WO2014107055A1 - 나노입자 지지체 표면에 코팅된 t1 조영물질을 포함하는 mri 조영제 - Google Patents

나노입자 지지체 표면에 코팅된 t1 조영물질을 포함하는 mri 조영제 Download PDF

Info

Publication number
WO2014107055A1
WO2014107055A1 PCT/KR2014/000062 KR2014000062W WO2014107055A1 WO 2014107055 A1 WO2014107055 A1 WO 2014107055A1 KR 2014000062 W KR2014000062 W KR 2014000062W WO 2014107055 A1 WO2014107055 A1 WO 2014107055A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticle support
contrast
composition
diameter
group
Prior art date
Application number
PCT/KR2014/000062
Other languages
English (en)
French (fr)
Inventor
천진우
신태현
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to US14/759,288 priority Critical patent/US20160000942A1/en
Priority to KR1020157020929A priority patent/KR20150115760A/ko
Priority to JP2015551605A priority patent/JP6309542B2/ja
Priority to EP22180782.9A priority patent/EP4088743A1/en
Priority to CN201480004090.XA priority patent/CN104955486A/zh
Priority to KR1020187001516A priority patent/KR101991912B1/ko
Priority to EP14735209.0A priority patent/EP2942064B1/en
Publication of WO2014107055A1 publication Critical patent/WO2014107055A1/ko
Priority to US17/126,340 priority patent/US20210113717A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1878Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles the nanoparticle having a magnetically inert core and a (super)(para)magnetic coating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • A61K49/126Linear polymers, e.g. dextran, inulin, PEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/14Peptides, e.g. proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction

Definitions

  • the present invention relates to a contrast agent comprising a T1 contrast material coated on a support surface.
  • Nanomaterials exhibit new physical and chemical properties different from bulk materials due to their reduced size.
  • many researches on nanomaterials have made it possible to control not only the size but also the composition and shape of the material, thereby realizing excellent physical and chemical properties in the nano domain.
  • nanotechnology is developing variously and classified into three fields. First, it relates to the synthesis of new materials and materials of extremely small size with nanomaterials.
  • the present invention relates to a technique for manufacturing a device having a certain function by combining or arranging nano-sized materials with nano devices.
  • magnetic nanoparticles can be used for a wide range of nano-bios such as biomaterial separation, magnetic resonance imaging, magnetic-biosensors including giant magnetoresistance sensors, microfluidic systems, drug / gene delivery, and magnetic pyrotherapy.
  • Technology can be used.
  • magnetic nanoparticles can be used as a diagnostic for magnetic resonance imaging (MRI).
  • MRI measures nuclear spin relaxation of hydrogen in water molecules, and can measure Tl and T2 images.
  • MRI contrast agents are classified as T1 and T2 contrast agents and serve to amplify T1 or T2 signals.
  • T1 and T2 mean spin-lattice relaxation time or spin-spin relaxation time after nuclear spin is excited in MRI, respectively, and have different contrast effects.
  • T1 contrast agents consist of a paramagnetic material that can cause spin-lattice relaxation and, when present, present a bright or positive contrast effect compared to water.
  • Td Contrast Gd Chelate Compounds can be used mainly and Magnev ist (Scher i ng, Germany), which is currently used to acquire MRI images, is composed of Gd_DTPA (Gd (diethylene tr iamine pentaacetic acid).
  • Gcl 2 0 3 C. Riviere et al. J. Am. Chem. Soc. 2007, 129, 5076.
  • MnO T.Hyeon et al. Angew. Chem. Int. Ed. 2007, 46, '' 5397.
  • T2 contrast agents superparamagnetic nanoparticles such as iron oxide nanoparticles are mainly used as T2 contrast agents. These magnetic nanoparticles are magnetized when the external magnetic field is applied to generate an induced magnetic field, affecting the spin-spin relaxation process of hydrogen nuclear spin of surrounding water molecules, amplifying the magnetic resonance image signal, and darkening effect compared with ordinary water. (dark or negative contrast effect).
  • Commonly used T2 contrast agents include Feridex, Resovist, and Combidex, which contain iron oxide components, and recently, MEIO magnetism engineered iron oxide, which has been enhanced by partially replacing iron oxide components, has been developed (J. Cheon et al. Nature Medicine 2007, 13, 95.).
  • the Tl signal has a high signal intensity (bright signal), allowing T1 to have better resolution between tissues, making it easier to distinguish anatomical structures.
  • T1 imaging is useful for determining the presence of bleeding within the lesion, as subacute bleeding (4-14 days after bleeding) may be characteristically high in T1 imaging. Has the advantage.
  • T1 contrast agent Metal chelate-based materials, which are now commonly used as T1 contrast agents, do not effectively relax hydrogen nuclear spin in water molecules due to their paron tumbling rate due to their small size.
  • metal oxide nanoparticles have a slower molecular motion rate than metal chelates, and cooperative nuclear spin relaxation by various metals is possible, but its effect is limited by low surface area-volume ratio. Therefore, the development of Tl MRI contrast agent nanoparticles having a more efficient contrast effect is required by overcoming the limitations of the existing T1 contrast agent.
  • an object of the present invention is to provide a magnetic resonance imaging (MRI) comprising a T1 contrast material coated on a surface of a nanoparticle support. ) T1 contrast agent composition.
  • MRI magnetic resonance imaging
  • the present invention includes a T1 contrast material coated on the surface of the nanoparticle support, the ratio of the T1 contrast coating layer thickness and nanoparticle support diameter is 1: 200-1: 1 magnetic resonance image (MRI) T1 contrast crab composition is provided.
  • MRI magnetic resonance image
  • the present inventors earnestly researched to develop a contrast agent composition exhibiting excellent Tl MRI contrast effect by effectively causing spin-lattice relaxation of hydrogen in water molecules.
  • the paramagnetic T1 contrast agent material can be modified to a certain thickness or less on a nanoparticle support having a constant diameter.
  • the surface-to-volume ratio of Tl contrast agent was increased to have a T1 self-spin relaxation effect (/ ⁇ 1, ⁇ ⁇ 1 ) significantly improved regardless of the molecular size of contrast medium.
  • the surface area-volume ratio of the T1 contrast material is maximized when the T1 contrast material is modified on the surface of the nanoparticle support while the thickness is adjusted to maintain a constant ratio between the diameter of the nanoparticle support and the thickness of the T1 contrast coating layer.
  • Higher T1 contrast effect up to about 8.5 mM_ 1, about four-fold increase compared to conventional commercialized Teslascan
  • MRI Magnetic Resonance Imaging
  • T1 contrast agent refers to a positive contrast contrast agent that makes an image signal of a body part desired to obtain an image relatively higher than the surroundings to make the area to be diagnosed bright.
  • T1 contrast agent is a contrast agent related to T1 relaxation, that is, a paper arm, which after magnetization component Mz in the Z-axis direction of the spin is aligned with the Y axis of the XY plane after the RF energy shock absorption applied from the X axis. It is the process of emitting energy to the outside and returning to its original value, which is called "T1 relaxation".
  • T1 contrast materials that can be used in the present invention include all materials capable of generating T1 signals. More specifically. It is composed of a material comprising a magnetic material and even more specifically a paramagnetic metal component.
  • coating means bonding to the surface of the material without changing the basic physical properties of the material to be coated (modified).
  • the surface of the nanoparticle support Coated means that the T1 contrast material binds directly or indirectly to the delocalized area of the nanoparticle support surface.
  • coating does not only refer to forming a layer which completely closes the surface of the coating material. More specifically, the term “coating” of the present invention refers to the desired T1 contrast.
  • the T1 contrast material used in the present invention is a metal ion M n + (M is Ti n + , V n + , Cr n + ⁇ Mn n + , Fe n + , Co n + , Ni n + , Cu n + , Ru n + (0 ⁇ n ⁇ 14) or a lanthanide metal), a metal oxide, a metal complex, a metal compound or a multicomponent common structure thereof.
  • lanthanide metals used in the present invention include, but are not limited to, Eu n + , Gd n + , Tb n + , Dy n + , Ho n + , Er n + , Tm n + , Yb n + and Lu n + (0 ⁇ n ⁇ 14) It doesn't happen.
  • the metal complex used as the T1 contrast material in the present invention refers to any material composed of a central metal and a ligand capable of coordinating to the metal.
  • the metal complex is a complex composed of a metal having a hole electron and a ligand.
  • Specific examples include M x L y (M is composed of Ti n + , V n + , Cr n + , Mn n + , Fe n + , Co n + , Ni n + , Cu n + , Ru n + (0 ⁇ n ⁇ 14) or a lanthanide metal)
  • At least one element selected from the group, L at least one ligand capable of coordinating with the metal, 0 ⁇ x ⁇ 10,
  • Metal complexes more specifically metal chelates, metal organic frameworks (M0F) or coordination polymers
  • the metal compound that can be used as the T1 contrast material is a metal chalcogen
  • the element A is at least one element selected from the group consisting of ( :, Si, Ge, Sn, and Pb; 0 ⁇ x ⁇ 32, 0 ⁇ y ⁇ 32, 0 ⁇ z ⁇ 8).
  • transition ' metal elements Ti, V, Cr ⁇ Mn, Fe, Co, Ni, Cu, and Ru
  • M J at least one element selected from the group consisting of Group 1 metal element, Group 2 metal element, Group 14-17 element, transition metal element, lanthanide element, ' and actinium group element, A is B, Al, At least one element selected from Ga, In, and T1; 0 ⁇ x ⁇ 40, 0 ⁇ y ⁇ 40, 0 ⁇ z ⁇ 8).
  • Metal chelate compounds used in the present invention include chelate ligands that bond to isotopically with a central metal and two or more functional groups.
  • Specific examples of the chelate ligands include ethylenediaminotetracetic acid (EDTA) diet hy 1 ene tri am i nopent aace tic acid (DTPA), E0B-DTPA (N- [2- [bis (carboxyniethyl) am i no] -3- (4- et hoxypheny 1) propyl] -N- [2- [bis (carboxy methyl) amino] ethyl] -L-glycine), DTPA-GLU (N, Nb is [2- [bis (car boxyme t hy 1) amino] glutamic acid), DTPA-LYS (N, N-bis [2- [car boxy methyl) amino] ethyl] -L-lysine), DTPA-BMA (N, N-bis [2- [car
  • Metal ions, metal oxide metal complexes and metal compounds used in the present invention are one or more multi-component common structures, which are specific examples of an inorganic compound in which a complex ligand is further coordinated or a ligand has a constituent element of the inorganic compound.
  • the compound may be, but is not limited thereto.
  • multi-component shake structure in which two oxygen atoms of ⁇ 2 (metal oxide) are substituted with CCb ligands.
  • multi-component shake structures that can be used as T1 contrast materials are ions, metals, metal oxides, The metal complex compound and one or more of the metal compounds may be mixed and exist in various structures and forms .
  • nanoparticle support herein refers to a material having a nano-level diameter, which serves as a basis for forming a contrast agent cotang layer. It means support quality (3 ⁇ 1) 01 ⁇ 1 material. Supporting materials can be any materials that do not impair the contrast effect because they do not have magnetic properties.
  • an inorganic chalcogen compound, an inorganic nicogen compound, an inorganic carbon group compound, an inorganic boron group compound, an organic polymer, a copolymer, a ceramic material, a metal complex, etc. are contained.
  • the support material can be in various forms such as spherical, polyhedral, stick, and plate. Specific examples are spheres.
  • the T1 contrast agent has a large surface area relative to the volume.
  • the nanoparticle support of the present invention Inorganic Chalcogen M x A y
  • M is Group 2 Element (Be, Mg, Ca, Sr, Ba), Group 13 Element (Al, In, TO, Group 14 Element (Si, Ge, Sn, Pb), Group 15 Elements (As, Sb, Bi), transition metal elements (Sc, Ti, V, Zn, Y, Zr, Nb, Mo), lanthanide elements (Ce, Pr, Nd, Pm, Sm, Eu, Lu), and At least one element selected from the group consisting of actinides, A is at least one element selected from the group consisting of 0, S, Se, and Te; 0 ⁇ x ⁇ 16, 0 ⁇ y ⁇ 8) nanoparticle support More specifically, the nanoparticle support is a Si0 2 nanoparticle support.
  • the organic polymeric material or copolymer that can be used for the support includes all polymers having firmness.
  • polyesters polyhydroxyalkanoates (PHAs), poly ( ⁇ - hydroxy acids), poly ( ⁇ - hydroxy acid), poly (3-hydroxybutyrate when dihydro -co- balreo rate; PHBV ), Poly (3—hydroxypropionate; PHP), poly (3-hydroxynucleoanoate; PHH), poly (4-hydroxyacid), poly (4-hydroxybutyrate), poly (4 Hydroxy valerate), poly (4-hydroxynucleoate), poly (esteramide), polycaprolactone, polylactide polyglycolide, poly (lactide-co-glycolide; PLGA), polydi Oxanone, polyorthoester, polyanhydride, poly (glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphoester urethane, poly (amino acid), polycyanoacrylate, poly (trime Alkylene car Bonnet "byte), poly (imino carbonates), poly (acrylate -co- styren
  • Ceramic materials that can be used as the support specifically include inorganic chalcogenide materials such as inorganic oxides and include, for example, titania, zirconia, silica, alumina, aluminate inorganic compounds, silicate inorganic compounds, zeols.
  • inorganic chalcogenide materials such as inorganic oxides and include, for example, titania, zirconia, silica, alumina, aluminate inorganic compounds, silicate inorganic compounds, zeols.
  • Niobate inorganic compound tantalate inorganic compound cuprite (Cu 2 0), ceria, bromelite, BeO, porous material (e.g. mesoporous crystalline mater ial ) -41, MCM-48, SBA-15, SBA-16, mesoporous, or microporous material), or multicomponent common structures thereof, but are not limited thereto.
  • the nanoparticle support specifically includes a metal complex.
  • the metal complex refers to any substance composed of the central metal and ligands capable of coordinating to the metal.
  • the metal complex that can be used for the support is a complex composed of a non-magnetic core metal and a coordinating ligand.
  • Metal complexes usable as nanoparticle supports include more specifically organometallic compounds, metal organic frameworks (M0F) or coordination polymers.
  • the nanoparticle support used in the present invention is an organic polymer.
  • organic increase polymer (organic polymer) herein includes "any substance that can serve as take the robustness of the polymer with an organic molecule as a monomer (monomer unit) support material (supporting material) in the T1 contrast agent coating layer do.
  • the organic polymer used in the present invention is a polysaccharide, most specifically dextran.
  • the organic polymer used in the present invention is a protein, most specifically selected from the group consisting of aprotinin, lysozyme and their mixtures. Proteins have a characteristic three-dimensional shape and volume depending on their type and molecular weight, and are easy to produce small particles of 2 nm or less. According to a specific embodiment of the present invention, the nanoparticle support used in the present invention does not include a lipid.
  • the ratio of the T1 contrast coating layer thickness and the nanoparticle support diameter of the present invention is 1: 100-1: 2.5.
  • the ratio of the T1 contrast coating layer thickness and the nanoparticle support diameter of the present invention is 1:60-1: 3.
  • the ratio of the T1 contrast coating layer thickness and the nanoparticle support diameter of the present invention is 1:30-1: 3.
  • the ratio of the T1 contrast coating layer thickness and the nanoparticle support diameter of the present invention is 1:20-1: 3.
  • the T1 contrast material coating layer of the present invention The ratio of the thickness and the diameter of the nanoparticle support is 1:20-1: 5, more specifically 1:10-1: 5. According to a specific embodiment of the present invention, the T1 contrast coating layer thickness of the present invention is 0.1-5 nm.
  • the T1 contrast coating layer thickness of the present invention is 0.1-3 nm, even more specifically 0.1-2 ⁇ .
  • the nanoparticle support diameter is 50 nm or less, more specifically 40 nm or less, even more specifically 2-40 nm.
  • the nanoparticle support diameter is 2-35 run, more specifically 2-30 nm, even more specifically 2- 20 ⁇ , even more specifically 2-17 nm, most specifically 2-10 nm.
  • the total particle size range of the T1 contrast agent composition (a nanoparticle support particle coated with T1 contrast material) presented in the present invention is a very important technical feature to obtain a continuous and intermittent MRI image while remaining in the blood vessel as a contrast medium for a long time. Rather, it is a key technical factor that must be considered to maintain good nuclear spin relaxation rates.
  • the inventors have found that the surface area-volume ratio maximized within a range in which the T1 contrast material coated on the nanoparticle support maintains the total particle size to serve as a contrast agent while maintaining the minimum thickness that can cause nuclear spin relaxation. Eggplants were uncovered for optimal thickness and proportion to support diameter.
  • 1 T T1 contrast agent (Mn 3 0 4 ) is coated
  • T1 magnetic spin relaxation effect was increased by about .2235%.
  • the present inventors have used nanoparticle supports having various diameters. Experiments have shown that when the nanoparticle support has a range of diameters, the T1 magnetic spin relaxation effect (/!) Is maximized within the range, as well as the ratio of T1 contrast coating layer: nanoparticle support diameter, as well as nano It was confirmed that the diameter of the particle support itself is also an important factor influencing the T1 contrast effect.
  • the T1 contrast material of the present invention and the nanoparticle support are formed by ionic bonds, electrostatic bonds, coordination bonds, hydrophobic bonds, hydrogen bonds, covalent bonds, hydrophilic bonds or van der Waals bonds. Or a T1 contrast material may grow on the surface of the nanoparticle support to form a coating layer.
  • the contrast agent compositions of the present invention can form additional bonds with materials that stabilize the dispersion and make biocompatibility in an aqueous environment.
  • the T1 contrast agent particles of the present invention can be used more efficiently in aqueous solution by phase transition using water soluble polyfunctional ligands.
  • the Tl MRI contrast agent composition of the present invention is basically used for MRI contrast, but may be used for multiple i (modal) contrast if a substance that allows other types of contrast is combined.
  • the other type of contrast material may be embodied by being directly combined with the contrast agent or indirectly through the multifunctional ligand coated on the contrast agent or included together in the carrier.
  • the invention provides a method for enhancing T1 contrast effect of a T1 contrast agent comprising the following steps:
  • the present invention provides a method for enhancing the contrast effect of a T1 contrast agent comprising the following steps:
  • nanoparticle support used in the present invention the T1 contrast material, their preparation method, and their parameters have already been described above, so that description thereof is omitted to avoid excessive redundancy.
  • the present invention provides a magnetic resonance imaging (MRI) T1 contrast agent composition comprising a nanoparticle support coated with a T1 contrast material.
  • MRI magnetic resonance imaging
  • the MRI T1 contrast agent composition of the present invention significantly increases the surface-to-volunie ratio of the contrast agent material by modifying the paramagnetic T1 contrast agent material below a certain thickness on a nanoparticle support having a constant diameter. It has an excellent T1 magnetic spin relaxation effect.
  • the present invention can be usefully used for reliable image diagnosis by providing a more accurate and clear T1 positive contrast image.
  • FIG. 1 is a graph showing the results of comparing the T1 magnetic spin relaxation effect of Mn 3 0 4 coated Si0 2 @Mn 3 0 4 nanoparticles with different thicknesses of the conventional contrast agent.
  • Figure 2 is a graph showing the results of comparing the T1 magnetic spin relaxation effect of the nanoparticles synthesized by coating iron oxide on the same conditions on the support having a different diameter.
  • Example 1 Synthesis of Silica Nanoparticle Support Reverse micelles were added to ammonium hydroxide (Sigma— Aldrich, USA) in a solution of cyclonucleic acid (Fluka, USA) containing Igefal CO-520 (Sigma-Aldrich, USA). After the formation of the ol, silica precursor Tetraeoxysilane (Sigmal-Aldnch, USA) was added.
  • the spherical silica nanoparticles were synthesized by reacting at room temperature for 24 hours. Silica, nanoparticles thus formed after the addition of all the excess ethanol was isolated by precipitation by centrifugation. The separated nanoparticles were redispersed in excess acetone and centrifuged to remove excess reaction water, and finally the nanoparticles were dispersed in water.
  • Example 2 Synthesis of 25 nm Silica Nanoparticle Support (Si0 2 ) To a solution of cyclonucleic acid (69.5 g) containing Igepal C0-520 (7.45 g) was added 15% aqueous ammonium hydroxide (2.31 mL) solution.
  • silica precursor tetraethoxysilane (0.25 mL) was added as silica precursor.
  • the spherical silica nanoparticles were synthesized by reacting at room temperature for 24 hours. Silica nanoparticles synthesized in this manner have a size of 25 nm.
  • the formed silica nanoparticles were separated by addition of excess ethane and then centrifuged to precipitate. The separated nanoparticles were redispersed in excess acetone and centrifuged to remove excess reactants. Finally, the nanoparticles were dispersed in water and purified by several filters (UltraCone, Millipore, USA).
  • Example 3 Resizing Silica Nanoparticle Support (Si0 2 ) Aqueous ammonium hydroxide (2.31 mL) was added to a cyclonucleic acid (69.5 g) solution containing Igepal C0-520 (7.45. G) to form reverse micelles. After Tetraethoxysilane (0.25 mL) was added as silica precursor. At this time, by adjusting the concentration of the aqueous ammonium hydroxide solution, silica nanoparticles of 20 nm, 30 rim, 40 nm and 45 nm sizes were synthesized, respectively. The formed silica nanoparticles were precipitated by centrifugation after addition of excess ethane. Separated.
  • Example 4 Synthesis of Dextran Nanoparticle Support
  • Epoxy hydroxyl group of dextran was added by adding sodium hydroxide (Sigma-Aldrich, USA) and epichlorohydrin (Sigma-Aldrich, USA) to a solution of dextran (Pharmacosmos, Denmark). Substituted with a side group.
  • Dextran nanoparticles were synthesized by cross-linking dextran chains by adding ethylenediamine.
  • the dextran nanoparticles thus synthesized were separated by centrifugation after addition of excess ethanol.
  • the separated textran nanoparticles were redispersed in water and then removed by the dialisis filter (Spectrum Labs., USA) to remove excess reaction water.
  • Dextran nanoparticles were synthesized by adding ethylenediamine (26 mL) dropwise to cross-link the dextran chains.
  • Two kinds of proteins having different molecular weights (aprotinin and lysozyme) were prepared to be used as a support.
  • Aprotinin (Sigma-Alclrich USA) and lysozyme (Sigma-Aldrich, USA) are proteins with molecular weights of 6.7 kDa and 14.3 kDa, respectively, and have sizes of 1.2 nm and 1.63 nm, respectively.
  • Example 7 Synthesis of Nanoparticles Coated with Manganese Oxide on Silica Nanoparticle Support The following method was performed to coat manganese oxide on the surface of the spherical silica nanoparticles synthesized above.
  • Silica nanoparticles were added by adding colloidal aqueous solution in which silica nanoparticles were dispersed in an excess of diethylene glycol (Duksan, Korea) and Mn (0Ac) 2 (Sigma-Aldrich, USA) as precursors and reacting at 90 ° C for 12 hours.
  • ' Spherical nanoparticles coated with manganese oxide on a support ' were synthesized.
  • Example 9 Synthesis of Nanoparticles Coated with Iron Oxide on Nanoparticle Support
  • FeCl 3 H 2 0 Sigma-Alrich, USA
  • AHsOCSigma-Aklrich, USA ammonium hydroxide was added to the reaction at room temperature for 10 minutes to synthesize nanoparticles coated with iron oxide on the nanoparticle support. Repeat centrifugation and uncoated the support. Excess iron oxide nanoparticles were removed and purified by several filters (UltraCone, Millipore, USA) to remove excess reaction material.
  • Example 10 After comparing the magnetic spin relaxation effect according to the thickness of the Mna i coating on Si0 2 @Mri 3 0 4 nanoparticles, the correlation between the surface area-volume ratio of ⁇ 3 ⁇ 4 and the magnetic spin relaxation effect was The spherical nanomaterials having the same Mn 3 0 4 but the same thickness as Si0 2 ⁇ ⁇ 3 0 4 were synthesized and the T1 magnetic spin relaxation effect (rl) was measured using magnetic resonance imaging (MRI). . In order to observe the effect of the thickness of Mn 3 0 4 , all other experimental conditions were equally matched. The specific experimental method is as follows.
  • Each sample was dispersed in water at 0.25 mM, 0.125 mM, and 0.0625 mM concentrations (manganese basis), placed in a PCR tube and fixed to the support, and then placed in the center of the MRI wrist coil (Prist coil, Philips, Nether lands). Using MRK1.5 T, Philips, Netherlands). The T1 relaxation time of each sample was measured. Then, the amount of manganese ions was quantified by ICP-AES analysis to calculate the correct concentration of each sample. Based on this, the T1 self-spin relaxation effect (rl) was calculated.
  • ⁇ T1 self-spin relaxation effect (rl, mM— ⁇ ⁇ 1 ) is the inverse of the T1 relaxation time (s- 1 ) with respect to the concentration of manganese ion (mM). It can be obtained by the slope when plotted, and the value thus obtained is shown in FIG. 1.
  • the ⁇ ⁇ 1 value of the Si0 2 @Mn 3 0 4 nanoparticles is larger as the Mn 3 0 4 is thinner and the surface area-volume ratio is higher. appear.
  • the T1 magnetic spin relaxation effect was about 4285% larger than the 20 nm thickest Mn 3 0 4 coated nanoparticles.
  • the nanoparticles coated with 1 nm of Mn 3 0 4 were about 224% compared to the conventional metal chelate-based contrast agent (Magnevist), about 347 compared with Mn 3 0 4 nanoparticles, and compared with MnO nanoparticles. It was confirmed that the T1 magnetic spin relaxation effect was increased by about 2235%.
  • Example 11 Confirmation of correlation between diameter of nanoparticle support and magnetic spin relaxation effect
  • Nanoparticle supports used in this experiment are proteins (1.2 nm, 1.63 nm), textran (3.02 nm, 4.78 nm, 6.83 nm, 11.6 nm), silica (19.26 nm, 33.29 nm, 38.84 nm, 44.89 nm).
  • the specific experimental method is as follows.
  • T1 relaxation time of each sample was measured.
  • the T1 magnetic spin relaxation effect (rl) was calculated based on the measured T1 and the iron concentration of each sample.
  • the T1 self-spin relaxation effect (rl, mM 1 s— can be found as the slope of the inverse of the T1 relaxation time (s— L ) versus the concentration of manganese ion (mM).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

본 발명은 나노입자 지지체 표면에 코팅된 T1 조영물질을 포함하는 자기공명영상(MRI) T1 조영제 조성물에 관한 것이다. 본 발명의 MRI T1 조영제 조성물은 일정한 직경을 가지는 나노입자 지지체에 상자성의 T1 조영제 물질을 일정 두께 이하로 개질함으로써 T1 조영제 물질의 표면적-체적 비(surface-to-volume ratio)가 크게 증가하여 우수한 T1 자기스핀 이완효과를 가진다. 본 발명은 보다 정확하고 선명한 T1 양조영(positive contrast) 영상을 제공함으로써 신뢰도 높은 영상 진단에 유용하게 이용될 수 있다.

Description

【명세서】
【발명의 명칭】
나노입자 지지체 표면에 코팅된 T1 조영물질올 포함하는 MRI 조영제
【기술 분야】
본 발명은 지지체 표면에 코팅된 T1 조영물질을 포함하는 조영제에 관한 것이다. -
【배경 기술】
나노 물질 (nanomaterial)은 감소된 크기로 인해서 벌크물질 (bulk material)과 다른 새로운 물리적 /화학적 성질을 나타낸다. 또한 나노 물질에 대한 많은 연구로 크기뿐만 아니라 물질의 조성이나 모양 역시 조절할 수 있게 되면서 나노영역에서의 우수한 물리적 /화학적 특성을 구현할 수 있게 되었다. 현재 나노기술은 다양하게 발전하고 있으며 크게 세 가지 분야로 분류되어 있다. 첫째, 나노 소재로 극미세한 크기의 새로운 물질과 재료를 합성하는 기술에 관한 것이다. 둘째, 나노 소자로 나노 크기의 재료들을 조합하거나 배열하여 일정한 기능을 발휘하는 장치를 제조하는 가술에 관한 것이다. 셋째, 나노기술을 생명공학에 응용하는 기술 (나노-바이오)에 관한 것이다.
여러 가지 다양한 나노 입자 중 자성 나노입자는 생체 물질의 분리, 자기 공명 영상 진단, 거대자기저항센서를 포함한 자기-바이오 센서, 마이크로 유체계 시스템, 약물 /유전자 전달, 자성 고온치료 등의 광범위한 나노—바이오 기술에 이용될 수 있다. 특히, 자성 나노 입자는 자기 공명 영상 (MRI)의 진단제로 사용될 수 있다. MRI는 물분자 내 수소의 핵스핀 이완을 측정하는데, 크게 Tl, T2 영상을 측정할 수 있다. MRI 조영제는 T1 조영제와 T2 조영제로 분류되며 T1 또는 T2 신호를 증폭하는 역할을 한다. T1 및 T2는 MRI에서 핵스핀이 여기된 이후에 스핀 -격자 완화 시간 또는 스핀—스핀 완화 시간을 각각 의미하며 서로 다른 조영효과를 가져온다. T1 조영제는 스핀 -격자 이완을 일으킬 수 있는 상자성 물질로 구성되며 T1 조영제가 존재할 때 통상 물과 비교하여 밝은 신호 효과 (bright or positive contrast effect)를 나타낸다. Tl 조영제로는 Gd 킬레이트 화합물이 주로 사용될 수 있으며 현재 MRI 영상을 획득하기 위해 사용되는 Magnev i s t ( Scher i ng , Germany)는 Gd_DTPA(Gdᅳ di ethylene tr iamine pentaacetic acid)로 구성되어 있다. 이외에도 최근 Gcl203(C. Riviere et al . J. Am. Chem. Soc. 2007, 129, 5076.), MnO(T.Hyeon et al. Angew. Chem. Int. Ed. 2007, 46,' 5397.) 등의 물질이 Tl 조영제로 사용될 수 있음이 보고되어 있다.
이에 반하여 T2 조영제는 산화철 나노 입자와 같은 초상자성 나노 입자가 주로 사용되고 있다. 이러한 자성 나노 입자는 외부에서 자기장을 주었을 때 자화되어 유도 자기장을 발생시켜 주변 물 분자의 수소 핵스핀의 스핀 -스핀 이완 과정에 영향을 주어 자기공명영상 신호를 증폭시켜 통상 물과 비교하여 어두운 조영효과 (dark or negative contrast effect)를 나타낸다. 주로 사용되고 있는 T2 조영제는 산화철 성분을 포함하는 Feridex, Resovist, Combidex 등이 있으며 최근 산화철 성분을 일부 치환함으로써 조영효과를 높인 MEIO magnetism engineered iron oxide)가 개발되었다 (J. Cheon et al . Nature Medicine 2007, 13, 95.).
MRI에서 Tl 신호는 높은 신호강도 (밝은 신호)를 가지고 있어 T1이 조직 간의 해상도가 뛰어나 해부학적인 구조를 좀 더 명확하게 구별할 수 있다. 또한, T1 영상에서 아급성 (亞急性) 출혈 (출혈 후 4~14일 경과) 등이 특징적으로 높은 신호강도를 보일 수 있으므로 T1 영상은 병변 (病變) 내에서 출혈의 존재여부를 판단하는 데 유용하다는 장점을 가지고 있다.
현재 T1 조영제로서 일반적으로 사용되는 금속 킬레이트 계열 물질은 그 작은 크기로 인한 빠론 분자 운동 (tumbling rate) 때문에 물 분자 내 수소 핵스핀을 효과적으로 이완시키지 못한다. 한편, 금속 산화물 계열의 나노입자의 경우 금속 킬레이트에 비해 느린 분자운동 속도를 가지며 여러 금속에 의한 협력적인 핵스핀 이완이 가능한 반면 낮은 표면적 -체적 비에 의해 그 효과가 제한적이다. 따라서, 이러한 기존의 T1 조영제의 한계를 극복함으로써 보다 효율적인 조영효과를 가지는 Tl MRI 조영제 나노입자의 개발이 요구된다. 본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다. 【발명의 상세한 설명】
【기술적 과제】
본 발명자들은 물 분자 내 수소의 스핀 -격자 이완을 효과적으로 일으킴으로써 우수한 Tl MRI 조영효과를 발휘하는 조영제 조성물을 개발하기 위하여 예의 연구 노력하였다. 그 결과, 일정한 직경을 가지는 나노입자 지지체에 상자성의 T1 조영제 물질을 일정 두께 이하로 개질할 경우 T1 조영제 물질의 표면적 -체적 비 (surface-to-volume ratio)가 증가하여 조영제 물질의 분자 크기에 무관하게 현저히 향상된 T1 자기스핀 이완효과 (rl, m " 를 가짐을 발견함으로써, 본 발명을 완성하게 되었다. 따라서 본 발명의 목적은 나노입자 지지체 표면에 코팅된 T1 조영물질을 포함하는 자기공명영상 (MRI) T1 조영제 조성물을 제공하는 데 있다. .
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다. 본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
【기술적 해결방법】
본 발명의 일 양태에 따르면, 본 발명은 나노입자 지지체 표면에 코팅된 T1 조영물질을 포함하며, 상기 T1 조영물질 코팅층 두께와 나노입자 지지체 직경의 비는 1:200 - 1:1 인 자기공명영상 (MRI) T1 조영게 조성물을 제공한다.
본 발명자들은 물 분자 내 수소의 스핀 -격자 이완을 효과적으로 일으킴으로써 우수한 Tl MRI 조영효과를 발휘하는 조영제 조성물을 개발하기 위하여 예의 연구 노력하였다. 그 결과, 일정한 직경을 가지는 나노입자 지지체에 상자성의 T1 조영제 물질을 일정 두께 이하로 개질할 경우 Tl 조영제 물질의 표면적 -체적 비 (surface-to-volume ratio)가 증가하여 조영제 물질의 분자 크기에 무관하게 현저히 향상된 T1 자기스핀 이완효과 (/ᅳ 1, ηιΜΛᅵ1)를 가짐을 발견하였다. 본 발명에 따르면, 나노입자 지지체 직경과 T1 조영물질 코팅층 두께 간의 비율을 일정 수준을 유지하도록 그 두께를 조절하면서 나노입자 지지체 표면에 T1 조영물질을 개질할 경우, T1 조영물질의 표면적 -체적 비가 극대화되어 기존의 물질과 비교하여 높은 T1 조영효과 (최대 약 8.5 mM_ 1, 기존 상용화된 Teslascan과 비교하여 약 4배 증가)를 얻을 수 있다. 본 명세서에서 용어 "자기공명영상 (MRI, Magnetic Resonance Imaging)" 은 자기장 안에서 수소 원자의 스핀이 이완되는 현상을 이용해 신체의 해부학적, 생리학적, 생화학적 정보를 영상으로 수득하여 살아있는 사람이나 동물의 신체기관을 비침습적으로 실시간 영상화하는 진단 방법을 의미한다 . 본 명세서에서 용어 " T1 조영제 " 는 영상을 얻기를 원하는 신체부위의 영상신호를 주위보다 상대적으로 높게 만들어 진단하고자 하는 부위를 밝게 나타내도록 하는 양조영 (positive contrast) 조영제를 의미한다. T1 조영제는 T1 이완, 즉 종이완에 관계하는 조영제로서, 이러한 종이완은 스핀의 Z축 방향의 자화성분 Mz가 X 축으로부터 가해진 RF 에너지 충격흡수 이후 X-Y 평면의 Y 축에 정렬 (align) 한 후 에너지를 외부로 방출하며 원래의 값으로 돌아오는 과정이며, 이 현상을 "T1 이완 (ΊΊ relaxation)" 이라 부른다. 본 발명에서 이용될 수 있는 T1 조영물질은 T1 신호를 발생시킬 수 있는 모든 물질을 포함한다. 보다 구체적으로는. 자성 물질을 포함하며 보다 더 구체적으로는 상자성 금속 (paramagnetic metal) 성분을 포함하는 물질로 구성된다. 본 명세서에서 용어 "코팅 (coating)" 은 코팅 (개질) 대상이 되는 물질의 기본적 물성에 변화를 주지 않으면서 상기 물질의 표면에 결합하는 것을 의미한다. 예를 들어 나노입자 지지체 표면에 T1 조영물질이 코팅되었다 함은 T1 조영물질이 나노입자 지지체 표면의 편중되지 않은 면적 (delocalized area)에 직접 또는 간접적으로 결합하였음을 의미한다. 따라서, 본 명세서에서 "코팅" 이란 코팅대상 물질의 표면을 완전히 폐쇄시키는 층 (layer)을 형성하는 경우만을 가리키는 것이 아님은 자명하다ᅳ 보다 구체적으로는, 본 발명의 용어 "코팅" 은 원하는 T1 조영효과를 얻올 수 있을 만큼의 표면적 -체적 비 (surface-to-volume ratio)를 확보할 수 있을 정도의 표면을 점유하며 결합하는 것을 의미한다. 본 발명의 구체적인 구현예에 따르면, 본 발명에서 이용되는 T1 조영물질은 금속 이온 Mn+(M은 Tin+, Vn+, Crn+ᅳ Mnn+, Fen+, Con+, Nin+, Cun+, Run+(0<n<14) 또는 란탄족 금속), 금속 산화물, 금속 착화합물, 금속 화합물 또는 이들의 다성분 흔성 구조체이다. 본 발명에서 이용되는 란탄족 금속의 구체적인 예에는 Eun+, Gdn+, Tbn+, Dyn+, Hon+, Ern+, Tmn+, Ybn+ 및 Lun+(0<n≤14)가 포함되나 이에 제한되는 것은 아니다. 본 발명의 보다 구체적인 구현예에 따르면, 본 발명에서 이용되는 T1 조영물질은 금속 산화물 Mx0y (M은 Tin+, Vn+, Crn+, Mnn+, Fen+, Con+, Nin+, Cun+, Run+(0<n<14) 또는 란탄족 금속)로 구성된 군으로부터 선택되는 1종 이상의 금속원소, 0<x≤16, 0<y≤8)이다. 보다 구체적인 예로는, 상기 금속 산화물은 Mx0y (M = Mn, 0<x<4, 0<y<4)이다.
본 발명에서 T1 조영물질로 이용되는 금속 착화합물은 중심 금속과 그 금속에 배위 결합될 수 있는 리간드로 구성된 모든 물질을 말하며 특히, 홀 전자를 가져 자성을 띠는 금속과 배위 리간드로 이루어진 착화합물이다. 구체적인 예로는 MxLy (M은 Tin+, Vn+, Crn+, Mnn+, Fen+, Con+, Nin+, Cun+, Run+(0<n<14)또는 란탄족 금속)로 구성된 군으로부터 선택되는 1종 이상의 원소, L = 금속과 배위결합을 이를 수 있는 1종 이상의 리간드, 0<x≤10,
0<y<120) 이다. 금속 착화합물로 더욱 구체적으로는 금속 킬레이트, 금속 유기물 구조체 (M0F; metal organic framework) 또는 배위 고분자
(coordination polymer)가 포함된다.
상기 T1 조영물질로 사용 될 수 있는 금속 화합물은 금속 칼코겐
(16족) 화합물, 금속 니코겐 (15족') 화합물, 금속 탄소족 (14족) 화합물, 금속 붕소족 (13족) 화합물을 포함한다. 본 발명의 구체적인 예로는 구현예에 따르면, 본 발명에서 T1 조영물질로 사용될 수 있는 금속 칼코겐 화합물은 Ma xAz, 또는 Ma xMb yAz (Ma = 란탄족 원소 (Ce, Pr, Nd, Pm, Sm, Gd, Eu, Tb, Dy, Ho, Er, Tm, Yb, 및 Lu) 및 전이 금속 원소 위 V, Cr, Mn, Fe, Co, Ni , Cu, 및 Ru)로 구성된 군으로부터 선택되는 1종 이상의 원소, Mh = 1족 금속 원소, 2족 금속 원소, 13~15족 원소, 17족 원소, 전이 금속 원소, 란탄족 및 악티늄족 원소로 구성된 군으로부터 선택되는 1종 이상의 원소, A는 0, S, Se, Te, 및 Po로 로 구성된 군으로부터 선택되는 1종 이상의 원소; 0<x≤16, 0<y<16, 0<z<8), 또는 이들의 다성분 흔성 구조체를 포함하며, 가장 바람직하게는 Ma x0Zl Ma xMbyOz (Ma = 란탄족 원소 (Ce, Pr, Nd, Pm, Sm, Gd, Eu, Tb, Dy, Ho, Er, Tm, Yb, 및 Lu), 및 전이 금속 원소 (Ti, V, Cr, Mn, Fe, Co, Ni , Cu, 및 Ru)로 구성된 군으로부터 선택되는 1종 이상의 원소, Mb = 1족 금속 원소, 2족 금속 원소, 13족〜 15족 원소, 17족 원소, 전이 금속 원소, 란탄족, 및 악티늄족 원소로 구성된 군으로부터 선택되는 1종 이상의 원소; 0<x≤16, 0<y<16, 0<z<8)이다.
상기 T1 조영물질로 사용될 수 있는 금속 니코겐은, 구체적인 예로는 MC XAZ , Mc xMd yAz (Mc= 란탄족 원소 (Ce, Pr, Nd, Pm, Sm, Gd, Eu, Tb, Dy, Ho, Er, Tm, Yb, 및 Lu), 및 전이 금속 원소 (Ti, V, Cr, Μη,. Fe,' Co, Ni , Cu, 및 Ru)로 구성된 군으로부터 선택되는 1종 이상의 원소, Md = 1족 금속 원소, 2족 금속 원소, 13~14족 원소, 15족 원소, 17족 원소, 전이 금속 원소, 란탄족 원소, 및 악티늄족 원소로 구성된 군으로부터 선택되는 1종 이상의 원소, A는 N, P, As, Sb, 및 Bi로 구성된 군으로부터 선택되는 1종 이상의 원소; 0<x<24, 0<y<24, 0<z<8)이다.
상기 T1 조영물질로 사용될 수 있는 금속 탄소족 화합물은, 구체적인 예로는 Me xAz, Me xMf yAz (Me= 란탄족 원소 (Ce, Pr , Nd, Pm, Sm, Gd, Eu, Tb, Dy, Ho, Er, Tm, Yb, 및 Lu), 및 전이 금속 원소 (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, 및 Ru)로 구성된 군으로부터 선택되는 1종 이상의 원소, Mf = 1족 금속 원소, 2족 금속'원소, 13족 원소, 15~17족 원소, 전이 금속 원소, 란탄족 원소, 및 악티늄족 원소로 구성된 군으로부터 선택되는 1종 이상의 원소, A는 (:, Si, Ge, Sn, 및 Pb로 구성된 군으로부터 선택되는 1종 이상의 원소; 0<x<32, 0<y<32, 0<z<8)이다.
상기 T1 조영물질로 사용될 수 있는 금속 붕소족 화합물은, 구체적인 예로는 Μ \ζ, Μ',Μ^ ζ (Μ!= 란탄족 원소 (Ce, Pr, Nd, Pm, Sm, Gd, Eu, Tb, Dy, Ho, Er, Tm, Yb, 및 Lu), 및 전이' 금속 원소 (Ti , V, Crᅳ Mn, Fe, Co, Ni, Cu, 및 Ru)로 구성된 군으로부터 선택되는 1종 이상의 원소, MJ = 1족 금속 원소, 2족 금속 원소, 14-17족 원소, 전이 금속 원소, 란탄족 원소, '및 악티늄족 원소로 구성된 군으로부터 선택되는 1종 이상의 원소, A는 B, Al, Ga, In, 및 T1으로부터 선택되는 1종 이상의 원소; 0<x<40, 0<y<40, 0<z≤8)이다.
본 발명에서 이용되는 금속 킬레이트 화합물은 중심 금속과 2개 이상의 작용기로 등시에 결합을 이투는 킬레이트 리간드를 포함한다. 구체적인 예로는 킬레이트 리간드는 EDTA(ethylenediaminotetracetic acid) DTPA ( d i e t hy 1 ene t r i am i nopent aace t i c acid), E0B-DTPA(N-[2- [bis(carboxyniethyl ) am i no ] -3- ( 4-e t hoxypheny 1 )propyl ]-N-[2-[bis(carboxy methyl )amino]ethyl ]-L-glycine) , DTPA-GLU( N , N-b i s [ 2- [ b i s ( car boxyme t hy 1 ) amino]ethyl ]ᅳᄂ一 glutamic acid) , DTPA-LYS (N,N-bis[2-[bis(car boxy methyl )amino]ethyl ]-L-lysine) , DTPA-BMA (N,N-bis[2-[car boxyme t hy 1
[(methylcarbamoyl )methyl] amino]ethyl Jglycine) , B0PTA(4-carboxy-5 , 8 , ll-tris(car boxyme thy 1 ) - 1-pheny 1 -2一 oxa— 5 ,8, 11-tr iazatr i decan- 13—ᄋ i c acid) , D0TA( 1 ,4,7, 10-t et raazacyc lododecan-1 ,4,7, 10-t et r aacet i c acid) , D03A( 1,4,7, 10-t et r aazacyc 1 ododecan-1 ,4,7- triacetic acid), HPD03A(10- (2-hydroxypropyl )-1,4,7, 10—tet raazacyc 1 ododecan- 1,4, 7-tr i acet ic acid) MCTA(2-methy 1-1, 4, 7, 10-t et raazacyc lododecane-1, 4, 7, 10-t etr aacet ic acid), D0TMA(( α , a ' , a " , a ' " )-tetramethyl-l,4,7, 10-tetraazacyclo dodecan-1,4,7, 10-tetraacet ic acid), PCTA(3,6,9, 15-tetraazabicyclo [ 9.3.1 ] pent adeca- 1 ( 15 ) , 11 , 13- 1 r i ene-3 , 6 , 9- 1 r i ace t i c acid), B0PTA(4- carboxy-5 , 8 , 11-bi s(carboxymethyl )一1— phenyl—12— (phenyl met hoxy) methyl - 8-phosphome t hy 1 -2-oxa-5 , 8 , 11- 1 r i aza t r i decan- 12-o i d acid) , Ν,Ν' - [(포스포노메틸이미노)다이— 2, 1-에타네디일] bis[N- (카르복시메틸)글라이신] (Ν,Ν' -phosphonometh 1 imi n으 d i -2 , 1-ethaned i y 1 _b i s ( Nᅳ car boxyme t hy 1 glycine)), Ν,Ν' - [(포스포노메틸이미노)다이 -2, 1-에타네디일] bis[N-
(포스포노메틸)글라이신] (Ν,Ν' -phosphonome thyl imino-di-2, 1-et haned iyl- b i s ( n-phosphonome t hy 1 g 1 y c i ne ) ) , Ν,Ν' ― [(포스피노메틸이미노)다이 -2,1- 에타네디일] bis[N- (카르복시메틸)글라이신] (N.N'-Cphosphinomethylimino- di-2,l-ethanediyl-bis-(N-(carboxymethyl)glycine) , D0TP(1,4,7, 10-tetra azacyc 1 odecane- 1 , , 7 , 10- 1 e t r ak i s (me t hy 1 phosphon i c acid) , D0TMP(1,4, 7, 10-tetraazacyc lodecane-1, 4,7, 10-tetraki smethylene (methyl phosphinic acid) 또는 이들의 유도체를 포함하나 이에 제한되는 것은 아니다.
본 발명에서 이용되는 금속 이온, 금속 산화물 금속 착화합물 및 금속 화합물 증 하나 이상의 다성분 흔성 구조체는 구체적인 예로써 무기 화합물에 착화합물 리간드가 추가로 배위되거나 리간드가 무기 화합물의 구성 원소를 치환한 형태를 가지고 있는 화합물이 될 수 있으나, 이에 제한되는 것은 아니다. 이러한 흔성 구조체의 하나의 구체적인 예로써, M20(C03)2. ¾0(M = Tin+, Vn+, Crn+, Mnn+, Fen+, Con+, Nin+, Cun+, Run+(0<n<14) 또는 란탄족 금속)은 본 발명의 T1 조영제로서 사용될 수 있는데 이는 금속 산화물의 하나인 Μ2( 의 산소 원자 두개가 CCb 리간드로 치환된 형태의 다성분 흔성 구조체이다. 또한, T1 조영물질로 사용이 가능한 다성분 흔성 구조체는 이온, 금속, 금속 산화물, 금속 착화합물 및 금속 화합물 중 하나 이상이 흔합되어 다양한 구조 및 형태로 존재될 수 있다. 본 명세서에서 용어 "나노입자 지지체" 는 나노 수준의 직경을 가진 물질로서 ΊΊ 조영제 코탕층이 형성되는 기반 역할을 하는 지지 질(3叩1)01^1 material)을 의미한다. 지지물질로는 자기적 성질이 없어 조영효과를 저해하지 않는 모든 물질이 가능하다. 구체적으로는 무기 칼코겐 화합물, 무기 니코겐 화합물, 무기 탄소족 화합물, 무기 붕소족 화합물, 유기중합체, 공중합체, 세라믹 물질, 금속 착화합물 등을 포함한다. 지지물질의 형태는 구형, 다면체, 막대기, 판형 등의 다양한 형태가 가능하다. 구체적인 예로는 구 형태가 있다. 지지물질 표면에 T1 조영물질이 코팅됨으로써 T1 조영제는 체적에 비해 넓은 표면적을 갖게 된다.
본 발명의 구체적인 구현예에 따르면, 본 발명의 나노입자 지지체는 무기 칼코겐 MxAy (M은 2족 원소 (Be, Mg, Ca, Sr, Ba), 13족 원소 (Al, In, TO, 14족 원소 (Si, Ge, Sn, Pb), 15족 원소 (As, Sb, Bi), 전이 금속 원소 (Sc, Ti, V, Zn, Y, Zr, Nb, Mo), 란탄족 원소 (Ce, Pr, Nd, Pm, Sm, Eu, Lu), 및 악티늄족 원소로 구성된 군으로부터 선택되는 1종 이상의 원소; A는 0, S, Se, 및 Te로 구성된 군으로부터 선택되는 1종 이상의 원소; 0<x<16, 0<y<8) 나노입자 지지체이다. 보다 구체적으로는, 상기 나노입자 지지체는 Si02나노입자 지지체이다.
본 발명의 나노입자 지지체에 이용될 수 있는 무기 니코겐 화합물은 바람직하게는 MXAZ (M = 1족 원소, 2족 원소, 13 족 원소, 14족 원소, 16족 원소, 17족 원소 전이 금속 원소 란탄족 원소, 및 악티늄족 원소로 구성된 군으로부터 선택되는 1종 이상의 원소, A는 N, P, As, Sb, 및 Bi로 구성된 군으로부터 선택되는 1종 이상의 원소; 0<x≤24, 0<y<8), 또는 이들의 다성분 흔성 구조체이며, 보다 바람직하게 MXAZ (M = 1족 원소 (Li, Na, Kᅳ Rb), 2족 원소 (Be, Mg, Ca, Sr, Ba), 13족 원소 (Bᅳ Al, In, TO, 14족 원소 (C, Si, Ge, Sn, Pb), 16족 원소 (S, Se, Te, Po), 17족 원소 (F, CI, Br, I), 전이 금속 원소 (Sc, Ti, V, Zn, Y, Zr, Nb, Mo, Pd, Ag, Cd, W, 및 Re), 란탄족 원소 (Ce, Pr, Nd, Pm, Sm, Eu, 및 Lu) , 및 악티늄족 원소로 구성된 군으로부터 선택되는 1종 이상의 원소, A는 N, P, As, Sb, 및 Bi로 구성된 군으로부터 선택되는 1종 이상의 원소; 0<x<24, 0<y<8), 또는 이들의 다성분 흔성 구조체이다.
상기 나노입자 지지체로 사용될 수 있는 무기 탄소족 화합물은, MXAZ (M = 1족 원소, 2족 원소, 13족 원소, 15족〜 17족 원소, 전이 금속 원소, 란탄족 원소, 및 악티늄족 원소로 구성된 군으로부터 선택되는 1종 이상의 원소, A는 C, Si, Ge, Sn, 및 Pb로 구성된 군으로부터 선택되는 1종 이상의 원소; 0<x≤32, 0<y<8), 또는 이들의 다성분 흔성 구조체이다.
상기 나노입자 지지체로 사용될 수 있는 무기 붕소족 화합물은, MXAZ (M = 1족 원소, 2족 원소, 14족〜 17족 원소, 전이 금속 원소, 란탄족 원소, 및 악티늄족 원소로 구성된 군으로부터 선택되는 1종 이상의 원소, A는 B, Al, Ga, In, 및 T1으로 구성된 군으로부터 선택되는 1종 이상의 원소; 0<x<40, 0<y<8), 또는 이들의 다성분 흔성 구조체이다. 본 발명의 보다 구체적인 구현예에 따르면, 지지체에 이용될 수 있는 유기 중합체 물질 또는 공중합체는 견고성을 가지는 모든 고분자를 포함한다. 보다 ' 구체적인 예로는 폴리에스테르, 폴리하이드록시알카노에이트 (PHAs), 폴리 ( α-하이드록시애시드), 폴리 (β- 하이드록시애시드), 폴리 (3-하이드로시부티레이트 -co-발러레이트; PHBV) , 폴리 (3—하이드록시프로프리오네이트; PHP), 폴리 (3-하이드톡시핵사노에이트; PHH), 폴리 (4-하이드록시애시드), 폴리 (4—하이드록시부티레이트), 폴리 (4- 하이드록시발러레이트), 폴리 (4-하이드록시핵사노에이트), 폴리 (에스테르아마이드), 폴리카프로락톤, 폴리락타이드 폴리글리코라이드, 폴리 (락타이드 -co-글리코라이드; PLGA), 폴리디옥사논, 폴리오르토에스테르, 폴리언하이드라이드, 폴리 (글리콜산 -co-트리메틸렌 카보네이트), 폴리포스포에스테르, 폴리포스포에스테르 우레탄, 폴리 (아미노산), 폴리사이아노아크릴레이트, 폴리 (트리메틸렌 카보네 '이트), 폴리 (이미노카보네이트) , 폴리 (아크릴레이트 -co-스티렌), 플루로닉 공중합체, 폴리아크릴아미드, 폴리에틸렌글리콜, 폴리 (타이로신 카보네이트), 폴리카보네이트, 폴리 (타이로신 아릴레이트), 폴리알킬렌 옥살레이트, 폴리포스파젠스, PHA-PEG ( o 1 yhydr oxya 1 kanoa t e-po 1 ye t hy 1 ene glycol), 에틸렌 비닐 알코올 코폴리머 (EV , 폴리우레탄, 폴리 스티렡, 폴리에스테르 폴리을레핀, 폴리이소부틸렌과 에틸렌 -알파을레핀 공중합체, 스틸렌—이소브틸렌-스틸렌 트리블록 공중합체, 아크릴 중합체 , 및 공중합체, 비닐 할라이드 중합체 및 공중합체, 폴리비닐 클로라이드, 폴리비닐 에테르, 폴리비닐 메틸 에테르, 폴리비닐리덴 할라이드, 폴리비닐리덴 플루오라이드, 폴리비닐리덴 클로라이드ᅵ 폴리플루오로알켄, 폴리퍼플루오로알켄, 폴리아크릴로니트릴, 폴리비닐 케톤, 폴리비닐 아로마틱스, 폴리스틸렌, 폴리비닐 에스테르, 플리비닐 아세테이트, 에틸렌 -메틸 메타크릴레이트 공중합체, 아크릴로니트릴-스틸렌 공중합체, ABS [poly(acrylonitrile, butadiene, styrene)] 수지, 에틸렌 -비닐 아세테이트 공중합체, 폴리아마이드, 알키드 수지 , 폴리옥시메틸렌 , 폴리이미드, 폴리에테르, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리아크릴산 -co—말레산, 폴리 -L- 라이신, 폴리스타이렌, 폴리메틸메틸아크릴레이트 공중합체, 폴리 -P-페닐렌 비닐렌 (PPV), 폴리 알릴 아민, 설포네이티드 폴리스틸렌, 폴리 비닐 설페이트 -폴리 비닐 아민 공증합체, 폴리 다이알릴메틸암모늄 클로라이드, 폴리— 3,4-에틸렌다이옥시티오핀 (PED0T), 폴리아크릴아미도술폰산 (PAMPS), 아들의 유도체 또는 중합체를 포함하나 이에 제한되는 것은 아니다.
상기 지지체로 사용될 수 있는 세라믹 물질은 구체적으로는 무기 산화물과 같은 무기 칼코겐 물질을 포함하며 예를 들면 타이타니아, 지르코니아, 실리카, 알루미나, 알루미네이트 (aluminate) 무기 화합물, 실리케이트 (silicate) 무기 화합물, 지올라이트 (zeolite), 타이타네이트 (titanate) 무기 화합물, M>, 벨름니트 (belemnite) 무기 화합물, 칼륨 포스페이트 (potassium phosphate) 무기 화합물, 칼사이트 (calcite), 아페타이트 (apet ite) 무기 화합물, S i a 1 on (silicon aluminium oxynitride) , 바나데이트 (vanadate) 무기 화합물, KTP (potassium titanyl phosphate) 무기 화합물, KTA (potassium titanyl Arsenate) 무기 화합물, 보레이트 (borate) 무기 화합물, 플루오라이드 (fluoride) 무기 화합물, 폴루오로포스페이트 (fluorophosphate) 무기 화합물, 텅스테이트 (tungstate) 무기 화합물, 몰리브테이트 (molybdate) 무기 화합물, 갈레이트 (gal late) 무기 화합물, 셀레나이드 (selenicle) 무기 화합물, 텔루라이드 (telluride) 무기 화합물. 니오베이트 (niobate) 무기 화합물, 탄탈레이트 (tantalate) 무기 화합물 큐프리트 (cuprite, Cu20) , 세리아 (ceria), 브로메라이트 (bromelite, BeO), 다공성 물질 (예: MCM (mesoporous crystalline mater ial )-41, MCM-48 , SBA-15, SBA-16, 메조다공성 (mesoporous), 또는 마이크로다공성 (microporous) 물질), 또는 이들의 다성분 흔성 구조체를 포함하나 이에 제한된 것은 아니다.
상기 나노입자 지지체는 구체적으로는 금속 착화합물을 포함한다. 금속 착화합물은 중심 금속과 그 금속에 배위 결합될 수 있는 리간드로 구성된 모든 물질을 말하며 특히, 지지체에 사용될 수 있는 금속 착화합물은 자성을 띠지 않는 중심금속과 배위 리간드로 이루어진 착화합물이다. 바람직하게는 MxLy (M = 1족 원소, 2족 원소, 13족 -17족 원소, 전이 금속 원소, 란탄족 원소, 및 악티늄족 원소로 구성된 군으로부터 선택되는 1종 이상의 원소, L = 금속과 배위결합을 이롤 수 있는 1종 이상의 리간드, 0<x≤10, 0<y<120), 또는 이들의 다성분 혼성 구조체를 포함하나 이에 제한된 것은 아니다. 나노입자 지지체로 사용 가능한 금속 착화합물로 더욱 구체적으로는 유기 금속 화합물 (organometallic compound) , 금속 유기물 구조체 (M0F; metal organic framework) 또는 배위 고분자 (coordination polymer)가 포함된다. 본 발명의 보다 구체적인 구현예에 따르면, 본 발명에서 이용되는 나노입자 지지체는 유기 증합체이다. 본 명세서에서 용어 "유기 증합체 (organic polymer)" 는 유기분자를 단량체 (monomer unit)로 가지는 중합체 중 견고성을 가져 T1 조영제 코팅층의 지지물질 (supporting material)의 역할을 할 수 있는 '모든 물질을 포함한다. 보다 더 구체적인 구현예에 따르면, 본 발명에서 이용되는 유기 중합체는 다당류 (polysaccharide)이며, 가장 구체적으로는 덱스트란 (dextran)이다.
본 발명의 구체적인 구현예에 따르면, 본 발명에서 이용되는 유기 중합체는 단백질이며, 가장 구체적으로는 아프로티닌, 라이소자임 및 이들의 흔합물로 구성된 군으로부터 선택된다. 단백질은 그 종류와 분자량에 따라 특징적인 3차원 형태와 부피를 가지며, 2 nm 이하의 작은 입자를 제조하기가 용이하다. 본 발명의 구체적인 구현예에 따르면, 본 발명에서 이용되는 나노입자 지지체는 지질 (lipid)을 포함하지 않는다.
본 발명의 구체적인 구현예에 따르면, 본 발명의 T1 조영물질 코팅층 두께와 나노입자 지지체 직경의 비는 1:100 - 1:2.5 이다.
본 발명의 구체적인 구현예에 따르면, 본 발명의 T1 조영물질 코팅층 두께와 나노입자 지지체 직경의 비는 1:60 - 1:3 이다.
본 발명의 구체적인 구현예에 따르면, 본 발명의 T1 조영물질 코팅층 두께와 나노입자 지지체 직경의 비는 1:30 - 1:3 이다.
본 발명의 구체적인 구현예에 따르면, 본 발명의 T1 조영물질 코팅층 두께와 나노입자 지지체 직경의 비는 1:20 - 1:3 이다.
본 발명의 구체적인 구현예에 따르면, 본 발명의 T1 조영물질 코팅층 두께와 나노입자 지지체 직경의 비는 1:20 - 1:5 이고, 보다 구체적으로는 1:10 - 1:5 이다. 본 발명의 구체적인 구현예에 따르면, 본 발명의 T1 조영물질 코팅층 두께는 0.1-5 nm이다.
보다 구체적으로는, 본 발명의 T1 조영물질 코팅층 두께는 0.1-3 nm 이고, 보다 더 구체적으로는 0.1-2 ηηι이다.
본 발명의 구체적인 구현예에 따르면, 상기 나노입자 지지체 직경은 50 nm 이하이고, 보다 구체적으로는 40 nm 이하이며, 보다 더 구체적으로는 2-40 nm이다 .
본 발명의 구체적인 구현예에 따르면, 상기 나노입자 지지체 직경은 2-35 run 이고, 보다 구체적으로는 2-30 nm 이며, 보다 더 구체적으로는 2- 20 ηιτι이고, 보다 더 구체적으로는 2-17 nm이며 , 가장.구체적으로는 2-10 nm 이다. 본 발명에서 제시하는 T1 조영제 조성물 (T1 조영물질이 코팅된 나노입자 지지체 입자)의 전체 입자크기 범위는, 조영제로서 혈관 내에 장시간 잔류하면서 지속적, 간헐적인 MRI 영상을 얻어내기에 매우 중요한 기술적 특징일 뿐만 아니라, 우수한 핵스핀 이완율을 유지하기 위해 반드시 고려되어야 할 핵심적인 기술적 요소이다. 본 발명자들은 나노입자 지지체에 코팅된 T1 조영물질이 핵스핀 이완을 일으킬 수 있는 최소한의 두께를 유지하면서도 조영제로서의 역할을 수행할 정도의 전체 입자크기를 유지하는 범위 내에서 극대화된 표면적 -체적 비를 가지는 최적의 두께 및 지지체 직경과의 비율을 발굴하였다.
본 발명에 일 실시예에 따르면, 1 誦의 T1 조영제 (Mn304)가 코팅된
25nm 직경의 나노입자의 경우 기존의 Gd 킬레이트 기반의 조영제 (Magnevist)와 비교하여 약 224 %, Mn 킬레이트 기반의 조영제 (Teslascan)과 비교하여 약 369 %, Mn304나노입자와 비교하여약 347 , MnO 나노입자와 비교하여 약 .2235 % 증가된 T1 자기스핀 이완효과를 보임을 확인하였다.
아울러, 본 발명자들은 다양한 직경의 나노입자 지지체를 이용한 실험을 통해 나노입자 지지체가 일정 범위의 직경을 가질 경우 상기 범위 내에서 T1 자기스핀이완 효과 (/!)가 극대화된다는 사실을 관찰함으로써, T1 조영물질 코팅층: 나노입자 지지체 직경의 비 뿐 아니라, 나노입자 지지체의 직경 자체도 T1 조영효과를 좌우하는 중요한 요소라는 사실을 확인하였다. - 본 발명의 구체적인 구현예에 따르면, 본 발명의 T1 조영물질과 상기 나노입자 지지체는 이온결합, 정전기적 결합, 배위 결합, 소수성 결합, 수소 결합, 공유결합, 친수성 결합 또는 반데르 발스 결합에 의해 부착될 수 있으며, 또는 T1 조영물질이 상기 나노입자 지지체 표면에서 성장함으로써 코팅층을 형성할 수 있다.
본 발명의 조영제 조성물은 수용성 환경에서 분산상태를 안정하게 하고 생체적합성을 갖게 하는 물질과 추가적인 결합을 형성할 수 있다. 예를 들어, 본 발명의 T1 조영제 입자는 수용성 다작용기 리간드를 이용하여 상전이 함으로써 수용액 상에서 보다 효율적으로 사용될 수 있다. 본 발명의 Tl MRI 조영제 조성물은 기본적으로 MRI 조영에 이용되지만, 다른 타입의 조영을 가능하게 하는 물질이 결합되면 다중방식 (mult i -modal) 조영에 이용될 수 있다. 이 때, 다른 타입의 조영물질은 조영제와 직접 결합되거나 조영제에 코팅된 다작용기 리간드를 통하여 간접적으로 결합되거나 담체에 함께 포함되어 구현될 수 있다. 본 발명의 다른 양태에 따르면, 본 발명은 다음의 단계를 포함하는 T1 조영제의 T1 조영효과 향상 (enhancing) 방법을 제공한다:
(a) 나노입자 지지체를 제조하는 단계;
(b) 상기 나노입자 지지체의 표면에 T1 조영물질의 코팅층을 형성하는 단계로서, 상기 나노입자 지지체를 제조하는 단계는 나노입자 지지체의 직경이 2-40 nm이 되도록 조절하면서 실시한다. 본 발명의 또 다른 양태에 따르면, 본 발명은 다음의 단계를 포함하는 T1 조영제의 ΊΊ 조영효과 향상 (enhancing) 방법을 제공한다:
(a) 나노입자 지지체를 제조하는 단계; (b) 상기 나노입자 지지체의 표면에 T1 조영물질의 코팅층을 형성하는 단계로서, 상기 코팅층 형성 단계는 상기 T1 조영물질 코팅층 두께와 나노입자 지지체 직경의 비가 1:200 - 1:1 이 되도록 조절하면서 실시한다.
본 발명에서 사용되는 나노입자 지지체, T1 조영물질, 이들의 제조방법 및 이들의 파라미터는 이미 상술하였으므로, 과도한 증복을 피하기 위하여 그 기재를 생략한다.
【유리한 효과】
본 발명의 특징 및 이점을 요약하면 다음과 같다:
(a) 본 발명은 T1 조영물질이 코팅된 나노입자 지지체를 포함하는 자기공명영상 (MRI) T1조영제 조성물을 제공한다.
(b) 본 발명의 MRI T1 조영제 조성물은 일정한 직경을 가지는 나노입자 지지체에 상자성의 T1 조영제 물질을 일정 두께 이하로 개질함으로써 ΊΊ 조영제 물질의 표면적 -체적 비 (surface-to-volunie ratio)가 크게 증가하여 우수한 T1 자기스핀 이완효과를 가진다.
(c) 본 발명은 보다 정확하고 선명한 T1 양조영 (positive contrast) 영상을 제공함으로써 신뢰도 높은 영상 진단에 유용하게 이용될 수 있다. 【도면의 간단한 설명】
도 1은 각기 다른 두께의 Mn304가 코팅된 Si02@Mn304 나노입자의 T1 자기스핀이완 효과와 기존 조영제의 T1 자기스핀 이완효과를 비교한 결과를 나타낸 그래프이다.
도 2는 각기 다른 직경을 갖는 지지체에 같은 조건으로 산화철을 코팅하여 합성한 나노입자의 T1 자기스핀 이완효과를 비교한 결과를 나타낸 그래프이다.
【발명의 실시를 위한 형태】
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로' 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시.예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다. 실시예 실시예 1: 실리카 나노입자 지지체의 합성 이게팔 CO-520(Sigma-Aldrich, USA)를 포함하는 사이클로핵산 (Fluka, USA) 용액에 수산화암모늄 (Sigma— Aldrich, USA)을 첨가하여 역마이셀올 형성한 후 실리카 선구물질인 테트라에특시실란 (Sigmal-Aldnch, USA)을 추가하였다. 상온에서 24시간 동안 반웅시킴으로써 구 형태의 실리카 나노입자를 합성하였다. 이와 같이 형성된 실리카' 나노입자를 과량의 에탄을올 첨가한 후 원심분리하여 침전시켜 분리하였다. 분리된 나노입자는 과량의 아세톤에 재분산시킨 뒤 원심분리하여 여분의 반웅물들올 제거해 주고, 최종적으로 나노입자를 물에 분산시켰다. 실시예 2: 25 nm크기의 실리카 나노입자 지지체 (Si02)의 합성 이게팔 C0-520(7.45 g)을 포함하는 사이클로핵산 (69.5 g) 용액에 15% 수산화암모늄 (2.31 mL) 수용액을 첨가하여 역마이셀을 형성한 후 테트라에록시실란 (0.25 mL)을 실리카 선구물질로써 추가하였다. 상온에서 24시간 동안 반웅시킴으로써 구 형태의 실리카 나노입자를 합성하였다. 이와 같은 방법으로 합성한 실리카 나노입자는 25 nm의 크기를 갖는다. 형성된 실리카 나노입자는 과량의 에탄을을 첨가한 후 원심분리하여 침전시켜 분리하였다. 분리된 나노입자는 과량의 아세톤에 재분산시킨 뒤 원심분리하여 여분의 반응물들을 제거해 주었다. 최종적으로 나노입자를 물에 분산시킨 후 수차례 필터 (UltraCone, Millipore, USA)하여 정제하였다. 실시예 3: 실리카 나노입자 지지체 (Si02)의 크기조절 이게팔 C0-520(7.45. g)을 포함하는 사이클로핵산 (69.5 g) 용액에 수산화암모늄 (2.31 mL) 수용액을 첨가하여 역마이셀을 형성한 후 테트라에톡시실란 (0.25 mL)을 실리카 선구물질로써 추가하였다. 이 때, 수산화암모늄 수용액의 농도를 조절하므로써, 각각 20 nm, 30 rim, 40 nm, 45 nm 크기의 실리카 나노입자를 합성하였다 형성된 실리카 나노입자는 과량의 에탄을을 첨가한 후 원심분리하여 침전시켜 분리하였다. 분리된 나노입자는 과량의 아세톤에 재분산시킨 뒤 원심분리하여 여분의 반응물들을 제거해 주었다. 최종적으로 나노입자를 물에 분산시킨 후 수차례 필터 (UltraCone, Millipore, USA)하여 정제하였다. 실시예 4: 덱스트란 나노입자 지지체의 합성 덱스트란 (Pharmacosmos, Denmark)수용액에 수산화나트륨 (Sigma- Aldrich, USA)과 에피클로로히드린 (Sigma-Aldrich, USA)를 첨가하여 덱스트란의 히드록시기를 에폭사이드기로 치환하였다. 에틸렌다이아민을 추가하여 덱스트란 사슬을 가교 (cross-linking)하므로써 덱스트란 나노입자를 합성하였다. 이와 같이 합성된 덱스트란 나노입자는 과량의 에탄올을 첨가한 뒤 원심분리하여 침전시켜 분리하였다. 분리된 텍스트란 나노입자는 물에 재분산 시킨 뒤 다이알리시스필터 (Spectrum Labs. , USA)를 통해 여분의 반웅물들을 제거해 주었다. 실시예 5: 덱스트란 나노입자 지지체의 크기 조절 덱스트란 (1.8 g)을 포함하는 수용액 (9 mL)에 수산화나트륨 (5 N)과 에피클로로히드린 (6 mL)를 첨가하여 덱스트란의 히드톡시기를 에폭사이드기로 치환하였다. 에틸렌다이아민 (26 mL)을 드롭방식으로 추가하여 덱스트란 사슬을 가교 (cross-linking) 하므로써 덱스트란 나노입자를 합성하였다. 이 때, 에틸렌다이아민 속도를 조절하므로써 각각 3 nm, 5 nm, 7 nm, 12 nm 크기의 덱스트란 나노입자를 합성할 수 있었다. 이와 같이 합성된 덱스트란 나노입자는 과량의 에탄을을 첨가한 뒤 원심분리하여 침전시켜 분리하였다. 분리된 텍스트란 나노입자는 물에 재분산 시킨 뒤 다이알리시스필터 (Spectrum Labs. , USA)를 통해 여분의 반웅물들을 제거해 주었다. 실시예 6: 나노크기의 단백질 지지체 준비 단백질은 그 종류와 분자량에 따라 특징적인 크기와 형태를 갖는다. 참고문헌 (H. P. Erickson et al. Biol. Proced. Online 2009, 11, 32.)에 따르면 단백질의 크기는 분자량의 1/3제곱에 비례하며, 구체적으로는 R = 0.066M13 의 관계식을 갖는다. 지지체로 사용될, 분자량이 다른 두 종류의 단백질 (아프로티닌, 라이소자임)을 준비하였다. 아프로티닌 (Sigma-Alclrich USA)과 라이소자임 (Sigma-Aldrich, USA)는 각각 6.7 kDa, 14.3 kDa의 분자량을 갖는 단백질로 각각 1.2 nm, 1.63 nm의 크기를 갖는다. 실시예 7: 실리카 나노입자 지지체에 망간산화물이 코팅된 나노입자의 합성 앞서 합성한 구형의 실리카 나노입자의 표면에 망간산화물을 코팅하기 위해서 다음의 방법으로 실시하였다. 과량의 디에틸렌글리콜 (Duksan, Korea)에 실리카 나노입자가 분산된 콜로이드 수용액과 Mn(0Ac)2(Sigma-Aldrich,USA)를 선구물질로써 첨가하고 90°C에서 12시간 동안 반웅시켜 실리카 나노입자 지지체에 망간산화물이 코팅된 구형의 나노입자를' 합성하였다. 여분의 반웅물질들올 제거하기 위하여, 합성된 나노입자에 과량의 아세톤을 첨가하고 원심분리하는 과정을 수차례 반복한 후 물에 분산시켰다. 실시예 8: 실리카 나노입자 지지체에 망간산화물이 코팅된 나노입자 (Si02@Mn304)의 수용성 다작용기 리간드를 이용한 표면 개질
상기 실시예 7에서 합성한 실리카 나노입자 지지체에 망간산화물이 코팅된 나노입자의 수용액상에서의 안정도의 증가를 위해 수용성 다작용기 리간드 중 하나인 텍스트란 (PK Chemicals, Denmark)을 이용하여 표면개질을 진행하였다ᅳ 텍스트란 (2.25 g)이 포함된 증류수 (10 mL)에 나노입자 (10 mg)를 첨가한 후 75°C에서 12 시간 동안 반웅함으로써 표면개질 하였다. 이는 나노입자 표면 망간산화물의 망간과 덱스트란와 하이드록시 작용기 간의 금속-리간드 배위결합을 통하여 이루어졌다. 표면개질이 완료된 나노입자는 수차례 필터 (UltraCone, Millipore, USA)하여 여분의 텍스트란을 제거함으로써 정제하였다. 실시예 9: 나노입자 지지체에 산화철이 코팅된 나노입자의 합성 앞서 합성한 나노입자 지지체 (실리카, 덱스트란, 단백질)의 표면에 산화철을 코팅하기 위해서 다음의 방법으로 실시하였다. 나노입자가 분산된 콜로이드 수용액에 FeCl3.6H20(Sigma-A lrich, USA)과 FeCl2. AHsOCSigma- Aklrich, USA)를 선구물질로써 첨가하고 교반하였다. 이후 수산화암모늄을 추가하여 상온에서 10분간 반응시켜 나노입자 지지체에 산화철이 코팅된 나노입자를 합성하였다. 원심분리를 반복하여 지지체에 코팅되지 않은. 여분의 산화철 나노입자를 제거하였으며, 여분의 반웅물질을 제거하기 위하여 수차례 필터 (UltraCone, Millipore, USA)하여 정제하였다. 실시예 10: Si02@Mri304 나노입자를 대상으로 Mna i 코팅의 두께에 따른 자기스핀이완 효과를 비교 후, Μη3θ4 의 표면적 -체적 비와 자기스핀 이완효과와의 상관관계 확인 조성은 Si02讓 η304로 동-일하지만 각기 다른 두께의 Mn304를 갖는 구형의 나노물질을 합성 후 자기공명영상 (MRI) 장비를 이용하여 T1 자기스핀이완 효과 (rl)를 측정하였다. Mn304의 두께에 의한 효과를 관찰하기 위하여 다른 모든 실험조건들은 동일하게 일치시켜 주었다. 구체적인 실험 방법은 다음과 같다. 각각의 시료를 0.25 mM, 0.125 mM 및 0.0625 mM 농도 (망간 기준)로 물에 분산시켜 PCR 튜브에 담아 지지대에 고정시킨 후, 지지대를 MRI 손목 코일 (wrist coil , Philips, Nether lands)의 중앙에 위치시킨 뒤 MRK1.5 T, Philips, Netherlands)를 이용하여. 각 시료의 T1 이완시간을 측정하였다. 이후 각 시료의 정확한 농도를 계산하기 위하여 ICP-AES 분석을 통하여 망간 이온의 양을 정량하였다. 이를 바탕으로 T1 자기스핀이완효과 (rl)를 구하였다ᅳ T1 자기스핀 이완효과 (rl, mM— ^ᅳ1)는 T1 이완시간의 역수 (s-1)를 망간이온의 농도 (mM)에 대해 플롯하였을 때의 기울기로 구할 수 있으며 이렇게 구한 값을 도 1에 나타내었다. Si02@Mn304 나노입자의 ζ·1값은 Mn304의 두께가 얇아 표면적 -체적 비율이 높을수록 크게. 나타났다. 실제로 가장 얇은 두께인 1 nm의 Mn304가 코팅된 경우, 가장 두꺼운 두께인 20 nm의 Mn304가 코팅된 나노입자와 비교하여 약 4285% 큰 T1 자기스핀이완 효과를 보였다. 또한 1 nm의 Mn304가 코팅된 나노입자의 경우 기존의 금속 킬레이트 기반의 조영제 (Magnevist)와 비교하여 약 224 %, Mn304나노입자와 비교하여 약 347 , MnO 나노입자와 비교하여 약 2235 % 증가된 T1 자기스핀 이완효과를 보임을 확인하였다. 실시예 11: 나노입자 지지체의 직경과 자기스핀 이완효과와의 상관관계 확인
각기 다른 크기를 갖는 나노입자 지지체에 대해 같은 조건으로 산화철을 코팅한 뒤 자기공명영상 (MRI) 장비를 이용하여 나노물질의 T1 자기스핀이완 효과 (rl)를 측정하였다. 본 실험에 사용된 나노입자 지지체는 단백질 (1.2 nm, 1.63 nm), 텍스트란 (3.02 nm, 4.78 nm, 6.83 nm, 11.6 nm), 실리카 (19.26 nm, 33.29 nm, 38.84 nm, 44.89 nm) 이다. 구체적인 실험 방법은 다음과 같다. 각각의 시료를 0.25 mM, 0.125 mM 및 0.0625 πιΜ 농도 (철 기준)로 물에 분산시켜 PCR 튜브에 담아 지지대에 고정시킨 후, 지지대를 MRI 손목 코일 (wrist coil, Philips, Nether lands)의 중앙에 위치시킨 뒤 MRK1.5 T, Philips, Netherlands)를 이용하여 각 시료의 T1 이완시간을 측정하였다. 측정된 T1과 각 시료의 철 농도를 바탕으로 T1 자기스핀이완효과 (rl)를 구하였다. T1 자기스핀 이완효과 (rl, mMᅳ1 s— 는 T1 이완시간의 역수 (s— L)를 망간이온의 농도 (mM)에 대해 플롯하였을 때의 기울기로 구할 수 있으며 이렇게 구한 값을 도 2에 나타내었다. l값은 나노입자 지지체의 직경이 2 ~ 40 nm인 경우 모두 크게 나타났으며, 지지체의 직경이 i.2nm, 1.63 讓, 44.89 nm인 경우에는 현저히 낮게 나타났다. 이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.

Claims

【특허청구범위】
【청구항 1】 '
나노입자 지지체 표면에 코팅된 T1 조영물질을 포함하며, 상기 ΊΊ 조영물질 코팅층 두께와 나노입자 지지체 직경의 비는 1:200 - 1:1 인 자기공명영상 (MRI) T1 조영제 조성물ᅳ
【청구항 2]
제 1 항에 있어서, 상기 T1 조영물질 코팅층 두께와 나노입자 지지체 직경의 비는 1:100 - 1:2.5 인 것을 특징으로 하는 조성물.
【청구항 3】
제 1 항에 있어서, 상기 T1 조영물질 코팅층 두께와 나노입자 지지체 직경의 비는 1:60 - 1:3 인 것을 특징으로 하는 조성물.
【청구항 4】
제 1 항에 있어서, 상기 T1 조영물질 코팅층 두께와 나노입자 지지체 직경의 비는 1:30 - 1:3 인 것을 특징으로 하는 조성물.
【청구항 5】
제 1 항에 있어서, 상기 T1 조영물질 코팅층 두께는 0.1-5 nm인 것을 특징으로 하는 조성물ᅳ .
【청구항 6】
제 1 항에 있어서, 상기 나노입자 지지체의 직경은 50 nm 이하인 것을 특징으로 하는 조성물. .
【청구항 7】
계 6 항에 있어서, 상기 나노입자 지지체의 직경은 40 nm 이하인 것을 특징으로 하는 조성물.
【청구항 8】 - 제 7 항에 있어서 상기 나노입자 지지체의 직경은 2-40 nm 인 것을 특징으로 하는 조성물.
【청구항 9】
제 8 항에 있어서 상기 나노입자 지지체의 직경은 2-35 nm 인 것을 특징으로 하는 조성물.
【청구항 10]
제 9 항에 있어서 , 상기 나노입자 지지체의 직경은 2-20 nm 인 것을 특징으로 하는 조성물.
【청구항 11】
게 10 항에 있어서 상기 나노입자 지지체의 직경은 2-10 nm 인 것을 특징으로 하는 조성물.
【청구항 12】
제 1 항에 있어서, 상기 나노입자 지지체는 비자성 물질인 것을 특징으로 하는 조성물.
【청구항 13】
제 1 항에 있어서, 상기 T1 조영물질은 금속 이온 Mn+(M은 Tin+, Vn+, Crn+, Mnn+, Fen+, Con+, Nin+, Cun+, Run+(0<n<14) 또는 란탄족 금속), 금속 산화물, 금속 착화합물, 금속 화합물 또는 이들의 다성분 흔성 구조체인 것을 특징으로 하는 조성물.
【청구항 14】
제 13 항에 있어서, 상기 ΊΊ 조영물질은 금속 산화물 Mx0y (M은 Tin+, Vn+, Crn+, Mnn+, Fen+, Con+, Nin+, Cun+, Run+(0<n<14) 또는 란탄족 금속)로 구성된 군으로부터 선택되는 1종 이상의 금속원소, 0<x≤16, 0<y<8)인 것을 특징으로 하는 조성물.
【청구항 15】
제 14 항에 있어서, 상기 T1 조영물질은 금속이온 M(M은 Mn, Fe 또는 Gd, 0<x<4, 0<y<4), 금속이온 M이 포함된 금속 산화물, 금속 착화합물, 금속 화합물 또는 이들의 다성분 흔성 구조체인 것올 특징으로 하는 조성물.
【청구항 16]
제 13 항에 있어서, 상기 금속 산화물은 Mx0y (M은 Mn, Fe 또는 Gd, 0<x<4, 0<y<4)인 것을 특징으로 하는 조성물.
【청구항 17】
제 1 항에 있어서, 상기 나노입자 지지체는 무기 칼코겐 MxAy (M은 2족 원소 (Be, Mg, Ca, Sr, Ba), 13족 원소 (Al, In, Tl), 14족 원소 (Si, Ge, Sn, Pb), 15족 원소 (As, Sb, Bi), 전이 금속 원소. (Sc, Ti , V, Zn, Y, Zr, Nb, Mo), 란탄족 원소 (Ce, Pr, Nd, Pm, Sm, Eu, Lu) , 및 악티늄족 원소로 구성된 군으로부터 선택되는 1종 이상의 원소; A는 0, S, Se, 및 Te로 구성된 군으로부터 선택되는 Ί종 이상의 원소; 0<x≤16, 0<y<8) 나노입자 지지체인 것을 특징으로 하는 조성물.
【청구항 18】
제 17 항에 있어서, 상기 나노입자 지지체는 Si02나노입자 지지체인 것을 특징으로 하는 조성물.
【청구항 19】
제 1 항에 있어서, 상기 나노입자 지지체는 유기 증합체 (organic polymer)인 것을 특징으로 하는 조성물.
【청구항 20】 .
제 19 항에 있어서, 상기 유기 중합체는 .다당류 (polysaccharide)인 것을 특징으로 하는 조성물.
.
【청구항 21】 제 20 항에 있어서, 상기 다당류는 덱스트란 (dextran)인 것을 특징으로 하는 조성물.
【청구항 22】
제 19 항에 있어서, 상기 유기 중합체는 단백질인 것을 특징으로 하는 조성물.
【청구항 23】
제 22 항에 있어서, 상기 단백질은 아프로티닌, 라이소자임 및 이들의 흔합물로 구성된 군으로부터 선택되는 것을 특징으로 하는 조성물.
【청구항 24】
제 1 항에 있어서, 상기 T1 조영물질과 상기 나노입자 지지체는 이온결합, 정전기적 결합, 배위 결합, 소수성 결합, 수소 결합, 공유결합, 친수성 결합 또는 반데르 발스 결합에 의해 부착되는 것을 특징으로 하는 조성물.
【청구항 25】
제 1 항에 있어서, 상기 T1 조영물질은 상기 나노입자 지지체 표면에서 성장함으로써 코팅층을 형성하는 것을 특징으로 하는 조성물.
[청구항 26】
다음의 단계를 포함하는 T1 조영제의 T1 조영효과 향상 (enhancing) 방법:
(a) 나노입자 지지체를 제조하는 단계 ;
(b) 상기 나노입자 지지체의 표면에 T1 조영물질의 코팅층을 형성하는 단계로서, 상기 나노입자 지지체를 제조하는 단계는 나노입자 지지체의 직경이 2-40 nm이 되도록 조절하면서 실시한다.
【청구항 27】
제 26 항에 있어서, 상기 나노입자 지지체를 제조하는 단계는 나노입자 지지체의 직경이 2-35 nm이 되도록 조절하면서 실시하는 것을 특징으로 하는 방법 .
【청구항 28】
제 27 항에 있어서, .상기 나노입자 지지체를 제조하는 단계는 나노입자 지지체의 직경이 2—20 nm이 되도톡 조절하면서 실시하는 것을 특징으로 하는 방법 .
【청구항 29]
제 28 항에 있어서, 상기 나노입자 지지체를 제조하는 단계는 나노입자 지지체의 직경이 2-10 nm이 되도록 조절하면서 실시하는 것을 특징으로 하는 방법 .
【청구항 30】
다음의 단계를 포함하는 T1 조영제의 T1 조영효과 향상 (enhancing) 방법:
(a) 나노입자 지지체를 제조하는 단계;
(b) 상기 나노입자 지지체의 표면에 T1 조영물질의 코팅층을 형성하는 단계로서, 상기 코팅층 형성 단계는 상기 T1 조영물질 코팅층 두께와 나노입자 지지체 직경의 비가 1:200 - 1:1 이 되도톡 조절하면서 실시한다.
【청구항 31】
제 32 항에 있어서, 상기 T1 조영물질 코팅층 두께와 나노입자 지지체 직경의 비가 1:100 - 1:2.5 이 되도록 조절하면서 실시하는 것을 특징으로 하는 방법
【청구항 32】 '
제 31 항에 있어서 상기 T1 조영물질 코팅층 두께와 나노입자 지지체 직경의 비가 1:60 - 1:3이 되도톡 조절하면서 실시하는 것을 특징으로 하는 방법 . O 2014/107055
【청구항 33]
제 32 항에 있어서, 상기 T1 조영물질 코팅층 두께와 나노입자 지지체 직경의 비가 1:30 ᅳ 1:3이 되도록 조절하면서 실시하는 것을 특징으로 하는 방법 . ; .
PCT/KR2014/000062 2013-01-04 2014-01-03 나노입자 지지체 표면에 코팅된 t1 조영물질을 포함하는 mri 조영제 WO2014107055A1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US14/759,288 US20160000942A1 (en) 2013-01-04 2014-01-03 Mri contrast agent including t1 contrast material coated on surface of nanoparticle support
KR1020157020929A KR20150115760A (ko) 2013-01-04 2014-01-03 나노입자 지지체 표면에 코팅된 t1 조영물질을 포함하는 mri 조영제
JP2015551605A JP6309542B2 (ja) 2013-01-04 2014-01-03 ナノ粒子支持体表面にコーティングされたt1造影物質を含むmri造影剤
EP22180782.9A EP4088743A1 (en) 2013-01-04 2014-01-03 Mri contrast agent including t1 contrast material coated on surface of nanoparticle support
CN201480004090.XA CN104955486A (zh) 2013-01-04 2014-01-03 包含涂敷于纳米粒子载体表面的t1 造影物质的磁共振成像造影剂
KR1020187001516A KR101991912B1 (ko) 2013-01-04 2014-01-03 나노입자 지지체 표면에 코팅된 t1 조영물질을 포함하는 mri 조영제
EP14735209.0A EP2942064B1 (en) 2013-01-04 2014-01-03 Mri contrast agent including t1 contrast material coated on surface of nanoparticle support
US17/126,340 US20210113717A1 (en) 2013-01-04 2020-12-18 Mri contrast agent including t1 contrast material coated on surface of nanoparticle support

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0001002 2013-01-04
KR20130001002 2013-01-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/759,288 A-371-Of-International US20160000942A1 (en) 2013-01-04 2014-01-03 Mri contrast agent including t1 contrast material coated on surface of nanoparticle support
US17/126,340 Continuation US20210113717A1 (en) 2013-01-04 2020-12-18 Mri contrast agent including t1 contrast material coated on surface of nanoparticle support

Publications (1)

Publication Number Publication Date
WO2014107055A1 true WO2014107055A1 (ko) 2014-07-10

Family

ID=51062332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000062 WO2014107055A1 (ko) 2013-01-04 2014-01-03 나노입자 지지체 표면에 코팅된 t1 조영물질을 포함하는 mri 조영제

Country Status (6)

Country Link
US (2) US20160000942A1 (ko)
EP (2) EP2942064B1 (ko)
JP (1) JP6309542B2 (ko)
KR (2) KR20150115760A (ko)
CN (3) CN112807449A (ko)
WO (1) WO2014107055A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102590683B1 (ko) * 2016-02-18 2023-10-18 주식회사 인벤테라제약 T1 mri 조영제로서의 나노입자의 분산 안정도를 증가시키는 방법 및 t1 mri 조영제 나노입자
KR20170097510A (ko) * 2016-02-18 2017-08-28 연세대학교 산학협력단 T1 mri 조영제로서의 나노입자의 분산 안정도를 증가시키는 방법 및 t1 mri 조영제 나노입자
CA3228993A1 (en) * 2021-08-09 2023-02-16 Inventera Inc. Nanostructure excreted in urine through kidney without being phagocytosed and/or metabolized by macrophage after in vivo injection
WO2024167358A1 (ko) * 2023-02-08 2024-08-15 주식회사 인벤테라 차세대 adc 링커 플랫폼 기술 및 다당류 가교 콜로이드 입자-약물 접합체

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100023778A (ko) * 2008-08-21 2010-03-04 연세대학교 산학협력단 T1―t2 이중방식 mri 조영제
US20100111859A1 (en) * 2007-02-07 2010-05-06 Oskar Axelsson Visualization of Biological Material by the Use of Coated Contrast Agents
WO2011006002A2 (en) * 2009-07-08 2011-01-13 University Of Washington Metal-coated nanostructures and related methods
US20110014296A1 (en) * 2009-07-17 2011-01-20 National Chiao Tung University Drug Delivery Nanodevice, its Preparation Method and Uses Thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8813425D0 (en) * 1988-06-07 1988-07-13 Hall L D Magnetic resonance imaging
AU4161399A (en) * 1998-05-26 1999-12-13 Bar-Ilan University Nucleation and growth of magnetic metal oxide nanoparticles and its use
US20100183504A1 (en) * 2007-06-14 2010-07-22 Fanqing Frank Chen Multimodal imaging probes for in vivo targeted and non-targeted imaging and therapeutics
EP2399610A3 (en) * 2007-09-24 2012-09-05 Bar-Ilan University Polymer nanoparticles coated by magnetic metal oxide and uses thereof
KR100958541B1 (ko) * 2007-10-02 2010-05-18 재단법인서울대학교산학협력재단 계면 졸-겔 반응을 이용한 고분산성 실리카/이산화티타늄 코어-셀 나노복합체의 제조방법
US9555134B2 (en) * 2008-10-21 2017-01-31 Georgetown University Manganese-oxo clusters as contrast agents for magnetic resonance imaging
KR20110050213A (ko) * 2009-11-06 2011-05-13 서울대학교산학협력단 계면 졸-겔 반응을 이용한 균일하며 실리카/질소가 도핑된 이산화티타늄 코어/셀 나노입자의 제조방법과 가시광에 반응하는 광촉매로서의 응용
WO2011150212A2 (en) * 2010-05-26 2011-12-01 The General Hospital Corporation Magnetic nanoparticles
KR101345097B1 (ko) * 2010-08-11 2013-12-26 고려대학교 산학협력단 신규 산화망간 나노입자 및 이를 포함하는 조영제
KR101292939B1 (ko) * 2010-12-31 2013-08-02 삼성전자주식회사 엠알유도 고강도집속초음파 치료 및 진단용 인지질 나노입자 및 이의 제조방법
KR20120084466A (ko) * 2011-01-20 2012-07-30 성균관대학교산학협력단 동맥경화반 특이적 엠알 조영제 및 이의 제조방법
CN102631689B (zh) * 2012-04-09 2014-08-13 同济大学 一种用于诊疗的磁共振成像造影剂及其制备方法
CN103484099B (zh) * 2013-09-25 2014-12-24 中国科学院宁波材料技术与工程研究所 一种电场调控下显色材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100111859A1 (en) * 2007-02-07 2010-05-06 Oskar Axelsson Visualization of Biological Material by the Use of Coated Contrast Agents
KR20100023778A (ko) * 2008-08-21 2010-03-04 연세대학교 산학협력단 T1―t2 이중방식 mri 조영제
WO2011006002A2 (en) * 2009-07-08 2011-01-13 University Of Washington Metal-coated nanostructures and related methods
US20110014296A1 (en) * 2009-07-17 2011-01-20 National Chiao Tung University Drug Delivery Nanodevice, its Preparation Method and Uses Thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
C. RIVIERE ET AL., J. AM. CHEM. SOC., vol. 129, 2007, pages 5076
H. P. ERICKSON ET AL., BIOL. PROCED. ONLINE, vol. 11, 2009, pages 32
J. CHEON ET AL., NATURE MEDICINE, vol. 13, 2007, pages 95
RYU, S.-H. ET AL.: "Synthesis and Electrochemical Characterization of Silica-Manganese Oxide with a Core-shell Structure and Various Oxidation States", BULLETIN OF THE KOREAN CHEMICAL SOCIETY, vol. 32, no. 8, 2011, pages 2683 - 2688, XP055209556 *
See also references of EP2942064A4
T.HYEON ET AL., ANGEW. CHEM. INT. ED., vol. 46, 2007, pages 5397

Also Published As

Publication number Publication date
JP6309542B2 (ja) 2018-04-11
EP2942064A1 (en) 2015-11-11
CN112089851A (zh) 2020-12-18
JP2016504380A (ja) 2016-02-12
KR101991912B1 (ko) 2019-06-24
KR20150115760A (ko) 2015-10-14
CN104955486A (zh) 2015-09-30
KR20180008933A (ko) 2018-01-24
EP2942064A4 (en) 2016-01-20
CN112807449A (zh) 2021-05-18
EP4088743A1 (en) 2022-11-16
EP2942064B1 (en) 2022-09-07
US20160000942A1 (en) 2016-01-07
US20210113717A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
US20210113717A1 (en) Mri contrast agent including t1 contrast material coated on surface of nanoparticle support
Xu et al. Paramagnetic nanoparticle T 1 and T 2 MRI contrast agents
KR101094207B1 (ko) T1―t2 이중방식 mri 조영제
Javed et al. MRI based on iron oxide nanoparticles contrast agents: effect of oxidation state and architecture
Jun et al. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences
Laurent et al. MRI contrast agents: From molecules to particles
JP5569837B2 (ja) 表面被覆無機物粒子の製造方法
Lin et al. Magnetic nanoparticles for early detection of cancer by magnetic resonance imaging
Nidhin et al. Flower shaped assembly of cobalt ferrite nanoparticles: application as T 2 contrast agent in MRI
Walia et al. Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy
Starsich et al. Reduced magnetic coupling in ultrasmall iron oxide T1 MRI contrast agents
Yue et al. Ultrasmall europium, gadolinium, and dysprosium oxide nanoparticles: Polyol synthesis, properties, and biomedical imaging applications
Khan et al. Bifunctional nanomaterials: magnetism, luminescence and multimodal biomedical applications
Li et al. Facile synthesis of manganese silicate nanoparticles for pH/GSH-responsive T 1-weighted magnetic resonance imaging
Kim et al. Gadolinium (III) diethylenetriamine pentaacetic acid/layered double hydroxide nanohybrid as novel T1-magnetic resonant nanoparticles
Lekha et al. Colloidal magnetic metal oxide nanocrystals and their applications
Chen et al. Preparation and characterization of magnetic nanoparticles and their silica egg-yolk-like nanostructures: a prospective multifunctional nanostructure platform
Stanicki et al. Iron-oxide nanoparticle-based contrast agents
Büyüktiryaki et al. Synthesis of Core-Shell Magnetic Nanoparticles
Dee et al. Magnetic nanoparticles and nanoobjects used for medical applications
US20140328765A1 (en) T1-t2 dual modal mri contrast agents
RU2471502C1 (ru) Контрастное средство для t1 и/или t2 магнитно-резонансного сканирования и способ его получения
Singh et al. Core-Shell Structure, Super Para Magnetism, and Functionalization of Magnetic Solid Nanoparticles and Their Application in Treatment of Wastewater
Singh et al. Size and Morphology of Nanoferrites for Drug Delivery, Thermal Heating, And Imaging In Medicine
JEYASEELAN et al. ADITI SINGH1, RAJPREET KAUR1, 2, ANITA GUPTA1

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14735209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551605

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14759288

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157020929

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014735209

Country of ref document: EP