门眼镜50的光学补偿膜533设置在第一偏光片54和第一基板536之间。
同理,图5所述的光线补偿膜533同样可以起到补偿常黑型液晶面板532的液晶层534在暗态时的色散。
请参阅图6,图6是本发明第三实施例的快门眼镜的局部结构示意图。如图6所示,本实施例的快门眼镜60与第一实施例的快门眼镜20的不同之处在于:本实施例的快门眼镜60包括第一光学补偿膜633a和第二光学补偿膜633b。其中,第一光学补偿膜633a设置在第一偏光64和第一基板636之间,第二光学补偿膜633b设置在第二偏光65和第二基板637之间。
值得注意的是,在制作光学补偿膜的材质和方法相同,并且运用到色散变化趋势相同的常黑型液晶面板的情况下,本实施例的第一光学膜片633a和第二光学膜片633b的厚度分别比第一实施例的光学补偿膜233的厚度小。
同理,本实施例的第一光学补偿膜633a和第二光学补偿膜633b同样可以补偿常黑型液晶面板632的液晶层634在暗态时的色散。
请参阅图7,图7是本发明第四实施例的快门眼镜的局部结构示意图。如图7所示,本实施例的快门眼镜70与第一实施例的快门眼镜20的不同之处在于:本实施例的快门眼镜70的光学补偿膜733设置在第二基板737与常黑型液晶面板732的液晶层734之间。具体而言,本实施例的常黑型液晶面板732还包括第一透明电极738和第二透明电极739。其中,第一透明电极738设置在第一基板736和液晶层734之间,第二透明电极739设置在第二基板737和液晶层734之间。本实施例中,光学补偿膜733设置在第二基板737和第二透明电极739之间。
在其他优选实施例中,光学补偿膜733也可以设置在第一基板736和第一透明电极738之间。或者光学补偿膜733为两层,其分别设置在第一基板736和第一透明电极738之间以及第二基板737和第二透明电极739之间。
请参阅图8,图8是本发明第五实施例的快门眼镜的局部结构示意图。如图8所示,本实施例的快门眼镜80与第四实施例的快门眼镜70的不同之处在于:光学补偿膜833和第二偏光片85均设置在第二基板837和第二透明电极839之间,并且光学补偿膜833靠近第二透明电极839设置,第二偏光片85靠近第二基板837设置。
在其他优选实施例中,也可设置光学补偿膜833和第一偏光片84在第一基板836和第一透明电极838之间,并且光学补偿膜833靠近第一透明电极838设置,第一偏光片84靠近第一基板836设置。或者光学补偿膜833为两层,其中一层与第一偏光片84设置在第一基板836和第一透明电极838之间,另一层和第二偏光片85设置在第二基板837和第二透明电极839之间。
以下将以图2和图3所示的第一实施例的快门眼镜20为例详细描述本发明的快门眼镜的工作原理:
请一并参阅图3和图9,图9是本发明的快门眼镜反应的波形示意图。其中,驱动常白型液晶面板231的电压信号V0、V1和V2以及驱动常黑型液晶面板232的电压信号V3、V4和V5为图2所示的驱动电路27提供。
本实施例中,第二偏光片25的光轴与第一偏光片24的光轴平行,第三偏光片26的光轴与第一偏光片24的光轴垂直,并且液晶面板23为TN型液晶面板。因此常白型液晶面板231在不加电压,即电压值为图6中的基准电压V0时,第二液晶层235对通过第三偏光片26的光线偏转90度,使得光线的方向与第一偏光片24的光轴方向平行,因此光线可顺利通过常白型液晶面板231,此时常白型液晶面板231为亮态。而在电压从V0变化到V1或V2时,常白型液晶面板231的液晶垂直排列,此时第二液晶层235对光线不偏转,因此此时的常白型液晶面板231为暗态。相应地,常黑型液晶面板232在不加电压,即电压值为图6中的基准电压V3时,第一液晶层234对通过第一偏光片24的光线偏转90度,使得光线的方向与第二偏光片25的光轴方向垂直,因此光线不能通过常黑型液晶面板232,此时常黑型液晶面板232是暗态。而在电压从V3变化到V4或V5时,常黑型液晶面板232的液晶垂直排列,此时第一液晶层234对光线不偏转,因此此时的常黑型液晶面板232是亮态。
值得注意的是,在常黑型液晶面板232不加电压的状态下,光学补偿膜233对常黑型液晶面板232的光线进行色散的补偿,使得其在常黑型液晶面板232中的穿透率最低,进而减小3D串扰。
本实施例中,快门眼镜20的亮暗状态是由常白型液晶面板231的电压和常黑型液晶面板232的电压共同决定的。以下将举例分析快门眼镜20一个周期的亮暗状态的原理:
基准状态:常白型液晶面板231的电压为图6中的基准电压V0,常黑型液晶面板232的电压为图6中的基准电压V3,此时,光线通过常白型液晶面板231,但却不能通过常黑型液晶面板232,因此,此时的快门眼镜20为暗态。
暗态变到亮态:常白型液晶面板231的电压仍然为基准电压V0,常白型液晶面板231为亮态。常黑型液晶面板232加电压,其电压由V3上升到V4,因此光线可通过常黑型液晶面板232,黑型液晶面板232为亮态。因此,快门眼镜20为亮态,并且此时快门眼镜20的反应时间Tr为常黑型液晶面板232的电压上升时间。
亮态变到暗态:常白型液晶面板231加电压,其电压由V0上升到V1,与此同时,常黑型液晶面板232降电压,其电压由V4下降到V3。因此光线不可通过常白型液晶面板231和常黑型液晶面板232。因此,快门眼镜20变为暗态,并且此时快门眼镜20的反应时间Tf为常白型液晶面板231的电压上升时间。
应理解,此时的常黑型液晶面板232电压下降时间慢于常白型液晶面板231电压上升时间,但是因为常白型液晶面板231是阻挡光线通过的,因此当常白型液晶面板231的电压上升时间结束后,光线就不能再通过,尽管此时常黑型液晶面板232的电压下降时间没有完全反应完,但因为常白型液晶面板231已经阻挡了光线通过,因此不再有光线通过常黑型液晶面板232。
因为常白型液晶面板231和常黑型液晶面板232的电压上升时间是相同的,所以本发明的快门眼镜20状态变化时的反应时间也是相同的,即Tr=Tf,并且本发明的快门眼镜20一个周期的反应时间为常黑型液晶面板232和常白型液晶面板231的电压上升时间的和。因此,相对于现有技术的快门眼镜一个周期的反应时间为液晶面板的电压上升时间和电压下降时间的和,本发明的快门眼镜20所需的时间较少,因此本发明可以实现节省用电,从而降低成本。
应理解,第二实施例到第五实施例的快门眼镜的工作原理与第一实施例的快门眼镜的工作原理也相同,在此不再赘述。
请参阅图10,图10是本发明3D显示系统的结构示意图。如图10所示,本发明的3D显示系统100包括3D显示器101和快门眼镜102。其中,3D显示器101向快门眼镜102提供显示画面。快门眼镜102把显示画面转换为3D的效果,其中,本实施例中的快门眼镜102为前述第一实施例到第五实施例所述的快门眼镜,在此不再赘述。
综上所述,本发明在快门眼镜中层叠设置厚度不同的常白型液晶面板和常黑型液晶面板,并且在第一偏光片与常黑型液晶面板的液晶层之间和/或第二偏光片与常黑型液晶面板的液晶层之间设置有光学补偿膜,以补偿常黑型液晶面板的液晶层在暗态时的色散。在增加了光学补偿膜之后,调整常黑型液晶面板的厚度,使得常黑型液晶面板在暗态下的透过率最低,因此能降低快门眼镜的3D串扰。
另外,本发明设置了厚度不同的常白型液晶面板和常黑型液晶面板,使得本发明的快门眼镜的反应时间分别是常白型液晶面板和常黑型液晶面板的电压上升时间,因此,缩短了快门眼镜的反应时间,从而达到降低耗电成本的目的。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种快门眼镜,所述快门眼镜包括镜框、设置在所述镜框内的液晶面板以及第一偏光片和第二偏光片,其中,所述液晶面板包括层叠设置的常白型液晶面板和常黑型液晶面板,其中,所述常黑型液晶面板的厚度不等于所述常白型液晶面板的厚度,所述第一偏光片设置在所述常白型液晶面板和所述常黑型液晶面板之间,所述常黑型液晶面板包括第一基板和第二基板,所述第一基板和所述第二基板夹持所述常黑型液晶面板的液晶层,并且所述第一基板靠近所述第一偏光片,所述第二基板靠近所述第二偏光片,其中,在所述第一偏光片与所述第一基板之间和/或所述第二偏光片与所述第二基板之间设置有光学补偿膜,以补偿所述常黑型液晶面板的液晶层在暗态时的色散;
    其中,根据所述常黑型液晶面板的液晶层的色散的变化趋势设置所述光学补偿膜的厚度,所述常黑型液晶面板的液晶层的色散的变化趋势越大,其光学补偿膜的厚度越厚。
  2. 根据权利要求1所述的快门眼镜,其中,所述光学补偿膜的材质包括三醋酸纤维素、环烯烃共聚物、环烯烃聚合物或热可塑性聚酯的一种或多种。
  3. 一种快门眼镜,所述快门眼镜包括镜框、设置在所述镜框内的液晶面板以及第一偏光片和第二偏光片,其中,所述液晶面板包括层叠设置的常白型液晶面板和常黑型液晶面板,其中,所述常黑型液晶面板的厚度不等于所述常白型液晶面板的厚度,所述第一偏光片设置在所述常白型液晶面板和所述常黑型液晶面板之间,所述常黑型液晶面板的液晶层设置在所述第一偏光片和所述第二偏光片之间,并且在所述第一偏光片与所述常黑型液晶面板的液晶层之间和/或所述第二偏光片与所述常黑型液晶面板的液晶层之间设置有光学补偿膜,以补偿所述常黑型液晶面板的液晶层在暗态时的色散。
  4. 根据权利要求3所述的快门眼镜,其中,根据所述常黑型液晶面板的液晶层的色散的变化趋势设置所述光学补偿膜的厚度,所述常黑型液晶面板的液晶层的色散的变化趋势越大,其光学补偿膜的厚度越厚。
  5. 根据权利要求3所述的快门眼镜,其中,所述常黑型液晶面板包括第一基板和第二基板,所述第一基板和所述第二基板夹持所述液晶层,并且所述第一基板靠近所述第一偏光片,所述第二基板靠近所述第二偏光片,其中,所述光学补偿膜设置在所述第一偏光片与所述第一基板之间和/或所述第二偏光片与所述第二基板之间。
  6. 根据权利要求3所述的快门眼镜,其中,所述常黑型液晶面板包括第一基板和第二基板,所述第一基板和所述第二基板夹持所述液晶层,并且所述第一基板靠近所述第一偏光片,所述第二基板靠近所述第二偏光片,其中,所述光学补偿膜设置在所述第一基板与所述液晶层之间和/或所述第二基板与所述液晶层之间。
  7. 根据权利要求3所述的快门眼镜,其中,所述快门眼镜包括第三偏光片,其中,所述第三偏光片和所述第一偏光片夹持所述常白型液晶面板,其中,所述第二偏光片的光轴与所述第一偏光片的光轴平行,所述第三偏光片的光轴与所述第一偏光片的光轴垂直。
  8. 根据权利要求3所述的快门眼镜,其中,所述光学补偿膜的材质包括三醋酸纤维素、环烯烃共聚物、环烯烃聚合物或热可塑性聚酯的一种或多种。
  9. 根据权利要求3所述的快门眼镜,其中,所述快门眼镜包括入光侧和出光侧,所述常黑型液晶面板设置在所述入光侧,所述常白型液晶面板设置在所述出光侧。
  10. 根据权利要求3所述的快门眼镜,其中,所述快门眼镜包括入光侧和出光侧,所述常白型液晶面板设置在所述入光侧,所述常黑型液晶面板设置在所述出光侧。
  11. 根据权利要求3所述的快门眼镜,其中,所述快门眼镜还包括驱动电路,所述驱动电路用于产生驱动所述液晶面板的信号。
  12. 一种3D显示系统,其中,所述3D显示系统包括快门眼镜,所述快门眼镜包括镜框、设置在所述镜框内的液晶面板以及第一偏光片和第二偏光片,其中,所述液晶面板包括层叠设置的常白型液晶面板和常黑型液晶面板,其中,所述常黑型液晶面板的厚度不等于所述常白型液晶面板的厚度,所述第一偏光片设置在所述常白型液晶面板和所述常黑型液晶面板之间,所述常黑型液晶面板的液晶层设置在所述第一偏光片和所述第二偏光片之间,并且在所述第一偏光片与所述常黑型液晶面板的液晶层之间和/或所述第二偏光片与所述常黑型液晶面板的液晶层之间设置有光学补偿膜,以补偿所述常黑型液晶面板的液晶层在暗态时的色散。
  13. 根据权利要求12所述的3D显示系统,其中,根据所述常黑型液晶面板的液晶层的色散的变化趋势设置所述光学补偿膜的厚度,所述常黑型液晶面板的液晶层的色散的变化趋势越大,其光学补偿膜的厚度越厚。
  14. 根据权利要求12所述的3D显示系统,其中,所述常黑型液晶面板包括第一基板和第二基板,所述第一基板和所述第二基板夹持所述液晶层,并且所述第一基板靠近所述第一偏光片,所述第二基板靠近所述第二偏光片,其中,所述光学补偿膜设置在所述第一偏光片与所述第一基板之间和/或所述第二偏光片与所述第二基板之间。
  15. 根据权利要求12所述的3D显示系统,其中,所述常黑型液晶面板包括第一基板和第二基板,所述第一基板和所述第二基板夹持所述液晶层,并且所述第一基板靠近所述第一偏光片,所述第二基板靠近所述第二偏光片,其中,所述光学补偿膜设置在所述第一基板与所述液晶层之间和/或所述第二基板与所述液晶层之间。
  16. 根据权利要求12所述的3D显示系统,其中,所述快门眼镜包括第三偏光片,其中,所述第三偏光片和所述第一偏光片夹持所述常白型液晶面板,其中,所述第二偏光片的光轴与所述第一偏光片的光轴平行,所述第三偏光片的光轴与所述第一偏光片的光轴垂直。
  17. 根据权利要求12所述的3D显示系统,其中,所述光学补偿膜的材质包括三醋酸纤维素、环烯烃共聚物、环烯烃聚合物或热可塑性聚酯的一种或多种。
  18. 根据权利要求12所述的3D显示系统,其中,所述快门眼镜包括入光侧和出光侧,所述常黑型液晶面板设置在所述入光侧,所述常白型液晶面板设置在所述出光侧。
  19. 根据权利要求12所述的3D显示系统,其中,所述快门眼镜包括入光侧和出光侧,所述常白型液晶面板设置在所述入光侧,所述常黑型液晶面板设置在所述出光侧。
  20. 根据权利要求12所述的3D显示系统,其中,所述快门眼镜还包括驱动电路,所述驱动电路用于产生驱动所述液晶面板的信号。
PCT/CN2013/070344 2013-01-09 2013-01-11 一种快门眼镜及3d显示系统 WO2014107875A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/812,147 US8976306B2 (en) 2013-01-09 2013-01-11 Shutter glasses and related 3D display system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310007746.0 2013-01-09
CN201310007746.0A CN103033987B (zh) 2013-01-09 2013-01-09 一种快门眼镜及3d显示系统

Publications (1)

Publication Number Publication Date
WO2014107875A1 true WO2014107875A1 (zh) 2014-07-17

Family

ID=48021017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070344 WO2014107875A1 (zh) 2013-01-09 2013-01-11 一种快门眼镜及3d显示系统

Country Status (2)

Country Link
CN (1) CN103033987B (zh)
WO (1) WO2014107875A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2593418A (en) * 2019-10-10 2021-09-29 Flexenable Ltd Liquid crystal devices

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103309097B (zh) * 2013-06-17 2016-03-30 深圳市华星光电技术有限公司 液晶盒以及具有该液晶盒的液晶显示器
CN103676364A (zh) * 2013-12-20 2014-03-26 深圳市华星光电技术有限公司 显示面板
CN104320651A (zh) * 2014-11-14 2015-01-28 深圳市华星光电技术有限公司 3d快门眼镜以及3d显示系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080129899A1 (en) * 2006-11-30 2008-06-05 Real D High performance shutter glasses for multifunctional displays
CN101859043A (zh) * 2009-04-09 2010-10-13 索尼公司 液晶快门和图像显示观察系统
CN201689227U (zh) * 2010-04-12 2010-12-29 天马微电子股份有限公司 一种立体显示液晶快门眼镜
CN202177752U (zh) * 2011-08-19 2012-03-28 天马微电子股份有限公司 一种液晶眼镜
CN202177750U (zh) * 2011-08-19 2012-03-28 天马微电子股份有限公司 一种3d液晶眼镜及其偏光片
CN202615053U (zh) * 2011-08-19 2012-12-19 天马微电子股份有限公司 一种3d液晶眼镜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080129899A1 (en) * 2006-11-30 2008-06-05 Real D High performance shutter glasses for multifunctional displays
CN101859043A (zh) * 2009-04-09 2010-10-13 索尼公司 液晶快门和图像显示观察系统
CN201689227U (zh) * 2010-04-12 2010-12-29 天马微电子股份有限公司 一种立体显示液晶快门眼镜
CN202177752U (zh) * 2011-08-19 2012-03-28 天马微电子股份有限公司 一种液晶眼镜
CN202177750U (zh) * 2011-08-19 2012-03-28 天马微电子股份有限公司 一种3d液晶眼镜及其偏光片
CN202615053U (zh) * 2011-08-19 2012-12-19 天马微电子股份有限公司 一种3d液晶眼镜

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2593418A (en) * 2019-10-10 2021-09-29 Flexenable Ltd Liquid crystal devices
US11314122B2 (en) 2019-10-10 2022-04-26 Flexenable Limited Liquid crystal devices
GB2593418B (en) * 2019-10-10 2023-12-13 Flexenable Tech Limited Liquid crystal devices

Also Published As

Publication number Publication date
CN103033987B (zh) 2015-07-01
CN103033987A (zh) 2013-04-10

Similar Documents

Publication Publication Date Title
WO2014067197A1 (zh) 液晶显示面板及其应用的显示装置
WO2014098359A1 (en) Display panel and display apparatus having the same
WO2017067011A1 (zh) 蓝相液晶显示器、蓝相液晶显示模组及其制作方法
WO2014107875A1 (zh) 一种快门眼镜及3d显示系统
JP2008090279A (ja) 液晶表示装置及び電子機器
WO2017152446A1 (zh) 一种液晶显示面板及装置
WO2019135535A1 (ko) 액정 표시 장치 및 이의 제조방법
WO2013174019A1 (zh) 液晶显示面板及其应用的显示装置
WO2014153884A1 (zh) 液晶显示面板及液晶显示器
WO2013151276A1 (en) Display panel and display apparatus having the same
WO2017152453A1 (zh) 反射式液晶显示面板
KR20070118539A (ko) 액정디스플레이에 사용되는 초광도 컬러편광필터모듈 및이를 이용한 액정디스플레이
WO2016095266A1 (zh) 一种透反式液晶显示器及其制造方法
WO2015168934A1 (zh) 一种液晶显示面板及液晶显示装置
JP4367506B2 (ja) 電気光学装置の駆動方法、電気光学装置、及び電子機器
WO2015012484A1 (en) Display panel preventing reflection of external light and display apparatus having the same
CN101957516B (zh) 显示设备、偏振元件及该显示设备的制造方法
US8976306B2 (en) Shutter glasses and related 3D display system
WO2017049686A1 (zh) 一种半透反式蓝相液晶显示器及其液晶显示模组
TWI449954B (zh) 三維立體顯示方法、顯示裝置及顯示系統
WO2013174012A1 (zh) 液晶显示面板及其应用的显示装置
WO2013163826A1 (zh) 液晶显示面板及3d影像系统
WO2015023050A1 (en) Display panel for compensating a viewing angle and display apparatus having the same
WO2017024547A1 (zh) 半透反式蓝相液晶显示器及其液晶显示模组
WO2017156811A1 (zh) 液晶显示面板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13812147

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13870913

Country of ref document: EP

Kind code of ref document: A1