WO2014106014A1 - Transdermal drug delivery systems for levonorgestrel and ethinyl estradiol - Google Patents
Transdermal drug delivery systems for levonorgestrel and ethinyl estradiol Download PDFInfo
- Publication number
- WO2014106014A1 WO2014106014A1 PCT/US2013/077932 US2013077932W WO2014106014A1 WO 2014106014 A1 WO2014106014 A1 WO 2014106014A1 US 2013077932 W US2013077932 W US 2013077932W WO 2014106014 A1 WO2014106014 A1 WO 2014106014A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- levonorgestrel
- ethinyl estradiol
- drug delivery
- transdermal drug
- delivery system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/565—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
- A61K31/567—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol substituted in position 17 alpha, e.g. mestranol, norethandrolone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/565—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/14—Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/70—Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
- A61K9/7023—Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
- A61K9/703—Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
- A61K9/7038—Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer
- A61K9/7046—Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer the adhesive comprising macromolecular compounds
- A61K9/7053—Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer the adhesive comprising macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds, e.g. polyvinyl, polyisobutylene, polystyrene
- A61K9/7061—Polyacrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/18—Feminine contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- compositions and methods for the transdermal delivery of levonorgestrel and ethinyl estradiol are useful, for example, as contraceptives.
- Transdermal delivery systems as dosage forms have been the subject of a vast number of patent applications over the last 25 years, yielding many patents but few commercial products in comparison. To those working in the field, the relatively small number of commercial products is not surprising. Although regulatory, economic, and market hurdles play a role in limiting the number of products on the market, the task of developing a transdermal delivery system that achieves desired physical and pharmacokinetic parameters to satisfy physician and patient demand is more daunting.
- Parameters to be considered during commercial product development may include drug solubility, drug stability (e.g., as may arise from interaction with other component materials and/or the environment), delivery of a therapeutic amount of drug at a desired delivery rate over the intended duration of use, adequate adhesion at the anatomical site of application, integrity (e.g., minimal curling, wrinkling, delaminating and slippage) with minimal discomfort, irritation and sensitization both during use and during and after removal, and minimal residual adhesive (or other components) after removal. Size also may be important from a manufacturing and patient viewpoint, and appearance may be important from a patient viewpoint. These factors become even more complicated when more than one drug is being formulated.
- This invention relates generally to transdermal drug delivery systems, and more particularly, to transdermal drug delivery systems for the delivery of levonorgestrel and ethinyl estradiol.
- U.S. Patent 7,045, 145 is directed to a transdermal delivery system comprising a backing layer, and an adhesive polymer matrix affixed to the backing layer, wherein the adhesive polymer matrix is formulated by combining, on a weight percentage basis: (a) from about 0% to about 10% of a humectant/plasticizer; (b) from about 20% to about 70% of an adhesive copolymer; (c) from about 10% to about 60% percent of a combination of skin permeation enhancing agents which is a mixture comprising dimethyl sulfoxide, a fatty (C8-C20) alcohol ester of lactic acid, a lower (C1-C4) alkyl ester of lactic acid and capric acid present in ratio ranging from about 2: 1 : 1 :0.8 to about 6: 1 : 1 :0.8, respectively; (d) a progestin hormone; and (e) an estrogen hormone.
- U.S. Patent 7,384,650 is directed to a transdermal hormone delivery system comprising a backing layer and an adhesive polymer matrix affixed to the backing layer, wherein the adhesive polymer matrix comprises: (a) an adhesive polymer; (b) a humectant; (c) a combination of skin permeation enhancing agents consisting essentially of, on a final percentage by weight of the adhesive polymer matrix after fabrication of the system, from about 4% to about 12% dimethyl sulfoxide; from about 4.2% to about 12.6% a fatty (C8-C20) alcohol ester of lactic acid; from about 0.7% to about 2.3% lower (C1-C4) alkyl ester of lactic acid; and from about 3% to about 9% capric acid; (d) a progestin; and (e) an estrogen.
- the adhesive polymer matrix comprises: (a) an adhesive polymer; (b) a humectant; (c) a combination of skin permeation enhancing agents consisting essentially of,
- U.S. Patent 8,221,785 is directed to a contraceptive delivery system comprising a backing layer and an adhesive polymer matrix affixed to the backing layer, wherein the adhesive polymer matrix comprises: (a) an adhesive polymer comprising a polyacrylate copolymer; (b) a humectant comprising
- polyvinylpyrrolidone (c) a combination of skin permeation enhancing agents consisting essentially of, on a final percentage by weight of the adhesive polymer matrix after fabrication of the system, from about 4% to about 12% dimethyl sulfoxide; from about 4.2% to about 12.6% a fatty (C8-C20) alcohol ester of lactic acid; from about 0.7% to about 2.3% lower (C1-C4) alkyl ester of lactic acid; and from about 3% to about 9% capric acid; (d) levonorgestrel; and (e) ethinyl estradiol or 17 beta-estradiol.
- skin permeation enhancing agents consisting essentially of, on a final percentage by weight of the adhesive polymer matrix after fabrication of the system, from about 4% to about 12% dimethyl sulfoxide; from about 4.2% to about 12.6% a fatty (C8-C20) alcohol ester of lactic acid; from about 0.7% to about 2.3% lower (C1-C4)
- U.S. Patent 5,770,219 is directed to a drug-containing matrix for use in a transdermal drug delivery device for administering at least one estrogen to an area of skin or mucosa comprising the estrogen dispersed in a body of a pressure sensitive adhesive, said pressure-sensitive adhesive comprising an acetate acrylate copolymer and polyvinylpyrrolidone, said matrix being essentially free of a skin permeation enhancer.
- the matrix further comprises levonorgestrel.
- the transdermal delivery of levonorgestrel and ethinyl estradiol continues to present challenges, and currently there is no commercial transdermal combination product on the market.
- Some of the challenges presented by this particular drug combination include the high delivery rate of levonorgestrel and its impact on patch size; the undesired crystallization of levonorgestrel in the polymer matrix; and the difficulty of formulating a composition that can achieve sustained drug delivery (e.g., at therapeutic levels) over a period of time of 7 days.
- transdermal drug delivery systems designed for the delivery of specific drugs and drug combinations, such as levonorgestrel and ethinyl estradiol.
- transdermal drug delivery systems for the transdermal delivery of levonorgestrel and ethinyl estradiol in the form of a flexible finite system for topical application, comprising a polymer matrix comprising levonorgestrel, ethinyl estradiol, and an acrylic polymer, wherein the acrylic polymer may comprise a hydroxy functional acrylic polymer.
- the polymer matrix is substantially free of or free of
- PVP polyvinylpyrrolidone
- PVP/VA polyvinylpyrrolidone/vinylacetate
- the transdermal drug delivery system further comprises a penetration enhancer.
- the polymer matrix comprises 0.1 to 3 % levonorgestrel; 0.1 to 5 % ethinyl estradiol; 5 to 20 % penetration enhancer, and the balance acrylic polymer.
- the penetration enhancer may be glyceryl monooleate, dipropylene glycol, or mixtures thereof.
- the transdermal drug delivery system may comprise an amount of levonorgestrel sufficient to achieve sustained delivery of levonorgestrel over a period of time of at least 3 days, at least 4 days, or at least 7 days.
- the transdermal drug delivery system may comprise an amount of ethinyl estradiol sufficient to achieve sustained delivery of ethinyl estradiol over a period of time of at least 3 days, at least 4 days, or at least 7 days.
- the transdermal drug delivery system may further comprise a backing layer and/or a release liner.
- the transdermal drug delivery system may be for transdermally delivering of levonorgestrel and ethinyl estradiol to a subject in need thereof, or for providing contraception in a female subject in need thereof.
- transdermal drug delivery system as described herein to the skin or mucosa of a subject in need thereof.
- the subject is a human female subject.
- the method is for contraception.
- the transdermal drug delivery system is applied for a duration of up to 7 days.
- levonorgestrel and ethinyl estradiol in the manufacture of medicaments for the transdermal delivery of levonorgestrel and ethinyl estradiol, or for contraception, wherein the medicament is in the form of a flexible finite system comprising a polymer matrix comprising levonorgestrel, ethinyl estradiol, and an acrylic polymer.
- Figure 1 illustrates the levonorgestrel flux ⁇ g/cm 2 /hr) over time (0-160 hours) from a transdermal delivery system according to the invention (-), as compared to
- FIG. 2 illustrates the ethinyl estradiol flux ⁇ g/cm 2 /hr) over time (0-160 hours) from a transdermal delivery system according to the invention ( ⁇ ), as compared to
- Figure 3 illustrates the effect of ethinyl estradiol concentration on ethinyl estradiol flux ⁇ g/cm 2 /hr) over time (0-160 hours) from a transdermal delivery system according to the invention ( ⁇ , ⁇ , -x-), as compared to OrthoEvra® ( ⁇ ).
- the present invention provides transdermal drug delivery systems for the transdermal delivery of levonorgestrel and ethinyl estradiol.
- the systems exhibit desired pharmacokinetic properties, such as by being capable of formulation for use over a 7 day period, and/or exhibit desired stability characteristics, such as reduced or minimized crystallization of levonorgestrel.
- the present inventors surprisingly discovered that levonorgestrel and ethinyl estradiol could be formulated together in a polymer matrix without the need for humectant such as polyvinylpyrollidone (PVP) or polyvinylpyrollidone/vinylacetate (PVP/VA).
- PVP polyvinylpyrollidone
- PVP/VA polyvinylpyrollidone/vinylacetate
- acrylic polymers comprising hydroxy functional groups such as hydroxyl functional group containing vinyl acetates
- each of dipropylene glycol (DPG) and glyceryl monooleate (GMO) alone or in combination are effective enhancers for
- transdermal drug delivery systems and methods for the transdermal delivery of levonorgestrel and ethinyl estradiol exhibit sustained delivery of levonorgestrel and ethinyl estradiol over an extended period of time, such as for at least 3 days, 4 days, 7 days, or longer.
- substantially free as used herein generally means that the described composition (e.g., transdermal drug delivery system, polymer matrix, etc.) comprises less than about 5%, less than about 3%, or less than about 1% by weight, based on the total weight of the composition at issue, of the excluded component.
- free of as used herein means that the described composition (e.g., polymer matrix, etc.) is formulated without adding the excluded component(s) as an intended component, although trace amounts may be present in other components or as a byproduct or contaminant, such that the composition comprises at most only trace amounts of the excluded component(s).
- subject denotes any animal in need of drug therapy, including humans.
- a subject may be suffering from or at risk of developing a condition that can be treated or prevented with levonorgestrel and ethinyl estradiol, or may be taking levonorgestrel and ethinyl estradiol for health maintenance purposes.
- the subject is a female subject taking levonorgestrel and ethinyl estradiol for contraceptive purposes.
- therapeutic level mean that drug dosage or plasma concentration in a subject, respectively, that provides the specific pharmacological response for which the drug is administered in a subject in need of such treatment. It is emphasized that a therapeutically effective amount or therapeutic level of a drug will not always be effective in treating the conditions/diseases described herein, even though such dosage is deemed to be a therapeutically effective amount by those of skill in the art. For convenience only, exemplary dosages, drug delivery amounts, therapeutically effective amounts and therapeutic levels are provided below with reference to adult human subjects. Those skilled in the art can adjust such amounts in accordance with standard practices as needed to treat a specific subject and/or condition/disease.
- active surface area means the surface area of the drug-containing layer of the transdermal drug delivery system.
- coat weight refers to the weight of the drug-containing layer per unit area of the active surface area of the transdermal drug delivery system.
- lux also called “permeation rate”
- permeation rate the absorption of a drug through skin or mucosal tissue
- J -D (dCm/dx) where J is the flux in g/cm 2 /sec, D is the diffusion coefficient of the drug through the skin or mucosa in cm 2 /sec and dCm/dx is the concentration gradient of the drug across the skin or mucosa.
- transdermal refers to delivery, administration or application of a drug by means of direct contact with skin or mucosa. Such delivery, administration or application is also known as dermal, percutaneous, transmucosal and buccal. As used herein, “dermal” includes skin and mucosa, which includes oral, buccal, nasal, rectal and vaginal mucosa.
- transdermal drug delivery system refers to a system (e.g., a device) comprising a composition that releases drug upon application to the skin (or any other surface noted above).
- a transdermal drug delivery system may comprise a drug-containing layer, and, optionally, a backing layer and/or a release liner layer.
- the transdermal drug delivery system is a substantially nonaqueous, solid form, capable of conforming to the surface with which it comes into contact, and capable of maintaining such contact so as to facilitate topical application without adverse physiological response, and without being appreciably decomposed by aqueous contact during topical application to a subject.
- Many such systems are known in the art and commercially available, such as transdermal drug delivery patches.
- the transdermal drug delivery system comprises a drug-containing polymer matrix that comprises a pressure- sensitive adhesive or bioadhesive, and is adopted for direct application to a user's (e.g., a subject's) skin.
- the polymer matrix is non-adhesive and may be provided with separate adhesion means (such as a separate adhesive layer) for application and adherence to the user's skin.
- polymer matrix refers to a polymer composition which contains one or more drugs.
- the matrix comprises a pressure- sensitive adhesive polymer or a bioadhesive polymer.
- the matrix does not comprise a pressure-sensitive adhesive or bioadhesive.
- a polymer is an "adhesive" if it has the properties of an adhesive per se, or if it functions as an adhesive by the addition of tackifiers, plasticizers, crosslinking agents or other additives.
- the polymer matrix comprises a pressure-sensitive adhesive polymer or a bioadhesive polymer, with drug dissolved or dispersed therein.
- the polymer matrix also may comprise tackifiers, plasticizers, crosslinking agents, enhancers, co-solvents, fillers, antioxidants, solubilizers, crystallization inhibitors, or other additives described herein.
- U.S. Patent 6,024,976 describes polymer blends that are useful in accordance with the transdermal systems described herein. The entire contents of U.S. Patent 6,024,976 is incorporated herein by reference.
- pressure-sensitive adhesive refers to a viscoelastic material which adheres instantaneously to most substrates with the application of very slight pressure and remains permanently tacky.
- a polymer is a pressure-sensitive adhesive within the meaning of the term as used herein if it has the properties of a pressure-sensitive adhesive per se or functions as a pressure-sensitive adhesive by admixture with tackifiers, plasticizers or other additives.
- pressure-sensitive adhesive also includes mixtures of different polymers and mixtures of polymers, such as polyisobutylenes (PIB), of different molecular weights, wherein each resultant mixture is a pressure-sensitive adhesive.
- PIB polyisobutylenes
- the polymers of lower molecular weight in the mixture are not considered to be "tackifiers," said term being reserved for additives which differ other than in molecular weight from the polymers to which they are added.
- the polymer matrix is a pressure-sensitive adhesive at room temperature and has other desirable characteristics for adhesives used in the transdermal drug delivery art. Such characteristics include good adherence to skin, ability to be peeled or otherwise removed without substantial trauma to the skin, retention of tack with aging, etc.
- the polymer matrix has a glass transition temperature (T g ), measured using a differential scanning calorimeter, of between about -70 °C. and 0 °C.
- rubber-based pressure-sensitive adhesive refers to a viscoelastic material which has the properties of a pressure-sensitive adhesive and which contains at least one natural or synthetic elastomeric polymer.
- the transdermal drug delivery system includes one or more additional layers, such as one or more additional polymer matrix layers, or one or more adhesive layers that adhere the transdermal drug delivery system to the user's skin.
- the transdermal drug delivery system is monolithic, meaning that it comprises a single polymer matrix layer comprising a pressure- sensitive adhesive or bioadhesive with drug dissolved or dispersed therein, and no rate-controlling membrane.
- the transdermal drug delivery system also may include a drug impermeable backing layer or film.
- the backing layer is adjacent one face of the polymer matrix layer.
- the backing layer protects the polymer matrix layer (and any other layers present) from the environment and prevents loss of the drug and/or release of other components to the environment during use.
- Materials suitable for use as backing layers are well-known known in the art and can comprise films of polyester, polyethylene, vinyl acetate resins, ethylene/vinyl acetate copolymers, polyvinyl chloride, polyurethane, and the like, metal foils, non-woven fabric, cloth and commercially available laminates.
- a typical backing material has a thickness in the range of 2 to 1000 micrometers.
- 3M's Scotch PakTM 1012 or 9732 backing material (a polyester film with an ethylene vinyl acetate copolymer heat seal layer) is useful in the transdermal drug delivery systems described herein.
- the transdermal drug delivery system also may include a release liner, typically located adjacent the opposite face of the system as compared to the backing layer. When present, the release liner is removed from the system prior to use to expose the polymer matrix layer and/or an adhesive layer prior to topical application.
- a release liner typically located adjacent the opposite face of the system as compared to the backing layer.
- Materials suitable for use as release liners are well-known known in the art and include the commercially available products of Dow Corning Corporation designated Bio-Release® liner and Syl-off® 7610 (both silicone-based) and 3M's 1020, 1022, 9744, 9748 and 9749 ScotchpakTM (fluoropolymer coated polyester films).
- the transdermal drug delivery system may be packaged or provided in a package, such as a pouchstock material used in the prior art for transdermal drug delivery systems in general.
- a pouchstock material used in the prior art for transdermal drug delivery systems in general.
- DuPont's Surlyn® can be used in a pouchstock material.
- a "monolithic" transdermal drug delivery system may include a backing layer and/or release liner, and may be provided in a package.
- compositions described herein comprise a polymer matrix that comprises, consists essentially of, or consists of levonorgestrel, ethinyl estradiol, at least one acrylic polymer, and, optionally, at least one penetration enhancer.
- the phrase "consists essentially of means that the polymer matrix is substantially free of other polymer components (e.g., substantially free of polymers other than one or more acrylic polymers) although it may include other excipients known to be useful in transdermal compositions (such as tackifiers, plasticizers, crosslinking agents or other excipients known in the art) as long as those other excipients do not degrade the physical and/or pharmacokinetic properties of the compositions to pharmaceutically unacceptable levels.
- excipients known to be useful in transdermal compositions such as tackifiers, plasticizers, crosslinking agents or other excipients known in the art
- compositions described herein are free of or are substantially free of a humectant, such as polyvinylpyrrolidone (PVP) and polyvinylpyrrolidone/vinylacetate (PVP/VA), as used in U.S. Patent 7,045,145.
- PVP polyvinylpyrrolidone
- PVP/VA polyvinylpyrrolidone/vinylacetate
- the present inventors surprisingly discovered that stable compositions could be prepared without PVP or PVP/VA. While PVP typically is believed to suppress crystal formation in transdermal drug delivery systems, the inventors surprisingly discovered that levonorgestrel formulations that are substantially free of or free of PVP exhibit less crystallization than levonorgestrel formulations that comprise PVP.
- the polymer matrix comprises (on a weight % basis) about 0.1 - 3 % levonorgestrel, about 0.1 - 5% ethinyl estradiol, about 5-20% penetration enhancer(s), and the balance acrylic polymer(s).
- Levonorgestrel is a synthetic progestogen. It is an enantiomer of the chiral compound 13-ethyl-17-ethynyl-17-hydroxy-l,2,6,7,8,9, 10, l 1,12,13,14, 15, 16, 17- tetradecahydrocyclopenta[a] phenanthren-3-one.
- Ethinyl estradiol is an estrogen with the chemical name 19-nor-17a-pregna- l,3,5(10)-trien-20-yne-3, 17-diol.
- the amount of levonorgestrel and ethinyl estradiol to be incorporated in the polymer matrix varies depending on the desired therapeutic effect, and the time span for which the system is to provide therapy. For most drugs, the passage of the drugs through the skin will be the rate-limiting step in delivery. A minimum amount of drug in the system is selected based on the amount of drug which passes through the skin in the time span for which the system is to provide therapy. In some
- the systems comprise an amount of drug (e.g.,
- levonorgestrel and ethinyl estradiol sufficient to deliver therapeutically effective amounts of drug over a period of from 1 day to 3 days, 7 days, or longer, including for 1 day, for 2 days, for 3 days, for 4 days, for 5 days, for 6 days, for 7 days, or for longer.
- the amount of ethinyl estradiol can be selected and controlled to select and control the transdermal delivery of ethinyl estradiol without substantially impacting the transdermal delivery of levonorgestrel. That is, the flux of ethinyl estradiol can be increased by increasing the relative amount of ethinyl estradiol without substantially impacting the transdermal delivery of levonorgestrel.
- the polymer matrix comprises from about 0.1% to about 50%, including from about 1% to about 20%, such as from about 1% to about 10% by weight, of active agent. In some embodiments, the polymer matrix comprises from about 0.1% to about 25%, including from about 1% to about 10%, such as from about 1% to about 5% by weight, of levonorgestrel. In some embodiments, the polymer matrix comprises from about 0.1% to about 25%, including from about 1% to about 10%, such as from about 1% to about 5% by weight, of ethinyl estradiol. In some embodiments, the polymer matrix comprises from about 0.1 to 3% or 0.1 to 5% by weight levonorgestrel. In some embodiments, the polymer matrix comprises from about 0.1 to 3% or 0.1 to 5% by weight ethinyl estradiol.
- acrylic polymer is used here as in the art interchangeably with “polyacrylate,” “polyacrylic polymer,” and “acrylic adhesive.”
- the acrylic-based polymers can be any of the homopolymers, copolymers, terpolymers, and the like of various acrylic acids or esters.
- the acrylic -based polymers are adhesive polymers.
- the acrylic -based polymers function as an adhesive by the addition of tackifiers, plasticizers, crosslinking agents or other additives.
- the acrylic polymer can include copolymers, terpolymers and multipolymers.
- the acrylic polymer can be any of the homopolymers, copolymers, terpolymers, and the like of various acrylic acids.
- the amount and type of acrylic polymer is dependent on the amounts of levonorgestrel and ethinyl estradiol used.
- Acrylic polymers useful in practicing the invention include polymers of one or more monomers of acrylic acids and other copolymerizable monomers.
- the acrylic polymers also include copolymers of alkyl acrylates and/or methacrylates and/or copolymerizable secondary monomers or monomers with functional groups.
- Acrylic -based polymers having functional groups include copolymers and terpolymers which contain, in addition to nonfunctional monomer units, further monomer units having free functional groups.
- the monomers can be monofunctional or polyfunctional. By varying the amount of each type of monomer added, the cohesive properties of the resulting acrylic polymer can be changed as is known in the art.
- the acrylic polymer is composed of at least 50% by weight of an acrylate or alkyl acrylate monomer, from 0 to 20% of a functional monomer copolymerizable with the acrylate, and from 0 to 40% of other monomers.
- Acrylate monomers which can be used include acrylic acid and methacrylic acid and alkyl acrylic or methacrylic esters such as methyl acrylate, ethyl acrylate, propyl acrylate, amyl acrylate, butyl acrylate, butyl methacrylate, hexyl acrylate, methyl methacrylate, hexyl methacrylate, heptyl acrylate, octyl acrylate, nonyl acrylate, 2-ethylbutyl acrylate, 2-ethylbutyl methacrylate, isooctyl acrylate, isooctyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, decyl acrylate, decyl methacrylate, dodecyl acrylate, dodecyl methacrylate, tridecyl acrylate, tridecyl me
- Non- functional acrylic -based polymers can include any acrylic based polymer having no or substantially no free functional groups.
- Functional monomers, copolymerizable with the above alkyl acrylates or methacrylates which can be used include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, hydroxyethyl acrylate, hydroxypropyl acrylate, acrylamide, dimethylacrylamide, acrylonitrile, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, tert-butylaminoethyl acrylate, tert-butylaminoethyl methacrylate, methoxyethyl acrylate and methoxyethyl methacrylate.
- “functional monomers or groups” are monomer units typically in acrylic -based polymers which have reactive chemical groups which modify the acrylic -based polymers directly or which provide sites for further reactions.
- functional groups include carboxyl, epoxy, hydroxyl, sulfoxyl, and amino groups.
- Acrylic -based polymers having functional groups contain, in addition to the nonfunctional monomer units described above, further monomer units having free functional groups.
- the monomers can be monofunctional or polyfunctional. These functional groups include carboxyl groups, hydroxy groups, amino groups, amido groups, epoxy groups, etc.
- Typical carboxyl functional monomers include acrylic acid, methacrylic acid, itaconic acid, maleic acid, and crotonic acid.
- Typical hydroxy functional monomers include 2-hydroxyethyl methacrylate, 2-hydroxyethyl aery late, hydroxymethyl aery late, hydroxymethyl methacrylate, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, hydroxyamyl acrylate, hydroxyamyl methacrylate, hydroxyhexyl acrylate, hydroxyhexyl methacrylate.
- the acrylic polymer does not include such functional groups.
- the acrylic polymer includes hydroxy functional monomers.
- Such polymers generally exhibit good solubility for levonorgestrel, which allows sufficient loading of levonorgestrel for preparation of a system that achieves transdermal delivery of a therapeutically effective amount of active agent over an extended period of time, such as a period of at least 3 days, at least 4 days, or at least 7 days, or longer.
- Suitable acrylic polymers also include pressure-sensitive adhesives which are commercially available, such as the acrylic -based adhesives sold under the trademarks DURO-TAK® by National Starch and Chemical Corporation, Bridgewater, N.J. (such as DURO-TAK® 87-2516, 87-2287, -4098, -2852, -2196, -2296, -2194, -2516, -2070, -2353, -2154, -2510, -9085, -9088 and 73-9301).
- Other suitable acrylic adhesives include those sold under the trademark EUDRAGIT® by Roehm Pharma GmbH, Darmstadt, Germany, those sold by Cytec Surface Specialties, St.
- GELVA® Multipolymer Solution such as GELVA® 2480, 788, 737, 263, 1430, 1753, 1151, 2450, 2495, 3067, 3071, 3087 and 3235.
- hydroxy functional adhesives with a reactive functional OH group m the polymeric chain can be used.
- Non-limiting commercial examples of this type of adhesives include both GELVA® 737, 788, and 1151 , and DURO-TAK® 87-2287, -4287, - 2510 and -251 6.
- the acrylic polymer constitutes up to 100% by weight of the polymer content of the polymer matrix, including 100%
- the polymer matrix comprises a penetration enhancer.
- a “penetration enhancer” is an agent known to accelerate the delivery of the drug through the skin. These agents also have been referred to as accelerants, adjuvants, and sorption promoters, and are collectively referred to herein as “enhancers.” This class of agents includes those with diverse mechanisms of action, including those which have the function of improving percutaneous absorption, for example, by changing the ability of the stratum corneum to retain moisture, softening the skin, improving the skin's permeability, acting as penetration assistants or hair- follicle openers or changing the state of the skin including the boundary layer.
- Illustrative penetration enhancers include but are not limited to polyhydric alcohols such as dipropylene glycol, propylene glycol, and polyethylene glycol; oils such as olive oil, squalene, and lanolin; fatty ethers such as cetyl ether and oleyl ether; fatty acid esters such as isopropyl myristate; urea and urea derivatives such as allantoin which affect the ability of keratin to retain moisture; polar solvents such as dimethyidecylphosphoxide, methyloctylsulfoxide, dimethyllaurylamide,
- dodecylpyrrolidone isosorbitol, dimethylacetonide, dimethylsulfoxide,
- decylmethylsulfoxide, and dimethylformamide which affect keratin permeability
- salicylic acid which softens the keratin
- amino acids which are penetration assistants
- benzyl nicotinate which is a hair follicle opener
- higher molecular weight aliphatic surfactants such as lauryl sulfate salts which change the surface state of the skin and drugs administered.
- Other agents include oleic and linoleic acids, ascorbic acid, panthenol, butylated hydroxytoluene, tocopherol, tocopheryl acetate, tocopheryl linoleate, propyl oleate, and isopropyl palmitate.
- the penetration enhancer is a glycol, such as dipropylene glycol, propylene glycol, butylene glycol or polyethylene glycol.
- the penetration enhancer comprises glyceryl monooleate.
- the penetration enhancer comprises a mixture of at least two penetration enhancers.
- a penetration enhancer may comprise dipropylene glycol and glyceryl monooleate.
- a penetration enhancer is used in an amount up to about 30% by dry weight of the polymer matrix, including up to 30% by weight, up to about 20% by weight, including 20% by weight, or up to about 10% by weight, up to 10% by weight, or up to 5% by weight, including up to 5% by weight, based on the dry weight of the polymer matrix. In some embodiments, a penetration enhancer is used in an amount of from about 5% to about 20%, including about 10% by weight.
- the polymer matrix may further comprise various thickeners, fillers, and other additives or components known for use in transdermal drug delivery systems.
- the polymer matrix can serve as an adhesive portion of the system (e.g., a reservoir device), or can serve as one or more layers of a multi-layer system.
- a polymer matrix comprising a pressure-sensitive adhesive or bioadhesive with drug dissolved or dispersed therein can constitute a monolithic device.
- the polymer matrix does not comprise an adhesive, but instead, for example, comprises a polymeric drug reservoir, it can be used in combination with one or more adhesive layers, or with a surrounding adhesive portion, as is well known to those skilled in the art.
- the system consists essentially of the polymer matrix layer.
- consists essentially of the polymer matrix layer means that the system does not contain any other layers that affect drug delivery, such as an additional rate- controlling polymer layer, rate-controlling membrane, or drug reservoir layer. It will be understood, however, that the system that consists essentially of the polymer matrix layer may comprise a backing layer and/or release liner.
- the system may be of any shape or size suitable for transdermal application.
- the polymer matrices described herein may be prepared by methods known in the art.
- the polymer matrices can be formed into systems by methods known in the art.
- the polymer matrix material can be applied to a backing layer and release liner by methods known in the art, and formed into sizes and shapes suitable for use.
- a support layer such as a releaser liner layer or backing layer, in any manner known to those of skill in the art.
- Such techniques include calender coating, hot melt coating, solution coating, etc.
- a polymer matrix can be prepared by blending the components of the polymer matrix, applying the matrix material to a support layer such as a backing layer or release liner, and removing any remaining solvents.
- levonorgestrel and ethinyl estradiol can be added at any stage.
- all polymer matrix components, including levonorgestrel and ethinyl estradiol, are blended together.
- the polymer matrix components other than levonorgestrel and ethinyl estradiol are blended together, and then the levonorgestrel and ethinyl estradiol is dissolved or dispersed therein.
- the order of steps, amount of ingredients, and the amount and time of agitation or mixing can be determined and optimized by the skilled practitioner.
- An exemplary general method is as follows:
- Appropriate amounts of polymer(s), levonorgestrel, ethinyl estradiol, enhancer(s), and organic solvent(s) are combined and thoroughly mixed together in a vessel.
- the formulation is then transferred to a coating operation where it is coated onto a protective release liner at a controlled specified thickness.
- the coated product is then passed through an oven in order to drive off all volatile processing solvents.
- the dried product on the release liner is then joined to the backing material and wound into rolls for storage.
- a method of effecting transdermal drug delivery of levonorgestrel and ethinyl estradiol by applying a system as described herein to the skin or mucosa of a subject in need thereof.
- the system is applied over a period of at least about 1 day, at least about 2 days, at least about 3 days, at least about 4 days, at least about 5 days, at least about 6 days, or at least about 7 days, such as for 1, 2, 3, 4, 5, 6 or 7 days.
- the method is effective to achieve therapeutic levels of levonorgestrel and ethinyl estradiol in the subject during the application period.
- the systems described herein are designed for use by female patients, such as for contraception.
- a polymer matrix with the following composition is prepared:
- Example 1 The polymer matrix of Example 1 was used to prepare transdermal drug delivery systems. An in vitro flux study was conducted with human cadaver skin using a Franz cell apparatus to determine the flux of each drug from the matrix over a 160-hour ( ⁇ 7 day) period, as compared to a corresponding commercial product.
- Figure 1 illustrates the levonorgestrel flux ⁇ g/cm 2 /hr) over time (0-160 hours) from a transdermal delivery system according to the invention (-), as compared to Climara® Pro ( ⁇ ).
- Figure 2 illustrates the ethinyl estradiol flux ⁇ g/cm 2 /hr) over time (0-160 hours) from a transdermal delivery system according to the invention ( ⁇ ), as compared to OrthoEvra® ( ⁇ ).
- Polymer matrices with different relative amounts of ethinyl estradiol were prepared as follows.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Dermatology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Gynecology & Obstetrics (AREA)
- Endocrinology (AREA)
- Reproductive Health (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2015550784A JP2016505006A (ja) | 2012-12-28 | 2013-12-27 | レボノルゲストレル及びエチニルエストラジオール用の経皮薬物送達システム |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201261747013P | 2012-12-28 | 2012-12-28 | |
| US61/747,013 | 2012-12-28 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2014106014A1 true WO2014106014A1 (en) | 2014-07-03 |
Family
ID=49956517
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2013/077932 Ceased WO2014106014A1 (en) | 2012-12-28 | 2013-12-27 | Transdermal drug delivery systems for levonorgestrel and ethinyl estradiol |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US9314470B2 (enExample) |
| JP (1) | JP2016505006A (enExample) |
| AR (1) | AR094289A1 (enExample) |
| TW (1) | TW201431554A (enExample) |
| WO (1) | WO2014106014A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2018524348A (ja) * | 2015-07-02 | 2018-08-30 | ノーヴェン ファーマシューティカルズ インコーポレイテッド | レボノルゲストレルおよびエチニルエストラジオールのための経皮的薬物送達システム |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9314470B2 (en) | 2012-12-28 | 2016-04-19 | Noven Pharmaceuticals, Inc. | Transdermal drug delivery systems for levonorgestrel and ethinyl estradiol |
| EP2938335B1 (en) | 2012-12-28 | 2021-03-17 | Noven Pharmaceuticals, INC. | Multi-polymer compositions for transdermal drug delivery |
| WO2014159582A1 (en) | 2013-03-14 | 2014-10-02 | Noven Pharmaceuticals, Inc | Amphetamine transdermal compositions with acrylic block copolymer |
| AR095259A1 (es) | 2013-03-15 | 2015-09-30 | Noven Pharma | Composiciones y métodos para la administración transdérmica de fármacos de amina terciaria |
| AR095260A1 (es) | 2013-03-15 | 2015-09-30 | Noven Pharma | Composiciones de anfetaminas transdérmicas estables y métodos de fabricación |
| JP6807848B2 (ja) | 2015-02-06 | 2021-01-06 | ノーヴェン ファーマシューティカルズ インコーポレイテッド | 経皮薬物送達のための感圧粘着剤 |
| US10406116B2 (en) | 2015-02-06 | 2019-09-10 | Noven Pharmaceuticals, Inc. | Pressure-sensitive adhesives for transdermal drug delivery |
| WO2019088010A1 (ja) * | 2017-10-30 | 2019-05-09 | 帝國製薬株式会社 | 経皮投与製剤 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001037770A1 (en) * | 1999-11-24 | 2001-05-31 | Agile Therapeutics, Inc. | Improved transdermal contraceptive delivery system and process |
| US20040053901A1 (en) * | 1999-11-24 | 2004-03-18 | Te-Yen Chien | Transdermal hormone delivery system: compositions and methods |
| US7045145B1 (en) * | 1999-11-24 | 2006-05-16 | Agile Therapeutics, Inc. | Transdermal contraceptive delivery system and process |
| WO2009009649A1 (en) * | 2007-07-10 | 2009-01-15 | Agile Therapeutics, Inc. | Dermal delivery device with in situ seal |
| WO2012092165A1 (en) * | 2010-12-29 | 2012-07-05 | Noven Pharmaceuticals, Inc. | Transdermal drug delivery system comprising levonorgestrel acetate |
Family Cites Families (44)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4863738A (en) * | 1987-11-23 | 1989-09-05 | Alza Corporation | Skin permeation enhancer compositions using glycerol monooleate |
| US5446070A (en) | 1991-02-27 | 1995-08-29 | Nover Pharmaceuticals, Inc. | Compositions and methods for topical administration of pharmaceutically active agents |
| US5719197A (en) | 1988-03-04 | 1998-02-17 | Noven Pharmaceuticals, Inc. | Compositions and methods for topical administration of pharmaceutically active agents |
| US5656286A (en) | 1988-03-04 | 1997-08-12 | Noven Pharmaceuticals, Inc. | Solubility parameter based drug delivery system and method for altering drug saturation concentration |
| US5234957A (en) | 1991-02-27 | 1993-08-10 | Noven Pharmaceuticals, Inc. | Compositions and methods for topical administration of pharmaceutically active agents |
| US5474783A (en) | 1988-03-04 | 1995-12-12 | Noven Pharmaceuticals, Inc. | Solubility parameter based drug delivery system and method for altering drug saturation concentration |
| US5053227A (en) | 1989-03-22 | 1991-10-01 | Cygnus Therapeutic Systems | Skin permeation enhancer compositions, and methods and transdermal systems associated therewith |
| US5332576A (en) | 1991-02-27 | 1994-07-26 | Noven Pharmaceuticals, Inc. | Compositions and methods for topical administration of pharmaceutically active agents |
| US6024974A (en) | 1995-01-06 | 2000-02-15 | Noven Pharmaceuticals, Inc. | Composition and methods for transdermal delivery of acid labile drugs |
| US6316022B1 (en) | 1995-06-07 | 2001-11-13 | Noven Pharmaceuticals, Inc. | Transdermal compositions containing low molecular weight drugs which are liquid at room temperatures |
| CA2223588C (en) | 1995-06-07 | 2004-01-06 | Noven Pharmaceuticals, Inc. | Transdermal compositions containing low molecular weight drugs which are liquid at room temperatures |
| US20020102291A1 (en) | 1997-12-15 | 2002-08-01 | Noven Pharmaceuticals, Inc. | Compositions and method for treatment of attention deficit disorder and attention deficit/hyperactivity disorder with methylphenidate |
| US6210705B1 (en) | 1997-12-15 | 2001-04-03 | Noven Pharmaceuticals, Nc. | Compositions and methods for treatment of attention deficit disorder and attention deficit/hyperactivity disorder with methylphenidate |
| US20030170195A1 (en) | 2000-01-10 | 2003-09-11 | Noven Pharmaceuticals, Inc. | Compositions and methods for drug delivery |
| WO2000041538A2 (en) | 1999-01-14 | 2000-07-20 | Noven Pharmaceuticals, Inc. | Dermal compositions |
| AU3104301A (en) * | 2000-01-20 | 2001-07-31 | Noven Pharmaceuticals, Inc. | Compositions and methods to effect the release profile in the transdermal administration of active agents |
| CN100391462C (zh) | 2001-06-18 | 2008-06-04 | 诺芬药品公司 | 增强的透皮给药系统 |
| WO2005009417A1 (en) | 2003-07-21 | 2005-02-03 | Noven Pharmaceuticals, Inc. | Composition and method for controlling grug delivery from silicone adhesive blends |
| US8784874B2 (en) | 2003-09-10 | 2014-07-22 | Noven Pharmaceuticals, Inc. | Multi-layer transdermal drug delivery device |
| RS20060332A (sr) | 2003-10-28 | 2008-04-04 | Noven Pharmaceuticals Inc., | Kompozicije i postupci za kontrolisanje gubitka i oslobađanja leka u transdermalnim sistemima oslobađanja leka |
| US20060078602A1 (en) | 2004-10-08 | 2006-04-13 | Noven Pharmaceuticals, Inc. | Device for transdermal administration of drugs including acrylic polymers |
| US8343538B2 (en) | 2004-10-08 | 2013-01-01 | Noven Pharmaceuticals, Inc. | Compositions and methods for controlling the flux of a drug from a transdermal drug delivery systems |
| WO2006041908A2 (en) | 2004-10-08 | 2006-04-20 | Noven Pharmaceuticals, Inc. | Transdermal delivery of estradiol |
| JP4950510B2 (ja) * | 2006-02-16 | 2012-06-13 | 久光製薬株式会社 | 経皮吸収製剤 |
| EP1998756A2 (en) | 2006-02-27 | 2008-12-10 | Noven Pharmaceuticals, Inc. | Compositions and methods for delivery of amino-functional drugs |
| US7989496B2 (en) | 2006-10-27 | 2011-08-02 | Noven Pharmaceuticals, Inc. | Transdermal delivery of ketoprofen polar derivatives |
| US20090098191A1 (en) * | 2007-10-16 | 2009-04-16 | Anderson Christopher G | Use of bases to stabilize transdermal formulations |
| US8231906B2 (en) | 2008-07-10 | 2012-07-31 | Noven Pharmaceuticals, Inc. | Transdermal estrogen device and delivery |
| US8852628B1 (en) | 2009-07-13 | 2014-10-07 | Noven Pharmaceuticals, Inc. | Transdermal drug delivery system for diclofenac |
| US9320742B2 (en) | 2009-12-01 | 2016-04-26 | Noven Pharmaceuticals, Inc. | Transdermal testosterone device and delivery |
| WO2011118683A1 (ja) * | 2010-03-25 | 2011-09-29 | 東洋化学株式会社 | 医用貼付剤 |
| CA2891467A1 (en) | 2012-10-15 | 2014-04-24 | Noven Pharmaceuticals, Inc. | Compositions and methods for the transdermal delivery of methylphenidate |
| JP2015535253A (ja) | 2012-10-25 | 2015-12-10 | ノーヴェン ファーマシューティカルズ インコーポレイテッド | アンフェタミンの組成物及びアンフェタミンを経皮送達する方法 |
| EP2934497B1 (en) | 2012-12-21 | 2016-11-23 | Teikoku Pharma USA, Inc. | Compositions and methods for transdermal delivery of hormones and other medicinal agents |
| EP2938335B1 (en) | 2012-12-28 | 2021-03-17 | Noven Pharmaceuticals, INC. | Multi-polymer compositions for transdermal drug delivery |
| KR20150103077A (ko) | 2012-12-28 | 2015-09-09 | 노벤 파머수티컬즈, 인코퍼레이티드 | 비스테로이드성 항염증제의 경피 전달을 위한 조성물 및 방법 |
| US9314470B2 (en) | 2012-12-28 | 2016-04-19 | Noven Pharmaceuticals, Inc. | Transdermal drug delivery systems for levonorgestrel and ethinyl estradiol |
| WO2014159573A1 (en) | 2013-03-14 | 2014-10-02 | Noven Pharmaceuticals, Inc | Methylphenidate transdermal compositions with rubber-based adhesives |
| WO2014159582A1 (en) | 2013-03-14 | 2014-10-02 | Noven Pharmaceuticals, Inc | Amphetamine transdermal compositions with acrylic block copolymer |
| US20140276479A1 (en) | 2013-03-14 | 2014-09-18 | Noven Pharmaceuticals, Inc. | Transdermal drug delivery system with overlay |
| US20140276483A1 (en) | 2013-03-14 | 2014-09-18 | Noven Pharmaceuticals, Inc. | Transdermal methylphenidate compositions with acrylic block copolymers |
| AR095260A1 (es) | 2013-03-15 | 2015-09-30 | Noven Pharma | Composiciones de anfetaminas transdérmicas estables y métodos de fabricación |
| AR095259A1 (es) | 2013-03-15 | 2015-09-30 | Noven Pharma | Composiciones y métodos para la administración transdérmica de fármacos de amina terciaria |
| WO2017004507A1 (en) | 2015-07-02 | 2017-01-05 | Noven Pharmaceuticals, Inc. | Transdermal drug delivery systems for levonorgestrel and ethinyl estradiol |
-
2013
- 2013-12-27 US US14/141,935 patent/US9314470B2/en active Active
- 2013-12-27 AR ARP130105039A patent/AR094289A1/es unknown
- 2013-12-27 JP JP2015550784A patent/JP2016505006A/ja active Pending
- 2013-12-27 WO PCT/US2013/077932 patent/WO2014106014A1/en not_active Ceased
- 2013-12-27 TW TW102148839A patent/TW201431554A/zh unknown
-
2016
- 2016-03-14 US US15/069,425 patent/US10231977B2/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001037770A1 (en) * | 1999-11-24 | 2001-05-31 | Agile Therapeutics, Inc. | Improved transdermal contraceptive delivery system and process |
| US20040053901A1 (en) * | 1999-11-24 | 2004-03-18 | Te-Yen Chien | Transdermal hormone delivery system: compositions and methods |
| US7045145B1 (en) * | 1999-11-24 | 2006-05-16 | Agile Therapeutics, Inc. | Transdermal contraceptive delivery system and process |
| WO2009009649A1 (en) * | 2007-07-10 | 2009-01-15 | Agile Therapeutics, Inc. | Dermal delivery device with in situ seal |
| WO2012092165A1 (en) * | 2010-12-29 | 2012-07-05 | Noven Pharmaceuticals, Inc. | Transdermal drug delivery system comprising levonorgestrel acetate |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2018524348A (ja) * | 2015-07-02 | 2018-08-30 | ノーヴェン ファーマシューティカルズ インコーポレイテッド | レボノルゲストレルおよびエチニルエストラジオールのための経皮的薬物送達システム |
| JP7257739B2 (ja) | 2015-07-02 | 2023-04-14 | ノーヴェン ファーマシューティカルズ インコーポレイテッド | レボノルゲストレルおよびエチニルエストラジオールのための経皮的薬物送達システム |
| JP2023058501A (ja) * | 2015-07-02 | 2023-04-25 | ノーヴェン ファーマシューティカルズ インコーポレイテッド | レボノルゲストレルおよびエチニルエストラジオールのための経皮的薬物送達システム |
| JP7625623B2 (ja) | 2015-07-02 | 2025-02-03 | ノーヴェン ファーマシューティカルズ インコーポレイテッド | レボノルゲストレルおよびエチニルエストラジオールのための経皮的薬物送達システム |
Also Published As
| Publication number | Publication date |
|---|---|
| AR094289A1 (es) | 2015-07-22 |
| US10231977B2 (en) | 2019-03-19 |
| US20160296535A1 (en) | 2016-10-13 |
| TW201431554A (zh) | 2014-08-16 |
| US20140182597A1 (en) | 2014-07-03 |
| US9314470B2 (en) | 2016-04-19 |
| JP2016505006A (ja) | 2016-02-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10987316B2 (en) | Compositions and methods for transdermal delivery of tertiary amine drugs | |
| US9320742B2 (en) | Transdermal testosterone device and delivery | |
| US9833419B2 (en) | Transdermal estrogen device and delivery | |
| US10231977B2 (en) | Transdermal drug delivery systems for levonorgestrel and ethinyl estradiol | |
| US8784877B2 (en) | Transdermal levonorgestrel device and delivery | |
| US20170112781A1 (en) | Transdermal drug delivery systems with polyisobutylene face adhesive | |
| JP7625623B2 (ja) | レボノルゲストレルおよびエチニルエストラジオールのための経皮的薬物送達システム | |
| US20180036319A1 (en) | Transdermal drug delivery systems for norethindrone acetate | |
| HK1155942B (en) | Transdermal estradiol device and delivery |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13821402 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2015550784 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 13821402 Country of ref document: EP Kind code of ref document: A1 |